
-9

Architectural Implications of Bit-level

Computation in Communication Applications

by

David Wentzlaff

B.S.E.E., University of Illinois at Urbana-Champaign 2000

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science
BARKER

at the MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY! NOV 18 2002

September 2002 LIBRARIES

© Massachusetts Institute of Technology 2002. All rights reserved.

A uthor
Department of Electrical Engineeing and Computer Science

A4
September 3, 2002

Certified by.......

Professor of Electrical Engineering
Anant Agarwal

and Computer Science
Thesis Supervisor

Accepted by........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

1

Architectural Implications of Bit-level Computation in

Communication Applications

by

David Wentzlaff

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2002, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

In this thesis, I explore a sub domain of computing, bit-level communication process-
ing, which has traditionally only been implemented in custom hardware. Computing
trends have shown that application domains previously implemented only in special
purpose hardware are being moved into software on general purpose processors. If
we assume that this trend continues, we must as computer architects reevaluate and
propose new superior architectures for current and future application mixes. I believe
that bit-level communication processing will be an important application area in the
future and hence in this thesis I study several applications from this domain and how
they map onto current computational architectures including microprocessors, tiled
architectures, FPGAs, and ASICs. Unfortunately none of these architectures is able
to efficiently handle bit-level communication processing along with general purpose
computing. Therefore I propose a new architecture better suited to this task.

Thesis Supervisor: Anant Agarwal
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to thank Anant Agarwal for advising this thesis and imparting on me

words of wisdom. Chris Batten was a great sounding board for my ideas and he helped

me collect my thoughts before I started writing. I would like to thank Matthew Frank

for helping me with the mechanics of how to write a thesis. I thank Jeffrey Cook and

Douglas Armstrong who helped me sort my thoughts early on and reviewed drafts of

this thesis. Jason E. Miller lent his photographic expertise by taking photos for my

appendix. Walter Lee and Michael B. Taylor have been understanding officemates

throughout this thesis and have survived my general crankiness over the summer of

2002. Mom and Dad have given me nothing but support through this thesis and my

academic journey. Lastly I would like to thank DARPA, NSF, and Project Oxygen

for funding this research.

5

6

Contents

1 Introduction 13

1.1 Application Domain . 14

1.2 Approach 16

2 Related Work 19

2.1 Architecture . 19

2.2 Software Circuits . 20

3 Methodology 21

3.1 M etrics . 21

3.2 T argets . 23

3.2.1 IBM SA-27E . 23

3.2.2 X ilinx . 25

3.2.3 Pentium . 27

3.2.4 R aw . 29

4 Applications 33

4.1 802.11a Convolutional Encoder . 33

4.1.1 Background . 33

4.1.2 Implementations . 37

4.2 8b/10b Block Encoder . 43

4.2.1 Background . 43

4.2.2 Implementations . 44

7

5 Results and Analysis

5.1 Results

5.1.1 802.11a Convolutional Encoder .

5.1.2 8b/10b Block Encoder

5.2 A nalysis

6 Architecture

6.1 Architecture Overview

6.2 Yoctoengines

6.3 Evaluation

6.4 Future Work

7 Conclusion

A Calculating the Area of a Xilinx

A.1 Cracking the Chip Open

A.2 Measuring the Die

A.3 Pressing My Luck

Virtex II

. .

. .

. .

8

49

49

49

53

56

59

59

63

67

68

71

73

74

78

80

List of Figures

1-1 An Example Wireless System

3-1

3-2

3-3

3-4

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

The IBM SA-27E ASIC Tool Flow

Simplified Virtex II Slice Without Carry Logic

Xilinx Virtex II Tool Flow

Raw Tool Flow .

802.11a Block Diagram .

802.11a PHY Expanded View taken from [18]

Generalized Convolutional Encoder

802.11a Rate 1/2 Convolutional Encoder

Convolutional Encoders with Feedback

Convolutional Encoders with Tight Feedback

Inner-Loop for Pentium reference 802.11a Implementation .

Inner-Loop for Pentium lookup table 802.11a Implementation

Inner-Loop for Raw lookup table 802.11a Implementation . .

Inner-Loop for Raw POPCOUNT 802.11a Implementation .

Mapping of the distributed 802.11a convolutional encoder on 16

tiles .

Overview of the 8b/10b encoder taken from [30]

8b/10b encoder pipelined .

Inner-Loop for Pentium lookup table 8b/10b Implementation . .

Inner-Loop for Raw lookup table 8b/10b Implementation

9

15

. 24

. 26

. 28

. 30

. 34

. 35

. 36

. 37

. 38

. 38

. 39

. 40

. 41

. 42

Raw

42

45

46

46

47

5-1 802.11a Encoding Performance (MHz.) 51

5-2 802.11a Encoding Performance Per Area (MHz./mm 2 .) 52

5-3 8b/10b Encoding Performance (MHz.) 54

5-4 8b/10b Encoding Performance Per Area (MHz./mm 2 .) 55

6-1 The 16 Tile Raw Prototype Microprocessor with Enlargement of a Tile 60

6-2 Interfacing of the Yoctoengine Array to the Main Processor and Switch 62

6-3 Four Yoctoengines with Wiring and Switch Matrices 64

6-4 The Internal Workings of a Yoctoengine 65

A-1 Aren't Chip Carriers Fun . 74

A-2 Four Virtex II XC2V40 Chips . 75

A-3 Look at all Those Solder Bumps . 75

A-4 The Two Parts of the Package . 76

A-5 Top Portion of the Package, the Light Green Area is the Back Side of

the D ie . 77

A-6 Removing the FR4 from the Back Side of the Die 78

A-7 Measuring the Die Size with Calipers 79

A-8 Don't Flex the Die . 80

10

List of Tables

3.1 Summary of Semiconductor Process Specifications 22

5.1 802.11a Convolutional Encoder Results 50

5.2 8b/10b Encoder Results . 54

6.1 Yoctoengine Instruction Coding Breakdown 67

11

12

Chapter 1

Introduction

Recent trends in computer systems have been to move applications that were previ-

ously only implemented in hardware into software on microprocessors. This has been

motivated by several factors. Firstly microprocessor performance has been steadily

increasing over time. This has allowed more and more applications that previously

could only be done in ASICs and special purpose hardware, due to their large com-

putation requirements, to be done in software on microprocessors. Also, added ad-

vantages such as decreased development time, ease of programming, the ability to

change the computation in the field, and the economies of scale due to the reuse of

the same microprocessor for many applications have influenced this change.

If we believe that this trend will continue, then in the future we will have one

computational fabric that will need to do the work that is currently done by all of the

chips inside of a modern computer. Thus we will need to pull all of the computation

that is currently being done inside of helper chips onto our microprocessors. We

have already seen this being done in current computer systems with the advent of all

software modems.

Two consequences follow from the desire to implement all parts of a computer

system in one computational fabric. First, the computational requirements of this

one computational fabric are now much higher. Second, the mix of computation that

it will be doing is significantly different from applications that current day micro-

processors are optimized for. Thus if we want to build future architectures that can

13

handle this new application mix, we need to develop architectural mechanisms that

efficiently handle conventional applications, SpecInt and SpecFP [8], multimedia ap-

plications, which have been the focus of significant research recently, and the before

mentioned applications which we will call software circuits.

In modern computer systems most of the helper chips are there to communicate

with different devices and mediums. Examples include sound cards, Ethernet cards,

wireless communication cards, memory controllers and I/O protocols such as SCSI

and Firewire. This research work will focus on the subset of software circuits for

communication systems, examples being Ethernet cards (802.3) and wireless commu-

nication cards (802.11a, 802.11b). Communication systems are chosen as a starting

point for this research for two reasons. One, it is a significant fraction of the software

circuits domain. Secondly, if communication bandwidth is to continue to grow as is

foreseen, the computation needed to handle it will become a significant portion of our

future processing power. This is mostly due to the fact that communication band-

width is on a steep exponentially increasing curve. This research will further focus

on bit-level computation contained in communication processing. Fine grain bit-level

computation is an interesting sub-area of communications processing, because unlike

much of the rest of communications processing, it is not easily parallelizable on word

oriented systems because very fine grain, bit-level, communication is needed. Exam-

ples of this type of computation include error-correcting codes, convolutional codes,

framers, and source coding.

1.1 Application Domain

In this thesis, I investigate several kernels of communications applications that ex-

hibit non-word-aligned, bit-level, computation that is not easily parallelized on word-

oriented parallel architectures such as Raw [29, 26]. Figure 1-1 shows a block diagram

of an example software radio wireless communication system. The left dotted box

contains computation which transforms samples from an analog to digital converter

into a demodulated and decoded bit-stream. This box typically does signal process-

14

Filtering Error Correction Protocol Processing

ADC Demodulation Framing Decapsulation

Application

Modulation Error Correction Protocol Processing

* ACEncoding Encapsulation

Samples Bits Frames
to to to
Bits Frames Frames/Packets

FFT Coders Route Lookups
FIR Decoders IP header generation

Framers Packet Encryption

Figure 1-1: An Example Wireless System

ing on samples of data. In signal processing, the data is formatted in either a fixed

point or floating point format, and thus can be efficiently operated on by a word-

oriented computer. In the right most dotted box, protocol processing takes place.

This transforms frames received from a framer into higher level protocols. An ex-

ample of this is transforming Ethernet frames into IP packets and then doing an IP

checksum check. Once again frames and IP packets can be packed into words without

too much inefficiency. This thesis focuses on the middle dotted box in the figure. It

is interesting to see that the left and right boxes contain word-oriented computation,

but the notion of word-aligned data disappears in this box. This middle processing

step takes the bit-stream from the demodulation step and operates on the bits to

remove encoding and error correction. This processing is characterized by the lack of

aligned data and is essentially a transformation from one amorphous bit-stream to a

different bit-stream. This thesis will focus on this unaligned bit domain. We will call

this application domain bit-level communication processing.

The main reason that these applications are not able to be easily parallelized

15

on parallel architectures is because the parallelism that exists in these applications

is inside of one word. Unfortunately for current parallel architectures composed of

word-oriented processors, operations that exist on word-oriented processors are not

well suited for exploiting unstructured parallelism inside of a word.

Two possible solutions exist to try to exploit this parallelism in normal parallel

architectures yet they fall short. One approach is to use a whole word to represent

a bit and thus a word-oriented parallel architecture can be used to exploit paral-

lelism. Unfortunately this type of mapping is severely inefficient, due to the fact

that a whole word is being used to represent a bit, and if any of the computation

has communication, the communication delay will be high because the large word-

oriented functional units require more space than bit-level functional units. Thus

they physically have to be located further apart. Finally, if all of these problems are

solved, there are still problems if sequential dependencies exist in the computation.

If the higher communication latency is on the critical path of the computation, the

throughput of the application will be lowered. Thus for these reasons, simply scaling

up the Raw architecture is not appropriate to speedup these applications.

