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Abstract

Being able to represent and reason about the world as though it were composed of
"objects" seems like a useful abstraction. The typical approach to representing a
world composed of objects is to use a relational representation; however, other rep-
resentations, such as deictic representations, have also been studied. I am interested
not only in an agent that is able to represent objects, but in one that is also able to
act in order to achieve some task. This requires the ability to learn a plan of action.
While value-based approaches to learning plans have been studied in the past, both
with relational and deictic representations, I believe the shortcomings uncovered by
those studies can be overcome by the use of a world model. Knowledge about how
the world works has the advantage of being re-usable across specific tasks. In general,
however, it is difficult to obtain a completely specified model about the world. This
work attempts to characterize an approach to planning in a relational domain when
the world model is represented as a potentially incomplete and/or redundant set of
uncertain rules.

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor of Electrical Engineering and Computer Science





Acknowledgments

Without question, my thanks first and foremost go to my advisor, Leslie Pack Kael-

bling. Without her keen insights, gentle advice, and unending patience, none of this

work would have been possible. She is a constant and refreshing source of inspiration

to me and to the people around her, and I am grateful to count myself among her

students.

I thank my family for their unwavering support of my endeavors, both academic and

otherwise, foolish and not. I owe to them the very basic notion that the natural

world is an amazing thing about which to be curious. I thank my father especially,

for demonstrating by his own example the discipline and the wonder that go with

scientific inquiry. Los quiero mucho.

Here at MIT, I owe many people thanks for their support and patience. Sarah Finney

has been an awesome collaborator and office-mate, and has taught me a great deal

about how to ask questions. Luke Zettlemoyer sat with me on countless late nights

discussing the intricacies of well-defined probability distributions. Terran Lane and

Tim Oates generously shared their expertise with me and provided countless useful

pointers. I thank Marilyn Pierce at the EECS headquarters for her amazing resource-

fulness, patience, and personal attention, and for always keeping the students' best

interests at heart.

This work was done within the Artificial Intelligence Lab at Massachusetts Institute

of Technology. The research was sponsored by the Office of Naval Research contract

N00014-00-1-0298, by the Nippon Telegraph & Telephone Corporation as part of the

NTT/MIT Collaboration Agreement, and by a National Science Foundation Graduate

Research Fellowship.





Contents

1 Introduction: Why Objects? 13

2 Background 16

2.1 Representational Approaches to Worlds with Objects . . . . . . . . . 17

2.1.1 Relational Representations . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Deictic Representations . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Acting in Worlds with Objects: Value-Based Approaches . . . . . . . 19

2.2.1 Relational Reinforcement Learning . . . . . . . . . . . . . . . 19

2.2.2 Reinforcement Learning With Deictic Representations . . . . . 22

2.3 The Case for a World-Model . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Reasoning with Probabilistic Knowledge . . . . . . . . . . . . . . . . 24

2.4.1 An Example: When Rules Overlap . . . . . . . . . . . . . . . 25

2.5 Related Work in Probabilistic Logic . . . . . . . . . . . . . . . . . . . 30

2.6 Related Work in Policy Learning for Blocks World . . . . . . . . . . . 32

3 Reasoning System: Theoretical Basis 34

3.1 Probabilistic Inference with Incomplete Information . . . . . . . . . . 35

3.2 Using Probabilistic Relational Rules as a Generative Model . . . . . . 38

3.2.1 The Sparse-Sampling Planner . . . . . . . . . . . . . . . . . . 39

7



3.2.2 CLAUDIEN: Learning Probabilistic Rules . . . . . . . . . . . .4

4 Experiments 42

4.1 A Deterministic Blocks World . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Acquiring the Set of Rules . . . . . . . . . . . . . . . . . . . . 46

4.1.2 Deterministic Planning Experiment . . . . . . . . . . . . . . . 48

4.2 A Stochastic World with Complex Dynamics . . . . . . . . . . . . . . 50

4.2.1 Acquiring the Rules for the Stochastic Stacking Task ..... 54

4.3 A Stochastic World with Simpler Dynamics . . . . . . . . . . . . . . 57

4.3.1 Acquiring the Rules for the Simpler Stochastic Stacking Task. 59

4.3.2 Planning Experiments . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions 77

5.1 Combining Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Learning and Planning with Rules . . . . . . . . . . . . . . . . . . . . 78

5.3 Future W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A Rules Learned by CLAUDIEN For the Deterministic Blocks World 84

8

40



List of Figures

2-1 How should we represent the blocks and the relationships between the
blocks in this example blocks world? . . . . . . . . . . . . . . . . . . 16

2-2 The DBN induced by the move (c, d) action in the example world. . 26

2-3 The Noisy-OR combination rule . . . . . . . . . . . . . . . . . . . . . 29

4-1 The RRL blocks world. The goal is to achieve on(a,b). . . . . . . . . 43

4-2 The deterministic world used by our system. The table is made of
three table blocks, which may be subject to move attempts but are
actually fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4-3 The DLAB template for the deterministic blocks world. This template
describes rules for how actions, in conjunction with pre-conditions
and/or a goal predicate, either produce a certain reward (either 1.0
or 0.0) or influence a single state predicate. In other words, it de-
scribes a mapping from actions, state elements, and the goal predicate
into a reward value of 1.0, a reward value of 0.0, or the post-state of
a state element. The expression 1-1 before a set means that exactly
one element of the set must appear in the rule; similarly, 3-3 means
exactly three elements, 0-len means zero or more, etc. . . . . . . . . 47

4-4 Sample output from the planning experiment in the deterministic small
blocks world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4-5 The large stochastic blocks world. The table is made up of fixed,
indistinguishable table blocks that may not be the subject of a move
action. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4-6 The DLAB template, without background knowledge, used in the com-
plex block-stacking task in the large stochastic world. . . . . . . . . . 55

9



4-7 The DLAB template, with background knowledge about next-to used
in the complex block-stacking task. . . . . . . . . . . . . . . . . . . . 55

4-8 The DLAB template used in the simpler stochastic block-stacking task.
The same template was used in all stochasticity versions of the task. . 60

4-9 CLAUDIEN rules for the high-stochasticity version of the stacking task. 61

4-10 CLAUDIEN rules for the mid-stochasticity version of the stacking task. 61

4-11 CLAUDIEN rules for the low-stochasticity version of the stacking task. 62

4-12 Hand-coded rules, and corresponding probabilities, for the high-stochasticity
version of the stacking task. . . . . . . . . . . . . . . . . . . . . . . . 63

4-13 Hand-coded rules, and corresponding probabilities, for the mid-stochasticity
version of the stacking task. . . . . . . . . . . . . . . . . . . . . . . . 63

4-14 Hand-coded rules, and corresponding probabilities, for the low-stochasticity
version of the stacking task. . . . . . . . . . . . . . . . . . . . . . . . 63

4-15 Plot of cumulative reward for the hand-coded rules in the one-step
planning experiments. . . . . . . . . . . . . . . . . . . . . . . . . .. 65

4-16 Plot of cumulative reward for CLAUDIEN rules in the one-step planning
experim ent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4-17 A small, example world for illustrating the DBN that results from
applying rules from the hand-coded set. . . . . . . . . . . . . . . . . . 67

4-18 The DBN induced by applying-the hand-coded rules to the example
world in Figure 4-17 and the action move (n3, n1). It is sparse enough
that a combination rule does not need to be applied. . . . . . . . . . 69

4-19 Initial configuration of blocks in all the one-step planning experiments.
The configuration can also be seen schematically in Figure 4-5. Each
block is represented by a pair of square brackets around the blocks'
name and the first letter of the block's color (e.g., block n20 is red;
nOO is a table block). . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-20 Output from the CLAUDIEN rules in the low-stochasticity one-step task. 71

4-21 Output from the hand-coded rules in the low-stochasticity one-step task. 72

4-22 The smaller world used in the three-step planning experiments. . . . 73

10



4-23 Initial configuration of blocks in the three-step planning experiments.
The configuration can also be seen schematically in Figure 4-22. . . . 73

4-24 Output from the CLAUDIEN rules in the low-stochasticity three-step task. 74

4-25 Output from the hand-coded rules in the low-stochasticity three-step
task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

11



List of Tables

2.1 The conditional probability table for ontable (c). . . . . . . . . . . . 27

4.1 Parameters tested in the one- and multi-step planning experiments. . 64

12



Chapter 1

Introduction: Why Objects?

When human agents interact with their world, they often think of their environment

as being composed of objects. These objects (chairs, desks, cars, pencils) are often

described in terms of their properties as well as in terms of their relationship to the

agent and to other objects.. Abstracting the world into a set of "objects" is useful not

only for achieving a representation of what the agent perceives, but also for giving the

agent a vocabulary for describing the goals and effects of its actions. Any "object"

with the right set of properties can be the target of an action that knows how to

handle objects with such properties, regardless of the specific object's identity. For

example, if I have learned how to drink from a certain cup, then I should expect to be

able to transfer my knowledge when presented with a different cup of approximately

the same size and shape.

I want to build an artificial agent that can reason about objects in the world. Such

an endeavor raises important questions about how objects in the world should be

represented. When AI researchers first attempted to build systems that could han-

dle a world with objects, a common approach was to use a first-order representation

of the world and to learn properties about the world via inductive logic program-

ming systems [43]. Traditional logic programming systems, such as those based on
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the language Prolog, are powerful, but they unfortunately require the world to be

deterministic.

In contrast, for dealing with the world probabilistically, Bayesian networks [48] pro-

vide an elegant framework. The difficulty with Bayes' nets, however, is that they

are only able to manage propositional representations of state; that is, each node in

the network stands for a particular attribute of the world and represents it as a ran-

dom variable. The limitations of propositional representations are well-known: with

propositional representations of the world, it is hard to reason about the relation-

ships between concepts in general; all instances of the concept must be articulated

and represented explicitly.

Consequently, there has been much recent interest in probabilistic extensions to first-

order logic; that is, in ways to represent the world relationally (as in logic program-

ming) and to reason about such representations in a manner that can handle uncer-

tainty (as in Bayesian networks).

Probabilistic logic systems seek to answer queries about the world from probabilistic

relational knowledge bases. This is important for an agent who needs to reason in a

non-deterministic environment with objects. The concrete question I am interested

in is how an agent with probabilistic relational knowledge might use its knowledge in

order to act.

In general, there are two basic approaches for an agent to develop courses of action.

The first, and simplest, is to directly learn a mapping from observations to actions

without explicitly learning about how the world works. This approach, within a

relational context, has been investigated by recent work on relational reinforcement

learning [23, 21]. The second approach is to try to build up some kind of model of

the world, and to use this model to predict the effects of actions.

If the agent has a model of the world, it can query this model and use the resulting

predictions to make a plan. Traditionally, the complexity of the planning problem
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scales badly with the size of the world representation. Kearns et al. give an algorithm

for a sparse, approximate planning algorithm that works with a generative model of

the world [31]. Unfortunately, a major difficulty is that acquiring a generative model

of the world, in practice, is often intractable.

The system described in the following pages is an attempt to build an artificial agent

that represents objects with a relational representation, builds a generative world

model with probabilistic rules [15], and acts by sparse planning with the (potentially

incomplete) model. The probabilistic rules that I consider are quite simple: they

probabilistically map a first-order representation of a state situation and action to

the first-order representation of the resulting state.
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Chapter 2

Background

This chapter discusses some of the previous work that motivated this study. It ex-

amines some previous approaches to representing objects, learning in worlds with

objects, and reasoning probabilistically about objects.

For the purposes of illustration, let us consider the following running example, seen

in Figure 2-1. In this very small blocks world, there are three blocks; the blocks have

certain properties and they are related to each other in certain ways. For example,

block b is stacked on top of block a, and block c has nothing on top of it. Furthermore,

we may have some general knowledge that it is only reasonable to try to move a block

if it has no other blocks on top of it, and we might want to apply this knowledge to

the block c. How to write down these properties, relations, and rules meaningfully is

thus the subject of the following section.

JILLFb

Figure 2-1: How should we represent the blocks and the relationships between the
blocks in this example blocks world?
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2.1 Representational Approaches to Worlds with

Objects

When attempting to represent a world as being composed of objects, there are a

number of ways to proceed. Below, we take a look at two approaches that have been

considered in the past.

2.1.1 Relational Representations

The typical approach to describing objects and their relations is with a relational

representation. For example, to describe the small blocks world shown in Figure 2-1,

we could begin by writing down the following relational description:

on(b, a)
nextto (c, a)
ontable (c)
ontable (a)
clear (b)
clear (c)

Relational representations have a great deal of expressive power. For example, we

can articulate our rule for moving clear blocks onto other clear blocks in a way that

is not specific to any individual object:

VC, B. clear(C) A clear(B) A move(C, B) -+ on(C, B)

This ability to generalize, to talk about any object satisfying particular properties, is

what makes relational representations so appealing as a descriptive language. This

is in contrast to propositional, or attribute vector, representations, which must refer

to each individual object by name. Thus, when we want to represent a piece of

knowledge, it must be repeated for every individual object in our universe:

17



clear(a), clear(b), move(a,b) -+on(a,b)
clear(a), clear(c), move(a,c) -+on(a,c)
clear(b), clear(a), move(b,a) -+on(b,a)
clear(b), clear(c), move(b,c) -+on(b,c)

Even though relational representations are very convenient for describing situations

succinctly, the question of how best to learn policies using a relational representa-

tion remains an open problem. The most widely used reinforcement learning al-

gorithms [55] all require propositional representations of state. Thus, even though

relations are a compact and powerful way of articulating knowledge and policies,

learning in such an expressive space remains difficult for standard methods.

2.1.2 Deictic Representations

Deictic representations hold the promise of potentially bridging the gap between

purely propositional and purely relational representations. The term deictic rep-

resentation came into common use with the work of Agre and Chapman on the Pengi

domain [2]. It comes from the Greek word deiktikos, which means "to point": a de-

ictic expression is one that uses a conceptual marker to "point" at something in the

environment, for example, the-block-that-I'm-looking-at. An agent with an attentional

marker on block c might describe the blocks world in Figure 2-1 like this:

ontable (the-block-that-I'm-looking-at) .
clear (the-block-that-I'm-looking-at) .
has-block-nextto (the-block-that-I'm-looking-at) .

Deictic expressions themselves are propositional. Generalization is obtained by ac-

tively moving the marker, or focus of attention, about. Depending on whether the

agent is looking at block a, b or c, it will be able to use its knowledge about the-

block-that-I'm-looking-at in an adaptive way: the meaning of the attentional marker

is relative to the agent and the context in which it is being used.

18



At one extreme, essentially replicating a full propositional representation, the agent

could have one marker for each object in its environment. In general, however, this

is undesirable: the appeal of a deictic representation rests on the notion of a limited

attentional resource that the agent actively directs to parts of the world relevant to

its task. As a result, a deictic representation generally results in partial observability:

the agent can directly observe part of its state space, but not all of it. So, while

standard propositional reinforcement learning methods can be applied directly to

a deictic representation, the partial observability is problematic for many learning

algorithms [241.

