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Abstract

The goal of the work reported here is to capture the commonsense knowledge of non-
expert human contributors. Achieving this goal will enable more intelligent human-
computer interfaces and pave the way for computers to reason about our world. In
the domain of natural language processing, it will provide the world knowledge much
needed for semantic processing of natural language.

To acquire knowledge from contributors not trained in knowledge engineering, I
take the following four steps: (i) develop a knowledge representation (KR) model for
simple assertions in natural language, (ii) introduce cumulative analogy, a class of
nearest-neighbor based analogical reasoning algorithms over this representation, (iii)
argue that cumulative analogy is well suited for knowledge acquisition (KA) based
on a theoretical analysis of effectiveness of KA with this approach, and (iv) test the
KR model and the effectiveness of the cumulative analogy algorithms empirically.

To investigate effectiveness of cumulative analogy for KA empirically, LEARNER,
an open source system for KA by cumulative analogy has been implemented, de-
ployed,' and evaluated. LEARNER acquires assertion-level knowledge by constructing
shallow semantic analogies between a KA topic and its nearest neighbors and posing
these analogies as natural language questions to human contributors.

Suppose, for example, that based on the knowledge about "newspapers" already
present in the knowledge base, LEARNER judges "newspaper" to be similar to "book"
and "magazine." Further suppose that assertions "books contain information" and
"magazines contain information" are also already in the knowledge base. Then LEAR-

NER will use cumulative analogy from the similar topics to ask humans whether
"newspapers contain information."

Because similarity between topics is computed based on what is already known
about them, LEARNER exhibits bootstrapping behavior - the quality of its questions
improves as it gathers more knowledge. By summing evidence for and against posing

'The site, "1001 Questions," is publicly available at http://teach-computers.org/learner.html at

the time of writing.
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any given question, LEARNER also exhibits noise tolerance, limiting the effect of
incorrect similarities.

The KA power of shallow semantic analogy from nearest neighbors is one of the
main findings of this thesis. I perform an analysis of commonsense knowledge collected
by another research effort that did not rely on analogical reasoning and demonstrate
that indeed there is sufficient amount of correlation in the knowledge base to motivate
using cumulative analogy from nearest neighbors as a KA method.

Empirically, evaluating the percentages of questions answered affirmatively, nega-
tively and judged to be nonsensical in the cumulative analogy case compares favorably
with the baseline, no-similarity case that relies on random objects rather than nearest
neighbors. Of the questions generated by cumulative analogy, contributors answered
45% affirmatively, 28% negatively and marked 13% as nonsensical; in the control,
no-similarity case 8% of questions were answered affirmatively, 60% negatively and
26% were marked as nonsensical.

Thesis Supervisor: Patrick H. Winston
Title: Ford Professor of Artificial Intelligence and Computer Science
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Chapter 1

Introduction

1.1 Knowledge acquisition bottleneck

For decades now, the field of Artificial Intelligence (AI) has recognized the need for

representing knowledge that people have in a form that computers can use. Knowledge

acquisition (KA) is a task in Al concerned with eliciting and representing knowledge

of human experts so that it can later be used in an application, typically a knowledge-

based system.

One of the most fundamental and still unsolved problems in knowledge acquisition

goes by the name of knowledge acquisition bottleneck. The term, coined by Feigen-

baum (Feigenbaum, 1984), refers to the difficulty of collecting from contributors data

sets containing knowledge of sufficient level of detail and subtlety. Since that time,

the advent of the web has made billions of documents available for near-instantaneous

access, helping people share information with each other. This glut of human-readable

data, however, has not yet translated into a windfall of machine-understandable data.

Rather, it has only exacerbated the need for machine-understandable data to help

process all the ordinary documents.

In addition, I believe the acquisition bottleneck also stems from the desire to

capture perfectly unambiguous and non-contradictory knowledge at acquisition time.

While such knowledge seems easier to work with, it is very difficult to formulate and

add. Lack of methods for handling ambiguous and contradictory knowledge is, in my
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view, the other part of the problem.

This thesis attacks the acquisition bottleneck for commonsense knowledge by pro-

viding a framework for collecting large datasets from many independent non-expert

human contributors. To this end, I formulate cumulative analogy, a class of algorithms

that formulate plausible new assertions about objects in the knowledge base. I test

cumulative analogy empirically by implementing, deploying and evaluating LEAR-

NER, a system for formulating and selecting the appropriate questions to pose to

contributors who are not expert knowledge engineers. This approach can enable ac-

quisition of commonsense knowledge assertions from very large numbers (potentially

millions) of contributors.

This thesis demonstrates the following:

Commonsense knowledge can be acquired from contributors not trained

in knowledge engineering. High-quality knowledge acquisition questions

can be formulated automatically by surface-level analogy that poses new

questions based on the information already in the system; the employed

analogical reasoning exhibits bootstrapping and noise canceling features.

To make the notion of commonsense knowledge in the above statement more

concrete, I cite several examples of the kind of assertions collected by LEARNER.

Some assertions formulated by LEARNER using cumulative analogy and confirmed to

be true by human contributors are as follows:

o Cars are useful tools

o A jar can hold a liquid

o A person can own a laptop

o Tomatoes are sold at stores

o Humans hold guitars when playing them

Some assertions that LEARNER has formulated as plausible hypotheses, but with the

help of human contributors, has discovered to be false are as follows:
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* A crab is a kind of fish

* An apple is a high fat food

" Salt becomes ice when frozen

" A germ is an animal

* A guitar is a brass instrument

" Dogs purr when stroked.

In addition to demonstrating applicability of analogical reasoning to knowledge

acquisition, this work also aims to provide a growing collection of commonsense knowl-

edge to the research community, as well as provide the platform for experimenting with

analogical reasoning over the collected knowledge for purposes other than knowledge

acquisition, for example, for answering questions about what is asserted and implied

by the assertions gathered in the knowledge base.

1.2 Motivation

In this section, which consists of four parts, I motivate both the goal and the method-

ology of the work presented here. In Section 1.2.1, I motivate the need for creating

large knowledge repositories of commonsense knowledge. In Section 1.2.2, I describe

some important real-world goals that a system such as LEARNER can help accomplish.

In Section 1.2.3, I motivate the approach of acquiring commonsense knowledge from

human contributors (as contrasted with, for example, attempting to automatically

extract such knowledge from textual corpora). Finally, in Section 1.2.4, I argue that

research in sophisticated knowledge acquisition techniques, being both incremental

and "Al-complete" in the limit, is a good way to make progress towards "hard Al"

(human-level knowledge and reasoning ability in a constructed system).

1.2.1 The case for creating a commonsense knowledge base

Knowledge acquisition techniques enable construction of knowledge bases. Yet, is

it important to have a knowledge base of commonsense knowledge at all? I believe

17



creation of a large, publicly available commonsense knowledge base (together with

methods for reasoning over such a knowledge base) is very important for attaining

a number of both research and practical goals. In this section, I cite the literature

motivating creation of such knowledge bases and put forth additional arguments for

importance of attaining this goal.

There is practical evidence of usefulness of WordNet, a lexical knowledge base that

captures some commonsense knowledge (Fellbaum, 1998; Lenat, Miller and Yokoi,

1995). WordNet provides information about senses of words, as well as "is-a," "part-

of," "antonym," and a few other relationships between senses of words. As such, it can

be viewed as capturing a subset of commonsense knowledge (containing knowledge

such as "an automobile is a kind of vehicle" and. "a wheel is a part of a bicycle."

Applicability of WordNet to human language technology and knowledge processing

community "has been cited by more than 200 papers and implemented systems that

have been implemented using WordNet" (Harabagiu, Miller and Moldovan, 1999).

At the same time, WordNet is far from an exhaustive source of codified common-

sense knowledge (Lenat, Miller and Yokoi, 1995). It does not provide more extensive

commonsense knowledge such as that represented by the CYC project (Lenat, 1995;

Lenat and Guha, 1990). Lenat has motivated the need for the more extensive com-

monsense knowledge by pointing to need for it in a number of Natural Language

Processing (NLP) tasks. For example, Lenat argues that commonsense knowledge is

needed to address NLP tasks such as resolving pronoun reference and machine transla-

tion. As example of commonsense knowledge base helping resolve pronoun reference,

consider resolving what "they" refers to in "The police arrested the demonstrators

because they feared violence" and "The police arrested the demonstrators because

they advocated violence" (Lenat, 1995). An example of importance of commonsense

knowledge in machine translation Lenat cites is as follows. Consider translating the

sentence "Mary poured the water into the teakettle; when it whistled, she poured the

water into a teacup." Since Japanese does not provide a single word for liquid water,

translating the above sentence requires substitution of the Japanese word for "cold

water" for the first instance and the Japanese word for "hot water" for the second
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(Lenat, 1995). Another argument by Lenat in favor of commonsense knowledge has

to do with semantic interpretation of compound nominals. Consider the phrase "tree

doctor." In the absence of commonsense knowledge, it is difficult, if not impossible,

to interpret it as a person who treats trees rather than a tree that practices medicine

(Lenat, Miller and Yokoi, 1995).

Additional arguments in favor of constructing large knowledge bases emerge from

the community that tries to mine the knowledge from texts. For example, Moldovan

and Girju state: "[The field's] inability to build large knowledge bases without much

effort has impeded many AI developments" (Moldovan and Girju, 2001). As specific

examples, they point to reliance of the most successful current information extraction

(IE) systems on hand-coded linguistic rules, making these systems difficult to port to

other domains. Moldovan and Girju also point to the leveling off of results obtained

at the Message Understanding Conference (MUC), and cite the common sentiment in

that field that further progress will not be possible without knowledge intensive tools

that support commonsense reasoning (Moldovan and Girju, 2001). Finally, Moldovan

and Girju point out the need for commonsense knowledge and the need for it to enable

further progress in in question answering (Moldovan and Girju, 2001).

Perhaps the strongest argument in favor of creating a publicly available knowledge

base of commonsense knowledge is the evidence that much research on natural lan-

guage understanding is currently trying to work around the problem. In other words,

the lack of commonsense knowledge is having a widespread effect on methods being

developed, approaches being taken, and progress being made by researchers working

in various areas of Natural Language Understanding (NLU).

"Commonsense knowledge" in the NLU and NLP communities is often referred

to as "world knowledge." Lack of codified world knowledge shaping is having a

widespread effect on the current research. I present two specific examples: one from

the field of machine translation, and one from question answering. In machine trans-

lation, Dorna and Emele argue that a practical system should avoid disambiguation

whenever possible because disambiguation needs world knowledge plus some ability

to reason over it (Dorna and Emele, 1996).
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In question answering, evaluation criteria and goals of research are being set lower,

with unavailability of world knowledge (and mechanisms to carry out commonsense

reasoning over it) being cited as the reason for backing off from the more ambitious

task of reading comprehension (Schwitter, Moll'a, Fournier and Hess, 2000).

As further evidence of need for broad commonsense knowledge, the importance of

developing large knowledge bases capable of providing shallow but broad knowledge

about motives, goals, people, countries and conflict situations (a subset of common-

sense knowledge) in conjunction with deeper specific domain knowledge has been

recognized by DARPA's $34 million High Performance Knowledge Bases (HPKB)

initiative that ran from 1996 to 1999 (Cohen, Schrag, Jones, Pease, Lin, Starr, Gun-

ning and Burke, 1998), followed by the Rapid Knowledge Formation initiative of

similar magnitude (DARPA, 2000).

As an additional argument for need for a commonsense knowledge base and a

system such as LEARNER capable of reasoning over it and enlarging it, the next

section lists some specific practical goals accomplishing which requires, among other

technologies, a large commonsense knowledge base and a mechanism of reasoning over

it.

1.2.2 Practical goals Learner helps achieve

The goals of the LEARNER system described here are similar to those of the CYC

project, despite some important differences in methodology. In addition to the reasons

described in the previous section, I believe implementing LEARNER is important

because it will help to take us toward the following practical goals:

Self-service Help Desks. Gathering knowledge directly from contributors and in-

tegrating it with natural language processing can enable responding to customer

support queries posed in natural language. Such knowledge repositories, cou-

pled with mechanisms for inference over them can enable deployment of help

desks that answer questions without duplication of human effort and with ever

increasing precision, automating what is today still costly and cumbersome.
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Such technology can also be applied in educational settings, taking FAQs and

independent learning to the next level.

Voice Command and Control. The knowledge LEARNER gathers can enable con-

trolling computers and other devices with your voice. Continuous speech recog-

nition has made great advances in recent years (Lamel, Gauvain and Adda,

2001). The new challenge is: given the recognized speech, figure out what the

user actually wanted to do, what commands should actually be executed.

When speaking to each other, people communicate effectively because the lis-

tener is assumed to have a lot of commonsense knowledge and some reasoning

ability. Computers and other devices can potentially join the class of intelligent

listeners if they are equipped with a large common sense knowledge base and

can operate on that knowledge.

Databases for Heterogeneous Knowledge. Currently, databases serve the task

of storing and manipulating structured knowledge. A lot of valuable knowledge

is simply too heterogeneous to be stored in a structured format. That is in part

why the looser organizational approach of the World Wide Web has been so

successful. LEARNER can capture assertion-level information and be as useful

on that level as the Web is on the document-level.

Under this approach, knowledge repositories can be created and grown without

the need for designing a data schema. Such knowledge repositories would be able

to capture exceptions and nuances of data in a very natural way. Rather than

performing joins, these repositories would run inference operations over their

data to respond to queries. Finally, they would work with natural language,

eliminating the need for specialized programming to encode queries that extract

data from a repository.
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1.2.3 A comparison of approaches to collecting commonsense

knowledge

In this section, I compare some plausible approaches to creating large commonsense

knowledge bases and motivate the methodology of this thesis, namely approaching the

problem by collecting knowledge from contributors who are not knowledge engineers.

I briefly compare the approach with having a team of knowledge engineers hand-craft

a large knowledge base, and compare it more extensively with attempting to mine a

knowledge base automatically from electronically accessible texts.

Creating a large knowledge base by having a team of knowledge engineers hand-

craft it is perhaps the most straightforward approach. The prime example of this

approach is the CYC project. The difficulties include the large cost and complexity

of such an effort. The CYC project has consumed over two hundred man-years, but

the original goal are yet to be reached (and have been restated as possibly overly

optimistic) (Guha and Lenat, 1990; Lenat, 1995). Another datapoint on the amount

of effort required in constructing a knowledge base is the knowledge base for Botany

containing 20,000 concepts and 100,000 facts took Porter and staff ten years of de-

velopment (Porter and Souther, 1999). At the same time, the approach of bringing

knowledge engineers to bear on a problem has some undeniable advantages and should

not be discounted. Such an approach provides the highest quality of knowledge, trad-

ing off the amount (or rate) of acquisition for quality.

In light of this "knowledge acquisition bottleneck," there is a significant desire in

the knowledge acquisition community to address the bottleneck by acquiring knowl-

edge via text mining. (As a discipline, text mining employs a combination of statis-

tical and linguistic methods to extract information (often automatically) from large

corpora of human-generated text. For the purpose of this discussion, I use the term

interchangeably with "knowledge acquisition from texts.")

As discussed below, text mining may yield much useful knowledge. However, at

least some researchers that work on issues of commonsense knowledge feel that much

of the commonsense knowledge needed to understand texts is not actually written
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down. Rather, the texts, even didactic texts such as encyclopedia, presume that the

reader already has the commonsense knowledge needed to understand them (Lenat,

Guha, Pittman, Pratt and Shepherd, 1990),(Nilsson, 1995, p. 14).1 Similar sentiment

has been expressed in the context of a discussion of the commonsense knowledge

necessary to construct intelligent computer interfaces:

Much of our commonsense knowledge information has never been recorded

at all because it has always seemed so obvious we never thought of de-

scribing it. (Minsky, 2000).

A more focused discussion of what information is and is not present in dictionaries

can be found in (Atkins, Kegl and Levin, 1986), who generally find that dictionaries

omit much of the commonsense information humans know about objects. Dolan et

al. point out that in addition to the main entry for a concept (e.g., "flower"), more

information about a concept is also sometimes found in definitions of related concepts

("petals," "leafy plants," and so on). They also point out, however, that the their

example is drawn from a dictionary for someone learning the language - of the

approximately 40,000 concepts defined in it only about 2,500 appear in the bodies of

definitions. This causes the dictionary to contain much information about the "core"

2,500 concepts, but little information about other concepts (Dolan, Vanderwende and

Richardson, 1993).

Keeping in mind the caveat of a large portion of commonsense knowledge not

being written down, I now overview some systems that aim to extract concepts as

well as taxonomic and other relations between concepts. One of the earlier examples

of such systems is Hearst's system for acquisition of ontological information from

text (Hearst, 1992). The system extracts pairs of words in the hypernym, or "is-

a" relationship by leveraging specific syntactic patterns in unrestricted text, such as

"nounI such as noun2" where neither nounI nor noun2 are unmodified by additional

'I believe there are two exceptions to the observation. Some simple commonsense knowledge
is present in books for young children (which, however, usually rely extensively on illustrations
to convey much of such knowledge). The second source, in small amounts, is texts discussing
commonsense knowledge in which such knowledge is presented by way of example.
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nouns. For example, when the system encounters the phrase "animals such as cats,"

it will extract the relationship "a cat is a kind of animal."

MindNet is another system which extracts semantic relationships. MindNet ex-

tracts approximately 25 semantic relationships including Location, Part.of, Purpose,

Hypernym, Time, (TypicaL)subject, (Typical) object, and Instrument (Dolan, Van-

derwende and Richardson, 1993; Richardson, Vanderwende and Dolan, 1993). To my

knowledge, this represents the largest number of relationships extracted by a sys-

tem that mines a closed class of relationships. Akin to Hearst's system, semantic

relationships are extracted via specifically constructed heuristic rules that recognize

"occurrence of syntactic and lexical patterns which are consistently associated with

some specific semantic relation, such as instrument or location" (Dolan, Vanderwende

and Richardson, 1993). The heuristic rules are designed for and the extraction is ap-

plied to a particular dictionary available in electronic format, Longman's Dictionary

of Contemporary English (LDOCE).

KAT (Knowledge Acquisition from Text) is another system that acquires both

concepts and some semantic relationships from text (Moldovan and Girju, 2001).

Starting with seed concepts such as "stock market" and "employment," KAT applies

lexical heuristics (created semi-automatically with some human intervention), syn-

tactic patterns and filtering by humans to identify additional related concepts and

semantic relationships between them such as hypernymy (Is-a), influence, cause, and

Equivalent. Extraction is done from textual corpora such as newspapers. Extraction

of both the concepts and the relationships between them is performed with humans

in the loop to filter out nonsensical concepts and misidentified relationships.

Compared to knowledge bases crafted by experts, text mining systems represent

another point in the quality vs. quantity trade-off, trading off precision of the col-

lected data for volume. In my view, the empirically observed (to date) weakness

in distinguishing the extracted knowledge from noise is the Achilles' heel of current

systems that aim to acquire knowledge from text. Let us review some results from

the three systems mentioned above.

Hearst (Hearst, 1992) does not report overall statistics on the quality of the extrac-
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tion. Rather, she reports some pairs that the algorithm has extracted that exemplify

some classes of noise that can trip up extraction systems. For example, Hearst's sys-

tem extracted pairs such as "king is-a institution". Hearst attributes it to metonymy

in texts (substitution of the name of an attribute or feature for the name of the

thing itself, an example of metonymy being "the White House signed a bill"). Other

pairs exemplify a more common problem of underspecification in text. Examples in-

cluded taxonomic relations between "plot" and "device," "metaphor" and "device"

and "character" and "device" (omitting that the device in question is a literary de-

vice). Another class of problematic relations extracted involved relations that may

be context or point-of-view dependent, such as "Washington is-a nationalist" and

"aircraft is-a target."

In MindNet, the overall precision of extracting its semantic relations from LDOCE

is estimated by the authors to be 78% (with the margin of error of ±5%). About half

of the extracted relations are of the type Hypernym (Is-a), and these were accurate

87% of the time. The Part-of relation was accurate only 15% of the time, and the

remaining relations were accurate 78% of the time.

KAT explicitly relied on humans in the loop to help identify relevant concepts.

Some were extracted fully automatically, while the remaining ones were passed to

human judges for inspection. KAT's implementors report that the human interven-

tion in accepting or declining the concepts took about 20 minutes to process roughly

1500 concepts. Of the 196 concepts (such as "financial market") that were discovered

in text and were not found in any of the preexisting dictionaries that the system

consulted, the automated procedure has identified 77 (39.2%) with precision of 90%.

Human filtering of the concept candidates that the automatic procedure neither ac-

cepted nor discarded identified the remaining 119 concepts (60.7%). In contrast to

the concepts, all of the relations extracted by KAT were subjected to human filter-

ing. Of 166 candidate pairs, 64 were accepted and 102 were rejected by inspection, a

process that took approximately 7 minutes (Moldovan and Girju, 2001).

Moldovan and Girju argue for the promise of automatic extraction. They feel that

among others, addition of ability to handle "complex linguistic phenomena such as
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coreference resolution, word sense disambiguation and others" as well as "incorpo-

ration of an elaborate process for pattern classification" will bring a system such as

KAT closer to fully automatic acquisition. Their results, however, can be interpreted

differently. Rather than viewing human intervention as a limiting factor of knowl-

edge acquisition, it can be viewed as a powerful alternative solution to the unsolved

problem of low-noise automatic acquisition of knowledge from texts.

To sum up, I believe the observations that much of commonsense knowledge is

not written down, together with the noisiness of the knowledge that can be extracted

with today's technology, militate in favor of use of human contributors. The case for

collection of commonsense knowledge from human contributors is further bolstered

by the option to distribute the collection to the potentially enormous population

of "netizens" - volunteers contributing over the world wide web (Hearst, Hunson

and Stork, 1999). Such an approach has humans as the direct source of knowledge;

such an approach permits clarification and verification of knowledge by asking several

contributors. At the same time, the potential number of contributors is enormous.

As such, this approach represents a combination of quality and quantity that lies

somewhere in between the other two methods discussed in this section - creation of

knowledge bases by professional knowledge engineers and acquiring knowledge from

text. For the reasons stated above, I believe it is a powerful approach on its own and

it may also be useful in combination with the other two. As Edward Fredkin, former

director of MIT Laboratory of Computer Science once said: "the best way to find out

the answer to a question is to ask someone who knows the answer."

1.2.4 Research in knowledge-based KA contributes to broader

progress in Al

In this section, I argue that research in formulating knowledge acquisition questions by

reasoning over already collected knowledge and posing these questions to a population

of human contributors provides a viable path to getting at human-like reasoning, the

core of artificial intelligence. Here are the reasons supporting this stance:
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You can start simple

A KA system can be made operational with very simple acquisition mechanisms

in place. At a later point, more sophisticated ones mechanisms can be swapped

in. Extensions of a simple uniform reasoning mechanism can include adding

internal representations for notions of space and time, adding ability to handle

simple arithmetic reasoning, and other competences or "agencies", in the sense

introduced by Minsky (Minsky, 1986).

You get feedback quickly

The performance is "directly evaluable" - the amount of knowledge being col-

lected and the quality of the questions posed using a specific reasoning mech-

anism can be tracked easily. For example, if a certain mechanism is overly

ambitious in generalizing, it can be observed through it making a lot of incor-

rect (and hence corrected by contributors) predictions.

You need to solve the hard problems to do it well

While having a low entry barrier, the task is difficult to do perfectly. Arguably, it

is "Al-complete" (which, analogously to "NP-complete," means that a full solu-

tion is equivalent to solving other Al-complete problems such as Machine Vision

or Natural Language Understanding). Posing knowledge acquisition questions

well requires analysis of prior knowledge to determine what new questions to

ask, and evaluation the incoming in light of the prior knowledge. In a way,

figuring out how to gather knowledge is also addressing how to effectively use

the knowledge.

Many can contribute

Deploying a knowledge acquisition system online makes the challenges of cre-

ating an understanding system very visible to a broader public. I believe that

making such a system publicly available can help provide a common testbed for

various approaches in Al. Even more importantly, has a shot at attracting more

people not in the mainstream of the field to contributing knowledge to the KA

system, to extending the system's mechanisms, and ultimately to working on
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artificial intelligence. In a sense, a parallel can be drawn between the resulting

process of bootstrapping an increasingly intelligent KA system and the boot-

strapping of its scientific knowledge performed by a modern human society as

a whole.

1.3 Structure of this document

Chapter 2 presents a high level example of how LEARNER - the implemented cumu-

lative analogy KA system - operates, Chapters 3 (Representation), 4 (Algorithms),

and 5 (Interface) explain how LEARNER works. They present, respectively, (i) the

overall architecture of LEARNER and the knowledge representation scheme used, (ii)

the algorithms that operate on this representation to pose knowledge acquisition

questions, and (iii) the interface that presents the questions and provides users with

feedback about the impact made by the knowledge they have just added. Chapter 6

discusses the kinds of ambiguity in the collected knowledge, the sets of tasks for which

ambiguity is and is not problematic, and suggests ways to reduce such ambiguity.

Chapter 7 (The Correlated Universe) provides a theoretical analysis of effective-

ness of cumulative analogy, motivating its use for knowledge acquisition by studying

the amount of correlation between assertions in a subset of a commonsense knowledge

base collected by Singh (Singh, Lin, Mueller, Lim, Perkins and Zhu, 2002).

Chapter 8 presents experimental evaluation of effectiveness of knowledge acquisi-

tion by cumulative analogy and reports on the kinds of knowledge collected. Chapter 9

consists of three sections. The first section overviews some of the relevant prior work

from the expert system, machine learning, knowledge acquisition interface, and text

mining traditions. The next section discusses how LEARNER can be improved further,

including improvements to the process of measuring similarity as well as sketching a

generalization of cumulative analogy. Ways to improve the resulting knowledge base

are also briefly discussed. Finally, and perhaps most importantly, Section 9.3 distills

the contributions of the thesis, summarizing what this work has demonstrated.
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Chapter 2

Examples of Acquiring Knowledge

in Learner

I describe the details of the implementation of the system in Chapters 3 through 5.

In this chapter, I introduce the sort of analogy that LEARNER performs, present

examples of how LEARNER operates, and provide a screenshot of the acquisition

interface.

A clarification of my use of the term "analogy" is in order. When writing "make an

analogy" or "by analogy," I do not refer to analogies of the sort found on standardized

tests, such as

hat:head: :glove:hand,

or "hat is to head as glove is to hand." Neither do I refer to the more elaborate kind

of analogy that arises from aligning graph-like structures (Gentner, 1987; Winston,

1980). Rather, I refer to "analogy" as a process of inference that maps assertions

about objects onto another (typically similar) object. This usage is consistent with

the first definition of analogy provided by the Merriam-Webster dictionary:

Analogy: "Inference that if two or more things agree with one another

in some respects they will probably agree in others."

This usage is also consistent with the usage in scientific literature. For example,

a work on assessing the role of analogy in Natural Language Processing (Federici,
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Montemagni and Pirrell, 1996) provides the following definition for the process of

"generalization by analogy":

"Generalization by analogy can be defined as the inferential process

by which an unfamiliar object (the target object) is seen as an analogue

of known objects of the same type (the base objects) so that whatever

properties are known about the latter are assumed to be transferable to

the former."

By "generalization by analogy," I shall mean, formally, if 0 and 0' are objects

and P and P2 are properties, then:

If 0 has property P1, and

0' has property P1 , and

o has property P2 , then it can expected that

0' may have the property P2.

Let us consider a simple example. Imagine that the system already knows the

following assertions about (or, equivalently, properties of) computer mice and key-

boards:

a computer mouse has buttons

a computer mouse fits in your hand

a computer mouse helps you use a computer

a computer mouse attaches to the computer with a cable

a keyboard helps you use a computer

a keyboard attaches to the computer with a cable

Based on these statements, the system would decide that keyboards are simi-

lar to mice (because they both "help you use a computer" and "attach to the

computer with a cable") and, by analogy, map additional statements known about

mice onto keyboards. As a result, it may come up with the following hypotheses:
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a keyboard has buttons

a keyboard fits in your hand

It is then up to the human contributor to clarify that yes, "a keyboard has but-

tons" (or to enter a modified assertion "a keyboard has keys," but that "a keyboard

does not fit in your hand." In this example, knowledge about "computer mice" (a

source topic) allowed us to pose questions about "keyboards" (the target topic). As

described in the following chapters, the implemented LEARNER algorithm uses mul-

tiple source topics for any given target topic, summing "pro" and "con" evidence

from each source topic when evaluating whether to pose any given question about the

target topic.

Given a target topic selected by the contributor, the system presents a number

of multiple-choice questions. A sample screenshot is presented in Figure 2-1. The

snapshot of the web page shows LEARNER posing questions about "newspaper."

Comparing what is known about "newspaper" with what is known about other topics

has determined that newspaper (when the snapshot was taken), was most similar to

"book," "map," "magazine," and "bag." These are shown in the line beginning with

the words "Similar topics." From these, properties are mapped onto "newspaper,"

and presented as questions in text boxes. For example, the first question shown is

''newspapers contain information?"