The second possible parallel architecture that could exploit parallelism in these

applications is sub-word SIMD architectures such as MMX [22]. Unfortunately, if

applications exhibit intra-word communication, these architectures are not suited

because they are set up to parallelly operate on and not communicate between sub-

words.

1.2 Approach

To investigate these applications I feel that first we need a proper characterization of

these applications on current architectures. To that end, I coded up two characteristic

applications in 'C', Verilog, and assembly for conventional architectures (x86), Raw

architectures, the IBM ASIC flow, and FPGAs and compared relative speed and area

tradeoffs between these different approaches. This empirical study has allowed me

quantify the differences between the architectures. From these results I was able to

16

quantitatively determine that tiled architectures do not efficiently use silicon area for

bit-level communication processing. Lastly I discuss how to augment the Raw tiled

architecture with an array of finer grain computational elements. Such an architecture

is more capable of handling both general purpose computation efficiently and bit-level

communication processing in an area efficient manner.

17

18

Chapter 2

Related Work

2.1 Architecture

Previous projects have investigated what architectures are good substrates for bit-

level computation in general. Traditionally many of these applications have been been

implemented in FPGAs. Examples of the most advanced commercial FPGAs can be

seen in Xilinx's product line of Virtex-E and Virtex-II FPGAs [33, 34]. Unfortunately

for FPGAs, the difficulty of programming and inability of virtualization have stopped

them from becoming a general purpose computing platform. One attempt made to

use FPGAs for general purpose computing was made by Babb in [2]. In Babb's thesis,

he investigates how to compile 'C' programs to FPGAs directly using his compiler

named deepC. Unfortunately, due to the fact that FPGAs are not easily virtualized,

large programs cannot currently be compiled with deepC.

Other approaches that try to excel at bit-level computation, but still be able to do

general purpose computation include FPGA-processor hybrids. They range widely

on whether they are closer to FPGAs or modern day microprocessors. Garp [6, 7] for

example is a project at The University of California Berkeley that mixes a processor

along with a FPGA core on the same die. In Garp, both the FPGA and the processor

can share data via a register mapped communication scheme. Other architectures put

reconfigurable units as slave functional units to a microprocessor. Examples of this

type of architecture include PRISC [25] and Chimaera [13].

19

The PipeRench processor [11] is a larger departure from a standard microprocessor

with a FPGA put next to it. PipeRench contains long rows of flip-flops with lookup

tables in between them. In this respect it is very similar to a FPGA but has the added

bonus that it has a reconfigurable data-path that can be changed very quickly on a

per-row, per-cycle basis. Thus it is able to be virtualized and allows larger programs

to be implemented on it.

A different approach to getting speedup on bit-level computations is by simply

adding the exact operations that your application set needs to a general purpose mi-

croprocessor. In this way you build special purpose computing engines. One example

of this is the CryptoManiac [31, 5]. The CryptoManiac is a processor designed to

run cryptographic applications. To facilitate these applications, the CryptoManiac

supports operations common in cryptographic applications. Therefore if it is found

that there are only a few extra instructions needed to efficiently support bit-level

computation, a specialized processor may be the correct alternative.

2.2 Software Circuits

Other projects have investigated implementing communication algorithms that previ-

ously have only been done in hardware on general purpose computers. One example

of this can be seen in the SpectrumWare project [27]. In the SpectrumWare project,

participants implemented many signal processing applications previously only done

in analog circuitry for the purpose of implementing different types of software ra-

dios. This project introduced an important concept for software radios, temporal

decoupling. Temporal decoupling allows buffers to be placed between different por-

tions of the computation thus increasing the flexibility of scheduling signal processing

applications.

20

Chapter 3

Methodology

One of the greatest challenges of this project was simply finding a way to objectively

compare very disparate computing platforms which range from a blank slate of silicon

all the way up to a state of the art out-of-order superscalar microprocessor. This

section describes the architectures that were mapped to, how they were mapped to,

how the metrics used to compare them were derived, and what approximations were

made in this study.

3.1 Metrics

The first step in objectively comparing architectures is to choose targets that very

nearly reflect each other in terms of semiconductor process. While it is possible

to scale between different semiconductor feature sizes, not everything simply scales.

Characteristics that do not scale include wire delay and the proportions of gate sizes.

Thus a nominal feature size of 0.15pm drawn was chosen. All of the targets chosen

with the exception of the Pentium 4 (0.13pm.) and Pentium 3 (0.18pm.) are fabri-

cated with this feature size. Because everything is essentially on the same feature size

this thesis will use area in mm 2 . as one of its primary metrics. One assumption that

is made in this study is that voltage does not significantly change performance of a

circuit. While the targets are essentially all on the same process, they do have dif-

ferences when it comes to nominal operational voltages. Table 3.1 shows the process

21

Target Foundry Ldrawn Leffective Nominal Layers Type
(pm.) (jm.) Voltage of of

(Volts) Metal Metal
IBM SA-27E ASIC IBM 0.15 0.11 1.8 6 Cu
Xilinx Virtex II UMC 0.15 0.12 1.5 8 Al
Intel Pentium 4 Intel 0.13 0.07 1.75 6 Cu
Northwood 2.2GHz.
Intel Pentium 3 Intel 0.18 Unknown 1.7 6 Al
Coppermine 993MHz.
Raw IBM 0.15 0.11 1.8 6 Cu
300MHz. I

Table 3.1: Summary of Semiconductor Process Specifications

parameters for the differing targets used in this thesis.

To objectively compare the performance of the differing platforms the simple

metric of frequency was used. The applications chosen have clearly defined rates of

operation which are used as a performance metric. For the targets that are software

running on an processor, the testing of the applications was done over a randomly

generated input of several thousand samples. This was done to mitigate any variations

that result from differing paths through the program. This method should give an

average case performance result. In the hardware designs, performance was measured

by looking at the worse case combinational delay of the built circuit. In order for

the the delay to the pins and other edge effects from accidentally being factored into

the hardware timing numbers, registers were placed at the beginning and end of the

design under test. These isolation registers were included in the area calculations

for the hardware implementations. Lastly the latency through any of the software

or hardware designs was not measured and deemed unimportant because all of the

designs have relatively low latency and the applications are bandwidth sensitive not

latency sensitive.

22

3.2 Targets

3.2.1 IBM SA-27E

Overview

The IBM SA-27E ASIC process is a standard cell based ASIC flow. It has a drawn

transistor size of 0.15pm and 6 layers of copper interconnect [16]. It was chosen

primarily to show what the best case that can be done when directly implementing

the applications in hardware looks like. While using a standard cell approach is not

as optimal as a full-custom realization of the circuits, it is probably characteristic of

what would be done if actually implementing the applications, because full-custom

implementations are rarely done due to time to market constraints. Conveniently this

tool flow was available for this thesis because the Raw research group is using this

target for the Raw microprocessor.

Tool Flow

For this target, the applications were written in the Verilog Hardware Description

Language (HDL). Verilog is a HDL which has similar syntax to 'C' and allows one

to behaviorally and structurally describe circuits. The same code base was shared

between this target and the Xilinx target. The applications were written in a mixture

of behavioral and structural Verilog.

To transform the Verilog code into actual logic gates a Verilog synthesizer is

needed. Synopsys's Design Compiler 2 was utilized. Figure 3-1 shows the flow used.

Verilog with VPP 1 macros is first processed into plain Verilog code. Next, if the

circuit is to be simulated, the Verilog is passed onto Synopsys's VCS Verilog simulator.

If synthesis is desired, the Verilog along with the IBM SA-27E technology libraries are

fed into Synopsys's Design Compiler 2 (DC2). Design Compiler 2 compiles, analyzes,

and optimizes the output gates. A design database is the output of DC2 along

with area and timing reports. To get optimal timing, the clock speed was slowly

'VPP is a Verilog Pre-Processor which expands the language to include auto-generating Verilog
code, much in the same way that CPP allows for macro expansion in 'C'.

23

Simulation

Verilog (with Macros)

VPP
Technology
Library

vCS

Design Area
DB Report

Timing
Report

Figure 3-1: The IBM SA-27E ASIC Tool Flow

24

Synthesis

Verilog

Synopsys

Design
Compiler 2

dialed up until the synthesis failed. This was done because it is well known that

Verilog optimizers don't work their best unless tightly constrained. This target's area

numbers used in this report are simply the area of the circuit implemented in this

process, not including overheads such as pins.

3.2.2 Xilinx

Overview

This target is Xilinx's most recent Field Programmable Gate Array (FPGA), the

Virtex 11 [34]. A FPGA such as the Virtex II is a fine grain computational fabric

built out of SRAM based lookup tables (LUTs). The primary computational element

in a Virtex II is a Configurable Logic Block (CLB). CLBs are connected together

by a statically configurable switch matrix. On a Virtex II, a CLB is composed of

four Slices which are connected together by local interconnect and are connected into

the switch matrix. A Slice on a Virtex II is very similar to what a CLB looked like

Xilinx's older 4000 series FPGAs. Figure 3-2 shows a simplified diagram of a Slice.

This LUT based structure along with the static interconnect system allows the easy

mapping of logic circuits onto FPGAs. Also LUTs can be reconfigured so that they

can be used as small memories. The configuration of a SRAM based FPGA is a slow

process of serially shifting in all of the configuration data.

Tool Flow

The application designs for the Xilinx Virtex II share the same Verilog code with

the IBM SA-27E design. The tool flow for creating FPGAs is the most complicated

out of all of the explored targets. Figure 3-3 shows the tool flow which has some in

commonality with the IBM flow. The basic flow starts by feeding the Verilog code

to a FPGA specific synthesis tool, FPGA Compiler 2 which generates a EDIF file.

The EDIF file is transformed to a form readable by the Xilinx tools, NGO. Then the

NGO is fed into NGD build which is similar to a linking phase for a microprocessor.

The NGO is then mapped into LUTs, placed, and routed. At this point the tools are

25

Y

G1 ,o
G2 ,
G3 ,
G4 ,

H1
H2 ,
H3.,
H4 ,

16x 1
LUT

G

16x 1
LUT

F

YQ
D Q

Y Register

CLK
CE
SR

x

D Q

X Register

CLK
CE
SR

X_Q

Composition
of Functions

Figure 3-2: Simplified Virtex II Slice Without Carry Logic

26

. ..

-'

able to generate timing and area reports. BitGen can also be run which generates

the binary file to be loaded directly into the FPGA.

One interesting thing to note is that the area reports that the Xilinx tools generate

are only in terms of number of flip-flops and Slices. Converting these numbers into

actual mm2 . area numbers was not as simple as was to be expected. The area

of a Slice was reverse engineered by measuring the die area of an actual Virtex II.

Appendix A describes this process. The area used in this thesis is the size of one slice

multiplied by the number of slices a particular application used.

3.2.3 Pentium

Overview

This target is a Pentium 4 microprocessor [15]. The Pentium 4 is Intel's current

generation of 32-bit x86 compatible microprocessor. It is a 7 wide out-of-order su-

perscalar with an execution trace cache. The same applications were also run on an

older Pentium 3 for comparison purposes.