2.2 Acting in Worlds with Objects: Value-Based

Approaches

This section describes recent work in value-based approaches to learning with rela-

tional and deictic representations. As previously noted, a simple way to learn how

to act is to learn a mapping from observations to actions without explicitly learning

about how the world works. This approach is known as model-free reinforcement

learning [55]. Recent work in reinforcement learning has focused on investigating rep-

resentations that have generalization properties while remaining amenable to model-

free approaches [23, 21]. The reason for investigating alternative representations is

to avoid the limitations of propositional representations: because propositional repre-

sentations are grounded in terms of specific objects, as soon as the world or the task

changes slightly, the agent is forced to re-learn its strategy from scratch.

2.2.1 Relational Reinforcement Learning

The work of Dzeroski, De Raedt, and Driessens [19] on relational reinforcement learn-

ing uses a tree-based function approximator to approximate the Q-values in a rela-
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tional blocks world.

The relational reinforcement learning (RRL) algorithm is a logic-based regression

algorithm that assumes a deterministic, Markovian domain. The planning task in-

cludes:

" A set of states. The states are described in terms of a list of ground facts.

" A set of actions.

" A set of pre-conditions on the action specifying whether an action is applicable

in a particular state.

" A goal predicate that indicates whether the specified goal is satisfied by the

current state.

" A starting state.

In its basic form, the algorithm is a batch algorithm that operates on a group training

episodes. An episode is a sequence of states and actions from the initial state to the

state in which the goal was satisfied. There is also an incremental version of the

algorithm, described by Driessens [19]. Here is the basic RRL algorithm:

1. Generate an episode; that is, a sequence of examples where each example con-

sists of a state, and action, and the immediate reward.

2. Compute Q-values [56] for each example in the episode, working backwards

from the end of the episode. The last example in an episode (i.e., the one in

which the goal is achieved) is defined to have a Q-value of zero. The Q-values

are computed with the following rule, where the Q-value for example j is being

computed from example j + 1:

Q (s, a) +- rj+1 + ymaXa/Q(sj+1, a').

20



3. Present the episode, labeled with the computed Q-values, to the TILDE-RT [15]

algorithm. Given labeled data, TILDE-RT induces logical decision trees. In the

case of RRL, the decision trees would specify which predicate symbols in the

state description are sufficient to predict the Q-value for that state.

RRL assumes a deterministic domain. It stores all the training examples and re-

generates the decision tree (also called regression tree, or Q-tree) from scratch after

each episode.

In the longer version of the paper ([21, 22]), Dzeroski et al. augment the batch RRL

algorithm by learning what are called P-trees in addition to the Q-trees. The basic

problem is that value functions implicitly encode the "distance to the goal"; in the

case of blocks world, this limits the applicability of the learned value function when

moving to a domain with a different number of blocks. Thus, given a Q-tree, a P-tree

can be constructed that simply lists the optimal action for a state (i.e., the action

with the highest Q-value) rather than storing explicitly the Q-value for each action.

Dzeroski et al. find that policies taken from P-trees generalize best when the Q-tree is

initially learned in small domains; then, the P-tree usually generalizes well to domains

with a different number of blocks.

Additionally, the authors noted that for more complicated tasks (namely, achiev-

ing on(a,b)) learning was hindered without a way to represent some intermediate

concepts, such as clear (a), or number-of-blocks-above (a, N). They note that be-

ing able to express such concepts seems key for the success of policy learning. The

apparently "delicate" nature of these intermediate concepts, their inherent domain

dependence, argues strongly for a system that can define such concepts for itself.

The incremental version [19] uses an incremental tree algorithm based on the G

algorithm of Chapman and Kaelbling [12] to build the regression trees as data arrives.

Apart from the difficulties inherent to growing a decision tree incrementally,1 the main

'Namely, having to commit to a branch potentially prematurely. See the discussions in [19, 23]
for details.
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challenge presented by the relational formulation is in what refinement operator to

use for proposing new tree branches. In contrast to the propositional case, where a

query branch is refined2 by simply proposing to extend the branch by a feature not

already tested higher in the tree, in the relational case there are any number of ways

to refine a query. Proposing and tracking the candidate queries is a difficult task, and

it is clearly an important and open problem.

2.2.2 Reinforcement Learning With Deictic Representations

Deictic representation is a way of achieving generalization that appears to avoid some

of the difficulties presented by relational representations. Because of their propo-

sitional nature, deictic representations can be used directly in standard reinforce-

ment learning approaches. However, the consequence of having limited attentional

resources is that the world now becomes partially observable; that is to say, it is

described by a partially observable Markov decision process (POMDP) [49].

When the agent is unable to determine the state of the world with its immediate

observation, the agent must refer to information outside of the immediate perception

in order to disambiguate its situation in the world. The typical approaches are to

either add a fixed window of short-term history [42, 41] or to try to build a gener-

ative model of the world for state estimation [30, 36]. Reinforcement learning with

the history-based approach is simple and appealing, but there can be some severe

consequences stemming from this approach [23].

Finney et al.[24] showed that using short-term history with deictic representations

can be especially problematic. They studied a blocks-world task in which the agent

was given one attentional marker and one "place-holding" marker. The environment

consisted of a small number of blocks in which the task was to uncover a green block

and pick it up. The agent was given actions to pick up blocks, put down blocks,

2"Refining a query" is sometimes spoken of as "adding a distinction" to a tree branch.
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and move the attentional marker. At each time step, the agent received perceptual

information (color, location, etc) about the block on which the attentional marker was

focused. Neuro-dynamic programming [7] and a tree-based function approximator [12]

were used to map short history sequences (i.e., action and observation pairs) to values.

This approach generates a dilemma. Because the history the agent needs in order

to disambiguate its immediate observations depends on the actions it has executed,

until it has learned an effective policy, its history is usually uninformative. It is even

possible, with a sufficiently poor action choices, to actively push disambiguating in-

formation off the end of the history window. Alarmingly, this can happen regardless

of the length of the history window. This difficulty was also noticed by McCallum in

his work on reinforcement learning with deictic representations [41]. McCallum was

able to get around this problem by guiding the agent's initial exploration. Neverthe-

less, the question of how best to use your history when you do not yet know what to

do is a very fundamental bootstrapping problem with no obvious solution.

2.3 The Case for a World-Model

The challenges presented by model-free, value-based reinforcement learning, with both

relational and deictic representations, argue compellingly for a model with which to

estimate the state of the world.

When the agent has a generative model of the world, it can query this model to

decide its next action. The idea of an agent with some knowledge of world dynamics

is appealing because then the agent is able to hypothesize the effects of its actions,

rather than simply reacting to its immediate observation or to windows of history. A

model allows the agent to plan its actions based on the current state of the world,

rather than having to compute a whole policy in advance. However, the complexity

of generating a plan typically scales badly with the size of the world representation

and the number of possible actions. To address the scaling problem, Kearns et al.
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give an algorithm for a sparse, approximate planning algorithm that works with a

generative model of the world [31].

A major difficulty is that learning a full generative model of the world is often hope-

lessly intractable. It is often unreasonable to expect the agent to come up with a full

model of the world before it can begin to act. Intuitively, it seems likely that the

agent should be able to begin to apply whatever knowledge it has as soon as it is

acquired.

This is the major thrust of this work: exploring what it means to plan with a world

model that is by necessity incomplete and perhaps inconveniently redundant.

2.4 Reasoning with Probabilistic Knowledge

When an agent's knowledge about the world is incomplete, the theory of probability

becomes extremely useful. Probability theory gives a powerful way to address the

uncertainty brought on by missing information. The converse of not having enough

information is having pieces of evidence that overlap. How to reconcile bits of knowl-

edge when their predictions about the next state of the world overlap is another

important issue that requires probability theory.

The approach described in this work adopts the spirit of direct inference: it takes gen-

eral statistical information and uses it to draw conclusions about specific individuals,

or situations. Much of the work in direct inference depends on the notion of finding

a suitable reference class [50] from which to draw -conclusions. That is to say, given

a number of competing pieces of evidence, which piece of evidence is the correct one

to apply in the current specific situation? This is a deep problem, addressed in detail

by Bacchus et al. [3]. My approach is to adopt some assumptions about the evidence,

and then to combine the evidence using standard probability combination rules that

make those same assumptions. Combining the evidence in this way is appealing for
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its simplicity and speed, and it should lead to reasonable performance within the

constraints of the assumptions.

2.4.1 An Example: When Rules Overlap

Let us see what this means in the context of our example. Say we have two first-order

rules as follows.

1. With probability 0.1: move(A, B) clear(A) -* ontable(A)

2. With probability 0.3: move(A, B) slippery(B) - ontable(A)

These rules express the knowledge that

1. In general, moving any block A incurs some small probability of dropping the

block onto the table.

2. Moving any block A onto a slippery block can result in block A falling on the

table.

If we are considering a move (c,b) action, both of these rules apply. What probability

should we assign to ontable (c)? That is, how should we compute

P(ontable(c) I move(c,b), clear(c), slippery(b))?

Let us describe the probability distribution over next states by the dynamic Bayesian

network (DBN) shown in Figure 2-2. To be fully specified, the conditional probability

table in the DBN for ontable (c) needs to have entries for all of its rows.

The basic problem is that the conditional probability tables (CPTs) associated with

the logical rules do not define a complete probability distribution in combination.

That is, the rules only give us the following information:
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move(c,b)

clear(b) clear(b)

clear(c) clear(c)

slippery(b) slippery(b)]

ontable(a): ontable(a):

ontable(c) ontable(c)

on(b,a) on(b,a)

Figure 2-2: The DBN induced by the move (c, d) action in the example world.

1. P( ontable(c) I move(c,b), clear(c)) = 0.01, from Rule 1, and

2. P( ontable(c) J move(c,b), slippery(b)) = 0.03 from Rule 2.

To simplify the notation, let us refer to the random variable ontable(c) as 0; move(c, b)

as M; slippery(b) as S; and clear(c) as C. If ontable(c) ranges over ontable(c) and

-ontable(c), then we abbreviate it by saying 0 ranges over o and -,o. And so on

for the other random variables.

One way to compute the probability value we need, i.e., P(o I m, s, c) is to adopt a

maximum entropy approach, and to search for the least committed joint probability

distribution P(0, M, S, C) that satisfies the three constraints:

a, = P(o I m, c)

= P(o, m, c)/P(m, c)

= EP(So,m,c)/EP(SOm,c)
S So
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move(c,b) clear(c) slippery(b) P( ontable(c) )
,move (c,b) -,clear (c) -slip(b) P( -- move(c,b), -,clear(c), -,slip(b) )
-move (c ,b) -,clear (c) slip(b) P( - -move(c,b), -,clear(c), slip(b)

-move (c,b) clear(c) -,slip(b) P( - -move(c,b), clear(c), -,slip(b) )
-move(c,b) clear(c) slip(b) P( - -move(c,b), clear(c), slip(b)

move(c,b) -clear (c) -,slip(b) P( -I move(c,b), -clear(c), -,slip(b) )
move(c,b) -,clear (c) slip(b) P( - move(c,b), -clear(c), slip(b) )
move (c ,b) clear(c) -slip (b) P( -I move(c,b), clear(c), -,slip(b) )
move(c,b) clear(c) slip(b) P( - f move(c,b), clear(c), slip(b)

Table 2.1: The conditional probability table for ontable (c).

a1 Z P(S, o, m, c)
S

= ZP(S, O, m, c),
s,O

a2 = P(o l m, s)

= P(o, m, s)/P(m, s)

= EP(Co,m,s)/EP(CO,m,s)
C CO

a2 Z P(C, o, m, s)
C

1

= ZP(C, 0, m, s), and
C,o

S E P(SOM,C),
S,O,M,C

and maximizes

(2.4)E P(S, 0, M, C) log P(S, O, M, C).
S,O,M,C

Having found such a distribution, we could solve for P(o I m, s, c) by setting it equal

to

P(o, m, s, c)
P(o j m, s, c) - .P(O mSC)

EO P(0, M, S, C)

However, the maximum entropy approach requires a maximization over 24 unknowns:

P(o, m, s, c), P(o, m) s, - c), P(o, m, -s, -c), etc. In general, for a rule with n variables,

we will have 2" unknowns.
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But this calculation seems like overkill: all we really want is to predict the value of

P(ontable(c)) for the current situation; that is, the situation in which O=o, M=m,

S=s, and C=c. Furthermore, it has been observed that maximum entropy approaches

exhibit counter-intuitive results when applied to causal or temporal knowledge bases

[28, 48]. If we assume we have some background knowledge, there is no need to be

as non-committal as maximum entropy prescribes. In fact, a useful way to articulate

domain knowledge when it comes to combining rules with under-specified CPTs is

through a combination rule.

A combination rule is a way to go from a set of CPTs,

P(alaii, . , aini)

P(aja2 , ,a2n2

P(alami, ,amnm)

to a single combined CPT,

P(alai, an

where {ai, -- -, an} C UTM{aj, - ai}.

In general, a combination rule is a design choice. In this work, I used the Noisy-OR

combination rule and the Dempster combination rule [53].

The Noisy-OR rule is a simple way of describing the probability for an effect given

the presence or absence of its causes. It makes a very strong assumption that each

causal process is independent of the other causes: the presence of any single cause

is sufficient to cause the effect, and absence of the effect is due to the independent

"failure" of all causes. Consider an example with four random variables, A, B, C, D

(respectively ranging over a and -,a, b and -,b, etc.) shown in Figure 2-3. Say we

want to compute P(c I a, b, d), and that we know:
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P(c a, b)
P(c d, b)
P(c I a)

a1 ,
a 2,

a 3-

The model in Figure 2-3 describes the idea that the random variables A, B, D each

influence intermediate variables, X, Y, Z: conceptually, the probability of X being

"on" is a3 , the probability of Y being "on" is a1 , and the probability Z being "on"

is a 2. These intermediate variables in turn influence C. Noisy-OR asserts that if

any one of X,Y, or Z is "on," that is sufficient to turn C "on" .3 Noisy-OR asserts

that the probability of C being "off" is equal to the probability of X,Y, and Z all

independently failing to be "on." Therefore, according to Noisy-OR:

P(c a,b,d) = 1- ((1 -P(y l a,b))(1 - P(z i b,d))(1 - P(x I a)))

= 1 -((1 -a1)(1 -a2)(1 - a3)).

A B D

x Y Z

deterministic OR gate

C

Figure 2-3: The Noisy-OR combination rule.

The Dempster combination rule assumes that the competing rules axe essentially

independent; that is, it asserts the sets of situations described by each rule overlap

only on the current query situation. Each probabilistic rule represents the proportion

of the predicted effect in its corresponding set. It has the underlying notion that the

proportions of evidence are, in some sense, cumulative. Thus, if a is the probability

31n other words, "turning C on" means to assign C the value c and not -,c.
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that rule i gives to P(c), then the Dempster rule states:

P(c I a,b,d) = r& .
fe ai + li(l -ai)

Both combination rules make fairly strong independence assumptions about the com-

peting causes. The Dempster rule assumes an additive quality about the evidence

(which seems appropriate in the case where we search for high-probability rules about

action effects), but the Noisy-OR rule is simpler to compute. That being said, there

are any number of ways to go from a set of rules to a single probability (e.g., choos-

ing the most specific rule, computing a consistent maximum entropy distribution,

etc.); in general, combination rules are ad hoc and assume particular characteristics

about the domain. Combining evidence in the general case is truly hard; the reader

is again referred to Bacchus et al. [3] for the analysis and discussion of a more general

approach.