Contributors can reply to these questions by selecting an answer such as "Yes"

or "No" from the drop-down box next to the question. Contributors are also free to

modify the question prior to answering it. For example, the contributor may choose

to modify the above question to read "newspapers contain recent information?" and

reply to this modified question. This ability to modify and enter new information

keeps expanding the potential set of questions LEARNER can pose. See Section 5 for

a more in-depth explanation of the details of the interface.
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Learning about NEWSPAPER

Teach about: newspaper

Examples: b. chocolate mp

Similar topics: book [1] 7.38, nag [1] 3.01, magazine [U 2.95, h-ag. [i 2.73

Iewspapers contain information?

jiall newspapers have pages?

[newsp paers are for reading?

jewspapers can contain recipes?

!a newspaper is made up of pages?

[.ae*s* e Jis used for fixing cars?

[Ia newspape is used! or storing knowledge?

]a newspaper stores information without using

-Select-

-Select-

-Select--

-See

-Select-

-Select-

F -Select-

ectricit -Select-

[U (sc 3.05)

[U (sc 3.05)

[U (sc 3.05)

[] (sc 3.05)

[U (sc 1.65)

U (sc 1.65)

U (sc 1.65)

(sc 1.65)

Figure 2-1: Screenshot of acquiring knowledge about "newspaper."
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Chapter 3

Representation

This and the following two chapters explain how LEARNER works. They present the

knowledge representation scheme used, the algorithms that operate on this represen-

tation to pose knowledge acquisition questions, and the interface that presents the

questions and provides users with feedback about the impact made by the knowledge

they have just added.

The seed knowledge base that LEARNER was launched with is presented in Sec-

tion 7.1. Further analysis of kinds and amount of knowledge collected as a result

of running the system is given in Section 8.3. The current chapter covers the form

of knowledge LEARNER accepts (Section 3.2) and how this knowledge is represented

internally (Sections 3.3 and 3.4).

3.1 Overall architecture

In this section, I introduce the overall architecture of the system. Figure 3-1 specifies

the existing technologies used in LEARNER and their overall arrangement. LEARNER

uses components developed by other researchers:

" Link Grammar Parser (Sleator and Temperley, 1993; Temperley, Sleator and

Lafferty, 2000) as the underlying parsing technology.

* FramerD (Haase, 1996) for the storage model and the language in which LEAR-
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NER is implemented.

* WordNet (Fellbaum, 1998), a lexical knowledge base, for tokenization of noun

phrases and "is-a" information about nouns.

Contributors Web Interface Link Grammar
(Per) Parser

I I

Figure 3-1: Overall architecture of the LEARNER knowledge acquisition system.

Details about Link Grammar Parser and FramerD can be found in Appendices A

and B, respectively. Contributors interact with LEARNER using a web CGI interface

implemented in Perl. Contributor input is processed with the Link Grammar Parser,

and the parsed assertions are passed to the core LEARNER component. Excluding

the Web interface, LEARNER has been implemented in FDscript, a freely available

variant of Scheme with integrated access to object oriented database (FramerD) and

additional features such as simulation of nondeterministic computation.

On top of FramerD, the two additional components that LEARNER draws upon are

WordNet and the growing commonsense knowledge base. WordNet is a well-known

lexical knowledge base; its use is detailed in Section 4.2.3. WordNet information has

been stored as a FramerD database; WordNet is distributed in this format as part

of the BRICOLAGE package available with FramerD. The collection of commonsense
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knowledge that LEARNER uses in posing knowledge acquisition questions consists of

a seed knowledge base extracted by me from the knowledge collected by a different

knowledge acquisition effort (Singh, 2002; Singh, Lin, Mueller, Lim, Perkins and Zhu,

2002) (as described further in Section 7.1). The knowledge acquisition questions and

other output generated by LEARNER (such as results of searching the knowledge base

for assertions containing a specific term) are passed back to the Web interface which

presents this information back to the contributors.

The code for the project is open source. At the time of writing, everything needed

to install, run and modify a copy of the system is available at

http://sourceforge.net/projects/learner.

The reader is encouraged to experiment with and extend the system.

3.2 Form of accepted knowledge

LEARNER imposes no restrictions on the domain of textual knowledge it operates

on. There are, however, a number of restrictions on the form of such knowledge. To

allow volunteers to add knowledge without any special training in description logics or

knowledge representation languages, LEARNER accepts input in the form of assertions

in English.

LEARNER is designed to handle only single-sentence syntactically valid assertions,

each of which is interpretable by a human reader on its own, in isolation. Furthermore,

LEARNER is designed to handle primarily general factual knowledge about generic

concepts (classes of objects), rather than specific events or individual objects. Here

are some examples of assertions LEARNER is designed to handle:

" "swans are white,"

" "a hammer is a tool,"

" "a yacht has a sail,"

" "keys can unlock locks,"
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0 "computers are made up of parts."

The system expects each assertion to be one (possibly qualified) piece of informa-

tion, not a conjunction of several. Disjunctive assertions are not supported, either.

Here are some examples of assertions LEARNER is not designed to handle:

* "it is round" (needs context),

* "John likes sandwiches" (concerns an individual, not a class of objects),

" "a shopper bought a carrot" (concerns a specific event),

* "a yacht has a sail and an anchor" (a conjunction of two assertions),

* "John thinks that Mary knows that cars have wheels" (second-order logic).

As the last example suggests, LEARNER is not designed to handle "assertions

about assertions," - assertions that require second order logic when represented in

a formal logic.

Because human-level understanding of the assertions has not been achieved, the

above constraints cannot be enforced perfectly. For example, assertions concerning

specific events such as "a professor cut grass on his lawn" are quite difficult to dis-

tinguish from general assertions such as "lawnmowers cut grass". Adding knowledge

which lies outside of the system's intended scope is likely to result in generation of a

larger number of strange or nonsensical knowledge acquisition questions.

There are, however, some enforced syntactic constraints that limit what assertions

can be added. These constrains require that an assertion:

Be parsable - LEARNER uses the Link Grammar Parser internally; only sentences

accepted by this parser are admitted. The Link Grammar Parser, developed by

researchers at CMU (Sleator and Temperley, 1993; Temperley, Sleator and Laf-

ferty, 2000), implements the "link" theory of grammar and is described briefly

in Appendix A.

Be declarative - In particular, imperative statements (such as "go clean your

room") are disallowed. This constraint is also implemented by analyzing the

parser's output.
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Not be in past, past perfect, or present perfect tenses - This serves to dis-

allow assertions about specific events. The constraint is implemented by ana-

lyzing the parser's output.

Not start with referential words - Sentences starting with words such as "it,"

"this," "that," "these," "my," "I," and "both" are disallowed because such sen-

tences, usually indicate that the sentence either requires a context (the referent

for the anaphora), is about a specific object (as in "that man has a knife"). 1

Not contain conjunctions or disjunctions - Many conjunctions can instead be

entered as two or more statements. This constraint is implemented by analyzing

the parser's output.

As will become clear from the more technical description that follows, LEAR-

NER addresses primarily collecting knowledge about objects and their properties.

There are other segments of the full spectrum of commonsense knowledge that deserve

further attention but which lie largely outside the scope of this work. The kinds of

knowledge not covered or addressed only peripherally include:

" knowledge about "verbs" - knowledge about goals and effects of actions, se-

quence of subevents (scripts) for actions, knowledge about required tools as well

as spatial and temporal preconditions for actions,

" knowledge about causes - "why can birds fly?",

" knowledge about typical motives and actions taken by people specific to more

narrow contexts (e.g. "a person usually stands on a chair to change a light

bulb"),

" knowledge about how knowledge is to be combined - "ostriches can run," but

"dead things cannot run", so the answer to whether "dead ostriches can run"

is unclear.

'In the reported experiments, sentences beginning with the word "the" have also been disallowed
(to exclude such assertions as in "the building is tall"). However, based on contributor feedback and
experience with the system, sentences beginning with "the" (such as "the heart pumps blood", "the
Earth is round", and "the lion is one of the largest cats") have since been allowed again.
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I believe that knowledge about objects and their properties, collection of which is

tackled by the current system, is one of the more fundamental kinds of knowledge.

Collecting this knowledge can lay the foundation on top of which collection of other

kinds of knowledge (such as knowledge about causes) can be reasoned about and thus

intelligently collected.

3.3 Sentences and their signatures

This and the following sections describe how natural language statements are pro-

cessed into assertions to be stored in the knowledge base. Each sentence has a dual

representation: (i) a link representation, which constitutes the parser's output from

which the original string can be reconstructed. Note that the parser used in this work,

Link Grammar parser (Sleator and Temperley, 1993), normally parses sentences into

a set of links between words rather than producing a parse tree. Link output is more

informative than a typical parse tree, providing more information about the relation-

ships that hold between words in a sentence. and (ii) the signature representation

produced from the link representation ("signature" is a term I introduce; it is not

standard in the literature. The signature of an assertion is a canonical form that

abstracts away syntactic details while capturing - well enough for the purposes of

the system - what the assertion states.

The link representation is used to construct new assertions by substituting words

in existing assertions. When a new knowledge acquisition question is generated, it

is this representation that is used to ensure number agreement between subject and

main verb, that the right indefinite article ("a" or "an") is used, and so on. See

Appendix A for details about the parser, and Appendix C for details on the syntactic

processing performed by LEARNER to generate knowledge acquisition questions.

All other processing of knowledge by the system, most importantly retrieval and

matching, is done over signatures and data structures derived from them. In this

section, I describe how a signature is derived from a sentence. In the next section,

I detail how a sentence and its signature are transformed into an assertion about an
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object.

The signature of a sentence is the set of nouns, verbs, adjectives (together with

their parts of speech) that appear in subject, main verb, object(s) and prepositional

phrases of a sentence, as well as adverbs in adverbial phrases. A signature is meant

to preserve its most important information. In the signature, the base form of the

word appearing in the sentence is used (the singular form for nouns, the infinitive

for verbs). Determiners (such as "a," "the," "some" and so on) and closed-class

words (such as "of," "with," "on," '"if," and so on) are omitted. For efficiency of

comparing signatures, signatures are stored as sorted lists of words (with their parts

of speech), without preserving the order. (See the next section for an explanation

how "an elephant pushes a cart" and "a cart pushes an elephant" result in different

assertions.)

Because of this method of computing signatures, variations such as "a dog barks,"

"a dog can bark," "all dogs bark" will all have the same signature: "{dog...n,

barkverb}".

3.4 Phrases, properties and assertions

Many declarative sentences can be viewed as an assertion in more than one way. Most

declarative sentences accepted by LEARNER can be viewed at least as assertions about

the sentence's syntactic subject. For example, "cats eat mice" asserts that "cats"

"eat mice." Some sentences, (such as "cats eat mice"), can also be viewed as asser-

tions about their syntactic object: "mice" have the property that "cats eat" (them).

Note that not all sentences have a noun phrase object (e.g. "cats are beautiful" does

not). Finally, some sentences can also be viewed as assertions about their preposi-

tional phrases. For example, "people eat with forks" can be viewed as asserting that

a "fork" is something "people eat with." These sentences may or may not have

a direct syntactic object.

In all, three important kinds of phrases which may be present in a sentence can

be identified: subj (subject), obj (object), and pp (prepositional) phrases. These,
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when present, give rise to subj-, obj-, and pp-assertions. Each sentence is interpreted

as an assertion about each kind of phrase present in it. For example, "cats eat mice"

is interpreted as both as a (subject) assertion about "cat" and an (object) assertion

about "mouse." Every assertion has two parts: the object 0 (not to be confused

with the sentence's syntactic object) about which something is asserted, and the

property P being asserted about this object. I denote an assertion that an object 0

has the property P as A(O, P). The phrase (one of subj, obj, or pp) that gave rise

to this assertion is not included in the notation and is not important unless explicitly

specified.

To create a subject assertion from a sentence, the sentence's signature and its

syntactic subject (the nouns and adjectives making up the subject noun phrase) are

extracted. The order of words in the subject is preserved, but the words are converted

to canonical form (i.e. nouns are singularized). The singularized noun phrase becomes

the subj-assertion's object 0. The property P is computed by taking the sentence's

signature, and removing from it all words present in the object. As in signatures, the

order of words in properties is not preserved. Obj-assertions and pp-assertions are

created similarly, using the corresponding phrase in forming the assertion's object.

When creating assertions from sentences, LEARNER attempts to handle negation

correctly. Syntactic analysis of the sentence looks for "not" negating the meaning of

the sentence. Here are some examples of negation that is correctly recognized:

cats do not fly

cats don't fly

a cat cannot fly

To represent the recognized negation, each assertion in the knowledge base has one

of two truth values: Tv = 1 or 0. When referring to a specific object-property pair Oi

and P, I will denote these as Tv(Oi, P) = 1 and Tv(Oi, P) = 0, and informally refer

to assertions in these two classes as "is true" and "is false" assertions, respectively.

Because each assertion consists of an object and a property, the entire knowledge

base can be visualized as a large matrix, with every known object of some asser-
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Objects Properties
(with simplified form)

contains knowledge has pages is cold is for reading
... contain knowledge have page be cold be read

book ... x x x ...

ice ... x ...

newspaper ... x x

magazine ... x x x ...

Figure 3-2: Example of a matrix encoding assertions about objects and their prop-
erties. The actual matrix has tens of thousands of rows and columns. For simplicity,
only "is true" subject-assertions are shown, marked by 'x'es. Blank cells denote that
truth values for these assertions are not explicitly known.

tion being a row and every known property being a column. See Figure 3-2 for an

illustration of an objects-properties matrix depicting a set of assertions.

Each sentence is assigned a unique ID that can be retrieved given the string of the

sentence. The assertions that the sentence encodes are indexed by this ID, allowing for

rapid retrieval of all assertions a sentence encodes, as well retrieval of some additional

information such as phrases present, and the head noun of each phrase present.

Additionally, assertions are indexed by phrases and properties. For example, it is

possible to quickly retrieve all subj-assertions with the object 0 being "cat," or all

subj-assertions with the property "have tail."
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Chapter 4

Algorithms

In this chapter, I present the principles that guided the formulation of the algorithms

for question generation, the algorithms themselves, Select-NN (for "select nearest

neighbors") and Map-Props (for "map properties"), and algorithms to further refine

the set of generated questions.

4.1 Guiding principles

The goal of LEARNER is to acquire knowledge from human volunteers.

should an approach to the problem of knowledge acquisition have?

methodological and architectural considerations.

Some top level methodological principles adopted in developing a

follows:

What features

I discuss both

solution are as

" knowledge needs to be acquired actively. That is, the system should direct the

acquisition to the knowledge not already present (DARPA, 1998).

" knowledge, especially in large multi-purpose knowledge bases, should be ac-

quired incrementally (Menzies, 1998).

" knowledge needs to be maintained after it has been acquired. In other words, it

is necessary to constantly analyze how acquired knowledge can be operational-

ized (used) and how it can be faulted (when does using it produce undesirable
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or incorrect results), and what actions may be needed to correct the behavior

(e.g., adding new knowledge to address the limitations of existing knowledge or

correcting the already acquired knowledge) (Menzies, 1998).

e successful acquisition has to be transparent. That is, it should be possible to

understand why the system did what it did, to see the impact your contribution

made, and to correct behavior of the system. The importance of exposing the

summary of the system's operations to a naive user is discussed by (Hellerstein,

1997). Hellerstein argues that in situations involving naive users and long pro-

cessing times by the system, it is important to give the user access to a summary

of the system's operation to reduce user frustration and provide a path for the

user to learn how to best interact with the system.

The architectural desiderata are (i) modularity, so that many algorithms for ques-

tion generation can be plugged in, and (ii) orthogonality, so that modules focus on

their tasks without having to duplicate the same functionality.

To accommodate these goals, a kind of generate and test architecture has been

employed. That is, the initial stage of processing generates questions, passing them

to a set of modules that filter the questions, passing them to the output. I refer to

the modules that propose questions as generators and to modules that combine and

filter questions as critics, a term I use in the sense consistent with Minsky (Minsky,

1986) to refer to a more powerful version of a test. Unlike tests, critics are able to

combine and modify their inputs in addition to merely filtering them.

Currently, LEARNER employs only one method for generating questions - by

analogy. There are several filters being applied to questions generated. The filters

remove questions that are non-grammatical, redundant, or those which are not likely

to yield useful new knowledge.

Armed with these goals and architectural motivations, the following sections ex-

plain (i) the algorithms for generating questions by analogy, (ii) the filtering of the

generated questions before they are presented to the user, and (iii) how the acquisition

interface conforms to these goals.
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4.2 Analogy

Generating knowledge acquisition questions by using analogy is at the heart of this

thesis. This section presents the algorithms involved. A novel feature the analogical

reasoning method employed in this work is that it relies on mapping properties from

many similar objects, summing the evidence for posing any given question.

Because of its reliance on many sources of analogy, I call this method cumulative

analogy. In this section, I present the algorithms for cumulative analogy and explains

the algorithms' operation on a step-by-step example. (Recall that Ch. 2 presented a

bird's-eye-view example of analogy in operation).

Given a knowledge acquisition topic Otarget about which knowledge is being ac-

quired, cumulative analogy is performed in two stages: (i) Select-NN, selecting the

set 0 of nearest neighbors 0 ,,,c, and (ii) Map-Props, projecting known properties

of 0,,ic back onto Otarget and presenting them as questions.1

Both algorithms are explained on a simplified example of posing questions about

"cnewspaper." The formal pseudocode for the two algorithms is also presented in

Figures 4-5 and 4-8, respectively.

4.2.1 Select-NN

The details of Select-NN are as follows. First, Select-NN retrieves the properties of

the target object, as illustrated in Figure 4-1.

Next, for each selected property, all assertions about this property and some other

object with this property are identified, as shown in Figure 4-2. Both objects about

which this property "is true" and "is false" are included.

Next, for every object that shares properties with "newspaper," the similarity be-

tween this object and "newspaper" are computed based on properties that they share

and that they mismatch on (two objects mismatch on a property when a property is

asserted as "is true" about one and as "is false" about the other). The contribution of

'It is the second step of projecting properties that motivates the terminology of "0 ,,c" ("src"

for "source") and "Otarget."
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Figure 4-1: Select-NN: Preparing to formulate questions
erties already known about "newspaper" are identified.

about "newspaper." Prop-

Objects

contains knowled
... contain knowled

book ... x
ice

newspaper ...
magazine ... x

Properties
(with simplified form)
ge is cold
eg e be cold

x

Figure 4-2: Select-NN: All assertions about known properties of "newspaper" are
identified, in this example the two being "has pages" and "is for reading."
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Objects Properties
(with simplified form)

contains knowledge has pages is cold is for reading
... contain knowledge have page be cold be read ...

book ... x x x ...

ice ... x ...
newspaper ... x x ...

magazine ... x x x ...



each property to the total similarity score is weighted by this property's frequency in

the entire knowledge base, with matches of rare properties receiving greater weight.

The detailed formulas are given below.

As illustrated in Figure 4-3, up to ten most similar objects are selected. Prior to

returning the objects, however, there is some additional filtering. No objects that are

more general than the target object are returned. When there is more than one object

that shares at least two properties with the target object, no objects that share only

one property are returned. The specifics of these filters and the detailed rationale for

them, as well as the exact formulas for computing similarity are given below.

Objects Properties
(with simplified form)

contains knowledge has pages is cold is for reading
... contain knowledge have page be cold be read ...

ice ... x
newspaper ... x x ...

Figure 4-3: Select-NN: Using properties of "newspaper," its nearest neighbors (the
most similar objects) are identified. Up to ten are used similar objects are returned;
here only two ("book" and "magazine") are shown.

The pseudocode in Figure 4-5 presents Select-NN formally. The pseudocode refers

to a two-argument predicate WNisa, which is defined as follows:

The subsumption relationship "WordNet is-a" holds between objects 01 and 02

(denoted WNisa(01, 02)) if there is a chain of "is-a" assertions in WordNet that leads

from first WordNet sense of 01 to the first or second WordNet senses of 02. This

definition has been selected empirically. Section 4.3.1 describes WordNet, WordNet

senses, and the motivation for introducing WNisa and associated with it filtering in

greater detail.

For ease of reference, all the steps of Select-NN are illustrated together in Figure 4-

4. Computation of similarity in Select-NN in based on a generalization of Tversky's
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contrast model of similarity. The model is formulated as:

SimTversky(0, 0') f (T0 n -Fo) - af (.o \ To,) - /3f G0o, \ To)

where Fo represents the set of features that an object 0 possesses, Fo \ .Fo denotes

the set difference of the sets FO and Fo, (i.e., features of 0 that 0' does not have).

The function f is typically assumed to be additive (simply returning the size of the

set to which it is applied), and 0, a, and # are non-negative weights. Section 4.4

presents more details about adapting this model to domains in which some features

are unknown, as well as incorporating into the model of some information-theoretic

observations about semantic similarity made independently by Resnik and by Lin

(Resnik, 1995, 1999; Lin, 1998).

The exact formulas used in Select-NN are as follows. Recall that Tv(0, P) stands

for the truth value of the assertion A(O, P); "is true" assertions have Tv = 1 and "is

false" assertions have Tv = 0.

Let Op be the set {O : Tv(O, P) = 1}, i.e., the set of all objects 0 for which the

property P has been asserted to be true, and |IVpJJ be the number of such objects.

Then the frequency weight of P, denoted FreqWt(P), can be defined as follows:

FreqWt(P) = 2 ifOP=07 (4.1)

1 + 1/log 2 (l0pf| +1) otherwise.

Note that the FreqWt ranges between 1 and 2, FreqWt(P) E [1, 2], with larger

values corresponding to properties that are true of fewer objects. The inverse of the

logarithm is taken to make FreqWt decrease as ||Op|l increases. The motivation for

assigning lower weight to more common shared properties is that, other things being

equal, two objects sharing a very rare property are probably more similar than two

objects sharing a very common one. 2 Giving greater weight to the rare features is

consistent to prior approaches to measuring semantic similarity (Resnik, 1995; Lin,

1998). The motivation for FreqWt is further discussed in Section 4.4 in light of the

2
110pIl is incremented by one to avoid division by zero (from 1/log2 (1)) when |lOpI| is 1.
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Objects Properties
(with simplified form)

contains knowledge has pages is cold is for reading
... contain knowledge have page be cold be read ...

book ... x x x ...
ice ... x ...

newspaper ... x x
magazine ... x x x ...

(a) Preparing to formulate questions about "newspaper." Properties already known about
"newspaper" are identified.

Objects Properties
(with simplified form)

contins nowldgeis cold
... contain knowledge be cold..

bo00k ... x ..
ice ... X

newspaper ... X
magazine ... x X'.

(b) All known properties of "newspaper" are used to look for similar objects.

Objects Properties
(with simplified form)
Ige has pages is cold
ge have page be cold

(c) The most similar objects are identified (up to ten are used).

Figure 4-4:
clarity, only
nothing has

Select-NN: All steps together for the example of "newspaper." For
"is true" properties are shown, marked with 'x'. Blank cells mean that
been asserted.
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SELECT-NN:
// 3A(O, P) denotes "0 has property P" or "0 does not have property P"
// has been asserted
// initialize scores to 0:
forall 0 .rc do

Score(O,,c) +- 0;
end
forall P : 3A(Otarget, P) do

forall 0,, : ]A(O,,c, P), 0 sc # Otarget do
Score(Osc) <- Score(Osc) + Wt ( TV(Otarget , P ), TV (Osrc, P ), P) ;

end
end
// If WordNet category is known, disallow objects with non-overlapping
// categories
// Always disallow objects subsuming Otarget
// (see Section 4.2.3)
if WordNetCateg (Otarget)= 0 then

let Candidate set C +- {0 : Score(0) > 0 A , WNisa(Otaryet, 0)};
else

let C <- {: Score(0) > 0 A - WNisa(Otarget, 0)
A WordNetCateg(O) n WordNetCateg(Otarget) # 0};

let C2 +-{0: O E C A Score(O) > 2};
// return only highest scoring objects
if |IC 2 1| < 2 then

if ||CH| < 10 then
return C (with scores);

else

//return up to ten highest-scoring objects
return 0 (with scores) (1|0|1 = 10 A VOsrc, Qsrc : Osrc E 0, Osrc ' 0,

Score(Orc) > Score(0,src));
else

if lIC 2 11 < 10 then
return C2 (with scores);

else
return 0 (with scores) : (1101= 10 A VOrc, Osrc : Osrc E 0, Osrc V 0,

Score(Osrc) > Score(0,src));

Figure 4-5: Select-NN: Algorithm for selecting nearest neighbors.
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contrast model of similarity and other prior work.

The amount by which the score of each object is updated is given by the function

Wt( Tv(Otarget, P), TV(Osrc, P), P),

computed as follows:

FreqWt(P) if (Tvi, Tv2 ) =(1, 1),

Wt(TVi, Tv2, P)= -1.5 if (TV1, Tv2 ) = (1, 0) or (0, 1) , (4.2)

0 if (TVi, Tv2 ) = (0, 0).

The "punishment for mismatch" weight applied when (Tvi, Tv2 ) = (1, 0) or (0, 1)

has been selected to be -1.5 as the negative of the average of the extreme values

of the "reward for match" values, which are the range of FreqWt(P) (recall that

FreqWt(P) E [1, 2]). The motivation for making the weight the same for the two

cases (Tvi, Tv2 ) = (1, 0) and (Tvi, Tv 2 ) = (0, 1) is discussed further in Section 4.4.

Because a property of both the source and the target object could have been

asserted to be true (Tv of 1) or false (Tv of 0), several cases arise in Eq. 4.2. (Recall

that assertions other than "is true" and "is false" are not used in computing the

similarity score). When both 0 ,c and Otarget share a property P (both truth values

are 1), their similarity is incremented by FreqWt(P), a weight that ranges between 1

and 2, as is detailed below. When the objects mismatch on this property (i.e. Tv is 1

for one object and 0 for the other), then their similarity is reduced by a constant 1.5.

Finally, when both Tvs are zero, the similarity is not adjusted, the rationale being

that two objects not having a property does not necessarily indicate much about their

similarity. For example, neither a "newspaper" nor "ice" "can sing," but that does

not make them any more similar.

The total similarity score is computed for every object whose score was updated.

After some filtering that removes already known questions and questions that are tax-

onomically inferable (the filtering is also detailed in Figure 4-5 and in Section 4.2.3),
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up to ten highest-scoring objects are selected and returned together with their scores,

as illustrated in Figure 4-3. The reason behind forming the set C2 in Select-NN and

looking at its cardinality is to avoid returning very weakly similar objects when a suf-

ficient number of more similar objects are available. The score threshold of 2 ensures

that at least two properties are shared; the threshold of 2 on cardinality of C2 has

been chosen empirically.

4.2.2 Map-Props

The output of Select-NN - the source objects 0,, paired with scored indicating

their respective similarity to Otet - are passed to Map-Props, which proceeds as

follows (pseudocode for Map-Props is given in Figure 4-8 and the formulae involved

are presented later on in the text).

First, for every source object, Map-Props retrieves all properties asserted about

this object. Both "is true" and "is false" assertions are included. For the target

object "newspaper," the set of source objects may include "book" and "magazine,

as illustrated in Figure 4-6.

Objects Properties
(with simplified form)

contains knowledge has pages is cold is for reading
... contain knowledge have page be cold be read ...

book ... x x x ...
ice ... x ...

newspaper ... x x ...
magazine ... x x x ...

Figure 4-6: Map-Props: All known properties of the similar objects are selected.

Next, each mentioned property is mapped back onto the target object, with the

total score of the mapping depending on the similarity scores of the relevant source

objects and the kind of property being mapped (subj, obj, or pp). Already known

properties of the target object ("newspaper," in our case) are filtered out, as are
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properties that "newspaper" can be expected to have by taxonomic reasoning. Fig-

ure 4-7 illustrates the mapping of properties not yet known about "newspaper" back

onto "newspaper."

Objects

contains knowle
... contain knowled

book ... x
ice ...

newspaper ... ???
magazine ... x

Properties
(with simplified form)
ge has pages is cold is for reading
e have page be cold be read ...

x x
x ...

x x ...
x x ...

Figure 4-7: Map-Props: Properties (such as "contains knowledge") known
similar topics but not known about "newspaper" are formulated as questions
"newspaper" for presenting to contributors.

about
about

The pseudocode for the Map-Props is presented in Figure 4-8. The specific formu-

lae used in calculating the scores of the mapped properties are as follows. For every

source object, the score of every property known about it is updated, according to

the product of three weights:

TvWt (Tv (O, P)) x PropClass Wt(PropClass(P)) x SimWt (SimSc(O))

The component weight functions are computed as follows:

TvWt (Tv) =

I if Tv = 1,

-1 if Tv = 0,

0 otherwise.