Tool Flow

The tool flow for the Pentium 4 is very simplistic. All of the code is written is 'C'

and compiled with gcc 2.95.3 with optimization level of -09. To gather the speed at

which that applications run, the time stamp counter (TSC) was used. The TSC is a

64-bit counter on Intel processors (above a Pentium) which monotonically increases

on every clock cycle. With this counter, accurate cycle counts can be determined for

execution of a particular piece of code. To prevent memory hierarchy from unduly

hurting performance, all source and result arrays were touched to make sure they

were within the level of cache being tested before the test's timing commenced. To

calculate the overall speed, the tests were run over many iterations of the loop and

the overall time as per the TSC was divided by the iterations completed normalized

to the clock speed to come up with the resultant performance. To calculate the area

size, the overall chip area was used.

27

Simulation Synthesis

Verilog (with Macros)

VPP

Verilog

Synopsys
S FPGA

Compiler 2

EDIF

EDIF
2 NGD

NGO

NGDBuild

NGD e

Mapper

:MAP NCD -

Place

and Route

-PAR NCD

BitGen

Technology
Library

Figure 3-3: Xilinx Virtex II T

Arez
Rep

ool

28

VC

ort.
Timing
Report

Flow

3.2.4 Raw

Overview

The Raw microprocessor is a tiled computer architecture designed in the Computer

Architecture Group at MIT. The processor contains 16 replicated tiles in a 4x4 mesh.

A tile consists of a main processor, memory, two dynamic network routers, two static

switch crossbars and a static switch processor. Tiles are connected to each of their four

nearest neighbors via register mapped communication by two sets of static network

interconnect and two sets of dynamic network interconnect. Each main processor

is similar to a MIPS R4000 processor. It is an in-order single issue processor that

has 32KB of data cache and 8K instructions of instruction store. The static switch

processor handles compile time known communication between tiles. Each static

switch processor has 8K instructions of instruction store.

Because of all of the parallel resources available and the closely knit communica-

tion resources, many differing computational models can be used to program Raw.

For instance instruction level parallelism can be mapped across the parallel compute

units as is discussed in [21]. Another parallelizing programming model is a stream

model. Streaming exploits course grain parallelism between differing filters which

are many times used in signal processing applications. A stream programming lan-

guage for the Raw chip is being developed to compile a new programming language

named StreamIt [12]. The applications in this study for Raw were written in 'C' and

assembly and were hand parallelized with communication happening over the static

network for peak performance.

The Raw processor is being built on IBM's SA-27E ASIC process. It is currently

out to fab and chips should be back by the end of October 2002. More information

can be found in [26].

Tool Flow

Compilation for the Raw microprocessor is more complicated than a standard sin-

gle stream microprocessor due to the fact that there can be 32 (16 main processor

29

rgcc

.s files

ras

.o files

rld

.lnk files

geo
packager

.rbf files

btl
simulator

Figure 3-4: Raw Tool Flow

30

Assembly C source

streams, 16 switch instruction streams) independent instruction streams operating at

the same time. To solve the complicated problem of building binaries and simulating

them on the Raw microprocessor, the Raw group designed the Starsearch build infras-

tructure. Starsearch is a group of common Makefiles that the Raw group shares that

understands how to build and execute binaries on our various differing simulators.

This has saved countless hours for new users to the Raw system by preventing them

from having to set up their own tool flow.

Figure 3-4 shows the tool flow used in this thesis for Raw. This tool flow is

conveniently orchestrated by Starsearch. The beginning of the tool flow is simply

a port of the GNU compilation tool flow of gcc and binutils. geo is a geometry

management tool which can take multiple binaries, one for each tile, and create

self booting binaries using Raw's intravenous tool. This is the main difference from

a standard microprocessor with only one instruction stream. Lastly the rbf file is

booted on a cycle accurate model of the Raw processor called btl.

To collect performance statistics for the studied applications on Raw a clock speed

of 300MHz. was assumed. Applications were simulated on btl and timed using Raw's

built in cycle counters, CYCLEHI and CYCLELO, which provide 64-bits worth of

accuracy. Unlike on the Pentium, preheating the cache was not needed. This was

because the data that was to be operated and the results all came in and left on the

static network. To accomplish this, bC 2 models were written that streamed in and

collected data from the static networks on the Raw chip thus preventing all of the

problems that are caused by memory hierarchy.

Area calculations are easily made for the Raw chip because the Raw group has

completed layout of the Raw chip. A tile is 4mm. x 4mm. This study assumes

that as tiles are added the area scales linearly, which is a good approximation, but is

not completely accurate because there is some area around a tile reserved for buffer

placement, and there are I/O drivers on the periphery of the chip.

2 bC is btl's extension language which is very similar to 'C' and allows for rapid prototyping of
external devices to the Raw chip.

31

32

Chapter 4

Applications

4.1 802.11a Convolutional Encoder

4.1.1 Background

As part of the author's belief that benchmarks should be chosen from real applications

and not simply synthetic benchmarks, the first characteristic application that will be

examined is the convolutional encoder from 802.11a. IEEE 802.11a is the wireless

Ethernet standard [17, 18] used in the 5GHz. band. In this band, 802.11a provides

for transmission of information up to 54Mbps. Other wireless standards that have

similar convolutional encoders to that of 802.11a include IEEE 802.11b [17, 19], the

current WiFi standard and most widely used wireless data networking standard, and

Bluetooth [3], a popular standard for short distance wireless data transmission.

Before we dive into too much depth of convolutional encoders we need to see where

they fit into the overall application. Figure 4-1 shows a block diagram of the transmit

path for 802.1Ia. Starting with IP packets, they get encapsulated in Ethernet frames.

Then the Ethernet frames get passed into the Media Access Control (MAC) layer of

the Ethernet controller. This MAC layer is typically done directly in hardware. The

MAC layer is responsible for determining when the media is free to use and relaying

physical problems up to higher level layers. The MAC layer then passes the data

onto the Physical Layer (PHY) which is responsible for actually transmitting the

33

ISO Layer 802.1 la Blocks Units Passed

V IP Packets

Network Layer IP

Ethernet Frames

Data Link Layer MAC

MAC Data Service

Units

Physical Layer PHY - PLCP

Encoded Packets

PHY - PMD

Modulated Symbols

Figure 4-1: 802.11a Block Diagram

data over the media, in this case radio waves. In wireless Ethernet the PHY has two

sections. One that handles the data as bits, the physical layer convergence procedure

(PLCP), and a second part that handles the data after it has been converted into

symbols, the physical medium dependent (PMD) system. 802.11a uses orthogonal

frequency division multiplexing (OFDM) which is a modulation technique that is

more complicated than something like AM radio.

Figure 4-2 shows an expanded view of the PHY path. The input to this pipeline

are MAC service data units (MSDUs), the format at which the MAC communicates

with the PHY and the output is a modulated signal broadcast over the antenna. As

can be seen in the first box, all data which passes over the airwaves, needs to first pass

through forward error correction (FEC). In the 802.11a, this FEC comes in the form

of a convolutional encoder. Because all of the data passes through the convolutional

encoder, it must be able to operate at line speed to maintain proper throughput over

the wireless link. It is advantageous to pass all data that is to be transmitted over

a wireless link through a convolutional encoder because it provides some resilience

to electro-magnetic interference. Without some form of encoding, this interference

34

FEC Interleaving and IFFT GI Symbol IQ
Coder Mapping Addition Wave Mod.

Shaping HPA

Figure 4-2: 802.11a PHY Expanded View taken from [18]

would cause corruption in the non-encoded data.

There are two main ways to encode data to add redundancy and prevent trans-

mission errors, block codes and convolutional codes. A basic block code takes a block

of n symbols in the input data and encodes it into a codeword in the output alphabet.

For instance the addition of a parity bit to a byte is an example of a simple block

code. The code takes 8 bits and maps into 9-bit codewords. The parity operation

maps as follows, have all of the first 8 bits stay the same as the input byte and have

the last bit be the XOR of all of the other 8 bits. After that one round this block

code takes the next 8 bits as input and do the same operation. Convolutional codes

in contrast do not operate on a fixed block size, but rather operate a bit at a time

and contain memory. The basic structure of a convolutional encoder has k storage

elements chained together. The input bits are shifted into these storage elements.

The older data which is still stored in the storage elements shift over as the new data

is added. The shift amount s can be one (typical) or more than one. The output

is computed as a function of the state elements. A new output is computed when-

ever new data is shifted in. In convolutional encoders, multiple functions are many

times computed simultaneously to add redundancy. Thus multiple output bits can

be generated per input bit. Figure 4-3 shows a generalized convolutional encoder.

The boxes with numbers in them are storage elements that shift over by s bits every

encoding cycle. The function box, denoted with f, can actually represent multiple

differing functions.

As can be seen from the previous description, a convolutional 1 encoder essentially

'Convolutional codes get their name from the fact that they can be modeled as the convolution
of polynomials in a finite field, typically the extended Galois field GF(pr). This is typically done by
modeling the input stream as the coefficients of a polynomial and the tap locations as the coefficients

35

-+t~ 1 2 3 4 .. k
Bits

utput

Bits

Figure 4-3: Generalized Convolutional Encoder

smears input information across the output information. This happens because, as-

suming that the storage shifts only one bit at a time (s = 1), one bit effects k output

bits. This smearing helps the decoder detect and many times correct one bit errors

in the transmitted data. Also, because it is possible to have multiple output bits for

each cycle of the encoder, even more redundancy can be added. The rate of input bits

compared to the output bits is commonly referred to the rate of the convolutional

encoder. More mathematical groundings about convolutional codes can be found

in [23], and a good discussion on convolutional codes, block codes and their decoding

can be found in [24].

This application study uses the default convolutional encoder that 802.11a uses

in poor channel quality. It is a rate 1/2 convolutional encoder and contains seven

storage elements. 802.11a has differing encoders for different channel quality with

rates of 1/2, 3/4, and 2/3. The shift amount for this convolutional encoder is one

(s = 1). Figure 4-4 is a block level diagram of the studied encoder. This encoder has

two outputs with differing tap locations, and uses XOR as the function it computes.

The generator polynomials used are go = 1338 and g, = 1718.

of a second polynomial. Then if you convolve the two polynomials modulo a prime polynomial and

evaluate the resultant polynomial with x = 1 in the extended Galois field, you get the output bits.

36

Input -

z-0 _

Figure 4-4: 802.11a Rate 1/2 Convolutional Encoder

4.1.2 Implementations

Verilog

This convolutional encoder and other applications similar to it, which include linear

feedback shift registers, certain stream ciphers and other convolutional encoders all

share similar form. This form is amazingly well suited for simple implementation

into hardware. The basic form of this circuit is as chain of flip-flops serially hooked

together. Several outputs of this chain are then logically XORed together producing

the outputs of the circuit. For this design, the same code was used for synthesis to

both the IBM SA-27E ASIC and Xilinx targets. While this design was not pipelined

more than the trivial implementation, if needed, convolutional encoders that lack

feedback can be arbitrarily pipelined. They can be pipelined up to the speed of the

delay through one flip-flop and one gate but this is probably not efficient due to too

much latch overhead.

