
Exploring Filesystem Synchronization with

Lightweight Modeling and Analysis

by

Tina Ann Nolte

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2002

@ Massachusetts Institute of Technology 2002. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 9, 2002

C ertified by
Daniel Jackson

Associate Professor
Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Students
BARKER

MASSACHUSETTSjNSTTiUTE
OF TECHNOLOGY

NOV 1 8 20021

LIBRARIES

Exploring Filesystem Synchronization with Lightweight

Modeling and Analysis

by

Tina Ann Nolte

Submitted to the Department of Electrical Engineering and Computer Science
on August 9, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

There are a number of software tools that offer a user the ability to synchronize
filesystems despite conflicting updates made to multiple filesystem replicas, and often

it is unclear what policies these tools employ and difficult to understand what the
policies guarantee. Alloy, a lightweight formal modeling language, is used in an
exploration of filesystem synchronization properties, specifications, and algorithms.

The Alloy language and tool are evaluated in the task of interactively constructing

models of filesystem synchronization and understanding their intricacies.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor

2

Acknowledgments

I would like to thank J, my family, and most importantly, Kirby.

3

Contents

1 Introduction 6

1.1 Previous Work . 6

1.1.1 Formalizing Filesystem Synchronization 7

1.2 Overview of Filesystem Synchronization 8

1.3 C ontributions . 9

2 Pierce and Balasubramaniam's Model 10

2.1 Filesystem s . 10

2.2 Synchronization . 10

2.2.1 Update Detection . 10

2.2.2 Reconciliation . 11

2.3 Properties of Synchronization and Reconciliation 12

3 Modeling Filesystem Synchronization in Alloy 14

3.1 B asic A lloy . 14

3.2 Alloy Model of a Filesystem Synchronizer 17

3.2.1 Filesystem s . 17

3.2.2 Update Detection . 20

3.2.3 Reconciliation . 20

3.3 Analyzing the Model . 24

3.3.1 Formalization of Synchronization Specification 25

3.3.2 Uniqueness of Synchronization 27

3.3.3 Soundness of Reconciliation 27

3.3.4 Completeness of Reconciliation 28

4 Modeling Specifications of Implemented Synchronizers 30

4.1 Unison Specification . 30

4.1.1 Update Detection and Conflicts 30

4.1.2 Reconciliation . 31

4

4.2 Briefcase Specification . 34

4.2.1 Client-side Synchronizations 36

4.2.2 Simulating Unison with Briefcase 36

4.2.3 A Limitation of the Unison/Briefcase Analogy 38

5 Conclusions 40

A Tutorial Introduction to Modeling Synchronization 44

A .1 Filesystem s . 44

A .2 Update D etection . 51

A .3 Synchronization . 52

A .4 R econciliation . 54

A.4.1 Recursive Function Version of Recon 55

A.4.2 Manually Unrolled Recursive Function Version 57

A.4.3 A Problem with Synchronization 59

A.4.4 Relational Model of Recon . 62

A.4.5 Shrinking the Relational Model 64

A.4.6 Testing Reconciliation . 66

B Alloy Models in Full 69

B.1 Original Function Model of a Reconciliation Algorithm 69

B.2 Manually Unrolled Function Model of Reconciliation Algorithm . . . 78

B.3 Relational Model of Reconciliation Algorithm 88

B.4 Models of Unison and Briefcase Specifications 97

5

Chapter 1

Introduction

As the world has become more mobile, replicated data has become more common.

Unlike distributed filesystems that try to give all users the impression of simultane-

ously working off one shared filesystem, filesystem replicas in the mobile computing

context must allow for disconnected operation by several users. Users synchronize

data on their mobile machine with a desktop machine or with other users who may

have updated the original data as well.

There are a number of software tools that offer a user the ability to synchronize

data in the face of these issues, but often it is unclear what policies these tools

employ and what the policies guarantee. These are important considerations since

users do not want to discover that after synchronizing their mobile computer's data

with another user's mobile computer they have lost whole files that may have been the

product of hours of work. More subtly, users don't want to look at the synchronized

filesystem and see that the directory structure and directory contents are as expected

and continue with the belief that files have the changes they made to them only to

find that some files have been replaced with a file of the same name from another

user's filesystem.

1.1 Previous Work

Several commercial synchronizers exist, but their specifications (as described in user

manuals and documentation) are often confusing and unclear. For example, here is

one of the more detailed descriptions of the behaviour of Microsoft Briefcase available

from the Microsoft website [9]:

When you synchronize files, the files that you opened or updated while

disconnected from the network are compared to the versions of the files

6

that are saved on the network. As long as the same files you changed

haven't been changed by someone else while you were offline, your changes

are copied to the network.

If someone else made changes to the same network file that you updated

offline, you are given a choice of keeping your version, keeping the one on

the network, or keeping both. To save both versions of the file, give your

version a different file name, and both files will appear in both locations.

If you delete a network file on your computer while working offline but

someone else on the network makes changes to that file, the file is deleted

from your computer but not from the network.

If you change a network file while working offline but someone else on the

network deletes that file, you can choose to save your version onto the

network or delete it from your computer.

If you are disconnected from the network when a new file is added to a

shared network folder that you have made available offline, that new file

will be added to your computer when you reconnect and synchronize.

This case by case description of the Briefcase specification is, in places, contradic-

tory and incomplete (see Section 4.2). For example, it is not explicitly stated that if

you do not change a file and somebody else does that you will ever receive an updated

version of the file. Informal descriptions often suffer from these kinds of problems.

1.1.1 Formalizing Filesystem Synchronization

Work formalizing notions of filesystem synchronization has been done by Pierce and

others [2, 1, 10, 11]. These papers have concentrated on establishing a rigorous

framework for a discussion of synchronization, ranging from basic specfication studies

to algebraic descriptions of filesystems. Pierce and Vouillon have implemented the

Unison synchronizer based on the specifications they developed and proved correctness

of a large part of the system with a theorem prover.

A different approach to studying a problem, as has been demonstrated by case

studies in the past [8, 7], is to use an automated checking tool to experiment with

specification and verify its correctness. The construction of a model of a system makes

the task of experimenting with changes to policy or new algorithms much easier.

The Alloy language is well suited for the task of modeling synchronizers. The

lightweight modeling aspects of the relational Alloy language [5, 6] are conducive to

speedy expression of ideas, and the interactive nature of its tool gives one the power

7

to quickly determine what is problematic in new policies or properties without having

to implement the system or spend a great deal of time reasoning about all details of

what can go wrong. Its simplicity as a language as well as the automatic capabilities

of its tool are invaluable. Exhaustive checking of statements in a defined scope of-

ten produces "pathological" results, involving cases that manual test case generation

would fail to consider. Feedback from the tool in the form of counterexamples com-

bined with the ease of language expression make required corrections to a model easier

to make. Alloy's structuring mechanisms are designed to describe systems with the

complexity of data that a filesystem and synchronizers would have, which traditional

model checkers (such as SPIN [4]) handle less effectively.

Pierce and Vouillon, in [10], have formalized a reference implementation of their

implemented synchronizer, Unison, in the Coq proof assistant and verified properties

of their specification. Theorem provers [3] such as Coq have the ability to prove

that an algorithm is correct, which Alloy cannot do. However, theorem provers in

general require a great deal of expertise to operate and when a verification task is not

successful it can be difficult to determine if the wrong proof strategy was employed or,

if it is a problem in specification, where that specification has failed. Alloy requires

very little in the way of experience to get working and the counterexample generation

is invaluable for pinpointing errors in specification.

1.2 Overview of Filesystem Synchronization

Filesystem synchronization can be split into two different tasks: update detection and

reconciliation. Update detection is the identification of changes (updates) made to

different replicas since the last synchronization. Reconciliation uses this information

to produce new filesystems that take into account conflicting updates and reflect the

updates made to the filesystems that are non-conflicting.

Update detection for any replica identifies changes made to the original filesys-

tem. The reported possible updates at the least is safe (includes anything that has

changed); it may include more changes than occurred. There is a spectrum of imple-

mentations of update detectors:

e Trivial detector: report everything as dirty (changed). This will, in general,

produce a large number of spurious conflicts, but is a safe method by which to report

changes to a filesystem; no user's new data is overwritten with data of another user.

e Exact detector: report only those things that have changed. While the recon-

ciliation task benefits from the lack of spurious information, update detection will be

more resource intensive.

8

* Variety of other policies. Many that may be used in real filesystems have subtle

problems and are not safe, resulting in possible data loss. One example of this is

the "last modified time" strategy used by several synchronizers found packaged with

some operating systems. This strategy in general misses some updates, allowing files

to be accidentally deleted. The strategy can be made safe by marking all files as

dirty that have any ancestor that has been modified, though this will result in large

portions of a filesystem being marked dirty.

Reconciliation is the second major component of synchronization. Given an orig-

inal filesystem 0, two filesystems A and B that are both updated replicas of 0, and

information on which portions of A and B are dirty, how do you produce new filesys-

tems A' and B' so that A' is the updated version of A that incorporates the updates of

B that don't conflict with any updates in A (and similarly for B')? In practice more

intelligent policies that make decisions based on user priority or file metadata can be

adopted, but this is one of the most conservative (and arguably simplest) kinds of

reconciliation that one might expect.

1.3 Contributions

Using the Alloy analyzer, I modeled and checked basic properties of synchroniza-

tion and checked that some popular synchronizers do (and some don't) satisfy basic

filesystem synchronization specifications. This work also highlighted the need for

some changes to the Alloy language and tool.

Chapter 2 outlines one model of the filesystem synchronization task. Chapter 3

discusses the use of Alloy to model a detailed reconciliation algorithm and issues con-

structing models in the Alloy language. Chapter 4 describes the use of Alloy to model

high-level specifications of filesystem synchronization, as well as interesting problems

with specifications derived from informal descriptions of synchronization. Chapter 5

summarizes the lessons I have learned about some filesystem synchronization policies

and observations about the difficulties and usefulness of the Alloy language. Ap-

pendix A gives a detailed tutorial description of the process of modeling a filesystem

synchronization algorithm and a discussion of many of the problems that can occur.

Complete models used in this document are included in Appendix B.

9

Chapter 2

Pierce and Balasubramaniam's

Model

Here I will summarize the formalization of filesystem synchronization developed by

Pierce and Balasubramaniam [2]. An abstract model of filesystems is presented and

two phases of synchronization are identified: update detection and reconciliation.

2.1 Filesystems

Filesystems are finite partial functions from paths to either files or other filesystems.

Paths are sequences of names. There is an empty path, E. Paths p and q can be

concatenated using the . operator (as in p.q). The mapping from paths to filesystems

or files is constrained to guarantee that we consider mappings preserving standard

tree-like filesystem structure: for any paths p and q, following p.q in a filesystem F is

the same as first following p in F and then following q from the resulting subfilesystem.

2.2 Synchronization

Filesystem synchronization can be considered as two tasks: update detection and

reconciliation[2, 1]. Here, we consider two replicas A and B being simultaneously

synchronized against each other with respect to the original version 0 of a filesystem.

2.2.1 Update Detection

Update detection computes a predicate dirty on paths such that if a path is not dirty

(updated) in a replica A, then it maps to the same thing in the replica as it does in

the original filesystem 0:

10

Vp: Path I -,dirtyA(p) => O(p) = A(p)

For convenience's sake, dirtiness is up-closed; if path p is a prefix of path q and q is

dirty, then p is as well:

Vp,q : Path (p < q && dirtyA(q)) =e dirtYA (P)

This makes defining reconciliation easier.

2.2.2 Reconciliation

Reconciliation is the second task of synchronization. We want reconciliation to prop-

agate nonconflicting updates while preserving any user's local changes. What is a

conflicting update? Given replicas A and B, it is a portion of the filesystem that

has been updated in both A and B to two distinct values different from the original.

Given an original filesystem 0, replicas of 0 called A and B, and reconciled versions

of A and B called A' and B', for every path p we expect the following to be true:

1) If p is not dirty in A, then we know by up-closedness that the entire subtree

rooted at p in A is not dirty. As a result, any updates from the corresponding subtree

in B should be propagated, giving A'(p) = B'(p) = B(p).

2) Similarly if p is not dirty in B.

3) If path p is a directory in A and B then it is also a directory in A' and B'.

4) If p is dirty in A and B and is not a directory in both then we leave things

as they are: A'(p) = A(p) and B'(p) = B(p).

However, these rules are not consistent. Consider this example where boxes indi-

cate directories and circles indicate files:

0 A B

d d

a bb
C

11

Here there is an inconsistency in the specification since according to rule 1, because

path d.c is not dirty in A we should have A'(d.c) = B(d.c) = h. However, by rule 4,
since path d is dirty in A and B but is not a directory in both then we should have

A'(d) = A(d), namely nothing.

As a result, we guarantee the four properties above only for paths p where all

proper prefixes of p refer to directories in both A and B (called relevant paths).

Here is a general algorithm taken from [1] for calculating the synchronization

A' and B' from A and B after a relevant path p. isdirA,B(p) is true when path

p indicates a directory in both filesystems A and B. childrenA,B(p) is the set of

immediate children of a path p in either filesystem A or B. The recursive portion of

the algorithm is in step 2. If a directory is to be synchronized then each child path

is synchronized one at a time, the result of which is passed into the synchronization

of the next child path:

recon(A, B, p) -

1) if -,dirtyA(p) A-,dirtyB(p) then (A, B)

2) else if isdirA,B(p)

then let {piP2, ... , Pn} = childrenA,B(p)

in let (A, Bo) = (A, B)

let (Ai± 1 , Bj+1) = recon(Ai, Bi, pi,) for 0 < i < n

in (An, Bn)

3) else if -,dirtyA(p) then (filesystemOverwrite(A, B, p), B)

4) else if -,dirtyB(p) then (A, filesystemOverwrite(B, A,p))

5) else (A, B)

where filesystemOverwrite(T, S, p) is the result of replacing the subtree rooted at p

in T with that of S at p.

2.3 Properties of Synchronization and Reconcilia-

tion

To discuss properties of synchronization and reconciliation it is helpful to formally

define the notion of synchronizations.

AfterPSynchronization captures the notion that filesystems A' and B' are syn-

chronizations of A and B for all paths with p as their prefix. In more detail, A' and

B' are an afterPSynchronization of A and B from p if the following is true for all

relevant paths p.q in A and B:

12

1. -,dirtyA(p.q)

.d A'(p.q) A B'(p.q) B(p.pq)
2. -,dirtyB(p-q)

=: A'(p. q) = B'(p. q) = A(p. q)

3. isdir A,B(p-q)

t sdirA',B' (p.q)

4. dirty A(p.q) A\dirtyB p-q) A ---isir A,B (p-q)

== A'(p. q) =- A (p. q) A\ B'(p -q) = B (p. q)

This aids in defining a synchronization of two filesystems after a path p such that

nothing else changes. We'll call this syncp(A', B', A, B):

1. (A', B') is an afterPSynchronization of (A, B) after p

2. for all paths q, if neither p nor q is a prefix of the other

then A'(q) = A(q) and B'(q) = B(q)

3. if q is a prefix of p and isdirA,B(q) then isdiTrA',B/(q)

There are two main properties one would like to be able to check about synchroniza-

tion and reconciliation [2, 1, 10]:

* Synchronizations are fully characterized by the description above; for any rel-

evant path p in updated filesystems A and B and dirtiness predicates dirtYA, and

dirtYB, if (A', B') and (A", B") are both afterPSynchronizations of (A, B) then A' =

A" and B' = B".

e The reconciliation algorithm described actually satisfies properties of synchro-

nization; if recon (A, B, p) = (A', B') then syncp(A', B', A, B).

13

Chapter 3

Modeling Filesystem

Synchronization in Alloy

Here the models of filesystem synchronization are written in the Alloy language. I will

first describe some basic Alloy and then present a model of filesystem synchronization

in that language as well as some properties that were checked with the Alloy tool.

3.1 Basic Alloy

Types Alloy assumes a universe of atoms partitioned into subsets corresponding to

basic types. Mathematical relations (collections of tuples of atoms) are used to in-

troduce the only composite datatypes. All relations are first order, meaning that

elements of a tuple are atoms and not relations themselves. Expressions' values are

always relations.

