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Abstract

Real-world domains involve objects, and if artificial agents are to interact success-
fully with our world, they will need to represent and reason about these objects, their
attributes, and the relations that hold among them. Thus, the question of how to
represent the world to the agent becomes important. This thesis compares two repre-
sentations that are intended to allow for the use of reinforcement learning techniques
in a domain that is essentially relational, a fully propositionalized representation, and
a "deictic" one. The full propositional representation is impractical for large domains,
and the hope was that a deictic representation would ameliorate many of the scal-
ing problems. However, this thesis argues that a deictic representation raises a new
set of problems that may make such a representation infeasible, even in fairly small
domains.

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

Humans speak, and probably think, of the world as being made up of objects, such as

chairs, pencils, and doors. Individual objects have attributes, and sets of objects stand

in various relations to one another. If artificial agents are to successfully interact with

our world, they will need to represent and reason about objects, their features, and the

relations that hold among them. In order to use established reinforcement learning

techniques in an essentially relational domain, we must find some representation for

the world that captures the notion of objects and their relations [7]. This thesis

explores two such representations, full propositional and deictic.

A fully propositionalized representation of the world specifies a finite domain of

objects, and describes the domain using a large set of propositions representing every

possible instantiation of the properties and relations in the domain. This represen-

tation is known to be reasonably effective in small domains, but since the size of

the observation space grows as the world expands to contain more objects, it be-

comes unwieldy fairly quickly. Also, since each object is given a unique name and

reasoned about individually, there is no representational support for generalization

over objects.

Starting with the work of Agre and Chapman [1], who were building on Ullman's

visual routines [15], and gaining momentum with the debate over the fruitcake prob-

lem in the late 1980s (see the Winter, 1989 issue of Al Magazine for the culmination

of the debate), arguments have been made for the viability of deictic representations
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in relational domains. Such representations point to objects in the world and name

them according to their role in ongoing activity rather than with arbitrary identifiers,

as is typically the case with first order representations.

This thesis experimentally compares the performance of learning algorithms in

a blocks-world domain using the two representations and analyzes the results. The

remainder of this chapter describes more fully the representations used in the exper-

iments, expands on the motivations for each, and outlines the conclusions eventually

reached. Chapter 2 details the implementations of the domain, the representations,

and the learning algorithms used in the experiments. Chapter 3 presents and discusses

the results for the NDP experiments, and Chapter 4 similarly analyzes the results for

the G algorithm. Finally, Chapter 5 draws conclusions about the effectiveness of the

two representations and suggests some ideas for future work in this area. This thesis

builds on work done by Kaelbling, Oates, Hernandez, and Finney [7].

1.1 Propositional Representations

The term propositional representation will be used throughout this paper to denote a

naive propositionalization of a relational domain. That is, a set of propositions that

are either true or false, such as block2-is-red or block2-is-not-on-block3. The truth

values of these propositions are then encoded in a binary vector. For example, given

n blocks, there would be kn propositions to specify the colors of the blocks (for k

possible colors) and n2 propositions to specify how the blocks are stacked. This gives

us a total of 2kn 2 ' 2 distinct world states.

Since the objects in the domain are given unique names, this representation pro-

vides no mechanism for generalizing over objects. In many domains, objects of a

given type are interchangeable: the identity of an object is unimportant as long as it

has some particular property. For example, if the goal of the blocks-world agent is to

pick up green blocks, it might want to learn the following rule expressed in first order

logic:

if ]xcolor(x, green) A Vy-'on(y, x) then pickup(x).

9



That is, "if there is block that is green, and there is nothing on top of it, that block

should be picked up." [7]. This rule applies regardless of the particular identity of

the green block, but the propositional version requires a separate version of the rule

for each name the green block could have.

However, the full propositional representation gives the agent access to every piece

of information available about the world. In fully observable domains, traditional

reinforcement learning techniques are known to be convergent and to converge to

the optimal solution. So, while the representation leads to a perhaps infeasibly large

observation space, it is known that at least in small domains reinforcement learning

will be successful, if perhaps slow.

1.2 Deictic Representations

The word deictic was introduced to the artificial intelligence vernacular by Agre and

Chapman [1] who used a deictic representation in a video game domain. In their

representation, the agent (a penguin) avoids the computational load of keeping track

of every object in the world by having markers for each of the objects that are deemed

useful by the agent's designer. For example, the penguin (who is trying to avoid being

stung by a bee) has a marker for the-bee-that-is-chasing-me which always points to

the correct object, if there is one that is appropriate. The agent then uses this marker,

along with similar markers for other relevant objects in the game, to act effectively

in the game.

Using a deictic approach in learning is attractive for a number of reasons. Such

task-specific attentional control is similar to our own ability to filter out distracting

information when trying to attend to and complete a particular task. Beyond this

intuitive argument, there are several aspects of deictic representations that appear

more promising than a full propositional representation.

First, the agent benefits from some passive generalization through its use of the

attentional markers. That is, once the agent has learned to perform a task with the

the-cup-that-I-am-holding, it will not matter which cup the agent is holding for the

10



task to be successful. In a full-propositional representation, each object must have a

unique name, whether or not they share characteristics relevant to a particular task,

so the agent must learn to perform the task on each object independently.

Second, since the size of the observation space in a deictic representation only

grows with the number of attentional markers, an agent using such a representation

could be expected to learn a policy in one world and then use that policy in a world

with additional objects. A full propositional representation makes this more difficult

due to the unique naming of each object in the world. This aspect of the representa-

tion is particularly attractive as a means for incorporating a teacher into the system.

As with many human learners, the agent can be led through a series of increasingly

complex worlds, performing a particular task, with a "real world" domain as the final

goal. It is more difficult to do this with a full-propositional representation that grows

in size as the world becomes more complex.

Lastly, since the agent's attentional resources are generally used both for percep-

tion and taking actions, the agent's attention is restricted to the part of the world

where it is capable of taking action. This focused partial observability means that

the focused objects are most likely to be relevant to whatever reward is ultimately

received. Also, if irrelevant aspects of the world are not easily observed, then learning

is made easier because there is no need to generalize over them.

1.3 Related Work

While Agre and Chapman showed success in acting with such a representation, they

did not attempt to do any learning. Similarly the fruitcake discussion deals only with

whether or not it is possible to represent a reasonable policy using deictic markers, not

how to learn one. Whitehead and Ballard did do learning in their work using deixis

in a blocks-world domain [16], but their approach dealt with the inherent perceptual

aliasing of a deictic representation by making the agent avoid those observations

which seemed to be ambiguous with respect to underlying state. This limitation is

fairly severe, as many tasks may require that the agent move through an ambiguous
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observation in order to achieve the goal. In our experiments we try to arrive at a

learning mechanism that allows the agent to learn a policy in the face of ambiguity

that will ultimately allow the task to be completed.

In [9], Martin uses his CANDID algorithm to solve problems in the blocks-world

domain. However, he solves the more complex problems by leading the agent through

a series of easier tasks that can be used as macro actions in doing the harder task.

While his approach is both interesting and successful, we are interested in finding out

whether a deictic representation can be useful to an agent in learning to do complex

tasks on its own.