Encoders with feedback such as those in Figures 4-5 and 4-6, cannot be arbitrarily

pipelined. They can be pipelined up to the point where the data is first used to

compute the feedback. In this case it is the location of the first tap. Thus for the

37

Output 0

Output I

Inpu Z - - Z - Z - Z - Z 1 - Zlo Z - -~

Output

Figure 4-5: Convolutional Encoders with Feedback

Inpu Z - Z- -w Z- -- oZ-w Z - ---

Output

Figure 4-6: Convolutional Encoders with Tight Feedback

encoder shown in Figure 4-5 the circuit can be pipelined two deep, where the first tap

occurs. But, the encoder in Figure 4-6 cannot be pipelined any more than the naive

implementation provides for.

Not too surprisingly from the fact that these applications were designed to be

implemented in hardware, the Verilog implementation of this encoder was the easiest

and most straight forward to implement. While the implementation still contains a

good number of lines of code, this is not an indication of the difficulty to express this

design but rather is due to the inherent code bloat associated with Verilog module

declarations.

Pentium

While this application is easily implemented in hardware, when it comes to a software

implementation it is less clear what the best implementation is. Thus two implemen-

tations were made, one which is a naive 'reference' implementation which calculates

38

void calc(unsigned int dataIn, unsigned int * shiftRegister,
unsigned int * outputArrayO, unsigned int * outputArrayl)

*outputArrayO = dataIn ^ (((*shiftRegister)>>4) & 1)

(((*shiftRegister)>>3) & 1) ^ (((*shiftRegister)>>1) & 1)

^ ((*shiftRegister) & 1);

*outputArrayl = dataIn ^ (((*shiftRegister)>>5) & 1)

(((*shiftRegister)>>4) & 1) (((*shiftRegister)>>3) & 1)
^ ((*shiftRegister) & 1);

*shiftRegister = (dataIn << 5) I ((*shiftRegister) >> 1);

}

Figure 4-7: Inner-Loop for Pentium reference 802.11a Implementation

the output bits using logical XOR operations and a 'lookup table' implementation

which computes a table of 2' entries which contains all of possibilities of data stored

in the shift register. Then the contents of the shift register are used as a index into

the table. Both of these implementations are written in 'C'. Figure 4-7 shows the

inner loop of the reference code.

As can be seen in the reference code, the input bit is passed into the calc function

as dataIn, the two output bits are calculated into the locations *outputArrayO and

*outputArrayl. And lastly the state variable *shiftRegister is shifted over and

the new data bit is added for the next iteration of the loop. This inner loop is rather

expensive especially considering how many shifts and XORs need to be carried out

in the inner loop.

To make the inner loop significantly smaller, other methods were investigated to

put as much as is possible out of the inner loop of this applications. Unfortunately, the

operations that needed to be done were not simply synthesizable out of the operations

available on a x86 architecture. Hence the fastest way to implement this convolutional

encoder was to use a lookup table. The lookup table implementation of this encoder

uses the same loop from the reference implementation to populate a lookup table with

all of the possible combinations of shift register entries and then in its inner loop, the

only work that needs to be done is indexing into the array and shifting of the shift

register. Figure 4-8 shows the inner loop for the lookup table version of this encoder.

Note that lookupTable [I contains both outputs as a performance optimization and

39

void calc(unsigned int dataIn, unsigned int * shiftRegister,

unsigned int * outputArrayO, unsigned int * outputArrayl)

unsigned int theValue;

unsigned int theLookup;

theValue = (*shiftRegister) I (dataIn<<6);
theLookup = lookupTable[theValue];

*shiftRegister = theValue >> 1;
*outputArrayO = theLookup & 1;

*outputArrayl = theLookup >> 1;
}

Figure 4-8: Inner-Loop for Pentium lookup table 802.11a Implementation

as such when assigning to the outputs some extra work must be done to demultiplex

the outputs.

Raw

On the Raw tiled processor, three different versions of the encoder were made. They

were all implemented in Raw assembly. Two of the implementations, lookup table

and POPCOUNT, use one tile and the third implementation, distributed, uses the

complete Raw chip, 16 tiles. One of the main differences between the Pentium versions

of these codes and the Raw versions is the input/output mechanisms. On the Pentium,

the codes all encode from memory (cache) to memory (cache), while Raw has a

inherently streaming architecture. This allows the inputs to be streamed over the

static network to their respective destination tiles and the encoded output can be

streamed over the static network off the chip. The inputs and outputs all come from

off chip devices in the Raw simulations.

The lookup table implementation for Raw is very similar to the Pentium version,

with the exception that it is written in Raw assembly code, and it uses the static

network as input and output. Figure 4-9 shows the inner loop. In the code, register

$8 contains the state of the shift register and $csti is the network input and $csto is

the static network output. The loop has been unrolled twice and software pipelined

to hide the memory latency of going to the cache.

40

loop:
read the word

sl $9, $csti, 6

or $8, $8, $9

do the lookup here

sll $11, $8, 2
1w $9, lookupTable($11)
srl $8, $8, 1

sll $10, $csti, 6
or $8, $8, $10

sll $12, $8, 2
lw $10, lookupTable($12)

andi $csto, $9, 1

sri $csto, $9, 1

srl $8, $8, 1

andi $csto, $10, 1
srl $csto, $10, 1

j loop

Figure 4-9: Inner-Loop for Raw lookup table 802.11a Implementation

The Raw architecture has a single cycle POPCOUNT 2 instruction whose assembly

mnemonic is popc. The lowest ordered bit of the result of popc is the parity of the

input. This is convenient for this application because calculation of the outputs are

a mask operation followed by a parity operation. The code of the inner loop of the

POPCOUNT implementation can be seen in Figure 4-10. This implementation does

not have a significantly different running time than the lookup table version, but it

has no memory footprint.

The last and most interesting implementation for the Raw processor is the dis-

tributed version which uses all 16 tiles. This design exploits the inherent parallelism

in the application and the Raw processor. In this design tile computes subsequent

outputs. Thus if the tile nearest to the output is computing output x., the tiles

further back in the chain are computing newer output values xn+1 to xn+6-

This implementation contains two data paths and output streams which corre-

spond to the two output values of the encoder. In this design all of the input data

streams past all of the computational tiles. As the data streams by on the static

2POPCOUNT returns the number of ones in the input operand.

41

this is the mask for output bit 0

li $11, (1<<6)1|(1<<4)1|(1<<3)1|(1<<1)1|(1)

this is the mask for output bit 1

li $12, (1<<6) 1 (1<<5) 1 (1<<4) 1 (1<<3) 1(1)

loop:

read the word

sli $9, $csti, 6

or $8, $8, $9

and $9, $8, $11

and $10, $8, $12

popc $9, $9

popc $10, $10

andi $csto, $9, 1

andi $csto, $10, 1

srl $8, $8, 1

j loop

Figure 4-10: Inner-Loop for Raw POPCOUNT 802.11a Implementation

flu.']
<K

>2
>9>
>2 ~> <K

<K
<0

IVo III(y 1 1

$
7,

tVW\,
WN,
tvWv

ml.,

Connection Tile

Output 0 Computation

Output 1 Computation

Input Data Flow

Output 0 Data Flow

Ouput 1 Data Flow

4-11: Mapping of the distributed 802.11a convolutional encoder on 16 Raw

42

Figure
tiles

network, the respective compute tiles take in only the data that they need. Each

tile only needs to take in five pieces of data because there are only five taps in this

application, but they need to have all of the data flow past them because of the way

that the data flows across the network. Once outputs are computed, they are injected

onto the second static network for their trip to the output of the chip. The input

and output paths can be seen in Figure 4-11. The connection tiles are needed to

bring the output data off-chip because it was not possible to have the output data

get onto the first static network without them. Lastly, all of the tiles have the same

main processor code which consists of one move, four XORs, and a jump to get to

the top of the loop. The static switch code determines which data gets tapped off to

be operated on.

While this design might look scalable, it is not linearly scalable by simply making

the chains longer. This is because if you make the chains longer, you will find that

each tile has to let more data that it doesn't care to see pass by them. The current

mapping does as good as a longer chain does because it is properly balanced. Every

tile has to have 7 bits of data pass it, but it only cares to look at 5 of those input

values, but because the application is 7 way parallel, it properly matched. If you

make the chain longer, the useful work begin done will go from 5/7 to 5/n where n

is the length of the chain, and hence no speedup is attained.

4.2 8b/10b Block Encoder

4.2.1 Background

The second characteristic application that this thesis will explore is IBM's 8b/10b

block encoder. It is a byte oriented binary transmission code which translates 8 bits at

a time into 10-bit codewords. This particular block encoder was designed by Widmer

and Franszek and is described in [30] and patented in [9]. This encoding scheme

has some nice features such as being DC balanced, detection of single bit errors,

clock recovery, addition of control words and commas, and ease of implementation in

43

hardware.

One may wonder why 8b/10b encoding is important. It is important because

it is a widely used line encoder for both fiber-optic and wired applications. Most

notably it is used to encode data right before it is transmitted in fiber optic Gigabit

Ethernet [20] and 10 Gigabit Ethernet physical layers. Also, because it is used in

such high speed applications, it is a performance critical application.

This 8b/10b encoder is a partitioned code, meaning it is made up of two smaller

encoders, a 5b/6b and a 3b/4b encoder. This partitioning can be seen in Figure 4-12.

To achieve the DC balanced nature of this code, the Disparity control box contains

one bit of state which is the running disparity of the code. It is this state which

lets the code change its output codewords such that the overall parity of the line is

never more than ±3 bits, and the parity at sub-word boundaries is always either +1 or

-1. The coder changes its output codewords by simply complementing the individual

subwords in accordance with the COMPL6 and COMPL4 signals. All of the blocks in

Figure 4-12 with the exception of the Disparity control simply contain feed forward

combinational logic therefore this design is somewhat pipelinable. But due to the

tight parity feedback calculation it is not inherently parallelizable otherwise. Tables

are provided in [30] which show the functions implemented in these blocks, along with

a more minimal combinational implementation.

4.2.2 Implementations

Verilog

Two implementations were made of this 8b/10b encoder in Verilog and they were

shared between the IBM ASIC process and the Xilinx FPGA flows. One which we

will call non-pipelined is a simplistic reference implementation following the proposed

implementation in the paper. One thing to note about this implementation is that in

the paper, two state elements were, and two-phased clocks were used while both of

these were not needed. A good portion of the time designing this circuit was spent

figuring out how to retime the circuit not to use multi-phase clocks. Unfortunately

44

Input Data 8 10

Output
Data

6b control

5 5b
5 5b/6b

functions encoding

Disparity
control

(State inside) COMPL4

3 3b 33b/4b

374 3bcton 37 encoding
- fuctios & switch

Control/ II3b control _

Data

Figure 4-12: Overview of the 8b/10b encoder taken from [30]

due to the retiming, a longer combinational path was introduced in the Disparity

control box. This path exists because the parity calculation for the 3b/4b encoder is

dependent on the parity calculation for the 5b/6b encoder.

