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Abstract

This thesis describes the efficient computation of frequency-dependent impedances for
complex three-dimensional geometries of conductors from zero frequency to microwave
frequencies. One previous fast solver (FastHenry) uses a formulation based upon magneto-
quasi-static (MQS) assumption and hence excludes the capacitive effects. In addition, the
frequency-dependent volume filaments used in FastHenry renders the computational cost
prohibitive at high frequencies due to the skin effect. In this thesis, a surface integral for-
mulation combined with a pre-corrected FFT algorithm is used to compute the terminal
impedance matrix in nearly order n time and memory, where n is the number of surface
panels. Computational results are given to demonstrate that the new algorithm can per-
form MQS, electro-magneto-quasi-static and fullwave analysis of realistic integrated cir-
cuit interconnect and packaging problems using a fixed set of surface panels across wide
frequency range.
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Chapter 1

Introduction

1.1 motivation

The layout parasitics in critical nets in high frequency analog and high speed digital inte-

grated circuits must be analyzed using methods that take into account distributed resistive,

capacitive and inductive effects, and may even require a careful treatment of radiation. To

extract such impedances requires detailed electromagnetic analysis over a wide frequency

range, usually from zero to hundreds of giga hertz [16].

It is widely agreed that the only approaches that have proven to be capable of detailed

electromagnetic analysis of complicated integrated circuit interconnects are the accelerated

integral equation methods like those used in FastCap [32], FastHenry [20], IES3 [21] and

Coyote [1]. Even though the integral equation method is a well studied subject [12, 51,

11], there does not exist a fast integral equation solver that solves Maxwell's equations

in general 3D structures with lossy conductors which is accurate from zero frequency to

microwave frequencies.

1.2 Integral Formulations

Many integral formulations have been developed and can be generally categorized into four

kinds according to the state variables used in these formulations. 1) Formulations using the

field variables E and H have been used for decades to solve the radiation and scattering

13



problems [12, 51] as well as eddy current problems [25, 41]. The well-known formula-

tions include the electric field integral equation (EFIE) and magnetic field integral equation

(MFIE) [5, 51], which are also known as Stratton-Chu's formulation [46, 24]. 2) Formu-

lations using the current and charge as state variables, such as the mixed potential integral

equation (MPIE) formulation [12]. 3) Formulations using vector and scalar potentials as

state variables; these formulations are very commonly used for solving eddy current prob-

lems [33]. 4) Formulations using virtual sources, such as virtual current or charge, are also

commonly used for solving eddy current problems [29, 18].

It is well-known that EFIE and MFIE formulations are not guaranteed to produce a

unique solution at interior resonant frequencies for closed structures [51, 6]. Many reme-

dies have been proposed [34]. But there still remain many unsolved problems. So far, no

wideband fullwave analysis program has been developed based upon these formulations.

The MPIE formulation has been extensively used for the analysis of microstrip struc-

tures [31, 4, 3, 27] and for arbitrary shaped conductors with only surface current [38]. It

was recognized in [30] that MPIE has accuracy problem at low frequencies. The so-called

loop/star and loop/tree basis fucntions were used to overcome this low-frequency prob-

lem [30, 54]. The MPIE formulation has also been used for the analysis of interconnects in

VLSI or analog circuits. In this case, it is also known as the Partial Equivalent Element cir-

cuit (PEEC) method [14]. Interestingly, simply becaue the PEEC approach uses a different

excitation term than the one used in MPIE for scattering problems, the cause of the low-

frequency problem identified in [30] is eliminated. Results of the MQS analysis in [20] and

EMQS analysis in [19] have clearly demonstrated that the PEEC method can produce accu-

rate results across a wide frequency range, from zero to hundreds of giga hertz. However,

unlike the microstrip structures, which are usually approximated by zero-thickness perfect

or lossy conductors [31, 4, 3, 27], typical interconnect structures are lossy conductors with

finite thickness. Because of the skin effect, analyzing them involves a frequency-dependent

discretization of the interior of conductors and the substrate ground. At high frequencies,

this kind of discretization usually renders the number of piecewise costant basis functions

(also called filaments) to be prohibitively large. Recently, an entire-domain basis scheme

has shown some promise to remedy the situation [28], but we have yet to see that it will

14



eventually lead to a wideband fast Maxwell's equation solver for general 3D structures.

The motivation behind this thesis is to find a numerically stable surface integral for-

mulation, as such formulations avoid a frequency-dependent discretization of the interior

of conductors and the substrate. The formulation should be capable of wideband analysis

and it should also be easily accelerated by the well-established techniques, such as fast

multipole method [9, 8] or the pre-corrected FFT algorithm [35].

One recently developed surface integral formulation has shown promise [50, 52], but

was plagued with numerical difficulties of poorly understood origin. It was shown in [56]

that one of that formulation's difficulties was related to inaccuracy in the approach to evalu-

ate integrals over discretization panels, and a more accurate approach based on an adapted

piecewise quadrature scheme was proposed. Numerical examples in [56] have demon-

strated that the formulation is indeed valid across wide frequency range, from zero to at

least hundreds of giga hertz, for structures with geometric features in millimeters. It is also

shown in [56] that the condition number of the original system of integral equations can be

reduced by differentiating one of the integral equations. With these issues being resolved,

the formulation is acceleration-ready.

1.3 Fast Integral Equation Solvers

The Fast Multiple Method (FMM) [9, 8] has been used successfully in many applications,

such as electrostatic analysis in FastCap [32] and Coyote [1], magneto-quasi-static analysis

in FastHenry [20], and fullwave analysis in the Fast Illinois Solver Code [45]. Though the

algorithm is rather general, its most efficient variants are kernel-dependent. On the other

hand, the pre-corrected FF7 (pFFT) algorithm [36], which has been successfully used in

many applications [35, 53], is nearly kernel-independent. Since our surface integral for-

mulation has a number of different kernels, even hyper-singular ones, the pFFT algorithm

seems well suited to our formulation. In addition, as a by-product of our work, we also

developed a flexible and stand-alone fast integral equation solver that can handle a vari-

ety of integral operators, including those most commonly used in the boundary element

method [11]. This is a follow-on to a fast solver developed in C by Bajarne Buchmann in

15



2000. Buchmann's implementation could only handle the single-layer kernels. Extensive

modification is necessary if one wants to use the solver for other more complicated kernels.

Our new implementation could be used directly without any modification to the problems

like the one solved in [26]. Combining fast solver with the improved surface integral for-

mulation in [56], we have developed a fast impedance extraction program, fastImp. Ex-

periments using several large examples show that fastImp can perform MQS, EMQS and

fullwave analysis of interconnect structures with hundreds thousands of unknowns from

zero frequency all the way to hundreds of giga hertz.

1.4 Thesis Outline

In chapter 2, we will derive the surface integral formulation and show its connection to

the EFIE and the MPIE and why it is widebanded. In chapter 3, we will show how the

piecewise quadrature scheme improves the acuracy of panel integration and that it solves

the low frequency problem in [52]. In chapter 4, we will explain how to accelerate the

complicated integral operators in our surface formulation with the pFFT algorithm. Several

large examples in chapter 5 are used to demonstrate the speed and the accuracy of fastImp.

And finally chapter 6 concludes the thesis.
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Chapter 2

Derivation of the Surface Integral

Formulation

We focus on the 3D interconnect structures embedded in an isotropic and homogeneous

medium in this thesis. We assume that each conductor (denoted by Vi, i 1,2,..., n) is

piecewise homogeneous and the homogeneous medium region is denoted by VO.

We will derive the surface integral formulation from a different viewpoint than the one

used in [52]. This way, it is very easy to see its connections to the MPIE formulation and

the EFIE formulation.

2.1 Governing equations

In time-harmonic form, the independent and definite forms of Maxwell's equations are

[48]

V x E= -jOpH (2.1)

V x H = J+ j±WE (2.2)

V-f= -jOp (2.3)

J= GE (2.4)

17



where E is the electric field, H is the magnetic field, J is the current density, p is the charge

density, c is the conductivity, and i and E are the permeability and permittivity, respectively.

Equations (2.1) and (2.2) imply

V X V x E -o) 2 E = -jcop. (2.5)

It is obvious that equations (2.1)-(2.4) are equivalent to equations (2.1) and (2.3)-(2.5).