2.5 Related Work in Probabilistic Logic

Bayesian networks are well known for their ability to manage probabilities associ-

ated with world knowledge, but they generally handle only propositional knowledge.

Extending relational, or first-order, representations so that they can be managed

probabilistically is therefore an important area of study. Ground has been broken in

this area by Ngo and Haddawy [45], Koller and Pfeffer [35], Jaeger [29], Russell and

Pasula [47], Lukasiewicz [37]. Kersting and De Raedt provide a nice survey of these

approaches [32].

The probabilistic relational models (PRMs) of Koller and Pfeffer, inspiring the subse-

quent work by Pasula and Russell, bring in elements from object-oriented databases

and couch the qualitative state information in terms of the entity/relationship model

from that literature, instead of in terms of logical clauses. The PRM framework pro-
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vides a mechanism for combining CPTs in the form of "aggregate functions," which

again are provided by the designer. In contrast, the work of Lukasiewicz on proba-

bilistic logic programming gets around the question of combination rules by specifying

that the CPTs should be combined in a way that produces the combined probability

distribution with maximum entropy.

Kersting and De Raedt give an interesting synthesis of these first three approaches

and provide a unifying framework, called "Bayesian Logic Programs." A Bayesian

Logic program consists of two parts: a set of logical clauses qualitatively describing

the world, and a set of conditional probability tables (CPTs), plus a combination

rule, encoding quantitative information over those clauses. The way logical queries

are answered in this framework is by building up a tree structure that represents the

logical proof of the query; the probabilistic computations are propagated along the

tree according to the specified combination rule.

I adopt a rule-based approach, rather than the Bayesian Logic or PRM approach,

because of the need to express temporal effects of actions. PRMs provide a rich

syntax for expressing uncertainty about complex structures; however, the structure

I need to capture is dynamic in nature. It is not immediately clear if the extension

from static PRMs to dynamic PRMs is as straightforward as the DBN case. More

fundamentally, PRMs require a fully described probability distribution. That is, that

every row in the conditional probability tables for every slot must be filled in. For the

purposes of modeling the immediate effect of a chosen action, however, such detail is

hard to come by and may not be actually needed (see discussion above). For these

reasons, the simpler approach of probabilistic rules in conjunction with a combination

rule seems more appropriate for modeling the effects of actions in a relational setting.
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2.6 Related Work in Policy Learning for Blocks

World

Apart from the traditional planning work in blocks worlds, there is an interesting

line of work in directly learning policies for worlds not represented in a first-order

language.

Martin and Geffner [39], and Yoon et al. [57] use concept languages to find generalized

policies for blocks world. They build on the work of Khardon [33], who first learned

generalized policies for blocks world within a first-order context. The basic approach

is to start with a set of solved examples (usually obtained by solving a small instance

of the target domain with a standard planning algorithm, called the teacher). Then,

a search through the language space is conducted to find rules which best cover

the examples. Khardon's approach is to enumerate all the rules possible within the

language, and then to use a version of Rivest's algorithm for learning decision lists [52]

to greedily select out the "best" rule, one by one, until all the training examples are

covered. The learned policy, then, is articulated in the form of a decision list: the

current state is compared to each condition in the list, and the action specified by

the first matching rule is taken. The resulting policy is able to solve instances of the

problem that the teacher is unable to solve.

Martin and Geffner expand on Khardon's work by moving from a first-order language

to a concept language [9, 10, 44]. They notice that the success of Khardon's approach

hinges on some intermediate support predicates that had to be coded into the repre-

sentation by hand. For example, Khardon includes a predicate that indicates whether

a block is a member of the set of blocks that are inplace; that is, blocks that have

been correctly placed so far, given the goal specification. They reason that the ability

of a concept language to express knowledge of sets or classes of objects would make

it possible to learn concepts like inplace automatically.

Yoon et al. take the work further in two steps. First, they use a greedy heuristic
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search to find the "best" rules, rather exhaustively enumerating of all the rules in the

language space first. Second, they use bagging [11] to assemble a set of of decision-

list policies (each trained on a subset of the training examples). The ensemble then

chooses the action at each time step by voting.

Baum [5, 6] uses evolutionary methods to learn policies for a propositional blocks

world. Each individual that is evolved represents a condition-action pair. Then,

each individual learns how much its action is worth, when its condition holds, using

temporal difference learning. Baum calls this the individual's bid. When it comes

time to choose an action, the applicable individuals bid for the privilege of acting;

the individual with the highest bid will get to execute its action. The learning of

bids is described as an economic system, with strong pressure on each individual to

learn an accurate value for itself. Individuals of low worth are eliminated from the

pool, and evolutionary methods are applied to the individuals that succeed. What's

interesting about this approach is that the learning, of both the rule conditions, and

of the action values, is completely autonomous.

The above work represents successful instances of planning in blocks world: these

systems aim to find policy lists that prescribe an action given certain conditions. The

approach taken here is different, however. I am interested in modeling the dynamics

of a relational domain (rather learning a policy ahead of time). Accordingly, I will

pursue the approach of using first-order rules to probabilistically describe the effects

of actions.
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Chapter 3

Reasoning System: Theoretical

Basis

We want to represent the world as a set of first-order relations over symbolic objects in

order to learn a definition of the world's dynamics that is independent of the specific

domain. The first-order rules in our system describe knowledge in the abstract, like

a skeleton in the PRM sense [26, 25]. To use abstract knowledge for reasoning about

concrete world situations, we take the approach of direct inference [50]. That is to say,

we ground the rules' symbols by resolving the rules against the current state, and then

we make conclusions about the world directly from the grounded rules. In the rest

of this document, the use of italic font in a rule denotes abstract, world-independent

knowledge, and fixed-width font denotes ground elements.

Let us define a relational, or first-order, MDP as follows. The definition is based on

the PSTRIPS MDP as defined by Yoon et al. [57].

A relational MDP has a finite set of states and actions. The actions change the state

of the world stochastically, according to the probability distribution P(s, a, s'). There

is a distribution R(s, a) that associates each state and action pair stochastically with

the immediate real-valued reward.
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" States: The set of states is defined in terms of a finite set S of predicate symbols,

representing the properties (if unary) and relations (if n-ary) among the domain

objects. The set of domain objects is finite, as well.

" Actions: The set of actions is defined in terms of action symbols, which are

analogous to the predicate symbols. The total number of actions depends on

the cardinality (that is, the number of arguments) of each action and the number

of objects in the world.

" Probability and reward distributions: For each action, we construct a dynamic

Bayesian network [16] that defines the probability distribution over next states

and rewards.

3.1 Probabilistic Inference with Incomplete Infor-

mation

Given a set of rules about how the agent's actions affect the world, we would like to

turn them into a usable world model. We want to pull out those rules that apply

to the current situation and use them to generate, with appropriate likelihood, the

expected next situation.

To continue with our example, a first-order MDP description of the world in Figure 2-1

would be as follows.

* Set of predicate symbols:
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e Set of action symbols:

Arity Description Example

move binary Move a block onto the top of another. move(a,b)

e The probability distribution over next states, P, and over next reward, R, can

be represented with a dynamic Bayesian network (DBN) for each action. Say

we are considering the the move (a, b) action that the applicable rules are

1. With probability 0.1: move(A, B) clear(A) -+ ontable(A), and

2. With probability 0.3: move(A, B) slippery(B) -+ ontable(A)

It should be immediately clear that the conditional probability tables on each arc of

the DBN are incomplete, as we described in the previous chapter. What should the

distribution be over clear(a), on(a,b)? What should it be for the state elements

with no rules? What should the value of the reward be?

We need a precise definition of what to do when:

1. More than one rule influences a subsequent state element, or

2. No rule influences a subsequent state element.
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Arity Description Example

clear unary Whether a block is clear. clear(a)

slippery unary Whether a block is slippery. slippery(a)

ontable unary Whether a block is on the table. ontable (a)

on binary Whether a block is on top of another. on(a,b)

nextto binary Whether a block is beside another. nextto(a,b)



Both of these problems result from incomplete information. The solution for the first

item lies in finding a distribution that is consistent with the information available.

The solution to the second problem additionally requires making some assumptions

about the nature of the domain.

An appropriate way to express such domain knowledge is through the use of a com-

bination rule, as described in the previous chapter. The system assumes a relatively

static world and that the state elements may take on any number of discrete values

(up until now, our examples have been with binary-valued state elements). Thus, we

adopt the following approach:

1. If there is no information about a particular dimension, the value will not change

from one state to the next, except for some small "leak" probability with which

the dimension might take on a value randomly. In the experiments that follow,

the "leak" probability was 0.01.

2. If there is more than one rule with influence on a particular value for a state

element, their probabilities are combined via a combination rule. This yields

the probability of generating that value.

Now, here comes a crucial assumption. For a given state element, the system takes all

of the pieces of evidence for a value and normalizes their probabilities. This means,

for example, that if the applicable rules only mention one particular value, then after

normalizing that value gets a probability of one. It a value is not mentioned by any

rule, it gets a probability of zero.' Knowledge about how the rules are acquired is

important here. For example, if we do not have a rule about a particular situation, and

we can safely assume that a lack of a rule implies a lack of meaningful regularity-

'Perhaps a better alternative would have been to divide the remaining mass evenly among the
remaining possible values; however, this puts one into the awkward position of having to articulate
all the possible (and potentially never-achieved) values of a perceptual dimension. The system does
allow, however, for the user to explicitly supply an "alternative" value - if such a value is available,
it can be generated with the leak probability of E, and the rest of the probability mass is normalized
to 1 - E. In general, however, such "alternate" values are unknown.
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then, in this case, it is probably fine not to consider values that do not appear

explicitly in any of the rules for the situation in question. The dimension's next

value, then, is generated by choosing a value according to the normalized probability

distribution.

3.2 Using Probabilistic Relational Rules as a Gen-

erative Model

The relational generative model consists of a set of relational rules, represented as

Horn clauses, called the rule-base. Optionally, it can contain a set of background

facts, called the bgKB. When queried with a proposed action and a current state, the

model outputs a sampled next state and the estimated immediate reward.

Here are the steps for generating the next state and reward:

1. Turn the action and current observation into a set of relational predicates. Call

it the stateKB. If background knowledge exists, concatenate the bgKB to the

stateKB to make a new, larger, stateKB.

2. Compare each rule in the rule-base against each predicate in the stateKB. Given

a particular rule, if there is a way to bind its variables such that the rule's

antecedents and action unify against the stateKB (i.e., if the rule can be said

to apply to the current state), then:

(a) Add the rule, along with all the legal bindings, to the list of matching rules.

(b) "Instantiate" the rule's consequent (i.e., right-hand side) according to each

possible binding. This generates a list of one or more instantiated con-

sequences, where each instantiation represents evidence for a particular

value for a state element. Associate each instantiation with the probabil-

ity recorded for the rule.
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3. For each state dimension, look through the list of matching rules for instantia-

tions that give evidence for a value for this dimension. Collect the evidence for

each value.

(a) If there is more than one piece of evidence for a value, then compute a

probability for the value according to the combination rule.

(b) Normalize the probabilities associated with each value, so that the proba-

bilities for each value sum to one.

(c) Generate a sampled next value for this state dimension according to the

normalized probabilities.

4. For the reward, look through the list of matching rules for instantiations that

give evidence for a reward value. Compute a weighted average across all the

reward values.

3.2.1 The Sparse-Sampling Planner

The generative world models produced by the above rules are by necessity stochastic

and incomplete; whatever planning algorithm is used must take this uncertainty into

consideration. To this end, I implemented the sparse-sampling algorithm by Kearns,

Mansour and Ng [31]. In contrast to traditional algorithms where the search examines

all the states generated by all the actions, the sparse sampler uses a look-ahead

tree to estimate the value of each action by sampling randomly among the next-

states generated by the action. As with all planning algorithms, this algorithm has

the disadvantage of scaling exponentially with the horizon; but, the sparse-sampling

trades that off with the advantage of not having to grow with the size of the state

space.

The algorithm's look-ahead tree has two main parameters: the horizon and the width.

These parameters depend on the discount factor, the amount of maximum reward, and

the desired approximation to optimality. Kearns et al. provide guaranteed bounds on
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the required horizon and width to achieve the desired degree of accuracy. However,

with a discount factor of 0.9, a maximum reward of 1.0, and a tolerance of 0.1, for

example, the computed parameters are a horizon of 80 and a width of 2, 147,483,647.

Such numbers are, unfortunately, not very practical. As a result, the authors offer

a number of suggestions for the use of the algorithm in practice, such as iterative

deepening, or standard pruning methods.

However, there is unavoidable computational explosion with the depth of the horizon.

It becomes especially acute if the action set size is anything but trivial (i.e., less than

5 actions). Although it is true that the number of state samples required is bounded

(by the width parameter; in other words, the number of states that are sampled does

not grow with the size of the state space) in order to estimate each sample's value,

we need to find the maximum Q-value for the sampled state. This involves trying out

each action at each level of depth in the tree, resulting in a potentially huge fan-out

at each level. While it is possible to try to keep the action set small, it is not clear

what solutions are available if one genuinely has a large action set, however. In the

case of blocks world, for example, a large number of blocks produces a huge number

of move(A, B)-type actions; in fact, the number of actions grows quadratically with

the number of blocks.

This system does not try to prune the action explosion at all, although this is clearly

desirable. The width and depth are set to rather arbitrary small values; the idea is

to allow some degree of robustness, while at the same time permitting manageable

computation time.

3.2.2 CLAUDIEN: Learning Probabilistic Rules

The CLAUDIEN system is an inductive logic engine for "clausal discovery" [15, 14]. It

discovers clausal regularities in unclassified relational data. CLAUDIEN operates by a

general-to-specific search to find a hypothesis set of clauses that best characterize the
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presented data. It assumes a closed world - predicates that are not explicitly listed

as true are assumed to be false.

CLAUDIEN is a batch system that takes as input a set of training examples. It then

"data mines" the training set for the most compact set of Horn-clause rules that

entail the examples in the set. Any variables in the rules are implicitly universally

quantified.

The search space is specified by the user in terms of declarative bias [17]. This

bias, which describes the set of clauses that may appear in a hypothesis, is provided

according to the rules in a formalism called DLAB. A DLAB grammar is a set of

templates that tells CLAUDIEN what the characterizing regularities should look like.

Getting this bias right is absolutely crucial: CLAUDIEN will not find anything outside

of the described search space; but, a space that is too large results in an intolerably

long search.

The main user-definable parameters are called accuracy and coverage. Coverage spec-

ifies the minimum number of examples a potential rule must "explain" in order to be

considered. Accuracy specifies the minimum proportion of the examples explained

(i.e., examples in which the pre-conditions apply) by the rule, to which the rule's

post-conditions must also apply. The choice of parameters was somewhat arbitrary; I

wanted to find rules that explained a non-trivial number of cases, and that explained

them with high probability. Thus, coverage was set to 10 and accuracy was set to

0.9.