1.4 Using A Deictic Representation

There are many ways that the perceptions and actions of an agent can be structured

within the general framework of deictic representations. In Agre and Chapman's

work, the agent is given markers that are designed to be useful for the task that the

agent needs to perform. In our representation, we chose to give the agent a more

general set of markers, since we hoped that the agent would be able to learn a variety

of tasks in a particular domain, and Agre and Chapman's choice of markers was

greatly influenced by the task. To this end we chose to give the agent a focus which it

can move from one object to another in the world. We also gave the agent additional

markers which it cannot move directly, but only relative to the focus. That is, the

agent can either place a marker on the object currently in focus, or move the focus

to a previously marked object.

In our representation, the deictic names as described above (i.e. the-cup-I-am-

holding or the-bee-that-is-chasing-me) are determined by the way in which the markers

are used rather than being predetermined by the agent's designer. In the blocks-world

domain, the block on which the focus is currently placed can be thought of as the-

block-I-am-looking-at from the agent's perspective. Similarly, if a marker M1 is placed

on the focused object, and the focus is subsequently moved, the object marked by

M1 becomes the-block-I-was-looking-at. The focused block can also be the-block-I
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would-pick-up-on-a-pickup-action or a-block-in-the-stack-that-would-grow-taller-on-a-

putdown-action, depending on the agent's intention. The example in Figure 1-1 shows

the way in which an agent can use its attentional markers to perform a blocks-world

task. In the example, the agent needs to uncover the blue block, so it must first

remove the top block on the stack.

t=O t=1

R R

G G

B M to B
G "ocu G

t=4

R

G

B f

Go"u"s

focus
UP

t=5

G

B

focus

t=2

RL-i-2
G

M2 to
Sfocus

t=6

2R]

G p
I

B
G pcu

t=3

R

G

B
~ focus

G up

t=7

B

Figure 1-1: Use of markers in blocks-world task.

In time step 0 in Figure 1-1, the focus is used to the mark the-block-I'm-trying-

to-uncover. In time step 1, marker M is used to remember that location for later.

The focus is then moved up in the next time step, becoming the-block-that-might-be-

the-top-block. To see whether or not the focused block is the top block, M2 is moved

13



to the same location (t=3), and focus is moved up again. Since M 2 and the focus do

not mark the same block in time step 4, the focus is now the- block-that-might-be-the-

top-block again. After the procedure is performed again (t=6), M 2 and the focus do

mark the same block, so the focus now becomes the-top-block and can be picked up.

Clearly this procedure takes many more time steps than would be necessary with

the full-propositional representation described above. In the propositional represen-

tation, each block would have a unique name and its location and color would be

known to the agent, so it would be able to determine the top block on the stack con-

taining the blue block and pick it up in one time step. However, to learn this policy

the agent must learn it for all permutations of the names and locations of the blocks.

What's more, once it has successfully learned to remove the red block from the top

of the stack, the process of learning to remove the green block beneath it is made no

easier for the experience. The deictic policy however, once learned, generalizes to any

situation in which the top block of a stack needs to be removed.

1.5 Using History

Obviously, limiting the information that the agent has about its environment means

that the world is no longer fully observable, so the agent may be unable to distinguish

underlying states that require different actions to ultimately achieve the goal. How-

ever, by looking at its own recent history, the agent may be able to differentiate these

important states. Consider the two deictic cases depicted in Figure 1-2, in which

the agent's goal is to pick up the green block. The information available to the agent

is identical in both cases (the focused block is red), but in the first case, it needs to

pick up the red block, and in the second it needs to go find the green block and pick

it up to complete the task.

However, by looking back a step in history, it is possible to tell the difference

between the two states. Figure 1-3 shows two histories which make it clear which

action to take. If the focus was on the table and then a put-down action was performed

before the agent found itself looking at the red block, then the red block is now on the

14



* Eu
Figure 1-2: Two ambiguous deictic representations.

table, and it is time to go look for the green block. If the focus was on the green block

and then was moved up before the agent saw the red block, then the red block must

be removed before the green block can be picked up. Thus by adding a sufficiently

long history window to the observations that the agent uses to determine its next

action, we should allow the agent to arrive at a policy that achieves the goal.

Wr putdown K = focus green

focus up = pickup

Figure 1-3: Using history to disambiguate two identical observations.

1.6 Selection of Learning Algorithms

In our experiments, we took the approach of using model-free, value-based reinforce-

ment learning algorithms, because it was our goal to understand their strengths and

weaknesses in this domain. We chose to use a neural-network function approxima-

tor (known as neuro-dynamic programming [3], or NDP) as a baseline, since it is

a common and successful method for reinforcement learning in large domains, such

as backgammon [14] and elevator scheduling [5]. We hoped to improve performance

further by using a function approximator that could use perceptual information selec-

tively based on reward, such as the G algorithm [4] or McCallum's U-Tree algorithm

[10]. After some initial experiments with U-Tree, we settled on using a modified ver-
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sion of the simpler G algorithm. In neuro-dynamic programming, neural networks

are used to approximate the Q-values of each observation-action pair. G and U-Tree

both look at reward distributions to determine which observation bits are relevant to

predicting reward and divide the state space up accordingly. The next chapter gives

the details of both algorithms.

We initially believed that our modified G algorithm would have the advantage over

NDP due to its ability to discern which parts of the observation vector were irrelevant

to the task. Both algorithms are used to approximate the value functions for each

observation-action pair, but the G algorithm uses the reward received to direct the

search for relevant observation bits, whereas NDP is forced to learn a reasonable

policy for each possible value of all features in the observation vector, regardless of

whether of not the feature actually effects which action should be taken next. Given

that the full observation space is too large to represent exactly, even in the deictic

representation, it would seem that an approximator that tries to explicitly ignore the

irrelevant bits in the input would be more effective than one that does not.

1.7 Conclusion Overview

As described above, this work was begun with the hopes that a deictic representa-

tion would give our reinforcement learning agent an advantage over one with a full

propositional representation. Further, we believed that using an algorithm that tries

to ignore the task-irrelevant parts of the observation space would boost our agent's

performance still more. Unfortunately, our experiments uncovered a number of issues

that make the problem more difficult than we had expected, and ultimately lead our

approach to fail.

First, the question of optimality becomes more complex, as discussed in sec-

tion 3.4. Second, the domain simply is not Markov, no matter how much history

the agent is allowed to observe on each time step. Further, as the history window is

increased, the learning appears to become more stable, but these policies are decreas-

ingly robust to nondeterminism, again raising the question of what measure should
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be used for evaluating a policy. Thus, both with NDP and with G, it seems that with

straight-forward reinforcement learning strategies, we cannot learn a policy that is

both stable and robust. This issue is addressed throughout the thesis, but particu-

larly in Section 4.3. Lastly, the issue of determining which parts of the observation

space are important to the task at hand becomes much more problematic when the

agent must consider historical observations as well as current ones. The problem

here is that the agent's history is only useful to it once it has a somewhat reasonable

policy, but it is difficult or impossible to develop a reasonable policy without first

making appropriate historical distinctions. These problems are described in detail in

Chapter 4.

