
A User Interface Framework for Supporting
Information Management Tasks in Haystack

by

David Frangois Huynh

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

C Massachusetts Institute of Technology 2003. All rights reserved.

A u th o r
Department of Electri l Engineering and Computer Science

May 23, 2003

Certified by
David R. Karger

Professor of Computer Science and Engineering
Thesis Supervisor

A ccepted by
Arthur Smith

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS I
OF TECHNOLC

BARKER JUL 0 7

LIBRARIES

NSTITUTE
GY

2003

A User Interface Framework for Supporting
Information Management Tasks in Haystack

by
David Francois Huynh

Submitted to the Department of Electrical Engineering and Computer Science

on May 23, 2003, in partial fulftilment of the requirements for the degree of

Master of Science in Computer Science and Engineering

Abstract
The means for satisfying basic information management needs in today's operating environments
come from the amalgamation of support implemented by individual, disparate applications. Since
each application is more than often developed independently of the others, the union of their
support still leaves wide gaps in which users' information management needs are not provided for.

This thesis advocates that the support for basic information management tasks be provided by
the infrastructure of any environment, so to expose a uniform experience for managing information.
Five different aspects of information management needs are identified to serve as the focus for our
initial investigation: expressing, perceiving, locating, manipulating, and organizing information.

From these five aspects, principles for building information management environments are
suggested. A centralized, expressive data modeling framework is advocated as being crucial to
achieve coherency in the user interaction experience. View-based presentation schemes are proposed
for flexibly projecting internal data to the UI. And pervasive support for object-oriented UI
manipulations is called for to make the interaction experience scalable.

A user interaction experience for our Haystack information management platform is then
designed based on those principles. Finally, the design rationales and implementation details of
Haystack's user interface framework are discussed.

Thesis Supervisor: David R. Karger
Title: Professor of Computer Science and Engineering

Acknowledgements

I would like to thank all members of the Haystack group whose helpful comments, ideas, and

discussions helped shape many aspects of my research.

I thank my advisor David R. Karger for his insights and guidance, and for many hours of tireless

discussions on the topics relevant to this thesis.

I would like to thank Nippon Telegraph and Telephone Corporation and IBM for their financial

support.

I would like to thank all of my friends for their encouragement and support.

Last but absolutely not least, I thank my parents for all their sacrifices and encouragements, and for

their belief in me.

Table of Contents

CH A PTER 1 Introduction... 13

1.1 The Inform ation M anagem ent Tasks... 14

1.2 Expressing Inform ation...15

1.2.1 Incomplete Schemas .. 15

1.2.2 Lack of Synergy Between Schemas.. 17

1.2.3 Lack of Generic Schemas .. 17

1.2.4 Lacking Naming Schemes... 18

1.3 Locating Inform ation...18

1.3.1 Indirect Access .. 19

1.3.2 No Single Starting Point... 19

1.3.3 Limited Query Support For Non-First-Class Information 20

1.3.4 No Query Support For Cross-Domain Information .. 20

1.4 Perceiving Inform ation .. 20

1.4.1 D ifferent Renderings .. 21

1.4.2 M issing Information .. 23

1.5 O rganizing Inform ation...23

1.5.1 Segregation by Type .. 23

1.5.2 D ifferent M echanisms for Organization.. 24

1.5.3 Mixing Concepts of Access Location and Classification................................. 25

1.5.4 Organization Not Sharable... 25

1.6 M anipulating Inform ation 25

1.6.1 Inter-application Inconsistencies ... 26

1.6.2 Intra -application Inconsistencies .. 28

1.7 Problem Statem ent..29

1 .8 S tru c tu re o f T h e sis .. 3 0

CH A PTER 2 Background W ork.. 31

2.1 Intra-application Solutions Through Autom ation.. 31

2.1.1 User Interface M anagement Systems (UIM Ses)... 31

2.1.2 M odel-Based Interface D esigners ... 32

2.2 Intra-application Solutions Through Design... 33

2.3 Inter-application Solutions Through Integration.. 34

2.4 Inter-application Solutions Through Re-architecture ... 34

2.4.1 The Lisp M achine .. 34

2.4.2 Object Brokerages .. 35

2.4.3 The W eb... 36

2.4.4 The Semantic W eb .. 39

2.4.5 The Views System .. 40

CH A PTER 3 A pproach...43

3 .1 P rin c ip le s .. 4 3

3.1.1 Refactor support for information management tasks 43

3.1.2 To achieve coherency, use a centralized, expressive data modeling framework 44

3.1.3 Present information in the forms fitting the nature of that information........... 45

3.1.4 Support object-oriented UI manipulations pervasively..................................... 46

3.2 H aystack's User Interaction Experience... 47

3.2.1 Expressing Information .. 47

3.2.2 Perceiving Information.. 48

3.2.3 Locating Information.. 49

3.2.4 M anipulating Information .. 50

3.2.5 Organizing Information.. 51

3 .3 C o n trib u tio n s ... 5 2

CH A PTER 4 The H aystack Platform ... 55

4.1 Architecture Overview ... 55

4.1.1 RD F Stores and RD F Containers... 56

4.1.2 Services and Agents .. 60

4.1.3 User Interface Framework .. 60

4 .2 B asic D ata M o d e ls .. 6 1

4.2.1 Collections... 61

4.2.2 Lists ... 62

4 .3 A d e n in e... 6 4

CHAPTER 5 User Interface Framework Design Rationales .. 67

5.1 Inform ation Transform ations .. 67

5.2 V iew A bstraction...69

5.2.1 A n A nalogy .. 70

5.2.2 View Request Specifications .. 71

5.2.3 Persisting View Requests... 72

5.3 Rendering A bstraction ... 73

5.3.1 UI Elem ents ... 73

5.3.2 Persisting Rendering Requests .. 74

5.3.3 Composing Rendering Requests .. 75

5.3.4 Mixing View Requests with Rendering Requests... 75

5.4 Layout A bstraction ... 76

5.5 D ata Com putation A bstraction ... 77

5.6 The Transform ation Pipeline.. 79

5.7 Transform ation Trees...80

5.8 Environm ents .. 82

5.9 O ptim izations .. 83

CHAPTER 6 User Interface Framework Implementation...85

6.1 Com ponent A rchitecture...85

6.1.1 Registration of Evaluators... 86

6.1.2 Evaluator Java Interface .. 89

6.1.3 Context... 89

6.2 U l Elem ents ... 91

6.2.1 Event Passing .. 91

6.2.2 Layout N egotiation ... 91

6.3 V iew Producers ... 94

6.4 D ata Producers..97

6.5 Supporting D irect M anipulations ... 101

C H A PT E R 7 U sage Scenario and U ser Study..103

7.1 Points to Illustrate...103

7 .2 S c e n ario ... 1 0 5

7.3 U ser Study D esign...116

7.3.1 D esign Rationales.. 116

7.3.2 Procedure .. 121

7.4 U ser Study Results and D iscussion .. 123

7.4.1 General Observations.. 123

7.4.2 Num erical D ata ... 124

7.4.3 W ritten Responses ... 132

7.4.4 Conclusion... 133

CH A PTER 8 Future W ork..135

8.1 Com ponent Architecture ... 135

8 .2 V iew s ... 1 3 6

8.3 UI Elem ents...137

8.4 D ata Com putations...138

A ppendix A - U ser Study Instructions ... 139

A ppendix B - U ser Study Survey...141

A ppendix C - Survey W ritten Responses...145

R eferences ... 153

List of Figures

Figure 1. Specifying the artist of an audio track in Winamp 3.0...16

Figure 2. Specifying the author of a document in Microsoft Word..16

Figure 3. Specifying the department of a contact in Netscape 7.0 Mail & Newsgroups....................16

Figure 4. Locating the master list of categories in Microsoft Outlook 2002......................................19

Figure 5. Viewing file attachments while composing an e-mail message in Netscape 7.0 Mail &

N e w sg ro u p s ... 2 1

Figure 6. Viewing file attachments while composing an e-mail message in Microsoft Outlook 2002.22

Figure 7. Finding the total size of several files in Windows XP Explorer.. 22

Figure 8. Properties displayed by Windows Media Player 8.. 23

Figure 9. Java files are displayed with warning flags in IBM's Eclipse 2.0.. 23

Figure 10. Organizing an e-mail message in Netscape 7.0 Mail & Newsgroups using context menu.24

Figure 11. Context menu of an image file in Jasc Paint Shop Pro 7.0 ... 26

Figure 12. Context menu of an image file in Microsoft Windows XP Explorer................................27

Figure 13. Context menu of a file in Microsoft Windows XP Explorer... 27

Figure 14. Context menu of an attached file in Microsoft Outlook 2002.. 28

Figure 15. The Properties dialog in Microsoft Word 2002 .. 29

Figure 16. Example of an RDF statement about an RDF predicate ... 47

F igure 17. H aystack's user interface .. 50

F igure 18. A sam p le con text m enu .. 51

F igu re 19 . T h e O rgan ize to o l...52

F igure 20. A rchitecture overview .. 56

Figure 21. A sam ple im plicit collection ... 62

Figure 22. A sam ple explicit collection ... 62

Figure 23. A sam ple D A M L list.. 63

Figure 24. A sam ple non-em pty m utable list.. 63

Figure 25. A sam ple em pty m utable list ... 64

Figure 26. An initial illustration of the transformation pipeline ... 70

Figure 27. A second illustration of the transformation pipeline with rendering requests and UI

e le m e n ts in c lu d e d .. 7 4

Figure 28. T he transform ation pipeline... 80

Figure

Figure

Figure

Figure

Figure

2 9 . A tran sfo rm atio n tree ... 8 1

30. Association between a rendering request and a UI element ... 88

31. Hierarchy of nested UI element instantiations inherent in a transformation tree............92

32. Resolving a super class view request to a view class .. 95

33. Generating a specific class view request from a view class .. 96

Figure 34. Scenario: reading A hsa's e-m ail m essage ... 107

Figure 35. Scenario: Creating a shortcut to the map to Celine's home ... 108

Figure 36. Scenario: invoke the Rotate command on a picture..108

"i r 37. M8na io choo i g dire tAio t" rot.'ate- pI.cture .. 10IlgULC J I. SI..na1rtloJ. oos t.11LJL)t111 toLU'1 1N. L'fax
1

1I

Figure 38. Scenario: com posing an e-m ail to Ben...109

Figure 39. Scenario: attaching Celine's portrait to e-mail message to Ben..110

F igure 40. Scenario : resizing a picture .. 111

Figure 41. Scenario: classifying a song into a project ... 112

Figure 42. Scenario: classifying Ahsa's e-mail message into more than one category...........................113

Figure 43. Scenario: Seeing more information on Celine's portrait (actual full scale photograph

om itted to o b serve cop yright)...114

Figure 44. Scenario: viewing information of the photographer of Celine's portrait 115

Figure 45. Scenario: brow sing m ore photos of Cehne...116

Figure 46. Comparison of subjects' performances on Haystack and Windows 127

Figure 47. Breakdowns of subject pool based on whether particular tasks were skipped 129

Figure 48. Subjects' responses to how often they need to perform particular types of task.......131

Figure 49. Subjects' answers to whether Haystack or Windows was easier, or both were equally easy,

for particular tasks indicated in six survey questions...132

List of Tables

Table 1. Shortcomings of existing information management environments 30

Table 2. Comparisons between several inter-application solutions by re-architecture.....................42

Table 3. Specific types of prescription and evaluator... 85

Table 4. Timings of subjects' performances on two environments...125

Table 5. Subjects' performances with respect to first environment used .. 126

Table 6. Recordings of whether subjects skipped particular tasks...128

Table 7. Subjects' responses to m ultiple-choice survey questions ... 130

CHAPTER 1

Introduction

On the surface, the personal computer appears very flexible, providing utility in a multitude of

domains: every computer user is engaged in at least some combination of Web surfing, e-mail and

instant messaging, contact information management, document authoring, and multimedia

interaction. By acquiring more software packages, a user can even manage recipes, peruse

encyclopedias, publish professional-looking brochures, play games, design home interiors, compose

music, etc. all on the same machine. When taken together as injbrmation management environments, these

software applications and the operating systems on which they run seem versatile and powerful.

At the same time, it is common knowledge that the general-purposed personal computer is difficult

to use. In this introduction, I discuss the various shortcomings that the existing information

management environments exhibit with regards to their information management functionalities. In

particular, I will show where they are lacking in providing capabilities for performing information

management tasks, including expressing, perceiving, locating, manipulating, and organizing

information.

The description of these shortcomings serves as the basis for forming my problem statement in

section 1.7, which is an endeavor to determine the set of basic functionalities that the infrastructure

of any information management environment should support to address these shortcomings in a

manner consistent throughout that environment.

The end of this chapter lays out the structure of this entire thesis.

13

1.1 The Information Management Tasks

The sources of difficulties in using computer software are numerous, but they can be summed up in

a nebulous observation that software either does not support some tasks that users want to perform,

or performs certain tasks not in accordance with users' expectations. In considering the collective

software on a personal computer as an information management environment, we recognize that the

fundamental tasks in that environment are the tasks of managing information. These tasks include

perceiving, expressing, manipulating, locating, and organizing information.

I do not intend to classify every information management task into one of these five types

exclusively. These different types are meant to be different aspects of a task on which we can focus.

A task that involves manipulating information almost certainly involves expressing information;

however, I may want to emphasize on only one of the two aspects to highlight certain points during

a certain part of my discussion.

In fact, these five aspects can also be used to provide different perspectives on any task, not just the

tasks readily recognized as involving information management. This is because complex, high-level

tasks often break down into smaller tasks that inevitably involve managing information. The high-

level tasks, hence, can be inspected from the five perspectives. For instance, the authoring of a

scientific paper involves locating and digesting relevant works, organizing the topics in the paper,

expressing associations between the relevant works with the topics, etc. Composing a marketing

brochure involves collecting marketing facts, organizing them into a flowing presentation, selecting

graphics, manipulating the graphics, etc. Holding a meeting requires locating the meeting

participants, locating a free room, locating, digesting, and organizing materials needed for the

meeting. From this observation that every task involves some of the five aspects of information

management to some degrees, I argue that fundamental mechanisms for managing information

should be provided in a consistent fashion throughout an environment before any task can be

supported.

Of course, the manner in which a specific aspect of information management occurs in a particular

domain may be unique within that domain. Seeking stanzas in an audio track is quite different from

finding a file in a directory. Reading a city map is certainly different from reading DNA sequences.

Drawing the architecture of a building is not the same as editing a text document. And organizing

criminal investigation evidences might be much more involved than filing e-mail messages.

14

However, there are certain similarities in the information management tasks in different domains that

warrant an environment-wide unified support for managing information, on top of which there

might be domain-specific support. The task of locating all red gears in a mechanical drawing is

analogous to the task of finding all MP3 files in the Adult Contemporary genre in a file directory.

Both tasks involve narrowing the universes of objects by type (i.e. gear and MP3) and then by a

property (i.e. color = red and genre = Adult Contemporary).' Likewise, both tasks of reading a city

map and perusing an orchestra's score may benefit from a highlighting capability: the map layer

encoding a particular feature (e.g. restaurants, parking lots, shopping malls) can be highlighted, as can

the score of a particular instrument (e.g. clarinet, piano, guitar).

It is these common, environment-wide information management functionalities that I am interested

in identifying and providing. But first, we must examine how these functionalities are lacking in

existing information management environments. The next five sections describe several deficiencies

in those environments. Some of these shortcomings, or similar ones, have been articulated elsewhere;

some are my own observations. They have been herein classified into the five aspects of information

management for the purpose of my discussion.

1.2 Expressing Information

Although there is a plethora of information domains supported by various software applications,

expressing information within these domains or across them remains difficult in all existing

environments.

1.2.1 Incomplete Schemas

The data schemas of certain applications appear incomplete. For instance, no audio software

application allows users to manage contact information for audio artists. Only the names of artists

can be inputted and they remain as text fields of audio tracks (Figure 1). Similarly, documents'

authors, if supported by a file system, are just text properties of documents (Figure 2); and contacts'

departments are no more than text properties of contacts (Figure 3). Because those are just text

properties, users cannot specify more information about them, such as recording the work address of

an audio artist, the phone number of a document's author, or the manager of a contact's department.

The schemas in question seem rigid and restrictive.

I While type might be just another property in the view of system designers, I believe that users tend not to think of type as
a property, because usual properties such as color can be changed (by painting over) whereas type remains immutable and
fundamental to each object.

15

Figure 1. Specifying the artist of an audio track in Winamp 3.0

General SwI~marY]stabsba contents custom -

Sibect A

t~anager:

Cqpn, MIT

Figure 2. Specifying the author of a document in Microsoft Word

Figure 3. Specifying the department of a contact in Netscape 7.0 Mail & Newsgroups

The incompleteness of schemas is understandable: if audio artists were modeled as first-class objects

in an audio software application, what else should be first-class? The artist's company, that

company's president, the president's home address, the home address' map, the map's author, etc.?

The chain of linked properties can go on indefinitely and the best solution for the designer of the

audio software application is to cut it short before it crosses outside the domain of audio resource

management.

16

While the designer of the audio software application would not take on the burden of modeling

audio artists as first-class objects, there are other software applications that already consider persons,

artists included, first-class: e-mail clients. Likewise, there exist some applications that model as first-

class objects the various other types of information in the previous example: companies, addresses,

and maps. Nevertheless, these applications cannot cooperate in such a way that their schemas can be

merged: an audio track in an audio software application cannot be assigned an artist whose contact

information is managed by an e-mail client.

As a result of the inability to merge schemas, users perceive inconsistencies in the functionalities

offered on "person" objects in different applications. In one application, contact information can be

recorded for persons; in another application, only names can be specified.

1.2.2 Lack of Synergy Between Schemas

In the example from the previous section, the relationship between an audio track and its artist is a

close and common one. Most users would expect to be able to record the artist of an audio track.

There are other relationships that are less common: an audio track's recording company, the top ten

list on which the track has ranked, the radio channel that has aired the track, the user's acquaintances

of whom the track is a favorite, the user's daughter's first reproduction of the track, etc. These are

very specific pieces of information that might be meaningful to only some users. They capture a

synergy between schemas that is rarely, if ever, allowed for in existing information management

environments because they are too specific and too diverse to be planned for, and because they do

not seem to fall into the responsibilities of any application involved.

1.2.3 Lack of Generic Schemas

Not only are too specific relationships neglected, too generic relationships are not supported either.

There is no unified means for expressing that a piece of information, regardless of which application

manages it, is "important" so that it should be kept easily accessible and guarded against accidental

deletion. Likewise, it is not possible to group two or more pieces of information together to indicate

their relatedness without recording their exact relationships, which may remain elusive even to the

user or which may be too cumbersome and not useful to specify in details. (File directories can only

group objects at the granularity of files. Instant messages, for example, are "smaller" than files and

cannot be organized by a file hierarchy.)

17

1.2.4 Lacking Naming Schemes

Expressing information about a particular object requires referencing it. The naming schemes of

existing environments are lacking in a major way: the name of each object (its reference) is most

often the same as its access location. For instance, there is no other way to refer to a document

except by its file path, i.e. how one accesses the document. If the document is moved to a different

location, its access location is obviously changed, but so is its name. Even though the document still

retains the same identity in the user's perspective, its name is now different. For one thing, this

behavior is counterintuitive because it is not reflected in the physical world: a person still retains his

or her identity and name even if he or she moves to a different address; whether a book is on a table

or on a bookshelf, it is still the same book and is still called by the same name. If the book were to be

called by different names in different locations-as it would be if it were stored on the computer,

then it would be almost fruitless to express any information about that book inasmuch as such

information would remain valid only until the book is moved.

The existing naming schemes also fall short in addressing minute objects, such as a shape in a

CorelDRAW! vector drawing. In fact, there is simply no scheme for naming such a shape. As a

consequence, there is no way to express information about it, except through very fixed UI

mechanisms of CorelDRAW!. (Note that the shape is a first-class object in CorelDRAW!, but it still

cannot be referred to elsewhere in the whole environment.)

This problem of inaddressable objects extends to our greater networked world. Microsoft Outlook

2002 refers to the current user's Inbox by the URL outlook: inbox and the Sent Items folder of an

opened Personal Folder Store file named "Archived Folders" as outlook: \\Archive Folders\Sent

Items. Clearly, this naming scheme does not take into account the user's identity nor the machine on

which Outlook is running. As a consequence, the naming scheme cannot address, say, the Inbox of

another user on another machine. Any information expressed on the URL outlook: Inbox remains

ambiguous as it can apply not to one unique entity but to several.

1.3 Locating Information

Not only are users restricted in expressing new information, they are also confined to awkward ways

of locating existing information.

18

1.3.1 Indirect Access

Often, even if a piece of information can be located, it can only be located in a long winded way. For

example, in Microsoft Outlook 2002, in order to arrive at the master list of categories, one must open

the Categories dialog for any e-mail message through its context menu, and then click on the Master

Categoy iUst ... button (Figure 4). There is no shorter way for locating this list, and there is no way to

create a shorter way. Unlike resources on the Web, dialog boxes cannot be bookmarked for quick

access at later times. Users are constrained to the static UI routes for locating information and cannot

rewire these routes to suite their information locating needs.

Item(s) belong to these categories:

Ayaitablleecategories; atrCt.oyLs

New wcategory
Competition ~ "

_ Favorites
Gifts Business
Goals/Objectves Competition
Holiday Favorites
Holiday Cards Gifts w
H -t Contacts Goals/Objectves
Ideas Holiday
International Holiday Cards
Key Customer Hot Contacts

SMscellaneous Ideas
Li Personal International

Phone Cals Key CustomejK C j anc s Miscellaneous. .

Master___Category__ Personal
Phone Calls
Status
Strategies

Figure 4. Locating the master list of categories in Microsoft Outlook 2002

1.3.2 No Single Starting Point

The process of locating a piece of information primarily consists of a sequence of browsing and

querying steps. The choice of either browsing or querying should be left to the user as logically

possible rather than restricted due to implementation limitations. However, in current environments,

users are often required to browse first because there is no a single starting point for specifying a

query: in order to find a text document, start by opening the operating system's file browser; in order

to find an e-mail message, start the e-mail client. If a user wants to search for all e-mail messages and

text documents containing a particular string, he or she must perform that query twice, once in the

file browser and another time in the e-mail client. If the environment had a mechanism for specifying

a query in which the type of the sought items can be specified with a disjunction, the user would have

been able to achieve the desired results with just one query.

19

At the same time, some types of information can be searched starting at multiple points. For

instance, a user can attempt to locate a particular MP3 through the file browser or through the audio

software application, presuming all MP3 files have been imported into the audio software. However,

these two starting points offer two different sets of search capabilities: only the file browser supports

queries by modification date, and only the audio software application allows searching by the number

of times an audio track has been played. The user may begin at one starting point and fail to find the

functionalities offered only by the other starting point.

1.3.3 Limited Query Support For Non-First-Class Information

The inexpressiveness of data models discussed in section 1.2 gives rise to a particular deficiency in

locating information: users cannot query for a collection of pieces of information that are not first-

class objects. For instance, in most if not all address book applications, users can record the company

of a person only as a text property. Given a contact, a user can locate the contact's company by

opening some particular view of the contact. However, given several contacts, there is no mechanism

for arriving at the collection of companies for whom those contacts work because each company

cannot be located (or viewed) independently of the associated contact. Hence, in order to send such

a list of companies to another user, one would have to manually copy out the names of the

companies from the views of the contacts and eliminate duplicates as necessary.