Because of its data-mining nature, CLAUDIEN seemed like the right approach for

uncovering regularities about how actions affect the world. Other inductive logic

programming systems, such as FOIL, are designed for classification problems, with

positive and negative examples. Learning about the effects of actions seems more

easily expressed as a data-mining problem than as a classification problem.
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Chapter 4

Experiments

There were two main parts to the experiments. The first part examines how well a

model-based system could perform compared to a value-based reinforcement learning

system in a relational domain. To that end, I implemented a small, deterministic

blocks world (see Figure 4-2) in order to draw some comparisons to the RRL system.

The second part moves into a stochastic domain to truly exploit the probabilistic

nature of the rules.

The main learning problem is in the acquisition of a set of first-order rules about the

world dynamics-the world model. Resolving such a set of rules against the current

observation and proposed action produces a set of grounded rules; these ground rules

can be used to partially specify a DBN describing the effect of the action. We call

this step applying the model to the world. At each step, to decide its next action, the

agent invokes the planner. The planner applies the model to the current state, and

successively to each predicted next-state, to ultimately produce an estimated Q-value

for each action. The action chosen is the one with the highest estimated value; if

there is more than one action at the highest Q-value, the planner chooses randomly

among them.
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4.1 A Deterministic Blocks World

In order to be able to draw comparisons to the RRL results, I used a blocks-world

setup as close as possible to the one in the RRL experiments [21], although there are

some slight differences which will be duly noted. The task in the RRL experiment to

move block a onto block b. The domain is shown in Figure 4-1.

a]

Figure 4-1: The RRL blocks world. The goal is to achieve on(a,b).

For comparison, here is the description of the blocks world used by the RRL system:

* State predicates:

Arity Description Example

clear unary Whether a block is clear. clear (a)

on binary Whether a block is on top of another on (a, b)

block or on top of the table. on(a,table)

goal unary Specifies the goal predicate. goal(on(a,b))

e Action symbol:
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Arity Description Example

move binary Move a block onto the top of another. move (a, b)

Can only be executed if the

appropriate pre-conditions are met.



* Action preconditions: allow move(A,B) if A : B and

A E{r,b,g}, B E {r,b,g,table}

* Reward: The reward is 1.0

0.0 otherwise.

if block a is successfully moved onto block b, and

Figure 4-2: The deterministic world used by our system. The table is made of three
table blocks, which may be subject to move attempts but are actually fixed.

Here is the description of the deterministic blocks world used by our system:

" State predicates

Arity Description Example

clear binary Whether a block is clear. clear(afalse)

on binary Whether a block is on top of another. on(at)

goal unary Specifies the goal predicate. goal(ona,b))

" Action Symbol

The move action can be executed on any pair of blocks (even if both argu-

ments refer to the same block, or if the first block refers to a table block).

Arity Description Example

move binary Move a block onto the top of another. move (a,b)

" Reward: The reward is 1.0 if the agent successfully moves block a onto block b,

and 0.0 otherwise.
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As in the RRL setup, the agent observes the properties of the three colored blocks, as

well as the goal. This yields an observation space of size 513. One difference from the

RRL system is that the above observation vector includes clear (b, f alse), whereas

in the RRL system if b were not clear then clear (b) would simply be absent. An

example observation vector for our deterministic planner looks like this:

on(c,b).

clear(c,true).

on(b, a).

clear(b,false).

on(a, t)

clear(a,false).

goal(on(a,b)).

The reason for predicates like clear (c, f alse) and not like on(c, a, f alse) is that

our system does not infer that the absence of clear (c) implies that clear (c) is false;

in other words, it does not make a closed world assumption. Because pre-conditions

are not built into the action specifications, knowing explicitly that a block is not clear

is needed for estimating the success of a possible move action.

As in the RRL setup, the agent's action space consists of a move action with two

arguments: the first argument indicates which block is to be moved, and the second

argument indicates the block onto which the first one is to be moved. The action

only succeeds if both of the blocks in question are clear; that is, they have no other

blocks on top of them. Because the agent can consider all combinations of the six

blocks as arguments to the move action, this yields 36 actions. In contrast, the RRL

system only allows move(A,B) where A A B and A E {a,b,c}, B E {a,b,c,t}, a

total of nine actions. Additionally, the table is three blocks wide, and the agent may

attempt to pick up the blocks that make up the table. In the RRL configuration, by

contrast, the table is an infinitely long surface and is not subject to any picking up

attempts.
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4.1.1 Acquiring the Set of Rules

To acquire a set of rules, we must collect a set of training examples for CLAUDIEN.

For this, a random agent was set loose in the blocks world for 1,500 steps. The search

parameters were set with coverage equal to 10, and accuracy equal to 0.9. Finally, the

search space was defined. Figure 4-3 shows the template. This template describes

rules about the conditions under which actions either produce a certain reward or

affect a single state predicate.

Each step taken by the agent resulted in a training example, which consisted of the

current observation (denoted by a pre predicate), the goal predicate,' the executed

action, the resulting observation (denoted by a post predicate), and the resulting

reward. Here, a typical training example might look like this:

begin(model(O)).

goal(on(a,b)).

action(move(t,t)).

pre(on(a,t)).

pre(cl(a,false)).

pre(on(b,a)).

pre(cl(b,false)).

pre(on(c,b)).

pre(cl(ctrue)).

post(on(a,t)).

post(cl(a,false)).

post(on(ba)).

post(cl(bjfalse)).

post(on(c,b)).

post(cl(c,true)).

revard(O.0).

end(model(O)).

After four days, CLAUDIEN returned with 147 rules, shown in appendix A. It is

interesting to note that many of the rules learned by CLAUDIEN try to articulate

'Some tasks, such as "build the tallest stack you can," are not neatly described by a single,
first-order, goal predicate. In such a case, a goal predicate would not be specified.
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dlabtemplate('1-1: [1-1: [reward(1.0)],
1-1: [reward(0.0)] ,

1-1:[post(on(anyblock,anyblock)),post(cl(anyblock,anytruth)),
post(on(D,E)),post(cl(D,anytruth)),post(cl(Eanytruth))] ]

3-3: [0-len: [pre(on(a,buta)) ,pre(on(bbutb)) ,pre(on(c,butc)),
pre(cl(a,anytruth)),pre(cl(b,anytruth)),pre(cl(t,anytruth)),

pre(cl(c,anytruth)),pre(cl(D,anytruth)),pre(cl(E,anytruth))],

1-1: Eaction(move(anyblock,anyblock)),action(move(D,E))],

0-1:[goal(on(D,E))] ]').

dlab-variable (anytruth, 1-1, [true, f alse]).
dlab_variable (anyblock, 1-1, [a, b, t, c]).
dlabvariable(butb,1-1, [a,t,c]).
dlabvariable(buta,1-1, [b,t,c]).
dlabvariable(butc,1-1, [a,b,t]).

Figure 4-3: The DLAB template for the deterministic blocks world. This template
describes rules for how actions, in conjunction with pre-conditions and/or a goal
predicate, either produce a certain reward (either 1.0 or 0.0) or influence a single state
predicate. In other words, it describes a mapping from actions, state elements, and
the goal predicate into a reward value of 1.0, a reward value of 0.0, or the post-state
of a state element. The expression 1-1 before a set means that exactly one element
of the set must appear in the rule; similarly, 3-3 means exactly three elements, 0-len
means zero or more, etc.

the pre-conditions for the move action as specified in the RRL paper. For example,

browsing the rules, one can see that CLAUDIEN imposed A # B by making lots of

rules that partially instantiate the variables2 :

27: [0.909091) cl(E,true) on(b,t) goal(on(D,E)) move(a,b)-> 1.0

This rule means that, with accuracy of 1.0, when E is clear, b is on the table,3 and

the goal is on(D, E), then moving a onto b results in success.

Similarly, without a way to express equality of blocks, CLAUDIEN enumerated the idea

that, regardless of preconditions, trying to move the same block onto itself or trying

to move the table anywhere resulted in no reward, and in no change of state. For

2Recall that the goal predicate is on(a,b), and that the agent receives a reward of 1.0 for success
(achieving the goal) and 0.0 otherwise.

3 Which, presunably, correlates with b being clear, since b can only have been moved to the table
once c was no longer on it.
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example:

0: [1.0) move(aa)-> 0.0

4: [1.0) move(b,b)-> 0.0

10: [1.0) move(t,c)-> 0.0

14: [1.0] move(c,c)-> 0.0

28: [1.0] on(a,c) move(t,c)-> on(a,c)

30: [1.0] on(a,c) move(t,t)-> on(a,c)

Many of the rules, especially the ones that predict reward of 1.0 (goal-achievement),

appear to be redundant. When you consider that there are only three blocks on a

table that's only three-blocks long, many of the rules are just slightly different ways

of saying the same thing. For example:

16: [1.0) cl(a,true) on(ct) move(a,b)-> 1.0

20: [1.0] cl(b,true) cl(a,true) move(a,b)-> 1.0

In general, the rule set is not as compact as it could be. However, it does appear to

cover the space of action effects fairly completely. Because so many of the attempted

actions result in no state change and a reward of 0.0 (because they are either trying to

move a non-clear block, or are of the form move(A,A)), there are lots of rules about

the world staying the same.

4.1.2 Deterministic Planning Experiment

Once the rules were learned, I ran an experiment with the planning parameters

horizon= 3, width= 1, discount factor= 0.9, and a fixed random seed. There is no

exploration; at each step the agent runs the planner then executes the suggested best

action. If there is more than one action at the highest Q-value, we choose randomly

among them. After executing the action, we perceive the resulting configuration of

blocks and run the planner to choose the next action. Below is the trial output from

the experiment.
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In step one, the agent correctly con-
siders the move(c,t) action- the
action is listed multiple times be-
cause the three table blocks are con-
sidered in turn.
(The move(a,c) and move(c,c) ac-
tions appear incorrectly due to a
minor bug in the unification mecha-
nism; this mistake was fixed for the
later experiments.)

In step two, the the move(b,t)
action appears to produce no re-
sult. This is in fact due to the
way the blocks-world simulator re-
sponds to a request for a "table-
colored" block: because there is
more than one, it returns one ran-
domly. In this case, it returned
one of the two table blocks already
under a or c, resulting in a failed
move.

In step three, it correctly attempts
again to move b onto the table.

it] [b]
it] [a]
It] Ic]

In step four, there is only one best
action: a is correctly moved onto b.

lIt]
It] (a] [b][Ec]
lIt]

-- Randomly choosing between 5 at value=1.968:
[MOVE(c,t)] [MOVE(ct)] [MOVE(c,t)]

[MOVE(c,c)] [MOVE(a,c)]

1 [MOVE(c,t)], r: 0.0

It]
[t] [a] (b)
lIt] [ic]

-- Randomly choosing between 3 at value=2.373:
[MOVE(bt)] [MOVE(b,t)] [MOVE(b,t)]

2 [MOVE(bt)], r: 0.0

It]
It] [a] [b]
It] Ic]

-- Randomly choosing between 3 at value=2.373:
[MOVE(b,t)] [MOVE(b,t)] [MOVE(b,t)]

3 [MOVE(b,t)], r: 0.0

Figure 4-4: Sample output from the
planning experiment in the deterministic
small blocks world.
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In general, the planning experiment was successful. It turns out that describing the

table as a composition of blocks produced some awkward behavior. For example, in

the first step of the trace shown in Figure 4.1.2, the move(b,t) action produces no

result. This is in fact due to the way the blocks world responds to a request for a

"table-colored" block: because there is more than one, it returns one randomly. In

this case, the randomly chosen block was either the one under block a or under block

c, meaning that an attempt to move the block b onto that table block would fail.

The RRL blocks world, by contrast, would return a clear space on the table in every

case.

The aim of this experiment was to show that a learned set of stochastic rules could

enable an agent, in a deterministic blocks world, to execute a policy that had similar

success to that of an agent with a logical regression tree and action pre-conditions.

In this sense, the experiment turned out satisfactorily. One complaint is that the

size of the rule-set seemed larger than necessary-both by including redundant rules

and by including lots of rules about world stasis. Largely, however, this appeared to

be a result of some awkward representational choices. The next domain smoothed

out some of the representational idiosyncrasies, as well as incorporating some non-

determinism.

4.2 A Stochastic World with Complex Dynamics

Given the relative success of the planning approach in the deterministic blocks world,

the next step was to move into a more realistic stochastic blocks world. The aim,

however, was not to make the domain stochastic arbitrarily; rather, the world should

be stochastic in such a way that, with appropriate action choices, the agent can

actively do something to improve its chances of success.

In that spirit, I considered a task in which the agent should make as tall a stack of

blocks as possible. The initial configuration of blocks is shown in Figure 4-5. As

50



Li] Lr] L ] LFII

Figure 4-5: The large stochastic blocks world. The table is made up of fixed, indis-
tinguishable table blocks that may not be the subject of a move action.

before, the world consists of blue, green, and red blocks. The table is again a surface

made up of fixed blocks; this time, however, a request for a table block returns a clear

table block randomly.

This world has a fairly high amount of stochasticity, mainly resulting from the fact

that stacks of blocks can fall down with some probability. Whether a block falls off

the top of a stack is influenced by a number of factors:

1. The block's width. Blue blocks are the widest, followed by red and then green.

A block has a greater chance of falling the wider and/or higher up it is.

2. The difference between the block's height and the height of its neighboring

stack(s). This is supposed to capture the idea that tall stacks can be "but-

tressed" and supported by adjoining stacks. If a stack towers over its support-

ing neighbors, it becomes more unstable than if surrounded by stacks of similar

height.

3. The stability of the neighboring stacks, in turn. If the supporting stacks them-

selves are not well buttressed, then they cannot lend much support to the orig-

inal stack.

4. Where a block lands, should it fall, is also stochastic and depends on how high

on the stack it was. Blocks may also fall off the table. If they fall off the table,

they cannot be recovered.
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Specifically, the dynamics work as follows. Every time a block is moved onto a stack,

we topple it according to the computed probability. If the top block falls, we repeat

the process for the next block. Thus, it is possible that a stack may entirely collapse.

The topple probability for a block b is computed as:

1
P[b falls] = ex (IbY2-K

+ 2K

The parameter K is simply a knob for increasing or decreasing the probability of

toppling. For these experiments, its value was 350. The block's instability, Ib, is

computed from its leftward and rightward instabilities:

I= RIb + LIb.

Each directional instability is a recursive function of the distance down to the top

block in the stack next to it,4 the block's width,5 the instability of the top neighbor

block itself. The recursive calculation ends when we have either reached the end of

the table, or there are no more neighbor blocks. To calculate, e.g., the left instability:

LIb = { dist( b, bl ) x width( b)) x -yIb
I, + (dist(b, b1) x width(b))

The discount, -y, encodes the idea that support from buttressing stacks tapers off with

distance. It was set to 0.9 for these experiments.

The landing position is computed as:

4Let's call this block bi or b,, depending on the direction (left or right). If there is no neighboring
stack in that direction, this distance, dist(b, bg), reduces to the block b's height; if the neighboring
stack is higher, this distance is zero.

'The width is 1 for green blocks, 2 for red blocks, 3 for blue blocks.
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new-position(b) = position(b) + (whichSide) x P[b falls] x tableSize/2;

Basically, how far a block falls from its original location is a function of how high and

unsteady it originally was. The parameter whichSide is set to -1 or 1 randomly. If

the new position is beyond the edge of the table, and if falling off the table is not

allowed, then the block will just "land" on the last position in the table.