Since the charge inside a good conductor is zero [37] and each conductor is homogeneous,

substitution (2.4) into (2.3) and setting to zero right side of (2.3) yields

V - (-r) = 0, r C Vi (2.6)

where 'r is a point in the interior of conductor V. Hence equation (2.5) can be reduced to

(V2  ) = W( l C V. (2.7)

It should be noted that the combination of equation (2.6) and (2.7), not just equation (2.7)

alone, is equivalent to equation (2.5).

Equations (2.1), (2.4), (2.6) and (2.7) are the governing equations inside each conductor

Vi, and equations (2.1)-(2.4) are the governing equations in the homogeneous medium.

2.2 Boundary conditions

The surface of each conductor can be divided into two parts: contact surfaces and non-

contact surfaces, as shown in figure 2-1. The contact is an artificially exposed surface. It

is created primarily because we want to use the divide-and-conquer strategy to seperate a

block of 3D interconnect from other parts within a large chip. Since contacts are actually

in the interior of a conductor, it is reasonable to assume that the charge on the contacts is

zero. So equation (2.6) also holds true on the contacts.

Becasue of the nature of commonly used strategy to decompose a large chip into many

smaller blocks, the conductors connected to these contacts are usually long and thin signal

18



Contact non-contact

non-contact

- - :Contact

Figure 2-1: The surface of a 3D interconnect conductor

lines. Hence it is reasonable to assume that the current goes into these contacts does not

have the transversal components, i.e., . J = 0, where t is the unit tangential vector on the

contacts. Substituting (2.4) into it yields

(r) -E() = 0, if 'r is on a contact. (2.8)

Equations (2.6) and (2.8) imply

aE(V) = 0, if ' is on a contact. (2.9)
an('r)

On the other hand, since charge on a non-contact surface is not necessarily zero, in view of

(2.3), the boundary condition becomes [48]

En() = , if i is on non-contact surface. (2.10)

It should be noted that E and in this section are defined only on the inner side of the

conductor surfaces. In fact, in this paper we try to avoid using the matching boundary

conditions commonly used in solving scattering and radiation problems. The reason will

be made clear in section 2.4.
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2.3 Surface integral representation

Thanks to Green's second identity, the surface integral representation of the solution to

equation (2.7) inside conductor V is [5]

TE()= dS' Go
an (r')

aGo(7, )
- _ E(r) I

an(r')
+ jO)!LJ dV'Go(-, r')f(r')

Seikor-'
Go(,r') - ko = oV/61,

4TE|7- r'I

1 if i Vi

1/2 if ' c Si

0 otherwise

and Si is the surface of conductor V. When ' E Si the surface integral in (2.11) should be

the principal value integral. If we write equation (2.11) for each conductor separately but

let 'r be fixed on the surface of a particular conductor Vk, and then sum up these equations,

we obtain

1 -
2 V - - G E(r'))+ joL

an(r')
(2.14)IV

where S is the union of all conductor surfaces and V is the union of all conductor regions,

and T E Sk, k = 1, 2, ..., n.

Substituting (2.4) into (2.7) yields,

V2E(r) + ( 2 - jwo/ti)E(r) = 0, 7 E Vi (2.15)

where cy is the conductivity of the conductor Vi. Again, thanks to Green's second identity,

the surface integral representation of the solution to equation (2.15) is

1 =
2

dS'(Gi(?, )Ia(r') , )E( ))
fs i an( r') an (r')

7 E Si (2.16)

20
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where
e jkl1 r-r'j "-02 _G(,) = ,i ki = (2.17)

Since (2.14) and (2.16) are the formal solutions to the same equation in slightly different

forms, they are obviously equivalent. We use both of them instead of just one merely for

the derivation purpose.

So far, only the formal solutions to equation (2.7) inside each conductor has been found.

To find the formal solution to the governing equations in region Vo, the homogeneous

medium, we turn to the MPIE. The reason we still want to use the MPIE will be made

clear shortly. Now each conductor is treated as a volume current source. In the standard

MPIE formulation [12], the electric field everywhere, including the interior of every con-

ductor, is

) =-jcoZ - V$() = jo4 dV'Go(? r')f(r) - V$() (2.18)

where

$()r dS' Go ('r, r'). (2.19)

Unlike standard MPIE, the lorentz gauge V -A + jomp$ = 0 is not explicitly enforced be-

cause it is implied by equation (2.18) and equation (2.6), which are explicitly enforced

in our formulation. Now it is clear that had equation (2.5) instead of equations (2.6) and

(2.7) been used as the governing equations, we would have to enforce lorentz gauge, which

would introduce the vector potential A or ultimately a volume integral term into our formu-

lation.

Let F+ C Sk in equation (2.18) and subtract it from equation (2.14), we then obtain

I- ' d$(r) a aGo(?,r')
-E(-r) = dS'(Go(-r'r) _E - (11)) + V$ (-r), _r_ E Sk (2.20)
2 s an(r') an(r')

where k = 1,2, ... , n. It should be noted that the integral representation (2.20) is no longer

the formal solution to equation (2.7), hence it is not equivalent to (2.16) any more. Now

we have found the surface integral representation of the formal solutions to the governing

equations inside conductors and homogeneous medium. It should be noted that the surface

integrals in (2.14), (2.16) and (2.20) are all principal value ones.
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2.4 Connections to EFIE and MPIE

There are two somewhat unconventional ingredients in our formulation: 1) there is no

matching boundary conditions; 2) the mixture of EFIE and MPIE is used. Each ingredient

has its own ramifications.

Because a contact is the virtual boundary between two pieces of conductors, as shown

in figure 2-1, and we do not have any infomation about the one that is not included in the

3D interconnect structure, we want to avoid matching boundary conditions on the contact.

The MPIE has the volume integral term but does not need matching boundary con-

ditions. On the other hand, the EFIE needs matching boundary conditions but does not

have the volume integral term if currents inside conductors are not treated as sources. In-

cidentally, the volume integral term in equation (2.18) is the same as the one in equation

(2.14). And we have used this fact to cancel out this undesirable volume integral term. So

EFIE and MPIE complement each other well and their combination results in a true surface

integral representation.

In addition, since the goal is to compute the impedances suitable for use in a circuit

simulator, we impose voltages on the contacts and compute the contact current. Then one

can use the voltage-current definition Z = V/I to compute impedance. This is another

reason we want to use the MPIE because one of its state variable $ is natually related to

voltage. From our experience it is rather cubersome to introduce excitation by merely using

electric and/or magnetic fields as state variables.

It is worth noting that the EFIE formulation in this paper is slightly different from the

standard one. There are a few equivalent forms of EFIE, the one closest to equation (2.16)

is [51]

1- -- a() aG1 (7 r)
-E(i) dS'[Gi( r') E(r')+n(r)G1 (r,r')(V' E(r'))], 'r ESi.
2 Si an(r) an(r')

(2.21)

And the one closest to equation (2.11) is equation (2.21) with the addition of a volume

integral term exactly same as the one in equation (2.11). The stamdard EFIE is derived

from the vector Helmholtz equation (2.5) using Green's second identity in vector form.
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And equation (2.6) is not explicitly enforced. However, as discussed before, equation (2.6)

must be enforced in our formulation. This is why we choose equation (2.16) rather than

equation (2.21) in the standard EFIE.

2.5 Surface formulation

In light of the observation made in section 2.4, we introduce one last equation, equa-

tion (2.29), into our formulation. We follow the convention in the PEEC model, using

the difference between $ on two contacts of the same conductor as the voltage excitation

term [20, 19].

In summary, the formulation for fullwave analysis consists of the following equations

11-
2 sis

dS'(G1(i, r') _,)
an(r')

aG1(?
- _, (r)),

dn(r')

jdS'(Go(-, r') an(')
a3n(r')

aGo(?') -(
_ E(r'))

Dn(r')

$() = dS' Go(rr), i C S.

jO~p(T )
En('r) = , i E SncrCSY

t(-r) -E(r) = 0, r E SC

an()= 0, i E SC
an('r)

V.() =0, 7ESnc

$(r) = constant, 'T C Sc

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

where Snc and Se are the non-contact part and contact part of the conductor surface S,

respectively.