1.3.4 No Query Support For Cross-Domain Information

The query support in existing environments is also lacking when it comes to cross-domain

information. (This is partially because certain cross-domain information is not even expressible in

current environments, as discussed in section 1.2.2.) For instance, it is not possible to query for the

addresses of audio artists whose works are in one's collection. Even when all the cross-domain

information involved is managed by the same application, querying is not supported thoroughly: it is

not possible to specify a single query in Microsoft Outlook 2002 to find all e-mail messages sent

recently by all participants of a given meeting. Half of the information involved is stored in the

meeting module of Outlook, and the other half in the e-mail module. Querying across these two

modules is not allowed.

1.4 Perceiving Information

When a piece of information can be located in more than one way, it may be displayed differently

depending on how it has been located.

20

1.4.1 Different Renderings

Consider the order in which a name is displayed in Microsoft Outlook 2002. In the Contacts folder

and on Contact forms, users can specify how names are to be displayed: first name first or last name

first. However, in E-mail folders and on E-mail forms, such setting is entirely ignored: names are

displayed the ways they have been encoded within e-mail address specifications. Consequently, there

is no way to sort the messages in an E-mail folder by the last names of senders or by the first names

of senders, as some senders specify their first names first, and some last names first.

For a second example, consider how file attachments are displayed in e-mail clients. When a file is

attached to an e-mail message in Netscape 7.0 Mail & Newsgroups, it is displayed as an icon labeled

with the file name (Figure 5). There is no mechanism for changing the way it is displayed. This can be

inconvenient: suppose one would like to verify that one has attached the correct picture, it would be

helpful to present the attached file with a thumbnail image because the file name (such as

"DCP_0691.JPG" in Figure 5) might not immediately remind the user of the file's content. Very few

e-mail clients, if none at all, can display picture attachments as thumbnails even though most, if not

all, modern operating system file browsers can do so with ease. This shortcoming is clearly not a

lacking of any particular e-mail client, but an epidemic flaw common among several programs.

SComrpose: (rib subject)

Fie Edt View Optons Tools Window Help

__ DCP_0691JPG

Figure 5. Viewing file attachments while composing an e-mail message in Netscape 7.0 Mail
& Newsgroups

Microsoft Outlook 2002 does offer an improvement over Netscape 7.0 Mail & Newsgroups by

displaying each attached file's size (Figure 6). However, it does not display the total size of all

attachments, which is more useful than the sizes of individual files. If these files were selected

together in the file browser of an operating system such as Microsoft Windows XP, their total size

21

would have been easily known to the user (i.e. "670KB" shown in the window's status bar in Figure

7). Even though file sizes are known to Outlook, it does not present such information in a form

useful to users.

5e edt iew jisert Fgrmat lools Actions felp

Subject:

Attach.- DCP 0691.JPG (254KB); DCP 0692JPG(222 KB),

DCP 0693.JPG (193 KBj

Figure 6. Viewing file attachments while composing an e-mail message in Microsoft Outlook
2002

-5: F\David\MyPicturesK W E _fLi
Fie Edt View Fgvontes Tools Hep

QBack % Search ' Folders 4 t

Ares F- Vavid \My Pictures

Name Size r ype Date Modified Date Picture Taken

Wlaipapers File Folder Mar 26, 03 9:37 AM
cloudy.bmp 1KB Bitmap Image Apr 08, 02 9:35 AM
cdoudy.gif 1KB Paint Shop Pro 7Im ... Apr 08, 02 9:46 AM

25... Paint Shop Pro 7 Im .. Sep 04, 01 7:03 PM Sep 02, 018:22 PM
- 22... Paint Shop Pro 7 Im... Sep 04, 016:49 PM Sep 02, 018:23 PM

19... Paint Shop Pro 7 Im.. Sep 04, 017:03 PM Sep 02, 018:26 PM
DCP_0694.JPG 15,.. Paint Shop Pro 7 Im... Sep 04, 01 7:03 PM Sep 02, 018:26 PM
Desktopir 1KB Configuration Settings Aug 29, 02 5:03 PM
map-compass2jpg 28 KB Paint Shop Pro 7Im... Jul 13, 02 1:38 PM
map-compass.jpg 20 KB Paint Shop Pro 7Im... Jul 13, 02 1:30 PM
pspbrwse.jbf 8 KB Paint Shop Pro 7 Br... Nov 28, 01 3:58 PM
rainmbmp 1KB Bitmap Image Apr 08, 02 9:38 AM
rain.gif 1KB Paint Shop Pro 7 Im... Apr 08, 02 9:45 AM

hSample Pictures 1KB Shortcut Feb 15, 02 1:23 PM

3 objects selected 670 K Y My Computer

Figure 7. Finding the total size of several files in Windows XP Explorer

In addition to file sizes, other file properties are also readily available through file systems. However,

they are not always used in presenting files. In Windows Media Player 8, each MP3 file is shown with

several properties (Figure 8), but this set of properties lacks several intrinsic file properties such as

author, date accessed, category, comment, etc. offered by NTFS. Even though Windows Media

Player 8 can easily retrieve these properties and display them, it has decided not to.

22

Figure 8. Properties displayed by Windows Media Player 8

1.4.2 Missing Information

Some details may not be available to a piece of code that renders a piece of information. For

instance, while Windows Media Player 8 knows the number of time an audio track is played (its Play

Count property in Figure 8), the operating system's file browser does not and hence cannot show

play counts. Similarly, Java files are shown with warning flags in IBM's Eclipse 2.0 (Figure 9) but not

anywhere else.

tile fdit source Refactor avigate Serch Prect Run Wind

LiPackage Expkorer x

+ FooA

i:' H aystack
o # srcjava

toe&
-*.iedu

F" mit
-SI

haystack
Sadenine

content

ozone
A proxy

rdf
f security

Figure 9. Java files are displayed with warning flags in IBM's Eclipse 2.0

1.5 Organizing Information

The various inconsistencies in the mechanisms for locating and perceiving information that we have

discussed so far are also seen in the means for organizing information.

1.5.1 Segregation by Type

Pieces of information of different types often cannot be organized together: there is no way to file e-

mail messages and instant messages in one common hierarchy of folders when the mode of delivery

(instant or relayed) does not matter to the user. (In fact, few instant messaging applications, if any,

23

offer a means for organizing instant messages.) Similarly, it is not easy to organize e-mail messages

and text documents together as they should be when, for instance, they are related by projects.

1.5.2 Different Mechanisms for Organization

The most common UI mechanism for organization is drag and drop. There are several alternatives to

drag and drop. Netscape 7.0 Mail & Newsgroups allows the user to invoke the context menu of an e-

mail message and select the destination folder. Most file browsers implement a different mechanism:

files can be selected and then copied or cut and pasted into the destination folder through the

operating system's clipboard. Netscape 7.0 Mail & Newsgroups does not support cut/copy-and-paste

operations on e-mail messages and file browsers do not support specifying destination folders

through context menus.

L__ nox I _ d _h ai.n__iedu - Ncpe 7.

ie Edit View Go fMessage Tools Window Hep

ubctor sentder contwns,
7 dfhuynhk..mit.edu

j6 nboy subject Sne
LgDrafts
tTemplates Re: Emaing: demo Open Message n New findow David R. Karger

Sent TALK TOMORROW: Col R Terry Knight
-Trash a MIT Media LabColloquu elto Linda Carpenter

Local Folders W TODAY: BRAINS & MAC, forward Emily Walazek

iUnsent Messages a : LIDS Student Confer dlt As New. andrea@eecs.nit.edu

MDrafts TALK: Bioinformatics s MoveTo ysis of core . EventNotification

Templates (Sloan Subject Prioritizatil KWed__________________

fSent P56 grading

5Trash a PhD Career in Patent La

Free Webmail g@ Re. PS6 grading a David Francois 1T-mp1tes
ga lunch tomorrow Dennis Quan Sent
a Thesis Defense - J.P. Gr D Meg JP Grossman A Trash
g Hlciday Party details Annika Pfluger

Figure 10. Organizing an e-mail message in Netscape 7.0 Mail & Newsgroups using context
menu

If the user needs to explore the contents of various folders before filing information into one of

them, then the cut/copy-and-paste mechanism works best since the selection of items to be filed is

safely stored in the clipboard. If the user knows for certain which destination folder to file into and

does not wish to switch away from the current folder, then the context menu mechanism is the

choice. However, the user is not offered both mechanisms in both Netscape 7.0 Mail & Newsgroups

and file browsers. As a consequence, organization may be more convenient in one application than in

another even though the user's needs are the same.

24

1.5.3 Mixing Concepts of Access Location and Classification

A common method for digesting a corpus of information, i.e. for organizing its content in one's

mind, is to classify items in that corpus. However, the mechanism for classification is often the same

as that for access: in order to file away a document, one must move it into a folder. In doing so, one

has changed the access location of the document. Similarly, filing an e-mail message requires

removing it from the Inbox. Such an action may not be desirable as the user might want to keep the

message in the Inbox to serve as a reminder for an unfinished task. Because the concepts of access

location and classification are muddled together, organization through classification cannot take place

in this example until the user no longer needs the message as a reminder.

In addition, because classification is done by fixing access location, and each object can be accessed

from only one location, one cannot classify a piece of information in more than one way. Often, an

item belongs to more than one category in a classification scheme. For instance, an e-mail can be

both work-related and fun-related if its content is mixed. One can make copies but one will need to

keep the copies synchronized.

Furthermore, only one classification scheme can be applied at a time. It is a common practice to file

e-mail messages by sender, but such a scheme breaks up conversations participated by many people.

Ideally, users should be able to classify messages by conversation topic and sender simultaneously.

1.5.4 Organization Not Sharable

Also because classification is done by fixing access location, classification schemes cannot be

separated from the information that is classified. For instance, one cannot easily migrate a folder

hierarchy from one machine to another so that the same hierarchy can be used to organize files on

the latter machine. Such migration would involve moving the hierarchy with its content and deleting

the contents after the move. The content can be expensive to move, or it should not be copied to the

second machine in the first place because of privacy issues. As a result, it is not easy to share one's

classification scheme with someone else.

1.6 Manipulating Information

Functionalities offered for manipulating information within each information management

environment are often inconsistent across different contexts.

25

1.6.1 Inter-application Inconsistencies

While both Jasc Paint Shop Pro 7.0 (Figure 11) and Microsoft Windows XP Explorer (Figure 12) can

display image thumbnails, only the latter allows rotating images through their context menus. This

discrepancy is bizarre since Jasc Paint Shop Pro 7.0 is an image editor and is capable of rotating

images itself while the file browser is only expected to display files in a generic manner.

$ i e W;dt View Find ImrageFe Window Heip

Desktop

+ My Documents

My Computer
+~Cp To 3.F.pp.:

+40 Car cin (C:)
+ 9Doruk (D:)

. Equats (E:) add atten o
40 Forance (F:) RnmH ename ...

send To StudioAvenue.com...David-

Sdev 0 Inormation...
4 £metadata

amberarcher _
4 . l On Flat M eeting

4§ at Print MuLtbpfe Images...

+ t log4j _Preferences...
Multlava

Q qbstudy

/ + f tcnf smalmeeting.... smalliavigate... smat-orgaNze
C Ytvt

Figure 11. Context menu of an image file in Jasc Paint Shop Pro 7.0

Consider another case of cross-application inconsistency: while one can scan an EXE file for viruses

in Microsoft Windows XP Explorer through the file's context menu (Figure 13), one cannot do so to

the same file if it is shown as an attachment in an e-mail message in Microsoft Outlook 2002 (Figure

14). Scanning a file for viruses before sending it away makes a lot of sense. Likewise, it would be

convenient if Outlook allowed zipping and unzipping an attached file from its context menu.

26

Fie Edit Vew Favorites rools Hielp

Back Search &jFolders

Adrtss F)F: dev' www)proects'baystacksreenshots

P3reviem

Edit

Print
Refresh Th.17mbnal

CS R TG add-attendees.png
Rotate Clockwise
Rotate Counter Clockwise

Set as Desktop Background
Open With
WinZp

Send To

fUll-screenshot prg mee organize.png

gopy

Create Shortcut
Delete
Rename

Ptoperties

small -fUll-screenshot. png small-meeting png smal-navigate-pane.png small-organize.png

Figure 12. Context menu of an image file in Microsoft Windows XP Explorer

Die Edit _ew Favontes Tools Help

QBack - Search Fo

adress F\ev haystack

Run as...
yew Dependencies

s24WinZ r

Pin to Start menu

Send To

Cut
CopY

............
S Create Shortcut
Delete
Rename

haystack-userid - - --
Properties

Figure 13. Context menu of a file in Microsoft Windows XP Explorer

27

5le zdft Aew Insert Fquiat Tools Actons tLelp

a d T1

7o..

subnect:

Print
Save As
Remove

http://www.ai.it Cut huynh/
Copy

Select At

Figure 14. Context menu of an attached file in Microsoft Outlook 2002

Consider more complex examples of inconsistencies. One can select several numeric cells in any

spreadsheet program and find their average but one cannot easily determine the average of several

files' sizes in a file browser. One can find the statistical mode of several cells in a spreadsheet program,

but one cannot let the computer determine one's most favorite artist within a collection of audio

tracks in an audio software application.

1.6.2 Intra-application Inconsistencies

The previous section illustrates inconsistencies between different applications. There also exist

inconsistencies within individual applications. While Microsoft Word 2002 may offer the

spellchecking functionality on document bodies, it does not do so for other textual properties of

documents. In the Properties dialog shown in Figure 15, there is no means for spellchecking the

comment.

28

Generd SummarY I Statss Contents Custm

Dle: FMassachusetts Institute of Technology

Author: David Huynh

Manager:.

Company: Mrr

cattgory

typerht
base;

Template: Normalhdot

f~saye pr eview picture

Figure 15. The Properties dialog in Microsoft Word 2002

1.7 Problem Statement

The preceding five sections have discussed how existing environments are lacking when it comes to

allowing users to manage information (summarized in Table 1). I have also argued that, since the

tasks of managing information form the basis of any user's experience in using the personal

computer, these environments must address the deficiencies in their support for managing

information before their user experiences can improve. In fact, I believe that the tasks of managing

information must be supported by the infrastrucures of these environments rather than solely by the

individual applications that run on them. In this thesis, I explore a number of solutions to some of

the aforementioned deficiencies through the principles and construction of the user interface

framework of the Haystack information management platform. Specifically, I am seeking to

determine the set of basic information management functionalities that the infrastructure of any

information management environment should support to ensure a coherent experience for

interacting with information. Complex task support can be built on top of this functionality set to

provide domain-specific capabilities.

29

Table 1. Shortcomings of existing information management environments

Expressing information Schemas incomplete, stop short with fields rather than first-class
objects
Lack of synergy between schemas: relationships spanning different
schemas not expressible
Lack of generic schemas: no default schemas for specifying generic
properties such as importance on every object in system
Naming schemes tied to access locations, minute objects not
addressable, naming schemes not unique across network

Locating information Access to certain information long winded and no means to create
shortcut to visited information
No single starting point for querying, or multiple starting points
that lead to unexpectedly different results
Limited query support for non-first-class information
No query support for cross-domain information

Perceiving information Renderings arbitrarily different in different contexts
Renderings in certain contexts incomplete due to inaccessible data

Organizing information Data organized by system type; this segregation might not be
natural
Mechanisms for organization arbitrarily different in different
contexts

Mixing concepts of access location and classification; multiple

categorization not possible
Organization (classification schemes) not sharable

Manipulating information Inter-application inconsistencies
Intra-application inconsistencies

1.8 Structure of Thesis

This thesis consists of seven chapters in total. This first chapter introduces the problems that I am

trying to solve. Chapter 2 explores various past attempts to solve these problems. Chapter 3 dives

into my own approach. Chapter 4 discusses the overall Haystack platform. Chapter 5 concentrates on

the design rationales behind the user interface framework of Haystack while Chapter 6 describes its

implementation details. Chapter 7 illustrates a usage scenario and reports the effectiveness of my

approach through a user study. Chapter 8 suggests directions for future work.

30

CHAPTER 2

Background Work

This chapter examines various full and partial solutions that have been implemented and proposed to

support the tasks of managing information in easy and intuitive ways in existing commercial or

research information management environments.

2.1 Intra-application Solutions Through Automation

Even though we have discussed so far about environments-operating systems and applications

combined, it is illuminating to note that several solutions have been offered for making user

interfaces coherent and, in doing so, easing the tasks of managing information within individual

applications.

2.1.1 User Interface Management Systems (UIMSes)

The field of user interface modeling has been one of the main focuses of user interface researchers,

as evident by the number of user interface management systems ever constructed, to list a few:

* Common Lisp Interface Manager (CLIM) [1];

* Lockheed User Interface System [30];

* Cooperative User Interface (COUSIN) [22];

* University of Alberta UIMS [45];

" Alpha UIMS [27];

* Sassafras [231;

31

* University of Toronto UIMS [14];

* Penguims [24];

* George Washington UIMS [44]; and

* VUIMS [35].

Roughly speaking, user interface management systems are design-time tools and run-time

infrastructures designed to "abstract the details of input and output devices, providing standard or

automatically generated implementations of interfaces, and generally allowing interfaces to be

specified at a higher level of abstraction." [33]

UIMSes work on one user interface, one application at a time. As the modus operandi of application

development goes, the internal work of the application has already been determined by the time a

UIMS is called upon to design and build the user interface. As a consequence, the UIMS can only

keep the UT coherent within that application by typically projecting the inner working of the

application systematically to the user interface. The UT may behave coherently, but the functionalities

offered for managing information depend much on the application's inner working. If a piece of

information is modeled by the application as a text field, it cannot be manipulated as a first-class

object in the UT.

2.1.2 Model-Based Interface Designers

Model-based interface designers (e.g. MOBI-D [38]) improve on UIMSes by facilitating the

specification of full interface models, which include user-task models, domain models, user models,

presentation models, and dialog models [38]. (UIMSes allow the specification of only the last two

types of model.) By specifying these models in a higher level of abstraction and relying on tools to

generate concrete data models and user interface elements, we can achieve more standard data

models and user interfaces. Standards mean compatibility and consistency.

However, as the relevant models of each application are specified independently from the models of

other applications, the resulting data models and user interfaces of different applications still are not

guaranteed to be consistent with one another. For example, the designer of an audio software

application may believe that his or her users never need to perform any complex task on artists in the

domain of audio resource management. As a result, he or she specifies a domain model in which

artists are represented by text properties of audio tracks, and a user-task model that omits

sophisticate manipulations of artist information. On the other hand, the designer of an e-mail client

may specify a more sophisticate domain model with regard to person information in which persons

32

are represented as first-class objects. Each of these two applications can be coherent within itself, but

together they do not provide a consistent experience.

The seeming negligence of UIMSes and model-based interface designers to ensure environment-wide

UI and data model coherence is caused by the lack of support for data and UI sharing in the

environments in which these systems work. In the example above, since the designer of the audio

software cannot easily reuse the data and functionalities developed by the designer for the e-mail

client, he or she must resolve to keep the model for artists simple inside his or her own application,

lest his or her enthusiastic modeling work extends to include every domain possible.

2.2 Intra-application Solutions Through Design

There are also applications not built with UIMSes and model-based interface designers, but rather

designed from ground up with a focus on information management, albeit within very specific

domains. For examples,

1. SHriMP Views [46] offers a zoomable UI for exploring hierarchically structured information

corpora such as Java code bases;

2. Presto [16] provides a unified and rich facility for managing documents with digital contents

through the use of attributes (unfortunately, since not every piece of information in every

domain is a document with digital content as I will discuss in section 2.4.3, Presto does not

have such a wide applicability);

3. IBM's Lotus Notes [5] is a well known application for managing workflow and

communications within organizations; and

4. Canon's Cat [15] [41] offered a well-designed keyboard interface for managing text

documents in 1987.

These applications all enjoy the a priori knowledge of which domains of information they deal with.

This is a tremendous advantage because the space of all usage scenarios becomes much smaller with

the restriction of domain. I mention these applications here for the sake of completeness in this

discussion of information management, but they are not examples of systems that I aim to build. I

am investigating the necessary infrastructural support for information management tasks in entire

33

environments that work in the foreseeable and unforeseeable domains, not applications such as these

that are designed specifically for very limited domains.

2.3 Inter-application Solutions Through Integration

In order to provide coherence experiences in information management, several attempts at

integration have been implemented. The most readily recalled examples of integration are application

suites, including Microsoft Office, OpenOffice, Sun's StarOffice, and OEone [8]. These suites'

emphasis on entire environments is to be noted. However, integration often only takes on the route

of cosmetic unification that makes various different applications look the same and behave similarly.

For instance, they have menu commands with common names; their toolbars contain similar items;

their help systems are structured similarly; etc. While certainly improving usability, such an

integration approach does not yield a more coherent information management experience.

Sometimes, only cosmetic integration is possible because the internal workings of the applications

have already been set in stone and their individual paradigms for managing information cannot be

changed without a major overhaul. More often than not, the existing applications already have fixed

user models that might not be compatible, and without overhauling these models, integrating the

applications brings out their discrepancies and introduces more confusion than uniformity.

2.4 Inter-application Solutions Through Re-architecture

There have been numerous efforts to build entirely new architectures that facilitate and encourage

more expressive data models and more coherent user interfaces. Some even focus on selective

aspects of information management.

2.4.1 The Lisp Machine

In the 1970s, the Lisp machine [32] aimed to provide a whole, coherent operating environment for

AI researchers by implementing an operating system, based on the Common Lisp Object System

(CLOS) [19], that exposed a common object-oriented data model to all applications. CLOS included

facilities for managing Lisp objects (e.g. allocation, garbage collection) and was accelerated by

specialized hardware. Instead of communicating with one another through files, pipes, and shared

memory as in Unix, applications and the OS exchanged Lisp object references and called

dynamically-bound methods on them.

34

The Lisp machine's approach of redesigning the entire operating environment was refreshing in its

days, and is still a desirable direction that I would encourage today. Such an environment-wide

redesign could bring uniformity to the user experience in interacting with information. However, the

Lisp machine's focus was more on powerful programming abstraction for Al research than on

information management. The Lisp object-oriented data model that it employed did not expose data

and data schemas in an easily query-able form. For instance, it was not possible to efficiently locate

(e.g. by querying for) all objects of a certain type in the system; or to retrieve a listing of different

types of object in the system so that the user could start browsing the corpus by type; or to

determine which other objects were associated with a particular object. The last example requires first

a programmatic inspection of all schemas that had some properties whose ranges were the type(s) of

the given object, and second a query for objects in those schemas whose some of those properties

were actually the given object. All three examples call for (a) some query support over an object-

oriented data model, which is difficult to implement, and (b) explicit schema specification. While the

CLOS data model was capable of encoding rich data schemas, such support was not designed-in as

part of the infrastructure. In other words, programmers were not encouraged nor assisted to expose

their applications' data and schemas. Data sharing was on a voluntary basis.