Sets are unary relations. Scalars are unary, singleton relations. No distinction is

made between an atom, a set containing that atom, or a tuple of the atom. This

leads to a more uniform syntax and simplifies the semantics of the language.

Expression Operators Standard set operators written as ASCII operators can be used

to form expressions: + (union), & (intersection), and - (difference). The dot operator

is generalized relational composition [6]. When e is a set, e.r denotes the image of

the set e under the relation r. If e is a binary relation the composition is relational

composition. Cross product is represented by the arrow operator (p->q).

Formula Operators Elementary formulas are constructed from the subset operator in.

s in t says that expression s denotes a subset of the expression t. Equality (=) is

short for subset constraint in both directions.

Multiplicity markings (+ for one or more, ! for exactly one and ? for 0 or 1) are

14

used to constrain relations. r:S m -> n T where m and n are multiplicity symbols

constrains r to be a relation that maps each S to n atoms of T and m atoms of S to

each T.

Alloy also uses standard logical operators: && (and), (or), ! (not), => (implies),

and <=> (iff). An if-then-else construct is also present in the language as syntactic

sugar. When written within curly braces ({}) formulas are implicitly conjoined.

Quantifications are written in their usual form. For example, all x:e I F is true

when the formula F holds for every element in a set e. The quantifiers some and no

are available as well. Lastly, set comprehensions constructing tuples with elements

XI... X taken from expressions el... en that satisfy a formula F are written as follows:

{IX : eI, X2 : C2, ... zX : en I F}.

Signatures Signature declarations introduce basic types. The declaration sig S {f: E}

declares a type S and a field (relation) f. This relation has a type from S to the type

of E. Not all declarations introduce new basic types. The keyword extends can be

used to indicate that the type being declared is a subset of the supersignature listed.

For example, if there were:

sig Node {}

sig File extends Node {}

disj sig Filesystem extends Node {

contents: Node

}

this would indicate that Files and Filesystems are subsets of Nodes. The disj keyword

indicates disjoint subsignatures; in this example, any Nodes designated as Filesystems

will not also be Files. Use of the static keyword before a signature declaration con-

strains the model to have only one atom corresponding to the signature.

An assignment of a collection of signature declarations is an assignment of values to

signatures and fields. Take for example the following assignment for the specification

above:

Node {no, nI},

File = {nO},
Filesystem ={n1},

contents = {(nl, nO)},

corresponding to a universe with 2 nodes, the first of which is a file and the second of

which is a Filesystem. The contents relation just contains one tuple from filesystem

ni to node nO.

Facts constrain constants of the specification. For example,

15

fact {File + Filesystem = Node}

constrains Nodes to be Files or Filesystems.

Function Applications Alloy also has a useful but sometimes subtle concept of func-

tions. A function's meaning is a set of assignments that include bindings to param-

eters. Function application may be either as an expression or as a formula. If a

formula, the application is short for the function body where parameters are appro-

priately replaced by expressions from the application. For example:

fun isDirAB (f, g: Filesystem, p: Path) {

isDir(f, p) && isDir(g, p)

}

fact {all a, b: Filesystem, q: Path I

(isDir(a, q) && isDir(b, q)) <=> isDirAB(a, b, q)

}

The function isDirAB is used as a formula in the fact. If the application is as an

expression, things get more interesting. You can introduce a result argument with

type C with this shorthand:

fun f(a:A, b:B): C {..

The keyword result is used in the function body to refer to the anonymous result of

the function. For example,

fun dirty(f, g: Filesystem): set Path {

all p: Path I {

p !in result => p.f::contents = p.g::contents

}

}

"returns" a set of Paths that can be substituted in for result in the body of the

function while keeping the function true.

Functions with results can also be used as simple formulas with boolean values

by passing a possible "return" value for checking in as the second argument. For

example, the dirty function described above can be used to check if a set of paths P

could be substituted for the result keyword in the dirty function:

dirty(f, P, g)

Assertions Assertions are formulas that claim to be valid. They do not constrain the

atoms of the universe and are instead statements used in checking correctness of the

model.

16

3.2 Alloy Model of a Filesystem Synchronizer

3.2.1 Filesystems

The first step to modeling filesystem synchronization is to model filesystems. Since

synchronization deals with names, paths, and filesystem nodes it makes sense to in-

troduce three different kinds of atoms: Names, Paths, and Nodes. Names will identify

files and directories and paths will be sequences of names. Nodes are filesystem nodes

(files and directories).

sig Name {}

sig Path {

names: SeqENamel

}

sig Node {}

All immediate pathprefixes of a path are also paths. This fact, since true of all paths,

will give us that all pathprefixes of a path are paths:

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PathPrefix(q, p) &&

(#PathLength(p) = #PathLength(q) + 1))

}
}

}

We also need a restriction that all possible postfixes (tails) of a path are actually

paths as well. Together with NoMissingPathBegin this gives us that all subpaths of

a path are paths. This is necessary since if a path p.q is mapped in a filesystem A,

then path p must exist and map to some filesystem B and path q must map from

filesystem B to some node:

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

}

17

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}

}

}

Nodes will be either files or filesystems.

disj sig File extends Node {}

disj sig Filesystem extends Node {}

fact FileDirPartition {

File + Filesystem = Node

}

We add a contents relation to the Filesystem signature to model directory contents.

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

} f

some p: Path I EmptyPath(p) && this = p.contents

}

fun EmptyPath (p: Path) {

p.names. .SeqIsEmpty()

}

Note the multiplicity constraints expressing that contents are a partial mapping from

some paths to at most one node. Also, note the additional constraint ensuring that

following the empty path from a node leads back to that node. Incidentally, the

statement also ensures that there is an empty path. Empty paths are defined as

paths where the sequence of names it represents is empty.

Next, since it is possible for two different paths to be comprised of the same

sequence of names in this model, we want to canonicalize the atoms that are being

considered.

fact CanonicalPath {all a, b: Pathi a.names = b.names => a = b}

fact CanonicalSequence {all a, b: Seq[Namel I a..SeqEquals(b)

=> a = b}

18

A similar issue exists with nodes. To canonicalize nodes, we first have to include a

notion of equivalence for nodes expressing that two nodes are equivalent if they are

the same node or if they are filesystems mapping the same paths such that if a path

is mapped to a file in one then it is mapped to the same file in the other. Note the

use of result in the Paths function. Paths "returns" a set of Paths, the value of

which is the set of paths mapped by the filesystem's contents relation:

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

fun EquivNode (f, g: Node) {

(f = g) 11

(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

p->e in f.contents <=> p->e in g.contents

})

fact CanonicalNode {all a, b: Node I EquivNode(a, b) => a = b}

We need to start considering constraints on the atoms to make sure that filesystems

behave as we expect; for any paths p and q, looking up a composite path p.q is the

same as first looking up the first portion of the path, p, and then looking up the

remainder of the path, q, from the resulting sub-filesystem.

However, this constraint on filesystems would disallow existence of files in filesys-

tem contents. Why? Consider a path p. Say that in a particular filesystem this

path leads to a file. Following the empty path E from a file yields nothing since files

don't have path contents. Since path p can be expressed as p.E, the filesystem in

question would map path p both to the file (since p leads to a file) and to nothing

(since following p in the filesystem is the same as following p to the file it maps to

and then following E to nothing). As a result, this has to be treated as a special case

to be considered in the description of the tree structure constraints (*):

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(*) (g in File && EmptyPath(q)) II

(q.g::contents = append(p, q).f::contents)

}

}

19

}

3.2.2 Update Detection

To model update detection, or dirtiness, it is convenient to add an additional signature

with a field mapping an original node and a replica node to a set of paths that have

been updated. This represents the notion of there being a piece of synchronization

software making decisions about which paths are to be marked dirty:

static sig Synchronizer {

dirty : Node -> Node -> Path

}

The next step is to constrain the dirty relation to be both safe and up-closed as

discussed earlier. Remember, an update detection policy is safe if it finds all paths

where a filesystem's contents have changed from the original and it is up-closed if

prefixes of dirty paths are also dirty:

fact DirtySafe {

all f, g: Filesystem I all p: Path I {

p !in Synchronizer.dirty[f][g] => p.f::contents = p.g::contents

}
}
fact DirtyUpClosed {

all f, g: Filesystem I all p, q: Path I {
(PathPrefix(p, q) && q in Synchronizer.dirty[f][g]) =>

p in Synchronizer.dirty[f][g]

}
}

Other notions of dirtiness can be assumed by changing the above two facts to constrain

the dirtiness mapping appropriately.

3.2.3 Reconciliation

Reconciliation is arguably the most complicated aspect of synchronization. Recall

the algorithm described in Chapter 2:

20

recon(A, B, p) =

1) if ,dirtyA(p) /-,dirtyB(p) then (A, B)

2) else if isdirA,B(p)

then let {pi, P2, ... , pn} = childrenA,B (p)

in let (A0 , Bo) = (A, B)

let (Ai+1, Bi+i) = recon(Aj, Bi, pi+1) for 0 < i < n

in (An, Bn)

3) else if -,dirtyA(p) then (filesystemOverwrite(A, B, p), B)

4) else if -,dirtyB(p) then (A, filesystemOverwrite(B, A,p))

5) else (A, B)

To model this reconciliation algorithm from [1], we start by introducing a reconcilia-

tion relation to the Synchronizer atom to represent the reconciliation of two nodes A

and B from an original 0 and a path p. Synchronizer.recon[][A][B][p] corresponds

to recon(A, B, p) given an original filesystem 0 by which to calculate dirty paths:

static sig Synchronizer {

recon: Node -> Node -> Node -> Path -> !(Node->Node),

dirty : Node -> Node -> Path

}

The next step is constraining the recon field to properly describe the reconciliation

function (Figure 3-1).

Lines 5 and 6 correspond to part 1 of the reconciliation algorithm. Lines 26-28, 29-

31, and 32 correspond exactly to parts 3, 4, and 5 in the reconciliation algorithm. The

only departure from the original algorithmic description is in the recursive portion

(lines 7-25 above); an abstraction had to be considered where a' and b', the result of

synchronizing a particular path p in two filesystems, is related to the synchronization

(the pair c and d on line 14 and 15) of each child on that path. Examining a child

path q of a synchronized path p in two filesystems will reveal that q in the final

synchronized filesystems a' and b' maps to the same nodes as it would have if the

replicas were synchronized at path q.

Now we can examine some simple examples of synchronization at work. The Al-

loy analyzer can automatically produce sample systems that satisfy constraints in

the constructed model. The tool also provides a visualization utility that can be

customized to display interesting portions of a model. The following example is pro-

duced with this visualization utility from a model automatically generated by Alloy.

Note that in the example the filesystems utilize sharing of atoms; some filesystem

nodes are used in more than one filesystem structure, such as in the case of Node 1

21

1 fact reconFacts {
2 all o, a, b: Node I all p: Path I some abp, bap: Node I{
3 let dirtya = Synchronizer.dirty[o][a], dirtyb =

4 Synchronizer.dirty[o][b] I {
5 (p !in dirtya + dirtyb)
6 => Synchronizer.recon[o] [a] [b] [p] = a->b

7 else isDirAB(a, b, p)

8 => f
9 no childrenAB(a, b, p)

10 => Synchronizer.recon[o] [a] [b] [p] = a->b

11 all q: childrenAB(a, b, p) I {
12 let a' = Node. (Synchronizer: :recon[o] [a] [b] [p]),
13 b' = Synchronizer.recon[o] [a] [b] [p] [a'],

14 c = Node. (Synchronizer.recon[o] [a] [b] [q])
15 d = Synchronizer.recon[o][a][b][q][cI I {
16 (children(a', p) + children(b', p)) in

17 childrenAB(a, b, p)

18 all s: Path I {PathPrefix(s, q) =>
19 ((s in Paths(a') <=> s in Paths(c)) &&

20 (s in Paths(b') <=> s in Paths(d))) }
21 (q.a'::contents = q.c::contents && q.b'::contents =

22 q.d::contents)

23 }
24 }
25 }
26 else p !in dirtya

27 => filesystem0verwrite(a, abp, b, p) &&

28 Synchronizer.recon[o] [a] [b] [p] = abp->b
29 else p !in dirtyb

30 => filesystem0verwrite(b, bap, a, p) &&

31 Synchronizer.recon [ol [a] [b] [p] = a->bap

32 else Synchronizer.recon[o] [a] [b] [p] = a->b
33 }
34 }
35 }

Figure 3-1: Alloy Model of the Reconciliation Algorithm

22

which is mapped to by both Node 3 and Node 2 as separate filesystems. The example

of synchronization is one of the simplest where only one replica (a) differs from the

original (o) and both filesystems in the resulting synchronization (a' and b') are the

updated filesystem:

ode_3 Node_2
(b, o) (a, a', b')

contents contents contents contents

Jode_1 odle_0
(File) (File)

Here is a more complicated example of reconciliation from the empty path requir-

ing recursion:

ode_3
(b, b'

contents

contents ode_2 contents Note_1

c osnteints contents contents contents

oer 5 contents Nodeo contents

contents

ode_4
(0)

This picture is difficult to understand, though. First, atom sharing is present;
some atoms such as Node 4 are mapped to by several filesystems even though there is

no significance to their multiple occurrences. Also, the contents relation maps paths

rather than names. As a result, there is an arrow drawn from a filesystem node to

each of its descendants, whether an immediate child or not. To better understand

what is going on in this example I translated it to a more standard representation

of filesystem structure where boxes are filesystems and circles are files, shared atoms

23

are copied between filesystem structures, and filesystems only point to immediate

children:

o a,a' b,be

Node_4 Node_2 Node_3

Node_5 NodeU Node_5 Node_1

Node_4 NodeO

Node_4

The original filesystem (o) is an empty directory. The two replicas (a and b) each

have added directories. The recon algorithm does employ recursion in this case, but

since all paths in both replicas are dirty, no changes are propagated (a' and b').

The complete model for this section is in Appendix B.3. To describe a different

reconciliation algorithm, all that would have to be done is to change the reconFacts

fact to describe the new algorithm.

3.3 Analyzing the Model

Since Alloy supports declarative specification, models can be incrementally developed.

The Alloy analyzer then evaluates partially completed models for subtle properties

by translating the model being analyzed into a Boolean formula, dispatching the

formula to a SAT solver and finally translating any solutions found by the solver into

an instance of the model.

Since Alloy is not decidable, the analyzer does not provide sound and complete

analysis of models. However, it does check models using an exhaustive search in a

given finite "scope" provided by the user. This scope defines the number of atoms

present in each basic type. The Alloy analyzer then returns one of two things: a

solution or a message indicating no solution was found. If an assertion is being

tested, a solution is an instantiation of atoms constrained by the constructed model

that provide a counterexample to the assertion. A solution when a function is being

evaluated provides an instantiation of atoms that satisfies not only the model, but

the function as well.

24

Since these searches are conducted in finite scope it is possible that even though

no solutions are found in some scope a solution could be found in a larger scope.

However, in practice, if counterexamples exist, one can often be found in small scope.