The formulation has eight scalar state variables, Ex, Ey, Ez, ,Ex 5 y %, $ and p. SinceN n ' n

there is no matching boundary condition, all components of E and L are on the inner side

of conductor surface. Because equation (2.20) along the normal direction is not enforced,
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the total number of scalar equations is also eight.

For EMQS analysis, ko in equation (2.12) becomes zero and the term CO2 Eft in equation

(2.17) should be dropped [13]. But the number of state variables is unchanged. For MQS

analysis, on top of above simplification, the charge p in equation (2.25) becomes zero [13].

Hence it becomes redundant and is not used as a state variable and equation (2.24) is not

used either. Hence the total number of scalar unknowns and equations becomes seven.

2.6 Why this surface formulation is widebanded

Numerical results in [56] have clearly shown that our formulation is valid from zero fre-

quency to microwave frequencies. Since we have established in section 2.4 that our formu-

lation is a combination of EFIE and MPIE, we are ready to explain why it is widebanded.

The reason turns out to be rather simple: both EFIE and MPIE are widebanded themselves

for the analysis of interconects. The following is our reasoning.

When the MPIE is used to solve scattering and radiation problems, the known is E', the

incidence field for scattering problems or the excitation field for antenna problems. The

governing equations are [31, 4, 3]

-E= joA +V$ = B (2.30)

VS -J= -jOPs (2.31)

$(r) = idS'Go(r, )ps() (2.32)

( = dV'Go(r, r) ( ) (2.33)

where Vs is the surface divergence. It was pointed out in [30] that when the frequency is

sufficiently low, the vector potential contributions to the elements of system matrix are in-

significant compared with the scalar potential contributions. As a result, the vector potential

contributions are lost. The remaining scalar potential contributions depend only on Vs -J.

Knowledge of Vs -f is not sufficient to determine J. Therefore, the solutions are inaccurate

at low frequencies. A loop/tree or loop/star basis function pair can be used to separate the

contributions from vector potential A and scalar potential $ to the system matrix element,
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and hence solves the low-frequency problem [54].

However, when the same MPIE or the PEEC model is used for the analysis of intercon-

nects, the first governing equation is slightly modified. It becomes

E= --jOA - V$= (2.34)

and the excitation is the user-specified scalar potential or voltage on the contacts. When

the frequency is identically zero, equation (2.34) becomes

-V$ (2.35)

which is the equivalence of V = RI in circuit [37]. This is exactly the kind of low-frequency

behavior we expect! Hence we do not see any low-frequency problem at all. We could use

similar reasoning to verify that the MPIE does not have high-frequency prolems either. So

it is a wideband formulation by itself.

As for EFIE, it only has nonuniqueness problems at resonance frequencies of closed

perfect conductors. Since interconnects are usually lossy open structures, we should not

have this problem. Hence the EFIE is also a wideband formualtion by itself when it is used

for the analysis of interconnects.

Since our formulation is a combination of these two widebanded formulations, it should

not be a surprise that our formulation turns out to be widebanded too.

For the MPIE, independent of the accuracy of the system matrix element at low re-

quencies, there is a condition number issue. In [55], on top of the loop/star and loop/tree

basis functions, a preconditioner was proposed to reduce the number of iterations of an

iterative matrix solver for the analysis of the scattering and radiation problems. For the

analysis of interconnects, a mesh current idea, which enforces V -J 0 implicitly, was

used to make the system matrix better conditioned in [20, 19]. In our formulation, we use

a sparse pre-conditioner matrix to reduce the iterations of the matrix solver GMRES [43].

It is constructed by ignoring the interaction between panels in integral equations (2.22),

(2.23) and (2.24), and using equations (2.25), (2.26), (2.27), (2.28) and (2.29) directly. It is
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Figure 2-2: An infintely thin small rectangular box benneath the conductor surface

shown in [56] that the condition number of the system can be further improved by replacing

equation (2.22) with its normal derivative, i.e.,

I _ -, -. & W(') _ 3G 1(-, 2).2 ( ) = [f dS'(G 1(r, r') . E _, (r))]. (2.36)
2 an('r) an( ) si an(r') an(r')

2.7 Discretization of the formulation

Applying the integral form of equation (2.28)

JE(r)dS = 0 (2.37)

to the surface of an infinitely thin small rectangular box beneath the conductor surface, we

obtain

dxEt (x) (h(x) x [Sx-- dS V)=0 (2.38)

where Q is the top of the box, F is the periphery of Q. It is easy to see that equations

(2.26) and (2.27) are sufficient conditions for equation (2.38) to hold true. Since these two

equations are much simpler, we use them for contact surface and use equation (2.38) only

for non-contact surface.

In order to discretize the integral equations (2.22), (2.23) and (2.24), a piecewise con-

stant centroid collocation scheme is used in this paper. The conductor surface is discretized

into N flat quadrilateral panels as shown in figure 2-3. Seven unknowns are associated with

each panel: Ex, Ey, Ez, ,Ex aEy aEz and p. The scalar potential $ is associated with the

panel vertices. With this setting, equations (2.25), (2.26), (2.27), (2.38) and (2.29) become

simple algebraic equations. Please refer to [52] for more details on discretization.
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Figure 2-3: Panel discretization
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Chapter 3

Improving the accuracy of panel

integration

3.1 Definition

After discretization, the integrals over conductor surface S or Si are replaced by the sum-

mation of integrals over panels. These integrals are

Ii(') = JdS'G(, t') (3.1)

I2(7)fdS' G(ir r')
12 M 2.

fr 3 n(,-,)

I3(r d7) dS'G(-, r') - n(')( )=an('r) pi
-V j dS'G(-, ')

where Pi is the i-th panel, n(Pi) is the unit normal vector on the flat panel Pi, and G(7, r)

is either Go(', r') or G1 (, r') defined in (2.12) and (2.17). From the symmetry property of

the Green's function, it follows that

-VF dS'G(7,r) -VIi (). (3.4)

Therefore, to compute the integrals in equation (3.1) (4.43) and (3.3), all we need is to

compute Ii () and here D stands for x, y or z.
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V2 V

V3 V4

Figure 3-1: Decomposition of an integration over a polygon into several integrations over
traingels

3.2 Decomposition

It is shown in [15] that any integration over a polygon is equal to the signed summation of

the integration over a chosen set of triangles. The vertices of these triangles are those of the

polygon and the projection of the evaluation point onto the plane where the polygon lies,

as shown in figure 3-1. To be more precise, let f('r) be a general integrand, its integration

over a polygon in figure 3-1 could be written as

N

N dif( = sfi dif(i) (3.5)
S i=1 P Vi+

where N is the number of vertices, VN+1 = V1, and Si = -1 if ViVi+1 is clockwise looking

from the evaluation point E and si = 1 if otherwise. This idea was used in [52] to compute

the integrals Ii ('r) and a .

3.3 Desingularization and Reduction to 1-D integration

In a polar coordinate system, a triangle after the decomposition is shown in figure 3-2.

Using the relation R = -/r 2 ± h2 and RdR = rdr, the integrals Ii and a over this triangle

could be rewritten in polar coordinates as

/ 0
B frl(O) eikR

I B dOl rdr
OA 0 4nR

f0B fR1 (0) eikR
A d h dR
OAJ h 42t
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B eikR1(0) _ eikh= A d ic k #O (3.6)OA 4nik

or OB dOR1(0)_-h k = 0 (3.7)

ail = fOB eikRi(0) dR1(0) eikh Ah
=__ dO( - ) (3.8)

3D OA 4n aD 4n aD

Now the singularity of the original kernels in I1 and has been eliminated and the 2-D

integrations have been reduced to I-D integrations. The quadrature rule is used to compute

the two l-D integrations in equation (3.6) and (3.8). The shared rapid changing kernel in

these two integrals is f(0) = eikR(), where R1 (0) = d2 sec2 ()+h 2. When d «AB,

OA ' - and OB , and f(0) changes rapidly over the interval. Many quadrature points

must be used to achieve reasonable accuracy.