A description of the state and action predicates is next:

" State predicates:

Arity Description Example

clear binary Whether a block is clear. clear(a,true)

on binary Whether a block is on top of another. on(a,b)

color binary Specifies the color of a block. color(b,red)

tallest unary Specifies the highest stack's position. tallest (12)

position binary Specifies the block's column position.6  position(b,4)

" Action symbol:

The move action takes two arguments: the block to be moved, and the block

onto which it should go. The action succeeds if both blocks are clear, and

fails if one of them is covered. The second argument may be a table block;

however, the first argument can only be one of the movable non-table blocks.

For the world shown, with 21 non-table blocks, this results in 21 actions per

block (i.e., 20 actions with the other non-table blocks as the second arguments,

and 1 action with the table as the second argument.), or 441 total actions.

Arity Description Example

move binary Move a block onto the top of another. move (a, b)

6 This lets a block be identified as being in the tallest stack, or on a buttressing stack, etc.
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* Reward: The reward at each step, if a successful action is executed, is equal to

the height of the highest resulting stack. If the executed action failed, then a

reward of 0.0 is given. So if a stack of height 10 exists, and the robot puts a

block onto a different, shorter stack, then the robot gets a reward of 10. This

is to encourage tall-stack building as well as buttress-stack building.

4.2.1 Acquiring the Rules for the Stochastic Stacking Task

The DLAB template for this experiment is shown in Figure 4-6. The idea behind this

template is for the agent to learn:

1. What causes a reward of zero: when will an action fail.

2. What causes a non-zero reward. A higher reward corresponds to building up a

stable stack.

3. How the various state elements change as a result of the move action.

To acquire the rules, an agent taking random actions was run for 1,500 steps. A

typical training example contained 90 predicates and looked like this:

begin(model(O)) .
action(move (n39,n20)).
pre (tallest(7)).
pre (on(n20,nOl)).
pre (cl(n20,false)).

pre (color(n20,r)).
pre (pos(n20,1)).
pre (on(n21,n20)).

post (cl(n40,true)).
post (color(n4Ob)).

post (pos(n4O,18)).
reward(0.0).
end(model(O)).
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dlab-template(' 1-1:[ 1-1:[reward(Z)],
1-1:[reward(0)],
1-1: [reward(num)),
1-1: [post (tallest (Z)) , post (tallest (num)),

post(color(W, anycolor)), post(color(X, C)),
post(pos(V, N)), post(on(D, E)),
post(cl(D, anytruth)), post(cl(E, anytruth))] ]

2-2 [0-len: [pre(tallest(Y)), pre(tallest(num)),
pre(color(D, anycolor)), pre(color(D, C)),
pre(color(E, anycolor)), pre(color(E, B)),
pre(pos(D, N)), pre(pos(E, M)), pre(on(D, E)),
pre(cl(D, anytruth)), pre(cl(E, anytruth))],

1-1:[action(move(D, E))] I ').

dlab-variable(anytruth, 1-1, [true, false])
dlab-variable(anycolor, 1-1, [g, b, t, r])

dlabvariable(num, 1-1, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]).

Figure 4-6: The DLAB template, without background knowledge, used in the complex
block-stacking task in the large stochastic world.

dlabtemplate('1-1:[ 1-1:[reward(Z)],
1-1: [reward(num)],
1-1: [post(tallest(Z)), post(tallest(num)),

post(color(W, anycolor)), post(color(X, C)),
post(pos(V, N)), post(on(D, E)),
post(cl(D, anytruth)), post(cl(E, anytruth))] ]

2-2 :[0-len: [pre (tallest (Y)), pre(tallest(num)),
pre(color(D, anycolor)), pre(color(D, C)),

pre(color(E, anycolor)), pre(color(E, B)),

pre(pos(D, N)), pre(pos(E, M)), pre(on(D, E)),
pre(cl(D, anytruth)), pre(cl(E, anytruth)),

nextto(Y, J), nextto(Z, K),
nextto(E, H)],

1-1:[action(move(D, E))] ]').

dlab-variable(anytruth, 1-1, [true, false]).
dlabvariable(anycolor, 1-1, [g, b, t, r]).

dlabvariable(num, 1-1, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21).

Figure 4-7: The DLAB template, with background knowledge about next-to used in
the complex block-stacking task.
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After some initial experiments, it was clear that the notion of a stack being "next

to" another stack, crucial for the buttressing idea, was missing from the hypothesis

space. So, background knowledge of a pairwise next-to predicate was included along

with the training samples. This file contained a list of facts of the form:

nextto(0,1), nextto(1,2) ... nextto(19,20)

nextto(1,0), nextto(2,1) ...

The addition of these facts, however, apart from creating an overwhelmingly large

hypothesis space, was not able to produce rules sufficiently expressive for good per-

formance in the task.

The buttressing idea requires not only that you build onto a stack next to the tallest

stack, but also onto the stack next to that, etc, for however many stacks there might

be in the set of buttressing stacks. The first-order language that we are using is not

equipped to talk about arbitrarily sized sets of things compactly. Its restriction to

describing chains of relations by enumerating them is a real limitation in this case.

There are other obvious shortcomings to the hypothesis space as described above

in the DLAB templates. For example, because the reward received depends on the

height of the tallest stack, some information about the tallest stack's height should

probably be included. Recall that CLAUDIEN can only learn Horn clauses; this means

that it cannot learn a single rule that expresses the relationship between the reward

and the resulting height of the stack; it must learn some relationship between the

previous height and the reward, which may require further background knowledge

about arithmetic.

It is clear that a standard first-order language was insufficient to describe the complex

dynamics of this particular blocks world. What other languages would be better

suited? For now, however, we bypass some of the problems posed by the language

limitations by moving to a simpler world described below.
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4.3 A Stochastic World with Simpler Dynamics

In this domain, the task is the same as before: make as tall a stack as possible.

The number of blocks and initial configuration is also the same (see Figure 4-5). The

difference is that, now, whether a block falls depends only on its color and the color of

the block below it. Furthermore, it is not possible for entire stacks to fall down-only

the block that was moved may or may not fall.

As before, blue blocks are widest, red blocks are medium, and green blocks are the

narrowest. If a block is placed on a block narrower than it, then it will fall with

probability Pfall, which is the same for all block colors. This boils down to the

following behavior:

1. A blue block has a small chance of falling if gets moved onto a green block or a

red block, but not on a blue block.

2. A red block has a small chance of falling if moved onto a green block, but not

on a red or blue block.

3. A green block will never fall after being moved.

If a block falls, it falls to a completely random table position; it must, however, fall

onto a stack that's shorter than the one it came from. Blocks cannot fall off the table.

This world lend itself more easily to description in a first-order language, since it does

not require generalization over sets of objects or numeric relationships.

I experimented with three versions of this domain: a low stochasticity world with

Pf all equal to 0.1; a medium stochasticity world with Pfall equal to 0.5, and a high

stochasticity world with Pfall equal to 0.9.

The description for this task is as follows:

* State predicates:
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Arity Description Example

clear binary Whether a block is clear. clear(ajfalse)

on binary Whether a block is on another. on(ab)

color binary Specifies the color of a block. color(b,red)

intallest binary Whether a block is in the tallest intallest (a,true)

stack. If there is more than one

tallest stack, this element will be

true for all the blocks in those

stacks.

height unary Specifies tallest stack's height. height (4)

" Action symbol:

The move action takes two arguments: the block to be moved, and the block

onto which it should go. The action succeeds if both blocks are clear, and

fails if one of them is covered. The second argument may be a table block;

however, the first argument can only be one of the movable non-table blocks.

Arity Description Example

move binary Move a block onto the top of another. move (a,b)

" Reward:

1. If an action failed, a penalty of -2.0 was assigned.

2. If an action resulted in a toppled block, a penalty of -1.0 was assigned.

3. If an action didn't fail, but did not result in increasing the height of the

tallest stack, a reward of 0 was given.

4. If an action resulted in growing the tallest stack, a reward equal to the

previous height of the stack was given.
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4.3.1 Acquiring the Rules for the Simpler Stochastic Stack-

ing Task

There were two sets of rules learned from the training data: a set of rules induced

by CLAUDIEN, and a set of hand-coded rules whose probabilities were learned by

counting from the data.

As before, 1,500 training examples were collected from an agent choosing actions

randomly. This was done in each of the three low, medium, and high stochasticity

versions of the world. A typical training example contained 174 predicates and looked

like this:

begin(model(O)).

action(move(n32,n26)).

pre (height (4)).

pre(on(n20,nOl)).

pre(cl(n20,false)).

pre(color(n20,r)).

pre(intallest(n20,alse)).

pre(on(n21,n20)).

pre(cl(n21,true)).

pre(color(n21,b)).

pre(intallest(n21,false)).

post(intallest(n38,true)).

post (on(n39,n38)).

post(cl(n39,false)).

post(color(n39,r)).

post(intallest(n39,true)).

post(on(n40,n39)).

post(cl(n40,true)).

post(color(n40,b)).

post(intallest(n40,true)).

reward(O).

end(model(O)).
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dlabtemplate('1-1: [ 1-1: [reward(R)J,
1-1: [reward (0)] ,
1-1: [reward(-1)],
1-1: [reward(-2)],
1-1:[post(on(A,B)),post(cl(A,anytruth)),
post (cl(B,anytruth))] ]

2-2: [0-len: [pre (height (R)) ,pre(color(A,anycolor)),

pre (color (B, anycolor)) ,pre (intallest (B,anytruth)),
pre(on(A,B)),pre(cl(A,anytruth)),pre(cl(B,anytruth))],

1-1: [action(move (A,B))] ').

dlab-variable (anytruth, 1-1, [true ,false]).

dlab.variable(anycolor,1-1, [gb,t,r]).

Figure 4-8: The DLAB template used in the simpler stochastic block-stacking task.
The same template was used in all stochasticity versions of the task.

Rules Learned By CLAUDIEN

The DLAB template is shown in Figure 4-8, and the resulting rules learned for each

world are shown in Figures 4-9 to 4-11.

In general, the rules learned by CLAUDIEN capture well the regularities of each task. In

the high-stochasticity task, the set contains a number of rules about how the color of

the blocks influence the next state. For example, rules 7, 9, 11, and 12 (in Figure 4-9)

pick up the tendency of blue blocks to fall, and of green blocks to stay put.

In the mid-stochasticity task, the set includes fewer rules about the block colors,

presumably because the blocks do not fall as often in this domain. Rules 20 and 21

(in Figure 4-10) address the impact of moving blue and green blocks. Rules 25 and

26 are an interesting pair-they encode the lack of reward that comes with moving

blocks onto stacks that are not the tallest. However, the rule that we would like to see,

about actually stacking successfully onto a tallest stack, does not appear; apparently

this did not occur often enough in the example set for CLAUDIEN to discover anything.

In the low-stochasticity task, most of the rules centered around how the clear and on

predicates change (or don't) given the preconditions. There is less emphasis on the
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0: [0.856] move(A,B)->-2.0
1: [1.0] on(A,B) move(A,B)-> cl(B,false)
2: [0.879] cl(A,true) move(A,B)-> cl(B,false)
3: [1.0] cl(B,false) move(A,B)-> cl(B,false)

4: [0.856] color(B,r) color(A,g) move(AB)-> cl(B,false)
5: [1.0] cl(A,false) move(A,B)-> cl(A,false)
6: [1.0] cl(A,true) move(A,B)-> cl(A,true)
7: [0.888] cl(B,true) color(B,g) move(A,B)-> cl(B,true)
8: [1.0] cl(B,true) cl(Afalse) move(A,B)-> cl(B,true)
9: [0.878] cl(B,true) color(A,b) move(A,B)-> cl(B,true)
10: [1.0] on(A,B) move(A,B)-> on(A,B)
11: [1.0] cl(B,true) cl(A,true) color(A,g) move(A,B)-> on(A,B)
12: [1.0] cl(B,true) cl(A,true) color(B,b) move(A,B)-> on(A,B)
13: [1.0] cl(B,true) cl(A,true) color(B,r) color(A,r) move(A,B)-> on(A,B)
14: [0.916] cl(B,true) cl(A,true) color(B,b) color(A,b) move(A,B)->0.0
15: [0.869] cl(B,true) cl(A,true) color(B,g) color(A,r) move(A,B)->-1.0

Figure 4-9: CLAUDIEN rules for the high-stochasticity version of the stacking task.

0: [0.858] color(A,b) move(A,B)->-2.0
1: [0.856] color(A,r) move(A,B)->-2.0
2: [0.877] color(B,b) move(A,B)->-2.0
3: [0.855] color(B,r) move(A,B)->-2.0
4: [0.933] intallest(B,true) move(A,B)->-2.0
5: [1.0] on(A,B) move(A,B)->-2.0
6: [1.0] cl(A,false) move(A,B)->-2.0
7: [1.0] cl(B,false) move(A,B)->-2.0
8: [0.861] intallest(B,true) move(A,B)-> cl(B,false)
9: [1.0] on(A,B) move(A,B)-> cl(B,false)
10: [0.899] cl(A,true) move(A,B)-> cl(B,false)
11: [1.0] cl(B,false) move(A,B)-> cl(B,false)
12: [1.0] cl(A,false) move(A,B)-> cl(A,false)
13: [1.0] cl(A,true) move(A,B)-> cl(A,true)
14: [1.0] cl(B,true) cl(Afalse) color(B,g) move(A,B)-> cl(Btrue)
15: [1.0] cl(B,true) cl(Afalse) move(A,B)-> cl(B,true)
16: [0.851] cl(B,true) color(B,g) color(A,b) move(A,B)-> cl(B,true)
17: [0.853] cl(B,true) color(B,g) color(A,r) move(A,B)-> cl(Btrue)
18: [0.9] cl(Btrue) intallest(Btrue) color(Br) color(A,b) move(AB)->cl(B,true)
19: [0.878] cl(B,true) intallest(B,true) color(A,b) move(A,B)-> cl(B,true)
20: [1.0) on(A,B) move(A,B)-> on(A,B)
21: [1.0] cl(Btrue) cl(Atrue) color(A,g) move(A,B)-> on(A,B)
22: [1.0] cl(B,true) cl(A,true) color(B,b) move(AB)-> on(A,B)
23: [0.896] cl(Btrue) cl(Atrue) color(A,r) move(A,B)-> on(AB)
24: [0.870] cl(B,true) cl(A,true) color(Br) move(A,B)-> on(A,B)
25: [0.904] cl(B,true) cl(A,true) intallest(B,false) color(A,g) move(A,B)->0.0
26: [0.860) cl(Btrue) cl(A,true) intallest(Bfalse) color(Bb) move(A,B)->0.0
27: [0.9] cl(B,true) cl(A,true) color(B,b) color(A,b) move(A,B)->0.0

Figure 4-10: CLAUDIEN rules for the mid-stochasticity version of the stacking task.
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0: [0.867333] move(A,B)->-2.0

1: [1.0] on(A,B) move(AB)-> cl(Bfalse)

2: [0.953789] cl(A,true) move(A,B)-> cl(B,false)

3: [1.0] cl(Bfalse) move(A,B)-> cl(B,false)
4: [1.0] cl(A,false) move(A,B)-> cl(Afalse)
5: [0.916667] cl(B,true) color(B,g) color(A,g) move(AB)-> cl(A,false)
6: [1.0) cl(A,true) move(A,B)-> cl(A,true)

7: [0.9) on(A,B) color(B,b) color(A,r) move(A,B)-> cl(A,true)

8: [1.0] cl(B,true) cl(Afalse) move(A,B)-> cl(B,true)
9: [0.916667] cl(Btrue) color(B,g) color(A,g) move(A,B)-> cl(B,true)

10: [1.0] on(A,B) move(A,B)-> on(A,B)

11: [0.977528] cl(Btrue) cl(A,true) move(A,B)-> on(A,B)

12: [0.916667] cl(B,true) cl(A,true) color(B,b) color(A,g) move(A,B)->0.0

Figure 4-11: CLAUDIEN rules for the low-stochasticity version of the stacking task.

effect of the colors, as would be expected. Rule 11 (in Figure 4-11) gives the canonical

expression for a successful move action.