There are a number of properties that are important to verify about synchroniza-

tion [2, 1, 101. In this section we will first formalize some notions of synchronization

to be used in analysis of the models and then check three properties:

" Uniqueness of Synchronization

" Soundness of Reconciliation

" Completeness of Reconciliation

3.3.1 Formalization of Synchronization Specification

In order to check any properties about synchronization, some concepts have to be

formalized. One concept is that of a relevant path:

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}

}

A relevant path is one where all proper pathprefixes correspond to directories in both

filesystems being considered. This is how the problem with contradictory synchro-

nization results was handled in the description of synchronization. AfterPSynchro-

nization captures the notion that filesystems A' and B' are synchronizations of A and

B starting from a particular path. Remember from Chapter 2 that A' and B' are an

afterPSynchronization of A and B from p if the following is true for all relevant

paths p.q in A and B:

1. -,dirtyA(p.q)

= A'(p -q) = B'(p q) = B(p q)
2. -,di'rtyB(p-q)

=> A'(p.q) - B'(p.q) A(p.q)

3. isdirA,B(p.q)

Z sdir A',B' (p-q)
4. dirtyA(p.q) AdirtyB(p.q) A -isdirA,B(p-q)

=: A'(p.q) = A(p.q) A B'(p.q) = B(p.q)

This is directly translatable into an Alloy function:

25

fun afterPSynchronization (a, b, a', b': Node,

dirtya, dirtyb: set Path, p: Path) {

relevant(a, b, p)

all pq: Path I {

(PathPrefix(p, pq) && relevant(a, b, pq))

=> {
pq !in dirtya => (pq.a'::contents = pq.b'::contents &&

pq !in dirtyb

isDirAB(a, b,

(pq in dirtya

pq.a'::contents = pq.b::contents)

=> (pq.a'::contents = pq.b'::contents &&

pq.a'::contents = pq.a::contents)

pq) => isDirAB(a', b', pq)

&& pq in dirtyb && !isDirAB(a, b, pq)) =>

(pq.a'::contents = pq.a::contents &&

pq.b'::contents = pq.b::contents)

}

}

}

This function is used by syncp which checks not only that afterPSynchronization

holds but also that paths other than the synchronization path p and any descendants

remain the same. This is done by stating that for all paths q, if q is not a pathprefix

of p and p is not a pathprefix of q then the synchronized replicas do not change their

contents at q because of synchronization. If q is a pathprefix of the synchronization

point and is a directory, then it remains so in the final synchronized version.

fun syncp (p: Path, a', b', a, b: Node, dirtya, dirtyb: set Path) {

afterPSynchronization(a, b, a', b', dirtya, dirtyb, p)

all q: Path I {

incomparable(p, q) =>

(q.a'::contents = q.a::contents &&

q.b'::contents = q.b::contents)

(PathPrefix(q, p) && isDirAB(a, b, q)) => isDirAB(a', b', q)

}

}

26

3.3.2 Uniqueness of Synchronization

When synchronizing two replicas of a filesystem, users do not want to hear that non-

deterministic decisions are being made about which portions of their filesystem are

being preserved. Users want an assurance that the term "synchronization" refers to

exactly one pair of filesystems. Synchronizations are "unique" if, given an original

filesystem, two replicas, and a particular update detection policy, any pair of filesys-

tems that is a valid synchronization is the same as any other pair that is a valid

synchronization:

assert Uniqueness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {
all p: Path I all at, bi, a2, b2: Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

afterPSynchronization(a, b, at, bi, dirtya, dirtyb, p) &&

afterPSynchronization(a, b, a2, b2, dirtya, dirtyb, p)) =>

(p.al::contents = p.a2::contents &&

p.bl::contents = p.b2::contents)

}

This assertion checks for scopes up to 6. This means that in the space of instantiations

with 6 atoms per basic type there is no instantiation of the variables consistent with

the model that does not satisfy the requirements of the assertion. A scope of 6 atoms

is sufficient for the Alloy analyzer to generate cases involving conflicts and requiring

recursion to resolve.

3.3.3 Soundness of Reconciliation

Users want to know that a piece of software they employ to synchronize their filesys-

tem does not suffer from potential data loss. It is important to be certain that the

reconciliation algorithm modeled in section 3.2.3 actually calculates a safe synchro-

nization of the filesystems in question. Given two replicas a and b of an original

filesystem o, we check that for all relevant paths p in a and b, if we reconcile a and b

against o starting at path p, the result is a synchronization of a and b from p:

27

assert Soundness {

all a, b, o: Filesystem I {

let dirtya = Synchronizer.dirty[o] [a], dirtyb =

Synchronizer.dirty[o][b] I {

all p: Path I all a', b': Filesystem I {

(relevant(a, b, p) && Synchronizer.recon[o] [a] [b] [p] = a'->b')

=>(syncp(p, a', b', a, b, dirtya, dirtyb))

}

}

}

}

This assertion finds no counterexamples in small scope (4 atoms). The assertion is

checkable for 6 atoms in a related model employing techniques to reduce memory us-

age. This lends some credibility to the hypothesis that the algorithm for reconciliation

does calculate a synchronization of two filesystems against an original. Checking this

model for 4 atoms requires about 5 minutes on a Pentium 4 processor with 256 MB

of RAM, though there are ways to write this model more efficiently so that analyses

require much less time.

3.3.4 Completeness of Reconciliation

Software is not particularly useful if it does not run on most inputs. Completeness

of the reconciliation algorithm is concerned with whether or not reconciliation just

bothers to synchronize some filesystems and not others. A natural way to express this

would be to say that for any original filesystem 0, and two updates A and B, there

is a pair of filesystems A' and B' that the reconciliation relation maps to. However,

this has a counterexample in the Alloy model since there can be filesystems whose

synchronizations don't fit in the scope being considered.

As a result, we instead check that if in the instantiated universe there exists a

synchronization of two filesystems, the recon relation maps those filesystems:

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I {

let dirtya = Synchronizer.dirty[o] [a], dirtyb =

Synchronizer.dirty[o][b] I {

(some dirtya && some dirtyb && some a', b': Filesystem I

syncp(z, a', b', a, b, dirtya, dirtyb))

=> some Synchronizer.recon[o][a][b][z]

28

}

}

}

No counterexamples occur in a scope of 4 (though it is possible to examine the

assertion in a scope of 6 in a more efficient modified version). This allows us to

conclude with a degree of confidence that the model of reconcilation actually covers

all cases of synchronization that it should.

This model can be found in its entirety in Appendix B.3. The alternative formu-

lation of the model that is checkable in larger scope is found in Appendix B.2.

29

Chapter 4

Modeling Specifications of

Implemented Synchronizers

Alloy's declarative statements allow for modeling systems at a much higher level than

the algorithmic. Here we will examine some high-level specifications of filesystem

synchronizers in the framework of synchronization defined in Chapter 3.

4.1 Unison Specification

As described in the Unison reference manual [12], update detection and reconciliation

are of a very different flavor from the model presented in the previous sections. Update

detection is described as finding changes to filesystem "contents" and no algorithm

is provided for reconciliation; instead a description of the results of application of an

algorithm are provided.

4.1.1 Update Detection and Conflicts

In order to model the Unison filesystem synchronizer specification, we need to get a

handle on some notions used by the authors of the synchronizer. First, the contents of

a path p in a particular replica could be a file (string of bytes), a directory (designated

by the token "DIRECTORY"), or absent (if p does not refer to anything at all in that

filesystem). A path is updated (in some replica) if its current contents (the string

of bytes, "DIRECTORY" token, etc.) are different from its contents the last time it

was successfully synchronized. A path is said to be conflicting if:

1. it has been updated in one replica,

2. it or any of its descendants has been updated in the other replica,

3. its contents in the two replicas are not identical.

30

With this description, conflicts are easy to model. Samesort is true when two

nodes are the same or at least are both directories. It captures the notion of two

nodes having the same contents:

fun samesort(a, b: Node) {

a = b 11 (some (a & Filesystem) && some (b & Filesystem))

}

fun conflict(o, a, b: Node) {

!(samesort(a, b) II o = a II o = b)

}

4.1.2 Reconciliation

Unison's reconciliation specification is described in its user manual as several tasks:

1. It checks for "false conflicts" - paths that have been updated on both

replicas, but whose current values are identical. These paths are silently marked as

synchronized in both replicas.

2. For updates that do not conflict, it propagates the new contents from the

updated replica to the other.

3. Conflicting updates are left as is.

Here is a straightforward attempt at describing these properties. Parenthesized num-

bers correspond to lines from the description of the Unison specification above:

fun BadUnisonRecon(o, a, b, a', b': Node) {

all p: Path I {

(1) (samesort(p.o::contents, p.a::contents) &&

samesort(p.o: :contents, p.b: :contents))

=> (samesort(p.a::contents, p.a'::contents) &&

samesort(p.b: :contents, p.b': :contents))

(2) else (samesort(p.o: :contents, p.a: :contents) &&

!conflict(p.o::contents, p.a::contents, p.b::contents))

=> (samesort (p.b: :contents, p. a' : :contents) &&

samesort(p.b: :contents, p.b': :contents))

(2) else (samesort(p.o: :contents, p.b: :contents) &&

!conflict(p.o::contents, p.a::contents, p.b::contents))

=> (samesort (p. a: : contents, p. a' : : contents) &&
samesort(p.a::contents, p.b'::contents))

(3) else (samesort(p.a: :contents, p.a': :contents) &&

samesort(p.b: :contents, p.b': :contents))

31

}

}

However, this is not correct due to an inconsistency in the description of Unison's

reconciliation specification given above. Here is a correct example of a synchronization

that BadUnisonRecon rejects as a synchronization:

ode_1' 0 a, a' b, b'
(b, b')

q Node_3 Node_2 Node_1
Contents rr q q

Node_3 conterts Node_2 Node_3
(0)

q contents
Node_2

ode_2
(a, a')

This example reveals a problem in the specification of BadUnisonRecon. Con-

tradictory predictions about the value of a' and b' result in BadUnisonRecon not

accepting any synchronization. There are three paths: an empty path, a path of

length one (q), and a path of length two (r). On one hand, for path q, part (3) of

BadUnisonRecon implies that:

eq.a' contents-= q.a :: contents (nothing)
eq.b' contents = q.b :: contents (Node_3)

However, examine path r. In this case, part (2) of BadUnisonRecon applies, implying:

Orb' :: contents = r.b :: contents (Node_2) = r.a' :: contents (nothing)

This is a contradiction. This is the same problem dealt with by use of relevant paths

in Pierce and Balasubramaniam's model presented in Chapter 2. This means that

we need to be certain when reconciling that we are only worrying about those paths

whose proper pathprefixes were nonconflicting.

Here is a corrected version with the modifications marked with (*):

32

fun unisonRecon(o, a, b, a', b': Node) {

all p: Path I {

(samesort(p.o::contents, p.a::contents) &&

samesort(p.o::contents, p.b::contents))

=> (samesort(p.a::contents, p.a'::contents) &&

samesort(p.b::contents, p.b'::contents))

else (samesort (p. o: :contents, p. a: : contents) &&

(*) {all q: Path I PathPrefix(q, p)

(*) => !conflict(q.o::contents, q.a::contents, q.b::contents)})

=> (samesort(p.b: :contents, p.a': :contents) &&

samesort(p.b::contents, p.b'::contents))

else (samesort(p.o: :contents, p.b: :contents) &&

(*) {all q: Path I PathPrefix(q, p)

(*) => !conflict(q.o::contents, q.a::contents, q.b::contents)})

=> (samesort(p.a: :contents, p.a' : :contents) &&

samesort(p.a: :contents, p.b': :contents))

else (samesort(p.a: :contents, p.a': :contents) &&

samesort(p.b::contents, p.b'::contents))

}

}

This description satisfies the properties of synchronization in an assertion checked

in a scope of 6, using the definition of synchronization from the previous section.

This assertion claims that if Unison finds some synchronization of two filesystems

against an original then two sets of dirty paths dirtya and dirtyb can be found,

satisfying the requirements of exact update detection, such that the result of Unison's

synchronization is a synchronization in the sense of the previous section:

assert checkUnisonSafe {

all o, a, b, a', b': Node I {

unisonRecon(o, a, b, a', b') =>

some dirtya, dirtyb: set Path I {

dirty(o, dirtya, a)

dirty(o, dirtyb, b)

synchronization(a, b, a', b', dirtya, dirtyb)

}

}

}

}

33

This gives us some confidence that the Unison spec describes a correct synchronizer.

We also checked in a scope of 6 that the description actually synchronizes all filesys-

tems that it should; if a synchronization of two filesystems against an original exists

in the scope being considered, given an exact update detector, then the description

of Unison finds the synchronization as well:

assert unisonMaximal {

all o, a, b, a', b': Node, dirtya, dirtyb: set Path I {

(dirty(o, dirtya, a) &&

dirty(o, dirtyb, b) &&

synchronization(a, b, a', b', dirtya, dirtyb)) =>

unisonRecon(o, a, b, a', b')

}

}

What is interesting to note in this model is the difference in style between it and

the previous model of synchronization; the specification of Unison update detection

is written differently from the update detection in section 3.2.2 for the original model

of synchronization that was examined. However, this was in keeping with what was

noted in the description of update detection earlier; very different policies of update

detection are easily examined by substituting a new description of dirtiness into the

model.

Also of interest is the difference between the reconciliation portions of synchro-

nization in either model. The Unison specification model adopts a very declarative

approach, describing properties of the results of reconciliation rather than modeling

the algorithm that would achieve it as in the previous chapter.

This kind of flexibility in description is valuable for determining not only if an al-

gorithm is correct but also if your understanding of the problem is. As the counterex-

ample above demonstrates, it is very easy to write a model of some simple sounding

properties and misinterpret the English language description of those properties or

miss a subtlety that was not stated.

The complete text of this model can be found in Appendix B.4.

4.2 Briefcase Specification

Briefcase is a widely used piece of synchronization software that ships with most

modern versions of Microsoft Windows. While it is difficult to find a description of

Briefcase more detailed than "Briefcase automatically updates files", some exist. On

34

the Microsoft website [9], the Briefcase specification is informally described in a case

by case manner as follows:

1) When you synchronize files, the files that you opened or updated while

disconnected from the network are compared to the versions of the files

that are saved on the network. As long as the same files you changed

haven't been changed by someone else while you were offline, your changes

are copied to the network.

2) If someone else made changes to the same network file that you updated

offline, you are given a choice of keeping your version, keeping the one on

the network, or keeping both. To save both versions of the file, give your

version a different file name, and both files will appear in both locations.

3) If you delete a network file on your computer while working offline but

someone else on the network makes changes to that file, the file is deleted

from your computer but not from the network.

4) If you change a network file while working offline but someone else on

the network deletes that file, you can choose to save your version onto the

network or delete it from your computer.

5) If you are disconnected from the network when a new file is added to a

shared network folder that you have made available offline, that new file

will be added to your computer when you reconnect and synchronize.

This description is more difficult to model since the tasks of update detection and

reconciliation are described together and there are ambiguities in the description.

Also, the description is incomplete. It is not stated that if you do not change a file

and somebody else does that you will ever receive an updated version of the file (a

basic example of nonconflicting update).
Also, note that deleting a file is normally considered by users to be a change to

that file and yet the description treats file modifications and deletions in completely

different ways. As written, Briefcase does not satisfy requirements of synchroniza-

tion since certain updates are considered more meaningful than others (deletions are

ignored for propagation in favour of other modifications). Briefcase attempts syn-

chronization while trying to remain conscious of user's views on a filesystem and, as

one result, successful synchronizations in the absence of conflicts do not have to result

in identical filesystems.

35

4.2.1 Client-side Synchronizations

Briefcase can be used in another manner that the description above does not discuss.

Rather than initiating synchronization from the networked version of a filesystem

and simultaneously synchronizing two filesystems against an original as in Unison,
Briefcase can be initiated by a client to synchronize only its replica with a networked

version of the filesystem that records some changes in replicas from the original ver-

sion.

Experimentation reveals that this client-side use of Briefcase actually does not

satisfy the fourth requirement and treat deletions as low priority changes; instead,
it treats deletions as modifications (as in Unison) and follows the first requirement

where changes made to a file on one replica after the file has been deleted on another

do not get propagated. After these points are considered, a reasonable interpretation

for client-side use of Briefcase, assuming no user interaction, would be as follows:

1) When you synchronize files, the files that you updated (added, deleted,
changed) while disconnected from the network are compared to the ver-

sions of the files that are saved on the network. As long as your updates

aren't conflicting with another user's changes, your changes are copied to

the network.

2) If someone else made changes to the same network file that you updated

offline, you keep your version and leave the network version alone.

3) If you are disconnected from the network when a new file is added or

some file you have not updated is changed, that file will be added to (or

replaced on) your computer when you synchronize.

This version seems to describe the same thing the Unison specification describes:

propagate non-conflicting updates and stop at conflicts. However, Unison can syn-

chronize arbitrary pairs of filesystems while Briefcase in this mode can only synchro-

nize one replica against the network version of the filesystem. It seems natural to ask

if this mode of Briefcase can be used to simulate the behaviour of Unison, with the

networked version of the filesystem functioning as go-between.