To solve the timing problems of the non-pipelined design, a pipelined design was

created. Figure 4-13 shows the locations of the added registers to the design. This

design was conveniently able to reuse the Verilog code by simply adding the shown

registers. The pipelined design was pipelined three deep. This is not the maximal

pipelining depth, but rather this design can be pipelined significantly more, up to the

point of the feedback in the parity calculation which cannot be pipelined.

Pentium

This application has only one feasible implementation on a Pentium. This implemen-

tation is as a lookup table. This was written in 'C' and the lookup table was created

by hand from the tables presented in [30]. To increase performance, one large table

was made thus providing a direct mapping from 9 bits (8 of data and one bit to denote

control words) to 10 bits. The inner loop of the lookup table implementation can be

45

8

+

5b
functions

................

3b
functions

-LIP 6b control

3b control

Input Data

5

COMPL

6

COMPL4

:3

1:2

4-

10

Output
Data

Figure 4-13: 8b/10b encoder pipelined

unsigned int bigTableCalc(unsigned int theWord, unsigned int k)

unsigned int result;

result = bigTable[(disparityO<<9)I(k<<8)I(theWord)];
disparityO = result >> 16;
return (result&Ox3ff);

}

Figure 4-14: Inner-Loop for Pentium lookup table 8b/10b Implementation

seen in Figure 4-14. The code constructs the index from the running disparity and

the input word, does the lookup, and then saves away the running disparity for the

next iteration.

Raw

On Raw, a lookup table implementation was made and benchmarked. This design

was written in 'C' for the non-critical table setup, and Raw assembly for the critical

portions. It is believed that a 'C' inner-loop implementation on Raw could do just as

good, but currently it is easier to write performance critical Raw code that uses the

46

5b/6b
encoding
switch

5

:3

Control/
Data

Disparity
control

(State inside)

0: 1

3b/4b
encoding
switch

loop:
read the word

or $9, $csti, $8 # make our index

sll $10, $9, 2 # get the word address

lw $9, bigTable($10) # get the number

or $0, $0, $0 # stall

or $0, $0, $0 # stall

andi $csto, $9, Ox3ff # send lower ten bits out to net

srl $8, $9, 7
andi $8, $8, Ox200
j loop

Figure 4-15: Inner-Loop for Raw lookup table 8b/10b Implementation

networks in assembly. Figure 4-15 shows the inner-loop of the lookup table. bigTable

contains the lookup table. The two instructions marked with stall are there because

there is an inherent load-use penalty on the Raw processor. Unfortunately due to the

tight feedback via the parity bit, software pipelining is not able to remove these stalls.

Some thought was given to trying to make a pipelined design for Raw much in the

same way that this application was pipelined in Verilog. Unfortunately, the speed at

which the application would run would not change because the pipeline stage which

contains the disparity control would have to do a read of the disparity, a table lookup,

and save off of the the disparity variable which has an equivalent critical path to the

lookup table design. It would save table space though by making the 512 entry table

into three smaller tables, but this win is largely offset by the fact that it would require

more tiles and the 512 word table already fits inside of the cache of one tile.

47

48

Chapter 5

Results and Analysis

5.1 Results

As discussed in Chapter 3, generating a fair comparison between so largely varied

architectures is quite difficult. This thesis hopes to make a fair comparison with the

tools available to the author. The area and frequency numbers in this section are

normalized to a 0.15pm. Ldrawn process. This was done by simply quadratically 1

scaling the area and linearly scaling the frequency used. No attempt was made to

scale performance between technologies to account for voltage differences. This linear

scaling is believed to be a relatively good approximation considering that all of the

processes are all very similar 0.18pm. vs. 0.15pm. vs. 0.13pm.

5.1.1 802.11a Convolutional Encoder

Table 5.1 shows the results of the convolutional encoder running on the differing

targets. The area and performance columns are both measured metrics while the

performance per area column is a derived metric. Figure 5-1 shows the absolute,

normalized to 0.15pm., performance. This metric is tagged with the units of MHz.

which is the rate at which this application produces one bit of output. The trailing

letters on the Pentium identifiers denote which cache the encoding matrices fit in.

'This should be quadratically scaled because changing the feature size scales the area in both
directions thus introducing a quadratic scaling term.

49

Target Implementation Area (mm 2) Performance Performance
(Normalized to (MHz.) per Area
0. 15pm. Ldrawn) (Normalized) (MHz./mm 2.)

IBM SA-27E 0.0016670976 1250 749806
ASIC
Xilinx Virtex II 0.77 364 472.7
Intel Pentium 4 reference Li 194.37 50.1713 0.2581
Northwood reference L2 194.37 48.9 0.2515
2.2GHz. reference NC 194.37 46.5 0.2393
Normalized to lookup table Li 194.37 119.2 0.6131
1.907GHz. lookup table L2 194.37 95.3 0.4905

lookup table NC 194.37 76.3 0.3924
Intel Pentium 3 reference Li 73.61 27.1 0.3678
Coppermine reference L2 73.61 24.312 0.3303
993MHz. reference NC 73.61 18.6 0.2530
Normalized to lookup table Li 73.61 74.5 0.1.0117
1191.6MHz. lookup table L2 73.61 62.7 0.8519

lookup table NC 73.61 25.2 0.3423
Raw 1 tile lookup table 16 31.57 1.973
300 MHz. POPCOUNT 16 30 1.875
Raw 16 tiles distributed 256 300 1.172
300 MHz.

Table 5.1: 802.11a Convolutional Encoder Results

"Li" represents that all of data fits in the Li cache, "L2" the L2 cache, and "NC"

represents no cache, or the data set size is larger than the cache size.

Figure 5-1 shows trends that one would expect. The ASIC implementation pro-

vides the highest performance at 1.25GHz. The FPGA is the second fastest at ap-

proximately 4 times slower. Of the microprocessors, the Pentium 4 shows the fastest

non-parallel implementation. The Raw processor provides interesting results. It is

significantly slower than the Pentium 4 using a single tile, which is to be expected

considering that the Raw processor runs at 300MHz. versus 2GHz. and is only a

single issue in-order processor. But by using Raw's parallel architecture a parallel

mapping can be made which provides 10x the performance of one tile when using all

16 tiles. Note that this shows sub-linear scaling of this application. These perfor-

mance numbers show for a real world application how much more adept an ASIC is

than an FPGA and how much more adept a FPGA is than a processor at bit level

50

1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100

0

U U

U Uj

Figure 5-1: 802.11a Encoding Performance (MHz.)

computation.

Figure 5-2 shows a much more interesting metric. It plots the performance per area

for all of the differing targets. This metric measures how efficiently each target uses

the silicon area for convolutional encoding. One would want to use a metric like this if

an application was fully parallel and you wanted to build the most efficient design for

a given silicon area. Also, this metric gives an idea of how to compare architectures

when it comes down to area comparison and helps answer the age old question of

quantitatively how much better is a FPGA or ASIC compared to architecture "X".

As can be seen from Figure 5-2, the ASIC is 5-6 orders of magnitude better than

processor implementations on this bit-level application. FPGAs are 2-3 orders of

magnitude more efficient than any of the tested processors. With respect to the

processors, they are all within an order of magnitude of each other. It is interesting

to see that the Pentium 4 is less efficient than Pentium 3 for performance per area

while it does have better peak performance. This is because the area used by the

Pentium 4 is proportionally more than the gained performance when compared to a

51

U U E- 'UZ Z o

J. H UU AU0U U U

-
0

00

CD

-

00

IB
M

 S
A

27
E

X
IL

IN
X

 V
IR

TE
X

 2

R
ef

er
en

ce
 P

en
tiu

m
 4

 L
I

R
ef

er
en

ce
 P

en
tiu

m
 4

 L
2

O

R
ef

er
en

ce
 P

en
tiu

m
 4

 N
C

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 L
I

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 L
2

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 N
C

R
.c

..3
R

ef
er

en
ce

 P
en

tiu
m

 3
 L

i

R
ef

er
en

ce
 P

en
tiu

m
 3

 L
2

(D
R

ef
er

en
ce

 P
en

tiu
m

 3
 N

C
(D

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 3

 L
I

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 3

 L
2

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 3

 N
C

L
oo

ku
p

T
ab

le
 R

aw
 1

 til
e

PO
PC

O
U

N
T

 R
aw

 1
 til

e

D
is

tr
ib

ut
ed

 R
aw

 1
6

til
es

Pentium 3. Likewise, because of Raw's simpler data-path, its grain size more closely

matches the application's grain size and thus it gets a smaller area punishment. Lastly,

it is interesting to note that the parallelized 16-tile distributed Raw version has lower

performance per area than the single tile Raw implementations. This is due to the

sub-linear scaling of this application. While this implementation is able to realize

10x the performance of the single tile implementation, it uses 16x the area and thus

if absolute performance is not a concern a single tile implementation is more efficient

with respect to area.

5.1.2 8b/10b Block Encoder

The trends of this thesis's second characteristic application, 8b/10b encoding, are

similar to the first application. Table 5.2 contains full results for all implementations.

Figure 5-3 shows the absolute encoding performance. Note, that one cannot easily

compare this to Figure 5-1 because the units are different. The performance metric

used in Figure 5-3 is the rate at which 10-bit output blocks are produced, while

Figure 5-1 is the rate at which bits are produced for a totally different application.

As can be seen from the performance chart, the pipelined ASIC implementation is

approximately 3x faster than the FGPA implementation, and the FPGA is 3x faster

than a software implementation. As is to be expected due to clock speed, the Pentium

4 is faster than the Pentium 3 which is faster than a single Raw tile in absolute

performance.

Figure 5-4 shows the performance per area for 8b/10b encoding. These results

corroborate the results for the convolutional encoder. The ASIC provides 5 orders

of magnitude better area efficiency than a microprocessor. Also, a FPGA has two

orders of magnitude better area efficiency than a software implementation on a pro-

cessor. Likewise the efficiency of the processors parallels the grain size of the differing

architectures. One interesting thing that is not totally intuitive about Figure 5-4 is

how pipelining this applications has differing effects on different targets. In perfor-

mance per area, pipelining the ASIC implementation is worth it as can be seen from

the first two bars. This means that the added performance outpaced the added area

53

Table 5.2: 8b/10b Encoder Results

"I
'0

a.)

a.)

0z
Cl

H

2

'I
Cl
2

0

0a.)

a.)
.0

CU
H

0

0
0

2

UZ

0

.0

.

2

E
0

0a.)

a.)
.0

CU
H
0.
0
0
0
2

Cl
2

0

0a.)

a.)

CU
H
0.

0
0
2

C,)z

0

0a.)

C.)
.0

CU
H
0.
0
0
0

2

'0
a.)
0

a.)