3.4 piecewise Quadrature Scheme

A simple variable transformation and a piecewise quadrature scheme can be used to solve

the above-mentioned problem. Let x = dtan(O) it easily follows that T , where r 2

d 2 + x2 . The rapidly changing part of I, and I could be rewritten as

eB kR XB dxg(x),where g(x) d 2+2 (3.9)
OA XA r

The distribution of the integrand g(x) is shown in the top figure of the figure 3-3. Many

quadrature points must still be used to get accurate evaluation because of the rapid varia-

tion about x = 0. However if we divide the integration domain into two sub-domains, as

shown in the middle and the bottom figure of the figure 3-3, and use a piecewise integration

scheme, the number of quadrature points needed will be dramatically reduced. The conver-

gence behavior of the integration over the whole domain and over the two sub-domains is

shown in figure 3-4. It is clear that the piecewise scheme uses fewer quadrature points, or

has higher accuracy if only a small number of quadrature points are used. Unfortunately,

this is not appreciated in [52] and a small number (24) of quadrature points are used for the

integration over the whole domain. Since the lower the frequency, the smaller the damp-
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Figure 3-2: Triangle in polar coordinate system, d is the distance between point P and edge
AB

ing factor in complex wave number k, hence the higher the peak of the integrand g(x), the

formulation in [52] has a low frequency problem.

3.5 Testing examples

We will use two simple examples to validate the proposed piecewise quadrature scheme.

The first example is a simple ring structure since the analytical formulas exist for the low-

frequency inductance of a ring [10]. The second example is a spiral structure. We compare

our results to those of the public domain program FastHenry [20]. In order to compare with

the magnetoquasistatic analysis program FastHenry, these two examples were analyzed

magnetoquasistaticly.

3.5.1 Ring

The ring is 10mm in radius, with a square cross section of the size 0.5mm by 0.5mm.

The conductivity is that of the copper, which is 5.8e7. The low frequency inductance

calculated using the formula in [10] is 48.89 nH. The results obtained by using FastHenry

and the formulation derived in section 2 enhanced with the piecewise quadrature scheme

proposed in section 3.2 are shown in figure 3-5 and 3-6. The two results agree well. The

number of filaments used by FastHenry is 960, 3840 and 15360, respectively. The surface

formualtion only uses 992 panels across the entire frequency range. It should be noted
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integrand, the middle and the bottom figure are the left and right part of the top figure
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Figure 3-4: convergence behavior of different schemes

that the inductance obtained with the surface formulation is very close to 48.89nH in the

low frequency range. This suggests that the low frequency problem reported in [52] has

been eliminated without using the linearization technique proposed therein. Also, at high

frequency, the resistance scales to the square root of frequency and the inductance drops a

little. This suggests that the skin-effect has been well captured. So this ring example does

validate our panel integration scheme.

It is also worth mentioning that relatively large error in inductance (about 4 percent) at

low frequencies is due to the cancellation error. At low frequencies, the difference between

the real part and the imaginary part is many orders of magnitude. This is where the can-

cellation error comes from. In addition, the 4 percent relative error in inductance at low

frequencies only results in a very small error in the magnitude of the impedance. Hence

purely from circuit simulation point of view, the 4 percent relative error in inductance is

not significant at all.

3.5.2 Spiral inductor

The inner radius of the spiral is 10mm. Its cross section is a square of the size 0.5mm by

0.5mm, and the spacing between two succesive revolutions is 0.5mm. The spiral has two

revolutions. At low frequencies, the computed resistance and inductance agree well with

those obtained with FastHenry, as shown in figure 3-7 and 3-8. This again validates our

panel integration scheme. It is worth mentioning that FastHenry does not capture the skin-
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Figure 3-8: Inductance of a spiral

effect at high frequencies due to the fixed number of filaments. On the other hand, with a

fixed number of panels, the surface integral formualtion has well captured the skin-effect.

This example clearly demonstrates the advantage of the surface integral formulation over

the volume integral formulation.
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Chapter 4

Pre-corrected FFT algorithm

After discretization, the algebraic equations (2.25), (2.26), (2.27), (2.38) and (2.29) become

sparse matrix equations. But integral equations (2.22), (2.23), (2.24) and (2.36) become

dense matrix equations. So solving the whole system matrix using iterative methods still

takes O(N 2 ) operations, where N is the number of unknowns. In this thesis, we use the

pre-corrected FFT7 algorithm to accelarate the dense matrix vector product corrresponding

to the operation of those integral operators in (2.22), (2.23), (2.24) and (2.36).

Even though numerous fast algorithms already exist for efficiently solving the inte-

gral equations, such as the Fast Multipole Method (FMM) [9, 8, 39, 40], the hierarchical

SVD scheme [22], the panel clustering method [11] and the pre-corrected FFT (pFFT)

algorithm [35], the practical implementation of such methods may still seem daunting

to researchers and engineers, who are most often not specialists in fast integral equation

solvers. As a result many existing codes still use the traditional dense matrix approaches,

which need O(N 2 ) memory and at least O(N 2) CPU time. One of the objects of this work

is to provide a flexible and extensible code to the public domain so that the researchers can

easily accelerate their codes. Hence we want to use an algorithm that is flexible enough

to handle the integral kernels commonly used in the above mentioned engineering applica-

tions.

Though not as good as FMM's more than ten digit accuracy, pFFT's four to five digit ac-

curacy is good enough for most engineering applications, where the accuracy requirement

is usually modest. More importantly, the pFFT method is almost kernel-independent. For
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example, it can easily handle both the Helmholtz kernel and the Laplace kernel and their

close relatives in a unified framework. This makes the pfft a particularly good algorithm

for our fast solver.

4.1 Mathematical Preliminaries

An abstract form of the kernels in (2.22), (2.23), (2.24) and (2.36) is

K( ,) = J1(F2(G(r ,))) (4.1)

where G(r' ,) is the Green's function, and the possible options for operator F1(-) and J2(.)

are

Fi U(-))d(-) d(- d(- d(-)(42
dx(7)' dy(-)' dz(7)' dn(7), (4.2)

and
-d(-) d(-) d(.) d(-)

72(-) = ( (4.3)
dx(r')' dy(r') dz(r') dn(r')'

and U(.) is the identity operator.

For the sake of clarity, we use a simple single-kernel integral equation

jdS'K( ,)p(r ) =f(), ES (4.4)

to illustrate how the pFFT algorithm can be used to accelerate the operation of an integral

operator. Function f(') is the known right hand side term. The procedure extends easily to

the integral equations with multiple kernels, such as (2.22), (2.23), and (2.36).

The standard procedure for solving equation (4.4) numerically is to discretize by means

of projection [11] and solve the resultant linear system with an iterative method [42, 49],

such as GMRES [43]. Let X be the infinite-dimensional functional space in which the exact

solution of equation (4.4) lies, and assume that Bn C X and T C X are its subspaces with

spans {bj(), j = 1,2,...,n} and {ti(f),i = 1,2,...,n}, where n is the dimension of both

subspaces. In general, the solution of the equation (4.4) is not in subspace Bn. Therefore,
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the approximate solution
n

pn(i) =Y ab j (7) C Bn (4.5)
j= 1

generates an error

en?)= S'( ?)n() f?)= r() - ) (), r S (4.6)

and the unknown expansion coefficients ci could be computed by enforcing the projection

of the error into T to vanish, i.e.,

< ti('r), en(r) >=< ti(r), $(r) > -< ti(r), f (r) >= 0, i = 1, 2, ... , n (4.7)

or

Uj jdSti('r) dS'K(r', )bj(r) fdSti()f(), i= 1,2,...,n, (4.8)

where At and A are the support of the basis funcntions ti(Ir) and bj('r), respectively. In

matrix form, equation (4.8) becomes

[A]6 =-- f (4.9)

where

Ai~j = f dSti('r) fbdS'K (t, ,r)bj (r') (4.10)

The commonly used basis functions in Bn or T are low-order polynomials with local sup-

port [11]. Figure 4-1 shows a piece-wise constant basis function whose support is a panel.

Figure 4-2 shows a vertex-based piece-wise linear basis function whose support is the union

of a cluster of panels sharing the vertex with which the basis function is associated.

When the ith testing function is ti('r) = 6(- rii), where 'ci is the collocation point, the

discretization method is called the collocation method. And when Bn = Tn, the discretiza-

tion method is called the Galerkin's method.
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Figure 4-1: A piece-wise constant basis function, shaded area is its support
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Figure 4-2: A piece-wise linear basis function associated with the vertex V, where the
shaded area is its support
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4.2 Philosophical Preliminaries

Since forming matrix A and computing the matrix vector product in (4.9) all require O(N 2)

arithmetic operations, it is obvious that using an iterative method to solve equation (4.9)

needs at least O(N 2) time, where N is the size of the matrix A. This could be very expensive

for large N. Many fast algorithms avoid forming matrix A explicitly and compute the

matrix vector product approximately, which only needs O(N) or O(Nlog(N)) operations

[8, 2, 36].