4.2.2 Simulating Unison with Briefcase

If we examine an iterated run of Briefcase where we synchronize the first replica

with the network version, the second replica with the network version, and then the

36

updated first replica with the network version again, we can check in our model that

the result is the same as having synchronized both replicas at once through Unison.

Since Briefcase's specification seems so similar to Unison's, it makes sense to con-

sider an alternative use of the function modeling Unison's reconciliation specification

described in the previous section. We will use the unisonRecon function to describe

steps of Briefcase and check that there is an equivalence to Unison's behaviour. Given

an original network version of a filesystem n and two replicas a and b we check that

Briefcase simulates Unison using the following assertion:

assert briefcase {

all n, a, ni, al, b, bi, n2, a2, n3: Node I {
(1) {unisonRecon(n, a, n, al, ni)

(2) unisonRecon(n, b, ni, bi, n2)

(3) unisonRecon(al, al, n2, a2, n3)}

(4) => unisonRecon(n, a, b, a2, bi)

}

}

Line 1 corresponds to synchronizing a with the network, n, and against its original

(the original version of a and b is assumed to be the first network version). It results

in a new, synchronized version of a called al and a new network version called nl.

Line 2 corresponds to synchronizing b with the network, ni, and against its orig-

inal, n. It results in a new, synchronized version of b called bi and a new network

version, n2.

Line 3 corresponds to synchronizing the synchronization of a, al, with the net-

work version, n2, and against its last synchronization, al. This results in a new,
synchronized version of al called a2 and a new network version called n3.

Lines 1, 2, and 3 together imply Line 4. Line 4 describes Unison's behaviour when

synchronizing two replicas a and b against an original version called n. This results

in a being updated to a2 and b being updated to bl.

The assertion seems to reveal an equivalence to Unison. This is surprising since

the descriptions of synchronization used by either software package and the styles

of synchronization (simultaneous synchronization versus serialized synchronization)

sound very different. It seems that the basic ideas behind policies for synchronization

tend to be shared.

37

4.2.3 A Limitation of the Unison/Briefcase Analogy

This method of describing Briefcase breaks down after the three step iteration. After

the three step iteration is completed, consider immediately synchronizing the syn-

chronized filesystems, without making any changes to them. Common sense tells us

that the expected behaviour would be to have no changes made to the filesystems.

However, examine what happens if we continue the line of reasoning from above.

We synchronize the synchronized first replica, a2, with the latest network version,
n3, to get a new replica, a3, and new network filesystem, n4. Then we synchronize the

synchronized second replica, bl, with n4. Finally, we synchronize the synchronized

first replica, a3, with the network version of the filesystem again. What will the

results be? Consider the following valid assertion:

assert mirroring {

all f, g: Node I unisonRecon(f, f, g, g, g)

}

This assertion tells us that when one replica of a filesystem is identical to the

original version of the filesystem and another replica is different, then unisonRecon

propagates the changes from the differing replica to the unchanged replica. This has

some interesting consequences in our examination of Briefcase.

When we synchronize bi with n4, we are synchronizing against the last synchro-

nized version of b, which happens to be bl. As a result, by mirroring, we know that

bi will be replaced with the filesystem n4. If we apply the mirroring property to

previous steps, we find that n4 is actually the same as a2. This means that synchro-

nizing again after no changes are made to the synchronized filesystems results in the

synchronized replica of b being replaced with the synchronized replica of a while the

synchronized replica of a remains the same. This is a problem since there is potential

for data to be lost.

This is not the whole story about Briefcase synchronization. Experimentation

reveals that there is extra state stored by Briefcase that prevents one from being

able to really understand its behaviour from its specification. For example, if a file

is deleted on one filesystem replica and the replica is synchronized with the network

version, causing the file to be deleted from the network version, then an updated copy

of that file on another replica will not be propagated to the network version unless

the file is deleted from that replica, the replica is synchronized, the file is replaced,

and the replica is synchronized again. This indicates that there is state stored that

is not described in [9].

38

Also, Briefcase experiments reveal a laziness in the treatment of directories. Di-

rectory structure changes that don't affect paths of files are not propagated unless

there is already some other change being propagated. This is interesting and poten-

tially frustrating since it is conceivable that directory structure can contain a large

amount of information.

It is apparent that while descriptions of properties that should be satisfied by syn-

chronization may sound similar, the number of implementation details, ambiguities

in the descriptions, and the urge to make assumptions about users' wants and needs

can lead to numerous synchronization programs with very different behaviour.

Alloy models in full for this section can be found in Appendix B.4.

39

Chapter 5

Conclusions

Constructing models of filesystem synchronization properties and algorithms served

to outline similarities and differences in different synchronization policies. Reasonable

sounding policies can be easily misinterpreted or even be contradictory. Since syn-

chronization is such an important task it is important to understand what happens

when synchronization is initiated.

I stated and checked using the Alloy analyzer all listed propositions about syn-

chronization described in [2, 1], including the key properties that there can only be

one maximal synchronization of filesystems A and B against an original filesystem 0

and that the published reconciliation algorithm employed by Unison calculated that

unique maximal synchronization.

I discovered that the Unison synchronizer (based on formalized notions of filesys-

tem synchronization) itself has an informal description of its specification in its user's

manual that suffers from an inconsistent description of reconciliation, leading to an

easily believed, but incorrect, understanding of what Unison accomplishes. I also

modeled an operational description of Briefcase's synchronization specification only

to discover after some reformulation that it claims the same policy as Unison. How-

ever, there are many published examples of "unusual" behaviour by Briefcase that

serve to demonstrate that while a spec might be available it is not a reliable descrip-

tion of actual behavior of software.

Models of policies as well as algorithms proved to be very succinct. A reference

implementation of Unison is given in [10] and stands at about 450 lines in length while

the core Alloy model of the Unison algorithm is only about 60 lines (the model of the

specification is even shorter). While Pierce and Vouillon's implementation is useful

(as the large Unison user population can attest to), Alloy models are smaller and pro-

vide a more lightweight alternative to examination of synchronization policies. Many

details of filesystems and the mechanics of their operation were not important in the

40

Alloy model, allowing for shorter descriptions of synchronization. Also, through inter-

active use of the Alloy analyzer, redundant restrictions and policies in the originally

constructed Alloy model were easily eliminated. All these point encourage treatment

of modeling as an important step in system development.

One of the limitations of the models presented is the machinations necessary

to overcome Alloy's lack of recursive function support. I originally constructed an

algorithmic description of reconciliation that mimicked almost exactly the algorithm

as presented in [2]. However, it required manual unfolding of the recursion to the

required depth for any given test. A clean declarative specification was less easy to

write; the recursion had to be hidden using clever reformulations of reconciliation

while being careful not to overconstrain the filesystems being synchronized. This

did lead to a better understanding of the whys of the reconciliation algorithm, but

presented a hurdle when first attempting to model the algorithm.

Alloy itself presented other challenges to modeling. Use of functions in Alloy must

be done carefully to not introduce unnecessarily large formulas for the SAT solvers

to handle. In some cases this was not entirely trivial and reduced readability of the

models. Also, Alloy's use of finite scope, while a boon in offering automated analysis,

introduces issues related to defining models that can be confusing to users. It can

be subtle to express properties, such as the natural one that appending one path to

another creates a new path since at some point there are not enough path atoms in a

finite model to combine other paths to. Since the property, if written as a fact, needs

an infinite number of paths to be true, any model constructed by Alloy will have no

paths at all.

One of the greatest challenges was not an artifact of Alloy or of filesystem synchro-

nization but instead was just determining when a model had captured the essence of

a problem or provided some useful information. Alloy helps with this since its declar-

ative statements allow modeling at almost any level of abstraction or detail that

you might want, as demonstrated in several models here (the first model describes

a particular algorithm in detail while the Unison model describes a specification for

synchronization). Filesystem synchronization proved both subtle and varied but the

modeling task itself became the most interesting endeavor.

41

Bibliography

[1] S. Balasubramaniam and B. C. Pierce. File synchronization. Technical Report

507, Computer Science Department, Indiana University, Apr. 1998.

[2] S. Balasubramaniam and B. C. Pierce. What is a file synchronizer? In Fourth

Annual ACM/IEEE International Conference on Mobile Computing and Net-

working (MobiCom '98), Oct. 1998. Full version available as Indiana University

CSCI technical report #507, April 1998.

[3] The Coq Proof Assistant. http:///pauillac.inria.fr/coq/, May 2002.

[4] G. J. Holzmann. The model checker spin. IEEE Transactions on Software En-

gineering, Special Issue on Formal Methods in Software Practice, 23(5), May

1997.

[5] D. Jackson. Micromodels of software: Lightweight modelling and analysis with

alloy. Reference Manual; available through http://sdg.lcs.mit.edu/alloy/, 2001,

2002.

[6] D. Jackson, I. Shlyakhter, and M. Sridharan. A micromodularity mechanism. In

Proceedings of the ACM SIGSOFT Conference on the Foundations of Software

Engineering / European Software Engineering Conference (FSE / ESEC '01),

Sept. 2001.

[7] D. Jackson and K. Sullivan. Com revisited: Tool assisted modelling and analysis

of software structures. In Proc. ACM SIGSOFT Conf. Foundations of Software

Engineering, San Diego, Nov. 2000.

[8] S. Khurshid and D. Jackson. Exploring the design of an intentional naming

scheme with an automatic constraint analyzer. In 15th IEEE International Con-

ference on Automated Software Engineering (ASE 2000), Sept. 2000.

[9] Microsoft Corporation. Handling File Conflicts. http://www.microsoft.com/

windows2000/en/professional/help/csc-handle-file-conflicts.htm, February 2000.

42

[10] B. C. Pierce and J. Vouillon. Unison: A file synchronizer and its specification.

Technical report; available through http://www.cis.upenn.edu/ bcpierce, 2001.

[11] N. Ramsey and E. Csirmaz. An algebraic approach to file synchronization. Foun-

dations of Software Engineering, 2001.

[12] Unison File Synchronizer User Manual and Reference.

http://www.cis.upenn.edu/ bcpierce/unison/manual.html#updates.

43

Appendix A

Tutorial Introduction to Modeling

Synchronization

This tutorial describes in detail the process of modeling Pierce and Balasubrama-

niam's two part (update detection and reconciliation) formalization [2] of filesystem

synchronization in Alloy, a lightweight formal modeling language. This tutorial does

not go into detail about the process of synchronization, but it includes enough infor-

mation about the task to follow development of the model. This document assumes

knowledge of the basic syntax and semantics of the Alloy language [6] and is intended

to serve as an example of development and troubleshooting of a complex model.

A.1 Filesystems

The first step to modeling filesystem synchronization is to model filesystems. Since

synchronization deals with names, paths, and filesystem nodes it makes sense to in-

troduce three different kinds of atoms: Names, Paths, and Nodes. Names will identify

files and directories and paths will be sequences of names. Nodes are filesystem nodes

(files and directories).

sig Name {}

sig Path {

names: Seq[Namel

}

sig Node {}

The seq library included with the Alloy distribution is used to define Paths, as can

be seen above.

Nodes will be either files or filesystems:

44

disj sig File extends Node {}

disj sig Filesystem extends Node {}

fact FileDirPartition {

File + Filesystem = Node

}

Synchronization is described most easily using paths. To facilitate this style of de-

scription, we'll make filesystems partial mappings from paths to other nodes, rather

than partial mappings from names to other nodes. We add a contents relation to the

Filesystem signature.

disj sig Filesystem extends Node {

contents: Path -> Node

}

Now let's take a look at just part of an example Alloy generates. This example was

generated and visualized automatically by the Alloy analyzer. The visualization was

not customized in any way:

IV next prev eqElems

0 1 0 0 1 2 0 1

2 Ord[Seqldx]_O Seqldxl 2 1 1 Seq[Name]_1

flirst last

Seqldx_O Seqldx_2

It's hard to figure out exactly what's going on here, so we change the customization

to make it easier to read examples. We only display Nodes and the contents relation:

45

Node_3

contents

Node_2 contents

contents

Node_1

Now it's possible to easily see what other nodes each filesystem maps to. Remem-

ber, the contents relation maps paths to nodes, rather than names to nodes, meaning

that a filesystem node will have an arrow leading to any node that is reachable from

it.

This almost looks believable as a filesystem, but let's take a closer look at what

the paths actually are. This is a screenshot of the Alloy analyzer's "Solution" portion

of its display, expanded to view one node's contents in an automatically generated

model of filesystems:
' Node_1

is contents
I Pathj->Node_1
I PathO->Node_2
f PathO->Node_3
IS Path_1->Node_1
19 Path_1->Node_2
09 Path 1->Node_3
f Path_2->Node_1
M Path_2->Node_2

This is problematic. Note that Node l's contents map the same path to multiple

nodes (such as Path 0 mapping to Nodes 1, 2, and 3), as well as mapping each path

to at least one node.

This leads to a change in the definition of filesystems:

fun EmptyPath (p: Path) {

p.names. .SeqIsEmpty()

}

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

46

} {

some p: Path I EmptyPath(p) && this = p.contents

}

Note the multiplicity constraints expressing that contents are a partial mapping from

some paths to at most one node. Also, note the additional constraint ensuring that

following the empty path from the node leads to itself. The statement also ensures

that there is an empty path. Empty paths are defined as paths where the sequence

of names it represents is empty.

Next, when generating models we find that it is possible for two different paths to

be comprised of the same sequence of names. This is common in Alloy models and

for simplicity's sake we want to canonicalize the atoms that are being considered:

fact CanonicalPath {all a, b: Pathi a.names = b.names => a = b}

fact CanonicalSequence {all a, b: Seq[Namel I a..SeqEquals(b)

=> a = b}

A similar issue exists with nodes. To canonicalize nodes, we first have to include a

notion of equivalence for nodes expressing that two nodes are equivalent if they are

the same node or if they are filesystems mapping the same paths such that if a path

is mapped to a file in one then it is mapped to the same file in the other. Note the

use of result in the Paths function. Paths "returns" a set of Paths, the value of

which is the set of paths mapped by the filesystem's contents relation. For memory

reasons it is preferable to write the body of functions such as Paths that are used as

expressions as "result =" whenever possible:

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

fun EquivNode (f, g: Node) {

(f = g) II

(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

p->e in f.contents <=> p->e in g.contents

})

fact CanonicalNode {all a, b: Node I EquivNode(a, b) => a = b}

We need to start considering restrictions to the atoms to make sure that filesystems

behave as we expect. For example, this seems like a reasonable description: for any

47

paths p and q, looking up a composite path p.q is the same as first looking up the first

portion of the path, p, and then looking up the remainder of the path, q, from the

resulting sub-filesystem. To express this constraint we need to describe the append

operation. This requires using functions from the standard sequences library because

paths were defined as sequences. First, we write a description for path length:

fun PathLength (p: Path): set SeqIdx {

result = SeqInds(p.names)

}

This description just returns the set of indices used to define the path. Next we define

what it means to be a pathprefix by stating that a is a prefix of b if b is a sequence

starting with a:

fun PathPrefix (a, b: Path) {

b.names. .SeqStartsWith(a.names)

}

With these two functions we can define the append operation. The append function

returns a path of length equal to that of the sum of the input paths' lengths. It also

specifies that input path a is a prefix of the result and that for all indices past those of

a, the appropriate values from b are present. The # operator returns the cardinality

of the set it precedes.

fun append (a, b: Path): Path {

result = {r: Path I {

#PathLength(r) = #PathLength(a) + #PathLength(b)

PathPrefix(a, r)

all i: r.names..SeqInds() I {

#OrdPrevs(i) >= #PathLength(a) =>

some k: SeqIdx I {

#OrdPrevs(k) + #PathLength(a)= #OrdPrevs(i)

b.names. .SeqAt(k) = r.names. .SeqAt(i)

}

}

}

Now we can finally express the composite path property described above:

48

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

q.g::contents = append(p, q).f::contents

}

}

}

However, there is a problem. After generating several examples, it is conspicuous

that files do not seem to be pointed to by any filesystems. To see if this is always the

case consider the following function:

fun simple () {some File & Path.Filesystem: :contents}

When this function is run in the Alloy analyzer for 3 atoms, there are no solutions.