1.1 if PropClass

Prop Class Wt (Prop Class) = if Prop Class

0 otherwise.
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MAP-PROPS:

/ / Oc denotes the set of objects given as input
// SimSc(O) denotes the similarity score of an object 0 (to Otarget)

// PropClass(P) denotes the property class of P (one of subj, obj, pp)
forall 0 src : 0 src E O,,c do

forall P: 3A(0src, P) do
Score(P) *- Score(P) + SimWt(SimSc(O)) PropClass Wt (PropClass(P))

TvWt( Tv(0, P));
end

end

// select 100 properties with highest scores for further filtering
let P +- {P : Score(P) > 0 A ,2A(Otarget, P)}

if 11Pll < 100 then
return P (with scores)

else
return P' (with scores) : {|P'H = 100 A VP, P : Pi E P', P3 j 1',

Score(P) > Score(P)};

Figure 4-8: Map-Props: Algorithm for mapping properties from nearest neighbors
onto Otarget

and
ln(SimSc) (5

SimWt (imSc) = 1 + 4 (4.5)
4

where SimSc is the "similarity score" of Osrc to Otarget as returned by Select-NN. The

equation for TvWt simply ensures that the votes "for" and "against" this property

holding for the target object are summed with the correct sign.

Note from Eq. 4.4 that Prop Class Wt gives slight preference to subject assertions

over object assertions, and does not increment the score of pp assertions at all, largely

because of difficulties that arise with prepositions when the noun phrase is altered.3

Also, Prop Class Wt ensures that preference is given to statements which are perceived

to be "about" the current topic Otarget.

The equation for SimWt (Eq. 4.5) ensures that the most similar objects in the

set (according to Select-NN) have the greatest impact on the overall scores. The

function has been chosen chosen after trying (informally) several alternatives; it is

3 For example, one normally says "sit at a desk," but "sit on a bed"; changing the noun in the
prepositional phrase would in a number of cases require an additional mechanism to modify the
preposition to agree with the new noun.
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highly sublinear to prevent over-emphasizing any given object, and to produce a truly

''cumulative" analogy.

Once the total scores for each property are computed, properties already asserted

about Otarget are eliminated, and up to 100 of the highest scoring remaining prop-

erties are returned for further filtering. In practice, the computationally intensive

work is not the computing of scores that has taken place up to this point; it is the

linguistic processing of a sentence that happens at later stages. Thus it is important

for performance reasons that this elimination happen at this stage and not later.

The phenomenon of speed optimization causing propagation of some functionality

from the tests into the generator is a commonplace feature of generate and test ar-

chitectures. The properties with large negative scores (when such are present) are

currently dropped, although they represent good hypothesis about what is not true

about Otarget.

4.2.3 Refinements in Select-NN

Refinements to Select-NN use taxonomic and semantic category information present

in WordNet, a lexical database, as well as the taxonomic knowledge that LEARNER

gathers. Extending LEARNER's taxonomy will override the information derived from

WordNet. In this section, I briefly introduce WordNet's taxonomic handling of nouns

and describe the implemented refinement to Select-NN which uses this information.

WordNet has approximately 80,000 noun word forms organized into approximately

60,000 synsets (for "synonym sets") (Miller, 1998). A concept may have multiple

senses (e.g. "table" can mean a data table with rows and columns and a kind of

furniture). The senses are numbered in order of decreasing frequency as they occurred

in a manually tagged corpus, so that the first sense is the most common one in the

corpus which was used to calculate the frequency data.

WordNet also provides taxonomic and other links ("is-part-of" and so on) between

synsets. The taxonomic information states, for example, that the first sense of "cat"

is a kind of the first sense of "animal." See Miller (1998) for more information on

how WordNet organizes nouns and their senses.
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Furthermore, WordNet organizes all senses of nouns into high level categories. For

example, for the two senses of "table" mentioned above, the table with rows and

columns is in the category "group," and table that is furniture is in the category

artifact.

In all, there are 26 such categories: act, animal, artifact, attribute, body,

cognition, communication, event, feeling, food, group, location, motive,

object, person, phenomenon, plant, possession, process, quantity, relati-

on, shape, state, substance, time, tops. The tops category contains the con-

cepts at the top of the hierarchy.

The refinement relating to WordNet categories (as detailed in Figure 4-5) is meant

to remedy occasional generation of strange similarities when the system has insuffi-

cient knowledge. For example, two very different objects, such as a "mechanic" and

"oil" can be similar to each other if little is known about each. If all that is known

about both "mechanic" and "oil" is that both "can lubricate something," they

will be judged to be similar by the system prior to WordNet filtering. The filtering

based on WordNet categories will exclude "oil" from the set of objects similar to a

"mechanic", because WordNet categories of senses of the noun "mechanic" do not

intersect with any of the WordNet categories of senses of the noun "oil".

More specifically, to compute the set of WordNet categories for a topic 0, the

sense categories of the three most common WordNet senses of 0 are looked up (or,

if there are fewer than three senses, categories of all the senses). For example, the

noun "mechanic" has the single category person, and the noun "oil" has categories

artifact and substance.

Another filter is the filter of taxonomic parents. It is implemented as follows.

Recall the definition of the predicate WNisa:

The subsumption relationship "WordNet is-a" holds between objects 01 and 02

(denoted WNisa(0 1 ,02)), if there is a chain of "is-a" assertions in WordNet that

leads from first WordNet sense of 01 to the first or second WordNet senses of 02.

Additionally, such statements as "a cat is a pet," "cats are pets," and "a cat is

not a bird" in LEARNER's knowledge base are recognized as expressing presence and
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absence taxonomic relationships between the subject and the object of the assertion.

I denote these extracted relationships LearnerIsA and LearnerIsNotA. Given a target

object Otgt, all objects 0 such that

LearnerIsA(Otgt, 0) V (-,LearnerIsNotA(Ott, 0) A WNisa(Otgt, 0))

are removed from the output of Select-NN.

4.2.4 Questions posed by cumulative analogy improve with

acquisition of more knowledge

Importantly, knowledge acquisition by cumulative analogy exhibits bootstrapping qual-

ities. The replies to the knowledge acquisition questions formulated by analogy are

immediately added to the knowledge base, affecting the measure of similarity. If

Select-NN incorrectly rates a non-similar object as too similar, many knowledge ac-

quisition questions posed with the contribution of this object are likely to be answered

"no," decreasing its similarity score in the future.

Even answering questions affirmatively is likely to strengthen the similarity scores

of topics that are more similar, while leaving scores of other topics in the set of similar

topics unchanged. This process is also likely to improve the quality of future questions.

Here is an example: when starting with the seed knowledge base and teaching about

"newspapers," the similar topics, together with their similarity scores, are: "book"

(6.72), "map" (2.76) "magazine" (2.67), and "bag" (2.51). The three highest-scoring

knowledge acquisition questions posed are "newspapers contain information?", "all

newspapers have pages?" and "newspapers are for reading?" If these questions

are answered affirmatively and the answers are submitted to the system, set of the

similar objects remains the same, but their scores become: "book" (10.94), "map"

(5.53) "magazine" (4.12), and "bag" (2.51). As can be seen from the change in

similarity scores, the less similar topic ("bag") became less influential in creating

knowledge acquisition questions relative to others. This should lead to questions

posed by LEARNER being more focused.
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Conversely, as more "is true" assertions are added, similar objects that also share

those properties but were not previously in the top ten most similar object will join

that group.

4.2.5 Other merits of cumulative analogy

In this section, I discuss some important merits of the concept of cumulative anal-

ogy. The specific algorithmic implementation of cumulative analogy and some of its

shortcomings are addressed following a detailed evaluation, in Section 8.5.1. My ap-

proach to measuring similarity is motivated and compared to other approaches in the

literature in Section 4.4.

First, cumulative analogy is noise tolerant at all stages. Select-NN sums evi-

dence for similarity from many individual properties, limiting the effects of spurious

matches. Map-Props then sums evidence for each property from up to ten similar

objects, further limiting the effect of any residual noise in Select-NN's output. Noise

tolerance is of particular importance when the system is forced to pose questions

when it knows very little about the topic at hand.

An example of cumulative analogy exhibiting noise tolerance in the step of creating

a set of knowledge acquisition questions from the similar objects returned by Select-

NN is as follows. Consider the similar objects to the object "tool" in the seed

knowledge base, presented in Table 4.1.

computer 7.61
machine 5.39
horseshoe 5.26
fire 3.92
knife 3.90
car 3.90
wrench 3.76
musical instrument 3.06
fan 2.71
weapon 2.45

Table 4.1: Objects similar to "tool" in the seed knowledge base.

Arguably, the similar topic "fire" (and perhaps the similar topic "horseshoe")
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are spurious. "Tool" was judged to be similar to "fire" because of the following

pairs of assertions: "Humans use tools/fire", "A tool can help a person/Fire can help

people", and "Tools are useful/Fires can be useful". Despite these matches, the top

five questions posed about "tools" as follows (shown together with the similar topics

from which they are mapped):

" tools can run on electricity? (computer, machine, fan)

* tools are machines? (computer, car, fan)

" a tool can hurt a person? (fire, car, weapon)

" tools are man-made? (computer, machine)

* tools are complicated? (computer, car)

In this particular case, only the third question was mapped with participation

of "fire," and this question had additional support from the objects "car" and

"weapon." Other, irrelevant properties of "f ire" present in the knowledge base

(such as "a fire is hot", "fire consumes oxygen", "fire can burn a house") are not

posed as knowledge acquisition questions.

I refer to to this ability of cumulative analogy to focus in on the more relevant

properties under the general term "noise tolerance." It is important that the "noise"

that cumulative analogy tolerates has many sources. One source is spurious matches

that arise from insufficient knowledge (for example, a "tool" and a "fire" were

similar because of such assertions as "Humans use tools/fire" and no knowledge that

would state how a "tool" is different from a "f ire" was present. Another source

is lexical ambiguity, which may cause semantically different assertions to be judged

to be similar by LEARNER (as discussed further in Chapter 6). Finally, another

source of noise may be some unintentional or malicious misinformation of the system

by a contributor. As long as the total amount of "noise" from all of the possible

sources does not overwhelm cumulative analogy's ability to tolerate noise, cumulative

analogy will still pose reasonable questions even when forced to operate over such

"noisy" data.
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Second, the knowledge collected by LEARNER tends to be syntactically uniform.

By virtue of the algorithm (contributors are encouraged to confirm, deny, or correct

statements mapped from other similar statements), syntactic variation is kept low,

simplifying further processing and enabling the analogy mechanism to work well on

consequent iterations.

Finally, the approach conforms to the guiding principle of transparency put forth

in Section 4.1. Contributors can immediately see the impact of their contribution on

the system's beliefs about similarity of objects. The impact is shown by presenting

the current beliefs about similarity, the pairs of assertions that support the current

beliefs about the similarity, and the changes in the similarity caused by the knowledge

just added by the contributor are all presented or made available to the contributor,

as detailed in Section 5.1.

4.3 Filtering questions with critics

Generation of knowledge acquisition questions in LEARNER consists of two compo-

nents: the generation component and the filter, or critic component. Critics are

the part of the architecture that implements some commonsense requirements on

the knowledge acquisition questions. A good set of critics offloads this functionality

from the generators, allowing the generators to be simpler and easier to implement.

Also, because critics implement commonsense requirements on questions, they are

more fixed in their nature than generators, which have a much broader charter of

"generating plausible assertions" (to be converted into questions).

In the implemented system, critics receive and process assertions consisting of the

object Otarget, some property P and the assertion's score as computed by Map-Props.

These assertions are later converted into natural language. Although in the envisioned

architecture critics are allowed to combine and modify their inputs, the implemented

critics do not modify the assertions or their scores. They are only allowed to "veto"

(filter) some of them, passing the filtered set to the natural language generation

component and on to the interface.
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The implemented critics embody the following principles:

" Do not ask what you already know.

" Do not ask things that can be inferred with high confidence (only taxonomic

inference has been implemented).

" Do not ask what you can not understand (do not pose non-parsable questions).

Several of the above principles can be seen as instantiations of an even more

general information-theoretic principle that the system should pose the questions

that will yield the most information (see Chklovski (1998) for an example of applying

this principle to selecting a recognition "question" in a simplified object recognition

task). The implementation of the principle "do not ask what is already known" is

straightforward, as is implementation of "do not ask what you can not understand"

(the new sentences that cannot be parsed are filtered out). The next section details

filtering out assertions inferable with a simple inference mechanism.

4.3.1 Using a taxonomy to filter questions

The core question-posing algorithm operates on correlations in the supplied knowledge

base. It requires no additional sources of information, and does not have a deep

understanding of what the natural language assertions mean or how they relate to

each other semantically.

Such a lightweight approach has the advantage of simplicity. However, it has some

limitations. Namely, if a property holds for many taxonomically close objects, the

algorithm will never really "get it," and will pose the same question about many

objects. For example, when told that "animals have body parts," the generation

component may, in generating questions for various topics, ask whether "monkeys

have body parts," "cats have body parts," "dogs have body parts," and so on.

In this section, I present an implemented critic that adds awareness of taxonomic

relationships and taxonomic inferences, and includes handling of quantifiers such as

"'some."1
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This filter is used only on subject-assertions. Other assertions are permitted by

this critic without evaluation. The reason is that in interpreting natural language

statements, the syntactic subjects of the sentences are by default scoped universally,

while syntactic objects are not. For a discussion of quantifiers in first-order predicate

calculus expressions generated by interpreting natural language assertions, see Ju-

rafsky and Martin (2000, p. 558) and Alshawi, Carter, van Eijck, Gamback, Moore,

Moran, Pereira, Pulman, Rayner and Smith (1992). The sources present examples

of syntactically identical sentences that have different quantifier assignments when

interpreted semantically. The second source describes a set of heuristics that in some

(but not all) cases make the correct quantifier choices. For example, in the sentence

"people have body parts" the subject "people" is universally quantified, while the

object "body parts" is not (that is, the statement does not assert that people have

every possible body part, such as wings).

Recall the two-argument predicate WNisa(Oi, 02) described in Section 4.2.3. The

predicate computes whether 01 is a kind of 02 according to the taxonomic information

about word senses in WordNet.

The taxonomy-based critic of assertions works as follows. For each property P re-

turned by Map-Props, the critic evaluates whether to filter the assertion A(Otarget, P).

The critic looks for the maximally specific generalization of Otarget, Osup, such that

truth or falsehood of P is asserted about 0,P. That is, the critic looks for the most

specific Osu such that WNisa(Otarget, Osu) and ]A(0,up, P). If no such OS, exists,

A(Otarget, P) is not filtered. Otherwise, the natural language sentence that gave rise

to A(Oup, P) is analyzed. The assertion is not filtered if the subject noun phrase is

quantified with any of the determiners "most," "many," ''some," ''several," or "few."

Otherwise, A(Otarget, P) is filtered, and no question about Otarget having the property

P will be posed.

To work in conjunction with this critic, Select-NN also includes a step that re-

moves objects subsuming Otarget from the set of objects it returns. The motivation

for this filter is the later filtering of properties that can be computed to be inherited

from a more general object, described in Section 4.3.1. If Select-NN did not filter ob-
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jects subsuming Otargt, consequent application of Map-Props to these objects would

have generated many questions that would be immediately filtered out again by the

taxonomic critic.

4.4 Measuring semantic similarity

In this section, I place the computations of similarity used in LEARNER in the context

of research on human judgments of semantic similarity and discuss prior approaches

to generating machine semantic similarity judgments. In addition to this discussion,

Section 7.5 further expands my discussion of semantic similarity. Additional topics

include linguistic and world phenomena that give rise to semantic similarity, the

importance of dissimilarity between similar categories, and human bias in selection

of features that define similarity (related to the theorem of the Ugly Duckling, which

states that in the absolute absence of bias any two categories of objects are equally

similar).

Assessment of semantic similarity is essential to a variety of NLP tasks (Monte-

magni and Pirelli, 1998). Typically, the notion of similarity is approached via the

notion of distance. Introducing a way to measure distance between any two objects

allows identification of objects that are near each other as the most similar.

The intuition of a well-behaved distance measure is captured in a notion of a

metric. In order for distance measure D, defined over a set of objects ) to be a

metric, the following conditions must hold for any three objects 0, 0' and 0" in 0:

non-negativity: D(0, 0') > 0,

reflexivity: D(0, 0') = 0 if and only if 0 = 0',

symmetry: D(O, 0') = D(O', 0),

triangle inequality: D(O, 0') + D(O', 0") > D(0, 0").

Assuming that objects are represented as vectors of real-valued or binary proper-

ties (and assuming the value of each property is known for each object), objects can

63



be thought of as points in an N dimensional space, where N is the number of distinct

properties. In feature-based approaches to similarity, a distance metric between ob-

jects represented as feature vectors is often defined using a specific value of r(r > 0)

of the Minkowski metric:

N

Lr(O, 0') = Ok - Ir

where Ok is the value of the kth feature of 0 (Duda, Hart and Stork, 2000; Goldstone,

1999). L, (i.e., the above expression for r = 1) is known as Manhattan or city-block

distance and is closely related to Spearman's footrule. L 2 is the familiar Euclidean

distance. The similarity is then defined to be inversely related to the distance mea-

sure. L1 and L 2 are the most commonly used in feature-based similarity measures

(Goldstone, 1999).

On the other hand, studies of human similarity judgments indicate that when

humans estimate pairwise semantic similarity (or "distance") of concepts, they sys-

tematically violate all of the above properties of distance metrics save, perhaps, for

non-negativity (Tversky, 1977; Goldstone, 1999).

Human judgments violate reflexivity because not all pairs of identical objects are

judged to be equally similar. For example, complex identical objects (such as identical

twins) have been empirically observed to be judged more similar than simple objects

(such as squares). Symmetry is violated in the following way: when an object with

many features is compared to one with fewer features, the one with more features

is judged to be less similar to the other one than vice versa. For example, subjects

in the United States judged New York to be less similar to Tel Aviv than vice versa

and China to be less similar to North Korea than North Korea is to China (Tversky,

1977; Goldstone, 1999). Finally, triangle inequality can be violated when 0 and 0'

and 0' and 0" are similar because of different sets of features, and 0 and 0" have

little in common. For example, "ball" (0) and "moon" (0') are both round, and

"moon" (0') and "lamp" (0") both can give off light, but "ball" and "lamp" are less

similar than either of the above pairs (Tversky and Gati, 1982; Goldstone, 1999).
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In choosing measures of distance, there is usually little agreement on a princi-

pled way of selecting one (even if restricted only to metric measures). For example,

Aggarwal et al. state: "In most high dimensional applications the choice of the dis-

tance metric is not obvious; and the notion for the calculation of similarity is very

heuristical" (Aggarwal, Hinneburg and Keim, 2001).

In light of these observations, I have chosen not to build LEARNER's measure of

similarity on a notion of metric distance, but instead to adopt Tversky's contrast

model of similarity. The contrast model is formulated as:

SimTversky(, 0 -=f (Fo n _oF ) - of (Fo\ .Fo,) - 3f ( 0 , \ .Fo)

where Fo represents the set of features that an object 0 possesses, Fo \ .Fo, denotes

the set difference of the sets Fo and Fo, (i.e., features of 0 that 0' does not have).

The function f is typically assumed to be additive (simply returning the size of the

set to which it is applied), and 0, a, and 3 are non-negative weights.

The contrast model is typically applied to domains in which perfect information

is assumed - for a given object any given feature is known to be either present

or absent. On the other hand, by the nature of the task of knowledge acquisition,

LEARNER manipulates features whose (binary) values are sometimes unknown. In

generalizing the contrast model to domains with unknown features, I use a slightly

different notation, using Po to denote the set of "is true" properties of 0, and Po to

denote the set of "is false" properties of 0. I have also chosen a measure that, when

measuring similarity between 0 and 0', is not affected by features unknown about

either 0 or 0'. That is, in place of Fo \ Fo,, I use Po n PO,, the set of properties

(features) that are known to be true for 0 and are known to be false for 0'. Similarly,

I use Pot n P.0 in place of F 0 , \ F0 .

My approach to measuring similarity also weights individual features differently,

depending on their frequency, in the term Po n Pot corresponding to JF0 n Fo,.
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Features in this term are weighted according to Eq. 4.1, reproduced here:

(2 ifOp=z0,
FreqWt (P) =

1 + 1/log 2(|0pfI + 1) otherwise.

where Op is the set of objects for which the property P is asserted to be true. This

weighting gives more weight to the features that are rare, similar to the approach taken

by (Resnik, 1995; Lin, 1998). Additionally, this weighting ranges between 1 and 2,

FreqWt(P) E [1, 2], to keep the contribution of any one feature from dominating the

overall sum and thus remain consistent with the spirit of Tversky's contrast model.

Operating on the logarithm of the number of features in Op rather than on the

number of features in Op itself, 110pfl, is motivated by two considerations: (i) as

will be presented below, models proposed by other researchers propose measures that

operate on logarithms of frequencies based on information-theoretic considerations

(Resnik, 1995; Lin, 1998); indeed, Resnik points out that this may be an important

commonality of the models (Resnik, 1995, p. 4), and (ii) by taking the inverse of

the logarithm, FreqWt assumes values that are more uniformly distributed along the

interval [1, 2] for a larger range of values of ||0pli.

For properties that are "is true" about one object being compared and are "is

false" of the other (i.e., P c Po n PO, or P E Po' n Po), giving greater weight to

properties that are rare does not seem motivated. After all, having opposite truth

values on a rare property should not have greater impact than disagreeing on a more

common one. In light of this, in my model equal weight is given to all properties in

sets Po n PO and Po, n Po. The magnitude of the negative weight was chosen to

be the average of the extreme values that the positive contributions can assume, i.e,

1.5. The resulting measure of similarity used in this work is:

Sim(O, 0') = ( FreqWt(P) - 1.5 x ||Po, n P,o|| - 1.5 x ||Po n Po 1|
\PE Pon Po,

Because I have selected a = 3 (both are equal to 1.5), symmetry of distances is
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preserved in my adaptation of the contrast model, i.e., for any two objects 0 and 0',

Sim(O, 0') = Sim(O', 0). Note, however, that LEARNER's algorithms are affected

only by relative values of similarity to the set of most similar objects being considered.

For example, the measure

Sim'(0, 0') = Sim(O, 0')
Sim(0, 0)

is equivalent to the measure Sim(0, 0') in terms of the knowledge acquisition ques-

tions it yields, but Sim'(0, 0') is not symmetric (i.e., Sim'(0, 0') # Sim'(O', 0)),

with Sim'(0, O') < Sim'(O', 0) when more is known about 0 than 0', as in the

above examples cited from Tversky.

Note that regardless of whether Sim or Sim' is used, the triangle inequality can be

violated, and hence neither Sim nor Sim' meets the requirements of being a metric.

Because similarity between any two objects can still be computed, the notion of

"nearest neighbors" is still well-defined. However, I caution the reader that "nearest"

in "nearest neighbors" does not refer to a distance in a metric space.

For completeness, at this point I overview some other approaches to measuring

similarity that have appeared in the literature. A derivation of a metric measure

of similarity from a set of assumptions about its desired properties can be found in

(Lin, 1998). This information-theory motivated approach can be applied to measure

similarity in many settings. When applying it to feature-based semantic similarity

judgments between words, Lin formulates it as:

SimLn(0, 0') = 2xIG oO o') (4.6)
I(-o) + I(To,)

where 1(F) is the amount of information contained in a set of features F. Under the

assumption of independence of features, I(F) = - c, log P(f), where P(f) is the

probability of feature f (Lin, 1998). The probability P(f), in turn, can be estimated

from frequency counts of encountering the feature f in the knowledge base.

Another feature-based distance metric is the Tanimoto metric, as presented, for
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example, in (Duda et al., 2000, p. 188,541):

DTanimoto (0, 0') = IFoH + H-oH - 21Io n -Toi1 (4.7)
||-o| + ||Fo,|| - I.Fo n .Fo,||

which is normalized by the number of features and has the range [0, 1]. As can easily

be established by constructing a Venn diagram for FO and Fo,, Tanimoto distance

can also be written as:

DTanimoto(0, 0') = 1 - L.o (4.8)
||Fo U .oH ||

Note that low distances correspond to high similarity and vice versa. Also note that if

values of some features are unknown, applying this formula to only the known features

can lead to violation of the triangle inequality (recall the example above involving

"ball," "moon," and "lamp"). As stated, neither the Lin nor the Tanimoto approach

to measuring similarity distinguishes between the cases where a feature is present in

0 but is either absent or unknown about 0'.

Additional prior work introduces similarity metrics based not on comparing fea-

tures of objects, but on taxonomic and corpus frequency information. Lin's general

derivation can be instantiated for taxonomy-based similarity as:

, 02 x log P(Co,o,)
log P(Co) + log P(Co')

where CO is the most specific category containing 0, Co, is the most specific category

containing 0', and Co,o, is the most specific category containing both 0 and 0'

(assuming the taxonomy is a tree) (Lin, 1998). P(C) denotes the probability of

encountering a concept from category C (including any concept from a category

subsumed by C), which can be estimated from, for example, a textual corpus.

To measure similarity of concepts organized in a multiple inheritance hierarchy

Resnik has used the following distance metric:

DResnik (0, 0') = max[- log P(Co,o,)] (4.10)
CO, 0,
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where Co,of ranges over the set of categories that subsume both 0 and 0', and P(C)

is the probability of encountering a reference to the concept 0 in a corpus (Resnik,

1995). Resnik reports encouraging results for the ability of this measure to replicate

human judgments (with the correlation r = 0.79, with a benchmark upper bound of

r = 0.90 of correlation of similarity judgments by different humans). The similarity

measure proposed by Lin is reported to perform slightly better on the same test set

(Lin, 1998). For further review and comparison of various taxonomy-based metrics

as well as some results on their ability to replicate human similarity judgments, see

(Resnik, 1999; Lin, 1998).

Property Learner Lin Resnik Tani-
(contrast model) moto

Mimics qualitative features V/
of human judgments
Accounts for differences *

Feature-based (able to boot- / / *
strap)
Is a metric measure __ //

Table 4.2: Summary of properties of the reviewed measures of similarity. The first
and the last properties in the table are mutually exclusive. "Accounts for differences"
row indicates whether presence of a feature with opposite truth values decreases
similarity. For a feature known about an object, Lin's measure does not distinguish
the features being unknown and known to be false about the other object. "Feature-
based" row indicates whether the model works with features of objects rather than
purely taxonomic information. Resnik's measure uses taxonomic position and corpus
frequency. Measures based on features will tend to improve their accuracy as values
of more features are acquired.

Overall, there are several properties that are desirable in a similarity measure.

This discussion has focused on the following:

" the ability to mimic human judgments,

" the ability to account for differences between objects as well as for similarities,

" meeting the criteria for being a metric measure.

In the case of incomplete information and in knowledge acquisition scenarios, I

believe an important additional feature is a measure's ability to improve as values of
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more features become known about more objects. In Table 4.2, I summarize how the

measures reviewed in this section meet the above desiderata. Note that in selecting

a measure to use in the LEARNER, I considered the potential to mimic empirically

observed human judgments more important than whether the measure is a metric.

The measure actually used in LEARNER comes out ahead of others according to the

specified evaluation criteria.
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Chapter 5

Interface

In this chapter, I describe the interface, describe how it conforms to the guiding

principles laid out previously, and describe the multiple-choice answers that LEAR-

NER admits.

5.1 Interface description

To structure the elicitation, a topic-centric approach is used; that is, there is always

an identified noun phrase that is the topic of the current acquisition. Given this

requirement, there are two high-level issues: what topic to talk about, and what to

ask about that topic.

The topic of acquisition is selected by the user. The system exerts only a slight

influence on the selection of the topic, in the following way: when the system presents

the knowledge acquisition questions, it also presents similar topics (the output of

Select-NN); each of these can be clicked to become the new topic of acquisition.

Refer to Figure 5-1 for an example.

Given a topic, the system takes a mixed-initiative approach to elicitation - the

contributor is given a chance to select a topic and enter some assertions about it.

Once the system has some knowledge about a topic, it transitions to active acquisi-

tion mode, using the present knowledge to formulate further knowledge acquisition

questions. Because this "dialogue" is with a device with a display, it is somewhat
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Learning about NEWSPAPER

Teach about ewspaper

Examples: each chocolate, computer

Sinilar topics: book [1] 7.38, D~a. [1] 3.01, magazine [12 2.95, bag. [1] 2.73

inewspapers contain information?

al espapers have pages?

[nwspapers are for reading?

ewspapers can contain recipes?

ja newspaper is made up of pages?

[.a newspa is used for fixing cars?

[a newspaper is used for storing knowledge?

[ a newspaper stores information without using electriciti

-Select--

--Select-

-Select-

-Select-

-Select-

-Select

-Select- M

--Select-a

Figure 5-1: Screenshot of acquiring knowledge about "newspaper."
Figure 2-1.

Reproduces
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different from a verbal dialogue: the system's top N (currently 20) questions are

presented in a batch, and the contributor reacts to or ignores each one, pressing a

button when done with the batch. The opportunity to add additional assertions that

are not responses to the system's questions is also present on every screen.

In addition to displaying the similar topics, the system adheres to the goal of being

transparent by providing information about (i) how it has arrived at the similar topics

(ii) how it has arrived at each particular question, and (iii) which additional questions

were filtered in the process.

The interface provides an '[i]' ('i' for "info") hyperlink next to each similar topic.

Clicking it shows how much each pair of matching signatures between 0 ,, and Otarget

have contributed to the similarity score. Refer to Figure 5-2 for an example of the

system presenting the reasons for similarity of "newspaper" and "book."