However, despite these difficulties, I remain convinced that some method for prun-

ing the observation size of the agent in a task-specific way is necessary for successful

learning in complex domains. The real world is simply too large for an approach that

seeks to represent every possible distinct world state, but approximating the state

may obscure necessary distinctions between individual states, causing many learning

methods to fail. Thus a successful learning agent in the real world will need to develop

policies that explicitly take actions to disambiguate observations enough to facilitate

appropriate future actions. The work in this thesis is intended to help pinpoint the

problems that need to be more specifically addressed by a learning algorithm de-

signed to learn reasonable policies in such a domain, and several possible directions

for continuing research are proposed in Chapter 5.
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Chapter 2

Implementation

To test the usefulness of our deictic representation, we chose to work in a blocks-world

domain, first introduced by Whitehead and Ballard [16]. This chapter describes in

detail the implementations of the experimental domain, the representations being

compared, and the different algorithms used to test the representations.

2.1 Blocks world

Our blocks-world implementation is a two-dimensional world that contains only block

objects, each of which has a color and a location. Blocks can be red, green, blue, or

table-colored and the table is made up of immovable, table-colored blocks (no other

blocks are table-colored). A block that is covered by other blocks cannot be picked up

until each of the covering blocks is removed. The world is completely deterministic.

In our experiments, each initial configuration has only one green block and the

agent's task is to pick up that block. The agent receives a reward of +2 for successfully

completing the task. Attempting to perform a failing action (such as trying to pick

up a covered block or a table block) results in a reward of -0.2. Any other action

results in a reward of -0.1. Regardless of the representation used for learning, the

agent employs an -greedy exploration policy with an exploration rate of 10%. The

domain has a discount factor of 0.9. Each learning algorithm is trained for 200 steps

and then tested for 100. Experiments were done with exploration off during testing.
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Field Possible Values Number Pos-

sible Values

ALIVE true, false 2
HAND-FULL true, false 2
COLOR-BLOCKO red, green, blue, table 4
COLORBLOCK1 red, green, blue, table 4

(n entries) red, green, blue, table 4

ONBLOCKO BLOCKI, BLOCK2, ... n -1
ONBLOCK1 BLOCK0, BLOCK2, ... n - 1

(n entries) n -

LOCATION-BLOCKO 1, 2, ... 1
LOCATIONBLOCK1 1, 2, ... 1

(n entries)

Table 2.1: Full Propositional Percept Vector

2.2 Full Propositional Representation

In the full propositional representation, the agent is given a vector of percepts repre-

senting all of the information known about each of the blocks. Each block is given a

unique name that is determined randomly for each trial. Table 2.1 shows the infor-

mation contained in each percept vector. The alive bit indicates whether or not the

agent was active yet when this percept was observed, and its purpose is explained

later. 1 is the length of the surface on which the blocks are placed (that is, the number

of table-colored blocks in the scene), and n is the total number of blocks, including

table blocks. The size of this percept vector clearly scales linearly with the number

of blocks in the configuration presented to the agent. However, the total number of

distinct observations is 2 * 2 * 4n * (n - 1)n * l. Thus the size of the observation

space (that is, the size of table needed to store the value function explicitly) grows

exponentially in n.

The full propositional agent also has an action set that refers to each object by

its unique name. Table 2.2 shows the action set of the full propositional agent with a

brief description of the effects of each action. Again, because of the unique naming,

the size of the action set grows with the number of blocks, but only linearly.
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Action Description
HAND-LEFT Moves hand one stack to the left. Fails if hand is already

at far left.

HAND-RIGHT Moves hand one stack to the right. Fails if hand is already
at far right.

PICKUP-BLOCKO Picks up blocked named "BLOCKO". Fails if block is
part of table, hand is full, or block is covered by other

block(s).

(n entries) Pickup actions for each block.

PUTDOWN Puts block down at current hand position. Fails if hand

is empty.

Table 2.2: Full Propositional Action Set

2.3 Focused and Wide Deictic Representations

There are many different ways to implement a deictic representation, even given our

previously stated decision to use generic markers that the agent is allowed to move

from object to object. At one extreme, an agent, could be given a marker for every

object in its environment, effectively giving it a complete propositional representation.

At another extreme an agent with one or two markers has a very limited perceptual

window on its world. Given enough markers and the ability to place them effectively,

the environment may be fully observable, but a more reasonable number of markers

and a naive initial policy for moving them around make the world partially observable

from the standpoint of the agent.

Two points on this spectrum might be characterized as focused deizxis and wide

deixis. In each of these, there is a special marker called the focus and some number

of additional markers. Also in both, the agent has actions for moving the markers

about, and for moving the object marked by the focus. Table 2.3 shows the action

set for both of these representations. The difference between the two is the size of

the percept vector. In focused deixis, the agent is given information only about the

focus. In wide deixis, the agent is given information about all of the markers. Tables

2.4 and 2.5 show the information contained in each vector. Clearly the size of both

observation spaces grows with the number of markers (k), but not with the number

of blocks (n).
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Action Possible Argu- Description
ments

MOVE-FOCUS UP, DOWN, Move the focus one block in the
LEFT, RIGHT designated direction.

FOCUSTO-MARKER M1, M2, ... Moves the focus to the object
marked by the marker given in
the argument.

MARKER-TO-FOCUS M1, M2, ... Moves the designated marker
to the object marked by the fo-
cus.

PICKUP none Picks up the block marked by
the focus. Fails if the hand is
full, the block marked is cov-
ered by other block(s), or the
block marked is a table block.

PUTDOWN none Puts the held block down on
top of the focused block's stack.
Fails if the hand is empty.

Table 2.3: Deictic Action Set

Field Possible Values Number Possible Values
ALIVE true, false 2
HANDFULL true, false 2
FOCUS-COLOR red, green, blue, table 4
FOCUS-ON Ml, M2, ... k-1
FOCUS-UNDER Mi, M2, ... k-1
FOCUS-ON-RIGHT M1, M2, ... k-i
FOCUSONLEFT M1, M2, ... k-1

Table 2.4: Focused Deictic Percept Vector

Field Possible Values Number Possible Values
ALIVE true, false 2
HAND-FULL true, false 2
FOCUS-COLOR red, green, blue, table 4
FOCUS-ON Mi, M2, ... k-i
MION FOCUS, M2, ... k-1

(k entries) k-1
FOCUSON-RIGHT M1, M2, ... k-1
M1_ON-RIGHT FOCUS, M2, ... k-1

(k entries) k-i

Table 2.5: Wide Deictic Percept Vector
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h=O ALIVE = true
h=O HANDFULL false
h=O FOCUS-COLOR = green
h=O FOCUS-ON = no marker

h=1 ALIVE = true
h=1 HANDFULL true

Figure 2-1: NDP encoding of observation input.

2.4 Neuro-dynamic Programming

Our implementation of neuro-dynamic programming (NDP) uses a three-layer neural

network for each of the agent's actions. The input for each network is a vector of

bits encoding the current state and the observation-action pair for each time step in

the history window. For each observation feature with k possible values, k bits of the

input vector, only one of which is high in a given observation, represent that feature,

as illustrated by Figure 2-1. This encoding was selected for its compatibility with

neural network architecture, despite its obvious inefficiency.