Because the Lisp machine put its emphasis on operating environments and applications, it implicitly

assumed that data would not exist without these applications and environments. In fact, Lisp objects

could only be uniquely identified within the Lisp machine on which they had been instantiated. The

naming scheme in CLOS did not guarantee uniqueness across networks, and a Lisp object on one

machine could not be referenced from another machine (unless location-dependent information were

added). Furthermore, an object's schema would remain hidden in the absence of the application that

implemented schema-related methods on that object. There was no facility for browsing, querying, or

managing heterogeneous information (objects of different types) through common user interfaces

(e.g. organize instant messages and e-mail in the same hierarchy). Each type of objects can only be

manipulated within its indigenous application.

2.4.2 Object Brokerages

Like the Lisp machine, object brokerage systems also take an object-oriented approach to inter-

application communications. But instead of imposing a single language-specific environment, they

allow independent applications to communicate through programmatic binary interfaces for the

purpose of sharing data and schemas and invoking one another's functionalities; each application can

be implemented in a language of its designer's own choosing. Examples of these systems include

Microsoft's Component Object Model (COM) [7] and the Object Management Group (OMG)'s

35

Common Object Request Broker Architecture (CORBA) [3], both originating from the Andrew

environment [34].

These systems provide the concept of monikers for naming objects, which can be unique across

networks. Given a moniker, one can call on infrastructural facilities to retrieve an interface pointer

through which one can interact with the object named by that moniker. This is restrictive because for

each moniker, only one interface pointer can be retrieved. That is, only one piece of code can

provide the named object's properties and functionalities. That piece of code implements a fixed set

of schemas and additional schemas cannot be applied to the object without modifying that code.

In addition, these systems focus mainly on capability discovery (i.e. determination of a component's

functionalities by querying its supported interfaces) rather than data modeling. As a result, there is

little support for data querying. In particular, there is no means to query for properties over several

objects, e.g. to find which objects have a given title.

These object brokerage systems are also designed to handle user interface components. In fact,

Microsoft's COM is an extension to a previous architecture called Object Linking & Embedding

(OLE) [36] that allows content components to be nested in rich documents. However, nesting

usually occurs at one level depth only; and even then, the user experience is less than smooth as the

merging of the functionalities of the nested component with the functionalities of the containing

document into one main menu often yields an unintuitive menu.

Overall, these object brokerage systems are difficult to program in because a lot of code needs to be

written to implement and expose binary interfaces properly. Hopefully, with the advance of more

development tools that automate certain aspects of interface implementation, such as generating

interface method stubs, component development will become easier.

2.4.3 The Web

The World Wide Web is the largest effort so far that focuses on users' information needs. It

provides uniform information access by allowing information of various types (e.g. airline itineraries,

maps, movie reviews, news) to be accessed through the same user interface of the web browser. In

most cases, no application needs to be explicitly opened and closed to view the content of a URL.

That is, users need not be aware of computational mechanisms that are called upon to serve their

information needs. Users simply give references to the information they want, and the information is

automatically returned in the most suitable forms.

36

In addition to evoking mnemonic URLs, users can also call on documents by clicking on labeled

hyperlinks. In this associative browsing paradigm, hyperlinks act as strings on which users can "pull"

to bring back more and more information. In contrast, conventional application-centric Uls require

the user to start different applications, open various dialog boxes, and navigate various UI paths to

get to certain pieces of information; and this navigation process is heterogeneous in the sense that

there is no single type of navigation action like the hyperlink clicks. From another perspective, the

Web does not require the user to be reactive to the UI. The user can indicate which browser window

the desired information should arrive in and most websites honor that request. In conventional UI,

information may come in unexpectedly opened dialog boxes and the user often has to react to them

by shifting his or her attention to those dialog boxes. From either perspectives, the Web navigation

paradigm is conceptually simpler to users.

Hyperlink-based navigation had been around before the coming of the Web. However, pre-Web

hypertext systems existed only in small scales. Only when the Web was adopted in such a large scale

did we start to reap the benefits of the hyperlink paradigm as applied on information in vast quantity

and of numerous types. It is this grand scale of the Web that sets it apart from all of its hypertext

predecessors [20], that shows a navigation paradigm versatile enough to replace a diversity of

customized user interfaces.

Furthermore, any piece of information obtainable on the Web can be bookmarked so that it can be

returned to at a later time with as few as one click. This is because all Web resources can be named.

In contrast, few pieces of information in conventional Uls can be bookmarked: if a piece of

information is gotten by opening a stack of dialog boxes, returning to it would involve reopening the

same stack of dialog boxes in the same order-there is no shortcut possible.

Overall, the Web satisfies users' information needs in many ways: information can be accessed in an

easy and uniform manner without knowledge of binary representation and application association.

Read-Only Mode

In the context of information management, the Web suffers from a major user interface

shortcoming: in the default case, the web browser displays documents in a read-only mode. While

this functionality is sufficient for browsing published documents, it is restrictive in information

management where users need to modify and author data.

37

Restrictions by Focus on Content

We also find the Web's data model lacking because the Web's primary focus is on content and

presentation. In particular,

1. there is no standard strategy for dealing with content-less information (e.g. what URL to use

to refer to an object that has no retrievable digital content);

2. there is no standard way to encode a generic property since properties are not considered

content (e.g. there is no Web standard to record a document's author);

3. relationships, expressed as hyperlinks, can only be embedded inside content-without

content, there is no place to specify the relationships;

4. there is no standard way to encode types of relationship-hyperlinks only specify generic

relationships or associations; and

5. any query model that works over Web relationships, i.e. hyperlinks, must always deal with

content.

We will illustrate these deficiencies in details through a single example in which a user wants to assert

that a particular picture has been taken by a particular photographer.

First, while it might be easy to decide which URL to use for the picture in our example, it is unclear

how to refer to the photographer. He or she can have several homepages, one of which might be

dedicated as the official homepage whose URL can be used to identify him or her; or one might

resort to one of his or her e-mail addresses. The difficulty faced in choosing the photographer's URL

lies in the fact that unlike a document, a person is not an object that has digital content. A document

is its content and consequently, the URL used to retrieve the content can naturally be used to refer to

the document.

Second, even if one were to dedicate a URL to refer to the photographer, one cannot record his or

her information (e.g. age, gender) without creating a Web document. And the Web does not specify

nor enforce how such a document should be composed-how to specify the property names and

values in HTML. As a consequence, Web documents created by different authors to encode similar

properties will have different formats. After all, HTML is a presentational language and its

presentational aspects will distract the authors from the encoding of the properties. The resulting

different formats hinder attempts to query over several properties-containing Web documents. For

38

instance, in order to programmatically find out the employers of some photographers, one must

write code to:

* parse the HTML codes of those Web documents whose URLs are taken to refer to the

photographers; and

* use natural language algorithms to guess which parts of the HTML codes refer to the

employer attribute (e.g. it could be "employer", "Company", "Organization:", or

any imaginable string).

Such a piece of code is highly complex, error-prone, and no more than a hack to counter this misuse

of HTML for the purpose of encoding properties: HTML is primarily designed to be used as a

presentational language. While SGML can be called upon to allow properties to be encoded properly,

SGML has been criticized as being too complex to be a practical widely-used language [37].

Third, the relationship between the picture and the photographer can only be encoded as a hyperlink.

However, it is unclear which Web document should contain this hyperlink. If one were to refer to

the photographer with the URL of one of his or her homepages, then one would logically embed a

hyperlink to the picture in that homepage. As with properties of individual objects, it remains unclear

how to syntactically encode relationships between related objects (e.g. where in which documents,

what labels to use for the hyperlinks). Due to the lack of a standard encoding scheme, querying

support for inter-object relationships must depend on natural language processing.

Overall, the Web favors objects at the level of granularity of documents with well-defined digital

content and relationships that have no specific semantics. As a consequence, objects of other levels

of granularity and relationships with specific semantics cannot be easily encoded. In addition, the

Web's emphasis on content presentation interferes with the pure encoding of information and how

information can be queried and analyzed by machines.

2.4.4 The Semantic Web

The Semantic Web [13] aims to solve the various shortcomings in the Web's data model. Through

the use of Unique Resource Identifiers (URI)-a superset of URLs, the Semantic Web proposes a

unified naming scheme capable of referring to objects at any level of granularity, with or without

digital content, and independent of their physical storage locations and binary representations. Focus

is put into the encoding and publication of data schemas through the Resource Description

Framework (RDF) [9]. RDF allows semantics of relationships to be specified, and relationships to be

encoded independent of content presentation. As a benefit of the unified naming scheme, several

schemas can be applied on the same object given its URI, and different aspects of the same object

39

can be managed by different software systems. For instance, an "e-mail" schema and a

"photography" schema can both be applied on a singleperson object to manage his or her e-mail

communications and photographic creations. Overall, the Semantic Web makes it easy to expose and

share data and data schemas.

Furthermore, RDF data models, essentially directed graphs, are much simpler than the Web's

hypertext model in which data is expressed as human-readable textual contents in HTML. Because of

this simplicity, RDF data models can be easily stored in optimized formats different from the formats

in which they are originally expressed, e.g. RDF/XML [9] and N3 [12]. Queries can be supported

more efficiently and more simply over these optimized formats than over the Web's data models.

Most efforts related to the Semantic Web project have been spent on data modeling while much less

attention is paid to user interface issues. Many graph-based viewers (e.g. IsaViz [6] and BrownSauce

[1]) have been built to display and edit RDF data, but those are unsuitable for everyday interaction

with information. For instance, few users, even the data modeling experts, would want to browse

their calendar events as graphs. There are also ontology editors (e.g. Prot6g6 [17] and Ont-o-mat [21])

that let users model data schemas but they are not designed for interacting with everyday

information. There are also user interfaces for authoring schema-specific data, but they are too

specific and do not cooperate to create a coherent information management environment. For

instance, Annotea [26] only deals with web document annotations; there is little indication that its

user interaction experience would scale for any other purpose.

Much exploration is needed to create an environment for interacting with Semantic Web

information. For one thing, the freedom to share data and data schemas will lead to more

information exchange and ultimately result in more information with which users have to deal. This

increase in information might introduce more UI inconsistencies. The ideal user interaction

experience must scale gracefully as more and more data types are incorporated into a user's

environment.

2.4.5 The Views System

The Views system was a research computing environment that investigated user interface issues for

the purpose of addressing UI inconsistencies [31]. It did so by separating data modeling and storage

and low-leveled UI presentation logistics from applications, letting applications retain only high-

leveled logic of how to manage and present their data. Data as well as UI presentations could be

shared easily across applications, as both were managed by the framework. Invariants were used to

40

maintain consistency between UI presentations and their corresponding data: if the data changed, the

UI would be refreshed; if the UT was manipulated, the data would be updated.

The Views system seems to have a few drawbacks. Its data model seems restrictive in that once the

type of an object has been determined, it cannot changed. As a consequence, more schemas cannot

be applied dynamically on an object. Furthermore, there is no evidence that queries can be

performed across various objects.

Overall, the Views system appears very promising. Unfortunately, it seemed to be at an early stage of

exploration in 1992 and there has not been more news of its progress since.

Table 2 shows a summative comparison between the various inter-application solutions by re-

architecture discussed in this section.

41

Table 2. Comparisons between several inter-application solutions by re-architecture

Object Brokerages The Web Semantic Web Views System

Model schemas explicitly No. Schemas are implicit No. Schemas are implicit No. Yes. No.
in object-oriented model. in programmatic

interfaces.

Object identifiers unique No. Identifiers unique Yes. Monikers are made Yes. Yes. N/A. No information.
across networks within local machine only. unique with access

locations.

Identifiers independent of N/A. Objects can only be No. Monikers are tagged No. URLs are locators. Yes. N/A. No information
access location accessed on local with access locations.

machine.

Can model objects Yes. Yes. No. Yes. Yes.
without digital content

Relationships can be Yes. Yes. No. Yes. Yes.

specified independently
from contents

Specific relationships can Yes. Yes. No. Yes. Yes.
be encodedI

Adequate query support No. Object-oriented No. Programmatic No. Query support must Yes. Simple data models No. Object-oriented
model hinders querying interfaces hinder deal with contents. facilitate good query model hinders
support. querying support. support. querying support.

Schemas can be added No. No. N/A. Yes. No.
to existing objects

Lisp Machine

CHAPTER 3

Approach

This chapter starts by discussing the principles that I advocate for constructing any information

management environment, continues with the application of those principles to create Haystack's

user interaction experience, and ends with an overview of the user interface framework that supports

such an experience.

3.1 Principles

In this section, I explore a number of lessons learned from previous works as discussed in chapter 2,

presented in the form of design principles.

3.1.1 Refactor support for information management tasks

The evolution of modern operating systems follows an application-centric paradigm. Different

software vendors focus on different applications that fill different usage niches. The domains of

these applications are often narrow: for instance, there are some applications whose sole purpose is

to create animated GIFs. Other applications have wider domains, e.g. spreadsheets and CAD tools.

Even though the domains of these applications seem disparate, they all include some common

information management tasks as I have discussed in Chapter 1.

This recognition of such common functionalities leads me to propose a refacloring of these

environments to move the support for common information management tasks from individual

applications into the environments' infrastructures. This idea of refactoring comes from software

43

(re)engineering techniques for object-oriented systems. In [42], Roberts notes that reusable

components in these systems often start off with wrong designs-they are either more general or

more specific than should be. As the systems evolve, common concrete use cases arise and they

point out how the reusable components should be factored in the first place. The systems are then

refactored to optimize for those concrete use cases.

Refactoring an object-oriented system leads to a design that is more comprehensible, maintainable,

and extensible. These advantages are transferable to my proposal of refactoring information

management support. The refactored environment will be more comprehensible to both users and

programmers, more maintainable whenever it needs fixing, and more extensible as support for new

information management tasks is required. Users of the refactored environment will be shown a

unified, coherent experience for managing information, and programmers will be able to leverage

common, infrastructural support for information management tasks, avoiding duplicate work and

duplicate bugs.

The biggest challenge to this refactoring is to predict how various foreseeable domains of

information needs will fit into the environment. This can be a daunting task, as these various

domains can be very different, ranging from music composition to management of chemistry

experimental results to collection of criminal investigation evidences. However, it is not necessary to

"get it right" on the first try of refactoring. Evolutionary improvements following the refactoring can

be made to encompass more and more domains. In fact, such improvements will be made more

easily because the environment will be more properly structured after the refactoring.

3.1.2 To achieve coherency, use a centralized, expressive data modeling

framework

As discussed in Chapter 1, many deficiencies of existing information management environments

result from incompatible data models that are distributed throughout individual applications. It is

difficult to express information that spans across several of such data models. In addition, one

cannot efficiently perform sophisticated queries that draw together information from different data

models. Overall, distributed data models in a single environment often lead to fragmented data. For

that reason, I propose the use of a centralized data modeling framework as the first step to the

refactoring of any information management environment.

The user interface and interaction experience of an environment is only as good as its data model.

Without an expressive data model, the environment will fail to satisfy some users' information needs:

44

users will not be able to express certain forms of information, perform certain sophisticated queries,

create shortcuts for quickly accessing certain pieces of information, etc. An expressive data modeling

framework should have the following capabilities:

1. It must have a unified naming scheme that is location and representation independent and

that guarantees uniqueness across networks;

2. It should be able to deal with objects at any level of granularity, with as well as without

digital contents;

3. It should allow several schemas to be applied on any single object; and

4. It should be able to encode relationships between objects in different schemas.

After the adoption of an expressive data modeling framework, it still remains to be seen whether

developers of the system will create schemas that are compatible with one another. For instance, it is

possible that one schema does not make use of another schema but duplicates only a subset of the

second schema's functionalities. This is a difficult challenge. There have been some researches on

how to encourage schema reuse [11] [29]. As well, one can draw on results from research on code

component reuse [18] [28].

3.1.3 Present information in the forms fitting the nature of that information

When dealing with flexible data models as those of the Semantic Web, it is tempting for developers

to create uniform views of data in the forms of graphs and trees. While these forms are capable of

showing many configurations of data, they are not suitable for human beings to use to deal with

domain-specific information. For instance, a calendar presented as a graph is not usable. The nature

of information and the current context need to be taken into account.

Of course, it remains a challenge to choose the best form of presentation to show a particular piece

of information. This is where infrastructural support for sharing UI work comes into play. For each

piece of information, there is supposedly an expert who knows best how to present it. Other

developers should be able to rely on the infrastructure of the environment to find the UI work of

that expert and reuse it whenever that piece of information needs to be shown. This idea is already

present in any view-based UI architecture. I am simply advocating its use on a larger scale compared

to prior schemes. Just as the Web took the idea of hypertext to a qualitatively different level by

applying it on an tremendously larger scale [20], I believe that applying the view-based UI

45

construction scheme for reusing UI work on a larger scale will yield a qualitatively different UI

experience.

A second challenge is ensuring that the overall user interface and interaction experience scales well as

more and more data and data schemas are added to the environment. For instance, presenting

information as large icons only does not scale as the number of icons grows.

3.1.4 Support object-oriented UI manipulations pervasively

Scalability issues also concern the ways users manipulate information. Existing environments that

merge operations applicable on several objects into a single menu are often awkward and confusing

to use: users may not know where to look for all operations applicable on a particular object, and

which object a particular operation will be applied on. I propose that environments should support

object-oriented UI manipulations pervasively in the following ways:

1. There should be a uniform way to browse all operations applicable on a particular object;

2. Operations should be refactored by their logical applicability on object types rather than

being offered in fixed sets of predetermined usage scenarios as often seen in application-

based environments; operations that have universal applicability, such as organization,

should be supported by the environment itself; and

3. Operations that lend well to direct manipulation mechanisms (such as drag-and-drop and

mouse gestures) should be supported through those mechanisms because it is most natural

for users to invoke them in those ways.

All of these three points have parallels in the Object-Oriented Programming paradigm: First,

operations applicable on a particular object are listed in that object's class definitions rather than

dispersed through various functions. Second, with proper OOP modeling, all operations logically

applicable to an object are available through its immediate class or by inheritance. Certain universally

useful operations are wired into the root class (e.g. the java.lang.Object class) so that all objects

inherit them. Finally, operators such as plus and minus that lend well to the semantics of a particular

class are overridden to provide convenient access to some of the class' functionality. We believe that

just as OOP has made software development more understandable and manageable for

programmers, an object-oriented UI would make information management easier for users [43].

46

3.2 Haystack's User Interaction Experience

In this section, I present the user interaction experience of the Haystack information management

platform, designed with the abovementioned principles in mind.

3.2.1 Expressing Information

The Haystack platform adopts the Semantic Web's Resource Description Framework (RDF) as its

data modeling framework. As mentioned in section 2.4.4, RDF specifies a unified naming scheme in

which every object is referred to by a Unique Resource Identifier (URI). URIs are supposed to be

unique across networks. They form a superset of Uniform Resource Locators (URLs) and can

address objects at any level of granularity, with or without digital contents. Objects modeled in RDF

are referred to as RDF resources, or just resources.

RDF data takes the form of triples called RDF statements, or just statements. Each triple contains a

subject, a predicate, and an object. The subject and predicate must be resources; the object can be a

resource or a RDF literal. Literals are strings. The predicate is like an arrow pointing from the subject

to the object. A corpus of RDF data is essentially a directed graph with labeled edges.

Unlike conventional directed graphs, in a corpus of RDF data, one can find arrows pointing from

and to other arrows. In other words, one can make statements about predicates, as illustrated in

Figure 16: the is-Father-of predicate is declared to be a Familial-Relationship and also a One-To-

Many-Relationship. This capability allows RDF to easily model schemas.

is-Father-Of is-Type is-Type b Familial-Relationship

One-To-Many-Relationship

Figure 16. Example of an RDF statement about an RDF predicate

Overall, RDF allows data to be encoded in a semistructured form, fitting several schemas

simultaneously but none necessarily rigorously. This capability is advantageous in situations of

incomplete information, which occur frequently in the real world.

47

Haystack adopts RDF for three reasons:

1. It is a powerful data modeling framework that fits our needs as laid out in section 3.1.2;

2. It is new, which implies that its designers should have more history to learn from before

designing it (that it is new is also a concern since its faults may not have been identified); and

3. It is a standard, which means that our data models will be immediately compatible with other

data models, especially those on the Semantic Web, and that someone beside us will work on

improving it.

Armed with a powerful data modeling framework, we can rest assured that users will be able to

express a lot of what they want to express. The user interface mechanisms for expressing information

are another issue to address. Information can be expressed through casual manipulations of data as

will be discussed in sections 3.2.4 and 3.2.5, or through preliminary generic editing mechanisms [40].

3.2.2 Perceiving Information

Each piece of information-each information object-in Haystack is presented like a web page. The

mapping from the information object to its presentation follows a view-based scheme: metadata in

the system associates the characteristics of that object (e.g. its type) and the context in which it is

shown to a particular view.

Views are onscreen presentations-pixels that together convey information. Each object can be

presented by more than one view, each suitable in some contexts. Views allow us to present

information objects in formats appropriate for them instead of defaulting to a graph- or tree-based

presentation.

Given an information object to present, there are two aspects to consider: what information about

that object to show, and how to show such information. The what aspect involves selecting attributes

of that object and selecting other objects relevant to that object. The how aspect involves laying out

and rendering the object's attributes and determining how to show the relevant objects. Both aspects

cooperate to produce a view, which is composed of UI elements through which the user can interact

with the object.

As the view of one object may specify that other objects be presented, that original view may trigger

the resolutions and instantiations of views of the other objects. The original view embeds the other

views. For instance, the view of an e-mail message embeds the views of the message's attachments,

48

each of which embeds the view of the attachment's author. Views can be nested arbitrarily deeply to

bring together all information relevant to the object that the user originally wants to perceive.

Note that the view of the original object does not specify exactly which views to use for the relevant

objects. It only specifies the characteristics of the views to be nested and the UI framework will

resolve the desired views based on those characteristics.

Presentations in Haystack resemble web pages in the sense that they can have sophisticated

document-like layouts, containing text, images, tables, and hyperlinks. Each presentation needs not

be rectangular in shape; it can be a piece of text that can wrap across several lines. This flexibility

allows presentations, and consequently views, to be nested arbitrarily deeply without looking rigidly

rectangular. View nesting schemes such as Microsoft's Object Linking and Embedding quickly break

down because their views assume large rectangular forms that do not fit elegantly together.

3.2.3 Locating Information

Since Haystack adopts RDF as its data modeling framework, information objects in Haystack are all

addressed by URIs. Like the web browser, Haystack can take a URI and "browse" to it by finding an

appropriate view for the object named by that URI and displaying the view. Alternatively, just as on

the Web, an object can be browsed to by clicking on a hyperlink representing it from within the

presentation of another object. This navigation paradigm-a simple extension of the Web's-keeps

information in the foreground: users can reach at information without explicitly managing

applications. Figure 17 shows the home page of the user being browsed to.

Of course, users might not remember URIs or have all needed hyperlinks conveniently presented at

all times. Haystack still provides search interfaces for finding information objects. However, unlike in

existing environments, all things in Haystack, big and small, can be modeled as first-class objects. As

a consequence, each object can be viewed independently and can be arrived at through whichever

route most easily recalled by the user rather than through a fixed UI path. Contrast this with current

environments: in order to find the address of a company in Microsoft Outlook 2002, one must

indirectly find a contact who works for that company-the user has to make that cognitive leap. The

address of that company is shown as a field in the presentation of the contact.