Similarity of 'Newspaper' and 'Book'
5 reasons affected similarity. Total score is 6.73.

Score Source Assertion Similar Assertions

1.43 Newspapers are a source of information Books are a source of information

1.36 Newspapers are printed on paper Books are printed on paper

1.33 A newspaper can be read Bo are ob read1 Books can be read

People can read newspapers A person can read abook
1.32 1 People read newspapers Most people can read booksIPeople can read booksSome people read the newspaper Ppl ra ooks

1.29 Newspapers are made of paper Books are made of paper

Figure 5-2: Presenting to the contributor reasons for similarity of "newspaper" and
"book".

The interface also provides an '[i]' hyperlink next to each knowledge acquisition

question. Clicking it shows what source objects and assertions caused Map-Props to

formulate this question. Refer to Figure 5-3 for an example.

The filtering of assertions inferable with taxonomic reasoning (as described in

Section 4.3.1) is reported in gray directly before the presentation of the questions
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Reason for asking 'Newspapers contain information?':

By analogy from these assertions
about similar topics:

Book [ Books contain information

Map ii Maps contain information

Figure 5-3: Presenting to the contributor the reasons for formulating the question
"newspapers contain information?" The question was formulated by analogy from
similar topics "book" and "map."

that passed the filter. For example, the system may present that the assertion "cats

have bones" was filtered like this:

"aninals have bones" prevents asking "cats have bones."

The principle of transparency manifests itself in one further way when the system

provides contributors with feedback about the effect of their contribution. When a

contributor adds knowledge about a topic and requests new knowledge acquisition

questions from the system, the system recomputes the set of similar topics, incorpo-

rating the new knowledge, and displays how each new assertion has affected the set

of similar topics. For example, upon learning "newspapers contain information" the

system may display:

Adde(d "newspapers contain a information" (effect: A book),

indicating that "newspaper" became more similar to "book" as a result of this addi-

tion.

The symbols 'A' (in green) and 'V' (in red) are also used when displaying the set

of similar topics to indicate the direction of change in their similarity scores.

5.2 Permitted multiple-choice answers

To generate a knowledge acquisition question, a question mark is simply appended at

the end of an assertion (with other trailing punctuation removed), and the assertion is

presented as a "question." This question is presented in an HTML text input field, so
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that the contributor can modify the question. (For example, rather than replying "no")

to the question "cars run on steam," the contributor can alter it to read "cars run on

gasoline," and assert that by answering "yes"). More often, however, the contributors

leave the question unaltered, merely selecting one of the available predefined answers:

* Yes

e No

" Some / Sometimes

" Matter of opinion

" Nonsensical question

This set of allowed answers has been selected as a result of an analysis of the types

of questions posed. Choosing the set of allowed answers is important because, once

fixed, the users have no further control over these.

The main criterion used in selecting the set of answers was that the list should be

short and should make it easy for the contributor to answer the questions. In other

words, the answers should capture the options that come up.

Currently, only the answers "yes" and "no" affect the similarity scores of Select-

NN and Map-Props. The other answers are simply stored with the assertions they

correspond to, and the same question is not re-posed.

The motivation for each type of answer follows. "Yes" and "No" are clear enough.

The need for the answer "some/sometimes" arises when a system overgeneralizes.

Consider needing to answer the question "living things have gills" (some), or "traffic

lights are yellow" (sometimes).

"Matter of opinion" is included to address questions such as: "donkeys are beau-

tiful," "there is life after death." I include this option to steer users away from

answering "yes" or "no" to questions that others may give a different answer to. This

is intended to make the similarities drawn by Select-NN more acceptable to everyone.

The option "Nonsensical question" is present to help evaluate the performance of

the system. To improve LEARNER further, knowing what fraction of questions are
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nonsensical and what conditions give rise to nonsensical questions is important. See

the discussion in Section 8.1 for additional discussion of "nonsense question" answer

and the frequencies of each answer.

Finally, one answer type that was considered but was not added, is "I (personally)

don't know." The need for such an answer may arise when the system poses a question

that a contributor believes has an answer, but the contributor personally does not

know it. Consider, for example, the assertion "Volga is the longest river in Russia." In

my experience, (perhaps because the system focuses on "commonsense" knowledge),

the need for such an answer is sufficiently rare. Currently, the contributor, not having

a useful answer for LEARNER, may simply skip such questions. The question will then

likely be posed to another contributor.
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Chapter 6

Ambiguity

There is much ambiguity in language. For example, individual words are ambiguous:

the word "mouse," even when used as a noun, can refer to both a kind of rodent or

a kind of pointing device. Ambiguity exists at the word, phrase, and assertion level,

and can interfere with using knowledge correctly.

In this chapter, I identify several kinds of ambiguity, discuss which approaches

to processing knowledge are less and more sensitive to presence of ambiguity in the

knowledge, and outline approaches to removing ambiguity, with emphasis on ambi-

guity present in the data LEARNER collects.

6.1 Kinds of ambiguity

There are many kinds of ambiguity in language one can identify (Jurafsky and Martin,

2000, pp. 372-376, 631-646). The kinds most relevant to LEARNER are as follows:

Word boundaries and base forms. In some languages, such as written Chinese,

merely establishing word boundaries in a sentence can be a challenge because

no special demarcation (such as a space) is present between symbols comprising

different words. This problem does not normally arise in typed English text.

However, another problem that sometimes does arise in English is establishing

the base forms of words (to form the sentence signatures, for example). Consider
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determining the base form of the word "putting": it may be either "put" or

"putt." Admittedly, such cases are rare and LEARNER makes no effort to handle

them correctly (it will always select "put" in the above example).

Word sense. Also known as lexical ambiguity. Consider the seemingly simple state-

ment "many computers have a mouse." "Computers" are the computing de-

vices, not people who perform calculations, "have" means "have as part" (as

opposed to "have a meal" or "have a baby"), and "mouse" refers to a pointing

device.

In addition to homographs (words of different origins having the same spelling),

sometimes a single word can refer to two or more related, but distinct concepts.

For example, consider the word "coffee": it can refer either to the drink made of

coffee beans or the beans themselves. Only the drink is normally liquid, and it

can be important to understand this in order to reason about the coffee beans.

Structural. Structural ambiguity arises when a sentence can be parsed in several

different ways. Three common kinds of structural ambiguity are usually identi-

fied:

" Attachment ambiguity

" Coordination ambiguity

* Noun-phrase bracketing ambiguity

Attachment ambiguity refers to not knowing how pieces of the sentence fit

together. It often arises with prepositional phrases, for example:

People can sometimes see the Grand Canyon flying from LA to New

York.

Syntactically, it is unclear whether "flying from LA to New York" modifies

''people" or "the Grand Canyon."

Another common kind of parsing ambiguity is coordination ambiguity. It stems

from an interaction of modifiers and conjunctions; it currently does not arise in
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LEARNER because conjunctions are disallowed (see Section 3.2). I present an

example for completeness. Consider:

"Young dogs and cats drink milk."

Two interpretations are possible:

"Young dogs and young cats drink milk," or

"Cats and young dogs drink milk."

Noun-phrase bracketing ambiguity stems from bareness of form of noun phrases.

For example, "complete peace plan" can be interpreted as a "plan" for "complete

peace," or a "complete" "peace plan."

There are additional, more exotic kinds of structural ambiguity, often arising

from uncertainty about the part of speech of a certain words. Consider:

"Fruit flies like a banana,"

which can mean either "(fruit flies)subj likeverb a banana," or "fruitubj fliesverb

like a banana."

Currently, LEARNER collects assertions and uses them in further knowledge ac-

quisition without taking any specific steps to remove any of these types of ambiguity.

Given the ambiguity present in the seed knowledge base and in the knowledge being

collected, there are two issues to address: (i) how the ambiguity in the knowledge

affects the acquisition algorithm, and (ii) how the ambiguity in the knowledge affects

the usefulness of the collected knowledge for other efforts and how the ambiguity in

the knowledge may be reduced or eliminated.

The next section discusses the impact of ambiguity on the cumulative analogy

algorithm, and the following two sections respectively, discuss which possible uses of

the knowledge base are and are not likely to be hampered by the ambiguity in the

knowledge base and how the ambiguity may be ameliorated.
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6.2 Lexical ambiguity: impact on knowledge ac-

quisition

The assertions collected by LEARNER are quite simple syntactically. Conjunctions

or disjunctions are not allowed, and complex sentence structure that could lead to

structural ambiguity, such as attachment ambiguity, is rare. In contrast, the assertions

often rely on frequently used words, which tend to have high polysemy counts (that

is, have large numbers of meanings).

Motivated by this observation, I focus on the lexical ambiguity and its effect on the

acquisition algorithm. My analysis is structured according to an observation about

the places where lexical ambiguity can arise in applying cumulative analogy.

Lexical ambiguity can arise in four different places in the process of applying

cumulative analogy:

" Ambiguous target topic of acquisition Otarget,

" Ambiguous source topic 0 Src,

" Ambiguous word in a property P being used to calculate similarity of Otarget

and 0 ,rc, and

" Ambiguous word in a property P being mapped from 0 ,,c onto Otarget.

The impact of each of the four conditions on the quality of questions posed by

cumulative analogy is examined in turn.

Ambiguous Otarget. Let us consider an example of acquiring knowledge about an

ambiguous topic Otarget, namely "shower." It has two senses, one similar to

"rainfall" and another similar to "bathtub." Assertions about both senses of

"shower" will be used in finding near neighbors, and as a result Select-NN may

retrieve some near neighbors for each sense.

This selection of near neighbors for more than one sense may impact the ac-

quisition in two ways. One is that fewer near neighbors will be used per sense,
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therefore limiting the benefit of the noise-canceling ("cumulative") quality of

the algorithm. This may lead to questions with less support, and thus perhaps

of lower quality, to be posed. The second way is that questions posed may be

about different senses of the topic, causing some confusion in the contributor

who has to reinterpret which sense of topic is being used from question to ques-

tion. In the worst case, some assertions may be interpretable for either sense

of the topic, but have different truth values depending on the sense. In such

cases, the collected knowledge needs to be disambiguated (using the methods

discussed in Section 6.4) before the collected truth value becomes useful.

Ambiguous 0 sc. When one or more of the source topics 0 ,,c (the nearest neigh-

bors) returned by Select-NN is ambiguous, the lack of discrimination about

the sense of 0 sc will cause the properties of the wrong sense to be considered

for mapping. For example, if knowledge acquisition topic is "rainfall," and

one of the near neighbors is the ambiguous concept "shower," then the asser-

tion "showers have plumbing" may become a candidate for being mapped onto

"rainfall." The preference of the Map-Props algorithm for questions that have

multiple support (that is, a preference for posing questions that were mapped

from multiple near neighbors) will normally act against such questions being

posed.

Ambiguous words in a property used to select near neighbors. Suppose

that a given property of a target object participates in calculating the similarity

of the target object to near neighbors. Further suppose that this property

contains lexical (or structural) ambiguity. Then, the ambiguous property may

give rise to a spurious match to another object. For example, an assertion

"showers can be hot" may match the assertion "wasabi can be hot," even if

"hot" was used to mean "high in temperature" in the first case and "spicy" in

the second case.

If the total number of assertions known about the target object is low, or if

several such incorrect matches collude, an irrelevant nearest neighbor will be
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returned by Select-NN. If summing evidence in Map-Props does not overcome

the presence of the irrelevant object in the near neighbors, or if several similar

to each other, but irrelevant near neighbors are present, the system will for-

mulate some (potentially, many) knowledge acquisition questions that are not

relevant to the target topic. Alternately, presence of one or more irrelevant ob-

jects is likely to bias the system towards posing questions about more general

properties, those that are asserted even about the less relevant objects.

Ambiguity in the property of an assertion posed as a question. Suppose

that a knowledge acquisition question being posed contains ambiguity (includ-

ing any of the following: ambiguous words in the property, ambiguous topic of

acquisition, or structural ambiguity). Then, prior to being able to answer the

question, the contributor has to assign an interpretation to the question that

disambiguates this question. This can make the process of answering the ques-

tion more difficult for the contributor, especially if the contributor is unsure

about which interpretation should be answered.

In some cases, the question may be reasonably interpretable in more than one

way. Furthermore, the assertion may have different truth values depending

on how this assertion is interpreted. For example, consider the two senses of

"shower" mentioned above and the assertion "showers are outside." Such cases

are particularly difficult because in such cases, the collected knowledge needs to

be disambiguated (as discussed in Section 6.4) before the collected truth value

can be used.

As the consideration of the possible cases shows, ambiguity in both seed and

collected by LEARNER knowledge certainly can affect whether cumulative analogy

(in the form used in this work) generates questions that are relevant and easy to

answer. In some but not all cases, the "cumulative" nature of the algorithm can

prevent ambiguity from having a deleterious effect on the quality of questions being

posed.

The next section aims to provide the reader with some feel about the impact of
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presence of ambiguity in the collected knowledge base on the usability of the knowl-

edge base for a variety of AI and NLP tasks. I comment on which tasks and approaches

are and are not sensitive to ambiguity and speculate on what may differentiate the

two kinds of tasks and approaches.

6.3 Tasks and methods sensitive to ambiguity in

the knowledge base

In this section, I overview some tasks in artificial intelligence (AI) and natural lan-

guage processing (NLP) that could use a commonsense knowledge base such as that

being collected by LEARNER. For each task considered, my review focuses on the

task's need for unambiguous knowledge. The conclusion I draw is that while inno-

vative algorithms and novel approaches may be able to take advantage of ambiguous

knowledge, many of the well-known and more straight-forward methods depend on

having access to completely unambiguous knowledge. The next section discusses how

the amount of ambiguity in the knowledge collected by LEARNER can be reduced.

For a variety of tasks, ambiguity in the knowledge is problematic to approaches

which rely on a single assertion to produce their output. For such approaches, a single

piece of ambiguous knowledge can lead the system astray.

The classic forward and backward chaining methods of rule-based inference -

typically used by expert systems - require unambiguous knowledge. For example,

a rule that asserts "if X is a mouse, then X can eat cheese" would lead to incorrect

conclusions if the distinction between "mouse" as an input device and a rodent was

not made.

Question answering by retrieving relevant assertions from a textual corpus is often

approached by searching for appropriate text without performing significant inference

(Voorhees, 2000). For this task, the approaches in which a single textual match can

produce an answer without regard for context or presence or absence of other (perhaps

partial) textual matches. Such simple approaches again rely on a single piece of
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evidence to produce their answer, and lexical ambiguity in this piece of evidence can

lead the system astray.

On the other hand, some tasks require usage and some approaches take advantage

of multiple pieces of evidence in their operation. Such approaches are less vulnerable

to lexical ambiguity in the data.

For example, in question answering, accumulating evidence from many retrieved

pieces of text reduces the chance that a particular phrasing in a single source will

produce a spurious match.

In language processing tasks such as parsing, statistical corpus-based approaches

have enjoyed some success, even with very limited amount of knowledge put in apriori.

For example, Yuret has demonstrated that structural ambiguity in sentences can be

removed on the basis of lexical attraction between the particular words in the sentence

as observed in the raw examples in the training corpus (Yuret, 1998). This approach

exemplifies leveraging a multitude of ambiguous statements to improve correctness of

parsing.

In information retrieval, query expansion is a technique of improving relevance

of retrieved results by expanding the query with additional, relevant terms. It has

been shown that expanding the query with related, but not disambiguated (for word

sense) terms improves quality of retrieved information (see, for example, Qiu and Frei

(1995)).

Finally, by the evidence-summing nature of cumulative analogy, LEARNER itself

exemplifies a system that is able to perform its function (knowledge acquisition)

by leveraging a multitude of non-disambiguated assertions. The system typically

tolerates noise introduced by ambiguity because of the noise suppressing nature or

the algorithms Select-NN and Map-props, as discussed in Section 4.2.5.

In summary, across a sampling of tasks, there exist both approaches whose per-

formance strongly requires disambiguated information and approaches that can work

gracefully in the presence of ambiguity.

I feel that ability to cope with ambiguity is an important and desirable feature of

an algorithm or an approach, due to ubiquitousness of ambiguity and the difficulty of
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eliminating it fully. However, resolving ambiguity in the collected knowledge can be

an important part of processing knowledge effectively. The following section discusses

the methods of doing so.

6.4 Ambiguity of the acquired knowledge can be

reduced later

As discussed in the previous section, a number of Artificial Intelligence and Natural

Language Processing tasks and approaches benefit from unambiguous knowledge. In

this section, I discuss further steps that could be taken to remove ambiguity from

the knowledge collected by LEARNER. This discussion is meant to provide a starting

point for work that needs to be performed to use knowledge collected by LEARNER

in a system that requires unambiguous knowledge.

Broadly, disambiguation of large volumes of ambiguous knowledge at a low cost

can be performed by either computer disambiguation programs or, in the spirit of

LEARNER and the Open Mind Initiative (Hearst, Hunson and Stork, 1999), by volun-

teer human contributors. Based on the syntactic restriction that sentences collected

by LEARNER do not contain conjunctions, on rarity of complex grammatical sen-

tence structures in the knowledge collected by LEARNER, and my examination of 500

randomly selected assertions, I believe that the most significant kind of ambiguity

in the knowledge collected by LEARNER is currently word sense (lexical) ambiguity.

Because of this, I focus the remaining discussion mainly to word sense ambiguity.

Section 6.4.1 describes a relevant project on collecting word sense information from

human contributors and presents some data on the volume and the quality of word

sense tagging collected to date by that ongoing project. Section 6.4.2 overviews some

relevant approaches and results from the extensive literature on automatic (machine)

disambiguation of knowledge.

Section 6.4.1 discusses in greater detail acquiring the information from human

contributors, and Section 6.4.2 discusses fully automatic approaches that remove am-
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biguity leveraging both disambiguated and ambiguous knowledge.

6.4.1 Acquiring word sense information from human contrib-

utors

The most direct approach to disambiguating the collected knowledge may be to turn

once more to volunteer contributors on the web. A system designed to perform

collection of word sense information from volunteer contributors has been fielded

(Chklovski and Mihalcea, 2002). This collaboration between myself and Mihalcea is

called Open Mind Word Expert (OMWE), and is available at the time of writing at

http://teach-computers.org/word-expert.html.

The project has been fielded in association with the broader Open Mind Initiative

(Hearst, Hunson and Stork, 1999). Open Mind Word Expert taps volunteer contrib-

utors to assign word senses from WordNet to words that appear in text excerpts. To

exemplify OMWE, Figure 6-1 presents a screenshot of OMWE collecting word sense

information about the noun "child."

The deployed OMWE system already uses some assertions collected by the Open

Mind Commonsense effort (Singh, 2002; Singh, Lin, Mueller, Lim, Perkins and Zhu,

2002), the same source as was used in forming the seed knowledge base for LEARNER.

A system such as OMWE could also be directed at disambiguating the knowledge

collected by LEARNER.

As further motivation of viability of the approach, I present some statistics about

the amount of knowledge collected with OMWE and the reliability of the knowledge

collected. In eight months of operation, it has collected a total of 84261 tagging

actions. For every item, the system collects redundant tagging - each item is tagged

twice by distinct contributors, and agreement between the taggers is tracked, as

detailed in (Chklovski and Mihalcea, 2002).

To gauge the quality of the tagging, an experiment to replicate with OMWE

some previous tagging of the "interest" corpus has been performed by Mihalcea (R.

Mihalcea, personal communication, November 2002). The original "interest" corpus
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Learning about CHILD OPEN M I N D

The topic child has 4 senses:

1) youngster, minor, nestling, tiddler, fry, small fry, nipper, child, tyke, tike, kid, shaver - (a kind ofJuvenile) - a young person of either

sex (between birth and puberty); "she writes books for children"; "they're just kids"; "'tiddler' is a British term for youngsters"

2) child, kid - (a kind of offtprlng) - a human offspring (son or daughter) of any age; "they had three children"; "they were able to send their kids

to college"

3) child, baby - (a kind of perSO) - an immature childish person; "he remained a child In practical matters as long as he lived"; *stop being a

babyl"

4) child - (a kind of descendant) - a member of a clan or tribe; "the children of Israel"

Items 21-30 of about 146 available:

Stealing candy from children is easy.

children can learn quickly to talk

People , especially children , like to look for shells when they walk on a beach

teach your children well

play with your children

teach your children to play fair

Things that are often found together are : mother , child

small children are young humans

child with puppy

Things that are often found together are : shoes , adult, ball , child , glasses

(optibna) jump to word'

Figure 6-1: Open Mind Word Expert (OMWE): A screenshot of collecting knowledge

about "children"
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and its tagging are described in (Bruce and Wiebe, 1994). The original tagging was

in Longman Dictionary of Contemporary English (LDOCE) senses, and the OMWE

tagging was in WordNet senses; the two had to be aligned by producing a map between

the WordNet senses and the LDOCE senses.

Out of the 964 items about the noun "interest" for which two OMWE contributors

agreed on the tagging, 876 (90.8%) of the tags agreed with the original LDOCE

tagging (after the mapping).

This data suggests viability of obtaining some or all of the tagging from human

contributors. It does not provide the final answer on what the best way to proceed may

be. Further research will be necessary to precisely formulate how such disambiguation

should proceed: how many tags per item should be collected, how it should interact

with fully automatic tagging, and what inventory of word senses should be used for

disambiguation.

One particularly important point to explore is what is the correct "sense inven-

tory," the set of senses into which words are disambiguated. Different dictionaries

have distinguish different levels of granularity of a word. Some of the user feedback

about the OMWE project has been that WordNet is too fine grained a dictionary,

making the task of human annotation too onerous for some volunteers. A viable al-

ternative may be a proposal by Resnik and Yarowsky (Resnik and Yarowsky, 1997),

who argue that the desired, non-arbitrary level of granularity is the sense inventory

that represent senses that have different lexicalizations present in at least one of a

chosen set of languages. For example, if one of the languages considered is French and

another English, and if French has two distinct words for what English allows usage of

only one word, the two "French" senses should be distinguished in the English word.

Another interesting line of attack may be to formulate knowledge acquisition ques-

tions that are less ambiguous in the first place. For example, this could be possible

word the word "mouse" by explicitly replacing it in the knowledge acquisition ques-

tion with "computer mouse," or "live mouse." Although an automatic system may

not be capable of finding an unambiguous rephrasing in every case, opportunistic use

of this technique may be an effective tool in reducing the amount of ambiguity.
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6.4.2 Automatic word sense disambiguation

In this section, I review some results from automatic disambiguation literature and

relate them to disambiguating knowledge collected by LEARNER. Traditionally, ap-

proaches to automatic disambiguation are divided into two categories: supervised or

unsupervised.

In supervised approaches, a sense tagged corpus of training data is leveraged to

disambiguate ambiguous examples. The disambiguation of a word in new text is

typically carried out by identifying from the surrounding context a set of features

that may be indicative of the sense of the word, and using the exemplars in the

training data to find a sense based on these features. The methods used to relate

an instance to the training data has ranged from neural networks to naive Bayes

classifiers to case-based reasoning. Prior research on word sense disambiguation has

also explored a variety of features that may be useful indicators of word sense, and

includes surrounding nouns, adjacent (to the ambiguous word) words, parts of speech

of the adjacent words, bigrams present in the context of the word and so on. A number

of approaches are compared on the word line (Mooney, 1996). Additionally, Mihalcea

presents a system that selects which features (from a wide set of such features as

mentioned above) are useful on a per-word basis (Mihalcea, 2002).

Unsupervised approaches assign senses to a completely untagged corpus. Typ-

ically, information about word senses comes from a dictionary entry for this term

in a a machine readable dictionary (Lesk, 1986), or from some other starting point

provided by a human user - for example, several "indicator" word pairs in which an

ambiguous word overwhelmingly assumes a certain sense (Yarowsky, 1995).

The state of the art in word sense disambiguation is reflected by the SENSEVAL

competitions.1 Since 1999, these competitions bring together and evaluate a variety of

word sense disambiguation systems on a common set of test data (and, for supervised

systems, provide a corpus of training data). The best performing supervised sys-

tems, when attempting to disambiguate 100% of the SENSEVAL-2 test data, achieved

64% precision with fine-grained set of senses and 71% precision with a coarser set of

lhttp://www.itri.bton.ac.uk/events/senseval/.
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senses. For comparison, trained human lexicographers in creating the training and

test corpus, have agreed with their majority vote 85.5% of the time (Kilgarriff, 2002).

Arguably, the most important distinctions to make for using knowledge in rea-

soning and further NLP processing is to distinguishing between the coarsest senses

of polysemous words (word with more than one sense). Yarowsky reports an unsu-

pervised algorithm that achieves more than 96% accuracy on a task involving disam-

biguation of words with two very distinct senses (for example "plant" in the sense

"living plant" or "factory") between pairs of different senses of a word (Yarowsky,

1995). Because of its power and simplicity on this (simpler) binary discrimination

task, I briefly describe it here and comment on how it may apply to the data collected

by LEARNER.

Yarowsky's algorithm leverages two empirical observations, which I cite from

(Yarowsky, 1995):

One sense per collocation: Nearby words provide strong and consistent clues to

the sense of a target word, conditional on relative distance, order and syntactic

relationship.

One sense per discourse: The sense of a target word is highly consistent within

any given document.

To leverage these observations, the algorithm starts from a few (for example, man-

ually) identified seed collocations (e.g. "manufacturing plant" for the "factory" sense,

and "plant life" for the living plant sense). The algorithm then uses the two above

assumptions to bootstrap from the identified instances to generate new instances,

identifying new collocations in documents where known collocations are present. The

task of disambiguating knowledge collected by LEARNER differs in the following way:

the collected knowledge is not organized in larger documents. Rather, it exists in

sentences that are similar to one another. I speculate that similar sentences collected

by LEARNER could be used to play a role similar to the role of larger documents in

Yarowsky's algorithm. Clearly, additional investigation would be necessary to con-

clusively establish applicability of such methods.
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As a closing remark, I point out that delaying disambiguation of knowledge may

reduce the total effort expended. This is because many imprecise assertions can, to-

gether, become more precise, as exemplified, for example by Yarowsky's bootstrapping

algorithm (Yarowsky, 1995).

Additionally, manual disambiguation may be combined with automatic disam-

biguation in a manner that makes best use of human effort for tagging carried out

partially manually and partially automatically, both in terms of the amount of manual

effort and the overall precision of the resultant tagging. To derive better improvement

of a supervised algorithm from human disambiguation effort, a kind of active learn-

ing can be employed (Dagan and Engelson, 1995). Specifically, the machine learning

algorithm could identify the data that would be most useful to learning and request

human tagging of such data, a method that has been applied in Open Mind Word

Expert (Chklovski and Mihalcea, 2002). If the automatic disambiguation algorithm

is capable of not providing an answer on instances that are most likely to be tagged

incorrectly by the algorithm, human effort could be directed to those, raising overall

precision. In light of the extensive prior work in the field of automatic word sense

disambiguation, combined with the possibility of attaining large amounts of human

tagging from volunteer contributors, I believe the prospects for disambiguating the

collected knowledge are good, even though additional work is required to reduce these

observations to practice in a single disambiguation approach.
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Chapter 7

The Correlated Universe, or Why

Reasoning by Analogy Works

A lot of the knowledge acquisition power in this thesis comes from posing questions

by analogy. But why should analogy allow for useful mappings of properties?

Fundamentally, the underlying assumption behind reasoning by analogy is that

properties of objects in the world (as reported by humans) are correlated. That is, for

any given object 0 there will likely exist some objects 0s . . . O, that share more

properties with can be expected by chance. For example, both a "dog" and a "cat"

have the following asserted about them: "has a tail," "eats meat," "is a pet."

Under LEARNER'S criteria for similarity, which will be explained below, "dog" and

"cat" share 42 properties in the knowledge base, whereas by chance they can only be

expected to share 6. Note that human cognition introduces a bias as to what set of

properties is used to compare objects. The influence if this factor is discussed further

in Section 7.5.

In this chapter, I investigate similarity, analogy, and amount of correlation quan-

titatively. This investigation allows us to better gauge the power of the class of

algorithms based on cumulative analogy. Three methods of analysis are introduced,

each characterizing the knowledge base and the effectiveness of cumulative analogy

from a different angle. This investigation:
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* quantifies the amount of similarity in the knowledge base;

" derives evidence that reasoning by analogy is a well-motivated knowledge ac-

quisition approach;

* derives a lower bound on how much analogy can accomplish;

* points out limitations of reasoning by analogy.

To establish these results, three methods will be used:

Average similarity histogram This analysis calculates with how many objects,

on average, a given object shares one property, with how many it shares two,

and so on.

Reach of analogy This analysis looks at how far analogy can get us. That is, if

a single property in the knowledge base is held out, in what percentage of

cases can it be established by analogy, making specific choices about values of

parameters that a simplified analogy algorithm (without the elaborate weighting

of properties used in Select-NN) would take as inputs.

Nearest-neighbor distance This analysis studies nearest-neighbor distance. It

measures, for each object, how similar the most similar object is.

All three analyses shed light on the amount of correlation in the knowledge base

and on the expected applicability of reasoning by analogy. The first and second

analyses only look at assertions of the "is true" variety. The third analysis also

accounts for the "is false" assertions.