The output of each network is a Q-value for the observation-action pair. SARSA(A)

is used to update these Q-values. The update rule for the parameters (0) in the net-

works are as follows [133:

0t+1 = Ot + a[rt+1 + yQ(ot+I, at+i) - Q(ot, at)]et

= Xet- + VgQ(ot, at)

The partial derivative is calculated using the back-propagation algorithm. For our

experiments, we used A = 0.9, a = 0.1 and 'y = 0.9.

2.5 Modified G Algorithm

The original G algorithm [4] makes use of a tree structure to determine which elements

of the observation space are important for predicting reward. The tree is initialized
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with just a root node which makes no distinctions, but has a fringe of nodes beneath

it, one for each possible distinction that could be made. Statistics are kept in the root

node and the fringe nodes about immediate and discounted future reward received

during the agent's lifetime, and a statistical test (the Kolmogorov-Smirnov test, or

K-S test) is performed on the stored reward data to determine whether any of the

distinctions in the fringe is worth adding permanently to the tree. If a distinction is

found to be useful, the fringe is deleted, the distinction nodes are added as leaves,

and a new fringe is created beneath each of the new leaf nodes. Q-values are stored

and updated in the leaf nodes of the tree.

Because our domain was not fully observable (in the deictic case), we had to

modify the original G algorithm. To begin with, we had to allow the fringe to include

historical distinctions. To deal with the fact that the agent has no history at the

beginning of a trial, we added a bit to each observation indicating whether or not the

agent was alive at that time step, and filled the rest of the observation for those pre-

historical time steps randomly. Thus every observation the agent receives matches to

some leaf in the tree. As in NDP, we chose to use SARSA(A) for our update rule, to

help ameliorate the partial observability of the problem. The same parameters for A

and the learning rate were used as in NDP.

Lastly, we did not use the D statistic used in the original G algorithm. Rather, we

kept vectors of immediate and one-step discounted reward for the set of observations

represented by each leaf and fringe node, both for the leaf as a whole and divided up

by outgoing action. These vectors in the fringe nodes are compared (using the K-S

test) to the corresponding vectors in the parent leaf in examining a split rather than

to the other children, since our percept vectors include features with more than two

possible values. The K-S test gives us the probability that the reward data stored in

the parent and child nodes are drawn from different distributions. If this probability

is above a certain threshhold, the distinction is found to be significant and the fringe

nodes are added as leaves.

An example may serve to more clearly illustrate the algorithm. Figure 2-2 shows

an initial configuration of blocks that the agent is confronted with at the beginning
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Figure 2-2: Initial configuration of blocks.

of each trial. The location of each of the markers is determined randomly for each

trial.

At the start, the tree makes no distinctions, so the agent acts randomly. Actions

that lead to failure more often than other actions will come to have lower Q-values,

and so the root node will contain Q-values for a policy that takes the safest action(s),

such as focus-color(green), which will never fail. After collecting reward statistics for

some time, the agent notices that the reward for a pickup action is much lower if the

agent's hand is already full, since this action always fails in this case. Thus, the tree

grows, as shown in figure 2-3. The figure shows that the policy stored in the leaves

reflects the fact that a putdown action fails if the hand is empty and a pickup action

fails if the hand is full. The actual policy depends on the particular experience of the

agent so far.

no distinctions

HANDFULL=true HAND_FULL=false
ACTION=!pickup ACTION=!putdown

Figure 2-3: Example tree first split

After some more experience, the agent now notices that if the hand is empty, the

color of the focus has some effect on the reward received for performing a pickup ac-

tion. That is, occasionally when the hand is empty and the focus is on the green block

a pickup action results in a reward of +2, which is seen under no other circumstances.

Thus, another split is made and tree now looks like Figure 2-4.
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no distinctions

HANDFULL=true HANDFULL=false

ACTION=!pickup

FOCUSCOLOR=green FOCUSCOLOR=red FOCUS COLOR=table
ACTION=pickup ACTION=pickup ACTION=focus-color(green)

no distinctions

F . mple tree second split

HANDFULL=true HANDFULL=false
ACTION=!pickup

FOCUSCOLOR=green FOCUS CLRed F UCOLOR=table
ACTION=pickup IACTION=fiocus color(green)

h=1 h=1
ACTION=movejfocus(up) ...(all other actions)

h=1 h=1 h=1
FOCUSCOLOR=green FOCUSCOLOR=red FOCUSCOLOR=table

ACTION=pickup ACTION=focus color(green) ACTION=focus color(green)

Figure 2-5: Example tree with historical splits

To make the distinction described in Section 1.5, the tree will eventually need to

include all of the splits shown in Figure 2-5. In the figure the nodes marked "h=1"

represent either the action or percept immediately preceding the current one. Obvi-

ously this tree is still not sufficient to represent the optimal policy. More distinctions

need to be made for the agent to know when to put down the red block, and when to

move the focus so that the block isn't replaced on top of the green block. The idea

behind the algorithm is that this process will continue, making distinctions based on

statistical differences. Eventually, we hope that the tree will contain the necessary

distinctions to represent the optimal policy.
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For additional details about the implementations of the world, the representations,

and the learning algorithm, see out technical report [7]. The remainder of this thesis

presents the results of our experiments and some analysis.
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Chapter 3

NDP Results

Our initial experiments were performed with the configuration shown in Figure 2-2.

The results, shown in Figure 3-1 were surprising and disappointing. Each plot is the

average of 10 different runs of the experiment plotted with a sliding window of 10

data points to smooth out the curves. In the deictic cases, the agent is given a history

window of one time step, and in the full propositional the agent is given no history.

An average reward per step of 0 represents taking a failing action at every time step,

whereas an average reward per step of 1 is the reward associated with the optimal

policy. Exploration was turned off during testing so that the policy could be better

evaluated.

3.1 Initial Results

In our initial experiment, the most successful agent was the one using the full propo-

sitional representation. Clearly the deictic agents are learning much more slowly.

However, it appears that they were still making progress when the experiments were

truncated, so a longer set of experiments were also performed (Figure 3-2).

The results in the longer trials are even more disturbing. While it is true that the

deictic agents continue to improve for some time, and it is also true that every trial

eventually finds a good policy, the policy is unstable and the average performance of

the deictic agents is bad. The propositional agents, however, seem to converge on the
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Figure 3-1: NDP results on initial configuration.
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Figure 3-2: Longer trials.
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optimal policy and stay there.

3.2 Scaling Up

The above results were discouraging, but our hypothesis about the potential success

of the deictic representation argued that as the size of the world increased, the deictic

agents would start to out-perform the full propositional ones. Thus, the same set

of experiments were performed with the configuration shown in Figure 3-3, which is

the configuration in the initial experiments with one additional distractor block. The

graph in Figure 3-4 shows the results of these experiments. Clearly the deictic agents

are not performing at all successfully.

Figure 3-3: Second configuration of blocks.
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Figure 3-4: NDP results on second configuration.