The constraint on filesystems disallows existence of files in filesystem contents. Why?

Consider a path p. Say that in a particular filesystem this path leads to a file.

Following the empty path e from a file yields nothing since files don't have path

contents. Since path p can be expressed as p.E, the filesystem in question would map

path p both to the file (since p leads to a file) and to nothing (since following p in

the filesystem is the same as following p to the file it maps to and then following e to

nothing). As a result, this has to be treated as a special case to be considered in the

description of the tree structure constraints (*):

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(*) (g in File && EmptyPath(q)) ||

(q.g::contents = append(p, q).f::contents)

}

}

}

Now let's take another look at an automatically generated filesystem:

4 Path_2 Node_2
IN path

NO Seq[Name]_1 Path_2 contents contents
4 seqElems

I SeqldxO->Name_2
to Seqldx_1->Name_2 Node_I Node_0

49

This example demonstrates that there is still a problem with filesystem specifi-

cation. Node 2 leads to Node 1 in one step (the path from Node 2 to Node 1 does

not go through a third node) but the path between them is of length 2 (as can be

seen in the expansion of the path to the left of the filesystem diagram). The next

constraint makes it the case that the immediate pathprefix of a path is also a path.

This fact, since true of all paths, will give us that all pathprefixes of a path are paths.

PPathPrefix simply defines a proper pathprefix:

fun PPathPrefix (a, b: Path) {

PathPrefix(a, b) && #PathLength(a) != #PathLength(b)

}

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PPathPrefix(q,

(#PathLength (p)
p) &&
= #PathLength(q) + 1))

}

}

}

Here is another example the Alloy analyzer generates:

-N Path_0

-is path
-O Seq[Name]_2

- seqElems
I Seqldx_0->Name_2
.9SecIldx 1->Name 1

Node_2 Node1

, contents contentsP ath_0

Node_0

Notice again that there is a path of length two. This has a similar problem to

the one we just fixed, only in the other direction (postfixes). What we actually need

is a restriction that all possible subpaths of a path are actually paths as well. We

first define tail to express almost the same property as that of a tail of a list, using

sequence library functions:

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

}

Then we constrain the model so that tails of paths exist for nonempty paths:

50

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}

}

}

To be on the safe side, we actually check that if a path is in a filesystem's contents

then any prefix of it also is:

assert NoMagicPath {

all f: Filesystem I all p, q: Path I all n: Node I some m: Node I{

(PPathPrefix(p, q) && q->n in f.contents) =>

(m!=n && p->m in f.contents)

}

}

This produces no counterexamples and generated examples from the model look like

expected filesystems. At this point, when trying to find an assertion that breaks the

filesystem model, we actually discover an interesting one that happens to be true:

assert NoCycles {

all f: Filesystem I no p: Path I {

!EmptyPath(p) && p->f in f.contents

}

}

This is true because Alloy works in finite scopes. If it were the case that a cycle could

exist, then we would need an infinite number of paths to preserve the TreeStructure

fact.

We now move on to the next portion of filesystem synchronization modeling:

update detection.

A.2 Update Detection

Update detection computes a predicate dirty on paths s.t. if a path is not dirty in

a replica A, then it maps to the same thing in the replica as it does in the original

filesystem 0 (Vp : Path -,dirtyA(p) => O(p) = A(p)). For convenience's sake,

dirtiness is up-closed; if path p is a prefix of path q and q is dirty, then p is as well

51

(Vp, q : Path | (p < q && dirtyA(q)) =e dirtyA(p)). This makes defining reconcilia-

tion easier:

fun dirty (f, g: Filesystem): set Path {

all p: Path I {

p !in result => p.f::contents = p.g::contents

else {all q: Path I PathPrefix(q, p) => q in result}

}

}

One fact we want to be sure of is that if a path is not dirty in either of two replicas,

then it must be the case that it maps to the same thing in both replicas:

assert NonDirtyAreSame {

all a, b, o: Filesystem I all p: Path I

all dirtya, dirtyb: set Path I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

p !in dirtya && p !in dirtyb)

=> p.a::contents = p.b::contents

}

}

There are no counterexamples so we move on to describing reconciliation.

A.3 Synchronization

Given an original filesystem and two updates A and B, synchronization can be de-

scribed as propagating non-conflicting updates and stopping at conflicts to produce

two new filesystems A' and B', updated versions of A and B. Updates are changes

from the original filesystem and conflicting updates are paths where both replicas

differ from the original filesystem and from each other. Informally, the description is

a list of conditions:

e If a path p is not dirty in A then any updates in the corresponding subtree in

B should be propagated in both A' and B' and similarly for B.

* If a path p refers to a directory in both A and B then it should refer to a

directory in both A' and B'.

e If a path is dirty in both A and B and is not a directory, then there might be a

conflict. We stop propagation and keep the value of the paths in A' and B' the same

as in A and B respectively.

52

To express these properties it is useful to define a function indicating whether a

particular path leads to a directory in the designated filesystem by checking that the

path maps to something in the set of Filesystem atoms:

fun isDir (f: Filesystem, p: Path) {

some (Filesystem & p.f::contents)

}

Just for convenience, we also add a function indicating whether a path is a directory

in two filesystems:

fun isDirAB (f, g: Filesystem, p:Path) {

isDir(f, p) && isDir(g, p)

}

Now we can translate almost without change the informal description above of prop-

erties of synchronization into Alloy:

fun afterPSynchronization (a, b, a', b': Node, dirtya, dirtyb: set Path,

p: Path) {

all pq: Path I {

PathPrefix(p, pq)

=> {
pq !in dirtya =>

pq !in dirtyb =>

isDirAB(a, b, pq

(pq in dirtya &&

(pq.a'::contents

pq.a'::contents

(pq.a'::contents

pq.a'::contents

) => isDirAB(a',

pq in dirtyb &&

(pq.a'::contents

pq.b'::contents

= pq.b'::contents &&

= pq.b::contents)

= pq.b'::contents &&

= pq.a::contents)

b', pq)

!isDirAB(a, b, pq))

= pq.a::contents &&

= pq.b::contents)

One property that Pierce and Balasubramaniam are concerned with at this point is

that there is only one possible synchronization (al and bi) of two filesystem updates

(a and b) from an original (o), given an update detection policy. Notice the use of the

dirty function here. The sets dirtya and dirtyb are passed into dirty as the second

argument, changing the use of dirty from one of expression to one of formula. The

53

}

}

}

dirty function is effectively checking that the set dirtya (dirtyb) actually is a valid

set of dirty paths of a (b) from o:

assert Uniqueness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {
all p: Path I all at, bi, a2, b2: Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

afterPSynchronization(a, b, at, bi, dirtya, dirtyb, p) &&

afterPSynchronization(a, b, a2, b2, dirtya, dirtyb, p)) =>

(p.al::contents = p.a2::contents &&

p.bl::contents = p.b2::contents)

}

}

}

There are no counterexamples, so we can move on to reconciliation.

A.4 Reconciliation

What is reconciliation? It is the algorithm employed to arrive at the synchronization

of two updated versions of a filesystem. Here is an algorithm from [2] that takes a

pair of filesystems and returns a new pair where the subtrees rooted at p have been

synchronized:

reconr(A, B, p) -

1) if -,dirtyA(p) A --,dirtyB(p) then (A, B)

2) else if isdirA,B(p)

then let {pi,p 2 ,... ,pn} = childrenA,B(p)

in let (A, Bo) = (A, B)

let (Ai+ 1, Bj+1) = recon(Ai, Bi, p i+,) for 0 < i < n

in (A, B,)

3) else if -,dirtYA(p) then (filesystemOverwrite(A, B, p), B)

4) else if -,dirtyB(p) then (A, filesystemOverwrite(B, A,p))

5) else (A, B)

FilesystemnOverwrite(A, B,p) overwrites filesystem A at path p with B at p.

So how will this algorithm be expressed in Alloy? We'll first define some of the

functions used in the algorithm. Children returns the set of paths that are immediate

children of a directory:

54

fun children (f: Filesystem, p: Path): set Path {

result = {q: Path I {

q in Node.~f::contents

PathPrefix(p, q)

#PathLength(p) + 1 = #PathLength(q)

}}

ChildrenAB is the set of children of a path p in either filesystem indicated:

fun childrenAB (f, g: Filesystem, p: Path): set Path {

result = (children(f, p) + children(g, p))

}

Incomparable paths are ones where neither path is a prefix of the other:

fun incomparable (p, q: Path) {

!PathPrefix(p, q) && !PathPrefix(q, p)

}

Overwriting a filesystem A by filesystem B at a path p is described in [2] as

Aq.if p < q then B(q) else A(q)

This is straightforward to describe, with the "else" statement in the lambda expression

being expressed by the two "else" statements in the code:

fun filesystemOverwrite (t, s: Node, p: Path): Node {

all q: Path I {

PathPrefix(p, q) => q.result::contents = q.s::contents

else incomparable(p, q) => q.result::contents = q.t::contents

else children(result, q) + p = children(t, q) + p

}
}

A.4.1 Recursive Function Version of Recon

The first version of recon written stays close to the algorithm just presented.

For use in the definition of recon, firstNode and secondNode break up a pair of

nodes into the first or second node respectively (tuple deconstructors):

fun firstNode(c: Node -> Node) : Node {

all a, b: Node I {

55

c = a->b => result = a

}

}
fun secondNode(c: Node -> Node) : Node {

all a, b: Node I {

c = a->b => result = b

}

}

Now the reconciliation algorithm can be expressed, closely following the algorithm

given above.

fun recon(a, b: Node, p: Path, dirtya, dirtyb: set Path)

Node->Node {

one result

(p !in dirtya && p !in dirtyb)

=> result = a->b

else isDirAB(a, b, p)

=> reconhelper(a, result, b, dirtya, dirtyb,

childrenAB(a, b, p))

else p !in dirtya

=> {some abp: Node I {filesystemOverwrite(a, abp, b, p)

&& result = abp->b}}

else p !in dirtyb

=> {some bap: Node I {filesystemOverwrite(b, bap, a, p)
&& result = a->bap}}

else result = a->b

}

Reconhelper is the same as recon, except it is written to deal with synchronizing a

number of sibling paths, rather than just one path:

fun reconhelper(a, b: Node, dirtya, dirtyb: set Path,

childs: set Path): Node->Node {

one result

no childs => result = a->b

else some q in childs I some c: Node->Node I {

one q

let c = recon(a, b, q, dirtya, dirtyb) I {

56

reconhelper(firstNode(c), result, secondNode(c),

dirtya, dirtyb, (childs - q))

}
}

}

A.4.2 Manually Unrolled Recursive Function Version

Alloy does not currently support recursion. As a result, the model of recursion from

above has to be manually unfolded by copying the recursive functions multiple times

and chaining them together. In the interests of developing a more declarative style

version of reconciliation, here is another attempt at a description, where a' and b' are

introduced as arguments representing results of synchronizations:

fun recon(a, b, a', b': Node, p: Path, dirtya, dirtyb: set Path) {

(p !in dirtya && p !in dirtyb)

=> (p.a'::contents = p.a::contents && p.b'::contents =

p.b::contents)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) =>

(p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

else all q in childrenAB(a, b, p) I {
recon2(a, b, a', b', q, dirtya, dirtyb)

}}

else p !in dirtya

=> (p.b'::contents = p.b::contents

&& filesystem~verwrite(a, a', b, p))

else p !in dirtyb

=> (p.a'::contents = p.a::contents

&& filesystem~verwrite(b, b', a, p))

else (p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

}

Recon2 is simply a copy of recon which in turn calls a recon3, etc. However, this

model heavily overconstrains synchronizations. Why? FilesystemOverwrite con-

strains the result of reconciliations to be exactly an input filesystem overwritten at

one path by another filesystem. However, in general, filesystemOverwrite is called

57

several times in the course of one reconciliation, on different paths. These cases are

not considered if this description is used. To rectify this, we first loosen the definition

of filesystemOverwrite to only concern itself with the point of the overwrite and

beyond:

fun filesystem~verwrite (t, s: Node, p: Path): Node {
all q: Path I {
PathPrefix(p, q) => q.result::contents = q.s::contents

}

}

Then we use the same recon function from above, only we precede it with constraints

on paths outside the point of synchronization to prevent underconstraint(*):

fun recon(a, b, a', b': Node, p: Path, dirtya, dirtyb: set Path) {
(*) all q: Path I {

(*) incomparable(p, q) => (q.a'::contents = q.a::contents &&

(*) q.b'::contents = q.b::contents)

(*) (q !in Paths(a) && q !in Paths(b)) =>

(*) (q !in Paths(a') && q !in Paths(b'))

(*) (q in Paths(a) && q in Paths(b)) =>

(*) (q in Paths(a') && q in Paths(b'))

(*) isDirAB(a, b, q) => isDirAB(a', b', q)

(*) }

(p !in Paths(a) && p !in Paths(b))

=> (a' = a && b' = b)

else (p !in dirtya && p !in dirtyb)

=> (a' = a && b' = b)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) => (a' = a && b' = b)

else all q in childrenAB(a, b, p) I {

reconhelper(a, b, a', b', q, dirtya, dirtyb)

}}

else p !in dirtya

=> (b' = b && filesystemOverwrite(a, a', b, p))

else p !in dirtyb

=> (a' = a && filesystemOverwrite(b, b', a, p))

else (a' = a && b' = b)

}

58

The reconhelper function, called by recon, is just recon without these constraints on

paths outside the point of synchronization:

fun reconhelper(a, b, a', b': Node, p: Path, dirtya, dirtyb: set Path) {

(p !in dirtya && p !in dirtyb)

=> (p.a'::contents = p.a::contents && p.b'::contents =

p.b::contents)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) => (p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

else all q in childrenAB(a, b, p) I {

reconhelper2(a, b, a', b', q, dirtya, dirtyb)

}}

else p !in dirtya

=> (p.b'::contents = p.b::contents

&& filesystemOverwrite(a, a', b, p))

else p !in dirtyb

=> (p.a'::contents = p.a::contents

&& filesystem~verwrite(b, b', a, p))

else (p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

}

A.4.3 A Problem with Synchronization

Now that recon is written, it is important to start checking its correctness to prevent

too much time being spent refining an incorrect model. The obvious thing to check

is that it actually produces synchronizations. A synchronization can be expressed as

an afterPSynchronization where paths outside the point of synchronization remain

unchanged in the filesystems being synchronized:

fun syncp (p: Path, a', b', a, b: Node, dirtya, dirtyb: set Path) {

afterPSynchronization(a, b, a', b', dirtya, dirtyb, p)

all q: Path I {

incomparable(p, q) =>

(q.a'::contents = q.a::contents &&

q.b'::contents = q.b::contents)

(PathPrefix(q, p) && isDirAB(a, b, q)) => isDirAB(a', b', q)

}

59

}

Soundness is a straightforward property indicating that if the reconciliation func-

tion claims that a' and b' are valid synchronizations of a and b then they actually

are:

assert Soundness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {

all z: Path I all a', b': Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

recon(a, b, a', b', z, dirtya, dirtyb)) =>

(syncp(z, a', b', a, b, dirtya, dirtyb))

}

}

}

However, here is a counterexample where filesystems a and b are synchronized from

an original o after the empty path. The dirty paths of a include the empty path

and the path of length 1 mapping to Node 1. Using the customization settings in

visualization we label the nodes with o, a, b, etc. to make it easy to see what is

happening:

Node_2
a, a', o)

contents

ode_ 1 contents
(b, b'1)

contents

ode_0
(File)

This counterexample actually demonstrates an error in the description of synchro-

nization.

There are cases where predictions about the results of synchronization are con-

tradictory, as in this example. According to the first property of synchronization in

section A.3, the length two path mapping Node 2 to Node 0 (which is not dirty in a)
should map to the same thing in filesystems b, a', and b', namely nothing. However,

60

the length one path mapping Node 2 to Node 1 and Node 1 to Node 0 is dirty in both

a and b. The third rule of synchronization tells us it should map to the same thing

in a and a' (Node 1) and the same in b and b' (Node 0). However, if a' maps to Node

1 and Node 1 contains a path to Node 0, then a' contains a length two path to Node

0, contradicting that it maps the length two path to nothing.