Cl

x
2

2

0

0a.)

a.)
,0

CU
H
0

0
0
2

Figure 5-3: 8b/10b Encoding Performance (MHz.)

54

Target Implementation Area (mm2) Performance Performance
(Normalized to (MHz.) per Area
0. 1 5pm. Ldawn) (Normalized) (MHz. /mm 2.)

IBM SA-27E non-pipelined .005117952 570 111372.67

ASIC pipelined .00756464032 860 113695.98

Xilinx Virtex II non-pipelined 1.4706 159.109 108.1933

pipelined 3.1514 272.554 86.4866

Intel Pentium 4 lookup table Li 194.37 111.8 0.5752

Northwood lookup table L2 194.37 105.7 0.54340

2.2GHz. lookup table NC 194.37 111.8 0.5752

Normalized to
1.907GHz.
Intel Pentium 3 lookup table Li 73.61 62.7 0.8519

Coppermine lookup table L2 73.61 49.7 0.6745

993MHz. lookup table NC 73.61 28.4 0.3854

Normalized to
1191.6MHz.
Raw 1 tile lookup table 16 27.273 1.7046

300 MHz. I III _I

900-

800 -

700 -

600

500

400

300

200

100

0

a.) a.)
.~ .~

a.) a~

.~ .~

~ r.a~
o ~-z ~

LI~ c/~
I-
Cl

r~i~ -

a.)

CU

a.)
.0

CU
H
0.
0

2

oo
.

'1 CD 0
0 c
r'

IB

M
 S

A
27

E
 N

on
-P

ip
el

in
ed

-

IB
M

 S
A

27
E

 P
ip

el
in

ed

-

X
IL

IN
X

 V
IR

T
E

X
 2

 N
on

-P
ip

el
in

ed

-

X
IL

IN
X

 V
IR

T
E

X
 2

 P
ip

el
in

ed

-

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 L
I

-

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 L
2

-

(D

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 4

 N
C

-

(D
L

oo
ku

p
T

ab
le

 P
en

tiu
m

 3
 L

l
-

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 3

 L
2

L
oo

ku
p

T
ab

le
 P

en
tiu

m
 3

 N
C

-

L
oo

ku
p

T
ab

le
 R

aw
 1

 til
e

-

0

Hr

of extra pipeline flip-flops. But the opposite story is true for the Xilinx Virtex II.

While a 1.7x performance gain was achieved by pipelining this application, the area

for this application was changed by a factor of 2.14. This result shows off the relative

differences between flip-flop costs between these two targets. In an FPGA, because

of the relative sparseness of flip-flops and the larger flip flops due to all of the added

reconfiguration complexities added by an FPGA, the cost of pipelining an application

is much higher than in an ASIC where the flip-flops cost less in both direct area, and

they restrict the placement of the circuit far less than in a FPGA.

5.2 Analysis

When one looks as the results of this thesis, there are a couple of quantitative Rules of

Thumb that present themselves with respect to bit-level communications processing.

1. ASICs provide a 2-3x absolute performance improvement over a FPGA imple-

mentation.

2. FPGAs provide a 2-3x absolute performance improvement over microprocessor

implementation.

3. ASICs provide 5-6 orders of magnitude better performance per area than soft-

ware implementation on a microprocessor.

4. FPGAs provide 2-3 orders of magnitude better performance per area than soft-

ware implementation on a microprocessor.

These Rules of Thumb at first may be relatively surprising. One question that

people may wonder about is why is the absolute performance of a FPGA compared

to a microprocessor only 2-3 times? And why is the performance of an ASIC only 4-9

times as much as in software? Many people may think that the absolute performance

of ASICs and FPGAs should be higher than that shown here. There are two reasons

that the performance difference is not larger. One, when using a microprocessor

as a lookup table it does a surprisingly good job of running bit level applications.

56

Second, this study uses simplistic implementations in hardware so as not to bloat the

area of the designs. The hardware implementations could have used more complex

implementations but this would have been at the cost of design complexity and silicon

area.

Another question that these results inspire is why if this is simply a grain size

problem are architectures that have a one-bit grain size more than 32 times as effi-

cient when compared to an architecture with a 32-bit data-path? This can be reposed

as asking why is using a 32-bit processor as a one-bit processor more than 32 times

area inefficient? There are several factors at work here. One reason why smaller grain

size applications can actually have super-linear performance speed up is that the rel-

ative cost of communication is cheaper. An example of this can be seen in the Raw

processor which is a 32-bit processor. If this processor was shrunk to a 16-bit proces-

sor, we will assume roughly half the area, the distance that is needed to be traversed

to communicate with the nearest other tile will not simply stay constant. Rather,

the distance that is traversed will decrease to roughly 70% 2 of the 32-bit example's

distance. Secondly, both ASIC and FPGA technology gain performance increases due

to datapath specialization. Why build complicated general purpose structures when

all you need is something small and specific? This is one of the typical arguments

used in literature about why reconfigurable architectures are good. Data-path spe-

cialization helps increase clock rate by having the custom dataflow needed to match

the computation and it also uses less area by simply not needing all of the complex-

ity of a microprocessor such as instruction fetch, register renaming, reorder buffers,

etc. One problem with the metric of performance per area metric that should be ac-

knoledged, is the fact that it does not properly credit the ability of a microprocessor

to time multiplex its hardware area. In a mircoprocessor, instructions are stored in

a very dense instruction memory or possibly in and even denser main memory store,

DRAM. It is via this time multiplexed use of the hardware area resources that the

performance per area efficiency goes up. This is pretty difficult to quantize though

2This can easily be calculated if you know that the area is decreasing by 1/2 this corresponds to
scaling in each direction by /1/2 = 0.707.

57

becasue it requires total knowledge of all of the applications that are ever going to

be run on the computational target. But, if all that is going to be run on a target,

in a small period of time, is one application, the performance per area metric is a

worthwhile metric.

Finally, the most important thing that these results point to is the fact that

computational grain size is very important. If an architecture only has one grain size,

emulation of a differing grain size can in many cases be emulated relatively efficiently

with respect to performance. An example of this is how a processor can creatively

use a lookup tables to emulate random logic. But, when it comes down to efficient

area utilization, proper grain size is critical.

58

Chapter 6

Architecture

This chapter proposes a new architecture, motivated by the results of this thesis,

which is one possible solution of how a computer system can handle both bit-level

communication processing and general purpose computation. This section is largely

a proposal and as such can be thought of as a future work section as it brings forth

many unanswered questions.

6.1 Architecture Overview

The main lesson that should be learned from this thesis is that supporting bit-level

communication processing is an issue of efficient area utilization and not of absolute

performance. While finer grain architectures can provide higher absolute performance

due to data-path specialization and shorter distances to travel between parallel com-

putational elements, the performance improvements are less than a factor of 10. This

is in contrast to the area efficiency wins which can be more like 2-3 orders of magni-

tude conservatively over standard microprocessors or tiled architectures. While area

efficiency may not be critical if area is free in the future, power can roughly be thought

of as being proportional to area and it is unlikely that power will be free anytime soon

especially with the advent of more and more devices being run off of batteries.

To solve the problem of achieving better area efficiency and maintain the ability

to run general purpose computations, I propose the extension of the Raw tiled ar-

59

-. ~~ .rgrammable

Switch Processor

And Routers

Main
Processor

Data [egster
Cache File

InstructionAU
Memory

32-bit Unidirectional
Link

Figure 6-1: The 16 Tile Raw Prototype Microprocessor with Enlargement of a Tile

chitecture. Raw is already able to effectively handle both scalar and parallel codes

through extensive compiler support. But, as shown in the results section of this the-

sis, when it comes to efficiently using area for bit-level communication processing, it

is not as efficient as finer grain computational fabrics. Thus I propose adding a fine

grain computational fabric inside of each Raw tile.

Other approaches include heterogeneous tiled mixes or simply connecting a course

grain chip next to a fine grain chip. The motivation for a homogeneous mix of tiles is

that it is believed that to efficiently run bit-level communication processing together

with other applications, a very close knit, low-latency, high bandwidth communica-

tions channel is needed. Also, homogeneity provides other niceties such as being a

better compiler target and begin simpler to design.

To provide a reference frame about which all details are known, I propose using

60

I I

the Raw tile as it is embodied in the Raw prototype processor, with the same sizing of

memories and same networks. Figure 6-1 shows the 16 tile Raw prototype processor

with an enlargement of one tile. The main addition to Raw will be an array of

yoctoengines 1 which are laid out in a mini-mesh inside of each tile. The contents of

a yoctoengine and internal mesh communications are described in Section 6.2.

The yoctoengine array is a 2D mesh of yoctoengines. This is similar to the way

that Raw tiles are tiled but on a much smaller grain. Therefore, one way to envision

this architecture is as a tiled architecture with two levels of tiling, one for large Raw

tiles, and inside of the Raw tiles there are yoctoengines tiled together. While I do

propose a particular implementation of fine grain computation in a Raw tile, it is

believed that any form of fine grain computational fabric, such as a FPGA, inside of

a Raw tile would help increase the area efficiency of Raw on bit-level communication

processing.

There are two problems that need to be solved when it comes to interfacing the

yoctoengine array into a Raw tile. One, what is the interface, and two, if an appli-

cation needs to use more than one tile's worth of yoctoengine array space, how does

it efficiently use more? To interface the array with Raw's main processor, I decided

that the use of register mapped communication provides the most efficient mecha-

nism. This register mapped communication will take two general purpose registers

from the main processor. Reading and writing to these registers read and write from

two sets of network input blocks 2 (NIBs) which provide some buffer space between

the yoctoengine array and the processor. The NIBs provide a speed gasket between

the array and the main processor, because it is assumed that the array will run off of

a faster clock than the main processor. The NIBs also provide flow control between

the array and the main processor. If the processor reads from an empty NIB it will

stall and if it writes to a full NIB it will stall until the NIB's blocking condition is

cleared. On the array side, the whole array stalls if a write is about to occur to a NIB

that is full, or if a read is about to occur and a NIB is empty. Completely stalling

1yocto is the SI prefix for 1024.
2A NIB is basically a FIFO with forward and backward flow control.

61

0 Et

NIB Contro

Switch Processor

NIB NIB NIB NIB

32 33'

] LiEE. DDLDLZ

32 32 32cs 2

NIB NIB NIB NIB

Main Processor

00 0:

NIB Control

Figure 6-2: Interfacing of the Yoctoengine Array to the Main Processor and Switch

the array is needed because inside of the array, there is no flow control because flow

control would be expensive.

To be able to easily gang multiple of the yoctoengine arrays together, the array

is also connected directly onto both static networks. Figure 6-2 shows this interface.

This allows Virtual Wires [1] style communication between yoctoengine arrays. This

addition requires an additional port on both of the static switch crossbars. The

yoctoengine array can also be used as a filter on data being sent out the static network

from the main processor by using a flow-through approach.