However, giving the deictic agents longer history windows allows them to make

some progress as seen in Figure 3-5. Still they perform much less well than the

29



propositional agent, but it is interesting that adding history improves the perfor-

mance, despite increasing the number of distracting bits in the input.

0.9

0.8
0.7

0.-

0.5-

OA

0.3-

021

0.1--

0 05 1 1.5 2 2.5 3 3.5 4 45

Figure 3-5: NDP results with longer history window.

3.3 Longer History Window

Our initial hypothesis about why the deictic representations failed with NDP was

that neural networks are typically bad at learning functions with a large number of

input bits, only a few of which matter. However, increasing the number of history

steps in the window would seem to make this problem worse, causing the agent to

learn more slowly, and this is not the case at all. When the number of history steps

in the window is increased to 3 for the deictic case (Figure 3-5), those agents start

to show some progress, although they are still not able to learn to solve the task

in every trial, and some of the agents still haven't learned the task in the allotted

number of training iterations. Increasing the history window still further showed a

corresponding increase in performance, although the time required for trials with such

large inputs prohibited running enough trials to warrant presenting the data here.

Although the agent only needs one historical time step in order to represent the

optimal policy, additional history steps help in the learning process. If the agent

needs to perform two actions sequentially during the trial in order to reach the goal,

then with only one history step in its input, the agent can't learn anything useful
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Figure 3-6: The action sequence with the fewest number of steps.

until it happens to perform the two actions one after the other. However, with 5

history steps, for example, the agent could perform the second action several steps

after the first, and the fact that the first action was performed is still present in the

input vector, so its relevance will not be completely lost. Once a policy is selected

that has both actions in the right order, subsequent exploration will eliminate the

unnecessary intervening steps, leading to a better policy. Thus, adding history to

the input increases the performance of the learning algorithm. However, as the next

section explores, the addition of more history also changes the nature of the learned

policies.

3.4 Policies and Optimality

Examining the policies learned by the deictic agents in these experiments raises ques-

tions about the meaning of optimality in this domain. In terms of the number of

steps, the optimal action sequence is shown in Figure 3-6. When the number of his-

torical observations is increased, the agents that find successful policies at all find

policies leading to action sequences like this one.

Clearly it is possible for an agent to execute such a policy knowing only the current

observation and the last action, as shown in Figure 3-7. However, since the policy

depends mostly on the previous action, if the agent ever takes an exploratory action,

or if the world has some kind of goblin which puts the red block back on top of the

green block after the agent has removed it, the agent will be totally flummoxed. Given
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look-color(red)
pickup
focus-left (or focusright)
putdown
focus-color(green)
pickup



Last Observation Last Action Current Observation Action

ALIVE=false x x look-color(red)
x look-color(red) focus=red pickup
x pickup focus=green focus-left (or focus-right)
x focus-left (or focus-right) focus=table focus-color(green)
x focus-color(green) focus=green pickup

Figure 3-7: The policy leading to the action sequence in Figure 3-6.

Last Observation Last Action Current Observation Action

x !focus-up focus=green focus-up
focus=green focus-up focus=red pickup
x x focus=green, hand=full focus-left (or focus-right)
focus=green focus-up focus=green pickup

All other observations look-color (green)

Figure 3-8: A more robust, but longer, policy.

that it is looking at the green block, if it has not just performed a focus-color(green)

action (or if the focus-color(green) action has been performed at an inappropriate

time), it cannot know whether or not it should pick up the green block. Perhaps

a better definition of optimal in this domain, then, is one which can start with the

observation corresponding to an arbitrary underlying state and reach the goal reliably

in the minimum number of steps if no further exploration or non-determinism occurs.

That is, if the current state is ambiguous with respect to the action that needs to be

performed, the policy will take appropriate actions to figure out enough about the

underlying state for the agent to know what to do next to move closer to the goal.

The policy in Figure 3-8, which leads to the action sequence in Figure 3-9, has this

property. This policy disambiguates the two different underlying states corresponding

to looking at the green block by moving the focus up, thereby revealing whether or

not that block is clear. If the next observation is red, the block is not clear, whereas

if the next observations is green, it is. So, despite the fact that this policy requires

two extra steps, it seems that it is the better policy in the presence of exploration or
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Figure 3-9: The action sequence generated by the policy in Figure 3-8.

non-determinism in the world. As Martin concludes in his thesis [9], since it is not

possible to learn behaviors that are optimal in all cases, we need to learn policies that

are acceptable in all cases.

Thus, the primary issue raised by the experiments using neuro-dynamic program-

ming is one of measuring the success of a policy. If the only measure of success is

the total number of time steps required to acheive the goal, the agent is motivated

to develop a policy that takes risky actions when it observes ambiguous information

about the world rather than safe, state-disambiguating actions. As is further explored

in the next chapter, this contributes to the instability of learning in this domain.
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look-color(green)
focus-up
pickup
focusileft (or focus-right)
look-color(green)
focus-up
pickup



Chapter 4

G Results

The results using the G algorithm, shown in Figure 4, were similarly disappointing.

The full propositional agent is not able to learn a successful policy at all. The deictic

agents succeed in learning an optimal policy in only a few out of the ten trials, and

even then the policy is unstable and the agent spends much of its time acting according

to sub-optimal, and even sometimes maximally bad, strategies; thus the average

performance is very low. Adding a distractor block again fails to give the edge to our

deictic agent over the NDP full propositional agents, as the additional block seems

to cause more problems for the deictic agents than for the NDP propositional agent.

The remainder of this chapter explores the problems that cause the G algorithm to

fail.
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Figure 4-1: Results of the G algorithm.
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4.1 Tree Size

To avoid running out of memory, we had to cap the total tree size, and this seems to

be fatal to the full propositional case. This is because the tree needs to be very large

indeed to account for all the potential renamings of the blocks. For example, given

that the agent's hand is empty, the full propositional agent needs to know the names

of the green and red blocks and whether or not the red block is on top of the green

one in order to know which block to pick up. Figure 4-2 shows the beginning of a

tree that is able to make this necessary distinction. In fact, this portion of the tree

will have 113 leaf nodes, which gives us a total of 6667 fringe nodes, and this portion

of the tree is only sufficient to determine which block should be picked up given that

the hand is empty. Another similarly sized portion of the tree will be necessary to

determine what to do if the hand is already full. The maximum practical tree size was

3000 nodes, so clearly this algorithm is not a viable solution in the full propositional

case. Thus, the rest of the analysis of the G algorithm results focuses solely on the

deictic representations.

4.2 Splitting

Initially, we thought that the problem with the deictic trees was similar to the problem

with the full propositional trees: the tree simply wasn't allowed to get big enough

to represent the optimal policy. In particular, since the domain is now partially

observable, the value function depends on the policy being followed. Thus, the tree

needs to be big enough to represent the value function for every policy that is followed

during the course of learning. In fact, this problem can snowball, with the tree growing

larger to represent the value function of the current policy, thereby creating a tree

with room to represent a policy with a more complex value function, leading to a

potentially infinitely large tree. To show this phenomenon more clearly, we present

an example in a simpler maze-world domain [7]. The representation used in the maze-

world domain was not particularly deictic, but the domain is partially observable, and
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so demonstrates the problem that G has in dealing with partially observable domains.