So, the CLAUDIEN rules capture the domain regularities well. However, they do not

pick up on important low-probability events, which will be a problem, as we see later.

Hand-coded Rules with Learned Probabilities

Because of the length of time it took for CLAUDIEN to induce the rules, a quick

alternative was to hand code a set of rules and learn their probabilities from the

data. Figures 4-12 to 4-14 show the rule set (the same rules for each stochasticity-

level of the world) and the learned probabilities. Rules that predict the immediate

reward values are depicted with a numeric value in the post-condition; the rule with

H in the post-condition means that it predicts a reward value of H (namely, a reward

equal to the previous height of the stack).

The probabilities are just simple counts of the number of times in which the antecedent

matched and the consequent was true over the total number of times in which the

antecedent matched. Thus, the learned probabilities are equivalent to CLAUDIEN's

accuracy parameter.
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0: [0.741] cl(A,true) cl(B,true) move(A,B)-> on(A,B)
1: [0.621] cl(A,true) cl(B,true) intallest(B,true) height(H) move(A,B)-> H
2: [0.25] cl(A,true) cl(B,true) color(A,r) move(A,B)-> -1.0
3: [0.587) cl(A,true) cl(B,true) coLor(A,r) move(A,B)-> 0.0
4: [0.0) cl(A,true) cl(B,true) color(Ag) move(A,B)-> -1.0
5: [0.844] cl(A,true) cl(B,true) color(A,g,) move(A,B)-> 0.0
6: [0.632] cl(A,true) cl(B,true) color(A,b) move(A,B)-> -1.0
7: [0.326] cl(A,true) cl(B,true) color(Ab) move(A,B)-> 0.0
8: [1.0] cl(A,false) move(A,B)-> -2.0
9: [1.0] cl(B,false) move(A,B)-> -2.0

Figure 4-12: Hand-coded rules, and corresponding probabilities, for the high-
stochasticity version of the stacking task.

0: [0.829] cl(A,true) cl(B,true) move(A,B)-> on(A,B)
1: [0.812] cl(A,true) cl(B,true) intallest(B,true) height(H) move(A,B)-> H
2: [0.121] cl(A,true) cl(B,true) color(A,r) move(A,B)-> -1.0
3: [0.731] cl(A,true) cl(B,true) color(A,r) move(A,B)-> 0.0
4: [0.0] cl(Atrue) cl(B,true) color(A,g) move(A,B)-> -1.0
5: [0.904] cl(A,true) cl(B,true) color(A,g) move(A,B)-> 0.0
6: [0.454] cl(A,true) cl(B,true) color(A,b) move(A,B)-> -1.0
7: [0.436) cl(A,true) cl(B,true) color(A,b) move(A,B)-> 0.0
8: [1.0] cl(A,false) move(A,B)-> -2.0
9: [1.0] cl(B,false) move(A,B)-> -2.0

Figure 4-13: Hand-coded rules, and corresponding probabilities, for the mid-
stochasticity version of the stacking task.

0: [0.977] cl(A,true) cl(B,true) move(A,B)-> on(A,B)
1: [1.0] cl(Atrue) cl(B,true) intallest(Btrue) height(H) move(A,B)-> H
2: [0.027] cl(A,true) cl(B,true) color(A,r) move(A,B)-> -1.0
3: [0.835] cl(A,true) cl(B,true) color(A,r) move(A,B)-> 0.0
4: [0.0] cl(A,true) cl(B,true) color(A,g) move(A,B)-> -1.0
5: [0.833] cl(A,true) cl(Btrue) color(Ag) move(A,B)-> 0.0
6: [0.043] cl(A,true) cl(B,true) color(A,b) move(AB)-> -1.0
7: [0.804] cl(A,true) cl(B,true) color(Ab) move(AB)-> 0.0
8: [1.0] cl(Afalse) move(AB)-> -2.0
9: [1.0] cl(B,false) move(A,B)-> -2.0

Figure 4-14: Hand-coded rules, and corresponding probabilities, for the low-
stochasticity version of the stacking task.
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The hand-coded rule set is smaller than each of the learned CLAUDIEN rule sets. There

are fewer rules articulating domain regularities, and instead there is more emphasis

on rules about the next-state reward. The biggest difference is the rule that predicts

the reward for successfully stacking onto the tallest stack (rule 1). Interestingly, as

can be seen from the probability counts, the bulk of the hand-coded rules would not

have passed CLAUDIEN's 0.9 accuracy threshold.

4.3.2 Planning Experiments

There were two phases of planning experiments. The first set of experiments examines

the one-step performance of each rule set on the stacking task in its corresponding

domain. This experiment mostly illustrates the ability of each rule set to predict the

best greedy action. The second experiment tries to better evaluate how the rules

work as an actual model for the world; in this case, the horizon was three steps. The

experiment parameters are shown in Table 4.1.

Blocks Planning Sampling Rule Combination PfalU
World Horizon Width Sets Rules

Large 1 3 CLAUDIEN, Noisy-OR, Low (0.1),
stochastic Hand-coded Dempster Medium (0.5),

High (0.9)
Small 3 3 CLAUDIEN, Noisy-OR, Low (0.1),

stochastic Hand-coded Dempster Medium (0.5),
High (0.9)

Table 4.1: Parameters tested in the one- and multi-step planning experiments.

One-step Planning in the Large Stochastic World

In the large stochastic world, the experiment proceeded as follows. For each parameter

combination and the same random seed, an experiment of 150 steps was initialized.

At each step, the cumulative reward was recorded. The main 150-step experiment

was divided into three 50-step episodes: after 50 steps, the blocks were randomly
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Figure 4-15: Plot of cumulative reward for the hand-coded rules in the one-step
planning experiments.
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Figure 4-16: Plot of cumulative reward for CLAUDIEN rules in the one-step planning
experiment.
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re-scrambled and the reward totals were reset to zero. In Figures 4-15 and 4-16 are

shown the averages over each 50-step episode for each combination of rule set and

combination rule. Each plot is averaged over 5 episodes.

The first thing to note is that the combination rule does not make much of a difference!

The graphs for each combination rule look exactly the same. This is because, in fact,

the occasions in which there are competing rules for the same value of a state element

are quite rare, if they exist at all. The rule sets are just too sparse. Also, as expected,

the low-stochasticity world lends itself to higher block stacks than the higher ones.

However, even in the high-stochasticity world, the hand-coded rule set is sufficient to

build up high stacks.

I n2 In3l

Figure 4-17: A small, example world for illustrating the DBN that results from ap-
plying rules from the hand-coded set.

To see how sparse the DBN is, consider the small subset of the stochastic world in

Figure 4-17. Let's say we are considering the action move (n3, n1). Then, the rules

from hand-coded rule set that apply are:

0: cl(Atrue) cl(B,true) move(A,B)-> on(AB)

1: cl(Atrue) cl(Btrue) intallest(B,true) height(H) move(A,B) -> H

6: cl(A,true) cl(Btrue) color(A,b) move(A,B)-> -1.0

7: cl(Atrue) cl(B,true) color(A,b) move(A,B)-> 0.0

The resulting DBN is shown in Figure 4-18. There are not competing rules for the

value of, say, on W, n1), and so there is no need for a combination rule here.

Looking at the performance plots, the CLAUDIEN rule set seems to be doing quite

badly. It appears that the main problem is that, while the rules describe the regular-

ities of the training examples (namely, failure) well, they do not provide any evidence

for instances of positive reward. Figure 4.3.2 shows excerpt from the CLAUDIEN
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low-stochasticity trial. We can see that the agent avoids failing and topple-inducing

actions, but does not know to stack up the blocks in a determined way.

In contrast, the hand-coded rules provide much more directed activity. In the ex-

cerpted output in Figure 4.3.2, the agent picks up a green block, which is the least

likely to fall, and moves it to the top of the tallest stack.
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move(n3,n)ear(?)

height(2) height(?)

on(n, n2) on(nI, ?)

clear(n1, true) clear(n, ?)

color(n 1, green) color(nI, ?)

intallest(nI, true) intallest(nI, ?)

on(n2, t) on(n2, ?)

clear(n2, fae) clear(n2, ?)

color(ni, re)7 7 color(nl )

intallest(n2, true) intallest(n2, ?)

on(n3, t) on(n3, ?)

clear(n3, true) clear(n3, ?)

color(nI, blue color(nl, ?)

intallest(n3, false) intallest(, ?)

Figure 4-18: The DBN induced by applying the hand-coded rules to the example world
in Figure 4-17 and the action move (n3 ,n1). It is sparse enough that a combination
rule does not need to be applied.
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[nOOJ
[nO1] [n2Or) [n21b]
[n02][n22rJ
[n031

[n041Cn23r][n24bJ
[no5]
[n063 [n26b1

[n071 [n25r1 [n29rJ Cn3or3 [n31b1
[nO8J n27g] [n28gJ [n32g]
[n09J
EnlO]
[nllJ[n33r]

[nl2J[n34rJ

[n13]
[n14) [n35bJ
[ni5)

[n16)[n36g1
En17)
[n18) [n37r] [n38rJ [n39r) [n4Ob]
[nl9J

Figure 4-19: Initial configuration of blocks in all the one-step planning experiments.
The configuration can also be seen schematically in Figure 4-5. Each block is repre-
sented by a pair of square brackets around the blocks' name and the first letter of the
block's color (e.g., block n20 is red; nOO is a table block).
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In the first step, there are a number
of actions of equal value. These ac-
tions all involve moving clear green
blocks (there are two: n36 and n32)
onto clear blue blocks.

In the second step, the best actions
are again those that move a clear
green block to a clear blue block.
Notice that there is no rule to guide
the agent toward growing the tallest
stack.

Again, the agent moves a clear
green block onto a blue block.
The behavior of the CLAUDIEN-
rules agents is characterized by this
conservative, but aimless, stacking.

-- Randomly choosing between 12 items at value--0.867333:
[MOVE(n32,n21)] [MOVE(n32,n24)J [MO(n32,n26)J [MOE(n32,n31)J
[MOVE(n32,n40)] EMOVE(n36,n21)J [MOVE(n36,n24)] [MOVE(n36,n40)J
MVE(n36,n31) "MOVE(n34) "VE(n36,n26)] (NOE(n32,n35)J

Step 0. Chose: (MOVE(n32.n24)]. r: 0.0
[noo)

[n01)[n2Or][n2b3 [

[n082[n2r]2

[n03)
[n04] n3r) n4b] [n32gJ
(n05]
[n06] 26b]
[nO8][n2r][n29r][630r][£n3bJ
EnOS] En27g] Dm28sg

(niS)

614)3 [n35bJ

[n19

-- Randomly choosing between 15 items at value--0.867333:
(MOVE(n28,n21)J [MOVE(n28,n26)] [MOVE(n36,n40)J [HOVE(n28,n31)]

[NOVE(n28 ,n40)J (KOVE(n32,n21)] EMOVE(n32,.n26)] J MOVE(n32,.n31))
EMOVE(n32,n40)J [MOVE(n36,n21)) [MOVE(n36,n26)J [MOVE(n36,n31)]

[MOVE(n36,n35)J [MOVE(n32,n35)J [MOVE(n28,n35)J

[n0Step 1- chose: EM"V<.28.n35)), r 0.0

EnOC)[n6g

01 En20r [n21b]

En2 (n23. 24br .2En053

[.04].[23rJ[2bJ] 3g

EnOS)

[n07)(n25r][n2r ][n3Or(n3l)]

EnOS)[n27g]
[609)

[610)

[n1)[n33r]
[n12) En34rJ

EniS)

[n14)[n35b) [n28g]

[Rog]
EniS)

[n16) [n36g]

[n131

En18)[n37r] [n38r][n39r][n4Ob

[n19)

-- Randomly choosing between 16 items at value--0.867333:
[MOVE(n36,n26)] [MOVE(n36,n31)) [MOVE(n36,n40)) [MOVE(n27,n21))
[M0V(n27.n31)] [MOVE(27,n40)J [0VE(28,n21)) [MOVE(n28,n26)]
[MOVE(n28,n31)] [MOVE(n28,n40)) [MOVE(n32,n21)) EMOVE(n32,n26)]
EMVE(n32,n3) [MOVE(n27.n26)J EMOV(n6.n21) [MOVE(n32, n40)3

Step 2, Chose: [MOVE(n32,n26)), r: 0.0
Enoo)
EnOl)[n20r][n2lb]
[n02][n22rJ
[n03)
n04]En23r [n24b)

[nO5]

[n063En26b] [n32g}
[n07][n25r)[n29r[n30r][n31b
[nO8][n27g]
[n09]

10]
[n11][n33r)
[n12][n34r]
6n13]
[n14] nSub [n28g]
[U15]
[n16] En36g]
[617]
618][n37r][n38r][n39r] [n40b
6n19]

Figure 4-20: Output from the CLAU-
DIEN rules in the low-stochasticity one-
step task.
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In the first step for the hand-coded-
rules agent, there are four actions
of equal value. They involve mov-
ing one of the clear green blocks n36
or n32) onto one of the two tallest
stacks (at positions 7 and 18).

In the next step, now that there is a
single tallest stack, there is only one
best action: to move the only clear
green block onto the tallest stack.

And again in the third step: the
agent continues to grow the tallest
stack greedily. When it runs out
out of green blocks, it goes on to
choose among the red blocks.