The FFT-based method is well-known for some time [44]. But the algorithm requires

regular mesh, which is not always possible or optimal for 3D geometries. The Pre-corrected

FFT (pFFT) algorithm was originally proposed in [35, 36], where the detailed steps to ac-

celerate a single-layer integral operator were shown. The basic idea of pFFT is to separate

the potential computation into far-field part and near-field part. The far-field potential is

computed by using the grid charges on a uniform 3D grid to represent charges on the pan-

els. The near-field potential is compued directly. The algorithm has four steps: Projection,

Convolution, Interpolation and Nearby interaction. The effect of this algorithm is to re-

place the matrix vector product A6x in equation (4.9) with (D + IHP) x, where D is the

direct matrix that represents the nearby interaction, I is the interpolation matrix, H is the

convolution matrix, and P is the projection matrix. Matrices D, I and P are sparse, hence

their memory usage is O(Np), where Np is the number of panels, and their product with

a vector needs only O(Np) work. The matrix H is a multilevel Toeplitz matrix. Hence its

memory usage is O(Ng) and its product with a vector could be computed by using FFT in

O(Nglog(Ng)) operations [7], where Ng is the number of grid points. Therefore, the overall

computational complexity of (D + IHP) ii is O(Np)+ O(Nglog(Ng)). For some problems,

usually small or medium sized ones, Ng might be larger. Hence the computational com-

plexity is O(Nglog(Ng)). For other problems, usually large-sized ones, the computational

complexity is nearly O(Np).

Since polynomials are used both in the interpolation step and the projection, the inter-

polation matrix I and the projection matrix P are completely independent of the Green's

function G(r, r') in equation (4.1). This makes it much easier to handle the complicated
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kernels K( , r) in (4.1). It also makes it straight forward to treat piecewise constant basis

and high-order basis in either collocation or Galerkin's method in a unified framework.

This is particularly important from implementation point of view.

4.3 Pre-corrected FFT algorithm

In this section, we will use a simple 2D example to show how to generate the four matrices,

[I], [P], [H] and [D]. Generalization of the procedure to the 3D cases is straight forward.

The algorithm presented here is general enough such that the general integral operator in

equation (4.4) discretized either by the collocation method or by the Galerkin's method

using either piece-wise const element or high-order element could be handled in a unified

framework.

4.3.1 Interpolation matrix

We start with the interpolation, the third and easiest step in the four-step pFFT algorithm.

Suppose the potential on the uniform grids has been computed through the first two

steps, namely projection and convolution, we could use a simple polynomial interpolation

scheme to compute the potential at any point within the region covered by the grids. Fig-

ure 4-3 shows a 2D 3 x 3 uniform grid, more points could be used to get more accurate

results. The triangle inside the grid represents the local support A in equation (4.8). The

simplest set of polynomial functions for the interpolation is fk (x, y) = xi, i, j= 0, 1, 2, k

2i + j. The potential at any point can be written as a linear combination of these polynomi-

als,

$ (x, Y) = Ckfk (X, Y) =f(X, Y) C (4.11)
k

where j is a column vector and t stands for transpose. Matching $(x,y) in (4.11) with the

given potential at each grid point results in a set of linear equations. In matrix form, it is

[F]5 ip (4.12)
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where the j-th row of the matrix [F] is the set of polynomials f(x, y) evaluated at the jth grid

point (xj,yj), and $gj is the given potential at point (xj,yj). Solving for - and substituting

it back into (4.11) yields

(x, y) - j' (x, y)[F] -0 = R (T) g (4.13)

It should be noted that matrix [F] in (4.12) is only related to the distance between points in

the uniform grid and the specific set of interpolation polynomials chosen in the algorithm.

So the inverse of matrix [F] is done only once. And since the size of the matrix is rather

small (9 x 9 in this simple 2D case), computing its inverse is inexpensive. It is possible that

the number of polynomials is not equal to the number of points in the interpolation grid. In

this case the inverse becomes psuedo inverse, which is computed using the singular value

decomposition (SVD) [49].

It easily follows that the derivative of the potential at a point r with respect to X is

d$(r-) d 7t(- I- -t

da d) f ()[F]- Og = D'a(T) g (4.14)

where c stands for x or y. Hence the gradient of the potential at r is

0$( ) =(ifx (T) +D fo(T)) Og (4.15)

and the normal derivative of the potential at point r is

d$(T) -dP'(T) dp'(T) -
dn = n (nx dx +ny dy [F] = (T) 0 (4.16)

where nx and n, are the projection of the unit normal vector of the function support A along

x and y direction. Using the notation in (4.2), equations (4.13), (4.14) and (4.16) could be

written as

wh($ ()) =O () g (4.17)

where BVT() stands for IOo(T), x(r-), R (T) or R (T).
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As described in section 4.1, we want to compute

Ti = dS Fi($ )ti() i =- 1, 2, .. N. (4.18)

where Nt is the number of testing basis functions. Substituting (4.17) into (4.18) yields

Ti =j dSti()'(r)4gr= (Wi))tg, i 1,2,..,N,, (4.19)

where (j) stands for W , e and wy . If the collocation method is used, then in

equation (4.19) could be simplified as

W -D(xcyc), i =1,2,..,Nt, (4.20)

where (xc,yc) is the collocation point. When the piece-wise constant testing function is

used, the support At is the panel associated with it, as shown in figure 4-1. When the linear

testing function is used, At is a cluster of panels, as shown in figure 4-2. Apparently, com-

puting elements of W for higher order basis functions could be more expensive because

integrating over a cluster of panels needs more quadrature points than integrating over a

single panel.

In matrix format, equation (4.19) becomes

'T' -[I110 (4.21)

where [I] is an N x Ng matrix, and Ng is the number of grid points. To cover the local

support of a basis function, only a small number of the interpolation grid points are needed,

as shown in figure 4-3. Hence computing each Ti through interpolation only involves

potential at a few grid points. So each row of the interpolation matrix [I] is rather sparse.

The non-zero elements in the i-th row of the matrix [I] are just the elements of the row

vector (W)' in (4.19) or (4.20).
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Figure 4-3: 2-D pictorial representation of the interpolation step

4.3.2 Projection matrix

Figure 4-4 shows a 2D pictorial representation of the projection step. Similar to the previ-

ous section, a triangle is used to represent the support of a basis function. A 3 x 3 projection

grid is assumed here and obviously more points could be used if the accuracy requirement

is higher.

We start with a point charge pp at point S on the triangle, shown in figure 4-4. The

potential at point E due to this point charge is

(;1) = pPG( 7s,7E) (4.22)

The purpose of the projection is to find a set of grid charges Pg on the projection grid points

such that they generate the same potential at point E, i.e.,

(2) pg,iG(i,7E) - (0g) t g = 0 (1) (4.23)

where $g,i = G(Ti,i'E). We could use the same set of polynomials in (4.11) to expand the

Green's function

(4.24)G rE k )Ck = ft (r). F
k

Matching both sides at each grid point 7
j yields a linear system

[F]i = $g, (4.25)
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where F is same as that in (4.12). Substituting the solution - F-1 g into (4.24) and

evaluating it at point S yields

G(',7E ) t( s)F-g. (4.26)

In light of (4.22) and (4.23) we have

(pg)' = ppi'(s)F-l, (4.27)

the projection charges for a point charge. A charge distribution bj(7) on the jth basis

function support could be regarded as a linear combination of an infinite number of point

charges. Equation (4.27) implies that the projection charges are linearly proportional to the

point charge, hence it easily follows that the projection charges for the charge distribution

bj(?) is

(p)= [j dSbj(-r)fP (-r) ][F]-'. (4.28)

If the piece-wise constant basis function is used, equation (4.28) becomes

(A), = [ dSj'(-r) ][F]-1 (4.29)

We usually have to use more than one basis function, as implied by equation (4.5).