The fact that each piece of information can be modeled as a first-class object has another important

advantage: no matter how an object is located the first time, it can be bookmarked so that

subsequent accesses to it can be done much more quickly. In contrast, one cannot see the address of

49

a company without first locating some particular contacts who work for that company in Microsoft

Outlook 2002.

49lack Forward 4 AHoe GoIto Np ro 1 @ Navigate
David Huynh Ho&e
May t1, 213C 39;3<9AMShow vAt colecten elements V Select nformation sources v Lay out kie a portal

Starting Points

S Add! ess bord: rOT T t. Date~
crwsngf locok ni fkr scomethrnAnCain

D411L Book

tngd n nfo m a ton Defauat Categones

!WI

v REUTERS Weather for Cambridge, MA
W (02139)

Le is. m fes AR i9tsA EDT 21 MAY C3
. . t.'ty..et. . Eeet1 nn=men

Active Tasks ySanse : ,AM s 0e -4 P-

eta-caeet 1 may pnote VCOV t~od e e I eeCavor (Oftems) X
x A ei u mesa n ps: ig! how r the afternoun, bia: 1 newr 70 El riendr Oies

Grat ntme -a O Boc|prsur dtma ata udret- otwetvd 10 to I Mp~h beConmin9 asak (Oses

3nne c . rthwest >te tt 'ft t(0 t s) 7
nreee tretemet r amrers Cve knts fan . Derems

r wr ds ion tonight: mcystl ouc y a larxe o pa , tms

e connteor ITravel (0tems) z
.0 s rWork (tems) x

A_____m_______ LONG TERM.I HOPE THEN I CAN IU$T i ALLY? 15 L
TO CONVINCE OUR a SIT HOME AND THAT YOU?
T... .BOS T I HAVE I GET PAID H ,IT IN

B d r Liyst OFry d ewieBuddy ist BECOItE INVISIBLE.
[±avrdeivn? nearby11 [Addnew item
nen s rearby -'Add to colectignist

2L ar colecntonAst

- - - - - - {SComnose e-masl esse

Copyright D 2003 Un ted Feature Syndicate, Inc.

Figure 17. Haystack's user interface

3.2.4 Manipulating Information

Just as we use metadata to provide associations between objects and views, we also use metadata to

associate objects and operations. Given an object, we can systematically find each operation that

takes a parameter matching the type of the object. The result is a set of operations logically applicable

to that object.

When a presentation of an object is right-clicked, we list all operations applicable to it in a context

menu (Figure 18). This gives users a guaranteed way to find out which operations can be done on an

object. This approach associates objects and their operations very closely and avoids the need to

merge lists of operations of different objects into a single menu. If there are too many operations to

fit into a context menu, we show only a few and provide a link that browses to the full collection of

50

operations wherefrom users can call upon more sophisticated tools to narrow down to the desired

operation. That is, in Haystack, finding a desired operation can be accomplished much like any other

information seeking task.

We also provide drag and drop support as a convenient means to perform selective operations which

take two parameters, one as the dragged object and the other as the drop target. When a drag and

drop action is performed, we can systematically find an operation that takes two parameters, one

matching the nature of the dragged object and the other of the drop target.2 More context needs to

be taken into account to guess at the desired operation. Otherwise, we will have to ask the user to

select one operation among several.

* David H..nh
elcome to Persoi: David ttuyoh

May 21, 200; Add to Address Book

Add to Favorites
Add to coletonflet

] Annotate

Attach

B rowse to

Chat

Compose e-mai message

Copy URI

Ex port to file

~lRecommend
Remind me to prepare for thts

Remind me to read this

Rename

] Send this item to someone

View annotations

View, messages sent from ths party

Viewt, messages sent to frts party

Use in pending tas

Show summary.

Figure 18. A sample context menu

3.2.5 Organizing Information

Haystack explores some generic infrastructural support for organization through the concept of

collections. A collection in Haystack is just an RDF resource that is associated with its members

through the predicate hs:member. There is no restriction on a collection's members: they can be of

any type and any nature. In other words, objects of different types can belong to a common

collection. Furthermore, each object can belong to several collections all at once. This flexibility

2 In case we can find more than one such operation, we pick one of the operations non-deterministically.

51

allows Haystack to satisfy users' diverse needs of organizing information. Figure 19 shows the

Organize tool is being used to classify an e-mail message titled "Weekend Party" into three different

collections simultaneously.

Dfult Categoris
O alcategcne5

FAdd Y

SAnnouncements (o items) x
l Fami'y (0 items) X

Favor (0 items) m
I Friends (2. items) r
l Haystadk (0 items) M

O Important (2 items) x
O Personal (2 items)
D soaem (0 items)'
O Travel () items) x
D Work (0 items) X

Browse F screen Add'

Figure 19. The Organize tool

3.3 Contributions

The contributions that I make through this thesis are spelled out here explicitly:

First, I believe that my call for environment-wide, infrastructure-deep support of mechanisms for

satisfying information management needs is novel. Past approaches that actually focus on

information management mostly have been concentrating on individual, selective domains. They

assume that the foundations offered by contemporary operating systems are sufficient to serve as

common platforms on which domain-specific applications can be built and can cooperate to yield

coherent experiences. On the other hand, I advocate that some functionalities satisfying certain

information management needs can and should be refactored out from individual applications into

the environment's infrastructure.

Second, I have identified five different aspects of information management on which to focus. This

simple characterization of information management needs might not be perfect, but it serves as an

initial guide for any investigation on infrastructure support of information management mechanisms.

52

Third, I have provided an initial roadmap with four principles as listed in section 3.1. The individual

principles may not be novel, but the entire plan is.

Fourth, I have designed the user interaction experience for Haystack and thus illustrated the

application of those principles.

Fifth, I have constructed the UI framework of Haystack and in doing so, demonstrated practical

approaches to building a UT framework on top of an RDF data model.

53

54

CHAPTER 4

The Haystack Platform

In this chapter, I give an overview of the architecture of the Haystack platform. I then introduce

basic data models used in Haystack, which will be seen again in subsequent chapters. I also briefly

touch upon the script-like language named Adenine used in Haystack for manipulating RDF data-

Adenine will be used to illustrate many examples in later chapters. Finally, I recount the common

development process observed thus far from the Haystack team's work in building Haystack's

components.

4.1 Architecture Overview

The Haystack platform adopts a blackboard architecture in that its various components communicate

mainly through a single RDF store (Figure 20). Most of Haystack's core is written in Java; other parts

are in C++, N3 [12], and a Haystack-native language called Adenine (section 4.2).

55

User Interface

Service A Service B Agent C Agent D

RDF Store

Figure 20. Architecture overview

The following subsections will briefly discuss the RDF store, the services and agents, and the user

interface.

4.1.1 RDF Stores and RDF Containers

In this store is RDF data in the form of triples, i.e. RDF statements. Data can be inserted into the

store or retrieved from it through the edu.mit .lcs . haystack. server. rdf store. IRDFStore Java

interface:

public interface IRDFStore extends ISessionBasedService
public boolean contains(

String ticket,
Statement S

throws ServiceException, RemoteException;

public RDFNode extract(
String ticket,
Resource subject,
Resource predicate,
RDFNode object

throws ServiceException, RemoteException;

public Set query (
String ticket,
Statement [query,
Resource[] variables,
Resource[] existential

throws ServiceException, RemoteException;

public RDFNode[I queryExtract(
String ticket,
Statement[] query,
Resource[] variables,
Resource[existential

throws ServiceException, RemoteException;

public int querySize(
String ticket,
Statement[] query,
Resource[] variables,
Resource[] existential

56

i

throws ServiceException, RemoteException;

public Set queryMulti(
String ticket,
Statement[] query,
Resource[] variables,
Resource[] existential,
RDFNode [] [] hints

throws ServiceException, RemoteException;

public void add(
String ticket,
IRDFContainer c

throws ServiceException, RemoteException;

public void remove(
String ticket,
Statement s,
Resource existentials[]

throws ServiceException, RemoteException;

public void replace(
String ticket,
Resource subject,
Resource predicate,
RDFNode object,
RDFNode newValue

throws ServiceException, RemoteException;

public Resource[] getAuthors(
String ticket,
Resource id

throws ServiceException, RemoteException;

public Statement getStatement(

String ticket,
Resource id

throws ServiceException, RemoteException;

public Resource[] getAuthoredStatementIDs(

String ticket,
Resource author

throws ServiceException, RemoteException;

public void addRDFListener(
String ticket,
Resource rdfListener,
Resource subject,
Resource predicate,
RDFNode object,
Resource cookie

throws ServiceException, RemoteException;

public void removeRDFListener(
String ticket,
Resource cookie

throws ServiceException, RemoteException;

The first 6 methods allow RDF data to be queried from an RDF store. The next 3 methods allow

changes to be made to the content of an RDF store. The next 3 methods deal with authorship and

reification information. The last 2 methods allow registration for notifications of particular changes

to the data in an RDF store. Note that all methods require a ticket which identifies the client. For

57

4

more information on the semantics of this Java interface, consult [25]; the next few paragraphs

highlight only a few important points about this interface that will be useful for later discussions.

RDF resources are encoded in the class edu. mit . ics. haystack. rdf .Resource, and RDF literals in the

class edu. mit . lcs.haystack. rdf .Literal. Both classes derive from the abstract class

edu .mit . lcs .haystack .rdf .RDFNode, which is used in places where both literals and resources are

permissible. Each RDFNode object stores a single string, which is interpreted as a URI or a literal by

the derived class Resource or Literal, respectively.

RDF statements are encoded in the class edu.mit . lcs .haystack .rdf .Statement. This class contains

three members: m_subject, m predicate, and m object. The first two are of type Resource while the

last one is an RDFNode.

Registration for notifications of changes take the form of triples: subject, predicate, and object. Any

part of the triple can be specified as null to signify a wildcard. Any added or removed statement that

matches the given pattern causes an RDF event to be fired on the service named by the rdfListener

argument given in the IRDFStore.addListener () method. The specific use of RDF events will be

explained in the next chapter.

There can be different implementations of the main RDF store; the most efficient one currently in

use has been written in C++ and wrapped by a Java class using JNI. The interface IRDFStore also

allows Haystack to interact with many RDF stores at the same time in the same manner.

The iSessionBasedService interface that IRDFStore extends supports the ability to log in and log out

of an RDF store, which is a session-based service:

public interface ISessionBasedService
public String login(

Identity id
throws ServiceException, RemoteException;

public void logout(
String ticket

throws ServiceException, RemoteException;

public String getClientClassName() throws ServiceException, RemoteException;

Logging in to an RDF store using a particular identity produces a ticket string by which the store will

recognize that identity in subsequent method calls. To abstract away this ticket string once a store has

been logged in, we use the interface edu. mit . lcs . haystack. rdf . IRDFContainer:

58

public interface IRDFContainer
public boolean contains(Statement s) throws RDFException;
public RDFNode extract(

Resource subject,
Resource predicate,
RDFNode object

throws RDFException;
public Set query(

Statement[] query,
Resource[]i variables,
Resource existentials

throws RDFException;
public RDFNode[] queryExtract(

Statement[J query,
Resource [] variables,
Resource(] existentials

throws RDFException;
public Set query(

Statement s,
Resource[] existentials

throws RDFException;
public int querySize(

Statement[] query,
ResourceH[variables,
Resource(] existentials

throws RDFException;
public Set queryMulti(

Statement[] query,
Resource[] variables,
Resource[] existentials,
RDFNode [][] hints

throws RDFException;
public Set queryMulti(

Statement s,
Resource[] existentials,
RDFNode [11 hints

throws RDFException;

public void add(Statement s) throws RDFException;
public void add(IRDFContainer c) throws RDFException;
public void remove(

Statement pattern,
Resource[] existentials

throws RDFException;
public void replace(

Resource subject,
Resource predicate,
RDFNode object,
RDFNode newValue

throws RDFException;

public Resource getStatementID(Statement s) throws RDFException;
public Resource[] getAuthors(Statement s) throws RDFException;
public Resource[] getAuthors(Resource id) throws RDFException;
public Statement getStatement(Resource id) throws RDFException;
public Resource[] getAuthoredStatementIDs(Resource author) throws RDFException;
public Statement[] getAuthoredStatements(Resource author) throws RDFException;

public int size() throws RDFException;
public Iterator iterator() throws RDFException;
public boolean supportsEnumerationo;
public boolean supportsAuthoringo;

Each object implementing the IRDFContainer interface is supposed to have logged into a given RDF

store with a given identity during its construction. It thereby obtains a ticket string, which it stores

away and uses whenever it needs to interact with the store. For that reason, the various data

59

accessing and modifying methods of IRDFContainer do not take ticket strings as the corresponding

methods in IRDFStore.

IRDFContainer objects may also support extra functionalities. For instance, an IRDFContainer Object

can automatically record time and date of each statement added to an RDF store. For the exact

semantics of IRDFContainer, consult [25].

4.1.2 Services and Agents

Services and agents are synonymous in Haystack, although the former implies the provision of short-

lived responses to unrelated functionality requests while the latter is associated with persistent

algorithms that perform long-termed tasks. Every service or agent implements the

edu.mit. lcs.haystack.server. service. IService interface:

public interface IService extends IPersistent
public void init(

String basePath, // Haystack's data directory
ServiceManager manager, // the service manager of Haystack
Resource res // resource representing the service

throws ServiceException;

public void cleanup() throws ServiceException;

public void shutdowno) throws ServiceException;

Each service is started with a call to its init () method. This method takes several arguments

including an edu.mit . ics.haystack. service. service. ServiceManager object. This object supports

several methods, including getRootRDFContainer (), which returns the root RDF container with

which the service can store and recall data. The serviceManager object provides the same RDF

container to all services and agents, allowing them to use that container as a blackboard through

which to communicate with one another.

The method iservice. cleanup () is called to let a service prepare for termination, and the method

IService. shutdown () is called just before a service is terminated and dissociated from the service

manager.

4.1.3 User Interface Framework

The user interface of Haystack, named Ozone, consists of a framework on top of which domain-

specific UI components are built. The framework provides a basic set of widgets with which

sophisticated UI components can be composed. The framework is extensible so that more widgets

can be installed and used just like the native widgets. Domain-specific UI components can also reuse

6o

one another so to achieve consistency through the UI and to lessen the amount of work for UI

designers. The next chapter will describe this UI framework in details.

Ozone can be considered a special agent in that it interacts with the RDF store just as services and

agents. In fact, one can suppose that the user him- or herself is the agent of change in this case, and

that the user interface of Haystack is simply the, aptly named, interface through which the user

effects the desired changes. Ozone does differ from agents and services in that while agents and

services can usually be started and stopped during a single Haystack usage session, Ozone remains

running throughout the session. In fact, it is the running of Ozone-the user interface-that defines

the duration of the session. As a consequence, Ozone does not need to implement Iservice, whose

purpose is for starting and stopping services.

In addition to effecting changes in the RDF store, Ozone also watches for changes to particular

information in the store in order to maintain faithful presentations of such information on the

screen. Such changes may be caused by other agents or by Ozone itself. One part of the UI might

cause a change that is reflected in another part of the UI.

As shown in Figure 20, Ozone can also interact with other services and agents on behalf of the user.

For instance, Ozone can start a multimedia playing service and then display its progress by the

second.

4.2 Basic Data Models

As with any platform, Haystack uses a set of basic data models which are used repeatedly through the

system because they represent data patterns common in all domains. As an information management

environment, Haystack in particular needs a means to aggregate information objects into collections

and lists for several purposes including organization.

4.2.1 Collections

A collection in Haystack is a mathematical set (no order, no duplicates). There are two ways to model

collections. When all members of a collection bear a common and explicitly specified relationship

with another object, the collection can be modeled by a particular predicate connecting that other

object with the collection members. Figure 21 shows a collection of attachments modeled using the

mail: attach predicate on a single e-mail message. (mail: is an XML-style prefix that expands to

61

http://haystack. lcs.mit .edu/schemata/mail#.) Attachments A and B together make up the

collection in question.

Attachment A

mail :attach

An e-mail
message

mail: attach

Attachment B

Figure 21. A sample implicit collection

When the members of a collection bear no common relationship in particular with any other object,

we need to create a new resource to explicitly model the collection, and then use the generic

predicate hs: member to connect the members with that resource. The resource representing that

collection is asserted to be of the DAML class hs:Collection.

Member A

hs:member

A collection hs:member 0 Member B

hs:member

rdf:type Member C

hs:Collection rdf:type

Q daml:Class

Figure 22. A sample explicit collection

4.2.2 Lists

Haystack makes use of the DAML list model for encoding immutable lists. In this model, there is

only one list that is empty; it is referred to by the URI dami: nil. Non-empty DAML lists have their

own URIs and are modeled in the first-rest manner with two predicates dami: f irst and dami: rest.

62

Figure 23 illustrates a sample DAML list. Note that the suffix of a DAML list starting at any valid

index is also a DAMIL list.

daml: LiSt

rdf :type rdf :type rdf :type

A list daml:nil
daml:rest daml:rest daml:rest

daml: f irst daml: first daml:first

Element A Element B Element C

Figure 23. A sample DAML list

DAML lists are immutable because a non-empty DAML list cannot become empty without changing

its identity into the resource named by the URI dami:nil. Haystack models a mutable list by

wrapping a DAML list with another resource of type hs:List. Figure 24 shows a sample non-empty

mutable list. Figure 25 shows the same list with all elements removed. Note that the mutable list

retains its identity, i.e. its URI.

A mutable

hs:LiSt daml:LiSt

f:type rdf:type rdf:type

hs:list daml: rest daml: rest

list
daml:first daml:first

E A

Element A Element B

Figure 24. A sample non-empty mutable list

63

rd

hs:List daml:List

rdf:type

hs~lst & daml:nil

A mutable list

Figure 25. A sample empty mutable list

4.3 Adenine

In order to ease the manipulation of RDF data, Haystack supports a script-like language called

Adenine [39]. Instead of having to write long expressions such as the following because the syntax of

Java is designed to be generic:

RDFNode title = anRDFContainer.extract(
new Resource ("urn:haystack: favorites"),
new Resource ("http: //purl. org/dc/elements/1 .1/title"),
null

Set titlesOfMembers = anRDFContainer.query(
new Statement[]

new Statement(
new Resource("urn:haystack:favorites"),
new Resource ("http://haystack.lcs.mit.edu/schemata/haystack#member"),
new Resource ("urn:haystack:wildcard:m")

new Statement(
new Resource ("urn:haystack:wildcard:m"),
new Resource("http://purl.org/dc/elements/1.1/title"),
new Resource ("urn:haystack:wildcard:t")

new Resource[] { new Resource("urn:haystack:wildcard:t") },
new Resource[] {

new Resource ("urn:haystack:wildcard:m"),
new Resource ("urn:haystack:wildcard:t")

one can write much more compact expressions in Adenine to achieve the same effect:

@prefix dc: <http://purl.org/dc/elements/l.l/>
@prefix hs: <http://haystack.lcs.mit.edu/schemata/haystack#>

= title (extract <urn:haystack:favorites> dc:title ?x)
titlesofMembers (query { <urn:haystack:favorites> hs:member ?m ?m dc:title ?t (t))

As URIs, RDF literals, and RDF statement arrays are native syntactic elements of Adenine, a lot of

syntactic burdens in Java, particularly new operators, are unnecessary. URIs can also be shortened

through the use of XML-style prefix notation (e.g. dc: title instead of

64

<http://purl.org/dc/elements/1.1/title>). Manipulations of RDF data can be expressed more

succinctly in Adenine-this advantage allows for faster and easier development of Haystack.

Fragments of Adenine code can be wrapped in Adenine methods for later invocation. The following

is a sample Adenine method that duplicates any given collection:

method <urni:utilities: duplicateCollectioi> collection
= members (query { collection hs:member ?x } @(?x))
= newCollection ${ rdf:type hs:Collection
for m in members

add { newCollection hs:member m[O]
return newCollection

Each Adenine method is given a URI just like any other information object in Haystack. In order

word, Adenine methods are first-class, can be referred to and linked to other information in

Haystack. For instance, if <urn: anAppointment> is the URI of an appointment, one could specify how

to notify the user of the appointment when its time is approaching as follows:

add {<urn:anAppointment> <urn:appointment:howToNotifyUser> <urn:utilities:beep>}

method <urn:utilities:beep>

For the exact syntax and semantics of Adenine, consult [39]. Code samples from this point onward

will be shown in either Java or Adenine.

65

66

CHAPTER 5

User Interface Framework
Design Rationales

This chapter focuses on the design rationales with which the Haystack UI framework has been

implemented. It starts out with a discussion on the general idea of transforming information for the

purpose of presentation, and then dives into four specific ideas of abstraction useful for formulating

presentations. The overall process of presenting information is then discussed with these abstractions

incorporated. Next, the concept of environmen1 is described with respect to how it is useful for

providing context to the process of presenting information. Finally, optimization issues are

considered.

5.1 Information Transformations

When an information object is destined to be presented to the user, much processing needs to be

carried out before pixels get painted onto the screen or sounds get played through the audio

speakers. This processing involves making decisions of two types:

1. Selecting some information about that object to present (i.e. what to show); and

2. Formatting the selected information before rendering it to the screen or playing it on the

speakers (i.e. how to show).

67

For instance, in order to present a meeting given little screen estate, we first decide to show only its

title and its participants (rather than its other details including its location, agenda, prerequisite

reading materials, etc.); this is deciding what to present. We then decide to show the title as a string on

one line followed by the participants each on a line; this is deciding how to show the selected

information.

If the title of the meeting is already modeled as a literal in RDF, there is little processing needed to

render it, save converting the RDF literal into a string and calling the operating system's graphical

APIs to paint the text string onto the screen. One can say that the task of presenting the title is more

syntacic and less semantic in nature compared to the task of presenting the meeting because the former

is closer to the actual pixel rendering while the latter is further removed from it.

Similarly, the task of presenting the participants each on a line is more semantic in nature than the

task of presenting the title because for each participant we still need to make more decisions: what

information about the participant to present and how to show it. For example, we can decide to

present his or her full name as well as his or her office. The full name is to be shown as a string, and

the office is also to be presented as a string on the same line (as opposed to, say, a highlighted

location on a 2D map). The task of presenting the office as a string also demands more decisions: we

need to decide to show only the office's number, and to show it as a string. As an alternative, we

might have decided to show in addition the building in which the office is located.

All of these decisions together make up a process that transforms information originally in RDF to

information encoded in pixels on screen (or sounds through speakers). From the perspective of the

computer, information originally rich in semantics loses its semantics and gets "flattened out" as it

propagates along this process, until it is modeled only in pixels or sounds. However, as more and

more transformations are made, the information conveys more and more semantics to the user: the

final set of pixels showing the original object communicates meanings more readily to the user than

the original RDF model which is made up of opaque URIs linked together in a complex graph.

Note that the information involved in these transformations is not necessarily connected to the

original object to present. System-wide font and color settings, for instance, may be stored in RDF

but are not directly associated with the object to present. Nevertheless, such settings are used in

some of the transformations leading to the final text rendering.