There is an ambiguity in the definition of synchronization that can be resolved

by stopping at the first sight of conflict. We introduce a new notion of relevant

paths for two filesystems (paths where all ancestors correspond to directories in both

filesystems):

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}

}

Next, we add the notion of relevant paths to our definition of synchronization (*):

fun afterPSynchronization

(*) relevant(a, b, p)

all pq: Path I {

(*) (PathPrefix(p, pq)

=> {

pq !in dirtya =>

pq !in dirtyb =>

isDirAB(a, b, pq

(pq in dirtya &&

}

}

}

(a, b, a', b': Node, dirtya, dirtyb: set Path,

p: Path) {

&& relevant(a, b, pq))

(pq.a'::contents

pq.a': :contents

(pq.a'::contents

pq.a'::contents

) => isDirAB(a',

pq in dirtyb &&

(pq.a'::contents

pq.b'::contents

= pq.b'::contents &&

= pq.b::contents)

= pq.b'::contents &&

= pq.a::contents)

b', pq)

!isDirAB(a, b, pq)) =>

= pq.a::contents &&

= pq.b::contents)

We also add the notion to the property being checked (*):

assert Soundness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {

61

all z: Path I all a', b': Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

(*) relevant(a, b, z) && recon(a, b, a', b', z, dirtya, dirtyb)) =>

(syncp(z, a', b', a, b, dirtya, dirtyb))

}

}

}

This produces no counterexamples, encouraging confidence in the model of syn-

chronization so far, leading us to ask the question, "How can this model be better?".

A.4.4 Relational Model of Recon

The manual unfolding required to accomplish recursion is not very elegant and a

solution that works around this problem is desirable. One solution can be found

in introducing a new kind of atom. We call it a Synchronizer and it contains two

relations that accomplish update detection (mapping an original node o and a replica

node a to a set of DirtyPaths) and reconciliation (mapping two replica nodes, a path,

and the sets of dirty paths to a pair of synchronized nodes):

sig DirtyPaths {

paths: set Path

}

static sig Synchronizer {

recon: Node -> Node -> Path -> DirtyPaths -> DirtyPaths ->

! (Node->Node),

dirty : Node -> Node -> DirtyPaths

}

Note the use of static above. It marks a synchronizer as a special atom, one of a kind.

DirtyPaths are introduced as a way to wrap sets of paths representing dirty sets into

one datatype so that it is easily used in the recon relation. As a result, we also have a

dirty relation which calculates the set of dirty paths from two nodes. This, of course,

means that the definition of dirtiness changes from the original formulation to look

like this:

fact DirtyBehaviour {

all f, g: Filesystem I all p: Path I {

p !in Synchronizer.dirty[f][g].paths =>

p.f::contents = p.g::contents

62

}

}
fact DirtyUpClosed {

all f, g: Filesystem I all p, q: Path I {

(PathPrefix(p, q) && q in Synchronizer.dirty[f][gi.paths) =>

p in Synchronizer.dirty[f][g].paths

}

}

As you can tell, this is very similar to the previous definition. After dirtiness is

described, it remains to describe reconciliation. For the most part, the previous

description of reconciliation doesn't have to change much. The difference lies in the

treatment of the area requiring recursion. Here, some thought is required to figure

out exactly how to model the recursive behavior of reconciliation relationally. The

key is to note that there is a relationship between reconciling a particular directory

in two filesystems and reconciling any children of those directories.

When a directory is reconciled, the result of that reconciliation at any child path

will be the same as the result of reconciling the child path in those directories. With

this information in hand, it is straightforward to translate the previous version of

reconciliation into a new relational one. No changes are made to the model except

in the description of recursion (*). The filesystems c and d in the recursive portion

refer to synchronizations of children directories:

fact reconFacts {

all a, b: Node I all p: Path I all dirtya, dirtyb: DirtyPaths I

some abp, bap: Node I {

let a' = Node. ~(Synchronizer: :recon[a] [b] [p] [dirtyal [dirtyb]),

b' = Synchronizer.recon[a][b][p][dirtyal[dirtyb][a'] I {

all q: Path I {

incomparable(p, q) => (q.a'::contents = q.a::contents &&

q.b'::contents = q.b::contents)

(q !in Paths(a) && q !in Paths(b)) =>

(q !in Paths(a') && q !in Paths(b'))

(q in Paths(a) && q in Paths(b)) =>

(q in Paths(a') && q in Paths(b'))

}
(p !in Paths(a) && p !in Paths(b))

=> (a' = a && b' = b)

(p !in dirtya.paths && p !in dirtyb.paths)

63

=> (p.a'::contents = p.a::contents && p.b'::contents =

p.b: :contents))

else isDirAB(a, b, p)

=> {
no childrenAB(a, b, p) => (p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

else all q in childrenAB(a, b, p) I {

let c = Node. (Synchronizer.recon[al [b] [q] [dirtya] [dirtyb]),

d = Synchronizer.recon[al [b] [q] [dirtyal [dirtyb] [c I {

(q.a'::contents = q.c::contents &&

q.b'::contents = q.d::contents)

}

}

}

else p !in dirtya.paths

=> (p.b'::contents = p.b::contents &&

filesystemOverwrite(a, a', b,

else p !in dirtyb.paths

=> (p.a'::contents = p.a::contents &&

filesystemOverwrite(b, b', a,

else (p.a'::contents = p.a::contents &&

p.b'::contents = p.b::contents)

}

p))

p))

}

}

This version follows the structure of the previous almost exactly until the recursive

portion. However, as you might imagine, this relation is very large.

A.4.5 Shrinking the Relational Model

It is an interesting question whether or not the above relation can be smaller in size.

One way it can be trimmed is to remove the DirtyPaths and instead pass in the

original filesystem 0:

static sig Synchronizer {

recon: Node -> Node -> Node -> Path -> !(Node->Node),

dirty : Node -> Node -> Path

}

64

(*)

(*)

(*)

(*)

(*)

The recon relation is one place smaller and dirtiness can now be described without

wrapping the result into a new atom since the dirty relation stores the information

about which paths have been determined dirty. The dirtiness constraints just have

to be changed to deal with the DirtyPaths fields (*):

fact DirtyBehaviour {

all f, g: Filesystem I all p: Path I {
(*) p !in Synchronizer.dirty[f][g] => p.f::contents = p.g::contents

}

}

fact DirtyUpClosed {

all f, g: Filesystem I all p, q: Path I {
(*) (PathPrefix(p, q) && q in Synchronizer.dirty[f][g]) =>
(*) p in Synchronizer.dirty[f][g]

}

}

Reconciliation also looks almost exactly the same, using o as an argument that can

be used to look up dirty paths without passing them in:

fact reconFacts {

all o, a, b: Node I all p: Path I some abp, bap: Node I{

let dirtya = Synchronizer.dirty[o][a], dirtyb =

Synchronizer.dirty[o][b] I {

(p !in dirtya && p !in dirtyb)

=> Synchronizer.recon[o] [a] [b] [p] = a->b

else isDirAB(a, b, p)

=> {
no childrenAB(a, b, p) => Synchronizer.recon[o][a][b][p] = a->b

all q: childrenAB(a, b, p) I {

let a' = Node. ~(Synchronizer: :recon[o1 [a] [b] Ep]),

b' = Synchronizer.recon[o] [a] [b] [p] [a'],
c = Node.~(Synchronizer.recon[o][a]Eb][q]),

d = Synchronizer.recon[o][a][b][q][ci I {

(children(a', p) + children(b', p)) in childrenAB(a, b, p)

all s: Path I {PathPrefix(s, q) =>
((s in Paths(a') <=> s in Paths(c)) &&

(s in Paths(b') <=> s in Paths(d))) }

(q.a'::contents = q.c::contents && q.b'::contents =

65

q.d: :contents)

}

}

}

else p !in dirtya

=> filesystemOverwrite(a, abp, b, p) &&

Synchronizer.recon[o] [a] [b] [p] = abp->b

else p !in dirtyb

=> filesystemOverwrite(b, bap, a, p) &&

Synchronizer.recon [o] [a] [b] [p] = a->bap

else Synchronizer.recon[o][a][b][p] = a->b

}

}

}

This relation is smaller and hence checkable in a larger scope, leading us into testing.

A.4.6 Testing Reconciliation

The soundness property looks almost exactly the same as before, except referring to

relations to accomplish update detection and reconciliation:

assert Soundness {

all a, b, o: Filesystem I {

let dirtya = Synchronizer.dirty[o][a],

dirtyb = Synchronizer.dirty[o][b] I {

all p: Path I all a', b': Filesystem I {

(relevant(a, b, p)&& Synchronizer.recon[o] [a] [b] [p]= a'->b')

=> (syncp(p, a', b', a, b, dirtya, dirtyb))

}

}

}

}

This produces no counterexamples, giving us some assurance that there is no problem

in the new description of reconciliation that was written. However, as demonstrated

earlier when filesystems were found to not include files, it is important to add a sanity

check to the model to be sure that the recon relation not only safely synchronizes

filesystems, but also that it synchronizes all filesystems that it should:

66

assert reconGensAll {

all o, a, b: Filesystem all z: Path I {

some Synchronizer.recon[o] [a] [b] [z]

}
}

However, this has counterexamples, revealing one interesting subtlety of modeling in

Alloy. The statement was not true because in any given scope, there can be found

filesystems that, in order to be synchronized, require more atoms than are allowed in

the scope. Instead, we have to make a different kind of statement. We express that if

we know that a synchronization exists for an original and two replicas in the scope,

then the recon relation maps to some synchronization:

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I {

let dirtya = Synchronizer.dirty[o][a],

dirtyb = Synchronizer.dirty[o][b] I {

some a', b': Filesystem I

{syncp(z, a', b', a, b, dirtya, dirtyb)}

=> some Synchronizer.recon[o][a][b][z]

}
}

}

However, this produces a counterexample involving filesystems that have no dirty

paths. This is an artifact of modeling. When there are no dirty paths, the recon

relation doesn't map the updated filesystems to anything despite the fact that what

they should be mapped to is obvious. Since those cases are easily characterized, we

modify the assertion slightly (*):

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I {

let dirtya = Synchronizer.dirty[o][a], dirtyb =

Synchronizer.dirty[o][b] I {

(*) (some dirtya && some dirtyb && some a', b': Filesystem I

{syncp(z, a', b', a, b, dirtya, dirtyb)})

=> some Synchronizer.recon[o] [a] [b] [z]

}
}

}

67

Now there are no counterexamples and we have a model that we have some confidence

safely synchronizes all filesystems that it should synchronize. As you can see, the

process of creating this model was very error-prone, but with the aid of the Alloy

analyzer it was possible to catch these problems without a lot of complicated reasoning

on the part of the modeler.

Alloy models in full for this section are included in Appendix B and more detailed

explanations of synchronization can be found in [2], a summary of which is present

in the main body of this paper. A more detailed treatment of Alloy may be found in

[6].

68

Appendix B

Alloy Models in Full

B.1 Original Function Model of a Reconciliation

Algorithm

module systems/file-system

open std/ord

open std/seq

sig Name {}

sig Path {

names: Seq[Namel

}

sig Node {}

disj sig File extends Node {}

// Directories aren't explicitly named ... instead, there

// are paths made up of names which may point to them

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

} f

// there is an empty path that maps directories to themselves

some p: Path I EmptyPath(p) && this = p.contents

69

}

fact CanonicalPath {all a, b: Path a.names = b.names => a = b}

fact CanonicalSequence {all a, b: Seq[Name] I a..SeqEquals(b) => a = b}

fact CanonicalNode {all a, b: Node I EquivNode(a, b) => a = b}

fact FileDirPartition {

File + Filesystem = Node

}

// "Tree structure" not a statement about being acyclic...

// When you hit a directory on your path from your entries, that

// directory has entries consistent with yours. "Treeness" refers

// to the fact that things rooted under you "inherit" your mappings.

// Removal of g in File... disallows existence of files

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(g in File && EmptyPath(q)) ||

(q.g::contents = append(p, q).f::contents)

}
}

}

// If there is a path q.x then there is a path q

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PathPrefix(q, p) && (#PathLength(p) =

#PathLength(q) + 1))

}

}
}

// Tails of paths are also paths

70

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}
}

}

/*************** UPDATE DETECTION *****************/

// Dirty can give you clean paths

// Unused paths are dirty often

// Safely estimates updates from f to g

// Changing to iff gives exact update detection

fun dirty (f, g: Filesystem): set Path {

all p: Path I {

p !in result => p.f::contents = p.g::contents

// DirtyUpClosed

else {all q: Path I PathPrefix(q, p) => q in result}

}
}

/**************** RECONCILIATION *****************/

// Synchronized filesystem after some designated path

fun afterPSynchronization (a, b, c, d: Node, dirtya, dirtyb: set Path,

p: Path) {

relevant(a, b, p)

all pq: Path I {

(PathPrefix(p, pq) && relevant(a, b, pq))

=> {
pq !in dirtya => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.b::contents)

pq !in dirtyb => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.a::contents)

isDirAB(a, b, pq) => isDirAB(c, d, pq)

(pq in dirtya && pq in dirtyb && !isDirAB(a, b, pq)) =>

71

(pq.c::contents = pq.a::contents &&

pq.d::contents = pq.b::contents)

}
}

}

// A synchronization after p such that nothing else changes

fun syncp (p: Path, c, d, a, b: Node, dirtya, dirtyb: set Path) {

afterPSynchronization(a, b, c, d, dirtya, dirtyb, p)

all q: Path I {

incomparable(p, q) =>

(q.c::contents = q.a::contents &&

q.d::contents = q.b::contents)

(PathPrefix(q, p) && isDirAB(a, b, q)) => isDirAB(c, d, q)

}

}

// Takes pair of filesystems A, B and a path p and returns a pair of

// filesystems where subtrees rooted at p have been synchronized

fun recon(a, b: Node, p: Path, dirtya, dirtyb: set Path): Node->Node {

one result

(p !in dirtya && p !in dirtyb)

=> result = a->b

else isDirAB(a, b, p)

=> reconhelper(a, result, b, dirtya, dirtyb, childrenAB(a, b, p))

else p !in dirtya

=> {some abp: Node I {filesystemOverwrite(a, abp, b, p) &&
result = abp->b}}

else p !in dirtyb

=> {some bap: Node I {filesystemOverwrite(b, bap, a, p) &&
result = a->bap}}

else result = a->b

}

// Recursive portion of recon is commented out

fun reconhelper(a, b: Node, dirtya, dirtyb: set Path,

childs: set Path): Node->Node {

72

one result

no childs => result = a->b

else some q in childs I some c: Node->Node I {

one q

// let c = recon(a, b, q, dirtya, dirtyb) I {

// reconhelper(firstNode(c), result, secondNode(c), dirtya, dirtyb,

// (childs - q))

// }
}

}

fun firstNode(c: Node -> Node) : Node {

all a, b: Node I {

c = a->b => result = a

}
}

fun secondNode(c: Node -> Node) Node {

all a, b: Node I {

c = a->b => result = b

}
}

/****************** HELPERS ********************/

fun EmptyPath (p: Path) {

p.names..SeqIsEmpty()

}

// a <= b

fun PathPrefix (a, b: Path) {

b.names..SeqStartsWith(a.names)

}

// a < b

fun PPathPrefix (a, b: Path) {

PathPrefix(a, b) && #PathLength(a) != #PathLength(b)

73

}

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

}

// Must be used in conjunction with #

fun PathLength (p: Path): set SeqIdx {

result = SeqInds(p.names)

}

// All paths at some node

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

// Path Append

fun append (a, b: Path): Path {

result = {r: Path I {

#PathLength(r) = #PathLength(a) + #PathLength(b)

PathPrefix(a, r)

all i: r.names..SeqInds() I {

#UrdPrevs(i) >= #PathLength(a) =>

some k: SeqIdx I {

#UrdPrevs(k) + #PathLength(a)= #OrdPrevs(i)

b.names..SeqAt(k) = r.names..SeqAt(i)

}
}

}}

// Returns paths for children

fun children (f: Filesystem, p: Path): set Path {

result = {q: Path I {

q in Node.~f::contents

PathPrefix(p, q)

#PathLength(p) + 1 = #PathLength(q)

74

}

fun childrenAB (f, g: Filesystem, p: Path): set Path {

result = (children(f, p) + children(g, p))

}

fun isDir (f: Filesystem, p: Path) {

some (Filesystem & p.f::contents)

}

fun isDirAB (f, g: Filesystem, p:Path) {

isDir(f, p) && isDir(g, p)

}

// Equivalent filesystems map paths to same files and directory structure

// On empty inputs, returns true

fun EquivNode (f, g: Node) {

(f = g) 1|

(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

p->e in f.contents <=> p->e in g.contents

}
)

}

// Path p is relevant if all its ancestors refer to dirs in both dirs

// Note restriction that a, b are Filesystems and not just nodes...