In this case, the total charge on each grid point is the accumulation of grid charge due to

each basis function. Assuming there are Nb basis functions and Ng grid points, the relation

between the total grid charges Qg and the magnitude of basis functions x in (4.5) is

Nb 
UQg = Xjp = [Pj, (4.30)

j=1

where [P] is an Ng x Nb matrix. Due to the locality of the basis support, the projection

grid for each basis function has only a small number of points. Hence each column of the

projection matrix [P] is rather sparse. The non-zero elements in the j-th column of matrix

[P] are the elements of the column vector Pg in equation (4.28) or (4.29).
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If the kernel has a differential operator inside the integral, the potential at point E due

to a point charge is

(1)
O'E

Li [ppG( 7 ,i)] = Li [pf(s l( g1
VS)3 a(Is)~s

(4.31)

where P stands for x, y or n. We again want to find a set of grid charges ap on the projection

grid points such that they generate the same potential at point E, i.e.,

(4.32)

Equations (4.31) and (4.32) imply that the projection charges are

(ag)'= [ppf'(flF-1
(f3 () r (4.33)

Similar to the single-layer operator case, the projection charges for a charge distribution

bj(') on the jth basis function support is

(J)= [ dSbj('r) j'()][F]-1. (4.34)

The projection matrix for the kernel with a differential operator is structurely identical to

the matrix [P] in equation (4.30). The non-zero elements in the j-th column of the matrix

are the elements of the column vector T in equation (4.34).

4.3.3 Convolution matrix and fast convolution by FFT

By definition, the relation between the grid potential Og in (4.21) and grid charge Qg in

(4.30) is

(4.35)

In matrix form, it is

Og =[H]Qg
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Figure 4-4: 2-D) pictorial

E

representation of the projection step

where the matrix H is the so-call convolution matrix. Since the Green's function is position

invariant and p and Qg are defined on the same set of uniform grid, we have

Hi,1= G(r'i, j) = G(ri, ') = G - 0jO). (4.37)

Matrix H is a multilevel Toeplitz matrix [7]. The number of levels is 2 and 3 for 2D cases

and 3D cases, respectively. It is well-known that the storage of a Toeplitz matrix only

needs O(N) memory and a Toeplitz matrix vector product can be computed in O(Nlog(N))

operations using FFT [7], where N is the total number of grid points. It should be pointed

out that convolution matrix H being a Toeplitz matrix is hinged upon the position invariance

of the Green's function. Fortunately most commonly used Green's functions are position

invariant.

4.3.4 Direct matrix and pre-correction

Substituting equation (4.36) and (4.30) into (4.21) yields

W = [I] [H] [P]6 x (4.38)
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In view of (4.18), (4.7) and (4.9), this implies

A = [I][H][P]. (4.39)

As pointed out in previous three sections, the sparse representation of matrix A in (4.39)

reduces the memory usage and computing time for matrix vector product dramatically.

Unfortunately, the calculations of the potential on the grid using (4.39) do not accurately

approximate the nearby interaction. It is proposed in [36] that the nearby interaction should

be computed directly and the inaccurate contributions from the use of grid should be re-

moved. Figure 4-5 shows how the nearby neighboring basis supports are defined. The

empty circle in middle of the solid dots are the center of the so-called direct stencil and

the stencil size in figure 4-5 is 2. The shaded triangle represents the source, and the other

empty triangles represent the targets where 'P in equation (4.18) is to be evaluated. Only

those triangles within the region covered by the direct stencil are considered to be nearby

neighbors to the source. And the direct interaction between this list of nearby neighbors

and the source is just Aij defined in (4.10), where i is the index of the shaded triangle repre-

senting the source and j E W, the nearby neighbor set for the ith source. The pre-corrected

direct matrix element is

Di, - (W )t [HL]P , j E W (4.40)

where (W )) is defined in equation (4.19), P~ is defined in equation (4.28) and (4.34),

and [HL] is a small convolution matrix (not to be confused with [H] in (4.39)) that relates

the potential on the grid points around basis support A and the charge on the grid points

around basis support A . It is intuitive from figure 4-5 that W is a very small set. Hence the

direct matrix D is very sparse and the sparsity of D is dependent upon the size of the direct

stencil. Larger stencil size means more neighboring triangles in figure 4-5 and hence more

computation in (4.40). It will be shown later in section 5.1 that the setup time of the pFFT

algorithm is directly related to the direct stencil size.

Since matrix [HL] in (4.40) is rather small, the FFT does not speed up the computation

much. However, there are other ways to reduce the operation count. Because the grid is
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Figure 4-5: 2-D pictorial representation of the nearby interaction. Direct stencil size is 2.

Table 4.1: Relation between operator pair and the interpolation matrix and the projection
matrix

d(-) d(.) d(
!Ti U(. dx' 'dy dn'

interpolation W0e in (4.19) W. , Wi in (4.19) Wn in (4.19)
d(.) d(.) d(.)

2____ U(. dx'I d dn

projection 15'in (4.28) X ay in (4.34) a~j in (4.34)

uniform and the Green's function is position invariant, only a few matrices [HL] are unique.

So we could pre-compute them once and use them to pre-correct all the nearby interactions

in the direct matrix [D].

4.3.5 A summary of the four matrices

In view of (4.38), (4.39) and (4.40), the matrix vector product is computed efficiently using

[A] C = ([D] + [I] [H] [P]) &. (4.41)

Sections 4.3.1 and 4.3.2 are summarized in table 4.1. It is clear by now that the inter-

polation matrix [I] and the projection matrix [P] are independent of the Green's function.
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Matrix [I] is only related to the operator F1 and the testing functions. And matrix [P] is

only related to the operator 72 and the basis functions.

The direct matrix, however, is dependent upon all the above information. So we have

to set up one direct matrix for each F, and J2 operator pair. The convolution matrix, on

the other hand, is only related to the Green's function and the location of grid points. It is

not related to 1 or J2. So we only need to set up one convolution matrix for each unique

Green's function.

In addition, if the Galerkin's method is used, the basis function bj('r) in equation (4.28)

or (4.34) is identical to the testing function ti(T) in equation (4.19). It is easy to check that

(i WI -WW WW6 = pg , W =X a, W -= a and = . This implies a duality relation

[I] = [P]t . (4.42)

4.4 Implementation

Base upon the algorithm described above, we have developed a C++ program called pfft++,

using the generic programming technique [47, 23, 17]. The whole algorithm includes two

major parts: forming the four matrices I, P, D and H, and computing the matrix vector

product using (4.41). Since the matrices I and P are not related to the kernel, they are

formed separately so that they could be used for different kernels. This is particularly

useful when for example a Helmholtz equation is to be solved at various wave numbers or

frequencies. The following is a high level description of the implementation of the pfft++.

Using pfft++ to solve a single kernel integral equation such as (4.4) is straight forward.

We could simply treat pfft++ as a black box that could perform the matrix vector product

efficiently. After forming the four matrices by calling algorithms 1 and 2, algorithm 3 is

to be called repeatedly in the inner loop of an iterative solver. To solve the integral equa-

tions with multiple kernels, we could simply repeat the above procedure for each integral

operator individually.
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Algorithm 1: construct kernel Independent sparse matrices.
Input: source elements, target elements, differential operator pairs (TI, J2),
projection stencil size, interpolation stencil size, direct stencil size
Output: interpolation matrix [I] and projection matrix [P]
(1) find the optimal grid size
(2) setup grid and element association
(3) setup interpolation stencil
(4) setup projection stencil
(5) setup direct stencil
(6) form the interpolation matrix [I] for each !1
(7) form the projection matrix [P] for each 2

Algorithm 2: construct kernel dependent sparse matrices.
Input: source elements, target elements, kernel, integration scheme, differ-
ential operator pairs (FI, !2)
Output: direct matrix [D] and convolution matrix H
(1) form the sparse representation of [H]
(2) compute the FFT of [H]
(3) form the direct matrix [D] for each pair of (T 1, J2)

4.5 Comparison to the original pFFT algorithm

The basic sparsification ideas in this paper are very similar to those in the original pre-

corrected FFT algorithm [35]. The difference lies primarily in the ways the interpolation

matrix and the projection matrix are generated. And this difference turns out to be impor-

tant.