Neither does that information need to come only from the RDF data in the system. The size of the

Haystack windows at runtime, for instance, influences how all UI elements are laid out. The position

68

of the mouse pointer determines whether a particular UI element (e.g. a hyperlink) should be

highlighted.

This process of transformations goes as far as the writes into video memory (at which time the

information to present is just RGB values and is very removed from the original object). However,

since the UI framework does not deal directly with video memory, let us consider that the process

terminates at the calls to the Java methods wrapping native operating system's graphical APIs.

5.2 View Abstraction

The entire process of presenting a piece of information can involve many decisions, as illustrated in

the example of presenting a meeting in section 5.1. To present that meeting, decisions need to be

made not only about the meeting object itself, but also about its participants and their offices. The

UI designer who is responsible for writing code to present the meeting might not be knowledgeable

about how to present the participants and their offices. As a consequence, he or she might not want

to make decisions about these items, nor is he or she the best person to make those decisions.

Furthermore, these items are also presented elsewhere rather than just inside meetings; the decisions

needed to be made to present them must also be made again in different situations.

The solution to these two problems is to delegate the decisions of presenting a particular object to

whomever is most knowledgeable about it, and to reuse his or her decisions whenever that object

needs to be presented. This solution is implemented through the concept of views. A view of

something is an onscreen (or on speaker) representation of that thing, in pixels and perceivable

visually (or in sounds and perceivable acoustically).

When the UI designer of the meeting in our running example wants to specify how to present one of

the meeting's participants, the designer specifies that a request be issued for a view of that

participant. The request is aptly called a view request. This view request describes the characteristics of

the desired view of that participant. A viewproducer is located who can understand that view request.

The view producer analyzes the request and produces some renderings of the original object or some

more view requests for the same object and/or other relevant objects. These subsequent view

requests cause more view producers to be spawned and yet more renderings or view requests to be

produced, until all the last view producers spawned produce only renderings and no more view

requests.

69

By issuing a view request, the UI designer has delegated the decisions necessary for showing the

participant to both the UI framework and other UI designers. The UI framework is responsible for

dynamically (at runtime) locate a view producer capable of understanding the given view request. The

located view producer captures the decisions made by another UI designer for presenting the

participant. This second UI designer might him- or herself delegate certain decisions, such as those

needed for presenting the participant's office, to yet another UI designer by issuing another view

request.

Figure 26 shows a first illustration of the transformation pipeline that turns view requests into pixels

on the screen, i.e. views. This pipeline is simple: a view request is translated by a view producer into

more view requests and/or into renderings on the screen. View producers are computations and

colored gray. View requests and views are information and colored white.

View
request

pr~oducer

Pixels on
screen, i.e. view

Figure 26. An initial illustration of the transformation pipeline

5.2.1 An Analogy

Let us take an analogy from the physical world. A screenwriter would like a scene of a historical

building in a movie. In his script, he indicates that the historical building should be shot such that it

appears both grand and ancient. The director of the movie interprets the script of the screenwriter

and tells the cinematographer roughly which location and angle to shoot from. The cinematographer

decides which camera lenses to use and how to set up the track, and gives the cameraman detailed

instructions for the shot. The cameraman handles the camera according to the cinematographer,

improvising where needed drawing from his past experience.

70

This analogy illustrates a chain of commands along which each decisions is being made by whoever is

most capable of making that decision. The information communicated between one person and the

next is a view request, while each person is a view producer responsible for elaborating instructions

into more detailed, lower-level instructions.

The screenwriter only knows how the footage should look like; he neither knows what angles to

shoot it from, nor how to operate the camera. However, if he describes well how he envisions the

end result, and given an experienced director, a competent cinematographer, an adept cameraman,

and all necessary equipments, the screenwriter will get his desired footage with just a well-written

script.

5.2.2 View Request Specifications

It then begs the question of what goes into a script, or more relevantly, a view request. There are

different types of view specification. The designer making a particular view request may be

concerned with the screen estate occupied by the view and may consequently specify one of the

following requests:

* "Give me a one-page summary of object X";

* "Give me a view of object X that fits in an area measured 50 pixels wide by 30 pixels high";

* "Give me a very short summary of object X in the form of piece of text that can fit into a

text paragraph."

The designer may otherwise be concerned with the content of the view:

* "Give me a view of object X that shows how it is related to other objects";

* "Give me just an icon and a title for object X, or something enough for the user to identify

the view of X";

* "Express object X as a noun phrase";

* "Present object X with some text and do not use any graphics."

Or else, the designer may care about the functionalities offered by the view:

71

* "Show picture Y such that the user can crop it";

* "Show document Z such that the user can edit it";

* "Let the user edit the relationships between object X and other objects";

* "Make the view behave like a hyperlink when clicked on."

The designer may be concerned with several aspects all at once and issue a combined request, e.g.

"give me a view of object X that fits into an area of 50 x 30 pixels, with an icon and a title, showing

its author and last edited date, and make it resizable in case the user wants to see it in a larger area".

Note that the specifications in a view request are not the only things that will affect the final view.

For example, even if a view request limits the view to an area of 50 x 30 pixels, the view as perceived

by the user will look different for different default system font sizes. In our movie analogy, weather

conditions and equipment failures beyond the control and awareness of the screenwriter will still

affect the final footage.

Furthermore, not all view requests can be met. If a view request specifies to focus on a piece of

information which the user has no permission to see, the end result is a message to that effect (e.g.

"Sorry, you have no permission to see X") rather than a view of that piece of information. As

another example, if the focus of a view request is on a remote piece of information that cannot be

downloaded immediately, the view request will not result in the rendering of the view of that piece of

information immediately; rather, a progress message (e.g. "Retrieving information... 35%") is

displayed in place until the information is downloaded. 3

5.2.3 Persisting View Requests

View requests are made by UI designers to present information to users. Should users be dissatisfied

with the end results, i.e. the views, they should be able to change the views by changing some of the

things that generate those views. In certain situations, users want their changes to be temporary and

in other situations, permanent. Modifications intended to be permanent must be persisted. The best

place in Haystack to persist these modifications is the RDF store. View requests should, therefore, be

described and persisted in the RDF store.

3 The word "request" in "view request" acknowledges the fact that some view requests might not be met. Calling a view

request by other names such as "a view host" asserts that a view will certainly be created, which may prove contrary to the

reality.

72

RDF also allows us to describe the many different types of specification in view requests. We reap all

the benefits of RDF: the schemas of these specifications are easily extensible and the view requests

can be mingled with the rest of the data corpus.

5.3 Rendering Abstraction

As mentioned so far, view producers issue more view requests and/or render to the screen. This

rendering task is complex, consisting of creating system fonts, colors, and brushes, calculating

kerning and spacing, handling zoom and occlusion, optimizing text wrapping, painting text, applying

font decorations (e.g. underlining), painting bitmaps, painting geometries, anti-aliasing, bitblt-ing, etc.

Nevertheless, a lot of work has already been done by the operating system. For instance, text can be

painted just by specifying a string, a font, and a color; there is no need to paint the curves that make

up the characters, to fill in the characters, or to anti-alias them. The operating system has already

provided an abstraction for graphical output. Since view producers work at the level of information,

rather than at the level of system font objects, screen coordinates, etc., this abstraction proves too

crude, too fine-grained, for view producers.

So that view producers can be coded more easily, UI designers need to be able to effect rendering

actions at a higher level of abstraction than that of system font objects, screen coordinates, etc. We

have seen such an abstraction in presentational mark-up languages like HTML. Authors of HTML

documents can specify high-level rendering requests (e.g. "paint this paragraph of text at 200% the

default font size") and delegate a lot of low-level rendering logistics to the web browser (e.g.

calculating the absolute font size, wrapping the given paragraph of text, and painting it).

Following the solution of presentational mark-up languages, Haystack provides a set of types of high-

level rendering request that UI designers authoring view producers can make use of to specify high-

level rendering goals, rather than low-level rendering logistics. These rendering request types

resemble the set of HTML elements. They include, for instance, Text span rendering requests,

Paragraph rendering requests, Image rendering requests, etc.

5.3.1 UI Elements

Of course, the low-level rendering logistics still have to be handled by some pieces of code-the

handlers that execute these high-level rendering request. However, such logistics need to be encoded

only once and they can then be reused by many UI designers. The UI designers need not be aware of

73

how those logistics are handled, just as HTML authors never need to know how web browsers are

implemented.

The handlers for high-level rendering requests are called renderng producers, or in a more familiar term,

UI elements. They translate rendering requests, which specify high-level rendering goals, to low-level

rendering logistics that result in pixels painted on the screen. Figure 27 updates the transformation

pipelines with rendering requests and UI elements.

View
request

Rendering
request

Pixels on screen,
i.e. view

._JP

e.g. a view request for object
representing an office to be shown
as a short text string

e.g. the view producer capable of
producing a "short text string"
view for any object representing
an office

e.g. a Text rendering request
specifying that a particular string

(extracted from the title of an
office object) be rendered

e.g. the Text UI element capable
of understanding Text rendering
instructions

e.g. pixels that together make up a
text string, communicating the title
of an office object to the user

Figure 27. A second illustration of the transformation pipeline with rendering requests and
UI elements included

5.3.2 Persisting Rendering Requests

Just like view requests, rendering requests are also persisted so that their modifications by users can

remain permanent. Modifications to rendering requests are syntactic in nature, e.g. "bold this text".

74

5.3.3 Composing Rendering Requests

Haystack's rendering requests are much like HTML elements, and the best way to compose them to

achieve complex renderings is to nest them within one another, just as HTML elements are nested.

Here is an example of three rendering requests expressed in Adenine's syntax: 4

${ rdf:type slide:ParagraphRequest
slide:children @(

${ rdf:type slide:ImageRequest
slide:source <http://haystack.lcs.mit.edu/sampleData/flowers/mayflower.gif>

${ rdf:type slide:TextRequest
slide:text ": Mayflower is the state flower of Massachusetts"

The three requests are the three anonymous resources declared to be of type

slide: ParagraphRequest, slide: ImageRequest, and slide: TextRequest. One can consider the RDF

statements declaring their types to be their "opcodes". The rest of the information are the

parameters of the requests. For example, the slide: ImageRequest request in this example is given the

URI of the image to be displayed, and the slide: TextRequest request is given the text to render. The

slide: ParagraphRequest request is given a list of child rendering requests; its job is to coordinate

these child requests to render their data such that the output flows like text in a paragraph.

The HTML code segment equivalent to the three Haystack rendering requests above is as follows:

P>

: Mayflower is the state flower of Massachusetts

Of course, in HTML, elements are often neglected. Note, however, the common nesting

structure present in both the HTML code and the Adenine code. This structure dictates how the

various UI elements (or HTML elements) coordinate their outputs on the screen.

5.3.4 Mixing View Requests with Rendering Requests

Since view producers generate both rendering requests and more view requests, it must be possible

to mix view requests with rendering requests so that view producers can specify where a view

(resulting from a particular view request) will be positioned relative to other parts of the screen. Here

is an example of the rendering requests and the view request generated by the view producer for a

participant in our running example:

4 Note that this is not a piece of Adenine code. This is data added to the RDF store and expressed here in Adenine's syntax
for convenience.

75

${ rdf:type slide:ParagraphRequest
slide:children @(

${ rdf:type slide:TextRequest
slide:text participantName

${ rdf:type ozone:ViewRequest
ozone:focuson participantOffice

some specifications of how the view should behave

These requests and the view request together specify that the participant's view should take on the

form of a paragraph (i.e. it never starts in the middle of another paragraph, but must stand by itself).

The name of the participant (shown here as part icipantName) is painted first in that paragraph,

followed by a view of the participant's office (participantof f ice). The view request can be

considered a macro rendering request, in that it ultimately results in rendering, but must be

"expanded" first at runtime.

5.4 Layout Abstraction

Back to our running example of presenting a meeting: the view producer of the meeting can put

together a rendering of the meeting's title and views of the meeting's participants (assuming there are

two participants) by generating the following rendering requests and view requests:

$1rdf:type slide:ParagraphRequest
slide:children @(

${ rdf:type slide:TextRequest
slide:text meetingTitle

${ rdf:type slide: ParagraphRequest
slide:children @(

${ rdf:type ozone:ViewRequest
ozone:focusobject participantl
some specifications of how the view should behave

${ rdf:type ozone:ViewRequest
ozone:focusObject participant2
some specifications of how the view should behave

Most likely, the view producer does not discriminate among the two participants. Consequently, the

two view requests should be identical except for the objects that they focus on. If another participant

is added to the meeting, the view producer must generate another view request looking exactly the

same as the existing two view requests, save its focus object.

76

This pattern of work being duplicated to present several objects together is seen over and over again,

and it calls for an abstraction. What the view producer of the meeting really aims to specify is how

each participant should be shown and how the views of all the participants should be laid out

together. To put it another way, the view producer of the meeting needs to issue a view request for

all participants of the meeting collectively together. This view request includes specifications for how

the views of individual participants should look and behave, as well as specifications for how all

those views should look and behave together. Here is a revision of the preceding RDF data segment:

$(rdf:type slide:ParagraphRequest
slide:children @(

${ rdf:type slide:TextRequest
slide:text meetingTitle

${ rdf:type ozone:ViewRequest
ozone:focusObjects @(participantl participant2

some specifications for individual views of participants

some specifications for the overall collective view,
such as it should behave like a paragraph

The view producer is now concerned only with updating the list of participants that hangs off the

ozone: focusobjects predicate on the view request. There is no need to generate more view requests

for newly added participants.

The specifications for the overall collective view are referred to as layout constraints, since how the

collective view looks like depends much on how the individual views are laid out with respect to one

another. For example, they can be listed vertically one after another as rows in a list, or made to flow

like text in a paragraph with comma separators in between, or clustered into piles of icons, or laid out

as tiles on a rectangular grid, etc.

5.5 Data Computation Abstraction

The concept of views abstracts away all the decisions that go into presenting a piece of information,

or several pieces of information collectively. However, in order to issue a view request, a UI designer

must know which piece of information, or pieces of information, identified by a URI or several

URIs, to focus on. In certain situations, the UI designer does not know how exactly to retrieve the

information to present.

77

For example, a UI designer is tasked with specifying how to present an instant message and he or she

decides to include the title of the message in the produced view. The instant message is of type

"Instant Message," which is a subtype of the type "Message." The subject of a message is often

considered its title, and the subject is annotated on the message using the predicate message: subject.

The message might also have another title specified using the standard Dublin Core predicate

dc : title. Furthermore, the message may have several dc:title and message: subject predicates

hanging off it. Determining the text supposedly conveying the title of a message can be

computationally complicated and may require more intimate knowledge of the schema of the type

"Message" than the UI designer in this example possesses. Furthermore, that same computation is

needed by any other UI designer tasked with specifying how to present objects of subtypes of

"Message."

It may also be that all instant messages are presented using the same view producers designated for

presenting all messages. However, the problem is now reversed. The title of an instant message may

be specified using another predicate, other than dc: title and message: subject. As a result, the view

producers designed to present messages in general will not present instant messages properly, as they

do not know about this other predicate.

These examples point out that data retrieving computations should be abstracted away, so that the

decisions necessary for retrieving a property from an object, or retrieving any piece of information or

several pieces of information in general, can be delegated appropriately to whoever knows best.

The following RDF data illustrates how a data request can be made to "order" the title of an instant

message:

${rdf:type slide:TextRequest
slide:textDataRequest ${

rdf:type data:DataRequest
rdf:type data:TitleDataRequest
ozone:focusOn instantMessage

Just as view producers translate view requests ultimately into views, a dataproducer will be located to

translate the data request in this code sample into data understandable by the Text rendering request.

Data requests are useful not only to encapsulate complex computations, but also to package reusable

computations. For example, sorting capabilities can be supported through some types of data

request. UI designers only need to specify data requests of those types given the desired sorting

orders, rather than implementing sorting algorithms themselves. Another reusable computation is the

78

translation of a system date (e.g. "Thu Nov 19, 2002 21:39:06 EST") to a more human-readable

string (e.g. "Tomorrow at 9pm").

In essence, whereas rendering requests abstract away low-level logistics of painting to the screen, data

requests abstract away low-level logics of extracting data from the RDF model. By abstracting away

the two ends of the transformation pipeline, we allow UI designers to concentrate on the high-level

algorithms that transform data from one end, the RDF model, to the other, the screen.

Data requests and data producers are not only useful for constructing views. They can be used in any

situation where the computation of data needs to be abstracted away and changes to the data are to

be watched and responded to. For example, an agent responsible for watching memberships in a

collection may benefit from abstracting away how memberships are being asserted in that collection.

Another agent interested in analyzing titles of objects may be made oblivious to how each object's

title is encoded through the use of data requests and data producers.

5.6 The Transformation Pipeline

This section recaptures all of the abstractions I have discussed previously into one transformation

pipeline illustrated in Figure 28. This figure shows the dataflow between various parts of the pipeline;

white blocks are data objects and gray blocks are code components. The flow is recursive but we

start analyzing it at the view request. A view producer translates a view request into zero or more

view requests and zero or more rendering requests. A view request might contain a data request,

which is translated by a data producer to yield data that specifies which piece(s) of information to

focus on. A UI element translates a rendering request into pixels on the screen. A rendering request

might also contain a data request, which is translated by a data producer to yield more parameters for

the UI element.

Note that view producers are allowed to paint directly to the screen if they so choose. That, however,

is not a common mode of operation, since the UT elements should have already abstracted away

most common rendering needs.

79

5.7 iTransfo Data request
request poue

Data
producer

Rendering eData
requestreqestproduce

element

Pixels on screen,
i.e. view

Figure 28. The transformation pipeline

5.7 Transformation Trees

Of course, the transformation pipeline, when actually run, is not recursive as in Figure 28 but rather

unfolds into a transformation tree as different instances of each type of components in Figure 28 are

distinguished from one another. Figure 29 shows an example of such a tree, neglecting data requests

and data producers. The transformation tree in this figure ends before all the dashed arrows; its leaves

are the four UI elements. After the arrows, the screen renderings (pixel blobs) of the UI elements are

shown in a spatial nesting hierarchy.

8o

View
request 1

4I
Rendering
request 1 Rendering

request 2
View

request 2

I I IF

Rendering Rendering
request 3 request 4

Pixel
blob 1 Pixel

Pixel blob 3
blob 2

Pixel
blob 4

Figure 29. A transformation tree

Each transformation tree captures all decisions made to present some piece(s) of information as

requested by the view request at the root of the tree. When the user manipulates some part of the

screen, i.e. a pixel blob, there is exactly one path from that pixel blob back to the root of the

transformation tree. This path traces through a sequence of decisions, which tell us which pieces of

information contribute to the rendering of the manipulated blob of pixels. For example, if pixel blob

#4 in Figure 29 is manipulated, we can trace back to the root of the tree and find that two view

81

requests (#1 and #2) have been issued to render the pixel blob #4. Using this technique, we infer

that the user wants to interact with whichever pieces of information those two view requests focus

on.

This ability to trace back from pixels to information allows us to systematically expose semantics of

the information through the pixels. For example, when the user right-clicks on the pixel blob #4 in

Figure 29, we can enumerate all operations that are applicable on the pieces of information focused

on by the view requests #1 and #2, and show such operations in a context menu. Drag-and-drop can

also be supported systematically in this way.

The overall result is that views become proxies through which the user can interact with the

information being presented. This is simply direct manipulation, but it can now be supported

systematically and uniformly by the UI framework rather than by individual UI designers.

5.8 Environments

So far we have been concerned with producing information for users to see. However, what users

see depends on what the various components in transformation trees can "see". All information that

can be "seen" by a particular component-the information that it has access to-is referred to as its

environment.

Environments depend on system settings such as the current user's security privileges. For instance, a

view producer tasked to present the employee record of a division manager to an office assistant

might not "see" any property of the manager that is considered personal (e.g. marital status) or

confidential (e.g. salary). It is not sufficient to restrict the assistant from seeing the values of such

properties, but also from seeing whether such properties have any assigned values at all. That is, all

RDF statements encoding those properties must be absent in the environment of that view producer.

The environment of a component can also depend on where that component is located digitally. A

view request might be shipped from one machine to another because the view producer capable of

translating that request resides on the second machine. That view producer "sees" (some of) the

information stored on the second machine and perhaps some information on the first machine. A

view producer residing on a machine not connected to any network may have a different

environment when the machine gets connected.

82

Furthermore, the environment of a component can also depend on the context in which it is used. A

view producer tasked with presenting a person inside the view of a meeting should be told such fact

so that it can incorporate functionalities in the resulting view to suit the context of use (e.g. add an

"uninvite" button). A Text rendering request should be told about inherited rendering settings such

as font size, color, etc.

The reader might argue, "what isn't context?" Indeed, all things influencing an environment,

including system settings, digital location, network connectivity, etc., are all context. Each component

uses its environment-what it is allowed to see-to attempt to understand its context and act

accordingly. The component's comprehension of its context may be incomplete or misled, as there

might be external factors (e.g. security enforcers) conspiring to affect its environment without

projecting themselves in the environment.

5.9 Optimizations

Having specified the various abstractions in the entire pipeline through which information is

transformed from internal representations to external views, I now turn to the issue of optimizations,

which also involves design rationales that influence the actual implementation of the UI framework.

Optimizations are intended to speed up the application of transformations and their reapplications in

response to changes. That is, when a piece of information is to be presented, its view must arrive on

screen quickly and remain responsive to the user's manipulations as well as faithful to the data in the

RDF store.

Fortunately, the transformation pipeline has already been divided into components by our various

abstractions. These components can be optimized individually depending on their natures. For

example, UI elements deal more with device I/O than with the RDF store: they should be optimized

in Java so that they remain responsive to manipulations by the user. View producers, on the other

hand, work almost solely with RDF: they should be written in Adenine for the convenience of UI

designers.

Our decision to persist view requests, rendering requests, and data requests in the RDF store for the

purpose of retaining users' preferences is also an optimization: such persistence is a form of caching

that avoids the need to regenerate when a view request is issued more than once.

In other cases, not persisting data in the RDF store is an optimization. For example, data producers

allow data to be channeled directly into UI elements and view producers rather than being serialized

83

first into the RDF store. As a consequent, the store contains less data and functions more quickly. Of

course, if the computation done by a data producer is complicated and time consuming, the data

producer has a choice of caching the result in the store.

These optimizations cause some code to be in Java and some code to be in Adenine, and some data

to be in RDF and some data to be members of live Java objects. This dichotomy calls for a hybrid

component architecture which is the topic of the next chapter.

84

CHAPTER 6

User Interface Framework
Implementation

Given all of the design rationales discussed in the previous chapter, I now delve into the

implementation details of the Haystack UT framework. First, the component architecture of the

framework is described. Then the implementations of the three abstractions for view, rendering, and

data computations are explained. Finally, the uniform support for direct manipulation in Haystack is

discussed.

6.1 Component Architecture

The transformation process employed to turn information in internal representations to external

views involves several code components that perform the actual transformations. The code

components are called evaluators while the information being transformed are called prescriptions.

Table 3 lists all the types of prescription and evaluator encountered thus far.