-- Randomly choosing between 4 items at value-1.33:

[NOVE ,n3l)] [OVE(n32.n40) EMOVE(n36,n3i)) [KO (n3,.n40)
Step 0, Chose: (MOVEWn6,n31)J. r: 4.0

[n001
[n01I 620r] [n2lbJ

N[n
EnO23
[nO4)[n2363[n24b]
[A05]

EnN3 InM3
[nO?)[n25rJ[n29r)[n3or][n3ib)<\bf [n36g])
EnO]3 n27gJ E[n2S] [n32g]
[no93
[n10
[n11[n33r3
[n12J[n34r]
[n13J
[n14) [n35b]
[n15)
[n163
[n17J
[n18] [n37r) [n38r] [n39r [n4Ob

n193

Step 1, Chose: ENVE(32,n36)J, r: 5.0

[nOl[.20rn21b]

[n2J[.22r)

N043 [n23r) n24b
[nOB)
[n06)[n2Mb)
[n07)[n25r1>n29r][n3Or])n3lb][n36gJ \bf [n32g3)
[n08][n27g)[n28g)
InO93
[n10)
[n1I] [n33r
[n12)[n34rJ
[n133
[n14J[n35b]
[n15
[nd1)
[ni73
[n18)n37r [n38r] [n39r [n4Ob
[N193

Step 2, Chose: [MHVE(n28,n32)3, r: 6.0
[nOO)
E[n n20r)[n21bJ
[n02[[[n22r[

[n033

[n05 N

[nOd) [n23r
[n07) [n25r) [n29r) [n3Or) [n~ib)[n3dg) [n32g) {\bf [n28g3)
[nOB) [z27gJ

[nil) [n33r)
[n12) [n34r
[n133

[n14)[n35b]
[n15

[n63
[n17
[ni)18[37r [n38r [n39r) [n4Ob3
[ni9)

Figure 4-21: Output from the hand-
coded rules in the low-stochasticity one-
step task.
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Multi-step Planning in the Small Stochastic World

Figure 4-22: The smaller world used in the three-step planning experiments.

Admittedly, a one-step horizon is not much of a "planning" exercise. The hand-coded

rule set, for example, is very good at choosing the next greedy action (that is, to pick

up a green block if available and put it on top of the tallest stack), but, given a longer

horizon, would the agent figure out that it needed to rebuild a stack so that it had a

stronger base?

The main obstacle to running experiments with a longer horizon is the computational

load of fanning out over 441 actions. Thus, the smaller world shown in Figure 4-22

was used to test out the planning with the horizon set to three. This smaller world,

with five blocks, has 25 actions total.

As we can see in Figure 4-24, the CLAUDIEN-rules agent oscillates between the two

most conservative actions it has: moving the green block from one blue block to

the other. Because it has no rules to tell it how to grow the tallest stack, it simply

does the best it can with the rules it has-it avoids toppling a block. This is always

achieved by moving a green block.

[noO)
[nol]
[nO2] [nl4b]
En031[ni2r]
[n04][nl3g]
[nO5)

[nO61
[n07] [nlOg] [nlib]
[nO8]
[n09]

Figure 4-23: Initial configuration of blocks in the three-step planning experiments.
The configuration can also be seen schematically in Figure 4-22.
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Step 0. [MOVE(n13,n14)], r: 1.0
(nOOJ

[no2]Enl4b] [n13g}
[nO3][nl2r]

[uO4]

EnO53
[n04)n0][1b
[nO6J
En07J (niOS) (nllbJ
EnOS)

Step 1, [MOVE(n13,nII)3, r: 2.0
[n00)

EnOl)

[n02) nW4b]
[nO3 [nW2r]

[nO4

[nO6]

EnO7J [niog] [nub] [nl3g]

(nOg)

Step 2, [MOVE(n13,n14)J, r: 1.0

En023(nl4b] [n31g]
EnO3)[n12r3
[nO43
[nO5)

[nOd]

[n07 (nOg) (nub]
[nOS)

(nOg)

Figure 4-24: Output from the CLAUDIEN rules in the low-stochasticity three-step task.

Step 0. [OVE(n13,nll)), r: 2.0
[n00)
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Figure 4-25: Output from the hand-coded rules in the low-stochasticity three-step
task.
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In Figure 4-25, the hand-coded rules agent still starts out with the immediate greedy

action: picking up the green block from the table and putting it on the tallest stack.

However, what happens next is interesting. It chooses to put the blue block on top

of the green, and then the red block on top of that. It was able to model that trying

the blue block first was worthwhile: if the blue block sticks, then the red block is

guaranteed not to fall; however, if it tries the red block first, it may stick (with the

same probability that the blue block has of sticking), but there is still a chance that

the blue block might fall off if placed on top of it later.

Ideally, the first action should be to move either blue block onto the other blue block

(since the width-effect only applies to the block immediately under a newly placed

block), and then go on build a stack with the blue blocks as a base. While the hand-

coded rules do a good job of modeling the next-state reward, they do not do quite

enough to provide information about the next state itself. Thus, when projecting

forward, the model is forced to make a lot of 'static world' assumptions that don't

necessarily apply.

Looking a bit deeper, though, the problem cannot be solved by just adding a rule

that says:

With probability 0.9: move(A, B) A clear(A) -+ on(A, B).

We need to actually say:

With probability 0.1: move(A, B) A clear(A) -+ -on(A, B).

Our language is presently restricted to Horn clauses, which means we cannot have

a negation as a post-condition. But suppose we were in fact able to have negated

consequents, how would we use them to generate the next state? Our consequents are

not necessarily binary-valued. Presumably, -on(A, B) means there is some chance

for on(a,table), or on(a,c), on(ad), and so forth. Currently, without a rule

describing what happens in the other 10% of the cases, the system normalizes the
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outcomes of the applicable high-probability rules and chooses among them. If the

only rule we had was the rule predicting on(A,B) 90% of the time, then the system

would only ever predict the outcome on (A, B). If we knew what all the outcomes were,

presumably we could divide the probability mass among them. But how do we know

what all the outcomes are when our consequents can take on any number of discrete

values?

Clearly, rules that model important, high-probability events are very useful, especially

for taking the best greedy action. The agent can choose the next action optimistically,

try it, and then choose the next best action according to the resulting state of the

actual world.

However, to accurately model the world, high-probability rules are not enough. While

the system is able to learn about regularities, it ignores the exceptions might be

important in their own right. This is especially true if the low-probability events

carry very large penalties (such as, say, the robot's block stack falling down; or, in

the cliff-walking domain [55], possibly falling off the cliff, etc.) Or even, as illustrated

in this domain, if the low-probability events carry very high reward. When the events

in question are not binary-valued, as they are not in the above blocks world, then our

task is two-fold; we must first identify the occasional events before even beginning to

learn probabilities for them. These ideas and others for describing the world more

accurately are discussed next.
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Chapter 5

Conclusions

This work sought to address the following issue: given a set of probabilistic first-order

rules describing a world's dynamics, how can one define a probability distribution to

estimate the next state from the current state and a proposed action? The approach

I studied was to create a partially specified dynamic Bayesian network for each pro-

posed action by applying rules from the set to the current state and by employing a

combination rule to resolve any competition among the rules.

I hoped to discover two main things from the experiments. First, are the combination

rules a reasonable way to combine pieces of evidence? That is, given the different

rule-sets, are the assumptions underlying the Noisy-OR rule and the Dempster rule

still valid in each case? And second, if the next-states are in fact generated in a

reasonable way, how well does the planning algorithm work?

5.1 Combining Evidence

The Noisy-OR combination rule assumes that a failure to see the expected result

is due to independent failure of all the causes. Furthermore, it assumes that the
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presence of a cause is enough to trigger the result (and that the absence of a cause

does not take away from an existing trigger). The Dempster rule also assumes an

additive nature in the contributing causes, as well as independence in the causes.

In the deterministic experiment, Noisy-OR seemed to work reasonably well. This

seems to be because the independence and closeness-to-one assumptions underlying

Noisy-OR match up well with the bias underlying CLAUDIEN's data mining engine.

CLAUDIEN seeks out rules with an accuracy greater than a specified threshold; if the

accuracy is close to one (in this case, 0.9) then the rules in fact produce evidence

for a state feature with probability close to one. CLAUDIEN also seeks out the most

compact set of rules that explains the training examples, which will lead it to prune

out redundant rules; thus, because each rule ends up mainly explaining a subset of

the training data that is not already explained by some other rule, the assumption of

independence among the rules is likely to hold. The conclusion is that the Noisy-OR

and Dempster rules are good matches for data mining engines like CLAUDIEN. The

Dempster rule is perhaps a bit more general in that it does not assume such a specific

causal relationship.

In the stochastic experiments, the rules were so sparse as to essentially obviate the

need for a combination rule.

5.2 Learning and Planning with Rules

For acquiring a set of rules, I found that CLAUDIEN is a good approach if the reg-

ularities are "uni-modal", in some sense; that is to say, if there are lots of training

examples that can be characterized in the same way. However, if some small subset

of the data is characterized very tightly in one way, but it it is overshadowed by

another (larger) subset of data with different characteristics, then CLAUDIEN will not

find rules for the smaller subset; it will get thrown out as low-probability noise. This

is why, for example, in the stochastic stacking task CLAUDIEN did not learn a rule
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about the tall stacks resulting in high reward: even though the phenomenon was very

regular, there just were not enough examples of it.

The hand-coded rules performed very well in the one-step planning experiment, but

they were insufficient for the multi-step planning experiment. As probably was to

be expected, in hindsight, they were clearly a less complete model of the world dy-

namics than that derived by a more thorough and patient engine such as CLAUDIEN.

Nevertheless, using the hand-coded rules was illuminating for a number of reasons.

The hand-coded rules were a very good model of the next state reward: as such,

they might initially appear to have little advantage over the value-based approaches

that learn mappings from states to values. However, the fact that the rules learned

in the large stochastic world directly applied to the smaller stochastic world without

any kind of re-training is a clear validation of the relational, forward model-based

approach. The problem with learning value functions is that value functions have

bundled up inside them the notion of distance to the goal: if the size of the task, or

the goal itself, changes, it is difficult to see how one might directly apply a previously

learned value function. With a predictive forward model, however, the dependence

on the goal and the distance to the goal goes away.

The computational load of planning, even with the sparse sampling over next states,

was still significant. In part, this was due to my admittedly simple implementation

for unifying the first-order rules against the current state. With more work, this part

of the code could certainly have been made more efficient. Nevertheless, the main

obstacle is the sheer number of actions that must be tried at each node in the tree.

5.3 Future Work

There are three main ways to extend the work described here: speeding up the

planning, enriching the rule language, and improving the rule learning.
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To speed up the planning, it is imperative to reduce the number of actions that are

looked at at each level in order to reign in the combinatorial explosion. One very

old strategy, used by the RRL system, is to adopt STRIPS-like action pre-conditions.

As it is, so many of the move(a, b) actions are for blocks that are covered by other

blocks, for example. Having a pre-condition, as the RRL system does, that the blocks

must be clear would eliminate all of these candidates from the search tree. Another

potential strategy would be to do some kind of sampling among the actions. Clearly,

it would make little sense to sample among actions in an unguided way: the very

best action may be only one in a sea of poor actions. The system could start out

considering all actions equally, as it does now, and then gradually sample among

them with probability proportional to the number of times the action was selected

in the past. This kind of "re-weighting" scheme could be easily combined with a

pre-condition scheme, for example.

Another result that was clear from the experiments is that we must move beyond the

language of Horn clauses to something richer. In the case of the first stochastic blocks

world, for example, it was difficult to describe a couple of important ideas:

9 Buttressing stacks: we want to be able to say that building up a set of neigh-

boring stacks around the tallest stack contributes to that stack's stability. We

want to be able to learn a rule that says stacking a block onto a neighboring

stack may be better in the long run than greedily stacking onto the tallest stack.

This requires that we talk about the stack next to the tallest stack, and the

stack next to that neighboring stack, and so on, for however many such stacks

there happen to be at run time. With standard first-order expressions, we can

write down what happens in either of the following situations:

- tallest(7) A nextto(7,6) A pos(B,6) A move(A,B), or

- tallest(7) A nextto(7,6)A nextto(6,5) A pos(B,5) A move(AB),

but we do not have a way to describe the concept of "next-to" chained an

arbitrary number of times.
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* Towering stacks being more unstable: we would like to-say that if a tall stack

towers over its nearest buttressing stack, then the set of blocks in the tallest

stack that are higher than the neighboring stack are more likely to fall down.

The same difficulty crops up as before; we need to talk about the block on a

certain block, and the block on top of that, and so on, until the top of the

stack. There is no way to write down a rule that addresses an arbitrary number

of towering blocks.

One possibility is to use a concept language, as described by Martin and Geffner [39]

and Yoon et al. [57]. Concept languages are first-order languages that uses class

expressions to denote sets, rather than just individuals. Such languages provide the

Kleene star operator, *, as a primitive. This relieves one of having to write down a

different rule for, say, towering stacks of different heights, and lets one talk about "all

the blocks above this block" by chaining the on predicate arbitrarily.

An interesting idea for learning rules autonomously would be to apply Baum's evo-

lutionary approach [5, 6] in a concept language version of blocks world, rather than

in his original propositional one. There are interesting parallels between the work of

Baum and the work in decision-list policies of Martin and Geffner, Yoon et al., and

Khardon [33]. For example, the decision-list learners order the rules in the list greed-

ily, according to the rule's coverage of the training examples. In contrast, Baum's

rules learn their ordering by autonomously learning appropriate bid values. Con-

versely, Baum noticed that there were some concepts he had to hand-code into his

propositional representation in order to facilitate learning. For example, he needed

to encode under, which is the inverse of the given on relation and the idea of top of

stack, which can be expressed in terms of the transitive closure of the on relation.

Both of these operations, inverse and transitive closure (or Kleene star), are avail-

able as primitives in the syntax of a concept language. Furthermore, Baum's system

learns concepts autonomously, while the decision-list systems must learn from solved

examples. Thus, the combination of a richer language with Baum's economy-style

learning could be very interesting.
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Finally, as alluded to at the end of the last chapter, it seems necessary for a well-

defined world model not only to include information about what happens most of the

time, but also to specify something about what might happen the rest of the time.

That is to say, if we want to model the instances when move(A, B) A clear(A) -+

on(A, B) does not hold, then we need to know something about the domain over which

the on relation operates so that we can assign some probability to those situations that

are encompassed by -ion(A, B). This need also exists with the PSTRIPS approach

as used by Yoon et al.: the set of action outcomes must be specified ahead of time.

This kind of information is crucial if the method of sparse sampling is to produce an

estimated next state consistent with the world dynamics. The important question

to answer here is how to go about identifying the domain, which may not be known

ahead of time.

One straightforward idea is to start with just the set of high-probability rules. Then,

once a rule has been identified as useful, we can go back to the data and look at what

happens in the cases when the rule doesn't predict the right thing. This could either

be done by re-examining the set of training examples, or by storing such counter-

examples as they arise in practice. Once we get a sense for what the alternative,

lower-probability outcomes are, we can begin to estimate probabilities for them.

Ultimately, the batch nature of the system described here is somewhat unsatisfying:

first we get some rules, then we act. Intuitively, we would want our success or failure

at acting to drive the learning of more, or better, rules. For example, we should

be able to ask for more rules in settings where we find the current model is poor.

One simple way to do this would be to simply cache the state-action-state triplets

where we do poorly and then add them to our set of training examples. At some

later point, CLAUDIEN or some other rule-inducer can be run to learn rules on the

expanded training set. This approach is simple, but requires that we keep around

an ever-growing pile of training examples. We could, for example, decide that after

each bout of rule-learning, we discard the training examples; then, we would only

have to learn rules for the new examples on each iteration. Now we must deal with
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the question of how to incorporate the new rules into the existing rule-base: simply

tacking on the new rules at the end of the canon could result in redundancies (if,

say, we learn a rule that is more specific then a previously learned rule), which would

violate any assumptions about independence.