// Otherwise, synchronization is often trivially true

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}
}

// Two paths are on "different branches"

fun incomparable (p, q: Path) {

75

!PathPrefix(p, q) && !PathPrefix(q, p)

}

// Replace subtree at p in T with S's

fun filesystem~verwrite (t, s: Node, p: Path): Node {

all q: Path I {

PathPrefix(p, q) => q.result::contents = q.s::contents

else incomparable(p, q) => q.result::contents = q.t::contents

else children(result, q) + p = children(t, q) + p

}
}

/*************** CHECKING ***************/

// Recon satisfies the requirements for synchronization

// Works if you exclude cases that would use recursion

assert Soundness {

all a, b, o: Filesystem I {

let dirtya = dirty(o, a), dirtyb = dirty(o, b) I {

all z: Path I all c, d: Filesystem I {

(relevant(a, b, z) && recon(a, c->d, b, z, dirtya, dirtyb))

=>(syncp(z, c, d, a, b, dirtya, dirtyb))

}
}

}
}

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I all dirtya, dirtyb: set Path I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && some c, d: Filesystem

{syncp(z, c, d, a, b, dirtya, dirtyb)})

=> some c, d: Filesystem I {recon(a, c->d, b, z, dirtya, dirtyb)}

}
}

// Only one synchronization of a pair of filesystems w.r.t.

// dirty predicates

76

assert Uniqueness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {

all p: Path I all ci, dl, c2, d2: Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && relevant(a, b, p) &&

afterPSynchronization(a, b, ci, di, dirtya, dirtyb, p) &&

afterPSynchronization(a, b, c2, d2, dirtya, dirtyb, p))

=> (EquivNode(p.ci::contents, p.c2::contents) &&

EquivNode(p.di::contents, p.d2::contents))

}
}

}

// If a path is dirty in either updated replica then the path

// maps to equivalent nodes in both

assert NonDirtyAreSame {

all a, b, o: Filesystem I all p: Path I all dirtya, dirtyb: set Path I{

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && p !in dirtya &&

p !in dirtyb)

=> EquivNode(p.a::contents, p.b::contents)

}
}

// True as long as don't get rid of NoMissingPath facts and the

// restriction on filesystem signature at once

assert NoCycles {

all f: Filesystem I no p: Path I {

!EmptyPath(p) && p->f in f.contents

}
}

77

B.2 Manually Unrolled Function Model of Recon-

ciliation Algorithm

module systems/file-system

open std/ord

open std/seq

sig Name {}

sig Path {

path: Seq[Namel

}

sig Node {}

disj sig File extends Node {}

// Directories aren't explicitly named... instead, there

// are paths made up of names which may point to them

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

} f

// there is an empty path that maps directories to themselves

some p: Path I EmptyPath(p) && this = p.contents

}

fact CanonicalPath {all a, b: Path a.names = b.names => a = b}

fact CanonicalSequence {all a, b: Seq[Namel I a..SeqEquals(b) => a = b}

fact CanonicalNode {all a, b: Node I EquivNode(a, b) => a = b}

fact FileDirPartition {

File + Filesystem = Node

}

78

// "Tree structure" not a statement about being acyclic...

// When you hit a directory on your path from your entries, that

// directory has entries consistent with yours. "Treeness" refers

// to the fact that things rooted under you "inherit" your mappings.

// Removal of g in File... disallows existence of files

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(g in File && EmptyPath(q)) ||

(q.g::contents = append(p, q).f::contents)

}
}

}

// If there is a path q.x then there is a path q

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PPathPrefix(q, p) && (#PathLength(p) =

#PathLength(q) + 1))

}
}

}

// Tails of paths are also paths

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}
}

}

/*************** UPDATE DETECTION *****************/

// Dirty can give you clean paths

// Unused paths are dirty often

79

// Safely estimates updates from f to g

// Changing to iff gives exact update detection

fun dirty (f, g: Filesystem): set Path {

all p: Path I {

p !in result => p.f::contents = p.g::contents

// DirtyUpClosed

else {all q: Path I PathPrefix(q, p) => q in result}

}
}

/**************** RECONCILIATION *****************/

// Synchronized filesystem after some designated path

fun afterPSynchronization (a, b, c, d: Node, dirtya, dirtyb: set Path,

p: Path) {

relevant(a, b, p)

all pq: Path I {

(PathPrefix(p, pq) && relevant(a, b, pq))

=> {
pq !in dirtya => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.b::contents)

pq !in dirtyb => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.a::contents)

isDirAB(a, b, pq) => isDirAB(c, d, pq)

(pq in dirtya && pq in dirtyb && !isDirAB(a, b, pq)) >

(pq.c::contents = pq.a::contents &&

pq.d::contents = pq.b::contents)

}
}

}

// A synchronization after p such that nothing else changes

fun syncp (p: Path, c, d, a, b: Node, dirtya, dirtyb: set Path) {

afterPSynchronization(a, b, c, d, dirtya, dirtyb, p)

all q: Path I {

incomparable(p, q) =>

(q.c::contents = q.a::contents &&

80

q.d::contents = q.b::contents)

(PathPrefix(q, p) && isDirAB(a, b, q)) => isDirAB(c, d, q)

}
}

fun recon(a, b, c, d: Node, p: Path, dirtya, dirtyb: set Path) {

all q: Path I {

incomparable(p, q) => (q.c::contents = q.a::contents &&

q.d::contents = q.b::contents)

(q !in Paths(a) && q !in Paths(b)) =>

(q !in Paths(c) && q !in Paths(d))

(q in Paths(a) && q in Paths(b)) =>

(q in Paths(c) && q in Paths(d))

isDirAB(a, b, q) => isDirAB(c, d, q)

}
(p !in Paths(a) + Paths(b))

=> (c = a && d = b)

else (p !in dirtya + dirtyb)

=> (c = a && d = b)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) => (c = a && d = b)

else all q in childrenAB(a, b, p) I {

reconhelper(a, b, c, d, q, dirtya, dirtyb)

}}

else p !in dirtya

=> (d = b && filesystem~verwrite(a, c, b, p))

else p !in dirtyb

=> (c = a && filesystem~verwrite(b, d, a, p))

else (c = a && d = b)

}

fun reconhelper(a, b, c, d: Node, p: Path, dirtya, dirtyb: set Path) {

(p !in dirtya + dirtyb)

=> (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) => (p.c::contents = p.a::contents &&

p.d::contents = p.b::contents)

81

else all q in childrenAB(a, b, p) I {

reconhelper2(a, b, c, d, q, dirtya, dirtyb)

}}

else p !in dirtya

=> (p.d::contents = p.b::contents && filesystem~verwrite(a, c, b, p))

else p !in dirtyb

=> (p.c::contents = p.a::contents && filesystemverwrite(b, d, a, p))

else (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

}

fun reconhelper4(a, b, c, d: Node, p: Path, dirtya, dirtyb: set Path) {

(p !in dirtya + dirtyb)

=> (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

else isDirAB(a, b, p)

=> {no childrenAB(a, b, p) => (p.c::contents = p.a::contents &&

p.d::contents = p.b::contents)

else all q in childrenAB(a, b, p) I {

reconhelper5(a, b, c, d, q, dirtya, dirtyb)

}}

else p !in dirtya

=> (p.d::contents = p.b::contents && filesystemOverwrite(a, c, b, p))

else p !in dirtyb

=> (p.c::contents = p.a::contents && filesystemOverwrite(b, d, a, p))

else (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

}

// Terminating

fun reconhelper5(a, b, c, d: Node, p: Path, dirtya, dirtyb: set Path) {

(p !in dirtya + dirtyb)

=> (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

else p !in dirtya

=> (p.d::contents = p.b::contents && filesystemOverwrite(a, c, b, p))

else p !in dirtyb

=> (p.c::contents = p.a::contents && filesystemOverwrite(b, d, a, p))

else (p.c::contents = p.a::contents && p.d::contents = p.b::contents)

82

}

/****************** HELPERS ********************/

fun EmptyPath (p: Path) {

p.names..SeqIsEmpty()

}

// a <= b

fun PathPrefix (a, b: Path) {

b.names..SeqStartsWith(a.names)

}

// a < b

fun PPathPref ix (a, b: Path) {

PathPrefix(a, b) && #PathLength(a) != #PathLength(b)

}

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

}

// Must be used in conjunction with #

fun PathLength (p: Path): set SeqIdx {

result = SeqInds(p.names)

}

// All paths at some node

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

// Path Append

fun append (a, b: Path): Path {

result = {r: Path I {

#PathLength(r) = #PathLength(a) + #PathLength(b)

PathPrefix(a, r)

83

all i: r.names..SeqInds() I {

#UrdPrevs(i) >= #PathLength(a) =>

some k: SeqIdx I {

#OrdPrevs(k) + #PathLength(a)= #OrdPrevs(i)

b.names..SeqAt(k) = r.names..SeqAt(i)

}
}

}}

// Returns paths for children

fun children (f: Filesystem, p: Path): set Path {

result = {q: Path I {

q in Node.~f::contents

PathPrefix(p, q)

#PathLength(p) + 1 = #PathLength(q)

}}

fun childrenAB (f, g: Filesystem, p: Path): set Path {

result = (children(f, p) + children(g, p))

}

fun isDir (f: Filesystem, p: Path) {

some (Filesystem & p.f::contents)

}

fun isDirAB (f, g: Filesystem, p:Path) {

isDir(f, p) && isDir(g, p)

}

// Equivalent filesystems map paths to same files and directory structure

// On empty inputs, returns true

fun EquivNode (f, g: Node) {

(f = g) |1

(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

84

p->e in f.contents <=> p->e in g.contents

}
)

}

// Path p is relevant if all its ancestors refer to dirs in both dirs

// Note restriction that a, b are Filesystems and not just nodes...

// Otherwise, synchronization is often trivially true

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}
}

// Two paths are on "different branches"

fun incomparable (p, q: Path) {

!PathPrefix(p, q) && !PathPrefix(q, p)

}

// Replace subtree at p in T with S's

fun filesystemOverwrite (t, s: Node, p: Path): Node {
all q: Path I {

PathPrefix(p, q) => q.result::contents = q.s::contents

}
}

/*************** CHECKING ***************/

// Recon satisfies the requirements for synchronization

assert Soundness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {
all z: Path I all c, d: Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

relevant(a, b, z) && recon(a, b, c, d, z, dirtya, dirtyb)) =>

(syncp(z, c, d, a, b, dirtya, dirtyb))

}
}

85

}

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I all dirtya, dirtyb: set Path I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && some c, d: Filesystem

{syncp(z, c, d, a, b, dirtya, dirtyb)})

=> some c, d: Filesystem I {recon(a, b, c, d, z, dirtya, dirtyb)}

}

}

// Only one synchronization of a pair of filesystems w.r.t.

// dirty predicates

assert Uniqueness {

all a, b, o: Filesystem I all dirtya, dirtyb: set Path I {

all p: Path I all ci, di, c2, d2: Filesystem I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && relevant(a, b, p) &&

afterPSynchronization(a, b, ci, di, dirtya, dirtyb, p) &&

afterPSynchronization(a, b, c2, d2, dirtya, dirtyb, p))

> (p.cl::contents = p.c2::contents &&

p.di::contents = p.d2::contents)

}
}

}

// If a path isn't dirty in either updated replica then the path

// maps to equivalent nodes in both

assert NonDirtyAreSame {

all a, b, o: Filesystem I all p: Path I all dirtya, dirtyb: set Path I{

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) && p !in dirtya &&

p !in dirtyb)

=> p.a::contents = p.b::contents

}
}

// True as long as don't get rid of NoMissingPath fact and the

// restriction on filesystem signature at once

assert NoCycles {

86

all f: Filesystem I no p: Path I {
!EmptyPath(p) && p->f in f.contents

}
}

87

B.3 Relational Model of Reconciliation Algorithm

module systems/file-system

open std/ord

open std/seq

sig Name {}

sig Path {

path: Seq[Name]

}

sig Node {}

disj sig File extends Node {}

// Directories aren't explicitly named... instead, there

// are paths made up of names which may point to them

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

} f

// there is an empty path that maps directories to themselves

some p: Path I EmptyPath(p) && this = p.contents

}

// Recon maps original, 2 updates, and a path to new filesystems

// Dirty maps pairs of old and updated filesystems to paths

static sig Synchronizer {

recon: Node -> Node -> Node -> Path -> !(Node->Node),

dirty : Node -> Node -> Path

}

fact CanonicalPath {all a, b: Pathi a.names = b.names => a = b}

fact CanonicalSequence {all a, b: Seq[Name] I a..SeqEquals(b) => a = b}

fact CanonicalNode {all a, b: Node I EquivNode(a, b) => a = b}

88

fact FileDirPartition {

File + Filesystem = Node

}

// "Tree structure" not a statement about being acyclic...

// When you hit a directory on your path from your entries, that

// directory has entries consistent with yours. "Treeness" refers

// to the fact that things rooted under you "inherit" your mappings.

// Removal of g in File... disallows existence of files

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(g in File && EmptyPath(q)) ||

(q.g::contents = append(p, q).f::contents)

}
}

}

// If there is a path q.x then there is a path q

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PathPrefix(q, p) && (#PathLength(p) =

#PathLength(q) + 1))

}
}

}

// Tails of paths are also paths

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}
}

}

89

/*************** UPDATE DETECTION *****************/

// Dirty can give you clean paths

// Unused paths are dirty often

// Safely estimates updates from f to g

// Changing to iff gives exact update detection

fact DirtyBehaviour {

all f, g: Filesystem I all p: Path I {

p !in Synchronizer.dirty[f][g] => p.f::contents = p.g::contents

}
}

fact DirtyUpClosed {

all f, g: Filesystem I all p, q: Path I {

(PathPrefix(p, q) && q in Synchronizer.dirty[f Eg]) =>

p in Synchronizer.dirty[f][g]

}
}

/**************** RECONCILIATION *****************/

// Synchronized filesystem after some designated path

fun afterPSynchronization (a, b, c, d: Node, dirtya, dirtyb: set Path,

p: Path) {

relevant(a, b, p)

all pq: Path I {

(PathPrefix(p, pq) && relevant(a, b, pq))

=> {
pq !in dirtya => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.b::contents)

pq !in dirtyb => (pq.c::contents = pq.d::contents &&

pq.c::contents = pq.a::contents)

isDirAB(a, b, pq) => isDirAB(c, d, pq)

(pq in dirtya && pq in dirtyb && !isDirAB(a, b, pq)) =>

(pq.c::contents = pq.a::contents &&

90

pq.d::contents = pq.b::contents)

}
}

}

// A synchronization after p such that nothing else changes

fun syncp (p: Path, c, d, a, b: Node, dirtya, dirtyb: set Path) {

afterPSynchronization(a, b, c, d, dirtya, dirtyb, p)

all q: Path I {

incomparable(p, q) =>

(q.c::contents = q.a::contents &&

q.d::contents = q.b::contents)

(PathPrefix(q, p) && isDirAB(a, b, q)) => isDirAB(c, d, q)

}
}

// Constraining behaviour of recon mapping

fact reconFacts {

all o, a, b: Node I all p: Path I some abp, bap: Node I{

let dirtya = Synchronizer.dirty[o][a],

dirtyb = Synchronizer.dirty[o][b] I {

// p didn't change in either filesystem, so don't change anything

(p !in dirtya + dirtyb)