Additionally, the analogy-based approach can be used not only to pose knowledge

acquisition questions, but also as a reasoning method - guesses about the truth or

falsehood of an assertion can be made using the same analogical reasoning. The third

analysis speaks to the correctness of the predictions made by reasoning by analogy.
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7.1 Overview of the knowledge base

Recall that Chapter 3 described the way knowledge is represented in LEARNER inter-

nally. Before delving into the subject of correlation deeper, I provide some statistics

about the knowledge base being analyzed (the "seed knowledge base," as is explained

below).

In analyzing applicability of reasoning by analogy to the seed knowledge base,

some simplifying assumptions are made.

The chief simplifying assumption made in my analysis is that each sentence is

considered here only as a subj-assertion (i.e. an assertion about the sentence's syn-

tactic subject having a property). For example, "cats have tails" is, for the sake of

my analysis, treated as the object "cat" having the property "have tail." Doing so

allows us to avoid some thorny issues about double-counting assertions derived from

the same sentence.1

The other difference between the analysis and the algorithm is that the analysis

is performed only on the seed knowledge base (the knowledge gathered without using

analogical reasoning by another project, and that served as the starting point for

LEARNER).

The seed knowledge base was created primarily by asking contributors to state

something, or to fill in the blank by an effort predating LEARNER and without my

participation (Singh, 2002). Contributors were never asked to specify a truth value.

Only later linguistic processing of assertions such as "birds can fly" and "a worm does

not have legs" interpreted them as A(bird, can fly) and -A(worm, have leg).Recall

that I denote that the object O has the property P by writing A(Oi, P1), with A

signifying "assertion."

Because of the approach to knowledge base collection, the overwhelming majority

of the assertions (96.0%) are "is true" assertions. Note that when several statements

map to the same assertion (for example, "a cat has a tail" and "cats have tails"),

only one of the statements was automatically selected for inclusion in the analysis.

'See Chapter 3 (Representation) for a description of different kinds of assertions and how they
are computed.
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Columns (Properties)
with > 10 with > 2 with one Total

entries entries entry

291 4905 28070 32975
1% 15% 85% 100%

with > 10 723 2108 9282 17119 26401
entries 6% 4% 20% 36% 56%
with > 2 4277 4091 15252 23846 39098

Rows entries 35% 9% 32% 51% 83%
(Objects) with one 8049 1499 3825 4224 8049

entry 65% 3% 8% 9% 17%
Total 12326 5590 19077 28070 47147

100% 13% 40% 60% 100%

#Entries (Assertions)

Table 7.1: Summary of the seed knowledge base. Total numbers of objects (rows),
properties (columns) and entries (assertions) are in bold. Other counts are for rows,
columns and entries when only indicated subsets of rows of columns are considered.
For example, there are 723 objects with at least 10 properties, and 26,401 assertions
about these objects. For clarity, the "is false" entries are not included in these results.

The essential statistics, including the number of distinct objects, properties, "is

true" assertions and more are presented in Table 7.1. The analysis focuses on "is

true" assertions, returning to the "is false" assertions in Section 7.4.

There are several things to note about Table 7.1. One observation is that for

65% of the objects present, only one property is known about each such object. The

assertions about objects with only one property constitute 17% of all of the assertions.

Similarly, 60% of the assertions are asserted about only one object (and thus cannot,

for example, be expected to be mapped from more than one near neighbor).

These numbers suggest that a fairly large part of the seed knowledge base is

sparsely populated with assertions. More specifically, the seed KB has a densely pop-

ulated "core," tapering off to large sparsely populated regions. At the same time,

cumulative analogy is a method that requires a significant amount of priming, and,

as is, it will meaningfully apply only on a fraction of the objects in the knowledge

base. For instance, the result of applying cumulative analogy to objects about which

only one property is known is not likely to yield good results. At the same time, the
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applicability of cumulative analogy to any given object about which little is known

should be improved by specifying more about such an object. Specifying approxi-

mately ten additional properties about an object about which little is already known

is, in my experience, quite easy and is supported by the LEARNER interface.

To further characterize the distribution of knowledge in the seed knowledge base

across objects, Figure 7-1 presents a log-log plot of the numbers of objects with one,

two, and so on properties known about each object. The values were fitted by an

expression of the form f(x) = Cx. The values of the two parameters, C (C = 6789)

and p (p = -1.9483) were chosen by fitting the data for 1 < N < 50 to minimize the

sum square difference of logarithms of real and fitted values. The fact that p ~ -2

suggests that the distribution fits Lotka's law (Lotka, 1926). This approximation

for the number of objects with n properties, related to Lotka's law, is also used in

Appendix D.

Lotka has found that the number of authors making n contributions in chemistry is

approximately 1/n 2 of the number of authors making 1 contribution. This observation

has consequently been found to apply in a number of other fields - for example, the

number of incoming and outgoing links of web documents. Lotka's law is also closely

related to Zipf's law (Ye-Sho Chen, 1986).

Zipf's law2 (Zipf, 1949) is the observation that for a variety of phenomena from

frequencies of words in a text to populations of cities, the frequency of an event P can

be expressed as a function of its rank i according to the power-law function Pi ~ 1/ia

with the exponent a close to 1. Note that while Lotka's law addresses the number

of authors with one, two, and so on publications (or objects with one, two and so on

properties), Zipf's law addresses the number of properties of an object with the most

properties, the number of properties of the second-ranking (by number of properties)

object, and so on.

2 See http://linkage.rockefeller.edu/wli/zipf/ for an extensive list of resources concerning Zipf's
law.
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Figure 7-1: Numbers of objects with N properties in the seed knowledge base on
a log-log scale. The solid line is an expression f(x) = CxP. C (C = 6789) and
p (p = -1.9483) were chosen by fitting the data for 1 < N < 50 to minimize the
sum square difference of logarithms of real and fitted values. The fact that p ~ -2
suggests that the data fits Lotka's law (Lotka, 1926), which is closely related to Zipf's
law (Zipf, 1949).
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7.2 Amount of similarity

How much correlation is present in the seed knowledge base? To the extent that the

seed knowledge base is a collection of assertions that people hold to be important

about objects in the world, the amount of correlation in the knowledge base reflects

how correlated a world is being described in it. One can imagine both a very correlated

world in which knowing just a few properties of an object enables predicting very much

about it. Conversely, one can imagine a chaotic world where very little can be derived

by analogy. Where on this spectrum does the seed knowledge base lie?

To make progress on the issue of correlatedness, the question can be reformulated

more concretely:

If an object is selected at random, with how many other objects would it

share one, two, three, ... , twenty properties?

Figure 7-2 presents, for N from 1 to 20, a histogram of the number of objects

with which given object, on average, will share exactly N properties. As a baseline, a

histogram is provided for an artificially generated "uncorrelated world" with the same

number of objects, properties and with the properties obeying the same frequency

distribution as in the real knowledge base.

Note that Appendix D derives a closed-form approximation for the "uncorrelated"

case. However, deriving the approximation has required making simplifying assump-

tions about the number of objects with one, two and so on properties. Here, I instead

present the results for the decorrelated baseline case derived by simulation, as fol-

lows: for each object O, the properties it contains were "decorrelated." That is, if a

property P held for fifty other objects, fifty objects from all the known objects were

selected at random under a uniform probability distribution and counted as having

this property. Then, the same calculation as for the original case (how many objects

it shares N properties with, for different values of N) was performed. In both the

decorrelated and the original cases, a histogram was computed by averaging across

all objects.

The result is presented in Figure 7-2 (the Y-axis is on a log scale). The histogram
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Average Sirmilarity in Seed KB for Objects with 10 Properties
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Figure 7-3: Similar to Fig. 7-2, calculated only over objects with 10 or more properties.
Y-axis is, again, logarithmic. For each of such 723 objects, similarity with all 12,326
objects was measured. Notice that the number of similar objects decays more slowly
in the real case compared to the "no correlation" case.
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shows that on average, each object has more similar objects than can be expected by

chance. On average, sharing two properties is eight and three properties is fifty times

more likely than chance. Because the properties are correlated with each other, the

average number of objects with which exactly one property is shared is actually lower

than could be expected by chance. On average there are approximately 13.6 such

objects rather than the expected by chance 15.6 (note that the lines in Figure 7-2

cross over between one and two, almost at one). Also note that, on average, there

is less than one object sharing more than two properties with a given object. This

phenomenon is due in part to many objects in the seed KB having only one property.

The amount of correlation that exists for objects about which more is known is

addressed by the following analysis.

As mentioned above, cumulative analogy is a method that needs sufficient priming

to apply. To better illustrate the average similarity of objects with many properties

already known about them, objects with ten or more properties are analyzed.3 Figure

7-3 presents results of computing the average similarity histogram ranging over objects

with ten or more properties.

In this case, the amount of similarity between objects is even more pronounced.

For each object of interest one can expect, on average, to have 1.6 objects that share

three properties, on average at least one object that shares four or more properties

with a given object. These numbers suggest that, for objects about which ten or

more properties are already known, cumulative analogy is likely to find at least some

similar objects from which to map properties meaningfully.

7.3 Reach of analogy

In this section, I quantify what percentage of knowledge can be established by gen-

eralization by analogy.

Reasoning by analogy can be viewed as mapping properties from similar objects

3The specific threshold of ten used to have special significance in earlier versions of the system,
but currently does not.
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onto a given object. The absolutely simplest case of analogy is two objects sharing

a property, giving us grounds (however small) to map other properties of one object

onto the other.

This observation inspires a definition. Let's call property P of object 01 directly

acquirable by analogy on K properties if (i) there is an object 02 that also has property

P, and (ii) 01 and 02 share at least K other properties.

Note that the set of assertions potentially acquirable by analogy is the superset

of the directly acquirable assertions. This is because acquiring assertions about an

object 01 by analogy with some 02 can cause 01 to become sufficiently similar to

some other 03 to permit additional analogies. I obtain a lower bound on potential

acquirability by calculating direct acquirability.

The question addressed is: what percentage of assertions are directly acquirable

by analogy? That is, if one assertion is held out at random, for what percentage of

cases is it directly acquirable (i.e., for what percentage of assertions will the algorithm

inquire about their truth)?

Some preliminary observations will help us frame this question correctly. In a

growing knowledge base, some properties will be known about only one object. Note

that these properties could never be acquired if held out, because holding them out

removes any trace of their existence. Some examples of properties that hold for only

one object are as follows:

0 "a caterpillar will turn into a butterfly"

* "heart is responsible for pumping blood"

* "typewriters have been mostly replaced by computers"

0 "Frascati is an Italian wine"

* "San Francisco is west of Texas"

The above examples suggest that some singleton properties (such as "will turn

into a butterfly") would not be acquirable by direct analogy from other asser-

tions by being mapped verbatim from other objects (because no other objects turn
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into butterflies), while other properties such as "is an Italian wine" are probably

known about only one object in the seed knowledge base due to incompleteness in its

coverage.

In the seed knowledge base, there are 28,070 (60%) such assertions. All calcula-

tions in this section are restricted to the remaining 40% of assertions - those that

would be directly analogizable in a knowledge base describing a fully correlated world.

Furthermore, analogy cannot be expected to apply to objects about which only

one property is known. Restricting attention to objects with two or more properties,

and asking what is the direct acquirability by analogy on one property, it turns out

that 58.8% of 15252 such assertions are directly acquirable. Using the notation of

Reach(N, M) to denote the percentage of directly acquirable assertions about objects

with at least N properties by analogy on M or more properties, the above can be

written as:

Reach(2, 1) = 58.8% (7.1)

Let us investigate some variants of reachability. Restricting attention only to ob-

jects with at least 10 (possibly unique) properties, and asking questions by analogy

based on two properties being shared (direct acquirability by analogy on two proper-

ties) results in a universe of 9282 assertions being considered for direct acquirability.

It turns out that 5239 (56.4%) of these assertions are directly acquirable. To put it

another way,

Reach(10, 2) = 56.4%. (7.2)

Note that objects with any number of properties are permitted to serve as sources of

analogy in this analysis.

Considering only objects with at least 20 properties,

Reach(20, 2) = 64.7% (7.3)

of the total of 6958 such assertions are directly acquirable.

Even requiring the source and target of analogy to share at least 4 properties, it
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turns out that

Reach(20, 4) = 45.9% (7.4)

of these assertions are reachable.

Adopting datamining terminology (Agrawal, Imielinski and Swami, 1993), so far

the data has concerned assertions reachable with support of one (that is, the model

was that having just one object of sufficient similarity was assumed to warrant posing

a question). An alternative is to require that there be at least k objects sharing M

properties to warrant posing a question. Let us use the notation MultiReach(N, M, k)

to denote the percentage of existing assertions about objects with at least N prop-

erties which are reachable by analogy on M properties from at least k objects.

Given this definition, Reach can be viewed as a special case of MultiReach, with

MultifReach(N, M, 1) = Reach(N, M).

Considering a property of an object 01 reachable only if there are at least two

objects 02 and 03, each sharing at least one other property with 01, and looking at

objects with at least 10 properties, it turns out that 38.3% of properties are reachable

under this definition. To put it another way,

MultiReach(10, 1, 2) = 38.3% (7.5)

Overall, reachability between 38.3% and 64.7% has been observed for different

strictnesses and scopes of reachability. Note that the analysis was restricted to the

objects with sufficient number of properties, with the threshold for the minimum

number of properties known varying between 2 and 20. It seems that the degree of

similarity between objects (presented in the histograms of Section 7.2) does indeed

bear out in the analysis of reach of analogy, allowing the analogical approach to

achieve the reported degree of reach in a real knowledge base. The results of the above

three methods of analysis suggest that acquisition by analogy from several nearest

neighbors is likely to be successful given a fairly large and correlated knowledge base

as a "seed knowledge base" (such as the seed KB analyzed here). Chapter 8 reports

on the results of an empirical verification of this claim.
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It must be noted that this analysis excluded a relatively large set of properties that

hold about only one object. The inability to acquire by analogy properties mentioned

zero times is an important limitation of the approach.

One extension that I believe can be a powerful next step beyond direct analogy

and can satisfactorily address this issue is discussed in Chapter 9.2 (Future Work).

The proposed extension would formulate knowledge acquisition questions using the

current algorithm, but run it over a more abstract representation of the assertions

present. For example, recognizing that "sugar is sweet" as asserting "has a (specific

value of) taste" and "Tabasco sauce is spicy" as stating that "has a (specific value

of) taste" could lead the system to infer by the current mechanism that, for example

"salt" or "pepper" also have specific values of taste. The system could then ask

what that value is (i.e. ask how salt or pepper taste). This would allow LEARNER to

tap related, not only identical properties in posing its questions.

7.4 Similarity of most similar

Another way to characterize the amount of correlation in the world (as it is reflected

in the knowledge base) is by looking, for each object, at its similarity to the object

most similar to it.

The analysis of similarity of the most similar allows us to study more rigorously

the expected performance of a simple analogy algorithm based on the single nearest

neighbor. This complements the previous section's more theoretical study of analogy

by studying its direct reach. Also, this analysis will allow us to address the "is false"

assertions.

First, a bit of notation: objects 01, 02 are said to share a property P if A(0 1, P)A

A(0 2 , P). Objects are said to mismatch on a property P if (-,A(0 1, P) A A(0 2, P)) V

(A(0 1, P) A -,A(0 2, P)).

The number of properties shared with nearest neighbor in the seed knowledge base

is presented in Figure 7-4. This figure plots average results for objects with 2,3,. .. , 25

properties along the X axis. The Y axis represents the percentage of properties shared
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Nearest Neighbor Similarity in Seed KB
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Figure 7-4: Nearest neighbor analysis. For each object, the percentage of "is true"
properties shared with its nearest neighbor in the seed knowledge base has been
measured. The X-axis represents the number of properties of an object (results for
objects with same number of properties have been averaged), so the values for objects
with different numbers of properties can be observed.

with the nearest neighbor. Error bars of one standard deviation in either direction

are also plotted. The nearest neighbor for a given object was computed by selecting

the object that shares the most "is true" properties, breaking ties deterministically.

The histogram shows that for objects with more than five properties, an object

can be expected to share about 20% of its properties with its nearest neighbor. Note

that unique properties are included in the denominator in this analysis. The figure

also shows that 68% of such objects (those within one standard deviation of the

mean) share between 10% and 30% of their properties with their nearest neighbor.

The general pattern is violated by objects with twenty-four properties, which may be
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attributable to scarcity of the data.

Recall that 60% of the assertions in the seed knowledge base assert a property

that holds for only one object. These assertions clearly will not be shared with the

nearest neighbor. When these are excluded from consideration, it turns out that

there are 19,077 assertions that assert properties that hold for more than one object

(see Table 7.1), and 11,190 (58.6%) of these assertions are shared with the nearest

neighbor. Once again, this points to presence of strong correlations in the data,

and motivates application of nearest neighbor based techniques to such knowledge

acquisition tags.

7.4.1 Mismatches

In this section, I examine the number of mismatches of truth values of identical

properties that an object has with its nearest neighbor. For the purposes of this

analysis, nearest neighbors are computed by attending solely to "is true" assertions.

As mentioned above, objects share a total of 11,190 "is true" properties with

their nearest neighbors (of a total of 47,147 assertions in the seed knowledge base).

They also agree with the nearest neighbor on an "is false" property for 170 properties

(of a total of 2,482 "is false" properties in the seed knowledge base). Finally, they

mismatch on a property in 593 cases, 257 of them being the nearest neighbor having

an "is false" and the object itself having an "is true" property.

This information allows us to answer an interesting question. Namely, if the

nearest neighbor is used to predict properties of an object, how often would the

prediction be correct? (Disregarding the effect that holding out an "is true" property

could change the nearest neighbor). This analysis allows some insight into expected

success of using nearest neighbors not only to posing questions, but to actually use

them in analogical reasoning to predict what is and is not true.

If a single nearest neighbor is determined using all properties of the object, and

then truth values of its properties are used in lieu of the known truth values of

properties asserted about the target object, the truth value of an "is true" property

would be predicted correctly in 11,689 cases, and incorrectly in 257 (correct 97.8%
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of the time). The truth value "is false" would be correctly predicted in 170 cases

and incorrectly in 336 cases (correct 33.5% of the time). Overall, we'll be correct in

95.2% of the cases. Note that these numbers, including the correctness overall, are

affected by the dominance of "is true" assertions in the knowledge base. The baseline

strategy of always guessing "is true" for every assertion would correctly guess 100% of

"is true" and 0% of "is false" assertions, being correct in 95.9% of the cases. In effect,

predicting from the single nearest neighbor has traded off correctly predicting 170

truth values of "is false" assertions for incorrectly predicting 257 "is true" assertions.

These numbers point to the bias that exists (and perhaps the limitation of the "single

nearest neighbor" strategy examined) in the case of a knowledge base unbalanced in

terms of proportion of "is true" and "is false" assertions. It would be interesting to

see what the picture looks like in a more balanced knowledge base which has not been

biased by using analogy to extend it.

In practice, a hypothesis can be formed by combining evidence from several near

neighbors (as the implemented KA algorithm does), which should have both higher

coverage and more accurate predictions.

Discovering exceptions in truth values (such as "penguins can fly" is false) is

part of an accurate description of the world and hence is part of the desired set

of the assertions to acquire. I expect that acquisition using nearest neighbors to

uncover many "near miss" (Winston, 1972) mismatches in truth values that were

not elicited by the methodology used to construct the seed knowledge base, which

contains predominantly "is true" assertions.

7.5 On the origin of similarity

In the previous sections, I have addressed the amount of similarity. In this section, I

focus on the epistemological sources of similarity.

What are the origins of similar assertions being made about similar objects? It

seems that at least two sources of similarity can be identified.

Synonymy Similar things will be stated about "car" and "automobile." The origin
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of this correlation is lexical. (However, note that the word "car" has usages

which "automobile" does not - for example, the seed knowledge base contains

the assertion "trains pull cars," referring to the "railroad car" sense of car).

Taxonomic proximity This is probably the most familiar kind of similarity. A

"cat" and a "dog" are both "pets" and "animals", "TV" and "radio" are

both "consumer electronics," and "apple" and "pear" are both "fruit."

Some objects in the world (animals, plants) are similar for evolutionary reasons,

and other, man-made objects are similar because they were manufactured to

serve similar functions in our lives.

In addition to similarity between objects (two objects sharing many properties),

there is also a dual situation of a pair of properties being correlated across many ob-

jects. The correlation between properties seems to be classifiable into three classes.

Two of these classes parallel the causes for similarity between objects: they are syn-

onymy and taxonomic proximity between terms used in properties.

Similarity of properties due to synonymy is exemplified by the following: the

verb "hold" can mean the same as "contain," which gives rise to pairs of correlated

properties such as "can hold water" and "sometimes contain water", which are

both true of "cups," "bottles," and "bathtubs," and are both false of "books," "keys,"

and "knives." Taxonomic similarity of properties is exemplified by the following:

"rivers" and "seas" are both kinds of a large body of water, giving rise to correlated

assertions "(fish) live in the river/sea", "(yachts) sail on rivers/seas", "(a person) can

go swimming in a river/sea".

Unlike objects, however, a property asserts something about an object. Because

of this greater complexity, there is an additional feature of properties. They can be

correlated because one semantically implies the other. For example, "have wings"

and "can fly" are correlated. Sometimes properties are correlated because they have

a common cause, as in this example: for comfort, most enclosures made for humans

typically require both a way to enter and exit the enclosure, and a way to observe

the outside. Hence, enclosures that "have doors" (such as houses, cars, airplanes),
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usually "have windows" as well.

Based on the observation that there is property-based correlation in addition to

object-based correlation, it should be possible to pose questions by similarity of prop-

erties rather than objects. For simplicity, similarity of two properties can be measured

by the number of objects that they are both asserted about. It turns out that while

there are more properties than objects, direct acquirability from correlation of prop-

erties can be as high as direct acquirability from correlation of objects.

For example, restricting to objects with 10 or more properties and properties that

hold for 10 or more objects, direct acquirability by analogy on two properties (based

on object similarity) is 68.7% (1448 of 2108 assertions). Under the same restrictions,

the direct acquirability by two objects (based on similarity of properties) is 69.4%

(1462 of 2108 assertions). Considering the similarity by four rather than by two on

the same set of assertions results in direct acquirability of 37.3% and 34.0% for the

"by objects" and "by properties" cases, respectively.

It is possible that combining these two methods would yield better question qual-

ity than each method alone. Even more importantly, presence of the observed degree

of correlation between properties indicates that it may be possible to eliminate posing

"redundant" (highly correlated) questions about an object in the knowledge acquisi-

tion interface.

Overall, it seems that similarity stemming from all of the described causes is

present in the knowledge base. The knowledge base exhibits a degree of similarity

that justifies approaching knowledge acquisition via nearest neighbor methods. Sim-

ilarity stems from semantic relationships between pairs of objects and between pairs

of properties, and exploiting both may yield more effective knowledge acquisition

methods.

When two categories of objects share many properties, such categories are similar.

However, to the extent that these categories do not describe the same objects, there

will also necessarily be differences between the categories. The need to discern the

differences (to reason correctly about a given category or situation) is what gives

rise to the categories in human descriptions of the world in the first place. As has
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been explored by Winston (1978), when a category is used as a source in a metaphor

(an analogy), the features being transfered are likely to be those that differentiate the

source category from the similar to it categories. For example, when the term "f ox" is

used in the assertion "Robbie is like a fox," what is meant is probably that "Robbie"

has the features that distinguish a "fox" from other animals. That is, given some

conventional knowledge about foxes, Robbie may be particularly clever or cunning.

Because differences between categories are innate to the notion of categorization, it

can be expected that every pair of categories should have some mismatching features

and that most categories should have characteristic features.

Having discussed the origins of similarity and presence of differences, I examine

the issue of similarity judgments being dependent on the set of features chosen to

describe the objects being compared. It seems that the choice of features, even when

it expresses equivalent information, can affect which objects are considered similar

and which are not.

Consider the following:

Suppose we use the two features blind-in-left-eye and blind-in-ri-

ght-eye. Then the four possible objects are {0, 0}, {0, 1}, {1, 0}, and

{1, 1}, with their obvious interpretations. Suppose Alan is blind in his

left eye only {1, 0}, Bob blind in his right eye only {O, 1, and Charlie

blind in both eyes {1, 1}. Then Alan and Bob are equally dissimilar

to Charlie (according to [LEARNER's similarity] measure). But suppose

instead we employ an equivalent representation: blind-in-left-eye and

same-in-both-eyes. In this second representation the four objects above

are represented: {O, 1}, {0, O}, (1, 1} and {1, 0}. Now Alan {1, 0}

and Bob {0, 0} are not equally dissimilar to Charlie {1, 1} (personal

communication, D. Stork, 2002). See also Duda, Hart and Stork (2000,

pp. 458-461).

This issue is related to the well known "theorem of the ugly duckling" (Watanabe,

1969) which states that, given a set of objects and a set of features that allows any
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two objects being compared to be distinguished, in the absolute absence of bias

any two objects share the same number of predicates defined over the set of features.

The theorem derives its somewhat fanciful name from the counterintuitive illustrative

example that, in the absence of bias, given two ducks and one "ugly duckling," the two

ducks are equally dissimilar from each other as each one is from the "ugly duckling."

The approach adopted in this work, however, does introduce a strong bias. Simi-

larity is measured by computing (weighted) sums of the number of matching features

and subtracting an (also weighted) number of mismatching features. By counting the

number of matching features rather than the number of all predicates formed from

the features, comparisons are made according to the simple constructs (features) that

the human contributors have formulated.

The issue of using slightly different features resulting in different similarity judg-

ments has a more direct relevance to LEARNER'S similarity judgments. Indeed, it

seems that in some cases the exact set of features can make some pairs of objects

more and some less similar. However, the investigation in Sections 7.2 and 7.3 has

provided a prima facie argument that similarity between the collected sets of features

can be used to successfully predict presence of other features.

Overall, in this work, I take a descriptive approach to common sense, seeking

to collect salient elicitable knowledge about concepts, rather than, for example, treat

concepts as predicates which need to be minimally defined in terms of other predicates

to be distinguishable from other concepts. By taking the more descriptive stance in

this work, I collect descriptive knowledge thought to be the correct level of description

in the naive semantics tradition. Naive semantics is further contrasted with formal

logic and some "semantic primitives" approaches in Dahlgren et al. (1989).
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Chapter 8

Results

In this chapter, I (i) present evidence that LEARNER's knowledge acquisition power

indeed stems from reasoning by analogy from similar objects, and (ii) present the

results of running the LEARNER on a public web site

http://teach-computers.org/learner.html

over the course of two months.

Specifically, the following data is presented:

o How the quality of the questions compares with the quality of questions gener-

ated by an ablated version of the algorithm that poses questions without using

any notion of similarity,

o The amount and kinds of knowledge collected, (percentage of taxonomic state-

ments, part-of statements, etc.), and how it compares with data available for

other wide coverage knowledge bases,

o Overall statistics of contributor behavior (average amount contributed in one

visit, number of repeat visits from the same computer, and so on).

o The contributor feedback that was gathered as the system was run,

o My own impressions (with discussion) of the system's current limitations.
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In my approach to evaluating knowledge acquisition, some prior work has served

as an inspiration. A relatively recent discussion of methodology for evaluating knowl-

edge acquisition by Tallis et al. can be found in (Tallis, Kim and Gil, 1999). Prior

investigations by Cohen et al. and by Gaines (on different knowledge bases) have

quantitatively studied the usefulness of prior knowledge for knowledge acquisition

(see (Cohen, Chaudhri, Pease and Schrag, 1999; Gaines, 1989)). Effectiveness of

knowledge acquisition has also been studied specifically for EXPECT (Kim and Gil,

2000), SOAR (Yost, 1993), and Proteg6-2000 (Noy, Grosso and Musen, 2000).

8.1 Quality of questions: cumulative analogy vs.

a baseline

A central contribution of the thesis is a demonstration of power of surface-level cu-

mulative analogy for knowledge acquisition. In this section, I present evidence that

the performance of the system indeed comes from analogical reasoning from similar

objects.

To quantify the benefit of analogy from similar objects, I have conducted an eval-

uation comparing full analogy as described in Section 4.2 against an ablated (control)

version which, instead of formulating questions by mapping properties from similar

objects 0,,,, formulated questions by mapping properties from random objects in

the knowledge base.

Specifically, the following experiment was performed:

* A test mode was introduced into the interface. The test mode was subdivided

into two test conditions:

- Normal condition, in which similar topics are chosen as they normally

are, and

- Random-sources (control) condition, in which 10 sources for analogy are

chosen not based on their similarity, but at random with equal probability

among the the objects in the knowledge base. In other words, SELECT-NN
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(Figure 4-5) was replaced with a simple stub, but MAP-PROPS (Figure 4-8)

and all the consequent filtering mechanisms were left intact.

The contributor was informed that the page presented is in "test mode," but

was not told which condition they are seeing. The exact message presented in

red on the page was as follows:

This page has been generated in TEST mode. The questions generated

may di/er in quality fro the normal mode. At present, we are injecting

TEST mode pages at random to assess what factors affect quality of

questions. Please answer the questions as you normally would.