Clearly, there are many ways to improve on the system described here; there is room

for future work in the planning, in describing the language for the rules, and in the

rule learning itself. Nevertheless, this system has shown the advantages of a model-

based approach over a value-based one. It has also shown that it is possible to specify

well-defined distributions over next states even with very limited information, given

strong assumptions about the world's dynamics. The problem of finding a compact

and expressive world model tractably is still wide open, but the approach of using a

sparse set of first-order rules, as shown here, is a step along the way.

83



Appendix A

Rules Learned by CLAUDIEN For the

Deterministic Blocks World

0: [1.0] move(a,a)-> 0.0

1: [1.0] move(a,t)-> 0.0

2: [1.0] move(a,c)-> 0.0

3: [1.0) move(b,a)-> 0.0

4: [1.0) move(b,b)-> 0.0

5: [1.0) move(b,t)-> 0.0

6: [1.0) move(b,c)-> 0.0

7: [1.0) move(t,a)-> 0.0

8: [1.0] move(tb)-> 0.0

9: [1.0] move(t,t)-> 0.0

10: [1.0) move(t,c)-> 0.0

11: [1.0) move(c,a)-> 0.0

12: [1.0) move(c,b)-> 0.0

13: [1.0) move(c,t)-> 0.0

14: [1.0) move(c,c)-> 0.0

15: [0.987854) move(D,E)-> 0.0

16: [1.0) cl(a,true) on(c,t) move(a,b)-> 1.0

17: [0.923077) cl(c,false) on(c,t) move(a,b)-> 1.0

18: [0.923077) cl(c,false) cl(b,true) move(a,b)-> 1.0

19: [1.0) cl(D,true) on(c,t) goal(on(DE)) move(a,b)-> 1.0

20: [1.0) cl(b,true) cl(a,true) move(a,b)-> 1.0

21: [1.0) cl(D,true) cl(b,true) goal(on(D,E)) move(a,b)-> 1.0

22: [0.923077) cl(E,true) cl(c,false) goal(on(D,E)) move(a,b)-> 1.0

23: [1.0) cl(E,true) cl(a,true) goal(on(DE)) move(a,b)-> 1.0

24: [1.0) cl(E,true) cl(Dtrue) goal(on(D,E)) move(a,b)-> 1.0
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25: (1.0] on(c,t) on(b,t) move(a,b)-> 1.0

26: [0.909091) cl(b,true) on(b,t) move(a,b)-> 1.0

27: (0.909091) cl(E,true) on(b,t) goal(on(D,E)) move(a,b)-> 1.0

28: [1.0) on(a,c) move(t,c)-> on(a,c)

29: [1.0] cl(c,false) on(b,t) move(t,c)-> on(a,c)

30: [1.0] on(a,c) move(t,t)-> on(a,c)

31: [1.0) cl(E,false) cl(c,false) goal(on(D,E)) move(t,t)-> on(a,c)

32: (1.0] on(c,t) on(b,t) move(t,t)-> on(a,c)

33: [1.0] cl(c,false) on(b,t) move(t,t)-> on(a,c)

34: [1.0] cl(b,true) cl(atrue) on(b,t) move(t,t)-> on(a,c)

35: [1.0] cl(E,true) cl(a,true) on(b,t) goal(on(D,E)) move(t,t)-> on(a,c)

36: [1.0) cl(E,true) cl(D,true) on(b,t) goal(on(D,E)) move(t,t)-> on(a,c)

37: [1.0] cl(c,false) cl(b,false) cl(a,true) move(t,t)-> on(a,c)

38: [1.0] cl(D,false) cl(c,false) on(c,t) goal(on(D,E)) move(t,t)-> on(a,c)

39: [1.0) cl(D,true) cl(b,true) on(b,t) goal(on(D,E)) move(t,t)-> on(a,c)

40: [1.0] cl(c,false) cJ(a,false) on(c,t) move(t,t)-> on(a,c)

41: [0.923077] cl(E,true) cl(c,false) goal(on(D,E)) move(D,E)-> on(D,E)

42: [1.0] cl(b,true) cl(a,true) on(a,t) move(a,t)-> cl(c,false)

43: [1.0) cl(atrue) on(c,t) on(a,t) move(a,t)-> cl(c,false)

44: [1.0) cl(D,true) cl(b,true) on(a,t) goal(on(D,E)) move(a,t)-> cl(c,false)

45: [1.0] cl(E,true) cl(a,true) on(a,t) goal(on(D,E)) move(a,t)-> cl(c,false)

46: [1.0) cl(D,true) on(c,t) on(a,t) goal(on(D,E)) move(a,t)-> cl(c,false)

47: [1.0) cl(D,true) cl(c,true) goal(on(D,E)) move(t,a)-> on(b,t)

48: [0.945946] on(a,c) move(D,E)-> on(a,c)

49: [0.931429] cl(c,false) on(b,t) move(D,E)-> on(a,c)

50: [1.0) cl(D,false) on(c,t) on(b,t) move(D,E)-> on(a,c)

51: [1.0) cl(E,false) on(c,t) on(b,t) move(D,E)-> on(a,c)

52: [1.0) cl(Dfalse) cl(b,true) cl(a,true) on(b,t) move(D,E)-> on(a,c)

53: [1.0) cl(E,false) cl(b,true) cl(a,true) on(b,t) move(D,E)-> on(a,c)

54: [0.930556) cl(c,false) cl(b,false) cl(a,true) move(D,E)-> on(a,c)

55: [1.0] cl(D,true) cl(c,false) on(a,t) goal(on(D,E)) move(t,t)-> on(c,t)

56: [1.0) cl(Etrue) cl(cfalse) on(b,t) goal(on(D,E)) move(t,t)-> on(c,t)

57: [1.0) on(b,c) move(a,t)-> on(b,c)

58: [1.0] cl(c,false) on(a,t) move(a,t)-> on(b,c)

59: [1.0) cl(btrue) cl(a,true) on(a,t) move(a,t)-> on(b,c)

60: [1.0) cl(a,true) on(c,t) on(a,t) move(a,t)-> on(b,c)

61: [1.0) cl(Dtrue) cl(btrue) on(a,t) goal(on(D,E)) move(a,t)-> on(b,c)

62: [1.0) cl(E,true) cl(atrue) on(a,t) goal(on(D,E)) move(a,t)-> on(b,c)

63: [1.0) cl(D,true) on(c,t) on(a,t) goal(on(D,E)) move(a,t)-> on(b,c)

64: [1.0] cl(E,true) cl(Dtrue) on(a,t) goal(on(D,E)) move(a,t)-> on(b,c)

65: [1.0] cl(E,true) cl(D,true) on(a,t) goal(on(D,E)) move(a,t)-> cl(c,false)

66: [0.912621) cl(E,true) cl(b,false) on(a,t) move(D,E)-> cl(E,true)

67: [0.912621) cl(E,true) ou(c,b) on(a,t) move(D,E)-> cl(E,true)

68: [0.909091) cl(D.false) cl(a,true) on(c,b) on(a,t) move(D,E)-> cl(E,true)

69: [1.0] on(b,c) move(c,t)-> on(b,c)
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70: [1.0] cl(c,false) on(at) move(c,t)-> on(b,c)

71: [1.0] cl(b,true) cl(a,true) on(a,t) move(c,t)-> on(b,c)

72: [1.0] cl(E,true) cl(atrue) on(a,t) goal(on(D,E)) move(c,t)-> on(b,c)

73: [1.0] cl(a,true) on(c,t) on(a,t) move(c,t)-> on(b,c)

74: [1.0) cl(D,true) cl(b,true) on(a,t) goal(on(D,E)) move(c,t)-> on(b,c)

75: [1.0) cl(D,true) on(c,t) on(a,t) goal(on(D,E)) move(c,t)-> on(b,c)

76: [1.0) cl(E,true) cl(Dtrue) on(a,t),goal(on(D,E)) move(c,t)-> on(bc)

77: [0.916667) cl(Etrue) cl(b,false) move(D,E)-> cl(E,true)

78: [0.916667) cl(E,true) on(c,b) move(D,E)-> cl(E,true)

79: [1.0) cl(c,false) cl(afalse) on(c,t) move(D,E)-> on(a,c)

80: [0.907609) on(b,c) move(DE)-> on(b,c)

81: [1.0) cl(E,false) cl(c,false) on(c,a) move(D,E)-> on(b,c)

82: [0.907609) cl(c,false) on(at) move(D,E)-> on(b,c)

83: [1.0) cl(D.false) cl(b,true) cl(a.true) on(a,t) move(D,E)-> on(b,c)

84: [1.0) cl(E,false) cl(b,true) cl(a,true) on(at) move(D,E)-> on(b,c)

85: [1.0) cl(D,false) cl(a,true) on(c,t) on(a,t) move(D,E)-> on(b,c)

86: [1.0) cl(E,false) cl(a,true) on(c,t) on(a,t) move(D,E)-> on(b,c)

87: [1.0) cl(b,true) cl(a,true) on(a,t) move(t,c)-> on(b,c)

88: [1.0) cl(E,true) cl(a,true) on(a,t) goal(on(D,E)) move(t,c)-> on(b,c)

89: [1.0) cl(D,true) cl(btrue) on(a,t) goal(on(D.E)) move(t,c)-> on(b,c)

90: [1.0) cl(a,true) on(c,t) on(a,t) move(t,c)-> on(b,c)

91: [1.0) cl(D,true) on(c,t) on(at) goal(on(D,E)) move(t,c)-> on(b,c)

92: [1.0) cl(E,true) cl(D,true) on(a,t) goal(on(DE)) move(t,c)-> on(b,c)

93: [1.0) cl(c,false) cl(b,false) move(t,t)-> on(a,c)

94: [1.0) cl(c,false) on(c,b) move(t,t)-> on(a,c)

95: [1.0) on(c,a) move(t,c)-> on(ca)

96: [0.930556) cl(cfalse) cl(b,false) move(D,E)-> on(a,c)

97: [0.930556) cl(c,false) on(cb) move(D,E)-> on(a,c)

98: [1.0) cl(Dtrue) cl(c,true). goal(on(D,E)) move(t,t)-> on(b,t)

99: [1.0) cl(c,false) on(c,a) move(t,t)-> on(b,c)

100: [1.0] cl(D,true) cl(b,true) on(a,t) goal(on(DE)) move(t,t)-> on(b,c)

101: [1.0) cl(btrue) cl(a,true) on(a,t) move(t;t)-> on(b,c)

102: [1.0) cl(E,true) cl(a,true) on(a,t) goal(on(D,E)) move(t,t)-> on(b,c)

103: [1.0) cl(atrue) on(c,t) on(a,t) move(t,t)-> on(b,c)

104: [1.0) cl(D,true) on(c,t) on(a,t) goal(on(DE)) move(t,t)-> on(b,c)

105: [1.0) cl(Etrue) cl(D,true) on(a,t) goal(on(DE)) move(t,t)-> on(b,c)

106: [1.0) cl(cfalse) on(c,a) move(D,E)-> on(c,a)

107: [1.0) cl(Dfalse) on(c,a) move(D,E)-> on(c,a)

108: [1.0] cl(E,false) on(c,a) move(D,E)-> on(c,a)

109: [1.0) on(c,a) on(b,c) move(D,E)-> on(c,a)

110: [1.0) cl(a,false) on(b,c) move(D,E)-> on(c,a)

111: [1.0) cl(D,false) cl(a,false) on(b,t) move(D,E)-> on(c,a)

112: [1.0) cl(E,false) cl(a,false) on(b,t) move(D,E)-> on(c,a)

113: [1.0) cl(D,false) cl(c,true) cl(b,true) on(b,t) move(D,E)-> on(c,a)

114: [1.0) cl(E,false) cl(c,true) cl(b,true) on(b,t) move(D,E)-> on(c,a)
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115: [1.0) cl(D,false) cl(b,true) on(b,t) on(a,t) move(D,E)-> on(c,a)

116: [1.0) cl(E,false) cl(b,true) on(b,t) on(a,t) move(D,E)-> on(c,a)

117: [1.0) cl(c,false) cl(a,false) on(a,t) move(D,E)-> on(c,a)

118: [1.0) cl(c,false) on(ba) move(t,t)-> on(a,c)

119: (1.0) cl(c,false) on(b,a) move(D,E)-> on(a,c)

120: (1.0) on(c,a) move(t,t)-> on(c,a)

121: [1.0] cl(D,false) on(b,c) goal(on(D,E)) move(t,t)-> on(c,a)

122: [1.0] cl(D,false) cl(c,false) on(a,t) goal(on(D,E)) move(t,t)-> on(c,a)

123: [1.0] cl(E,true) cl(D,true) goal(on(D,E)) move(D,E)-> 1.0

124: [1.0] cl(E,true) cl(a,true) goal(on(D,E)) move(D,E)-> 1.0

125: [1.0] cl(b,true) cl(a,true) goal(on(D,E)) move(D,E)-> 1.0

126: [0.923077] cl(Etrue) cl(c,false) goal(on(D,E)) move(D,E)-> 1.0

127: [1.0] cl(a,true) on(c,t) goal(on(D,E)) move(D,E)-> 1.0

128: [1.0] cl(D,true) on(ct) goal(on(D,E)) move(D,E)-> 1.0

129: [0.923077] cl(c,false) on(c,t) goal(on(D,E)) move(D,E)-> 1.0

130: [1.0) on(c,t) on(b,t) goal(on(D,E)) move(D,E)-> 1.0

131: [0.909091] cl(E,true) on(b,t) goal(on(D,E)) move(D,E)-> 1.0

132: [0.909091] cl(b,true) on(b,t) goal(on(D,E)) move(D,E)-> 1.0

133: (1.0) cl(D,true) cl(b,true) goal(on(D,E)) move(D,E)-> 1.0

134: [0.923077] cl(c,false) cl(b,true) goal(on(D,E)) move(D,E)-> 1.0

135: [1.0] cl(E,true) cl(D,true) goal(on(D,E)) move(D,E)-> on(a,b)

136: [1.0] cl(E,true) cl(a,true) goal(on(D,E)) move(D,E)-> on(a,b)

137: (1.0] cl(b,true) cl(a,true) goal(on(D,E)) move(D,E)-> on(a,b)

138: [0.923077] cl(E,true) cl(c,false) goal(on(D,E)) move(D,E)-> on(a,b)

139: [1.0] cl(a,true) on(c,t) goal(on(D,E)) move(D,E)-> on(a,b)

140: [1.0] cl(D,true) on(c,t) goal(on(D,E)) move(D,E)-> on(a,b)

141: [0.923077) cl(c,false) on(c,t) goal(on(D,E)) move(D,E)-> on(a,b)

142: [1.0] on(c,t) on(b,t) goal(on(D,E)) move(D,E)-> on(a,b)

143: [0.909091] cl(Etrue) on(b,t) goal(on(D,E)) move(D,E)-> on(a,b)

144: [0.909091] cl(b,true) on(b,t) goal(on(D,E)) move(D,E)-> on(a,b)

145: [1.0] cl(D,true) cl(b,true) goal(on(D,E)) move(DE)-> on(a,b)

146: [0.923077) cl(c,false) cl(b,true) goal(on(D,E)) move(D,E)-> on(a,b)
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