62

A preliminary sizing of the array calls for a 38 x 3 grid of yoctoengines. This allows

for a 32-bit wide array to match data coming from 32-bit aligned sources. There are

three additional columns on either side of the 32 x 3 array which can be used for

control of the interface with the NIBs. Between the NIBs and the array, there are

32-bit wide registers that can be loaded from the NIBs or the array. These registers

can also be shifted. The loading of these registers is connected to the control of the

NIBs and the shifting of these registers is controlled by the NIB control yoctoengines.

6.2 Yoctoengines

The following description of a yoctoengine is a preliminary architecture and is open

to change as more experience with fine grain computation is gained and as more

application areas are mapped to it.

The yoctoengine array can either be viewed as an array of small Raw tiles or

as an array of sequenceble FPGA LUTs with localized control. Each yoctoengine

contains an instructions store, two two-input lookup tables, two eight entry stacks, a

program counter, and a count register. Basically each yoctoengine is a sequenceble

LUT similar to DPGA [4], but with differences including localized control, a stack for

storage, and some per cycle reconfigurable interconnect like the Raw static network.

Yoctoengines are arranged in a 2D mesh. To communicate with each other, there

are two switched point-to-point nearest neighbor networks that are reconfigurable on

a per cycle basis. We will call these the cycle reconfigurable network (CRN). There

is also an abundance of other routing resources which are similar to the routing re-

sources on a FPGA. This network is based off of buses with switch points. The

difference between this network and a FPGA's interconnect is that before this net-

work enters into a yoctoengine, it has to pass through a flip-flop. This is done to

force a fixed cycle time which is in contrast to a FPGA's variable cycle time. The

FPGA style network (FSN) is not reconfigurable on a per cycle basis, but rather

can only be reconfigured via an expensive operation. The use of these two networks

provides the advantage of ease of routing that FPGAs enjoy while also allowing the

63

_ftz it _ __ I____I ' IIIT T I '

22

Net Out I

2.

R2 YE

Net Out I

2 West
2

CRN

Eas

0 6-Way Switch Point

o Controlled Pass Transistor

[i] Yoctoengine

= Flip-Flop

Figure 6-3: Four Yoctoengines with Wiring and Switch Matrices

64

L1

z

T-
r~

Easj

T~-
4-

YE

Easj

2

YE

'2 West"

2

Net Out 1

2 West

2

FR..I

'Net OutI

z

T-

T2

T1-

3~-

:--

3~~-

T.-

T-
YE:1-

T4-

I-

7-T~~

2~~

2~~

2 West
2

32

:1-

1-

T~

r L

L

z

2

L

3-
3~~

T~

T7

- In ut M

Instructions
Store

16
Instructions D

0

Program Counter

Count Register

Branch Control Net

0-

- I

0

luxA Inut Mux

LUT/
4/: ALU0:

'-4-)

Jut 0

-

Net Out 1

Figure 6-4: The Internal Workings of a Yoctoengine

reconfigurability on a per cyclebasis that Raw enjoys. Figure 6-3 shows the wiring

inside of the yoctoengine array. The CRN can be seen as two-bit nearest neighbor

communication labeled North, South, East, and West. The FSN routing is essentially

the same as the distance-one interconnect found on Xilinx's 4000 series FPGAs [32].

One difference is that each switch matrix contains twice as many 6-way switch points

to alleviate routing congestion. In Figure 6-3, each small square represents a flip-flop

connected to a pass transistor which selectively connects the two associated wires.

The diamonds represent 6-way switch points which are made out of 6 pass transistors

and six controlling flip-flops which allow all possibilities of connection or isolation of

the connected wires.

65

I I I

0-

eux C PInput Mux

LUT /
4 ALU1

--..

.................................

Figure 6-4 shows the internals of a yoctoengine. The heart of it is two muxes which

act as the ALUs. They both compute the same function of 2-bits, which requires 4-

bits of state stored in the instruction store. The select on the muxes come from the

A, B, C, and D muxes. These muxes implement the switching portion of the CRN.

Instead of simply choosing between the nearest neighbors, North, East, South, and

West, the muxes can also choose fixed routes (FR) and the top two elements of the

yoctoengine's stack. They can also choose from the top two elements of the other

pipeline's stack. After the data flows through the ALUs/LUTs, the outputs feed

into an 8 element stack. The stack can be pushed onto, popped from, held, or not

shifted with only the top element being replaced. The stack controls are independent

and each require 2 bits of state to control. The branch control provides for simple

branching. Options include no branch, branch and decrement, branch if the top of

Stack 0 == 0, branch if the top of Stack 1 == 0, and load the count register. The

branch target or count load value is taken selectively from either the A/B Mux control

bits, or the C/D Mux control bits. When branching, it is not advisable to be use the

pipe that has its mux control being used as the branch target. Table 6.1 shows the

breakdown of how bits are used in the yoctoengine's 24-bit instruction word. The

instruction store hold 16 of these instructions. The muxes situated next to the stack

allow the stack to serve a dual use as both a computational stack and as a fixed

length FIFO which goes out to the network. The length of the FIFO is Net Select

0 and Net Select 1, which are reconfigurable when the whole yoctoengine array is

reconfigured. This FIFO usage was inspired by the use of FIFOs for retiming in the

HSRA project [28].

Reconfiguration of the yoctoengine array is an expensive operation that can take

on the order of thousands of main processor cycles. To reconfigure, the main processor

writes to a special purpose register which causes the data written to it to be shifted

into the reconfigurable state. The reconfigurable state of the yoctoengine array is

on 32 independent shift registers. This is similar to how the reconfigurable state

on a FPGA is designed to be loaded as a large shift register. The reconfigurable

state includes, Net Select 0, Net Select 1, the yoctoengines instruction store, and the

66

Function Bit Width
A Mux select 3
B Mux select 3
C Mux select 3
D Mux select 3
LUT Function 4
Stack 0 Control 2
Stack 1 Control 2
Branch Control 4

Total 124

Table 6.1: Yoctoengine Instruction Coding Breakdown

control on the switch points of the FSN.

6.3 Evaluation

Now that we have gone through the gory details of an yoctoengine, lets take a step

back and see just how it can be used. Trivially it can be seen that this architecture

can be used as a FPGA. It has LUTs and a similar switch matrix as that found in a

FPGA. The only real difference is the fact that before entering a yoctoengine, data

coming from the FSN must go through a flip-flop so that the array can use a fixed

clock cycle.

The added bonus of the yoctoengine array comes from the ability to do both

temporal LUT reuse and temporal link reuse. The ability to temporally reuse LUTs

is also achieved by DPGA, but the hybrid network of the yoctoengines takes this reuse

one step further via link reuse much in the same way that Virtual Wires allows for time

multiplexing of pins. This link reuse comes in two flavors. One, the CRN allows for

generalized routing such as that which occurs on the Raw static network. The other

flavor is used by having one yoctoengine connected to multiple other yoctoengines

in a multicast manner via the FSN. This allows links to have different data destined

for different destinations from one source simply by time multiplexing the multicast

channel and having the destinations only listening at select times. This effectively

lets links inside of a FPGA to be temporally reused and even allows them to be

67

temporally reused to send data to different receivers. This link reuse also makes it

such that the FSN needs less connectivity to effectively let arbitrary connections be

made.

I currently do not have enough information to compare the yoctoengine array

with a standard FPGA. It is thought that through the temporal link reuse, this

architecture will provide a much more LUT dense environment with less area devoted

to wiring than a typical FPGA. This added area efficiency comes at the cost of time

multiplexing of the LUTs, which at first inspection seems to mean that it will take

many more cycles than an FPGA to compute a given function, but rather all this

does is cause pipelining where on a normal FPGA gates would be sitting unused for

large portions of a clock cycle.

6.4 Future Work

One of the first things that needs to be done with any new architecture is to do a

preliminary mapping of an application to it. Unfortunately for this thesis an actual

mapping of the two sample applications has not been done. To be able to complete

this a simulator is needed which I plan to write. Also a sensitivity study should be

done to determine the exact grain size that is appropriate for the desired application

mix. Virtualization support of the instruction stores would be convenient to be able

to support larger programs on each yoctoengine.

Looking into the future, ultimately compiler support is needed to be able to take

any arbitrary circuit and efficiently map it onto the described augmented Raw. I think

that a possible programming model would include a mixture of 'C' interfaced with a

synchronous sub-set of Verilog. I also believe that the described yoctoengines here or

a slightly beefed up version could be used in the future to run streaming applications

with incredible overall performance and performance per area improvements. The

idea here is that the yoctoengines are a massively parallel 2D MIMD array. This

would allow word oriented computations to occur on the bit-level yoctoengines, but

very slowly. But this slowdown can be easily offset by parallelism that can be achieved

68

by having many simpler processors which have higher clock rates. This argument is

similar to those by the Connection Machine [14] and Terasys [10] with the main

difference being that the array would be MIMD so that it can exploit the parallelism

in streaming applications.

Power efficiency needs to be studied closer as I believe that this is the real moti-

vation to use finer grain computational fabrics. Unfortunately, the tools to explore

power make it difficult to make fair comparisons or to draw any conclusions as I

learned in this thesis.

Lastly while this thesis focuses on bit-level communication processing, I would

like to look into broader applicability of bit-level computation. Possible areas of

improvement include efficient state machine implementation and more typical multi-

media applications.

69

70

Chapter 7

Conclusion

This thesis has studied how different architectures are able to handle bit-level com-

munication processing. To study this, two characteristic applications were selected

and experimentally mapped onto common computational structures of differing grain

size including microprocessors, tiled architectures, FPGAs, and ASICs. From these

results it can be concluded that for these applications, fine grain computational fab-

rics (FPGAs) can provide a 2-3x absolute performance improvement over a best case

microprocessor in the same fabrication process. And more importantly a fine grain

computational fabric is able to provide 2-3 orders of magnitude better performance

per area than software on a microprocessor.

From these results we conclude that it is usually possible to use one grain size to

run an application with a smaller grain size with not too large of an absolute perfor-

mance degradation through some emulation mechanism. In this case this emulation

mechanism is the ability to use a microprocessor's cache as a lookup table to substi-

tute for custom logic. But, unfortunately these forms of grain size mismatch cause

large, multiple orders of magnitude, inefficiencies when it comes to area utilization.

Thus we need to study integration of fine grain computational structures with archi-

tectures that have larger grain size such as word-based microprocessors to be able to

support bit-level communication processing and general purpose computation in an

area efficient manner. This thesis proposes one possible architecture to fill this gap

based off of the Raw tiled microprocessor with the addition of a time multiplexed

71

LUT array. It is hoped that the results of this thesis will spur further development

in this area and new architectures to meet the challenge of supporting both software

circuits and general purpose computation on the same silicon.