Table 3. Specific types of prescription and evaluator

Prescription Evaluator
View request View producer
Data request Data producer
Rendering request Rendering producer / UI element

Evaluators need to be located dynamically based on the nature of the prescriptions they are to

85

transform, and then loaded for invocation, executed, and eventually disposed. The management of

these evaluators calls for a component architecture.

There are three requirements for the component architecture:

1. It must be extensible in that new evaluators can be easily added;

2. It must be able to deal with both Java evaluators and Adenine evaluators;

3. It must be able to keep certain evaluators alive after they have performed the needed

transformations, so that reapplications of those transformations can be carried out quickly

should there be any change affecting them.

To meet the first requirement, evaluators are registered in the RDF store. That is, their descriptions

(e.g. how to invoke them, what types of prescription they operate on) are described in RDF. To

incorporate new evaluators, one adds their metadata into the RDF store and makes sure that their

programmatic realizations (i.e. Java class or Adenine method) are also in the system.

The second requirement calls for a bridge between Java and Adenine. We implement this bridge

through a generic Java class that can be parameterized with an Adenine method to call. This choice

ensures that all evaluators are fundamentally implemented in Java, so that they can all be managed in

the same manner.

The third requirement demands evaluators to be incarnated as live Java objects, as opposed to Java

methods, so that they can remain alive until explicitly disposed of. As a consequence, there needs to

be a Java interface for initializing and disposing evaluators.

6.1.1 Registration of Evaluators

So that the UI framework can systematically look up an evaluator given a prescription, the mappings

between evaluators and prescriptions must be described in a standard way. This is done by using a

common predicate to assert for each evaluator the types of prescription that it can understand. We

use the predicate ozone:handlesPrescriptionType for this purpose. Here are examples of the

metadata used to describe various evaluators:

add
:textUIElement

rdf:type ozone:Evaluator ;
rdf:type ozone:UIElement ;
ozone:handlesPrescriptionType slide:TextRequest
hs:implementation ${

86

rdf:type
hs:className

hs:JavaClass ;
"edu.mit.lcs.haystack.ozone.parts.slide.TextElement"I

:viewProducer
rdf:type ozone:Evaluator
rdf:type ozone:ViewProducer
ozone:handlesPrescriptionType ozone:ViewRequest
hs:implementation $(

rdf:type hs:JavaClass
hs:className "edu.mit.lcs.haystack.ozone.ViewProducer'

:webpageLineSummaryViewProducer
rdf:type ozone:Evaluator
rdf:type ozone:ViewProducer
ozone:handlesPrescriptionType web:WebpageLineSummaryViewRequest
ozone : adenineMethod : produceWebpageLineSummaryView
hs:implementation $(

rdf:type hs:JavaClass
hs:className "edu.mit.lcs.haystack.ozone.AdenineEncodedViewProducer"

}

:multiItemListViewProducer
rdf:type ozone:Evaluator
rdf:type ozone:ViewProducer
ozone:handlesPrescriptionType layout:MultiItemListViewRequest
hs:implementation ${

rdf:type hs:JavaClass
hs:className "edu.mit.lcs.haystack.ozone.layout.MultiItemListViewProducer"

}

:resourcePropertyDataProducer
rdf:type ozone:Evaluator
rdf:type data:DataProducer
ozone:handlesPrescriptionType data:ResourcePropertyDataRequest
hs:implementation ${

rdf:type hs:JavaClass
hs:className "edu.mit.lcs.haystack.ozone.data.ResourcePropertyDataProducer"

Note that each evaluator is:

1. referred to by a URI,

2. declared to be of type ozone: Evaluator and of a specific type,

3. indicated to handle prescriptions of at least one type using the

ozone:handlesPrescriptionType predicate, and

4. linked to an implementation Java class.

Prescriptions themselves are described in metadata as mentioned before. Here are a few examples:

add
:aRenderingRequest

rdf:type
rdf:type
rdf:type

ozone: Prescription ;
ozone: RenderingRequest
slide :TextRequest

87

}

slide:text "Text to render"
slide: fontBold "true"

:aViewRequest
rdf:type ozone:Prescription
rdf:type ozone:ViewRequest
ozone:focusObject <http://www.google.com/>
ozone: superViewClass ozone : LineSummaryView

:aSpecificClassViewRequest
rdf:type ozone:Prescription
rdf:type ozone:ViewRequest
rdf : type web: WebpageLineSummaryViewRequest
ozone:focusObject <http://www.google.com/>

:aMultiItemListViewRequest
rdf:type ozone:Prescription
rdf:type ozone:ViewRequest
rdf :type layout :MultiItemListViewRequest
ozone:focusObjects @(<http://www.google.com/> <http://www.google.com/>

:aDataRequest
rdf:type ozone:Prescription
rdf:type data:DataRequest ;
rdf:type data:ResourcePropertyDataRequest
data:subject <http://www.google.com/>
data :predicate dc :author

To clarify these examples, I have added all super types for each of the prescriptions. Figure 30

illustrates the relationships between a rendering request and a UI element in a graph. Relationships

between prescriptions of other types and their corresponding evaluators are similar.

"Text to render"

slide:text

:aRenderingRequest

slide:fontBold

" true"

slide:TextRequest :textUIElement

rdf:type ozone:handlesPrescriptionType

rdfs:subClassOf

ozone : RenderingRequest

rdf s: subClassof

ozone :Prescription

Figure 30. Association between a rendering request and a UI element

Given a prescription, such as :aRenderingRequest in Figure 30, the UI framework can locate the

appropriate evaluator, i.e. :textUIElement in this case, by following two arrows: a forward predicate

rdf:type and a backward predicate ozone:handlesPrescriptionType. We can express this

computation in Adenine as a query to the RDF store as follows:

88

=t uple (queryExtract
:aRenderingRequest rdf:type ?type
?evaluator ozone:handlesPrescriptionType ?type

}(?type ?evaluator))
=evaluator tuple [1]

The queryExtract function in this code fragment resolves ?type tO slide: TextRequest and

?evaluator to :textulElement. In the case where there is more than one evaluator capable of

understanding a prescription, the UI framework picks one of them non-deterministically-this

results from the non-deterministic behavior of queryExtract. In the future, we can add versioning

information to allow more accurate resolution from prescription to evaluator.

6.1.2 Evaluator Java Interface

So that all evaluators of different types can be instantiated and disposed in the same manner by the

UI framework, they are required to implement a common Java interface-the

edu. mit . lcs . haystack. ozone. IEvaluator interface:

public interface IEvaluator
public void initialize(

IRDFContainer source,
Context context

public void dispose();

After the Java class implementing an evaluator has been identified and instantiated to create an

evaluator instantiation, that evaluator instantiation is then initialized with a call to its

IEvaluator. initialize () method. This call provides the evaluator instantiation with an RDF

container through which it can retrieve data from the system's information corpus, as well as a

edu. mit . lcs . haystack . ozone . Context object that captures the context in which the evaluator

instantiation has been instantiated and is to be used. The instantiation remains alive and is expected

to apply and reapply its transformation until it is explicitly disposed with a call to its dispose ()

method.

6.1.3 Context

As discussed in section 5.8, contexts can be captured in environments, which are RDF models each

containing information to which an evaluator has access. The evaluator tries to understand its

context from that information.

There are two ways to implement environments properly:

1. create a new RDF store populate it with just the accessible information;

89

2. applying a filter on top of an RDF store or another environment to add accessible

information and remove inaccessible information.

The first method is expensive: certain information will be duplicated in several environments. The

cost of constructing and destructing RDF stores is not negligible. The second method avoids

duplicating information but requires sophisticated logic for dispatching queries through multiple

layers of filters; this could result in speed impediment.

Let us note that in the physical world, what a person sees depends on where the person stands.

Likewise, we can control what an evaluator sees by telling it "where to stand" in the RDF store, i.e.

which node(s) in the RDF store to start analyzing from. This method does not limit what an

evaluator can see, just how it sees the data in the store.

The context object in the method IEvaluator initialize () models the context of an evaluator

exactly by specifying points (i.e. RDF nodes) in the RDF store where the evaluator can start in its

search for information describing its context. These points are values of vanables in the context

object.

Variables in a Context object can have values that are URIs. These URI values effectively point into

the RDF store as I have just discussed. Values can also be Java objects that encapsulate information

for some reasons not serialized into RDF. For example, system font handles and color handles can

be specified in the context object of a UI element; these handles cannot be serialized into RDF.

Other pieces of information, such as temporary results of calculations needed for wrapping text in

paragraphs, can be serialized but are better kept in live Java objects for frequent access.

Context objects also mimic RDF store filters by chaining themselves together in a tree-like fashion.

Variables of a node in the tree are inherited by its descendent nodes.

Currently, context objects are mostly used for passing initialization parameters to evaluators. These

parameters are actually the starting points at which an evaluator can start analyzing its context. More

specifically, each context object contains the variables named "evaluator" and "prescription" that

identify respectively the evaluator and the prescription that the evaluator instantiation is to evaluate.

Context objects are also used to store inheritable settings such as fonts, colors, text alignment

settings, etc.

90

6.2 UI Elements

Every UI element implements the edu. mit lcs. haystack. ozone. IUIElement interface, a sub-interface

Of IEvaluator:

public interface IUIElement extends IEvaluator
public boolean handleEvent (Resource eventType, Object event);
public IGUIHandler getGUIHandler (Class cls);

6.2.1 Event Passing

The IUIElement interface provides a mechanism for passing events to UI elements through the

method handleEvent (). This method takes a parameter called eventType that stores the type of event

being passed. Event types are RDF classes named by URIs (e.g. ozone: event. onMouseDown). This

naming scheme is beneficial in two ways:

1. Annotations can be made on event types and persisted in the RDF store (e.g. a UI element

can be forbidden to handle events of a particular type due to some security reason); and

2. Events themselves can be serialized into RDF and asserted to be of some event types, which

are already RDF classes with URIs; such serialization allows events to be logged; event

logging policies can even be just annotations on the event types.

6.2.2 Layout Negotiation

The IUIElement interface also provides a mechanism for each UI element instantiation to negotiate

its layout with its immediate parent UI element instantiation. Figure 31 shows the hierarchy of nested

UI element instantiations inherent in the transformation tree in Figure 29. The nesting of rendering

requests and view requests dictate how UI element instantiations are nested together, and how they

negotiate with one another to lay out their outputs. The UI element 1 instantiation is the topmost

and it is the immediate parent of UI element 2 instantiation and UI element 3 instantiation. UI

element 1 instantiation will negotiate with both of the other two UI element instantiations to

coordinate their outputs. UI element 3 instantiation in turn negotiates with UI element 4

instantiation. This process of layout negotiations is a depth-first traversal.

91

N

instantiation

Figure 31. Hierarchy of nested UI element instantiations inherent in a transformation tree

A parent UI element instantiation (or "element" for short in this discussion) starts a layout

negotiation with a child element by querying the child element for its rendering mode. There are two

modes: block and inline. An element can render in block mode if it knows how to render within a

rectangular area. An element can render in inline mode if it can wrap its information content like text

across several lines.

92

...........

....... ...

.....

The rendering capability of an element is encapsulated in a Java object of type

edu.mit. lcs.haystack. ozone. IGUIHandler that the element can provide. There are two sub-

interfaces of IGUIHandler that specialize the rendering capability of an element into the two rendering

modes. They are IBlockGUIHandler and IInlineGUIHandler.

By specifying either interface in a call to a child element's IUIElement .getGUIHandler 0, a parent

element can retrieve the rendering capability in a particular mode of that child element. The result

may be null if the child element cannot render in that mode. The parent element can also pass in a

null to the method getGUIHandler () to retrieve the rendering capability in the default mode of the

child element.

The interfaces IGUIHandler, IBlockGUIHandler, and IInlineGUIHandler are declared as follows:

public interface IGUIHandler
public void setvisible(boolean visible);

public interface IBlockGUIHandler extends IGUIHandler
public int getHintedDimensionso;
public int getTextAligno;

public BlockScreenspace calculateSize (int hintedWidth, int hintedHeight);
public BlockScreenspace getFixedSize(;

public void setBounds (Rectangle r);
public void draw(GC gc);

public interface IInlineGUIHandler extends IGUIHandler
public void calculateTextFlow(ITextFlowCounter tfc);
public void draw(GC gc, List textSpans);

The interface IGUIHandler consists of only one method, setVisible (), that allows an element to be

notified whether it has been made visible or invisible.

The interface IBlockGUIHandler contains several methods that return certain characteristics of an

element. The method getHintedDimensions () tells whether the element should be hinted with a

width so that it can calculate its height, or a height so that it can calculate its width, or both a width

and a height. For example, a paragraph element should be hinted with a width so that it knows how

to wrap its text. (The semantics of the hints are not clearly defined in the current implementation.)

The method getTextAlign () returns an offset in pixels indicating how the element should be aligned

with respect to the current text base line should the element be positioned within a paragraph of text.

The method calculateSize () asks the element to calculate its size given either a hinted width, a

hinted height, or both. If the element wants to be hinted neither width nor height, then the method

93

getFixedSize () is called to get the element's desired size. An image element, for example, always

assumes a fixed size. The method setBounds (is used to notify the element of the rectangular screen

area that its parent element has decided to give it after the layout negotiation. The method draw ()

tells the element to paint itself.

The interface IInlineGUIHandler contains only two methods. The method calculateTextFlow()

takes in an object of type ITextFlowCounter [25] that encapsulates the current text wrapping settings

of the parent element. The child element uses this ITextFlowCounter object to determine how to

break up its information content into "text spans". After the parent element has negotiated with all

of its child elements, it adjusts these text spans to take into account text base line alignments, and

vertical and horizontal alignments. It then calls on each child element's method

IInlineGUIHandler. draw () giving back the child element's text spans.

6.3 View Producers

Although section 5.2.2 lists a diversity of view request specifications, currently the UI framework can

only handle specifications for view classes. Rather than modeling views' characteristics explicitly, we

classify views into classes, and specify in view requests which classes to be used. This decision

compromises the expressiveness of describing view requests for a simpler initial implementation.

When we understand how views' characteristics can be modeled, we will incorporate them into the

framework.

There is currently one generic view producer that can translate a view request demanding a super

view class into a view request demanding the most specific view class suitable for presenting the

object to focus on.

Figure 32 and Figure 33 illustrate an example of this translation. Given a view request named

: aViewRequest Of type ozone:ViewRequest, the UT framework looks for the appropriate view

producer, which is ozone: viewProducer. This view producer inspects the view request, which

demands a view of type ozone: LineSummaryView for the object named : anof f ice. A view of that type

is supposedly rendered as a line with summary information. The view producer then inspects the type

hierarchy of : anOffice and finds that the most specific type that has a registered view class which is a

subclass of ozone : LineSummaryView IS :Location. The view class registered for :Location,

:LocationLineSummaryView, overrides the perspective class ozone: LineSummaryView registered by

default for all things.

94

:anOffice

rdf:type
:Office

rdfs:subCl

Location

rdfs subCl

daml :Thin

ozone:focusObject :aViewRequest

assOf

ozone

:LocationLineSummaryView

:useViewClass

assOf rdfs:subClassOf

ozone:useViewClass
ozone:Line
SummaryView

g

ozone: superViewClass

rdf:type

ozone :ViewRequest

ozone:handlesPrescriptionType

ozone :viewProducer

Figure 32. Resolving a super class view request to a view class

Note that the UI designer who specifies the view request does not need to know what type

: anOf f ice is, nor what class of view is suitable for showing it in. She only needs to decide that the

view should be a line summary and the rest is handled by the UI framework. For this reason the

translation from a super view class to a specific view class is very important.

In order for a view of type : LocationLineSummaryView focusing on : anOf fice to be presented, the

ozone :viewProducer issues a specific class view request for it. Specifically, as shown in Figure 33, the

view producer generates a view request of type : LocationLineummaryViewRequest focusing on

anOf f ice. This is because views of type :LocationLineummaryView are produced by the view

95

producer :LocationLineSummaryViewProducer, which understands view requests of type

:LocationLineummaryViewRequest.

:anOffice

rdf:type

:Location

:LocationLineSummaryView

ozone:useViewClass

ozo ne:

ozone:producesViewClass

focusObject

locationLineSummaryViewProducer

ozone:handlesPrescriptionType

rdf:type

:LocationLineSummaryViewRequest

Figure 33. Generating a specific class view request from a view class

The newly generated view request can then be translated by the view producer

locationLineummaryViewProducer into rendering requests or more view requests. Since

locationLineummaryViewProducer deals mostly with RDF, it is convenient to code it in Adenine.

Here is a sample code for this view producer:

add I
:locationLineummaryViewProducer

rdf:type ozone:Evaluator
rdf:type ozone:ViewProducer
ozone:handlesPrescriptionType :LocationLineSummaryViewRequest
ozone:adenineMethod :produceLocationLineSummaryView
hs:implementation ${

rdf:type hs:JavaClass
hs:className "edu.mit.lcs.haystack.ozone.AdenineEncodedViewProducer"

96

method :produceLocationLineSummaryView viewRequest
= location (extract viewRequest ozone: focusObject ?x)

return ${
rdf:type ozone:Prescription
rdf:type ozone:RenderingRequest
rdf:type slide:TextRequest
slide:textDataRequest ${

rdf:type ozone:Prescription
rdf:type data:DataRequest
rdf:type data:LiteralPropertyDataRequest
data:subject location
data:predicate dc:title

When the UI framework locates : locationLineSummaryViewProducer and finds its implementation

Java class AdenineEncodedViewProducer, the framework instantiates an object of type

AdenineEncodedViewProducer and initializes it with a Context object in which the property

ozone:prescription is bound to the view request's URI, and the property ozone:evaluator is bound

to :locationLineSummaryViewProducer. The AdenineEncodedViewProducer object retrieves the

attribute ozone: adenineMethod from :locationLineSummaryViewProducer and invokes the returned

method, :produceLocationLineSummaryView, passing in the view request's URI. The Adenine method

gets the focus object's URI, i.e. the location's URI, from the view request and formulates a rendering

request and a data request. The data request specifies how to compute the title of the location and

the rendering request specifies how to paint the title.

Note that there are two different view requests in this example, one specifying a super class of the

view desired and one specifying a specific class of the view desired. Both are persisted in the RDF

store because both might incorporate changes by the user. For instance, the user might demand that

the office named by : anof f ice be shown not as a line summary but as an icon; this change should be

saved in the first view request. At the same time, the user could also customize the line summary

view of : anOf f ice by inserting into the second view request specifications that the

locationLineSummaryViewProducer understands.

6.4 Data Producers

Data producers implement the edu. mit . lcs haystack.ozone . data .IDataProducer Java interface,

another interface derived from IEvaluator:

public interface IDataProducer extends IEvaluator
void registerConsumer (IDataConsumer dataConsumer);
void unregisterConsumer (IDataConsumer dataConsumer);

97

Object getData(
Resource dataType,
Object specifications

throws DataNotAvailableException;

Resource getStatus();

void requestChange(
Resource changeType,
Object change

throws UnsupportedOperationException, DataMismatchException;

boolean supportsChange(Resource changeType);

This interface works together with the edu . mit . lcs . haystack. ozone. data. IDataConsumer interface

to feed up-to-date data to the client of the data producer:

public interface IDataConsumer
void onDataChanged(

Resource changeType,
Object change

throws IllegalArgumentException;

void onStatusChanged(Resource status);

When a rendering request includes a data request, the UI element instantiation that handles the

rendering request requests the UI framework to look up the data producer capable of understanding

the data request, instantiates the data producer, and returns a Java object implementing the

IDataProducer interface. The UI element instantiation then registers an IDataConsumer object with

the returned IDataProducer object, so that the data producer instantiation (i.e. the IDataProducer

object) can dynamically route data to the UI element instantiation.

When data is available or when data has been changed, the IDataProducer object calls the method

onDataChanged () on the IDataConsumer object, specifying the type of change in the changeType

argument (e.g. data:stringChange, data:listAddition, data:setRemoval) together with the actual

change, the delta, whose type depends on the type of change. The IDataProducer object can also

notify the IDataconsumer object of its status (e.g. 30% of data has been retrieved, connection to

information server being established) but this capability has not been explored yet.

The client of a data producer instantiation can also actively use the data producer instantiation by

calling its methods getData (), getStatus), requestChange (), and supportsChange). The method

getData () retrieves a specific piece of data offered by the data producer instantiation. The argument

dataType specifies the nature of the data to be retrieved (e.g. data:listtem, data:string,

data:setItems) while the argument specifications gives more details on the piece of data desired

(e.g. the index of a list item). The method getstatus () retrieves the status of the data producer

98

instantiation, which is named by a URI. Again, status information has not been used but one can

foresee that a view request can be made for the returned resource in order to show the status of the

data producer instantiation to the user.

The method supportsChange () asks the data producer instantiation whether it can support the type

of change named by the argument changeType (e.g. data: stringChange, data: listAddition). The

method requestChange () requests the data producer instantiation to make a change of the type given

in the argument changeType and with the details given in the argument change. The request may or

may not be met, and may be met synchronously or asynchronously. If the request is met, the client

will receive a call to its IDataConsumer object's method onDataChange 0.

Note that data requests can not only be embedded in rendering requests but also within one another.

This is similar to nesting programmatic expressions within one another to perform sophisticated

calculations. The following code fragment shows several data requests nested to specify how to

retrieve all siblings of a given person:

To understand these data requests, we analyze them from inside out. To simplify my explanation, I

will call the data producer instantiations created to handle these data requests dpil, dpi2, ... , dpis.

First, dpi4 retrieves all parents of a Person; this is equivalent to executing the following Adenine code:

99

= dataRequestForAllSiblings ${
rdf:type ozone:Prescription ;1
rdf:type data:DataRequest
rdf:type data:SetDifferenceDataRecipe
data:minuendDataRecipe ${

rdf:type ozone:Prescription #2
rdf:type data:DataRequest
rdf:type data:SetMergeDataRecipe
data:setsDataRecipe ${

rdf:type ozone:Prescription ;3
rdf:type data:DataRequest
rdf:type data:MapDataRecipe

data:setDataRecipe ${
rdf:type ozone:Prescription #4
rdf:type data:DataRequest
rdf:type data:PropertySetDataRecipe

data:predicate :parentOf
data:object aPerson

data:mapDataRecipe ${
rdf:type ozone:Prescription #5
rdf:type data:DataRequest
rdf:type data :PropertySetDataRecipe
data :predicate : parentOf

};
data:mapProperty data:subject

}
data:subtrahend @(aPerson

#1

#2

#3

#4

#5

--

=parentsTuples (query {?parent :parentof aPerson }
= parents (Set)
for tuple in parentsTuples

parents.add tuple [01

dpi4 returns this set of URIs of parents of aPerson to dpi3. For each URI in the set, dpi3 instantiates

a data producer to handle the data request #5. dpi3 sets the environment of each of those data

producer instantiations such that the data producer instantiation "sees" the data request it is given as

having the data: subject property equal to the URI of a parent. The data producer instantiation then

proceeds to retrieve all children of that parent. In effect, with the help of other data producers, dpi3

performs the following computation, as expressed in Adenine:

we are mapping the computation in the body of the following for loop
on each element of the parents set and put all the results into another
set called mappedSet.