4.2.1 Maze-world Example - Unnecessary Splits

In our simple maze-world domain, the agent is given a percept vector that tells it

whether each of the cardinal directions relative to the agent is clear or blocked, and

the action set consists of movements in each of the cardinal directions. The world

is completely deterministic, and the percepts are always accurate. The experiments

performed to observe the unnecessary splits phenomenon were done in the maze shown

in Figure 4-3. This particular maze was chosen because it was the simplest maze we

could concoct that was still partially observable, as the states 2 and 5 in Figure 4-3

have exactly the same percept vector, but require different actions to reach the goal

state. The agent is positively rewarded for reaching the goal, penalized for each step

that does not lead to the goal, and penalized more for attempting to move into a

wall.

START

2 3
4
5 6 GOAL

7

Figure 4-3: Maze-world domain.

In one trial, the G algorithm made distinctions in the following way. The first split

distinguishes states based on whether south is clear or blocked. This separates states

1,2,4 and 5 from states 3 and 7 (state 6 is never actually observed by the agent, since

the trial is restarted). The first of these subgroups is then further split according to

whether east is blocked, separating states 2 and 5 from states 1 and 4. Since a large

reward is received for going east from state 5, the leaf for states 2 and 5 contains
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a policy for going east. Figure 4-4 shows the tree at this point during the learning

process. Clearly this policy is not optimal, since we have not yet learned to tell states

2 and 5 apart.

no distrinctions

SOUTTH:CLEAR SOUTH:BLOCKED
STATHEA R 24STATES: 3,7
STATES: 1,2,45 POIY:WSPOLICY: WEST

EAST:CLEAR EAST:BLOCKED
STATES: 2,5 STATES: 1,4

POLICY: EAST POLICY: SOUTH

Figure 4-4: Example G tree after first two splits.

Intriguingly, the next distinction is made on the previous action under the node

for states 3 and 7, as shown in Figure 4-5. At first glance, this looks like a meaningless

distinction to make: the only additional information it seems to yield is about the

previous state. We already know that we are in state 3 or 7, and knowing the last

action merely gives us information about the preceding state: if we went east and

we are now in state 3 or 7, then we might have been in states 2, 3, or 7 previously,

whereas a south action means we were in states 3, 5, or 7 previously, etc. There seems

to be no utility to this knowledge, since subsequent policy decisions will depend only

on the current state.

However, by examining the policy in effect when the agent makes this split, the

distinction begins to make sense. When the agent is in state 2, the policy says to go

east, which takes the agent to state 3. Once in state 3, it will oscillate from west to

east until exploration leads the agent south into state 4. Thus, when the agent visits

state 3, it has generally just performed an east action. On the other hand, when the

agent is in state 7, it has most likely performed either a south or a west action. Thus,

splitting on the previous action, with the current policy, actually disambiguates with
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Ino distrinctions

SOUTH:CLEAR SOUTH:BLOCKED
STATES: 1,2,45 STATES: 3,

LAST LAST LAST LAST
ACTION: ACTION: ACTION: ACTION:

EAST:CLEAR EAST:BI OCKED NORTH EAST SOUTH WEST
ESTT:A 2 STATBLOCKED POSSIBLE POSSIBLE POSSIBLE POSSIBLE
STATES: 2,5 STATES: 1,4 STATES: 3,7 STATES: 3,7 STATES: 3,7 STATES: 3,7

POLICY: EAST POLICY: SOUTH PROBABLE PROBABLE PROBABLE PROBABLE
STATE:3 STATE:3 STATE:7 STATE:7

POLICY: WEST POLICY: WEST POLICY: NORTH POLICY: NORTH

Figure 4-5: Example G tree after the first three splits.

high probability states 3 and 7 and yields a reasonable policy, one that goes north

from state 7, as shown in Figure 4-5.

Once we have made a distinction based on our history, our policy may then lead

the algorithm to make more distinctions in an attempt to fully represent the value

function under this new policy. For example, if we are executing the policy shown in

Figure 4-6, we do in fact need two different values for state 2, depending on whether

we are visiting it for the first or second time. Later on in learning, the agent will

in all likelihood get rid of the extra trip to state 3, but since the tree does not

have a mechanism for getting rid of splits once they are made, the tree contains a

permanent split that is not useful. In fact, each unnecessary split made early in the

learning process requires that subsequent useful splits be made redundantly under

each subtree created by the useless split, which requires a still larger tree to get at

the important distinctions. Thus the tree may need to be very large indeed in order

to eventually allow for representation of the optimal policy. In fact, since there are

an infinite number of possible policies, the tree could grow arbitrarily large.

The last experiment we did to confirm our explanation for the large trees was

to fix the policy of the agent and allow the tree to grow. As expected, we obtain

trees that contain few or no unnecessary splits for representing the value function for

the fixed policy. While we cannot avoid making the occasional bad split due to the
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Figure 4-6: A sample policy that may complicate trees.

statistical nature of the problem, this is not the underlying cause of the very large

trees. Note that this problem will almost certainly be exhibited by U-Tree as well.

This problem of G growing arbitrarily large trees in POMDPs seems very difficult

to address. There is, fundamentally, a kind of "arms race" in which a complex tree

is required to adequately explain the Q values of the current policy. But the new

complex tree allows an even more complex policy to be represented, which requires

an even more complex tree to represent its Q values.

4.2.2 Meaningless Historical Splits

An obvious solution to this problem is to build in a mechanism for undoing splits

if they are later found to be unnecessary. However, the nature of the tree structure

makes this difficult since there may be additional splits under the children created by

the useless split, and it is unclear how to merge these subtrees together.

Instead, in an attempt to solve this problem, we tried using two trees, allowing

one to grow for a while and then using the policy arrived at in that tree to grow a new

tree, thus eliminating any previously made splits that were found to be unnecessary

for the learned policy. We tried this method in our blocksworld domain. While

the experiments resulted in smaller trees, they showed no improvement in learning

performance at all (see Figure 4.2.2). This result led us to believe that there is a

still greater issue which causes the approach to fail.
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Figure 4-7: Comparison of original algorithm and algorithm with two trees.

Basically, the problem is that, as long as the agent has an ineffective policy, it

is not fruitful to look at history to disambiguate important states. If the agent in

our maze-world example is following a policy that selects a "west" action in states

2 and 5, looking at history will not allow for the two states to be discriminated, as

the history window will contain long strings of the same percept-action pairs. Only

if the agent has a clever policy, such as one that moves south into both states, is it

useful to look at the previous percept to tell which of the two underlying states is

being perceived.

One way to fix this problem is to require that splits be made contingent upon the

policy followed after the percept in question. That is, the mazeworld agent only cares

about what it saw one time step ago in the case where it went south between then and

now. Or, with the blocks-world agent, given that the focused block is red, the agent

only cares about the color of the previously focused block if the intervening action

was a focus-up action. However, this approach leads to a combinatorial explosion in

the number of nodes in the fringe. Nonetheless, with only one time step of history

needed, as in the blocks-world domain, the fringe is not unreasonably large, so we

tried altering this algorithm in this way (Figure 4.2.2.