In the original pFFT algorithm [35, 36], the local collocation scheme is used to con-

struct the projection matrix and the interpolation matrix is considered as the dual of the

projection matrix. Hence both matrices are related to the Green's function or kernel. If one

wants to solve a Helmholtz equation with different wave numbers or at different frequen-

cies, these two matrices have to be re-generated for each frequency. As explained in section

4.4, the interpolation matrix and the projection matrix are only generated once in pfft++.

In the original pFFT algorithm, the convolution matrix is directly related to the kernel,

which includes the effect of the operator J2. The convolution matrix in this work is directly

related to the Green's function, not the operator J2. To see why this difference is important,
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Algorithm 3: compute matrix vector product.
Input: vector x, differential operator pair (Fi, F2)

Output: vector y
(1) find the index m of [I] from J1
(2) find the index n of [P] from 2
(3) find the index k of [D] from operator pair (F1, 12)
(4) y1 = [Pm]x
(5) y1 fft (y1)
(6) Y2 = [H]y1

(7) Y2 ifft(y2)
(8) Y3 - [InIy2
(9) y=y3+[D]X

suppose we want to compute the double-layer integral

I-G(i,
dr' _# p(r ).

S an(r)
(4.43)

Using the original pFFT algorithm, it has to be done as the following

(4.44)/ G ( , r) aG (, r) aG (i,'n _r+'-+ n - ] ) .
is -ax(r') ay r) az(r)]P(

This suggests that three convolution matrices [H], [Hy] and [Hz] corresponding to G OG
ax'I ay

and a have to be generated and foreward FFT has to be performed for each of them.

For each operation of the double-layer integral operator, [H]p, [Hy]p and [Hz]p have to be

carried out separately. As shown in section 4.3.3, pfft++ only needs one convolution matrix

and hence only one convolution will be carried out in the matrix vector product step. This

is a significant reduction in memory usage and CPU time.
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Chapter 5

Numerical Results

5.1 Performance of pfft++

The pfft++ has been tested using random distributions on the surface of a sphere shown in

figure 5-1. After discretizing the surface, the integral operator in equation (4.4) is turned

into either the dense matrix [A] in (4.9) or the sparse matrix representation in (4.41).

We assume a random vector a and compute the matrix vector product in (4.9) directly

as y1 = [A]a. We then compute the matrix vector product using the pfft++ as Y2 = pfft(C).

The relative error in the pFFT approximation is

error = ( Yi2 ,i) 2= /2. (5.1)
i= I I'i

For the largest simulations, with number of triangle panels N being 50000, we have carried

out the direct calculation on a subset of only 100 panels. The CPU times are computed by

extrapolation and the errors are obtained by restricting the formulae (5.1) to this subset.

To verify that the pfft++ works well for different kernels, we have carried out the sim-

ulations for Laplace kernel and its normal direvative, and Helmholtz kernel with different

wave numbers and their normal direvative. The results of our experiments, relative error,

CPU time and memory usage, are summarized in figures 5-2 - 5-17.
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Figure 5-1: Triangulation on the surface of a sphere

5.1.1 Accuracy

Figures 5-2 - 5-6 show that pfft++ provides 4 to 5 digit accuracy for single-layer integral

operators and 2 to 3 digit accuracy for double-layer integral operators. It should be pointed

out that when the problem size is small, the sparse representation in (4.41) is exact because

all interactions are considered as nearby ones. This is why the relative error for small

problems shown in figures 5-2 to 5-6 is on the same order as the machine precision. We

also notice that the increase in the direct stencil size does not significantly improve the

accuracy. This is somewhat surprising. The specific distribution of the panels on the sphere

surface might be the reason. This is still under investigation.

5.1.2 Speed

Figures 5-7, 5-8, 5-9 and 5-10 show the setup time versus problem size. The setup time is

primarily used by algorithms 1 and 2. Figures 5-11, 5-12, 5-13 and 5-14 show the matrix

vector product (algorithm 3) time versus problem size. It is nearly O(N).
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5.1.3 Memory usage

Figures 5-15, 5-16 and 5-17 show the memory usage for different kernels. Again, it is

nearly O(N).

5.2 Testing of fastImp

In this section, we first use a small example to demonstrate fastImp's accuracy. We then

use a few large practical examples to demonstrate fastImp's speed and capacity. All calcu-

lations are carried out on a desk top PC computer with a pentium III micro-processor.
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Figure 5-18: Admittance of a shorted transmission line

5.2.1 Shorted transmission line

Figure 5-18 shows the admittance of a a shorted transmission line at different frequency

points. The behavior of a shorted transmission line is well understood. The expected reso-

nance frequencies are clearly shown in the plot. This suggests that fastImp could accurately

capture both the inductive and capacitive effects.

5.2.2 A four-turn spiral over ground

Figure 5-19 shows a four-turn spiral over a lossy ground plane. Acctual discretization is

much finer than that shown in the figure. In total, we used 15162 panels to discretize the

whole structure. We only extracted the impedance at one frequency point. For the MQS

analysis, the number of unknowns is 106k. The fastImp used 69 minutes and 273 Mb

memory. For the EMQS analysis, the number of unknowns is 121k. The fastImp used 93

minutes and 379 Mb memory.

5.2.3 Multiple conductor crossover bus

Figure 5-20 shows a multiple conductor bus. Again, the acctual discretization is much

finer than that shown in the figure. There are three-layer of conductors, each layer has 10

conductors and the conductors on different layer are orthogonal to each other. In total, we

used 18540 panels to discretize the whole structure. We only extracted one column of the
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Figure 5-19: A four-turn spiral over ground

Figure 5-20: Multiple conductor bus

impedance matrix (since this is a multiple port structure) at one frequency point. For the

MQS analysis, the number of unknowns is about 130k. The fastImp used 98 minutes and

222 Mb memory. For the EMQS analysis, the number of unknowns is about 148.4k. The

fastImp used 122 minutes and 273 Mb memory.
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Chapter 6

Conclusions

We have derived a recently developed surface integral formulation from a different perspec-

tive. And we have shown the connections between this formulation and the classical EFIE

formulation and MPIE formulation. These connections help us better understand why this

formulation is widebanded. Using a piecewise quadrature scheme to improve the accuracy

of panel integration, we have fixed the low-frequency problem in the original formula-

tion. We have also generalized the pre-corrected FFT algorithm to allow the accelaration

of complicated integral operators. Based on this generalization we have developed a flex-

ible and extensible fast integral equation solver, pfft++. This solver could be applied to a

wide range of problems. Using pfft++ as the engine, we have developed a fast impedance

extraction program, fastImp. Numerical examples show that fastImp can perform MQS,

EMQS and fullwave analysis of 3D general structures across wide frequency range, from

zero frequency to at least hundreds of giga hertz. It takes fastImp less than a hour to solve

problems with more than one hundred thousand unknowns.

65



66



Bibliography

[1] M. Bachtold, M. Spasojevic, C. Lage, and P.B. Ljung. A system for full-chip and

critical net parasitic extraction for ulsi interconnects using a fast 3-d field solver.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

19(3):325-338, 2000.

[2] A. Brandt and A. A. Lubrecht. Multilevel matrix multiplication and fast solution of

integral equations. 90:348-370, 1990.

[3] Rainer Bunger and Fritz Arndt. Efficient MPIE approach for the analysis of three-

dimensional microstrip structures in layered media. IEEE Transactions on Microwave

Theory and Techniques, 45:1141-1753, August 1997.

[4] David C. Chang and Jian X. Zheng. Electromagnetic modeling of passive circuit ele-

ments in MMIC. IEEE Transactions on Microwave Theory and Techniques, 40:1741-

1747, September 1992.

[5] W.C. Chew. Waves and fields in inhomogeneous media. IEEE Press, New Jersey,

1995.

[6] D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. Krieger

Publishing Company, Malabar, Florida, 1992.

[7] G. H. Golub and C. F. Van Loan. Matrix Computation. The Johns Hopkins University

Press, second edition, 1989.

[8] L. Greengard. The Rapid Evaluation of Potential Fields in Particle Systems. M.I.T.

Press, Cambridge, Massachusetts, 1988.

67



[9] L. Greengard and V. Rohklin. A fast algorithm for particle simulations. Journal of

Computational Physics, 73(2):325-348, December 1987.

[10] Frederick Warren Grover. Inductance calculations, working formulas and tables.