The "test mode" pages were injected at random in place of normal pages with

probability 0.3.

" The test condition ("normal" or "random-sources," the user responses, and

whether the question was altered was logged (recall that users may alter the

question if they wish). Only replies to the unaltered questions were considered.

The rates of alteration of questions in either condition were too low to draw

statistical conclusions about them.

" The logs were analyzed by taking, for each test condition, the first 1000 replies

to unmodified questions and counting the number of questions answered "yes,"

"no" and so on.

I propose that the system that poses fewer nonsensical questions, as well as does

not have a very high rate of "no" answers, with other factors being equal, is better

at knowledge acquisition. The reason for valuing "is true" assertions more than "is

false" has to do with the fact that, in a sense, there are many more false assertions

than true ones. Another way of putting it is that many "nonsense" statements admit

the "is false" answer, as will be shown in examples below.

The results are presented in Figure 8-1. The confidence intervals for the values

reported were calculated under the assumption that the responses in each condition

follow a multinomial distribution. The confidence intervals for any value do not exceed

±3.1%, and are smaller than ±2% for values less than 10%.
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Replies in 'full similarity' mode

(a) No similarity used (con- (b) Full similarity used.
trol).

Figure 8-1: Answers to questions generated by analogy from (a) randomly selected
and (b) most similar topics.

Of questions generated by analogy, 45% were answered "yes"; the fraction for

questions generated from random sources (the control group) was 8%. At the same

time, 13% of the questions generated by analogy were ranked as "nonsense," compared

with the rate of 26% for the control group. Finally, 28% of those generated by analogy

versus 60% of those in the control group were answered "no."

The prevalence of the answer "no" (rather than the answer "nonsense") in the

random sources (control) group may seem surprising. In fact, many of the questions

answered "no" are very unusual, but can be answered "no." Here are some examples

from the data collected in the random-sources condition. All of the following were

answered "no":

" "a tea is used to store money"

* "a keyboard is an ear"

* "insects exist to sing"

* "corn is a cigarette"

In all, results indicate that eliminating similarity reduces the quality of the ques-

tions posed, shifting an additional 45% of all answered questions into categories "non-

sense" or "no."

118

Replies in 'no similarity' mode



8.2 Comparison of the resultant knowledge base

to the seed knowledge base

In this section, I present the changes in the knowledge base as a result of collecting

knowledge with the LEARNER. The analyses presented roughly follow the analyses of

the seed knowledge base in Section 7. The figures summarizing the seed knowledge

base are reproduced here from Section 7; these figures are presented together with

equivalent figures summarizing the resultant knowledge base. Additional comparison

by the kinds of knowledge collected (classifying the knowledge in the seed and resul-

tant knowledge bases into ontological, meronymical (part-of), and so on) is presented

in Section 8.3.

Tables 8.1(a) and 8.1(b) present the gross picture of how the distribution of "is

true" assertions in the seed and the resultant knowledge bases.

Figures 8-2(a) and 8-2(b) present, on a log-log scale, the numbers of objects with

one, two, and so on properties in the seed and resultant knowledge bases, respectively.

They also fit power law curves (which are straight lines in log-log plots) to the data.

Note that in the resultant knowledge base, the power has decreased in magnitude from

1.95 to 1.80. One speculation as to the mechanism effecting this change is that more

has been learned about "popular" objects - those about which several properties

were already known, while very few new objects (which would have few properties)

were introduced.

Figures 8-3(a) and 8-3(b) present the average similarity data for seed and resultant

knowledge bases, respectively. Refer to Section 7.2 for an explanation. Note that in

the resultant knowledge base, the number of objects sharing two properties is at

the level expected by chance. One possible interpretation of this data is that the

similarity in the resultant knowledge base has been "pushed out" to greater number of

properties. That is, instead of a higher than expected number of objects sharing only

two properties, similar objects now tend to share three or more properties. LEARNER

poses up to 20 knowledge acquisition questions per one acquisition screen. Usually,

it can be expected that the contributor will answer many of those affirmatively. A
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Columns (Properties)
with > 10

entries
291
1%

with > 2
entries

4905
15%

with one
entry

28070
85%

Total

32975
100%

with > 10 723 2108 9282 17119 26401
entries 6% 4% 20% 36% 56%
with > 2 4277 4091 15252 23846 39098

Rows entries 35% 9% 32% 51% 83%
(Objects) with one 8049 1499 3825 4224 8049

entry 65% 3% 8% 9% 17%
Total 12326 5590 19077 28070 47147

100% 13% 40% 60% 100%

#Entries (Assertions)

(a) Summary of the seed knowledge base, reproduced from Table 7.1.

Columns (Properties)
with > 10 with > 2 with one Total

entries entries entry
718 7870 30686 38556
2% 20% 80% 100%

with > 10 982 11538 26888 19958 46846
entries 8% 17% 39% 29% 69%
with > 2 4633 13988 33472 26432 59904

Rows entries 36% 21% 49% 39% 88%
(Objects) with one 8191 1674 3937 4254 8191

entry 64% 2% 6% 6% 12%
Total 12824 15662 37409 30686 68095

100% 23% 55% 45% 100%

#Entries (Assertions)

(b) Summary of the resultant knowledge base.

Table 8.1: Summaries of the seed and resultant knowledge bases. Total numbers
of objects (rows), properties (columns) and entries (assertions) are in bold. Other

counts are for rows, columns and entries when only indicated subsets of rows and

columns are considered. For example, in the resultant knowledge base there are 982
objects with at least 10 properties, and 46,846 assertions about these objects. For

clarity, the "is false" entries are not included in these results.
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Number of Objects in Seed KB

t Seed KB Data
power law fitted

-

-

10 10
Number of properties

10
3 10

(a) Seed knowledge base. The solid line is the fitted ex-
pression f (x) = CxP with C = 6, 789 and p = -1.9483.
This figure reproduces Figure 7-1. The values seem to
fit

10'

1037

102

10

-0

1001

100

Lotka's law.

Number of Objects in Resultant KB

10' 102
Number of properties

103

(b) Resultant knowledge base. The solid line is the
fitted expression f(x) = CxP, with C = 5,545 and
p = -1.7957.

Figure 8-2: Number of objects with N properties in the seed and resultant knowledge
bases and a power law fits of the data (log-log plots). In both cases, the power law fit
is given by an expression of the form f(x) = CxP. Values for C and p were chosen by
fitting the data for 1 < N < 50 to minimize the sum square difference of logarithms
of real and fitted values.
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similar result can be observed when only objects with ten or more properties are

evaluated for presence of similar objects, as presented in Figures 8-4(a) and 8-4(b).

Finally, Figures 8-5(a) and 8-5(b) present the percentage of all properties (includ-

ing unique properties - those that hold for only one object) shared with the nearest

neighbors in the seed and the resultant knowledge bases, respectively. The number of

properties shared with the nearest neighbor has indeed grown for almost all categories

considered, with larger percentage gains for objects with more properties.

8.3 Classes of knowledge acquired

In this section, I examine in greater depth the kinds of knowledge acquired by LEAR-

NER. I introduce a classification scheme for the collected assertions, report on the

total and per-class numbers of assertions collected, and, for comparison purposes,

report statistics on some existing knowledge bases.

8.3.1 Knowledge classification scheme

There currently does not seem to be an agreed upon classification scheme for asser-

tions. Some existing approaches to classifying knowledge (together with the data for

some knowledge bases) are reported in Section 8.3.3.

I introduce a slightly different classification scheme with thirteen classes, which

captures the most common classes of assertions referred to in other literature. The

scheme I adopt implemented a set of simple recognizers that has access to the (Link

Grammar Parser) parsing of an assertion, parts of speech of individual lexical items,

and conjugation information for verbs and nouns. The classes, with examples and

features used for classification, are presented in Table 8.2. Each assertion is assigned

to exactly one class by the automatic classifier; assertions that are not assignable to

any class are placed in the fourteenth, "UNK" (unknown) class.

The fact that the linguistically expressed by contributors knowledge can be clas-

sified in these categories deserves further attention. While at the end of Section 3.2 I

briefly discuss the kinds of commonsense knowledge that lies beyond stating properties
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Average Similarity in Seed KB

15.574 Real

13.642 
Baseline

0.539

0.122

0.067 .4

0.018

- 0.008-
0.005

0.002

1 2 3 4 5
Number of Properites Shared

6 7 8

(a) Seed knowledge base. This figure reproduces Figure 7-2.

Average Sirilarity in Resultart KB

Real

43.411 -B- Baseline
108

1.842

0.718

0.387 0.249

0.128

D. 009

1 2 3 4 5
Number of Properites Shared

(b) Resultant knowledge base.

Figure 8-3: Average correlation histograms for the (a) seed and (b) resultant knowl-
edge bases. Average amount of correlation in the real and synthetic, (uncorrelated)
cases with same frequency distributions are shown. The histograms plots, for differ-
ent values of N along the X-axis, the number of objects with which a given object is
expected to share N properties (on a log-scale Y-axis).
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Average Similarity in Resultant KB for Objects with 10 Properties

398.44 Real

13 2 -3- Baseline

23.97

19.51

. 8.581

4.87

3.7 2.341

1.599 1.685

- , 0.12

M 0.005

1 2 3 4 5
Number of Properites Shared

(b) Average correlation histogram for objec
in resultant KB.

6 7 8

ts with > 10 properties

Figure 8-4: Average correlation histograms for objects in the (a) seed and (b) resultant
knowledge bases with > 10 properties. Average amount of correlation in the real
and synthetic, (uncorrelated) case with same frequency distribution is shown. The
histograms plot, for different values of N along the X-axis, the number of objects with
which a given object is expected to share N properties (on the log-scale Y-axis).
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(a) Seed knowledge base. Reproduces Figure 7-4.

Nearest Neighbor Similarity in Resultant KB
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(b) Resultant knowledge base.

Figure 8-5: Nearest neighbor analysis for (a) seed and (b) resultant knowledge bases.
For each object, the percentage of "is true" properties shared with its nearest neighbor
in the resultant knowledge base has been measured. The X-axis represents the number
of properties of an object (results for objects with same number of properties have
been averaged), so the values for objects with different numbers of properties can be
observed.
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Name Example(s)
ISA a cat 1se an animalno0 n,

horses areb, quadrupedsnoun,
an armchair is a kind of chair.

QUALIFIED-ISA swans arebe whitead, birdsnoun.
DEFINITION phones arebe devices (for making calls)prep-phrase.

ACTION cats eatverb mice.
QUALIFIED-ACTION kangaroos jumperb (very high)prepphrase,

kangaroos can jumpverb (over fences)prep.phrase.

ACTION-ON horses can bebe riddenpast-part,
PROPERTY a swan isbe whiteadj,

airplanes arebe aerodynamicadj.
COMPARATIVE horses are faster than people,

horses eat more than people.
FUNCTION horses are used (for transportation)prep.phrase.
MADE-OF a window is made of glass,

audiences consist of people.
PART-OF a wheel isbe part of a car,

a kitchen isbe in a house.
REQUIRES writing requires literacy,

success requires extra effort.
POSSIBLE-STATE horses can beb, runningpres-part,

water can bebe boilingpres-part.

Table 8.2: Categories of assertions (with examples). Italicized words and syntactic
subscripts in examples are cues used by the classifier to classify this example. "be"
stands for a form of the verb "be"; "prep-phrase" stands for "prepositional phrase,"
"past-part" stands for a verb in the "past participle" tense and "pres-part" stands
for a verb in the "present participle" tense.
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of objects, in this section I presented a categorization of assertions about properties

of objects. While many classifications are possible, the above classification maps out

some of the territory. This classification scheme suggests, for example, that if con-

tributors are to be queried for particular kinds of knowledge, the contributors should

be queried for all of the strongly populated categories to acquire a significant fraction

of the possible assertions about objects and their properties.

8.3.2 Knowledge collected

Over a two month period of collecting knowledge, a total of 42,659 assertions were

collected. The distribution by the answer received is presented in Table 8.3. In all,

20,315 (47.6%) were "is true" assertions, 10,857 were (25.5%) "is false" and 3,842

(9.0%) were ranked as "nonsensical question."

For comparison, consider that the seed knowledge base contained about 53,447

assertions, of which 96% were "is true" assertions. If only the "is true" and "is

false" assertions are considered, the total knowledge base has been grown by 31,172

assertions, or 58.3%, in two months.

Answer Num Entries % of Total
Yes 20,315 47.6%
No 10,857 25.5%
Some/Sometimes 5,487 12.9%
Matter of Opinion 2,158 5.1%
Nonsensical Question 3,842 9.0%
Total: 42,659 100.0%

Table 8.3: Number of assertions collected, by answer received.

The distribution of knowledge by kind of knowledge in both seed and resultant

knowledge bases are presented in Table 8.4. The proportions of kinds of knowledge in

the seed knowledge base may be indicative of what human contributors spontaneously

volunteer, but also reflect the bias of the specific knowledge acquisition templates used

in the construction of Open Mind Common Sense(Singh, 2002; Singh, Lin, Mueller,

Lim, Perkins and Zhu, 2002), from which the seed knowledge base used in this work

has been extracted. Approximately 5.5% of all assertions could not be classified
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because they used the highly ambiguous verb "have" to connect the syntactic subject

and object of the assertion. By manually disambiguating two hundred cases with

the verb "have" in the resultant knowledge base, I estimate that the verb is used to

mean "part of," in approximately 60% of the cases. Some examples of such usage are

"horses have manes" and "cups have handles." Such assertions were not included in

the percentage of "part of" assertions because they were ambiguous. The main verb

"have" can also mean ''owns" as in "people sometimes have cars", or something else:

"children have parents," "every state has a state flower," "a dog can have a litter of

puppies," "people have breakfast in the morning."

Overall, the distribution of the acquired knowledge closely tracks that of the

knowledge in the original knowledge base. More than one explanation is possible

for this phenomenon: the distribution of the knowledge acquired by LEARNER may

follow the distribution of the knowledge in the seed knowledge base, or both the

acquired and the seed knowledge may reflect a "natural" distribution of assertions

that arises in collection from human contributors. Although it is difficult to differ-

entiate without further experimentation, knowledge of how LEARNER operates may

favor the former explanation - for example, if the seed knowledge base was heavily

skewed towards taxonomic knowledge, the collection process would presumably also

pose many questions about taxonomic relationships. If the collection process indeed

follows the biases in the seed knowledge base, this property of knowledge acquisition

by analogy may be exploited in future work to collect the kinds of knowledge which

are most useful.

8.3.3 Other knowledge bases

In this section, I compare the kinds of knowledge collected by LEARNER with the

kinds of knowledge aggregated in other knowledge bases.

There are several prior commonsense knowledge bases. The purposes of their

construction have varied from primarily enabling machine translation and story un-

derstanding (MindNet (Dolan, Vanderwende and Richardson, 1993; Richardson, Van-

derwende and Dolan, 1993) and ThoughtTreasure, (Mueller, 2000)) to, more broadly,
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Assertion Type Num in % in Num % Num in % in
Seed KB Seed KB acqrd acqrd Rslt KB Rslt KB

ACTION 16250 30.4% 9696 30.7% 25946 30.5%
QUALIFIED-ACTION 9680 18.1% 4993 15.8% 14673 17.2%
PROPERTY 5056 9.5% 3202 10.1% 8258 9.7%
UNK* 4809 9.0% 2832 8.9% 7632 9.0%
ISA 4653 8.7% 3025 9.6% 7678 9.0%
ACTION-ON 3372 6.3% 2276 7.2% 5648 6.6%
FUNCTION 2151 4.0% 2080 6.6% 4231 5.0%
PART-OF 1863 3.5% 977 3.1% 2840 3.3%
QUALIFIED-ISA 1748 3.3% 533 1.7% 2281 2.7%
REQUIRES 1656 3.1% 274 0.9% 1930 2.3%
DEFINITION 1005 1.9% 620 2.0% 1625 1.9%
COMPARATIVE 605 1.1% 670 2.1% 1275 1.5%
MADE-OF 407 0.8% 284 0.9% 691 0.8%
POSSIBLE-STATE 192 0.4% 167 0.5% 359 0.4%
TOTAL 53447 100.0% 31620 100.0% 85067 100.0%

Table 8.4: Numbers of assertions by type. First two columns of data present data for
the seed knowledge base, middle two for the data acquired by LEARNER and the last
two for the resultant knowledge base (seed KB plus the acquired knowledge). 'UNK'
represents assertions that could not be automatically classified. Approximately 5.5%
of all assertions could not be classified because they used the highly ambiguous verb
"have," which means "part of," in approximately 60% of the cases in the resultant
knowledge base (e.g. "horses have manes"), but can also mean "owns" (e.g. "people
sometimes have cars") or something else (e.g. "children have parents," "every state
has a state flower").
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being a linguistic database (WordNet (Fellbaum, 1998; Miller, 1998)) and enabling

reasoning via resolution theorem proving (CYC and OpenCyc, (Guha and Lenat,

1994; OpenCyc, 2001)). The methods of construction for the knowledge bases have

varied from hand-coding by experts (e.g. WordNet, ThoughtTreasure, CYC) to au-

tomatic extraction from machine-readable dictionaries (MindNet).

Constructing a sufficiently large knowledge base is by no means a simple endeavor,

and even the largest of these are by no means complete (the difficulty of authoring a

large knowledge base is one of the motivations for deploying the LEARNER system).

Two tables published by Mueller (Mueller, 1999, 2002) on some existing knowledge

bases have been reproduced here. Table 8.5 presents, for different knowledge bases,

the number of concepts, the number of a-kind-of and is-a assertions, the number of

part-of or material-of assertions, and the number of other assertions.

Name Concepts ako/isa part-of/ Other
material-of

Cyc* 149,052 97,172 16,000+ 1,497,000
Cyc Upper Ontology 2.1 2,846 7,161 0 2,579

(Cycorp, 1997)
Mikrokosmos (Mahesh, 1996) 4,500 - - -

MindNet 45,000 47,000 14,100 32,900
(Richardson et al., 1993, p. 9)

SENSUS (Knight and Luk, 1994) 70,000 - - -
ThoughtTreasure 0.00022 27,093 28,818 666 21,821

(Mueller, 2000)
WordNet 1.6 99,642 78,446 19,441 42,700

(Fellbaum, 1998; Miller, 1998)

Table 8.5: Number of concepts and common relations in other knowledge bases. Note
that relations in MindNet, being automatically extracted from dictionary text, are
not always correct. Adapted (with permission) from Mueller (1999). *Data about the
CYC system has been obtained separately and describes KB 616 version of the CYC
knowledge base as of January 2003 (personal communication, K. Panton, 2003). In
addition to 97,172 "genls" assertions (expressing, e.g., that all apples are fruit), CYC
also contains 435,622 "isa" assertions (expressing such assertions as "United States is
a country" and "Father-of is a two-place predicate") The "other" figure includes the
"isa" assertions, but does not include additional 288,450 "bookkeeping" assertions
stating such meta information as who and when added the knowledge.

Another currently growing knowledge base is the Open Mind Common Sense

(OMCS), from which the seed knowledge for LEARNER has been extracted. OMCS,
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Type of OpenCyc 0.6.0, ThoughtTreasure Explanation
relation 2002-04-03 0.00022,1999-12-08
hierarchical 37,755 (62.0%) 28,818 (56.2%) ISA, collections
typing 20,293 (33.3%) 845 (1.6%) argument types,

selectional restrictions
other 1,246 (2.0%) 16,518 (32.2%) other
definition 1,005 (1.7%) 25 (0.0%) concept definitions,

equivalences
implies 569 (0.9%) 0 (0.0%) logical implications
part 10 (0.0%) 807 (1.6%) object parts and

substances
object property 0 (0.0%) 422 (0.8%) object properties
spatial 0 (0.0%) 1,796 (3.5%) typical locations,

arrangements on grids
script 0 (0.0%) 2,074 (4.0%) relating to scripts
Total 60,878 (100.0%) 51,305 (100.0%) -

Table 8.6: Knowledge in OpenCyc and ThoughtTreasure. Adapted with permission
from Mueller (2002).

like LEARNER, does not disambiguate the assertions it collects. Furthermore, OMCS

does not provide any syntactic or semantic filters on contributor input, and does

not collect truth values. OMCS, however, has wider coverage - its scope includes

collection of stories, descriptions of images, and so on.

The data summarizing OMCS as of early 2002 is reproduced in Table 8.7. As of

January 13th, 2003 the knowledge base had 494,489 contributions, with identical or

similar assertions sometimes contributed more than once (personal communication,

P. Singh, 2003).

Overall, it can be seen that CYC currently has a significant lead over all other

efforts. Furthermore, the knowledge in CYC is fully disambiguated (its concept hier-

archy is finer-grained than WordNet's and was specifically designed to capture world

rather than lexical knowledge). However, the approaches of collecting knowledge

from volunteer contributors (both OMCS and LEARNER) have collected (admittedly

ambiguous) knowledge at a much lower development cost and shorter time frame

(for example, OMCS has been collecting knowledge for two years rather than CYC's

nearly two decades). Significant promise for future growth both for CYC (personal

communication, D. Lenat, 2003) and for other (freely available) large scale common-
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Class of Knowledge % of Collected
Scripts/Plans 14.4
Causal/Functional 11.9
Spatial/Location 10.2
Goals/Likes/Dislikes 5.5
Grammatical 5.5
Photo descriptions 5.4
Properties of people 4.8
Explanations 2.6
Story events 1.8
Other 37.9
Total 100.0

Table 8.7: Knowledge in OMCS. Adapted with permission from Singh (2002).

sense efforts may lie in relying on volunteer contributors, together with developing

methods for disambiguation and acquisition of (highly) unambiguous knowledge from

contributors who have had very little training.

8.4 Rate of contribution to Learner

In this section, I address the behavior of visitors to the site, examining the volume of

contributions, frequency of return visits, and so on. The top four sources from which

contributors arrive at the LEARNER ("1001 Questions") web site are as follows:

" MIT Artificial Intelligence Laboratory Projects page' (about 40% of the con-

tributors),

" MSN search engine and directory (about 25%),

" Google (about 12%),

* Gamespotter 2 (about 8%).

The remaining 15% comes from other sources. The terms used in the search

engines to find the site range from "free online game" and "online knowledge games,"

to "questions games" and "game making questions." Some queries to Google are

Ihttp://www.ai.mit.edu/research/projects/projects.shtml
2 http://www.gamespotter.com
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"open mind 1001" and "1001 Questions game," suggesting that the searches are

specifically for the LEARNER web site.

To make using LEARNER less of a chore, LEARNER does not require contributors

to log in or identify themselves. The only information collected about a contribution

is the IP address of the computer from which the contribution was made (as reported

by the client to the web server on which LEARNER resides), the exact time at which

a given contribution was made (i.e., the time when a assertion was passed to LEAR-

NER from the web server), and a unique session id generated at the beginning of

the session and stored on the contributor's machine. Cookies on the client machine

are used to store information about the previous topic the contributor was teaching

LEARNER about, and to provide a unique identifier for each contribution session (for

the purpose of later statistical analysis of the contribution behavior). Cookies do not

survive for more than one hour from the time of last contribution in a session.

The IP address of the contributing computer should be considered to be at most

a crude proxy for the identity of the contributor. For example, the one-to-one corre-

spondence between contributors is violated when computers reside behind the firewall

of a large company. All such computers may appear to have the same IP address,

making contributors from different machines appear to have the same IP address. A

single physical computer in a home may be shared by family members, computers in

a school computer lab may be shared by many people affiliated with the school, and

a computer in an Internet cafe (Internet cafes currently being the dominant mode of

Internet access in many countries) may be shared between many customers.

Conversely, a single contributor may be using a machine with a dynamic IP ad-

dress, may be sometimes visiting LEARNER from work and sometimes from home, or

may be accessing the Internet via Internet cafes, using a computer with a different

IP address each time.

Despite the above cautions about interpreting IP addresses as unique contributor

identifiers, an analysis of the total number of assertions contributed per IP address

can still provide some valuable insights. Such an analysis is presented in Figure 8-

6. For the purpose of this discussion, a contribution is any assertion (parsable or
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not, already present in the knowledge base or not, and with any truth value). The

logarithmic Y axis represents the number of contributions. Note that the period for

which this data has been tabulated is 72 days rather than 61 days over which figures

for Section 8.3.2 were calculated. The total number of contributing IP addresses over

the 72 days is 1047. The average number of contributions per IP address is 59.2.

One notable trend in Figure 8-6 is the plateau (a relatively large number of IP

addresses) with exactly twenty contributions. The responsible factor may be the fact

that the system presented up to 20 knowledge acquisition questions per screen. A large

portion of the IP addresses making twenty (or fewer!) contributions, presumably saw

one set of questions of the system, answered those questions, and have not proceeded

further.

Another aspect of contributor behavior is the number of their repeat visits to the

system. One possible way to estimate the number of repeat visits to the system would

by looking at the number of unique "sessions," where a single session is tracked by

a cookie set on the client computer. Because cookies are sometimes turned off on

the machines of the contributors, cookies have not proven very useful in tracking the

identity of a session. Instead, the present analysis defines a notion of a contributing

day - for a given IP address, a 24 hour period (starting at midnight US Eastern

time) is called a contributing day if a contribution of at least one assertion (with any

truth value) was made during this 24 hour period from this IP address.

The analysis of the number of contributing days for 1047 contributors over 72

days is presented in Table 8.4. Note that the count does not exactly represent how

many times a contributor decided to have a session with LEARNER. The approach of

counting "contributing days" collapses genuine multiple visits per day into a single

"contributing day," causing an underestimation of the number of visits. On the other

hand, a single session that continues through midnight of US Eastern time results

in two "contributing days." Presumably, the numbers of "contributing days" per IP

would be larger if calculated over longer period, especially because some contributors

had their first visit to the site at the end of the period and have not yet had a repeat

visit by the end of the measurement period. On a contributing day, the average
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Number of Contributions per IP Address
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Figure 8-6: Number of contributions per IP address. Distinct IP addresses are listed
along the X axis. The actual addresses have been suppressed, their rank is indicated
instead. The addresses are arranged in the order of decreasing number of assertions
contributed. A contribution is any assertion (parsable or not, already present in the
knowledge base or not, and with any truth value). The logarithmic Y axis indicates
the number of contributions.
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contribution from a single IP address was 54.29 assertions.

Number of Number of
Contributing such IP

Days Addresses
1 987
2 47
3 3
4 2
5 3
6 2
7 2
8 0
9 1

Total 1047

Table 8.8: Number of IP addresses that had N contributing days, calculated over
initial seventy two days.

While both numbers on the number of contributions per IP and the repeat visit

rate per IP may be somewhat difficult to interpret, the provided data may be useful in

comparing LEARNER in its current form to a different system that makes similar data

available. This data can also be useful in calculating the effect on the contribution

volume and repeat visit rate of such additional factors as interface improvements,

introduction of prizes for best contributors, or emailing subscribing contributors with

a newsletter summarizing the progress of the site.

8.5 User feedback about Learner

One of the goals of this work is to create a large knowledge base of commonsense

assertions. In order for this effort to succeed, in addition to technical competence of

the knowledge collection process, it is desirable to ensure that visitors to the site have

a positive experience. To find out what the contributor perceptions are, I have asked

them to comment on the system.

For the period of fifty days, every page of questions presented by LEARNER con-

tained the following instructions (together with a text entry box for the comments):
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The site is in beta testing. We are extremely eager to receive your feedback

on which features of the site you find helpful or annoying, and what you can

suggest by way of improvement.

Enter your comments here. Comments on quality of questions posed and ease

or difficulty of answering them (with examples as appropriate), are particularly

needed. Include your email address if you'd like.

In all, 118 complete, non-redundant comments were received. Mainly, the com-

ments asked for a clarification of documentation or more information. Many com-

ments also pointed out manifestations of three bugs in the system, which have since

been addressed. There were on the order of 30 comments that have commented on

the quality of the overall site, the interface, or suggested specific extensions of the

current functionality.

The remaining comments have focused on the quality of the site and the concept

it embodies or have requested new features.

Of the sixteen comments on quality of the site, twelve (75%) were positive, for

example:

"Congratulations, I shall access this wonderful project often even though

I use a public computer and have little time" - From Sao Paulo, Brazil,

"This is a very interesting system. I am very fascinated. I will give that

link to all my friends,"

"This is a very interesting experiment,"

one was mixed:

"Your program is quite smart, but it asks too many nonsensical questions,"

and three were negative, for example:

"Needs to work on the grammar."
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The feedback that focused on the interface generally expressed that the interface

was not very intuitive at first, but that the contributor eventually figured it out. One

contributor praised the transparency of system's function:

"It's very useful having all the '[fi]' buttons [because] you can find out

easily how to drive it."

A few users, while happy with the overall experience, have pointed out the syn-

tactical limitations of the system, for example:

"It never accepts my mathematical info,"

"Not being able to parse lists is cumbersome,"

"Faster data entry method would be nice; maybe have an 'expert user'

mode as an option."