This approach is clearly more successful, but the agents still learn unstable policies.

As before, while the agent is able to learn the optimal policy at some point in every

trial, it is always unlearned later. To understand why this is the case, we decided to
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Figure 4-8: Comparison of original algorithm and algorithm with pair splits.

do away altogether with the splitting aspect of the problem and see if we could get

the agent to learn stably in a hand-constructed tree. That is, we predetermined the

structure of the tree and then tried to figure out why the learning was unstable and

what could be done about it. The following section addresses the resulting issues.

4.3 Learning

To investigate the learning problem independent from the splitting problem, I hand-

built the tree shown in Figure 4.3. The pair splits described in the last section were

used in building this tree as it was a more compact way to describe the necessary

leaves. The actions displayed in the leaves represent the optimal policy, according to

the criterion described in Section 3.4. The most problematic portion of the tree is

shown in Figure 4.3.

In this section of the tree, both of the leaves correspond to states in which the

focus is on the green block and the hand is empty. The leaf on the left corresponds

to the state where the focus was on the green block one time step ago and the agent

chose to move the focus up. In this case, the green block is obviously clear, and

the agent is able to learn a policy for that observation that picks up the block. The

difficult part is the sibling leaf. This leaf corresponds to any state where either the

focus was not on the green block one time step ago or the chosen action was not to
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focus=red focus!=red

focus=green focus!=green
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action=focus-up action!=focus-up

pickup focus-up

Figure 4-9: Problematic portion of hand-built tree.

move the focus up. There are many cases in which this might also correspond to the

green block being clear, but this is not always the case. It is this uncertainty that

seems to cause the problem in attempting to learn the optimal policy using this tree.

The results of using TD(A) learning are shown in Figure 4-11. The average per-

formance appears poor because once again, although each run results in the optimal

policy, it is not at all stable. We also tried using Monte Carlo learning (results in

Figure 4-12), which is significantly better in terms of stability, but much slower to

achieve the optimal policy (note the different x-axis scales in the the two figures).

In the Monte Carlo experiments, the agent was allowed to complete a trial before

any learning took place. Only the last 100 steps of the trial were used in training,

and the Q-values in the leaves were estimated as the average of all of the returns

received during the agent's lifetime. However, again, examination of individual runs

reveals that while the policies are much more stable than in TD learning, the agent's

nonetheless occassionally revert to unsuccessful policies.

Looking only at the Q-values stored in the leaves shown in Figure 4.3, we can see
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at least one source of the instability. The agent learns fairly quickly that pickup is the

appropriate action in the left-side leaf in the figure. And soon thereafter if learns that

moving the focus up is the best action in the other leaf. Once the agent has learned

to look up, however, the value of the right leaf starts to go up. A pickup action in

the right-side leaf either receives an immediate positive reward (if the green block

happens to be free) or receives a penalty and results in a state which matches to the

same leaf. Since the value of that leaf is now fairly high, both of these options look

pretty good, so the agent eventually settles on a pickup action for the right-side leaf

as well. Once the agent decides on this policy, however, the agent quickly learns that

this is bad because it gets stuck continually trying to pick up the covered block, and

the value for that action plummets. This continues forever, leading to an unstable

policy.

In fact, we can analyze a slightly simpler system with one ambiguous observation,

and see the source of the instability. The problem lies with the state occupation

probabilities, which in turn are determined by the policy being followed. Consider

the system shown in Figure 4-13. Each circle in the figure represents an observation

that the agent sees. The large circle in the middle represents one observation that

corresponds to more than one underlying state (si and S2). All the other circles

represent observations that correspond to only one underlying state. If the agent is

in the top state on the left, any action will put it into state si, in which action a2 will

cause the agent to stay in that state. However, if the agent comes from the lower of

the two states on the left, any action will put it into state 82 from which action a2

leads directly to the goal state.

In the blocks-world environment used in our experiments, the ambiguous observa-

tion shown in Figure 4-13 corresponds to looking at the green block. If the red block

has already been removed (state s2), then a pickup action (action a2) will lead directly

to the goal. If the red block has not been removed yet (state si), then the pickup

action (a 2) will not be successful, but will leave the agent in the same state. However,

a focus-up action (ai) will disambiguate the two states. In state si a focus-up action

will move the focus to the red block, which can then be picked up and moved off the
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Q(si, a,) = -0.1 - -yO. 1 +- y2 Q(S2, 7r(o))
Q'(si, a2 ) = -0.2 + -yQT(si,7r(o))

Q"(s2, a,) = -0.1 + -y2.O

Q(s 2, a 2 ) = 2.0

Table 4.1: Q values for ambiguous states in simple system.

green block. In state S2, a focus-up action will leave the focus on the green block

meaning that the green block is free and can therefore be picked up. Now, analysis

of this system shows why the learning is unstable.

The true Q-values for each state-action pair are shown in the Table 4.1. As in the

blocks-world experiments, a reward of +2.0 and penalties for failing and non-failing

actions of -0.2 and -0.1 respectively, is assumed. ir(o) is the action selected by policy

7r for observation o.

The Q-values stored in the relevant leaves of the tree will be a weighted average

of the true Q-values for the underlying state, weighted according to the probability

of occupying each of the underlying states. Thus, if pr is the probability of occupying

s, given that the agent is following policy 7r,

Q"(o, a) = pjQ'(si, a) + (1 - p')Q'(s2 , a)

We now have two questions to answer. First, if the agent is following the policy

that always chooses a2 (the bad action), will the Q-value for a, necessarily eventually

be better than the Q-value for a2. Second, once the agent is following the policy that

always chooses a,, will the Q-value for a2 ever be higher, causing the agent to oscillate

between the two policies. The answer to the first question is encouraging. Following

policy 7r2 (the policy that always chooses a2), the Q-values are as follows.

Q 2(si, ai) = -0.1 - 0.1 + -y 2 Q(s 2, a 2 ) = -0.1 - YO.1 + Y2 2.0

Q7r2(si, a 2 ) = -0.2 + yQ(si, a 2 ) -- -2.0

Q1
2(s 2 , ai) = -0.1 + - 2 .0

Q72( 8 2 , a 2 ) = 2.0
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For a probability of occupying si of anything greater than 1%, a1 will have the

higher Q-value. Also, when policy r2 is being followed, the agent will spend a lot of

time in si, since it will get stuck in that state always performing action a2. Thus, the

Q-value for action a1 will eventually be higher, and the agent will choose policy 7ri

instead. What is more, this is caused by a property of this system that will generally

be true of the type of partial observability introduced by a deictic representation.

The ambiguity of this state is caused by the fact that the agent has lost its ability to

tell whether the current true underlying state is one in which taking a risky action

will lead to reward, or back to either the current state or one even further from the

goal. Thus, by following the risky policy long enough, since it never reaches the

goal in this way, it will always eventually decide to follow the more conservative but

disambiguating, policy.