Govt. Print. Off., New York, NY, 1946.

[11] Wolfgang Hackbush. Integral Equations, Theory and Numerial Treatment.

Birkhauser Verlag, Basel, Switzerland, 1989.

[12] R. F. Harrington. Field Computation by Moment Methods. MacMillan, New York,

1968.

[13] H.A. Haus and J.R. Melcher. Electromagnetic fields and energy. Prentice-Hall, En-

glewood Cliffs, 1989.

[14] Hansruedi Heeb and Albert E. Ruehli. Three-dimensional interconnect analysis using

partial element equivalent circuits. IEEE Transactions on Circuits and Systems I:

Fundamental Theory and Applications, 39(11):974-982, November 1992.

[15] J. L. Hess and A. M. 0. Smith. Calculation of potential flow about arbitrary bodies.

Progress in Aeronautical Science, pages 1-138, 1966.

[16] L.T. Huang and I. Turlik. A review of the skin effect as applied to thin film in-

terconnections. IEEE Transactions on Components, Packaging, and Manufacturing

Technology, 15:43-55, February 1992.

[ 17] N. M. Josuttis. The C++ Standard Library: A Tutorial and Reference.

[18] S. Kalaicheluan and J.D. Lavers. BEM for eddy current problems. Vol.6: Topics in

BE Research, edited by C.A. Brebbia, London, 1989, pp. 79-116.

[19] M. Kamon, N.A. Marques, L.M. Silveria, and J.K. White. Automatic generation

of accurate circuit models of 3D interconnect. IEEE Transactions on Components,

Packaging, and Manufacturing Technology-Part B, 21(3):225-240, August 1998.

68



[20] M. Kamon, M. J. Tsuk, and J.K. White. FastHenry: A multipole-accelerated 3-D

inductance extraction program. IEEE Transactions on Microwave Theory and Tech-

niques, 42(9):1750-1758, September 1994.

[21] S. Kapur and D.E. Long. Ies3: A fast integral equation solver for efficient 3-

dimensional extraction. International Conference on Computer Aided-Design, pages

448-455, 1997.

[22] S. Kapur and J. Zhao. A fast method of moments solver for efficient parameter ex-

traction of MCMs. 341h ACM/IEEE Design Automation Conference, pages 141-146,

1997.

[23] Andrew Koenig and Barbara E. Moo. Accelerated C++: Practical Programming by

Example.

[24] J.A. Kong. Electromagnetic wave theory. EMW Publishing, Cambridge, Mas-

sachusetts, 1999.

[25] A. Krawczyk. Numerial modeling of eddy currents. Clarendo Press, Oxford, 1993.

[26] S. Kuo, M. Altman, J. Bardhan, B. Tidor, and J. white. Fast methods for simulations

of biomolecule electrostatics. International Conference on Computer Aided-Design,

2002.

[27] Feng Ling, Dan Jiao, and Jian-Ming Jin. Efficient eletromagnetic modeling of mi-

crostrip structures in multilayer media. IEEE Transactions on Microwave Theory and

Techniques, 47:1810-1818, September 1999.

[28] D. Luca, Alberto Sangiovanni-Vincentelli, and Jacob K. White. Using conduction

modes basis functions for efficient electromagnetic analysis of on-chip and off-chip

interconnect. ACM/IEEE Design Automation Conference, June 18-22, 2001.

[29] Yehia M. Massoud. Simulation algorithms for inductive effects. Ph.D. thesis MIT

EECS Department, Cambridge, MA, 1999.

69



[30] J.R. Mautz and R.F. Harrington. An E-field solution for a conducting surface small

or comparable to the wavelength. IEEE Transactions on Antennas and Propagation,

32:330-339, April 1984.

[31] Juan R. mosig. Arbitrarily shaped microstrip structures and their analysis with mixed

potential integral equation. IEEE Transactions on Microwave Theory and Techniques,

36:314-323, February 1988.

[32] K. Nabors and J. White. FASTCAP: A multipole-accelerated 3-D capacitance extrac-

tion program. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 10:1447-1459, November 1991.

[33] T. Nakata, N. Takahashi, K. Fujifwara, K. Muramatsa, and Z.G. Cheng. Comparison

of various methods for 3-D eddy current analysis. IEEE Transactions on Magnetics,

24:3159-3161, November 1988.

[34] A.F. Peterson. The interior resonance problem associated with surface integral equa-

tions of electromagnetics: Numerical consequences and a survey of remedies. Elec-

tromagnetics, pages 293-312, October 1990.

[35] J. R. Phillips and J. K. White. A precorrected-FFT method for electrostatic analy-

sis of complicated 3D structures. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, pages 1059-1072, 1997.

[36] Joe R. Phillips. Rapid solution of potential integral equations in complicated 3-

dimensional geometries. Ph.D. thesis MIT EECS Department, 1997.

[37] S. Ramo, J.R. Whinnery, and T.V. Duzer. Fields and waves in communication elec-

tronics. John Willey and sons, Inc., New York, 1994.

[38] S.M. Rao, D.R. Wilton, and A.W. Glisson. Electromagnetic scattering by surfaces of

arbitrary shape. IEEE Transactions on Antennas and Propagation, 30:409-418, May

1982.

70



[39] V. Rokhlin. Rapid solution of integral equations of scattering theory in two dimen-

sions. J. Comp. Phys., 86:414-439, 1990.

[40] V. Rokhlin. Diagonal forms of translation operators for the Helmholtz equation in

three dimensions. Applied and Computational Harmonic Analysis, 1:82-93, 1993.

[41] Wolfgang M. Rucker, Robert Hoschek, and Kurt R. Richter. Various BEM formula-

tions for calculating eddy current in terms of field variables. IEEE Trans. on Magnet-

ics, 31:1336-1341, May 1995.

[42] Y. Saad. Iterative methods for sparse linear systems. PWS Publishing, Boston, MA,

1996.

[43] Youcef Saad and Martin Schultz. GMRES: A generalized minimal residual algorithm

for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7(3):856-

869, July 1986.

[44] T.K. Sarkar, E. Arvas, and S.M. Rao. Application of FF7 and the conjugate gradient

method for the solution of electromagnetic radiation from electrically large and small

conducting bodies. IEEE Transactions on Antennas and Propagation, 34:635-640,

1986.

[45] J.M. Song, C.C. Liu, W.C. Chew, and S.W. Lee. Fast illinois solver code (FISC)

solves problems of unprecedented size at center for computational electromagnetics,

university of illinois. IEEE Antennas and Propagation Magzine, 40:27-34, June 1998.

[46] J.A. Stratton. Electromagnetic Theory. McGraw-Hill Book Company, New York,

1941.

[47] Bjarne Stroustrup. The C++ Programming Language Special Edition.

[48] C.T. Tai. Dyadic green'sfunctions in electromagnetic theory. IEEE Press, Piscataway,

New Jersey, 1994.

[49] L.N. Trefethen and D. Bau. Numerical linear algebra. SIAM, Philadelphia, 1997.

71



[50] J. Wang and J. K. White. A wide frequency range surface integral formualtion for 3D

RLC extraction. International Conference on Computer Aided-Design, 1999.

[51] J.J.H. wang. Generalized moment methods in electromagnetics. John Willey and sons,

Inc., New York, 1991.

[52] Junfeng Wang. A new surface integral formulation of EMQS impedance extraction

for 3-D structures. Ph.D. thesis MIT EECS Department, 1999.

[53] X. Wang, P. Mucha, and J.K. White. Fast fluid analysis for multibody micromachined

devices. Proceedings of MSM, pages 19-22, Hilton Head island, SC, 2001.

[54] Wen-Liang Wu, Allen W. Glisson, and Darko Kajfez. A study of two numerial so-

lution precedures for the electric field integral equation at low frequency. Applied

computational electromagnetics, 10:69-80, November 1995.

[55] J.S. Zhao and W.C. Chew. Integral equation solution of maxwell equations from zero

frequency to microwave frequencies. IEEE Transactions on Antennas and Propaga-

tion, 48:1635-1645, October 2000.

[56] Zhenhai Zhu, Jingfang Huang, Ben Song, and J. K. White. Improving the robustness

of a surface integral formulation for wideband impendance extraction of 3D struc-

tures. International Conference on Computer Aided-Design, pages 592-597, 2001.

72