The few remaining comments requested an array of features. One of the most pop-

ular suggestions (four comments) was to extend the acquisition strategy to validate

the knowledge collected. The users have commented that both typos and human error

in entering the knowledge can contribute to errors, in particular to false assertions

being stored in the system as true.

For example, one comment read:

"Eventually you need a way of changing established facts caused by

typos."

Two contributors have suggested adding the answer

"I (personally) don't know"

to the set of available choices. See Section 5.2 for a discussion of this.

Finally, contributors have suggested that more advanced reasoning by the system

would further improve the quality of the system's questions. Contributors have cited

scenarios where (i) the ability to generalize from specific answers and (ii) ability to

carry out rule-based inference would have been helpful.
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One concrete example of need for generalization quoted was: when presented with

a set of assertions "fire can heat X," "fire can heat Y," "fire can heat Z," the system

should be able to generalize that "fire can heat any object."

The need for rule-based reasoning was motivated by the example: once "X is not

a food" then the system should not ask whether "X is tasty."

To sum up, it seems that contributors were largely satisfied with the site, provided

useful information on the bugs that were consequently eliminated. The critical com-

ments have suggested features that are mostly in line with what I perceive to be the

limitations of the current system (Section 8.5.1) and are discussed in the Section 9.2

(Future Work).

8.5.1 Limitations of cumulative analogy

The simplicity of LEARNER'S fundamental algorithm for posing questions brings into

high relief the additional types of reasoning that are currently missing from the sys-

tem.

Given the success criterion that a knowledge acquisition system should collect

useful knowledge, a question-posing knowledge acquisition system can fall short of

our expectations in two ways: (i) not posing the questions which would be useful

(failing to collect some useful knowledge), and (ii) posing questions which are not

useful (collecting useless, often redundant) knowledge.

Cases where the system poses questions that are not useful are easier to spot, and

I address them first.

Based on my own experience with the system and the contributors' feedback, the

following currently missing types of reasoning can be identified. Implementing these

should lead to an improvement in question quality:

Handling implications. For example, the system currently has no way to estab-

lish that "if something is neither edible nor drinkable, one should not enquire

whether it is tasty." This is because the system cannot explicitly represent that

"tasty" applies only to edible or drinkable things (here, scoping is treated as
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a kind of implication). The inability of cumulative analogy to handle implica-

tions seems mostly acceptable when acquiring abstract assertions. In a domain

where a lot of causal or configuration-based reasoning was required, this limi-

tation would be a lot more pronounced.

Handling disjointedness. The system currently does not understand that some

situations are mutually exclusive with others. For example, knowing that "peo-

ple walk on 2 legs" does not prevent the system from asking (for example, by

similarity with dogs or cats) whether "people walk on 4 legs." 3

The questions that would be useful but were not posed are revealed indirectly:

some questions posed by the system reveal that it should have instead posed different

questions, as follows:

Handling generalization. The system sometimes asks numerous overly specific

questions. For example it may pose the question "X exists in three dimen-

sions?" about many objects in place of X. The reasoning mechanism needed

to avoid asking these given the more general assertion "Objects exist in three

dimensions" is already implemented in the current system (see Section 4.3.1).

What is missing is the ability to acquire the more general knowledge without it

being volunteered. 4

Additionally, the analysis of the seed knowledge base in Chapter 7 has revealed

that the seed knowledge base has a large number of unique assertions (a large number

of properties each of which was asserted about a single object). While some of the

unique properties are quite exotic (such as the property of a "caterpillar" which states

"will turn into a butterfly"), the inability of reasoning by analogy directly over

properties to acquire new properties is an important limitation of cumulative analogy.

I feel that allowing the contributor to both add new knowledge and to modify the
3Note, howeverthat knowing what is disjoint is non-trivial. For example, English and French

are two different languages, but it does not mean that a person that speaks one does not speak the
other.

4 Note that to handle generalization in the syntactic object position, inferring quantification of
syntactic objects would also have to be addressed.
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knowledge acquisition questions when answering them ameliorates this shortcoming

in LEARNER as it has been deployed. Section 9.2 (Future Work) further elaborates

on the above points and discusses how they can be addressed within the framework

of cumulative analogy.
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Chapter 9

Discussion

This chapter consists of three sections. In the first section, I overview some of the

relevant prior work from the expert system, machine learning, knowledge acquisition

interface, and text mining traditions. There is a vast body of literature in each of

these areas. In overviewing the literature, I focus on the work that has been particu-

larly influential to my thinking regarding knowledge acquisition. The second section

discusses future work regarding the knowledge representation and the algorithms that,

in light of the experience with the deployed system, are likely to improve the quality

of the knowledge acquisition questions. Also briefly discussed are ways to improve the

resulting knowledge base. Finally, and perhaps most importantly, the third section

summarizes the most important contributions of the completed work.

9.1 Background

Prior work that is relevant to this work can be categorized as follows:

1. Early expert systems.

2. Systems that form expectations from prior data and use the expectations to aid

knowledge acquisition.

3. Knowledge representation, especially seeking to capture what is easily expressed

in natural language.

143



4. Machine learning, especially in concept formation and learning association rules.

5. Natural Language Processing, especially extracting relationships from free text

(text mining) and answering questions by finding answers in text (question

answering).

6. Projects gathering (and using in an application) knowledge from ordinary web

surfers who elect to participate.

These categories span several research communities, but they all provide relevant

background for some aspect of this thesis. I examine the work in each category in

turn, explaining its relevance to the theory and the system developed in this work.

First, however, I review the literature on the amount of commonsense knowledge that

needs to be collected to capture a rough equivalent of the commonsense knowledge a

ten year old child might have.

9.1.1 Amount of commonsense knowledge

When addressing the task of collecting commonsense knowledge, a natural question

that arises is how much of commonsense knowledge do humans possess. Answering

this question would permit bounding the task of collecting commonsense knowledge

and estimate, however crudely, the accomplished progress towards the goal of acquir-

ing the commonsense knowledge of a human.

Furthermore, estimating the amount of a certain kind of knowledge or estimating

the amount of knowledge in a given subdomain of commonsense can allow one to

estimate when the sufficient amount of such knowledge has been collected and when

can acquisition move on to a different kind of knowledge or a different subdomain.

However, addressing even the fundamental question of the total amount of com-

monsense knowledge is difficult. In my opinion, answering this question is complicated

by two properties of human knowledge. One problem is the question of granularity of

human knowledge, and the related question of where the line between commonsense

and esoteric expert knowledge should be drawn.
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The hierarchical (fractal) structure of knowledge at various levels of specificity

can well be observed in medical literature. According to estimates and calculations

reported by S. G. Pauker and Schwartz (1976, pp. 14-15), an average person without

medical training knows approximately 100,000 real-world facts that are relevant to

medicine. In addition to this, two popular (and roughly equivalent) textbooks on

general internal medicine have approximately 2,000 pages and have approximately 100

facts per page. At the next level of specificity, about ten subspecialty texts covering

areas such as nephrology, cardiology and hematology can be identified, each with

textbooks containing approximately 60,000 facts each (S. G. Pauker and Schwartz,

1976, pp. 14-15). Even accounting for overlap between subfields, the authors of the

investigation believe that there are roughly twice as many new facts (i.e. 400,000)

introduced at this level of specificity. Any binary division of facts into "common"

and "uncommon," it seems, would have to introduce an arbitrary boundary.

The second problem with estimating the amount of human knowledge is the in-

ferential nature of the knowledge. For example, Lenat cautions against adhering too

closely to numbers of terms and axioms in an inferential knowledge base, referring

to both numbers as being a "red herring." Lenat's critique of excessive focus on

the numbers of axioms has to do with the inferential nature of the knowledge base

- several axioms can compactly express something that is equivalently (or almost

equivalently) expressed by thousands of axioms. One example is that "any animal

belongs to at most one species" can be expressed either as the ontology of species

and a single statement asserting that the leaves of the ontology are disjoint, or as a

(much larger) set of assertions each stating disjointedness of a given pair of species

(Lenat, 1995, p. 35).

Despite these difficulties, there are several approaches to roughly estimating the

amount of commonsense knowledge a ten year old or adult human living in a modern

society possesses.

One early discussion is due to Minsky:

"My impression, for what it is worth, is that one can find fewer than ten

areas, each with more than ten thousand "links." One can't find a hundred
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things that he knows a thousand things about. Or a thousand things, each

with a full hundred new links. I therefore feel that a machine will need to

acquire on the order of a hundred thousand elements of knowledge in order

to behave with reasonable sensibility in ordinary situations. A million, if

properly organized, should be enough for a very great intelligence. If my

argument does not convince you, multiply by ten" (Minsky, 1968, pp.

25-26).

In publications predating the "red herring" stance, Lenat et al. approximate

the amount of knowledge necessary for human-level commonsense reasoning at 108

axioms, a number three orders of magnitude higher than the lowest of Minsky's earlier

figures (Lenat, Guha, Pittman, Pratt and Shepherd, 1990).1

Some more specific psycholinguistic data that sheds light on the issue of the total

amount of commonsense knowledge have been aggregated in the work by Dahlgren

et al. (1989) on naive semantics. To assess which features humans typically asso-

ciate with concepts, the following psycholinguistic studies have been conducted: To

arrive at the most "characteristic" features of categories such as DOG, LEMON, and

SECRETARY, between 20 and 75 subjects were asked in earlier studies to freely list

"characteristic" features of these categories. Features that were freelisted by at least

one fifth of the subjects were chosen for another experiment, in which subjects were

asked to rate the typicality of the features. The number of features ranked as "highly

typical" in the second experiment averaged 15 per topic (this description has been

adapted from Dahlgren et al. (1989, pp. 153-154)). If one assumes the passive vo-

cabulary of concepts to be on the order of 100,000 (which exceeds an average person's

linguistic vocabulary), the total number of such agreed upon characteristic features

is on the order of several million.

Perhaps the most convincing bound on how much knowledge humans retain comes

from the studies of how much information humans are able to remember and retrieve

after a long period. Landauer has carried out a review and quantitative analysis of his

own and others' experiments on human ability to memorize various types of informa-

'Unfortunately, I have been unable to discover the detailed origins or derivation of this estimate.
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tion. The analysis included memorization of visual, verbal, and musical information

and has yielded similar results for the rate at which information can be remembered

so that it can be retained over the long term. All estimates point to humans being

able to retain approximately two bits per second (Landauer, 1986). This implies a

per-year rate of only about 8 megabytes, or several hundred megabytes over a life-

time. These estimates, of course, do not include any non-learned information, such

as the information present in the "hardware" humans use - for instance, it does not

include any hard-wiring for causal or spatial reasoning that may be encoded in the

genome. Still, if the figure for what human brains are able to retain is in the hundreds

of megabytes within an order of magnitude, the overall project of collecting even tens

of millions of axioms should be achievable (provided that the right knowledge is being

collected!) by collecting from tens of thousands of contributors in merely a few years.

9.1.2 Early expert systems

A great deal of knowledge acquisition work happened in the late 80's and early 90's

in the context of expert systems. Some tools (BLIP, ILROID, INDUCE, ID3) con-

structed expert systems by running a non-interactive procedure on a large data set to

induce a set of rules. Other tools (EXPECT, FIS, KREME, MEDKAT, NEXPERT)

constructed expert systems by relying on a knowledge engineer to elicit knowledge

from an expert and encode that knowledge.

These shells generally either hard-coded for a particular problem solving method

of the performance application (MOLE, SALT) or the domain (OPAL, STUDENT),

had to settle for gathering only shallow knowledge, or required extensive programming

by an AI programmer for each new problem. A good overview of the approaches taken

by earlier KA systems is (Gaines and Shaw, 1992).

More recently, much work has focused on moving towards "multifunctional knowl-

edge bases" - systems that can support more than one problem-solving approach

(Aamodt, 1995). This trend correlates with increased attention to acquiring and

encoding problem solving methods (PSMs). PSMs are a kind of meta knowledge,

specifying how other, factual knowledge should be used. The idea has been that by
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having a large library of problem solving methods, task independent factual knowl-

edge can be processed by applying the right methods to it. There has also been some

work to simplify the acquisition of PSMs (Kim and Gil, 1999). Two overview papers

(Boose, 1989; Menzies, 1998) contain a detailed classification of and further pointers

to many implemented systems.

9.1.3 Forming expectations from existing knowledge

Using previously acquired knowledge to aid future acquisition is a major theme of

this work. Here is an overview of existing systems which leverage knowledge that

they have in order to guide their consequent interviewing of experts:

" TEIRESIAS (Davis, 1979) worked with experts to help maintain a knowledge

base. The system helped acquire and refine proposed rules by analogy with

similar rules that were already known. For example, if similar rules typically

included an additional constraint about the patient's age, it would suggest that

the new rule may need such a constraint as well.

" SALT (Marcus and McDermott, 1989) is a system for helping solve design prob-

lems, such as selecting elevator doors, cables, and motor type given (i) the

requirements of a particular building and (ii) lookup tables of costs of various

parts. The system was able to examine the set of rules the expert gave it for

how they "fit together." If there were some inconsistencies or if not enough

information was present to run the system, it would ask the expert to fix its

rules. It was hard-coded to find places were rules could be fixed and suggest

those to the expert.

" EXPECT Method Developer (EMeD) (Kim and Gil, 1999) helps an expert con-

tributor create problem-solving methods for the EXPECT system. The system

works by analyzing interdependencies between methods to create expectations

about what other methods need to be defined and what they will look like.

Because methods have stated capabilities which are much like return types of
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functions in a programming language, and the capabilities are organized in a

hierarchy, the system can presuppose that methods with similar capabilities will

have similar requirements (inputs). The system also checks if a method uses yet

undefined types and proposes to either change it to an existing type or define

the type at a later time.

An approach to eliciting new knowledge that has enjoyed a lot of popularity

because of its simplicity is based on Kelly's Personal Construct Psychology (PCP)

(Gaines and Shaw, 1993). It uses repertory grids to rank various constructs (proper-

ties) of several elements (objects) in a grid.

For example, a grid can be made with the American presidents as the columns

of a grid and their "party affiliation," "popularity," and "charisma" as rows of the

grid.2 Each president than has a numeric value on each of these scales. The elicitation

technique associated with the approach is to compute which elements seem similar or

identical based on the data known so far and then ask for a new construct (property)

that would distinguish the two. Another surprisingly effective method (called triad-

based elicitation) is to select any three elements and query what two elements have

in common that a third does not.

While somewhat constrained in what kinds of knowledge can be acquired, the

PCP-based approaches are effective in gathering a lot of knowledge rapidly. The

knowledge gathered in a grid can also be analyzed in a couple of interesting ways: the

INDUCT (Gaines, 1993, p.465) algorithm infers subsumption rules from the grids and

the FOCUS algorithm (Shaw, 1980) clusters the elements in the grid in a hierarchy by

their similarity. (The work on the COBWEB and CLASSIT algorithms has subsequently

built upon the FOCUs algorithm.)

While the knowledge in LEARNER is more heterogeneous than simple numerical

values on scales of the PCP-based approaches, an interesting potential extension of

my work is to apply the LEARNER-collected knowledge the same methods of pro-

cessing as to the knowledge collected with PCP-based approaches. Such possible
2 At the time of writing, WebGrid III, a system that allows construction and analysis of both

simple and advanced grids, was available online at http://gigi.cpsc.ucalgary.ca.
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post-processing includes induction of rules and extraction of hierarchies from (clus-

tering of) the objects and their features.

Reasoning by analogy, similarly to case-based reasoning, can be viewed as a form

of leveraging prior knowledge in understanding new examples. Analogy has proven

to be a powerful tool when knowledge is acquired incrementally.

Particularly relevant to this approach is Winston's work on analogy (Winston,

1972) which focused attention on the differences new knowledge has from what is

already known, and, in consequent work, processed English-like input to be able to

draw analogous inferences given similar new input (Winston, 1982).

Also relevant are the notions of analogy in TEIRESIAS (Davis, 1979), and Forbus's

approach to analogy by mapping between partially aligned structures of concepts in

two domains, as formalized in the work on the Structure Mapping Engine (SME)

(Forbus, Falkenhainer and Gentner, 1986).

9.1.4 Knowledge representation

I briefly overview several systems that are aimed at representing knowledge. LEAR-

NER uses structures storing simplified parsed natural language as a representation, but

also has the ability to recognize assertions made in natural language into a frame-like

representation.

Early work such as the OWL language for knowledge representation (Szolovits,

Hawkinson and Martin, 1977) was strongly based on natural language, and pursued

the idea that the meaning of any term came from all its uses in the knowledge base

rather than from a formal definition or axiomatization (the view later built on by

work on naive semantics, Dahlgren et al. (1989)).

The most ambitious project has been Cyc, a multi-decade endeavor to encode

commonsense knowledge by a team of enterers (Lenat, 1995). The project has evolved

as it unfolded, currently representing knowledge in CycL, a formal logic-like language.

CYc comes with its own browser, inference engine and some ability to process and

generate natural language.

Other systems aimed at capturing the sort of knowledge this work tries to capture
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also take a logic-based approach. The most notable examples are the KL-ONE family

of systems, including CLASSIC (Brachman, McGuiness, Patel-Schneider and Resnick,

1990).

Another ongoing project with the goal of creating an intelligent agent capable of

communicating in natural language is SNePs (Shapiro, 2000).

Another recent development elaborating on well-established approaches is KARL, a

language incorporating frame-logic (Fensel et al., 1998), and DAML+ OIL, a knowledge

representation language expressed in RDF (DAML, 2002). These systems establish a

baseline for what is expressible and inferable in today's systems, as well as exemplify

the existing approaches to representing different kinds of knowledge.

9.1.5 Machine learning: concepts and relationships

Machine learning provides techniques for extracting concepts and rules from data.

Algorithms such as FOIL (Quinlan and Cameron-Jones, 1995) and CHILLIN (Zelle,

Mooney and Konvisser, 1994) learn from positive and negative examples to form

Horn clauses describing these, in effect creating descriptions for classes of objects

from examples. While the simpler ones try to reflect the given data exactly, the more

elaborate work (Brunk and Pazzani, 1991) introduces information-theoretic stopping

criteria to avoid overfitting noisy data. For more details on inducing rules from the

observed data, a good overview can be found in (Califf, 1998).

Some work that aims to bring machine learning to other aspects of knowledge ac-

quisition includes FOCL-1-2-3 (Brunk and Pazzani, 1992). This system automatically

generates hypotheses and allows an expert to select the correct ones from the gener-

ated ones. This system also maintains connections between rules and the examples

they explain, making knowledge maintenance easier.

Some work has also looked at interleaving machine learning and knowledge acqui-

sition to make knowledge acquisition easier (Sommer, Morik, Andre and Uszynski,

1994; Webb, Wells and Zheng, 1999; Morik, Wrobel, Kietz and Ende, 1993). How-

ever, current systems still construct knowledge acquisition interfaces for contributors

that need to be trained in using these tools. In contrast, this work takes a different
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approach - enabling collection in plain English from untrained contributors.

9.1.6 NLP: text mining and question answering

The advent of the web has made large textual corpora readily available, leading to

an explosion of work the fields of text mining and question answering.

Text mining work has especially focused on extracting ontologies (taxonomic in-

formation) from various sources, as overviewed in (Maedche and Staab, 2001).

While LEARNER does not analyze text written for other people, it is engaged in

extracting knowledge from the mass of contributed assertions (to pose new knowledge

acquisition questions). Hence, some approaches in text mining may be useful on this

task as well. Some particularly relevant work in the field includes (Faure and Nedellec,

1998; Hahn and Schnattinger, 1998; Maedche and Staab, 2000).

The advent of the web also brought about a resurgence in work on question-

answering systems (Cardie, Ng, Pierce and Buckley, 2000; Dahlgren, Ljungberg and

Ohlund, 1991; Kwok, Etzioni and Weld, 2001).

Typically, these work in conjunction with a search engine to try to retrieve from

collection of documents, not just a relevant document, but a specific answer to a

given question. These systems generally lack domain knowledge and rely on language

processing and statistics, rather than deduction, to find the right answer. While

these systems are typically built to aid question-answering, they can be viewed as

knowledge extraction systems.

Additionally, systems such as MindNet (Dolan, Vanderwende and Richardson,

1993; Richardson, Vanderwende and Dolan, 1993) and that of Hearst (Hearst, 1992)

process textual corpora or machine readable dictionaries to extract not answers to

questions, but "is-a" (and, in case of MindNet, other) relationships between the

concepts present in the text being analyzed.

All of the above systems face many of the same challenges that LEARNER does:

the need to canonicalize text, the ability to cope with incorrect or out-of-context

assertions, and the ability to weigh evidence for and against something being true.
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9.1.7 Gathering from contributors over the web

Most people in the world are not trained in knowledge representation. Thus, collecting

knowledge from these people presents a challenge. Also, there are many people in

the world, and therefore it is desirable to be able to acquire from many contributors,

pooling their contributions and bootstrapping on their individual expertises.

The knowledge acquisition community has typically approached this challenge by

designing user interfaces that allow a user to enter and query knowledge by filling

in forms. Proteg6--2000 (Li, Shilane, Noy and Musen, 2000) is a project seeking to

break out this functionality in a modular fashion, but numerous other user interfaces

were created, including the WebGrid system based on personal construct psychology

(Gaines and Shaw, 1998), the OntoEdit browser, CYC browser, EMeD, and so on.

While these approaches do simplify knowledge entry, they do so by constraining

what knowledge can be entered and by forcing the contributor to use a particular

way of representing knowledge (sometimes changing the meaning subtly). Because

the contributor has to be skilled in the particular representation employed, these

approaches are more suited to simplifying the entry for trained contributors.

On the Internet, there are also several simple systems implemented for entertain-

ment purposes. These are, effectively, knowledge acquisition tools tied to performance

applications:

" Guessmaster.com is a Web site containing several games that pose previously

gathered questions trying to guess the person, object, animal, TV show, or

movie (depending on the game). Data gathered is in public domain from John

Comeau.

" 20Q.net, http://www.20q.org is a learning program that plays the game of 20

questions. It gathers and re-uses the information useful in guessing an object.

It is an interesting demonstration of gathering from a community on a specific,

well-defined "toy" problem.

" Open Mind Animals, is forthcoming online at

153



http://openmind.org/Animals.html (Stork and Lam, 2000).

Similarly to the above systems, it a learning program that tries to guess the

animal a human player is thinking of by posing yes/no questions.

When these systems fail to guess the object the player is thinking of based on the

player's answers, these systems ask the player to contribute a new yes/no question

that could help differentiate the player's object from others.

Out of machine learning tradition comes the Open Mind Initiative (Hearst, Hun-

son and Stork, 1999), an umbrella project with the explicit goal of gathering a variety

of knowledge from ordinary "netizens." The Open Mind Initiative is quickly gath-

ering support; it focuses on creating a common platform of tools for gathering from

netizens, sharing the collected data, cross-validating their input, rewarding the best

contributors, and so on.

To date, one of the most ambitious projects to gather commonsense knowledge

from untrained contributors is Open Mind Commonsense (Singh, 2002), which uses

templates and prompting for free-form text to gather knowledge.

9.2 Future Work

The goals of this work have been to define a clear vision - to acquire commonsense

knowledge from untrained contributors, and to take concrete steps towards this vision

- to formulate, implement, deploy and analyze knowledge acquisition via cumulative

analogy. To maintain focus, many fascinating and promising directions had to be left

outside of the scope of this work. Here are some of these, with the topics I believe to

be most important being higher on the list:

Richer internal representation. The knowledge is currently stored in a form that

is close to how it was entered. Introducing the ability to reify more abstract

assertions derived from the entered assertions, together with an update of how

questions are actually posed, should allow for better knowledge acquisition. The
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new capability can be introduced without significant changes to the question-

formulating or filtering algorithms. For example, recognizing that "sugar is

sweet" as asserting "has a (specific value of) taste" and "Tabasco sauce is spicy"

as stating that "has a (specific value of) taste" could lead the system to infer by

the current mechanism that, for example "salt" or "pepper" also have specific

values of taste, leading the system to ask what that value is (i.e. ask how salt

or pepper taste). This would allow LEARNER to tap related, not only identical

properties in posing its questions.

Additional reasoning mechanisms. The system could be outfitted with addi-

tional mechanisms both (i) to filter the presented knowledge (causing LEARNER

to pose fewer non-useful questions) and (ii) to formulate questions by means

other than cumulative analogy, working side by side with cumulative analogy

(causing LEARNER to pose additional useful questions). These are discussed in

greater detail in Section 9.2.1.

Better use of collected assertions. The assertions in the knowledge base are cur-

rently used in two ways: (i) to establish similarity between objects in Select-NN

and (ii) to create new hypotheses for knowledge acquisition in Map-Props. As is

discussed in Chapter 7, there may be significant number of correlations in prop-

erties between objects that are not necessarily similar (for example, many metal

objects, similar or not, tend to be hard and shiny). The presented algorithms

could be extended to extract correlations between properties of non-similar ob-

jects and to use these correlations to pose new knowledge acquisition questions.

This is elaborated in Section 9.2.2.

Better estimation of importance of properties. Currently, importance of each

property is computed according to functions Wt and FreqWt (see Section 4.2).

These rely on the number of objects for which a property is true to estimate how

significant it is. Indeed, very common properties (e.g. "a person can hold X"

is true for very many objects X) probably tell us little about object similarity.

However, there are many exceptions to this general trend. For example, there
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are many "animals" (and hence assertions "X is an animal," and yet being told

that something is an animal is quite informative. It would be interesting to

estimate importance of a property by how much information it provides. Per-

haps this could be estimated from how many correlations or implications can be

derived from asserting this property. If a more sophisticated and yet tractable

algorithm for computing "importance" can be introduced, properties with high

importance could be made to have a greater effect on similarity than the unim-

portant ones, resulting in improved similarity judgments and presumably better

questions.

Additional critics. For example, the system could refrain from asking questions

which are very similar to each other, or questions whose answers depend on

other questions being posed at the same time. Critics could also employ some

additional method completely orthogonal to the generation methods to assess

quality of the generated questions. As a simple example, they can use statistical

plausibility of word pair co-occurrence in the question to remove the implausible

questions (or to lower their scores).

Better use of collected replies. Currently, only "Yes" and "No" replies affect the

operation of the system in a sophisticated way. The other answers are merely

stored; the other answers only prevent the identical question from being posed

again. Other collected replies could be used better. Possible strategies specific

to particular replies are discussed in Section 9.2.3.

Other work, while not addressing question quality, can further improve the quality

of the resulting knowledge base. Two main directions for improvement are as follows:

Improving reliability. Currently, a limitation of the system as a whole is that an

incorrect assertion cannot be overridden or corrected. Empowering contributors

with the ability to override something the system already believes would be a

path towards making the knowledge in the knowledge base more reliable. For ex-

ample, according to one contributor's comment, the contributor has added this
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assertion as a result of accidentally omitting an 'n': "lilies are ice." Two sub-

tasks can be identified: (i) automatically detecting "suspicious" assertions and

(ii) designing a mechanism that would allow contributors to override incorrect

contributions while preventing a malicious editor from significantly corrupting

the existing knowledge base.

Removing ambiguity. The other way to improve the knowledge base is to remove

some of the ambiguity present in the contributed assertions. It can be re-

moved, for example, by having contributors disambiguate some of the lexical

items (words) in the assertions into their WordNet senses, in a manner similar

to (Chklovski and Mihalcea, 2002), possibly in conjunction with unsupervised

disambiguation methods. Specific proposals on addressing the ambiguity are

discussed in greater detail in Chapter 6.

As has been discussed in Chapter 1, LEARNER can be viewed as a system that

leverages human contributors to clean up "noisy" hypotheses that it constructs. As

discussed in Section 9.1.6, other research efforts such as MindNet and Hearst's hy-

ponym acquisition system (Hearst, 1992), generate assertions (noisily) from a different

source - by mining machine readable dictionaries or arbitrary texts from the World

Wide Web. Hence, perhaps a larger system that combines text mining and acquisi-

tion and verification from human contributors, is possible. This approach could be

particularly appealing for acquiring seed knowledge in new subdomains.

9.2.1 Additional reasoning mechanisms

The two most important reasoning mechanisms to implement would be rule-based

reasoning and generalization from examples. Rule-based reasoning could be used in

a number or ways:

" to suggest new questions - if the inference is probabilistic, one could ask

whether assertions inferred with medium or low confidence are true;

" to filter questions - for example, not asking about the taste of something that

is not edible or drinkable
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* to improve evaluation of similarity of two objects - by comparing not only what

is known about them explicitly, but also what can be inferred about them;

A typical rule could be represented as a conjunction of left-hand-side assertions

(preconditions) and a right-hand-side assertion (implication). The terms could be

expressed (as well as indexed and retrieved) as assertions, with the additional possi-

bility of turning the base form of any word into a variable. For example, "?cats? eat

meat because ?cats? are carnivores." Here, "?cats?" represents a variable that can be

substituted with other terms (the original term is preserved to provide information

on syntactic conjugation of the new term being substituted. The standard forward

and backward chaining methods can be run over these rules to perform inference.

Necessary for rule-based reasoning are the rules themselves; I briefly discuss how

they can be acquired. There are two sources: the rules can either be mined from

the knowledge base, or acquired directly from contributors. Mining them from the

knowledge base is discussed in Section 9.2.2.