72

Appendix A

Calculating the Area of a Xilinx

Virtex II

In this thesis, I decided to use area as one of the main metrics for comparison. This

seemed like a relatively easy thing to figure out. Most companies publish at least

some area info about their chips, right? Wrong. I wanted to use a Xilinx Virtex II as

one of architectures that I was mapping to but as much as I searched I couldn't find

any area information. The information that I really wanted was how big a CLB/Slice

was along with rough interconnection information. After not having any luck finding

area information I started to get desperate. I posted to comp. arch. fpga, the Usenet

group dealing with FPGAs asking if anybody had any area information about the

Virtex II line from Xilinx. The responses I received all said that Xilinx was being

very tight lipped about the area of their newest FPGAs and had not released any

useful area information. I was down but not out.

I thought for a bit and then realized that I could just open up a Virtex II and

figure out the information I needed. So my next step was to order some Virtex II's.

I ordered four of the smallest Virtex II parts, XC2V40's 1 in the FG256 package.

'The part that I dissect is the Engineering Sample version of the chip because commercial parts
for XC2V40's are not out yet. Presumably the area will be the same in the commercial version.

73

Figure A-1: Aren't Chip Carriers Fun

A.1 Cracking the Chip Open

I took a lot of pictures of the dissection process and thought I would share some of

them with the reader. Figure A-1 shows me anxiously opening up the package that

the chips came in. Figures A-2 and A-3 show the chips in their chip carriers.

Next we had to chop the chips open. Conveniently the FR4 2 layer was easily

pealed away from the epoxy/plastic top. A little bit of wedging of an Exacto knife

in and some flexing of the FR4 allowed me to pop the two parts apart as can be seen

in Figure A-4. At this point I was getting excited because I could see the actual die.

If you look in Figure A-5, you can see a zoom in on the top half (the part with the

lettering, not the solder balls) of the package, and in the middle there is a light green

area with some scratched off area which is the actual die.

2 FR4 is a fiberglass epoxy used as a dielectric in printed circuit boards.

74

Figure A-2: Four Virtex II XC2V40 Chips

Figure A-3: Look at all Those Solder Bumps

75

Figure A-4: The Two Parts of the Package

76

Figure A-5: Top Portion of the Package, the Light Green Area is the Back Side of
the Die

77

Figure A-6: Removing the FR4 from the Back Side of the Die

I wanted to get a better look at the die so I took an Exacto knife and scrapped

away the FR4 from the back side of the die. Unfortunately the top side of the die is

on the other side and is embedded in epoxy. I know this for two reasons, one, as I

scraped I didn't see any structure and contacts, and two this package is wire-bond,

not flip chip and typically those have the die right side up in the package and have

the wires come around from the package to the top of the die and package. This was

later confirmed when I found a wire-bond wire going to the top of the die. Figure A-6

shows me removing the fiberglass from the back of the die.

A.2 Measuring the Die

Finally I got to the part that I was waiting for. I could clearly see the extents of the

die. I pulled out my handy dandy set of calipers and measured the die size as shown

78

Figure A-7: Measuring the Die Size with Calipers

in Figure A-7. The die ended up being 4.98mm. x 3.60mm. Note that this was as

accurate as I could get and it is possible that it is off by a bit, but I don't think it is

off by very much. So now armed with total die area lets see if we can deduce the size

of a CLB and the size of a Slice.

Taking a look at the Xilinx Virtex II Datasheet [34], we see that a XC2V40

contains an array of 8x8 CLBs, 4 multiplier blocks, 4 digital clock management units,

and 72 Kbits of block RAM. This comes out to be 256 Slices. Because I was not able

to find out how big the block RAMs, I/Os and multiplier blocks I will make a crude

over-approximation and simply divide the overall die area by the number of Slices to

figure out size of one Slice. Doing this, we come out with 0.07003125 mm2 . per Slice.

This approximation is easily within a factor of two, but is definitely an overestimation

which includes I/O and block RAM area unfortunately.

79

Figure A-8: Don't Flex the Die

A.3 Pressing My Luck

To solve the problem of overestimation of die size, I decided to try to see some large

structure on the top of the chip and see if I could at least measure the CLB array. I

first tried to cut out the die, but that wasn't going so well, so next I tried to peel the

die out of its encased epoxy. Little did I know that this was an exceedingly poor idea.

As soon as I flexed the die just a little bit, it cracked into two pieces. Figure A-8

shows what not to do. I still have three chips intact and hope to dissolve the epoxy

lids off in my spare time so I can see some structure, but that is for another day.

80

Bibliography

[1] Jonathan William Babb. Virtual wires: Overcoming pin limitations in FPGA-

based logic emulation. Master's thesis, Massachusetts Institute of Technology,

November 1993.

[2] Jonathan William Babb. High Level Compilation for Gate Reconfigurable Archi-

tectures. PhD thesis, Massachusetts Institute of Technology, September 2001.

[3] Bluetooth Special Interest Group. Specification of the Bluetooth System: Core,

1.1 edition, February 2001.

[4] Michael Bolotski, Andr6 DeHon, and Thomas Knight. Unifying fpgas and simd

arrays. In Proceedings of the International Workshop on Field-Programmable

Gate Arrays, February 1994. MIT Transit Note Number 95.

[5] Jerome Burke, John McDonald, and Todd Austin. Architectural support for fast

symmetric-key cryptography. In Proceedings of the Conference on Architectural

Support for Programming Languages and Operating Systems, November 2000.

[6] Timothy J. Callahan, John R. Hauser, and John Wawrzynek. The garp archi-

tecture and c compiler. IEEE Computer, 33(4):62-69, April 2000.

[7] Timothy J. Callahan and John Wawrzynek. Adapting software pipelining for

reconfigurable computing. In Proceedings of the International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, San Jose, CA,

2000. ACM.

[8] Standard Performance Evaluation Corporation, 2002. http://www.spec.org/.

81

[9] Peter A. Franaszek and Albert X. Widmer. Byte oriented DC balanced (0,4)

8b/10b partitioned block transmission code. US Patent, December 1984. US

Patent Number 4,486,739.

[10] Maya Gokhale, Bill Holmes, and Ken Iobst. Processing in memory: The Terasys

massively parallel PIM array. IEEE Computer, 28(4):23-31, April 1995.

[11] Seth Goldstein, Herman Schmit, Matthew Moe, Mihai Budiu, Srihari Cadambi,

R. Reed Taylor, and Ronald Laufer. PipeRench: A coprocessor for stream-

ing multimedia acceleration. In Proceedings of the International Symposium on

Computer Architecture, pages 28-39, 1999.

[12] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and

Saman Amarasinghe. A stream compiler for communication-exposed architec-

tures. In Proceedings of the Conference on Architectural Support for Programming

Languages and Operating Systems, October 2002.

[13] Scott Hauck, Thomas W. Fry, Matthew M. Hosler, and Jeffery P. Kao. The

Chimaera reconfigurable functional unit. In Proceedings of the IEEE Symposium

on Field-Programmable Custom Computing Machines, pages 87-96, April 1997.

[14] W. Daniel Hillis. The Connection Machine. PhD thesis, Massachusetts Institute

of Technology, 1985.

[15] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Douglas Carmean, Alan

Kyker, and Patrice Roussel. The microarchitecture of the pentium 4 processor.

Intel Technology Journal, February 2001.

[16] IBM. ASIC SA-27E Databook, 2000.

[17] IEEE. IEEE Standard 802.11-1997 Information Technology- telecommunica-

tions And Information exchange Between Systems-Local And Metropolitan Area

Networks-specific Requirements-part 11: Wireless Lan Medium Access Control

(MAC) And Physical Layer (PHY) Specifications, November 1997.

82

[18] IEEE. IEEE Standard 802.11a-1999 Supplement to IEEE standard for In-

formation Technology- telecommunications And Information exchange Between

Systems-Local And Metropolitan Area Networks-specific Requirements-part 11:

Wireless Lan Medium Access Control (MAC) And Physical Layer (PHY) Speci-

fications, 1999.

[19] IEEE. IEEE Standard 802.11b-1999 Supplement to IEEE standard for In-

formation Technology- telecommunications And Information exchange Between

Systems-Local And Metropolitan Area Networks-specific Requirements-part 11:

Wireless Lan Medium Access Control (MAC) And Physical Layer (PHY) Speci-

fications, 1999.

[20] IEEE. IEEE Standard 802.3-2000 IEEE standard for Information Technology-

telecommunications And Information exchange Between Systems-Local And

Metropolitan Area Networks-specific Requirements-part 3: Carrier Sense Mul-

tiple Access with Collision Detection (CSMA/CD) Access Method and Physical

Layer Specifications, 2000.

[21] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan

Babb, Vivek Sarkar, and Saman Amarasinghe. Space-time scheduling of

instruction-level parallelism on a raw machine. In Proceedings of the Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 46-54, October 1998.

[22] Alex Peleg and Uri Weiser. Mmx technology extension to the intel architecture.

IEEE Micro, 16(4):42-50, August 1996.

[23] Phillipe Piret. Convolutional Codes. MIT Press, 1988.

[24] John G. Proakis. Digital Communications. McGraw-Hill, fourth edition, 2001.

[25] Rahul Razdan and Michael D. Smith. A high-performance microarchitecture with

hardware-programmable functional units. In Proceedings of the International

Symposium on Microarchitecture, pages 172-80, November 1994.

83

[26] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae Ghodrat,

Ben Greenwald, Henry Hoffman, Jae-Wook Lee, Paul Johnson, Walter Lee, Al-

bert Ma, Arvind Saraf, Mark Seneski, Nathan Shnidman, Volker Strumpen, Matt

Frank, Saman Amarasinghe, and Anant Agarwal. The Raw microprocessor: A

computational fabric for software circuits and general-purpose prgrams. IEEE

Micro, pages 25-35, March 2002.

[27] David L. Tennenhouse and Vanu G. Bose. Spectrumware: A software-oriented

approach to wireless signal processing. In Proceedings of the International Con-

ference on Mobile Computing and Networking, pages 37-47, November 1995.

[28] William Tsu, Kip Macy, Atul Joshi, Randy Huang, Norman Walker, Tony Tung,

Omid Rowhanu, Varghese George, John Wawrzynek, and Andr6 DeHon. Hsra:

High-speed, hierarchical synchronous reconfigurable array. In Proceedings of the

International Symposium on Field-Programmable Gate Arrays, pages 125-134,

February 1999.

[29] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Wal-

ter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua,

Jonathan Babb, Saman Amarasinghe, and Anant Agarwal. Baring it all to soft-

ware: Raw machines. IEEE Computer, 30(9):86-93, September 1997.

[30] Albert X. Widmer and Peter A. Franaszek. A DC-balanced, partitioned-

block, 8b/10b transmission code. IBM Journal of Research and Development,

27(5):440-451, September 1983.

[31] Lisa Wu, Chris Weaver, and Todd Austin. CryptoManiac: A fast flexible archi-

tecture for secure communication. In Proceedings of the International Symposium

on Computer Architecture, pages 110-119, July 2001.

[32] Xilinx Corporation. XC4000E and XC4000X Series Field Programmable Gate

Arrays Data Sheet, May 1999.

[33] Xilinx Corporation. Virtex-E Data Sheet, November 2001.

84

[34] Xilinx Corporation. Virtex-Il Data Sheet, November 2001.

85