Unfortunately, the answer to the second question explains the instability observed

during our experiments. Following policy 7r1 (the good policy), the Q-values for si

are as follows:

Q7"(si, a) = -0.1 - 0.1 + 2YQ(8 2, ai) = -0.1 - 0.1l - 0.1-y2 + 2.0-y3

Q'(si, a 2 )= -0.2 + -yQ7" (si, a,) = -0.2 - 0.1_y - 0.1-y2 - 0.1<3 + 2.0 74

Q'1(s 2 , a,) = -0.1 + y2.0

Q" (S2, a2) = 2.0

Clearly, the question of whether or not a2 has a higher Q-value then a, depends

on the actual values of y and p. Let us fix -y at 0.9. Solving for p, we see that a 2

will have a higher Q-value than a1 if p < 48%. If the agent is performing perfectly,

it will see each underlying state exactly once per trial, and things should be stable.

However, due to the statistical nature of the problem, it is fairly certain that the

probability will vary slightly over time and eventually the occupation probability for

s, will drop below 48% and the agent will decide that action a 2 is better. As 'Y is

lowered, it becomes more and more likely that the system will think that the bad

action is better while following the good policy, until at a -Y of just under 0.89, it is

guaranteed to happen.
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4.4 Conclusions

Our experiments with the G algorithm lead to two conclusions. First, selecting task-

relevant pieces of the observation space is made much more complex by the addition

of history to the observation space. Fundamentally this is because the history is de-

pendent on the policy, but the policy is now dependent on which pieces of history are

included in the observation. Second, the domain is simply not k-Markov, and there-

fore no amount of historical data will completely disambiguate the true underlying

states. As has been noted before (by Baird [2] and McCallum [101, for example),

partial observability can lead to instability in traditional reinforcement learning. Our

experiments with the G algorithm show that the partial observability introduced by

a deictic representation also leads model-free, value-based learning methods to be

unstable, even when the agent is given a partitioning of the observation space that is

sufficient for representing a good policy.
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Figure 4-11: Hand-built tree TD(A) learning results.
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Chapter 5

Conclusions

5.1 Deixis Breaks Value-Based RL Techniques

The main conclusion of this thesis is that without some modification for explicitly

dealing with partial observability, standard reinforcement techniques fail when used

in conjunction with a deictic representation. The fundamental reason for this failure

is that the deictic representation forces the domain to be partially observable. What's

more, the domain is not k-Markov, so no amount of historical information will allow

the agent to completely disambiguate similar looking states unless the agent already

has a reasonable policy. Lastly, a deictic representation typically requires a certain

amount of perceptual exploration to disambiguate states that would otherwise be

confusing, and so completely avoiding observations that seem to correspond to more

than one underlying state, as Whitehead and Ballard do [16], is not an option. In the

case of the blocks-world example, the agent cannot simply decide to avoid looking at

the green block at all since it can't tell whether or not the red block has been removed.

But, once it sees the green block it must choose actions so that its history window

will contain the necessary information for determining the appropriate actions.

However, despite this failure, it is clear that some representational change of this

sort is necessary if reinforcement learning is to be successful in real-world domains.

It is simply not feasible for an agent to learn while acting in the real world if it is

not capable of determining which of its sensory inputs is relevant to the task at hand
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and ignoring the rest. Thus, I believe that work along these lines is still potentially

fruitful.

5.2 Possible Future Work

One aspect of this type of representation that we did not explore, although we initially

saw it as a potential advantage, was the "teachability" of an agent with a deictic

representation. Since the agent's observation space does not grow with the number

of objects in the world, it is possible to construct a series of increasingly complex

worlds in which the agent is given a constant task. It seems that such an approach

would allow for an external teacher to guide the agent through the learning process

in a fairly natural way, hopefully increasing learning performance.

Beyond this unexplored avenue for success with this type of representations, there

are also several ways in which the algorithms we tried might be altered to lead to

greater success. First, it might prove productive to consider using a continuous ex-

ploration policy. From previous work [12], we know that there exists a fixed point

for Q-learning in partially observable domains when a continuous exploration policy

is used, although it is not yet known whether the corresponding policy will be a good

one. Initial experimentation with this change did not show significant improvement,

but further exploration is warranted.

Second, it seems potentially fruitful to try to more explicitly look for ambiguous

observations and choose actions that work to get rid of the ambiguity rather than

always trying to optimize reward. This again raises the question of optimality with

a deictic representation, and whether there is perhaps a better measure of what is a

"good" action. Perhaps one measure of a good action would be one that leads the

agent to an observation in which it knows with high certainty what it needs to do next.

For example, if the agent is looking at the green block and doesn't know whether or

not the red block is still on top of it, a focus-up action will consistently lead to an

unambiguous observation, whereas assuming either of the possible underlying states

consistently will cause the agent to get stuck.
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Third, since it seems that the agent has little trouble finding the optimal policy

using value-based reinforcement learning, but merely has difficulty sticking to it,

another idea would be to use such a method during the learning process, but evaluate

policies as a whole, as in policy search, to decide which policies to keep. Using such a

measure, the agent would not shift from a good policy to an inferior one on the basis

of incorrect Q-values, since the whole policy must be better to justify a change.

Another approach would be to apply Martin's CANDID algorithm to our blocks-

world problem. Since our task requires an observation vector that is too large to

explicitly store in a table as Martin does, we would still need to use some kind of

function approximation. Thus is it not certain the algorithm would still perform

favorably over other techniques in the face of the still greater partial observability

introduced by the approximator, whether it is NDP, G, or some other approximation

technique.

Each of the proposed solutions makes the assumption that the observation space

has already been partitioned in some way such that a good policy can be represented

with the paritions being used to determine the next action. With NDP, this is done

by virtue of the function approximation done by the neural networks, so there is little

more that can be done to improve this. With the G algorithm, however, we have not

yet found a splitting criterion that leads to a reasonably sized tree for representing a

good policy in the blocks-world domain. However, it is our belief that it will be more

lucrative to look for a good splitting criterion once a successful learning technique has

been developed for the kind of tree structure one could hope to have. In particular,

detecting ambiguous observations may be useful both in developing good policies, as

described above, and in deciding when a group of observations needs to be further

split.

5.3 Different Approaches

One alternative to value-based learning is direct policy search [17, 8], which is less

affected by problems of partial observability but inherits all the problems that come
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with local search. It has been applied to learning policies that are expressed as

stochastic finite-state controllers [11], which might work well in the blocks-world

domain. These methods are appropriate when the parametric form of the policy is

reasonably well-known a priori, but probably do not scale to very large, open-ended

environments.

Another strategy is to apply the POMDP framework more directly and learn a

model of the world dynamics that includes the evolution of hidden state. Solving this

model analytically for the optimal policy is almost certainly intractable. Still, an on-

line state-estimation module can endow the agent with a "mental state" encapsulating

the important information from the action and observation histories. Then we might

use reinforcement learning algorithms to more successfully learn to map this mental

state to actions.

A more drastic approach is to give up on propositional representations (though

we might well want to use deictic expressions for naming individual objects), and use

real relational representations. Some important early work as been done in relational

reinforcement learning [6], showing that relational representations can be used to get

appropriate generalization in complex completely observable environments.
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