As for acquiring rules directly from contributors, one strategy would be for the

system to watch for the assertions that receive the answer "no" and request the reason

for it being so. For example, upon learning that "cows do not eat meat," the system

could enquire for the reason (the antecedent of the rule), and receive as the reason

"cows are not carnivores." From that, variablizing the matching components in the

antecedent and the consequent (in this case "cows"), the system would acquire the

rule:

-iA(X, be carnivore) = -,A(X, eat meat).

The rule may be refined later in light of additional information (for example, the

above rule may be applicable only when X is an animal).

The other significant reasoning mechanism suggested by my and the contributors'

experience with the system is generalization (inductive inference) from examples. The

idea is to use assertions about the more specific concepts in a hierarchy to acquire

assertions about the more general concepts.
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One approach to implementing generalization would be as follows. At any node

in the taxonomy of all known entities (which is a directed acyclic graph with a des-

ignated top node), an assertion can be said to hold for "all," "none," or "some" of

the subsumed nodes. For example, the assertion "animals need to breathe" would

be interpreted as the property "need to breathe" having the value "all" at the node

"animal." Similarly, "some living things need sunshine" would be interpreted as

"some" at the node "living thing." For most nodes, the value for a given property

would be "unknown." An algorithm could then be defined to hypothesize values for

higher nodes based on the values of subsumed nodes. For example, if a property has

the value "all" for all known direct subnodes of a node, one can hypothesize that it

also has the value "all" for the node itself. Some preliminary experiments indicate

that a more relaxed policy (for example, at least three positive disjoint examples and

no counterexamples) should also suffice for fairly robust generalization.

9.2.2 Better use of collected assertions

Clusters of properties may exist on a sub-object level, and cut across object simi-

larities. Mining such correlations between properties, with attention to taxonomic

relationships, should be possible.

The task of mining correlations between properties is quite similar to the stan-

dard task of mining association rules in datamining (Agrawal, Imielinski and Swami,

1993). Particularly relevant is the work that also accounts for taxonomic relationships

between objects (see, for example, (Han and Fu, 1995)). In datamining, however, a

particular datapoint is either present or unknown. In contrast, in this task, each

datapoint can, at a minimum, be in one of three categories: known to be true, known

to be false, or unknown. The evaluation of correlation (in particular, the notions of

strength and support of an association rule used widely in datamining) would have

to be extended to reflect the richer input in this particular task.

Using a datamining-like analysis of the data, certain pairs or larger groups of

strongly correlated properties could be uncovered. The resulting correlated groups

can be used in a number of ways:
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" to hypothesize and acquire rules for use in a rule-based inference mechanism,

" to directly pose knowledge acquisition questions (without ever resorting to vari-

ablized rules),

* by looking for perfectly correlated pairs of properties with sufficient support,

redundant properties (multiple ways of phrasing essentially the same thing) can

be identified and the redundancy removed from future KA questions and during

evaluation of object similarity,

* make question posing based on similarity between clusters of properties (note

that this might make the system less transparent).

9.2.3 Better use of collected answers

As mentioned above, only the answers "Yes" and "No" have a sophisticated impact

on the questions posed by LEARNER. The system could be extended to make better

use of the other replies currently being collected .

For example, an assertion being answered with "Some/Sometimes" (e.g. "hats

protect heads from blows,") could be used as a sign to ask a more specific question.

That is, the system could ask what kinds of hats that protect heads from blows, to

learn, for example, that a "hard hat" and a "helmet" are the such kinds of hat.

Once a contributor ranks an assertion as "Nonsensical" or "Matter of opinion," the

system could try to develop a mini-theory (even if a very primitive one) of why this is

so. In many cases, for example, the nonsensicality is due to the object belonging to a

class of objects that do not combine with this property. For example, upon learning

that "beaches do many things with money" is nonsensical, the system could not only

avoid posing this question about "beach" in the future, but also decrease the score

of this question for things similar to "beach."

9.3 Contributions

This work makes the following contributions:
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1. Theoretical and empirical demonstration of the power of reasoning by

shallow semantic analogy (namely, cumulative analogy) for knowledge

acquisition. Cumulative analogy is an N nearest neighbor technique that maps

the properties that hold about nearest neighbors onto the target. In this work,

it is used to formulate the knowledge acquisition questions.

The implementation of cumulative analogy, detailed in Chapter 4, consists of

two algorithms: Select-NN, which selects the nearest neighbors 0 ,,i to the

current topic Otarget, and Map-Props, which maps properties from these near-

est neighbors onto Otarget. The output of Map-Props is used to form knowledge

acquisition questions.

The theoretical analysis of cumulative analogy in Chapter 7 established an upper

bound on what fraction of assertions are directly acquirable (acquirable without

the bootstrapping effect of acquired knowledge enabling additional acquisition).

Direct reachability is a lower bound of the asymptotic reachability realized if

the acquisition process is allowed to bootstrap from the knowledge it acquires.

On the seed knowledge base used, I showed that reachability ranges between

47.3% and 67% for different strictnesses and scopes of reachability. Note that

the analysis (and the percentages reported) are restricted to the objects with

sufficient number of properties, with the threshold for the minimum number of

properties known varying between 2 and 20.

I have also empirically demonstrated that basing the analogical reasoning on the

nearest neighbors is responsible for the observed success rate of posing knowl-

edge acquisition questions by analogy. Evaluating the percentages of questions

answered affirmatively, negatively and judged to be nonsensical in the cumula-

tive analogy from nearest neighbors case compares favorably with the baseline,

no-similarity case that draws analogies from randomly selected objects in the

knowledge base rather than on nearest neighbors. Of the questions generated

by cumulative analogy, contributors answered 45% affirmatively, 28% negatively

and marked 13% as nonsensical; in the control, no-similarity case 8% of ques-
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tions were answered affirmatively, 60% negatively and 26% were marked as

nonsensical.

The application of cumulative analogy to knowledge acquisition has also un-

covered some limitations of the approach. I identify the three most significant

ones. The first is its need for a (preferably large) set of "seed" knowledge to base

analogies on. The second is its inability to acquire properties not shared with

other objects in the knowledge base. This is ameliorated in the implemented

system by mixing knowledge acquisition by analogy with allowing the contribu-

tor to modify the acquisition assertions and to volunteer additional knowledge.

The third is its unawareness of taxonomic "is a" relationships between objects

when such relationships are present.

Lack of ability to reason about taxonomic relationships leads analogical reason-

ing alone to pose many redundant questions. For example, for each particular

kind of animal, the algorithm may ask if this animal "can breathe." Sim-

ply establishing that "animals can breathe" and being aware of the taxonomic

relationships should have been sufficient. This limitation has been addressed

with the additional module that filters questions which are inferable from more

general assertions.

2. Introduction and characterization of cumulative analogy, a class of

analogical reasoning algorithms which pool evidence from multiple

nearest neighbors. This class of algorithms operates on a collection of asser-

tions about objects having and lacking properties. Although applied to knowl-

edge acquisition, these algorithms exhibit a set of features that I believe makes

them an attractive reasoning method for a wider set of tasks, such as querying

the knowledge base by analogy for question answering and checking consistency

of the knowledge base.

The operation of cumulative analogy and its characterization have been ad-

dressed in the previous point. The chief strengths of this class of algorithms are

as follows:
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Ability to bootstrap. The amount of bootstrapping has also not been quan-

tified, but it is also easy to observe. One example of bootstrapping (also

given in Section 4.2.5) is as follows: when starting with the seed knowl-

edge base and teaching about "newspapers," the similar topics, together

with their similarity scores, are: "book" (6.72), "map" (2.76) "magazine"

(2.67), and "bag" (2.51). The three highest-scoring knowledge acquisition

questions posed are "newspapers contain information?", "all newspapers

have pages?" and "newspapers are for reading?" If these questions are an-

swered affirmatively and the answers are submitted to the system, the set

of the similar objects remains the same, but their scores become: "book"

(10.94), "map" (5.53) "magazine" (4.12), and "bag" (2.51). As can be seen

from the change in similarity scores, the less similar topic ("bag") became

less influential in creating knowledge acquisition questions relative to oth-

ers. This should lead to questions posed by LEARNER being more focused.

Conversely, when a question is answered negatively, the source topic(s)

from which this question was formulated will become less similar on future

iterations, again helping LEARNER suppress irrelevant source topics.

Ability to cope with noise. Although the ability to cope with noise has not

been quantified empirically, it has been observed a number of times and

should be easy to reproduce. One example of this, given in Section 4.2.5,

has to do with acquiring knowledge about "tool" starting from the seed

knowledge base. Although the set of similar objects includes such spurious

matches as "fire" and "horseshoe", the knowledge acquisition questions

posed by cumulative analogy are still quite reasonable. As is discussed

in Section 4.2.5, as long as the total level of noise is relatively low, noise

tolerance allows the system to cope with noise arising from insufficient

knowledge, lexical and structural ambiguity of the collected knowledge,

and noise arising from accidental or malicious incorrect submissions by the

contributors.
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The measure of reach of analogy is closely related to measures of correlatedness

of knowledge also introduced by this work and summarized below.

3. Novel measures of correlatedness of knowledge. Chapter 7 introduced

two measures correlatedness between objects in a collection of assertions about

objects and their properties.

Measuring how correlated objects in a knowledge base are (i.e. how many

properties or what percentage of properties they share) may have additional

applications, but in this work it has been important in analyzing applicability

of analogical reasoning. If pairs of objects that share more properties than can

be expected by chance are rare, analogical reasoning about objects based on

matches of properties may be irrelevant to such a knowledge base. If, for any

object, there is at least one other object that shares very many properties with

it, one method of analogical reasoning may be appropriate. If, instead, there

are many objects that share with it exactly two (rather than many) properties,

another method may be more appropriate.

The first measure introduced in this work is the "average similarity histogram."

It calculates with how many objects, on average, a given object in the knowl-

edge base shares one property, with how many it shares two, and so on. This

measure has been used both on the real knowledge base as the starting point

for knowledge acquisition by analogy, and on a synthetic knowledge base with

the same frequency characteristics of properties, but with correlations between

objects due purely to chance.

It was used to establish the difference between the observed amount of sim-

ilarity with what could be expected by chance, and to provide an indication

of where on the spectrum between rare strong correlations and frequent weak

correlations the real knowledge base is located. The results indicated that a

mixture of both few strongly and many weakly correlated objects are present;

these results motivate the chosen approach to analogical reasoning, with sev-

eral (up to ten) most similar objects contributing to similarity, with those most
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strongly correlated having a bigger impact.

One limitation of the average similarity histogram approach is that it averages

data for objects with potentially vastly different numbers of properties. By

doing so, it loses information on what percentage of all properties on an object

were shared. To bring clarity to this issue, a different measure was introduced:

percent similarity of an object to the object most similar to it (in other words, to

its nearest neighbor). In this work, the average data and the standard error was

computed for twenty-four categories of objects: the first category contained all

objects with two properties, second with three, and so on. Grouping objects by

categories in this way allowed us to see how the percentage of properties shared

behaves with respect to the number of properties of an object. The analysis

uncovered that objects in most categories shared about 20% of properties with

their nearest neighbor, with objects with fewer properties sharing more than

20%. Note that the denominator in the percentage includes all properties, even

those unique to a single object in the count (i.e. those that could not be shared

with the nearest neighbor).

The results of applying this measure contributed to my choice of using more

than a single nearest neighbor as the source of mapping in Map-Props, the al-

gorithm that generates properties likely to be true. The expected coverage that

would result from using many nearest neighbors has been bounded with another

measure, the "reach of analogy," which is described above, in the discussion of

the first contribution.

I conjecture that these measures can be applied to other knowledge bases to

compare the applicability of knowledge acquisition by analogy between knowl-

edge bases. These measures could be used to assess whether and what form of

analogical reasoning is appropriate to a given knowledge base.

4. A simplified object-property representation for assertions in natural

language. A popular view in the Artificial Intelligence community maintains

that the choice of representation is frequently more important than the choice of
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algorithm. Formulating a representation for natural language assertions which

facilitates comparison of properties for equality of meaning has been an impor-

tant part of this work.

I have introduced the "signature" representation, over which all comparison of

properties for equality is carried out. The signature of a sentence is meant to

preserve its most important information; it is the set of nouns, verbs, adjectives

(together with their parts of speech) that appear in subject, main verb, object(s)

and prepositional phrases of a sentence, as well as adverbs in adverbial phrases.

All words that make up a signature are reduced to their basic forms. For

example, the assertion "all dogs bark" has the signature: "{dognoun, barkverb}."

Signatures are discussed in greater detail in Section 3.3.

I believe that the signature representation plays an important role in perfor-

mance of Select-NN, the algorithm that establishes the nearest neighbors. In-

formal experimentation in the exploratory stages of this research looked at al-

ternative schemes that retain more information from a sentence (for example,

retains the base form of all the words present in the sentence). The experi-

mentation suggested that matches between properties in these more detailed

representations were in practice often insufficiently frequent for Select-NN to

return a strong set of similar objects.

5. Demonstration of applicability of the generate-and-filter architecture

to the task of generating knowledge acquisition questions. Generate

and test is a classic, well known approach in the Artificial Intelligence commu-

nity. The contribution this work makes is the demonstration of its applicabil-

ity to the particular problem of generating knowledge acquisition questions. I

speculate that the generate and test architecture has applied well to the task

of formulating knowledge acquisition questions due to two characteristics of the

task: (i) the lack of constraint on the methods for formulating questions, and

(ii) presence of constraints on what questions should not be posed. Two exam-

ples of the latter include not posing questions that the system will not accept,
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and not posing questions the answer to which is already known.

This work also contributes to the scientific community a growing knowledge base

of assertions, a resource that will be useful in implementing practical systems that

use common sense. The knowledge base should also enable a variety of semantic

approaches to processing natural language.

Additionally, I hope that the public launch to a wide audience of a system that

uses the state of the art in language and knowledge processing promotes the fields

of artificial intelligence and natural language processing by attracting attention of a

broader audience to the open problems. In other words, I hope this work contributes

to popularizing the state of the art and the current challenges in the fields of AI

(specifically, knowledge representation and analogical reasoning) and NLP (specifi-

cally parsing, language generation, and ambiguity in language).

This work has also taken steps in characterizing the kinds of commonsense knowl-

edge that need to be acquired in order to capture human-like common sense. In

this work, I have taken a "naive semantics" view of commonsense knowledge. In

Section 3.2, I briefly described the kinds of knowledge that lie outside the set of as-

sertions about objects and their properties. In Section 8.3.1, I have presented a more

fine grained classification of assertions about properties of objects. A further elabo-

ration of this effort should be useful in organizing the field's pursuit of capturing and

representing commonsense knowledge, which should some day enable commonsense

reasoning by machines.

Lastly, a contribution this work makes to further research is a simple tool that

allows experimentation with a variety of approaches to reasoning over natural lan-

guage. The thoroughly commented source code of the LEARNER system is available

under an open source license at:

http://sourceforge.net/projects/learner

It includes a number of features not exploited by LEARNER itself but documented

in the manual included with the distribution. The features include support for vari-

ables, rules, and rule-based inference, both over natural language assertions and their

167



signatures, and over a frame-like internal representation of knowledge.
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Appendix A

Link Grammar Parser

The Link Grammar Parser is a constraint-based English-language parser that tries

to assign a consistent set of linkages between all words in a sentence.

The Link Grammar Parser is an impressive system in its own right. The parser

comes out of CMU, is written in C and its source code is freely available for non-

commercial purposes.

Complete distribution and extensive documentation of the link grammar parser

was available at the time of writing at http://www.link.cs.cmu.edu/link.

For readers unfamiliar with the parser, here is brief example of how the parser

would parse the sentence "cats eat mice":

+-Sp-+--Op-+

I I I

cats.n eat mice.n

As a list of links, this information can be represented as follows (the number

following each word indicates the position of the word in the sentence):

((cats.n,O Sp eat,1)

(eat,1 Op mice.n,2))

The above parsing contains the following information about the word "cats":

. "cats" is a noun - because of "cats.n",
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* "cats" has the subject role in the sentence - it is on the left side of an "S" link.

* "cats" and "eat" are plural - they are linked by the "Sp" link in which the

lowercase "p" denotes plurality.

The parser has also been equipped with a post-processor that can pull out con-

stituent tree structure (noun phrases, verb phrases, and so on) from the linkage data.

However, LEARNER uses the parser's native representation because it holds more

information and is better suited for analyzing similarity.
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Appendix B

FramerD

FramerD is a distributed object-oriented database authored by Ken Haase and used

by LEARNER. FramerD is available under the LGPL and includes persistent storage

and indexing facilities that can scale to very large database sizes, as well as a language

FDscript, a superset of Scheme.

LEARNER is implemented in FDscript.

FramerD also comes with a version of the WordNet lexical database and a released

part of the CYC ontology combined and converted into the FramerD format (the

database is called BRICOLAGE or BRICO). LEARNER uses the WordNet component

only.

FramerD also has many attractive features:

" Built-in support for distributed operation.

" FDscript, a Scheme-like scripting language well suited for Al-type applications.

" Built-in functions for XML and HTML parsing and output.

" Built-in support for perl-like regular expression pattern matching.

" Built-in support for nondeterminism.

FramerD documentation, covering the database implementation and the FDscript

language, was available at the time of writing at http://framerd.org.
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Appendix C

Natural Language Generation

This work addresses knowledge acquisition from contributors not trained in knowledge

engineering or formal logic. To acquire knowledge from such contributors, this work

performs knowledge acquisition in natural language. Using natural language removes

the need to train contributors in a knowledge representation formalism, but it also

creates two additional requirements on the system: (i) addressing lexical and struc-

tural ambiguity in the collected knowledge, and (ii) generating acceptable natural

language.

The effects of ambiguity in the language on the algorithm itself as well as possible

ways of disambiguating the collected knowledge have been discussed in Chapter 6.

This appendix describes the processing implemented in support of the latter issue,

that of natural language generation.

Specifically, LEARNER carries out the following processing to formulate grammat-

ically correct questions:

Tokenization. When a newly added assertion is being processed, tokens such as

"fire engine" and "time travel" are identified in it by comparing against the

compound nouns and verbs listed in the WordNet lexical database. Identified

tokens are treated as single, indivisible words just as a normal single word.

Noun conjugation. LEARNER formulates questions about both plural and singular

nouns, which requires the capacity to use either the singular or plural form of
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a noun. For example, when mapping the assertion "books contain knowledge"

onto "newspaper," LEARNER needs to use the plural of "newspaper" to formu-

late the assertion "newspapers contain knowledge." The number of the word

being substituted is determined from the information provided by the parser

about the original sentence.

In LEARNER, the correct form is obtained from a lookup table for irregular

nouns and according to standard spelling rules for the remaining nouns (Jones,

2002) - for example, "box/boxes," "baby/babies," and "shelf/shelves."

Verb conjugation. Processing assertions containing negations sometimes also re-

quires conjugating the main verb of an assertion. For example, consider that

"a cat does not have wings," is transformed internally into

"a cat has wings" (with a truth value of 0).

The need for conjugation arises because in sentences with an auxiliary verb

the auxiliary verb carries the information about tense and agreement with the

subject (while the main verb in such sentences is in infinitive form), while in

sentences without an auxiliary verb it is the main verb that carries the number

and tense information. Once a negation is removed from a sentence containing

an expression such as "do not" or "does not," so is the auxiliary verb "do" or

"does," and the main verb must be conjugated to agree with the subject and

also to carry the information about the tense of the assertion.

In LEARNER, the conjugation of irregular verbs is carried out by retrieving

the proper form in a lookup table, and conjugation of other verbs is car-

ried out according to standard conjugation rules (Jones, 2002) - for example,

"walk/walks," "carry/carries," and "garnish/garnishes.'"

Injecting and removing indefinite articles. There are cases when replacing one

noun with another - something that is routinely done by LEARNER - requires

injecting or removing an indefinite article associated with that noun.
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The reason for this lies in the fact that nouns in English fall into two classes:

countable and non-countable. Some examples of non-countable nouns (also

called mass nouns) are: "salt," "soil," "software."

While singular countable nouns require an indefinite article (for example, "a

carrot is tasty"), mass nouns do not (for example, "salt is tasty"). LEARNER

determines when an indefinite article should and should not be used by looking

up whether a noun is in a list of known mass nouns, and adjusting the assertions

it outputs accordingly.

Selecting the correct indefinite article. A rather cosmetic feature of LEARNER

is to select "a" or "an" as appropriate. The agreement of the article with

the following it word is cosmetic because the agreement is not enforced by the

underlying Link Grammar parser (so, for example, both "a cat has a tail" and

"an cat has an tail" are considered valid), and the article is never included

in the signature. However, early experiments with LEARNER indicated that

contributors were confused by improper article being used (a situation that

can arise, for example, when the countable noun following the indefinite article

changes from one that starts with a consonant to one that start with a vowel).

An example of the need to adjust the article is when "rhino" is replaced with

"elephant" in the following assertion: "a rhino has ears." The assertion needs

to be changed to "an elephant has ears."'

In the implemented LEARNER system, every question that is about to be posed

is processed and the correct indefinite article is selected for each noun that needs

an indefinite article. Ignorance of this approach to which words were changed

is intentional; it allows for independence of the article agreement module from

any prior processing, making the system more modular.

'Also note that whether "a" or "an" is used depends on the word following it, not on the noun
it modifies: "a male elephant has tusks."
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Appendix D

Deriving the Amount of

Correlation Due to Chance

This appendix derives a formula for Eav(O, k), the expected number of objects in a

knowledge base with which a randomly selected object in the knowledge base will

share k properties with. This expression is used to derive the baseline in Figure 7-2

analytically, without performing a simulation.

Before proceeding with the derivation, some notation needs to be introduced. Let

U denote the total number (the "universe") of distinct properties in the knowledge

base. Let Oi denote an object with exactly i properties, and Ni denote the number

of objects with exactly i properties (only "is true" properties are considered in this

analysis). I also use the standard combinatorics notation () to denote "

Lemma D.1 Given a non-negative integer k s.t. k < U, suppose that an object O

has i properties (k < i < U) which have been randomly selected with equal probability

and without replacement form a universe of U properties. Further suppose that an

object Oj has j properties (k < j < U) selected from U in the same manner. Then,

the probability that Oi and Oj share exactly k properties (for k < i, k < j) is given by

any of the three equivalent expressions:

(D (j) - () ( U) i! j! (U - i)! (U - j)!

(U) ( () U! (U-i-j-+ k)! (i-k)! (j-k)!k! (D.1)
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Proof:

This can be established by a simple counting argument. Since all as-

signments of properties to O and Oj are assumed to be equally likely, the

probability of the event of interest (Oi and Oj sharing exactly k properties)

can be computed by dividing the number of events in which the condition

of interest is realized by the total number of events being considered. The

first expression above can be established by assuming some i properties

of Oi have been chosen and counting the number of ways properties of Oj

can be chosen.

For a given selection of i properties out of U for Oi, the number of ways

that Oi and Oj can share k properties is the number of ways k "shared"

properties can be chosen out of i multiplied by the number of ways the

j-k non-shared properties of Oj can be chosen from U -i properties that

are the complement of properties of Oi. This, independently of which i

of U properties 0- has, gives rise to the numerator () (U-') in the first

expression above. The total number of ways j properties can be chosen

out of U is ({), giving rise to the denominator.

The second expression is equivalent and can be established by symme-

try or similarly by counting how properties of Oi can be chosen given a

certain choice of properties of Oj. The third expression in Eq. D.1 is sim-

ply an expansion of the combinatorial notation for either of the previous

two. M

The larger result that needs to be derived is, for different values of k, with how

many objects in the knowledge base on average will an object share k properties.

Clearly, this quantity depends on the number of objects with 1, 2,... , U properties (I

assume there are no objects with 0 properties in the knowledge base).

Let E(Oi, k) denote the expected number of objects with which a given object

Oi will share k properties. E(Oi, k) can be obtained by summing the probabilities
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that O shares k properties with one object across all objects and subtracting out the

object itself. Using the results of Lemma D.1 yields:

E(OZ, k)

where Nj denotes the number ol

Averaging acr

objects with whic

Eav(0, k)

oss

.1 a

( U U-1 ( iJ~) - _ _

N (k 
k

objects with j properties.

(D.2)

all objects yields the expression for the expected number of

given object 0 will share k properties:

U U

SZNi E(Oi, k) ZNi
i=k i=1

U U U-) U-i) U

= ( Ni (k i -(U

i=k ( j=k 3 ()u )/ i=1

(D.3)

(D.4)

This exact expression may be useful in some situations. In others, it may be more

useful to have a simpler approximation. In the remainder of the appendix, I derive

approximations to Eqs. D.1 and D.3.

Recall Sterling's approximation for n!:

n! 2ir n e--

Using this approximation for the factorials involving U, Eq.D.1 can be approximated

as follows:
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(U -i)! (U -j)! i!j!
U! (U - i - j + k)! (i - k)! (j - k)! k!

27r(U - i) U(U-i)e-U+i/27r(U -- j) U(U-j)e-U+j

2wr(U-j) UUe-U 27r(U-i -j+k) U(U-i-j+k)e-U+i+i-k

X ~i! j!
(i - k)! (j - k)! k!

(U - i)(U - j) U(U-i) U(U-i) i! j!
U(U - i - j + k) UU U(U-i-j+k)e-k (i - k)! (j - k)! k!

U2 -U(i + j) + ij
U2 - U(i + j) + Uk

U2 -U(i + j) + ij
U2 -U(i + j) +Uk

(k k(

(e )k

U /

i!j!
(i - k)! (j - k)! k!

(e kk!(i) (j)
U k) k

E,,(0, k) of Eq. D.3 can be approximated by first dropping a minor term and

then applying the approximation derived in Eqs. D.5 through D.10 as follows:

U U U) ) U-i
(U ( ( ( ; - (k)

i=k (j=k )

U U - U

i=k j=k i=)

U

Z NiN
j=k

Uf

i=k

(C)k 

()U

j=k

( N) (
i=k ()

U

kk! N
i=k )

U

EN,

N N'

U 
U

i=k () i=l

U

ZNi (D.11)

(D.12)

(D.13)

(D.14)

N
1

U

N

(D.15)

(D.16)
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(D.9)
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Eav(O, k)

U

i=k

-kk!
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For k =1, 2, and 3, E,,(0, k) can be expanded as follows:

U

~)EN

=i=2
~ 2 (

U

e 3 U
36

i=3

U~ 6

i=3

2 U

i N

2 2N

2 U

N i(i - 1) EN

N - 1)(1 -2),
6

2

- 2) )

These expansions show that as k grows the results of the approximation get in-

creasingly more sensitive to the values Ni for large i. At the same time, Section 7.1

has demonstrated that Ni in the seed knowledge base is well approximated with the

power law approximation for Ni C (for C = 6789). This provides a good fit for

values of i up to VC ~ 82. To approximate values of Ni for 0 < i < U in the seed

knowledge base and avoid the cumulative influence of fractional number of objects in

the approximation for large values of i, I use the piecewise function for Ni:

= 6789 for 1 < i < 82

0 for 82 < i.
(D.22)

Under this assumption, Eq. D.16 can be rewritten as:

Eav(0, k) ~_

82 2

C)k!k! C2

(i=k ()

Applying this equation to the specific case of the seed knowledge base amounts to

substituting in the values for U = 32, 975, C = 6, 789, and the total number of objects
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(D.19)

(D.20)
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U
Ni

U

Ni

U
YNi (D.23)
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ZUI Ni = 12, 326. The approximations for Eav(0, 1), Eav(0, 2), and Eav(O, 3) then

evaluate to:

U 2 U

Eav (0,1 1) N i Ni (D.24)t (i=N ) =1

82 2 U

~C2 N (D.25)

2.7182 9 9~ 278 x 67892 x 4992 /12326 (D.26)
32975

~ 7.65 (D.27)
U 2 U

E0 (OU2) ~ (Ni(i -1) Ni (D.28)
i=2 )/i=1

82 . 2 U

2 2 Ni (D.29)

(2.7182 2 1
3 /x - x 67892 x 77.012 /12326 (D.30)
32975) 2

0.07489 (D.31)

CU 2 U

Eav(O, 3) )3 ( N i(i - 1)(i 2) Ni (D.32)
U 6(i=3i=

82 2 U

(~ 3 2 (i3 + ) Ni (D.33)

2.7182 3 1

32975 x - x 67892 x 31672 /12326 (D.34)

~ 0.003470 (D.35)

Given the large magnitudes of the numbers being approximated, the observed

results can be said to be in rough agreement with the results obtained by simulation

described in Section 7.2. Estimated values E(O, k) resulting from averaging ten runs

of the simulation, as well as the approximate values derived in this appendix are

presented in Table D.1.
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k E(0, k) E(O, k)
1 7.65 15.58
2 0.07489 0.062
3 0.003470 0.0015

Table D.1: Average number of objects with which an object in the seed knowledge
base shares k properties, for 1 < k < 3. E(O, k) denotes values obtained from the
closed-form approximation, and E(O, k) denotes averaged values of ten runs of values
obtained by simulation.
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