=> Synchronizer.recon[o][a][b][p] = a->b

// recursive portion... recon of a dirty directory has property

// that it has same contents as the recon of subdirectories

else isDirAB(a, b, p)

=> {
no childrenAB(a, b, p) => Synchronizer.recon[o][a][b][p] = a->b

all q: childrenAB(a, b, p) I {

let c = Node.~(Synchronizer::recon[o][a][b][p]),

d = Synchronizer.recon[o][a][b][p][c],

e = Node.~(Synchronizer.recon[o][a][b][q]),

f = Synchronizer.recon[o][a][b][q][e] I {
(children(c, p)+ children(d, p)) in childrenAB(a, b, p)

all s: Path I {PathPrefix(s, q) =>

((s in Paths(c) <=> s in Paths(e)) &&

91

(s in Paths(d) <=> s in Paths(f)))}

(q.c::contents = q.e::contents &&

q.d::contents = q.f::contents)

}
}

}
// otherwise, if only dirty in one filesystem, overwrite unchanged

else p !in dirtya

=> filesystemOverwrite(a, abp, b, p) &&

Synchronizer.recon[o] [a] [b] [p] = abp->b

else p !in dirtyb

=> filesystemOverwrite(b, bap, a, p) &&

Synchronizer.recon [o] [a] [b] [p] = a->bap

// else it's a conflicting update so don't change anything

else Synchronizer.recon[o][a][b][p] = a->b

}

}
}

/****************** HELPERS ********************/

fun EmptyPath (p: Path) {

p.names..SeqIsEmpty()

}

// a <= b

fun PathPrefix (a, b: Path) {

b.names..SeqStartsWith(a.names)

}

// a < b

fun PPathPrefix (a, b: Path) {

PathPrefix(a, b) && #PathLength(a) != #PathLength(b)

}

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

92

}

// Must be used in conjunction with #

fun PathLength (p: Path): set SeqIdx {

result = SeqInds(p.names)

}

// All paths at some node

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

// Path Append

fun append (a, b: Path): Path {

result = {r: Path I {

#PathLength(r) = #PathLength(a) + #PathLength(b)

PathPrefix(a, r)

all i: r.names..SeqInds() I {

#OrdPrevs(i) >= #PathLength(a) =>

some k: SeqIdx I {

#OrdPrevs(k) + #PathLength(a)= #OrdPrevs(i)

b.names..SeqAt(k) = r.names..SeqAt(i)

}
}

}}

// Returns paths for children

fun children (f: Filesystem, p: Path): set Path {

result = {q: Path I {

q in Node.~f::contents

PathPrefix(p, q)

#PathLength(p) + 1 = #PathLength(q)

}
}

}

93

fun childrenAB (f, g: Filesystem, p: Path): set Path {

result = (children(f, p) + children(g, p))

}

fun isDir (f: Filesystem, p: Path) {

some (Filesystem & p.f::contents)

}

fun isDirAB (f, g: Filesystem, p:Path) {

isDir(f, p) && isDir(g, p)

}

// Equivalent filesystems map paths to same files and directory structure

// On empty inputs, returns true

fun EquivNode (f, g: Node) {

(f = g) |1

(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

p->e in f.contents <=> p->e in g.contents

}
)

}

// Path p is relevant if all its ancestors refer to dirs in both dirs

// Note restriction that a, b are Filesystems and not just nodes...

// Otherwise, synchronization is often trivially true

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}
}

// Two paths are on "different branches"

fun incomparable (p, q: Path) {

!PathPrefix(p, q) && !PathPrefix(q, p)

}

94

// Replace subtree at p in T with S's

fun filesystemOverwrite (t, s: Node, p: Path): Node {

p !in (Node.~(s::contents) + Node.~(t::contents)) => result = t

else all q: Path I {

PathPrefix(p, q) => q.result::contents = q.s::contents

else incomparable(p, q) => q.result::contents = q.t::contents

else children(result, q) + p = children(t, q) + p

}
}

/*************** CHECKING ***************/

// Recon doesn't miss cases

assert reconGensAll {

all o, a, b: Filesystem I all z: Path I {

let dirtya = Synchronizer.dirty[o] [a],

dirtyb = Synchronizer.dirty[o][b] I {

(some dirtya && some dirtyb && some c, d: Filesystem

{syncp(z, c, d, a, b, dirtya, dirtyb)})

=> some Synchronizer.recon[o][a][b][z]

}
}

}

// Recon satisfies the requirements for synchronization

assert Soundness {

all a, b, o: Filesystem I {

let dirtya = Synchronizer.dirty[o] [a],

dirtyb = Synchronizer.dirty[o][b] I {

all p: Path I all c, d: Filesystem I {

(relevant(a, b, p) && Synchronizer.recon[o][a][b][p] = c->d) =>

(syncp(p, c, d, a, b, dirtya, dirtyb))

}
}

}
}

95

// Only one synchronization of a pair of filesystems w.r.t.

// dirty predicates

assert Uniqueness {

all a, b, o: Filesystem I {

let dirtya = Synchronizer.dirty[o][a],

dirtyb = Synchronizer.dirty[o][b] I {

all p: Path I all ci, di, c2, d2: Filesystem I {

(relevant(a, b, p) &&

afterPSynchronization(a, b, ci, di, dirtya, dirtyb, p) &&

afterPSynchronization(a, b, c2, d2, dirtya, dirtyb, p))

=> (p.ci::contents = p.c2::contents &&

p.di::contents = p.d2::contents)

}
}
}

}

// If a path is dirty in either updated replica then the path

// maps to equivalent nodes in both

assert NonDirtyAreSame {

all a, b, o: Filesystem I all p: Path I {

(p !in Synchronizer.dirty[o][a] && p !in Synchronizer.dirty[o][b])

=> p.a::contents = p.b::contents

}
}

// True as long as don't get rid of NoMissingPath fact and the

// restriction on filesystem signature at once

assert NoCycles {

all f: Filesystem I no p: Path I {

!EmptyPath(p) && p->f in f.contents

}
}

96

B.4 Models of Unison and Briefcase Specifications

module systems/file-system

open std/ord

open std/seq

sig Name {}

sig Path {

path: SeqEName]

}

sig Node {}

disj sig File extends Node {}

// Directories aren't explicitly named... instead, there

// are paths made up of names which may point to them

disj sig Filesystem extends Node {

contents: Path ? -> ? Node

} f

// there is an empty path that maps directories to themselves

some p: Path I EmptyPath(p) && this = p.contents

}

fact CanonicalPath {all a, b: Pathi a.names = b.names => a = b}

fact CanonicalSequence {all a, b: SeqENamel I a..SeqEquals(b) => a = b}

fact CanonicalNode {all a, b: Nodel EquivNode(a, b) => a = b}

fact FileDirPartition {

File + Filesystem = Node

}

// "Tree structure" not a statement about being acyclic...

// When you hit a directory on your path from your entries, that

97

// directory has entries consistent with yours. "Treeness" refers

// to the fact that things rooted under you "inherit" your mappings.

// Removal of g in File... disallows existence of files

fact TreeStructure {

all f: Filesystem I all p, q: Path I {

let g = p.f::contents I {

(g in File && EmptyPath(q)) ||

(q.g::contents = append(p, q).f::contents)

}
}

}

// If there is a path q.x then there is a path q

fact NoMissingPathBegin {

all p: Path I {

!EmptyPath(p) => {

some q : Path I (PathPrefix(q, p) && (#PathLength(p) =

#PathLength(q) + 1))

}
}

}

// Tails of paths are also paths

fact NoMissingPathEnd {

all p: Path I {

!EmptyPath(p) => {

some q: Path I tail(p, q)

}
}

}

/*************** UPDATE DETECTION *****************/

fun dirty (f, g: Filesystem): set Path {

all p: Path I {

p !in result <=> p.f::contents = p.g::contents

}

98

}

fun conflict(o, a, b: Node) {

!(samesort(a, b) 11 o = a 11 o = b)

}

/***************** Unison recon

fun relevant (a, b: Filesystem, p: Path) {

all q: Path I {

PPathPrefix(q, p) => isDirAB(a, b, q)

}
}

fun PreserveLocalChanges(o, a, b, c, d: Node) {

!samesort(o, a) => samesort(c, a)

!samesort(o, b) => samesort(d, b)

}

fun Propagate~nlyUserChanges(o, a, b, c, d: Node) {

!samesort(a, c) => samesort(b, c)

!samesort(b, d) => samesort(a, d)

}

fun StopAtConflicts(o, a, b, c, d: Node) {

conflict(o, a, b) => (c = a && d = b)

}

fun safe(o, a, b, c, d: Node) {

all p: Path I {

let o' = p.o::contents, a' = p.a::contents,

b' = p.b::contents, c' = p.c::contents,

d' = p.d::contents I {

PreserveLocalChanges(o', a', b', c', d')

PropagateOnlyUserChanges(o', a', b', C', d')

StopAtConflicts(o', a', b', c', d')

}

99

}
}

fun maximal(o, a, b, c, d: Node) {

all c', d': Node I {
safe(o, a, b, c', d') =>

all p: Path I {
samesort(p.c'::contents, p.d'::contents)

=> samesort(p.c::contents, p.d::contents)

}
}

}

// c and d are the synchronized versions of a and b w.r.t. dirty sets

fun synchronization (a, b, c, d: Node, dirtya, dirtyb: set Path) {
all j: Path I {
relevant(a, b, j) => {

j !in dirtya =>

(j.c::contents = j.d::contents &&

j.c::contents = j.b::contents)

j !in dirtyb =>

(j.c::contents = j.d::contents &&

j.c::contents = j.a::contents)

isDirAB(a, b, j) => isDirAB(c, d, j)
(j in dirtya && j in dirtyb && !isDirAB(a, b, j)) >

(j.c::contents = j.a::contents &&

j.d::contents = j.b::contents)

}
}

}

// Nonconflicting updates are propagated

fun unisonRecon(o, a, b, c, d: Node) {
all p: Path I {

(samesort(p.o::contents, p.a::contents) &&

samesort(p.o::contents, p.b::contents))

=> (samesort(p.a::contents, p.c::contents) &&

100

samesort(p.b::contents, p.d::contents))

else (samesort(p.o::contents, p.a::contents) &&

{all q: Path I PathPrefix(q, p)

=> !conflict(q.o::contents, q.a::contents, q.b::contents)})

=> (samesort(p.b::contents, p.c::contents) &&

samesort(p.b::contents, p.d::contents))

else (samesort(p.o::contents, p.b::contents) &&

{all q: Path I PathPrefix(q, p)
=> !conflict(q.o::contents, q.a::contents, q.b::contents)})

=> (samesort(p.a::contents, p.c::contents) &&

samesort(p.a::contents, p.d::contents))

else (samesort(p.a::contents, p.c::contents) &&

samesort(p.b::contents, p.d::contents))

}
}

// Nonconflicting updates are propagated

// Not maximal in the sense that it does not synchronize all it should

fun BadUnisonRecon(o, a, b, c, d: Node) {

all p: Path I {

(samesort(p.o::contents, p.a::contents) &&

samesort(p.o::contents, p.b::contents))

=> (samesort(p.a::contents, p.c::contents) &&

samesort(p.b::contents, p.d::contents))

else (samesort(p.o::contents, p.a::contents) &&

!conflict(p.o::contents, p.a::contents, p.b::contents))

=> (samesort(p.b::contents, p.c::contents) &&

samesort(p.b::contents, p.d::contents))

else (samesort(p.o::contents, p.b::contents) &&

!conflict(p.o::contents, p.a::contents, p.b::contents))

=> (samesort(p.a::contents, p.c::contents) &&

samesort(p.a::contents, p.d::contents))

else (samesort(p.a::contents, p.c::contents) &&

samesort(p.b::contents, p.d::contents))

}
}

101

/****************** HELPERS ********************/

fun EmptyPath (p: Path) {

p.names..SeqIsEmpty()

}

// a <= b

fun PathPrefix (a, b: Path) {

b.names..SeqStartsWith(a.names)

}

// a < b

fun PPathPrefix (a, b: Path) {

PathPrefix(a, b) && #PathLength(a) != #PathLength(b)

}

fun tail (p: Path, q: Path) {

p.names..SeqRest() = q.names

}

// Must be used in conjunction with #

fun PathLength (p: Path): set SeqIdx {

result = SeqInds(p.names)

}

// All paths at some node

fun Paths(f: Filesystem): set Path {

result = Node.~(f.contents)

}

// Path Append

fun append (a, b: Path): Path {
result = {r: Path I {

#PathLength(r) = #PathLength(a)

PathPrefix(a, r)

+ #PathLength(b)

all i: r.names..SeqInds() I {

#OrdPrevs(i) >= #PathLength(a) =>

102

some k: SeqIdx I {

#OrdPrevs(k) + #PathLength(a)= #UrdPrevs(i)

b.names..SeqAt(k) = r.names..SeqAt(i)

}
}

}}

fun isDir (f: Filesystem, p: Path) {

some (Filesystem & p.f::contents)

}

fun isDirAB (f, g: Filesystem, p:Path) {

isDir(f, p) && isDir(g, p)

}

// Equivalent filesystems map paths to same files and directory structure

// On empty inputs, returns true

fun EquivNode (f, g: Node) {

(f = g) 11
(f in Filesystem && g in Filesystem && Paths(f) = Paths(g) &&

all p: Path I all e: File I {

p->e in f.contents <=> p->e in g.contents

}
)

}

fun samesort(a, b: Node) {

a = b 11 (some (a & Filesystem) && some (b & Filesystem))

}

assert checkUnisonSafe {

all o, a, b, c, d: Node I {

unisonRecon(o, a, b, c, d) =>

(safe(o, a, b, c, d) &&

103

maximal(o, a, b, c, d))

}
}

// Not true due to artifact of modeling

assert UnisonGensAll {

all o, a, b, c, d: Filesystem I {

(safe(o, a, b, c, d) &&

maximal(o, a, b, c, d)) =>

unisonRecon(o, a, b, c, d)

}
}

// Checks what UnisonGensAll was intended to check

assert unisonMaximal {

all o, a, b, c, d: Node, dirtya, dirtyb: set Path I {

(dirty(o, dirtya, a) && dirty(o, dirtyb, b) &&

synchronization(a, b, c, d, dirtya, dirtyb))

=> unisonRecon(o, a, b, c, d)

}
}

// If Unison reconciles, then recon does as well

assert unisonReconisRecon {

all o, a, b, c, d: Filesystem I all z: Path I {

(EmptyPath(z) && unisonRecon(o, a, b, c, d)) => {

some dirtya, dirtyb: set Path I {

recon(a, b, c, d, z, dirtya, dirtyb)

dirty(o, dirtya, a)

dirty(o, dirtyb, b)

}
}

}

assert laziness {

all o, a, b: Node I safe(o, a, b, a, b)

104

}

assert mirroring {

all o, a: Node I maximal(o, a, o, a, a)

}

assert briefcaseMirroring {

all o, a: Node I unisonRecon(o, a, o, a, a)

}

assert briefcaseSymmetricMirroring {

all o, a: Node I unisonRecon(o, o, a, a, a)

}

assert briefcase {

all o, a, o', a', b, b', o", a", o"': Node I {
/*a is synchronized first*/

{unisonRecon(o, a, o, a', o')

/*b is synchronized with the updated network version*/

unisonRecon(o, b, o', b', o")

/*a is synchronized again with network to get b's updates*/

unisonRecon(o', a', o", a", o"')}

/*This is the same as doing unisonRecon to begin with so*/

/*this gives correctness of interpreted Briefcase spec*/

=> unisonRecon(o, a, b, a", b')

}
}

assert maximalUnique {

all o, a, b, c, d, c', d': Node I {
(safe(o, a, b, c, d) && safe(o, a, b, c', d') &&

maximal(o, a, b, c, d) && maximal(o, a, b, c', d')) =>

all p: Path I {
samesort(p.c::contents, p.c'::contents)

}
}

}

105

assert noConflictSuccess {

all o, a, b: Node I {

all p: Path I {

!conflict(p.o::contents, p.a::contents, p.b::contents)

} => some c: Node I {maximal(o, a, b, c, c)}

}
}

106