= mappedSet (Set)
for p in parents

This is done by each data producer instantiation that handles the data request #5.
= childrenTuples (query { p :parentOf ?child })
= children (Set)
for tuple in childrenTuples

children.add tuple[0]

Include the result in each case in the final result set
mappedSet.add children

dpi3 returns a set of set to dpi2, which merges the sets together to form a union set:

= unionedSet (Set)
for s in mappedSet

unionedSet.addAll s

dpi2 then returns this union set to dpil, which removes from it aPerson:

= minuend unionedSet

= subtrahend (Set)
subtrahend.add aPerson

= siblings (Set)
siblings.addAll minuend
siblings -removeAll subtrahend

Effectively, the five data requests together encode the same computation as the previous four code

fragments combined, except that the data producer instantiations handling those data requests can

remain alive to maintain the computation up-to-date as long as their client requires, while the four

code fragments execute once and terminate.

100

6.5 Supporting Direct Manipulations

Section 5.7 points out that the systematic manner in which the Haystack UI framework pieces

together the UI through the view abstraction allows systematic and uniform support of direct

manipulation mechanisms such as context menus and drag and drop. Indeed, since each evaluator

instantiation in a transformation tree is initialized with a context object, and all context objects are

chained together in a tree reflecting the embedding hierarchy of UI elements, we can systematically

analyze the context object tree to determine which pieces of information being focused on and

hence, which pieces the user most likely wants to interact with.

The effects of direct manipulation actions are simply delayed computations that are invoked when

appropriate. These computations are parameterized by the objects on which they act. They are

exactly like Adenine methods, are modeled as Adenine methods and referred to as operations. In order

to determine when an operation is appropriate, i.e. applicable, we add metadata describing its

applicability. Currently, the applicability of an operation is determined by the types and values of its

actual arguments. The types of acceptable arguments are annotated on the formal parameters of the

operation. (The acceptable values can be enumerated by Adenine methods, which are not discussed

herein.)

The following code segment shows an operation for clearing collections:

add { :collectionTarget
rdf:type op:Parameter
rdfs:range hs:Collection

method :clearCollection :collectionTarget = collections
rdf:type op:Operation
dc:title "Clear collection"
dc:description "Remove all collection members"

for c in collections
remove c hs:member ?x

The named parameter : collectionTarget in this example has the range of all things of type

hs : Collection. In other words, the operation :clearcollection can act on any collection and only

collections. Named actual arguments to operations are always passed as sets. As a result, in the

method :clearCollection, the remove statement works on the elements of the collections actual

argument.

Whenever a UI element used to render a view of a collection is right-clicked, the operation

: clearCollection will be automatically listed in the resulting context menu.

101

The effects of drag and drop are modeled as operations that take two parameters each, one marked

to be of type dnd: DragParameter and the other dnd: DropParameter. Here is an example:

add { :personTarget
rdf:type op:Parameter
rdf:type dnd:DragParameter
rdfs:range hs:Person

add { :meetingTarget
rdf:type op:Parameter
rdf:type dnd:DropParameter
rdfs:range meeting:Meeting

method :inviteToMeeting :meetingTarget = meetings :personTarget = persons
rdf:type op:Operation
rdf:type dnd:DNDOperation
dc:title "Invite person to meeting"
dc:description "Invite person to meeting"

for m in meetings
for p in persons

meeting:invite m p

The user can invoke this operation by dragging any view representing a person onto any view

representing a meeting. The result is that the person is invited to that meeting.

In the future, we can investigate on how to describe the applicability of an operation based on more

than just the types and natures of its actual arguments. For example, we can specify which security

permissions the user must have to execute an operation.

102

CHAPTER 7

Usage Scenario and User Study

In this chapter, I describe a usage scenario that illustrates how the support for information

management tasks by the infrastructure of an environment leads to a coherent experience for

interacting with information. That scenario is then used in a user study which compares users'

performance in achieving the same set of goals in two different environments: Haystack versus

Microsoft Windows together with relevant applications. This is a preliminary user study purposed to

provide some quantitative indication of the Haystack UI's performance as well as to elicit qualitative

user feedbacks.

7.1 Points to Illustrate

It is valuable to see the extent to which the UI framework that has been constructed resolves some

of the shortcomings seen in existing information management environments as listed in

103

Table 1 on page 30. In particular, I would like to illustrate the following points through a usage

scenario:

1. The associative browsing paradigm (using hyperlinks) together with the capability to model

pieces of information large and small as first-class objects yield a conceptually simpler but

more versatile mechanism for locating information as compared to conventional UI routes

made up of widgets such as menus and dialog boxes. While the associative browsing

paradigm has been widely used for the Web, it has not been explored in depth as an

alternative for browsing everyday information such as e-mail messages and digital picture

albums. I wish to see how this paradigm fares against the window-dialog box paradigm.

2. Because many things are modeled as first-class objects, users can create shortcuts to quickly

revisit them. This is another advantage of Haystack as compared to existing environments

with regards to the support for locating information.

3. Serving as central points wherefrom operations applicable on objects can be browsed,

context menus allow users to easily associate operations and the objects on which they act,

and make the capabilities offered by the system transparent and readily available to users. In

existing environments, wherever many objects are involved, it is not clear which operation is

offered for which object, and how to exhaustively list all operations available for a particular

object.

4. Drag-and-drop is a natural mechanism for invoking certain operations and its pervasive

support adds a fluidity in the manipulations of information. In existing environments, drag-

and-drop is not supported uniformly and where not supported, is often expected and

missed.

5. Haystack's support for information organization at the system level has added flexibility and

expressiveness in the ways users organize their data. In particular, things of different system

types can be organized together in ways meaningful to users, and classification can be

performed without relocating data.

I have purposely neglected to test the aspects of expressing and perceiving information because the

Haystack platform is not complete to the extent that allows these aspects to be tested. For instance,

with regard to perceiving information, there is currently no UI mechanism for the user to

104

dynamically change the way an object is being presented (e.g. switching the specified super view

class).

7.2 Scenario

The usage scenario used to illustrate the above points is as follows:

A hypothetical user, let us named her Jane, is working on a group project with her friend Alisa. This

project involves collecting information about famous Canadian singers and writing an essay about

them. Alisa has managed to get some contact information for Celine Dion, a famous Canadian

singer, who is incidentally one of Jane's favorites. Alisa has sent Jane an e-mail message with a

contact information card attached.

1. From Alisa's e-mail message (Figure 34), Jane clicks on the attachment labeled "Celine

Dion" to view the contact information of Celine Dion. The contact information card

includes a portrait of Celine and a map to her home. (This step illustrates point #1 in the

previous section.)

2. Since Jane intends to conduct a face-to-face interview with Celine tomorrow, she wants a

quick way to recall the map to Celine's home whenever she needs to drive over to Celine's

home. Jane drags the map from the contact information card over to the Favorites collection

on the left pane (Figure 35). Note that the Favorites collection can contain items of any

type-it is a heterogeneous collection. (Points #2, 4.)

3. Jane realizes that Celine's portrait in her contact information card is in a wrong orientation.

She right-clicks on the portrait and chooses the operation Rotatepicture (Figure 36). She

selects the correct rotation direction when asked on the left pane and clicks on the button

Rotate (Figure 37). The portrait is now properly oriented. (Point #3.)

4. Jane remembers that another friend of hers, Ben, is also a fan of Celine Dion. She wants to

send him her photograph. She clicks on the operation Compose e-mail message in the Favorites

collection and enters his name in the To line (Figure 38). She then clicks Back to return to the

contact information card, and drags Celine's photo onto the new e-mail message which is

displayed as an item in the Scrapbook collection on the left pane (Figure 39). (Newly created

items in Haystack are automatically added to the Scrapbook collection, which is another

105

heterogeneous collection.) Jane then clicks Fonvard to return to the new e-mail message.

(Points #1, 4.)

5. Jane just remembers that Ben is on dialup: he would prefer pictures to be sent in small sizes.

She then right-clicks on the attached photo in the new e-mail message and choose the

operation Resi*.epicture (Figure 40). She enters "50%" as the new size of the photo and clicks

Resi*e. (Point #3.)

6. Since Jane is confident in getting more information about Celine Dion, she decides to

include Celine in the final essay. That means she needs to collect all information she has

about Celine into her project, which is just a category called "Canadian Singers Project" that

she has created. She clicks on the item called "Song Collection" in the Favorites collection on

the left pane to browse to her collection of songs. She then selects the one Celine Dion's

song that she has and checks the checkbox labeled "Canadian Singers Project" on the right

pane in the Organife tool (Figure 41). Celine's song has been classified into the project. (Point

#5.)

7. The e-mail message from Alisa is also relevant to the project. Jane browses back to it and

classifies it into the same category. (Point #5.)

8. Jane also wants to put Celine's photo into the category. She clicks on the attached contact

information card in Alisa's email to browse to Celine's contact information, which includes

her portrait. Jane then drags the portrait onto the category "Canadian Singers Project".

(Points #4, 5.)

9. Jane returns to Alisa's message and realizes that Alisa also asks for a plan for the weekend as

well as gives some advice about the user's upcoming interview for a summer internship. Jane

then checks the two checkboxes labeled "Fun" and "Internship" in the Organize tool on the

right pane to classify e-mail message accordingly (Figure 42). (Point #5.)

10. Jane wants to know who has taken the photograph of Celine Dion, in case the photographer

has taken more photographs of her. Jane clicks on the attached contact information card

again, and then on the portrait. When Haystack has browsed to the portrait, Jane sees that

the portrait has been taken by John Doe (Figure 43). (Point #1.)

1o6

11. Jane clicks on "John Doe" to browse to his information (Figure 44). There, she clicks on

"John Doe's photographic collection" to see all of his photographic work (Figure 45). (Point

#1.)

12. After browsing more photos of Celine,Jane decides to review the map to her home to see

how far she will have to drive. She clicks on the item labeled "Map to Celine's home" that

she has previously put into the Favori/es collection on the left pane. (Point #2.)

ack Fmard 04 A Honse GO to: 0 Navigate
Appi y ton~Test Usern estuserFW: Cefine's contact info

Show as a message tSelect frirmbon o rces Mark as uead I Malt as read Reply Forward

scrapbook erec Arom

I H Sent Wed Mav21 1:14 EDT 2003

------------ ~ ~ ~ ~ ---- 10Ts @1 De fa a t C atem le;
favoite c tems r st

SSubject N Ceie's oytact inf
nco e n= In Reply To tensist

S FWV: ek con~tac knf:-
4 it-, tee e k sCne and he te er =ntact nfo. See ifjy can get an teree Wt, he soon.

.ssmtter
3

Zs Sey gigthat mtaeeto iwI~ iM. They testd to , Csto te :sk, Sumner httims tse puzzles. Good W,.ne:sPo c

And what are you uptn ts weeerd ow ab apt e pCod; The weA ther i cgett now Intelrjhp (i0tems

tee eifAerisoer Add:

E Attachments

FCege Ai

Figure 34. Scenario: reading Alisa's e-mail message

107

I

M Test User
Wekome t) Test Haystack

May 1 ,2003 8:23 NiI

Scrapbook

Favorites

H))Campose cenn aessage
IW: Cetait corntas att n

:Scat CoL'xan -

4flack~~~ ~~ OWN~rd ...oe (kt tIDNvgt

Celine Dion
9hm al infermatian - Setecttformation sources - Add a new aspect

p. . I. - - p| . ' ' _'

HomeO page Add x

INe items in h

NJ !4.iems in lst

Ceine D on

Thfolioturc information i it i ed:

....aila..

Cene s portrait

-- -- - --..

"me
Address Street 123 timn st

ity Seatte
State washrnton
Po ta 2345

Magf 0% V;o vzo Add Y

Tenei Add

Noaf es re hoVt oat

eat

AOs-ptie

o tdadpete

Aplyt n o

I Ce Dion

Defait Categsiea

SCaniadian (C itemns)
SingersPialect

Elul C tt
E~ntemn ip 12tems c

Brs fA ceen Add

Figure 35. Scenario:

PCte e:Cee sDotral

Dsposa e Package: Photo
Cekno Lict

Person: Cet;rne D-on

Creating a shortcut to the map to Celine's home

Pictre- (elves portrait

Add to avorites

Add to coletonAinst

C; Adjust Brightness b Contrast

Annotate

Attach

eBrowse to

Copy URI
Crop Picture

Export to ftie

Remind me to repare for this

Remind me to read this
Rename

tJResize Picture

Rotate Picture
kC unda Last Edbin an F-ctoe

Vew anotas
1u50 i pat'.at tosk...

Ataca samman.

Figure 36. Scenario: invoke the Rotate command on a picture

1o8

4Ba fowaro 11 home es tvi. n (DNvgte

t

0

Test User
Weme to Test Haystack
Ma, 21 2, 3:z AM

Actwe Tasks
PRott Cehrrc Cop

Ar 1j egres c

Ad . l's t tr 5 a-In

Scrapbook
navstadk Home Page

0Favorntes

fl Cose eO 4
'W4Cne'f conta-tInfn

Map V. Cdne's none

Figre C7-. Son

Figure 37. Scenario: choosing direction to rotate picture

4 Badc Forward 4 A Nowe Go to n _ _ _avkte

.. p y. ..l . ATest User
Weko M to Test Haystack II Nojubjct

- ay 2 U 203 &45 AM ~ Shoo as a fmessage Select nfsrmation saurles w Send

Active Tadks

..CC

Lcrapbook Ha[NysubjekHct pzeCC Add

~Subject ----------------- ----- ----------------- ---- - 5 im P j z

avo ri trs a r Add z u r

63Cmpe -maM meSsa ge Hey B,(,.

Figure 38. Scenario: composing an e-mail to Ben

109

MTest UserteWcome to Test Haystack
May 20 03 : - AM

n ")Naiate

Celine Dion
Show a informaftn w Sectnformation soures Add a new aspect-

Active Tasks

No i'on tot name
A an it tO ois task IIomepage

UScrapbook

Favortes 7h foov nforma io
SMoo e nist

000nComol endmsotgqo

* 0 ttOng C otton)
| ~2'o towCireoboon

[Icelne [ton

'te froGW s rfman

nis required:

is I
- Ieemammm

- I eQ

......

.. A..............

U tnadroete

Apply WKcS On
,LCeIne Dion

Deoaull Cate les

C3 Canadan (es
Sngets Projed

eount (&ts)

l toternshtp (0 tems)

--...oesIRTe

Figure 39. Scenario: attaching Celine's portrait to e-mail message to Ben

110

Ceanes portrait

- -I -- - -
IHome

Address

Telephe

Street 3 to IC

State n C

Posta..236T

Map Map to Ad
e o snme

n.a aae : :,: : , Ar
E-toads. _______

W 0 -. 0, V*

11 ! 4 Ba& Forwwd 0 HOM Go to:: I J

ETest User
Welcome to Test Haystack

May 21 2003 85h AM

Active Tasks

Ado an i'vn to thi! ask ist

SFavorites
j Address Eok
. Compose ernt iessarp

Ew: e ntaa o
: Map to CeIne s ho

---- - ------ -- --- ---

[No subject]
Show as amessage Select ireabetn sarces w Send

To te itnt Adds

pe the rane st enst adress of thre otact to use and press Eater.

Cc Add2

Subjects

in Reply Taor.c~. « Add Y

Hey Enrr,

rie iE a prtue of Cerie. H Io Ik il.eI.
daoor(eCelse's partrait

Ad ontto
Ad ocoknectrordast

t A.junt Llnnhtrren S Cntrant

Antan

Aj tisfih sCopy URI

:4cfop Pic u'e
Exornt to 6-e

Reintd me to prepare for th s
RMNid me to rend tS

Rezame

OReso Picatfre

kn Ukdm L~ast Editing

-iew a atons

as in prdng ta

F ~ et .ne
A tbUe

Cn s pt

or pcture

L',.

Apply tor oo

No ab~c7

aDef&I Cate tes

Sngers Project
CFun ({ ttms
~owre. OteroA)'

Figure 40. Scenario: resizing a picture

111

4 Back Forward 4 A Hofre G0 to (D Navigate

...

Test User
Welcome to Test Haystac

mMay 21- 1003 8:5-WAM

Active Tasks

Add an, te~m tz t-*is mak 6t Y:

A Hastajc 2m

Favortes
C. Adress SEAk

If ofomoe e -', re!sg
L FW: Cetsl coct5 Sn)

Q M5p So Cetn s n-ocr
4f Scg Clectcont

pply toos oil
J the POOWe Oftve

4flak Forwari 4 AHwne Go to Wav gate

Song Collection
Show eth cDllecton elesents - Select nformaton sources Lay out rows

Title AuthwoCreator Abum Genre
0t ne Din RhCK

1 chef tuyen Vs

S 17tian ghe uthu Aec

8_16-'lcden ct oo ,ec c

A S eram er CeTp uc* idtn Ac(xr LCtThO4'euttdd

A ASewuadAu thuer Leino +beuNga

069e e Sd use eteueg
- m tyia em n41

15-Vet lanr th

14,Mn c; n goi m,) nhau te 0t.'
14-Neuc d4 yopc o anh 7nanhi Tuyen

13-Henho tetho
n~ga chip i hanhITuyn

124oa CWmteth

The Power of Love
Shom al information eiectinformation sources Add asnot aspect

Author[Creator j CeLIne in Ad

Langouge Add

Genre C Add a
Comnment Wese:d : eoadAd
Yewe A dds

Rating w . ; Add 7

DMwatbon . Add m

U ''tann Abm

Figure 41. Scenario: classifying a song into a project

112

De TuS: Categ Set

i Cao-ndan i tems&)
Singers Project

meun (A -esI
Elt~nt (O tuns

tooweAsttreiAd

................... - .-

kJ

ETest User
Wekome to Test HaystackMay 2003 8: 59 AM

Active
Tsks

twdd an itern to t:i s as 1:,,

cirapbook

2 Heystack Hom
l [No b

5Favortes

* QAddress Fook
trr COrpose e-mas onessage

41Map to Ceine s homre

W Con Coiection

4 Back Forwardb 4 A HowE Go to n Navigate
Apply os on

FW: Ceine's contact InfoCelnes conactinfoShow as a message - Select nformabon sowces- Mark as rread I Mark as read I Reply Forward

Front Ahsa
Seat Wed May 21tM 1l4EfT 2M 3

TO T ees a

Subject W Crines cte rts

iReyTo ters in ist

Hey, Joe knows Cn.. and heas se- t M hes cntact info. See if you can ct an enterv ed mth lier soon.

3y te way,)osh said you shu rysome lateral hinkrig puzzies before gong to toao nterven it Y-N Thy tend to
a4k sum er inms those puzzles. Good W-dd

Asnd what are you op to Otx weekend? Hw about Cape Cod The wea'her iC getting res nowr

a

EB Attachwto

..... Cr .

®ipt, Categoses

7Caaian 3 te L
Singerc Project

rZ Fien
-2]terernship - tem

Iorose fal screen j Adds

Figure 42. Scenario: classifying Alisa's e-mail message into more than one category

113

!1410

Ha~st~

*Test User
Welome to Test Haystadk
May 21, 2003 9:01 AM

Active Tasks

tdde, itm iistsebt

scrapbook
Hays ta&k iime Pa

Savortes

2)Commmse e-.. essagqE

9 Map to Cekne s home

*ySo Cytetyn

4Back Forwan 4 AHme Go to 0 Navigate

Celine's portrait
Show as a message SeLe r nfsmabon mces

Date
AuthorCreatce

Cortais

"eight

[? 3 oc Add

Add

Add

Add

vcemesprtat

F1 anad0 n Catewlees;

..ge. ...rojet.

I 'kaae t ul'reer. [Aa d

Figure 43. Scenario: Seeing more information on Celine's portrait (actual full scale
photograph omitted to observe copyright)

114

i

I I ak Forward. ..Ho..e .o.to

Test UserMWelcome to rest havstaik
May -,;,203 9:09AM~

Active Tasks

NittSems Est

Ad a em tr, tlv a W

-Scrapbook
a aystaed- zMeP e

favorites -

J Comose e-smt mesag
2 EW: Chimes c'ont'c unf

MNo Is Cele he

- SuyCstm e

John Doe
Shoi al afrmation s informator soirces Add a new aspect

3ohn Doe's photographic coecton

Tnre t r nfsmaton is eqvred
N ems nt E-ma a-

be fcoriqmgnfcrmamris 'roued:

N4co i"emPrist
/OK

Itase)hnoe N0 tmstr Dnoe

lonm page to

No items h1 hirt

P, or

Apply tohis or

Deat Castegote

OCniadn (3;temsi

Snges Projet

ZI nemship tms

'me ~i sre.n |Addi

Figure 44. Scenario: viewing information of the photographer of Celine's portrait

115

0navigate i0

-3- A -'NM -4 Back Forward 0 4 A HOMe GO to : n 0 avigate
Test User pp y Uxisof)

John Doe's photographic collectionWekorie Wo Test tiaystaco M]ohs Dout as a ictzeaour
May O' 39:A sh__ wth c_L_ _ __n elemnts _ _Se _ _ _ _ nformaon _ __ Lay out as a Picture abu _

CActive Tas

CScapbooki

Scek'e. Ame Cs's port

Favortes kncer Prct

'omose 4, mmemphl
t

Ct: is cor b.txinf-.
Mar ts ceine s home Brwseft een
Song ,Aec tn

Star ifor matec soo

Figure 45. Scenario: browsing more photos of Celine

7.3 User Study Design

This user study sought a preliminary comparison between Haystack and an existing environment

with regards to their support for performing basic information management tasks. My hypothesis

was that Haystack, with infrastructural, built-in support for information management, outperforms

the other environment whose means for satisfying basic information management needs come from

the amalgamation of support implemented by individual components. Specifically, given the same set

of tasks, subjects would be able to finish them faster and more completely in Haystack than in the

other environment.

7.3.1 Design Rationales

This section discusses several challenges inherent in the nature of this study and the decisions made

to overcome or sidestep them.

116

Choosing Tasks

The tasks in this study cannot be specified at a low level, e.g. click here, click there. Rather, they must

be high-level goals so to demonstrate how each environment demands users to map high-level goals

to low-level actions. It is mostly the differences in such mappings that make one environment

cognitively easier to use than another. Note that even if for a common goal two environments may

offer two shortest sequences of low-level actions with the same length, one environment may still be

easier to use than the other as the shortest sequence of actions offered by each environment may not

be the sequence of actions most users take-the high-level goal may not map most logically to that

sequence.

We need to choose high-level goals that are logical and familiar to test subjects so that they are easy

to understand and remember. The goals must be something that at least some test subjects would

want to perform outside this study, so that it can be inferred that Haystack is useful in practical

situations.

I chose to adopt the tasks in the scenario in section 7.2 for this study. I believe the high-level goals in

that scenario are practical and they form a story that is logical and hence, easy to remember.

One can suppose that the scenario chosen has been optimized to Haystack's advantage. It may be

true that Haystack has an advantage over the other environment with respect to this particular

scenario, but that was exactly what I wanted to prove because I believe that this scenario consists of

practical information management tasks that users would want to perform in other circumstances. To

be sure, I decided to ask test subjects how often they needed to perform those tasks outside the user

study.

Comparing Performance

Test subjects cannot be compared against one another as they differ in physical reaction times,

cognitive abilities, and experiences with computers and software. Rather, each test subject should be

compared with him- or herself by his or her performances on the two environments. This

requirement dictates that each user must perform the same sequence of tasks on the two

environments.

Since each user has to perform the same sequence of tasks twice, there is a learning effect in favor of

the second time. To lessen this learning effect, I chose to ask each user to read through the sequence

of tasks before starting the two phases, so that his or her knowledge of the goals to be achieved

would be almost the same in both phases. In addition, I decided to let half the number of users work

117

in Haystack first, and the other half work in the other environment first. Each environment would be

biased against half of the times.

Choosing The Competing Environment

Given an environment and a user base, there are three possibilities: the environment is known to no

one, to some users, or to all users. If the environment is known to only some users, then the users'

performances in that environment are not comparable. If the environment is known to no one, then

they must be introduced to that environment during the study. Since I have a deeper knowledge of

our environment, Haystack, than of any other environment, it would be considered a disadvantage to

the competing environment if I were to introduce the users to both environments. In order to be fair

to the competing environment, its designers should be the ones who introduce the users to it. This

clearly is not a practical choice. Consequently, I must choose an environment that is known to all

users who participate in this user study.

It is not possible to understand how each user has been introduced to this competing environment,

or whether that introduction was proper. We can only ensure that each user does have some

operational knowledge of that environment, which has been acquired one way or another over some

period of time. Let us assume that that operational knowledge puts the competing environment on

the same playing field as Haystack, which the user will be introduced to "properly" by me in five

minutes. In fact, with only a five-minute introduction and no operational knowledge, Haystack seems

almost at a clear disadvantage. If Haystack outperforms the competing environment, then either it is

easy to use or easy to teach-both points are merits.

Since the environment competing with Haystack must be known to all test users, it should be widely

known and used so that many people can participate. That environment must also be relatively new

so that it has new technologies and hence, a better chance of outperforming Haystack. It must not be

too new lest few users are sufficiently familiar with it. It must also have all the necessary tools capable

of supporting the tasks in the scenario.

I selected Microsoft Windows XP as the operating system of the competing environment given these

criteria. The Windows family of operating systems are widely known and used, and Windows XP is

the latest released version. Many applications available run on Windows.

Microsoft Outlook 2002 was selected for accessing and managing e-mail messages and contact

information. Microsoft Outlook 2002 is a widely known and used e-mail client, and it allows contact

118

information to contain pictures. This capability is useful for including with Celine Dion's contact

information her portrait and the map to her home.

Microsoft Windows Media Player 8.0 was chosen for managing the songs involved in the scenario.

Windows Media Player comes free with Windows XP. Contemporary competing media players such

as Nullsoft WinAmp 3.0 do not offer any advantage over Windows Media Player.

Photos in the scenario would be edited with Jasc Paint Shop Pro 7.0. This software has an easy to

understand interface for rotating and resizing images. It allows creator metadata information to be

added to pictures, a feature crucial for annotating Celine Dion's portrait with its photographer's

information. Although Paint Shop Pro is not well known, I have chosen it for its simplicity and for

its metadata feature. Other photo editors such as Adobe Photoshop would be an overkill for our

purpose.

Note that it is possible to offer users more than one choice of application for each particular

functionality (e.g. making both Windows Media Player and WinAmp available) in order to increase

the chance of the users being familiar with some applications for each task. I have chosen not to do

so because certain functionalities (e.g. associating pictures with contact information) are only

supported in one of the competing applications available. Furthermore, it is not possible to offer all

applications that all users are familiar with. Offering several applications for each particular task may

even be confusing to users: if a user is unfamiliar with all of the applications offered for a task, he or

she will need to try to use many applications instead of just one.

Choosing Users

Even though I chose Windows XP as the operating systems, I did not require test users to be familiar

with Windows XP in particular. I only required that they had proficient knowledge of some version

of Microsoft Windows. This was a compromise of familiarity for a larger possible subject base,

justifiable because Windows XP is not a great leap forward since Windows 95 if we compare their

basic user interface mechanisms. There have been a lot of edge smoothing, additions of convenient

features, and stability improvements, but the skills for using Windows 95 are still transferable to

Windows XP.

Potential subjects were not asked for their familiarity with Microsoft Outlook 2002, Windows Media

Player 8.0, or Jasc Paint Shop Pro 7.0. This was another compromise for a larger possible subject

base, justifiable because, while experiences across different operating systems such as Mac OS X and

Windows may differ widely, experiences among applications designed for similar tasks on the same

119

operating system should not. That is, if a user has used Netscape 7.0 Mail & Newsgroups, he or she

should be able to use the basic functionalities of Microsoft Outlook 2002 without any trouble. After

all, a key design criterion for any modern operating system is the transferability of skills across

different applications.

Ads were posted in the Infinite Corridor of the Massachusetts Institute of Technology to recruit test

subjects. These ads could be seen by people at MIT or any passer-bys. Subjects with any experience

with any version of Microsoft Window who responded to the ads were accepted indiscriminately.

The MIT community is certainly more computing literate than average. In another study, such as one

attempt to determine how easy to learn Haystack is compared to another environment, we might have

chosen to advertise elsewhere. For this particular study, advertising to the MIT community was the

best available option that also ensures sufficient user experience.

It must be noted that each test subject brings with him or her certain prejudices from past experience

with software. For example, a user might expect Haystack to work in a certain way given his or her

exposure to some piece of software that works in that way; the user's cognitive interaction with

Haystack is consequently influenced by this expectation. It is practically impossible to compare a

user's performances in two different environments without such contamination.

Configuring The Environments

The usability of a piece of software is like an evening dress: just as the smallest stain in an infelicitous

spot spoils the whole dress, the smallest quirk in a frequently used feature can ruin the whole

experience of using the software.

Haystack is an unreleased research platform with many components developed by many

contributors. Not all components are mature. Not all known bugs have been fixed. Haystack is by no

means as quality assured as commercial software applications. We had to therefore disable features

not relevant to this study.

On the other hand, we could not disable certain irrelevant features in the competing environment

since we did not have access to its code base. Furthermore, we might not be in the position to judge

which features were irrelevant in the competing environment as we are not its designers. As a

consequence, I chose to not disable any feature. However, to help limit the choices, I decided to tell

the subjects about features that I believed were relevant. Of course, it is possible that I might

120

inadvertently have suggested the wrong relevant features and hence, lead the subjects down the

wrong paths.

Surveying Users' Opinions

The Haystack UI has been built on certain principles. This user study can help us find out whether

these principles are apparent to users by asking test subjects to articulate their experience with

Haystack as compared to the competing environment. If the principles are simple, logical, and

consistent, test subjects should be able to identify them.

The exit survey in this study was also used to gather some information about the subjects' levels of

experience with the competing environment. A subject's level of experience is roughly measured by

the number of years he or she has been using some version of Windows.

Considering all challenges listed above, this study is a best-effort attempt to find indications that

Haystack has advantages over other environments with respect to information management support.

This study does not aim to prove such advantages, but simply to hint at them. This study is also a

means for finding out users' reactions to Haystack that we have not foreseen.

7.3.2 Procedure

This user study consisted of one session for each test subject. At the beginning of a session, the

subject was asked to read thoroughly the requests listed in Appendix A. The subject could ask

questions at this stage, but no question involving specific details relevant for perform any user study

task was answered.

The subject was then given an introduction to both Haystack and Windows and relevant

applications. If the subject would be using Haystack first, then Haystack would be introduced

second, and vice versa. This was to avoid switching back and forth between the two environments.

Introduction to Haystack

The user was shown the UI of Haystack and told that Haystack acted like a web browser in that it

could browse to web pages. The user was then shown that clicking on a link (e.g. the link to Alisa's e-

mail message in the Favorites collection on the left pane) would cause Haystack to browse to where

that link points.

121

The user was then told that Haystack differed from web browsers in two aspects. First, anything on

the screen could be right-clicked to retrieve a list of commands applicable on what that thing

represented; the text "Test User" on the upper-left corner of the screen was right-clicked to

demonstrate. Second, drag-and-drop was supported; the text "Google" was dragged and dropped

into the Favorites collection on the left pane.

The user was told that the Favorites collection contained all links he or she would need for the study.

The user was told that the Scrapbook collection contained newly created items. The text "Compose

e-mail message" in the Favorites collection was click to create a new e-mail message as a

demonstration of this point. The created message was pointed to in the Scrapbook and then

removed to avoid interference with the study later.

The user was then pointed to the Organize tool on the right pane and told that it contained several

categories into which the item being viewed can be classified. The user was shown how to classify the

newly created e-mail message into the "Fun" category by checking the corresponding checkbox, and

how to remove the message from that category by un-checking the checkbox. The user was also

shown how the title of the message displayed on the title bar could be dragged into the "Internship"

category.

Introduction to Windows et. aL.

The user was shown Microsoft Outlook 2002 opened with a single e-mail message, the one from

Alisa, in the Inbox. The user was then shown the Contacts folder and Ben's contact information card

in it. The user was then told how to create a new e-mail message, either by right-clicking on a contact

information card and choosing "New message to contact" or by clicking on the New toolbar

command and typing in the contact's name or e-mail address. The user was also shown how to attach

a picture to a message by drag-and-drop, and how to file a message into a folder also by drag-and-

drop. The user was told that he or she could use menus and toolbars as he or she felt appropriate.

Next, the user was shown Paint Shop Pro 7.0 and told how to rotate a picture.

Then, the user was shown where to find the one and only Celine Dion's song in Windows Media

Player.

The user was finally told that a list of shortcuts had been made for his or her convenience and

collected at the bottom right corner of the screen, but he or she was welcomed to use any other

program on the computer as he or she needed.
122

Subject in Driver's Seat

The subject was then told to start performing the tasks given in either Haystack or Windows first,

and then in the other environment second. A screen-capture software was run to record all mouse

and keyboard actions.

The subject was allowed to ask questions during this stage. Questions were answered by the study

coordinator if they were deemed to not influence the points being tested. For example, if the subject

was not sure where to find the Attach command for an e-mail message because he or he used

Eudora instead of Outlook, then his or her inquiry for that command would be answered. Note that

in cases where it was not clear whether a question would influence the points being tested, the study

coordinator used his own discretion to decide whether to answer the question. There were simply

too many paths that could be taken in a complex environment as Microsoft Windows XP; not all

could be predicted aprior such that responses to the subjects' answers could be answered without

unintentional bias for or against Windows.

Concluding Survey

When the subject had finished performing the given tasks on both environments, he or she was

asked to complete the survey shown in Appendix B. This was the last stage of the user study session.

7.4 User Study Results and Discussion

Twenty three (23) subjects, 12 male and 11 female, who saw the user study's ads posters came to

participate in the study. One subject quit the study when told to perform the tasks first on Haystack.

Two subjects did not demonstrate the prerequisite skills on Windows and relevant applications. One

subject's data was accidentally lost. The results reported herein came from the performance of

nineteen (19) subjects, 9 male and 10 female.

7.4.1 General Observations

Several unexpected events occurred during the user study:

* Some subjects did not comprehend all the tasks even if they were asked to read the requests

thoroughly and even after they said they had no question regarding the tasks. As a result,

some bias would be expected against the first environments in which they performed.

123

* Subjects interpreted the goals of some tasks differently than intended (e.g. some subjects

made shortcuts to the whole contact information card of Celine Dion instead of just to the

map to her home).

* Some subjects carried out tasks out of order (e.g. the subjects resized the picture before

attaching it to the message to Ben). They took shortcuts that would speed up their

performances.

* Some subjects skipped some tasks as if they forgot to do those tasks (e.g. they classified

Alisa's message into only one category).

* Some subjects were reluctant to browse the file system because it seemed private to the

study coordinator.

The timings might have been inaccurate due to a number of interruptions:

* Subjects felt a need to compose proper e-mail messages and spent time formulating the

contents of the messages to Ben even if not explicitly asked for.

* Virus alert dialog boxes popped up in Microsoft Outlook when attachments were opened,

demanding subjects to read and respond to them.

* One subject was having lunch during the study.

* One subject answered his cellular phone during the study.

Overall, the subjects seemed comfortable with using drag and drop and context menus in Haystack.

Some subjects had great difficulties in composing new e-mail messages addressed to Ben in Haystack.

7.4.2 Numerical Data

Timings

Table 4 shows the times it took the subjects to perform the user study tasks, completely or

incompletely, on Haystack and on Windows. Each subject can only be compared against him- or

herself and not against another subject since subjects differ widely in their familiarity with computers

and software. The performance of each subject is calculated as the ratio of the time it took him or

her to perform the tasks on Haystack to the time it took on Windows, regardless of whether he or

124

she skipped any task in either environment. This performance metric is labeled "Duration ratio" in

the table. The average of these ratios, 0.68, indicates the subjects were able to perform the given tasks

on Haystack in about 70% of the time they took to perform the same tasks in Windows. Again, task

skipping is not taken into account in this figure. (The standard deviation of these duration ratios is

0.21.)

The average time it took to complete the tasks on Haystack is 12.73 minutes (T = 6.68), on Windows

is 18.90 minutes (c = 8.24). The ratio of these averages is 0.67, which is almost equal to the average

of ratios.

Table 5 shows the subjects' genders and which environments they used first. Gender did not seem to

influence performance. However, there is a clear difference in performance between those who used

Haystack first and those who used Windows first. The average of duration ratios for those who used

Haystack first is 0.79, and for those who used Windows first is 0.57. (The ratios of averages are 0.79

and 0.54 respectively.) This is a noticeable learning effect: there is a clear bias against the first

environment. Regardless, Haystack still outperforms Windows.

Table 4. Timings of subjects' performances on two environments

Haystack Windows Session
User Duration Duration Duration total time
ID Start End Duration (minutes) Start End Duration (minutes) ratio in minutes

1 0:00:10 0:11:43 0:11:33 11.55 0:00:06 0:14:17 0:14:11 14.18 0.81 25.73
2 0:00:37 0:21:06 0:20:29 20.48 0:00:07 0:23:53 0:23:46 23.77 0.86 44.25
3 0:00:12 0:09:31 0:09:19 9.32 0:00:17 0:14:13 0:13:56 13.93 0.67 23.25
4 0:01:40 0:21:16 0:19:36 19.60 0:00:13 0:21:40 0:21:27 21.45 0.91 41.05
5 0:00:07 0:10:08 0:10:01 10.02 0:00:30 0:32:39 0:32:09 32.15 0.31 42.17
6 0:00:16 0:20:56 0:20:40 20.67 0:00:11 0:16:52 0:16:41 16.68 1.24 37.35
7 0:00:06 0:08:01 0:07:55 7.92 0:00:03 0:15:00 0:14:57 14.95 0.53 22.87
8 0:00:22 0:33:06 0:32:44 32.73 0:00:12 0:45:13 0:45:01 45.02 0.73 77.75
9 0:00:10 0:10:19 0:10:09 10.15 0:00:06 0:18:09 0:18:03 18.05 0.56 28.20

10 0:00:09 0:11:08 0:10:59 10.98 0:00:09 0:17:07 0:16:58 16.97 0.65 27.95
11 0:00:34 0:07:09 0:06:35 6.58 0:00:05 0:10:51 0:10:46 10.77 0.61 17.35
12 0:00:05 0:08:03 0:07:58 7.97 0:00:12 0:10:53 0:10:41 10.68 0.75 18.65
13 0:00:02 0:08:32 0:08:30 8.50 0:00:03 0:13:08 0:13:05 13.08 0.65 21.58
14 0:00:04 0:05:19 0:05:15 5.25 0:00:03 0:13:09 0:13:06 13.10 0.40 18.35
15 0:00:08 0:06:24 0:06:16 6.27 0:00:08 0:12:38 0:12:30 12.50 0.50 18.77
16 0:00:10 0:17:14 0:17:04 17.07 0:00:06 0:17:26 0:17:20 17.33 0.98 34.40
18 0:00:15 0:13:04 0:12:49 12.82 0:00:10 0:24:57 0:24:47 24.78 0.52 37.60
19 0:00:23 0:16:07 0:15:44 15.73 0:00:09 0:24:57 0:24:48 24.80 0.63 40.53

20 0:00:06 0:08:26 0:08:20 8.33 0:00:17 0:15:13 0:14:56 14.93 0.56 23.27

Average . 31.64

125

Table 5. Subjects' performances with respect to first environment used

User ID Windows Haystack Duration ratio Gender Use first

2 23.77 20.48 0.86 f Haystack
4 21.45 19.60 0.91 f Haystack
6 16.68 20.67 1.24 m Haystack
8 45.02 32.73 0.73 m Haystack

10 16.97 10.98 0.65 f Haystack
12 10.68 7.97 0.75 f Haystack
14 13.10 5.25 0.40 m Haystack
16 17.33 17.07 0.98 m Haystack

19 24.80 15.73 0.63 m Haystack

1 14.18 11.55 0.81 m Windows
3 13.93 9.32 0.67 f Windows
5 32.15 10.02 0.31 m Windows
7 14.95 7.92 0.53 f Windows
9 18.05 10.15 0.56 f Windows

11 10.77 6.58 0.61 f Windows

13 13.08 8.50 0.65 f Windows
15 12.50 6.27 0.50 m Windows
18 24.78 12.82 0.52 m Windows

20 14.93 8.33 0.56 1f Windows

Figure 46 shows a different view of the data in Table 4 and

Table 5. Each subject's performance is plotted as a point with the x coordinate equal to the subject's

time on Windows and the y coordinate equal to the subject's time on Haystack. The solid diagonal

line divides the plane into two halves: the upper half contains points of subjects who performed

faster on Windows, and the lower half contains points of subjects who performed faster on

Haystack. The diagonal dashed line has the slope of 0.7 and represents the average duration ratio

discussed above.

126

35

30

'D 25

E
.5 20

>- 15

0
0 10
E

5

0

Subjects performed Subjects performed
faster on Windows faster on Haystack

-- '

* Haystack first

* Windows first

5035 40 450 5 10 15 20 25 30

Time on Windows in minutes

Figure 46. Comparison of subjects' performances on Haystack and Windows

Task Slappings

Table 6 shows whether subjects skipped certain tasks. There are four possibilities for each task on a

given environment: the task was completed and not skipped ("no"), the task appeared to have been

forgotten ("yes (forgot)"), the task was tried until an access denied error was encountered 5 ("yes

(access denied)"), and the task was tried but not completed ("yes"). The subjects skipped more tasks

on Windows than on Haystack. In particular, task #9, which required multiple categorization of

Alisa's message, was skipped by 9 subjects on Windows, but only by one on Haystack. Likewise, task

#10, which required identifying the photographer of Celine Dion's portrait, was skipped by 12

subjects on Windows, but by none on Haystack. Figure 47 shows a plot of the data in Table 6.

The study coordinator forgot to grant the subjects access permission to the folder containing the song by Celine Dion.

127

Table 6. Recordings of whether subjects skipped particular tasks

Skip Task #2? Skip Task #6? Skip Task #9? Skip Task #10?
User ID Haystack Windows Haystack Windows Haystack Windows Haystack Windows

1 yes (access denied) yes (forgot) yes (forgot) yes
2 yes Yes yes yes

3 yes (access denied) yes yes
4 yes (forgot) yes (forgot) yes
5 yes yes (forgot) yes (forgot) yes

6 yes

7 yes
8 yes (forgot) yes yes yes
9 yes

10
y 11 yes

12 yes yes yes
13 yes yes yes yes
14

ryes (forgot)
16 yes

18 yes

19

yes 1 204070 1
yes 0 11212 0 0
(forgot)
yes 0 0 0 2 0 0 0 0
(access
denied)
no 18 15 18 11 18 10 19 7

128

yes E yes (forgot) 0 yes (access denied) El no

Figure 47. Breakdowns of subject pool based on whether particular tasks were skipped

Multiple-choice Survey Responses

Table 7 lists the subjects' responses to the multiple-choice questions in the survey. Note that most

subjects have had more than five years of experience using Windows and the World Wide Web.

However, this is not an accurate indication of their competence levels, as evidently contradicted by

the wide discrepancies among the times it took they to complete the user study tasks.

129

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
Haystack Windows Haystack Windows Haystack Windows Haystack Windows

#2 #2 #6 #6 #9 #9 #10 #10

Table 7. Subjects' responses to multiple-choice survey questions

Years of Question 3.1 Question 3.2 Question 3.3 Question 3.4 Question 3.5 Question 3.6

User ID Windows Web Frequency Easier Frequency Easier Frequency Easier Frequency Easier Frequency Easier Frequency Easier

1 >5 2-5 Often Equal Sometimes Haystack Sometimes Windows Often Equal Once or twice Equal Often Haystack

2 >5 2-5 Sometimes Haystack Sometimes Equal Never Haystack Sometimes Haystack Sometimes Haystack Never Haystack

3 >5 >5 Often Haystack Sometimes Haystack Often Equal Often Equal Never Haystack Never Haystack

4 2-5 2-5 Haystack Haystack Equal Equal Haystack Haystack

5 >5 >5 Often Haystack Sometimes Haystack Sometimes Equal Sometimes Haystack Sometimes Equal Sometimes Haystack

6 >5 >5 Often Equal Once or twice Haystack Never Haystack Often Haystack Never Haystack Sometimes Haystack

7 >5 >5 Often Haystack Never Haystack Once or twice Equal Sometimes Equal Sometimes Haystack Never Equal

8 >5 >5 Sometimes Equal Often Equal Sometimes Haystack Sometimes Equal Once or twice Haystack Once or twice Haystack

9 <1 >5 Often Equal Sometimes Equal Once or twice Haystack Often Equal Often Haystack Once or twice Haystack

10 1-2 >5 Sometimes Haystack Once or twice Equal Once or twice Haystack Often Haystack Sometimes Haystack Once or twice Equal

11 >5 >5 Often Equal Never Never Often Windows Sometimes Equal Often Equal

12 >5 >5 Often Equal Often Haystack Often Haystack Often Equal Often Equal Sometimes Haystack

13 2-5 >5 Sometimes Haystack Sometimes Equal Often Equal Often Equal Often Equal Once or twice Haystack

14 >5 >5 Sometimes Equal Once or twice Haystack Sometimes Equal Often Haystack Never Haystack Sometimes Equal

15 >5 >5 Often Equal Often Haystack Often Equal Sometimes Haystack Sometimes Haystack Sometimes Haystack

16 >5 >5 Often Windows Sometimes Haystack Often Equal Equal Often Equal Never Haystack

18 >5 >5 Often Windows Once or twice Equal Sometimes Equal Never Haystack Sometimes Equal Never Haystack

19 >5 >5 Often Windows Often Windows Often Haystack Often Haystack Sometimes Haystack Sometimes Haystack

2I 2-5 2-5 Often Haystack Often Haystack Often Equal Often Equal Sometimes Haystack Sometimes Haystack

Figure 48 shows how often the subjects need to perform particular types of task outside the user

study:

3.1: The highest fraction

often.

3.2: The highest fraction

3.3: The highest fraction

information to an e-mail

3.4: The highest fraction

3.5: The highest fraction

3.6: The highest fraction

of the subjects need to revisit previously encountered information

need to rotate or resize embedded images sometimes.

need to attach a photo already embedded within a larger piece of

message often.

need to collect together items of several types often.

need to classify an item in more than one way sometimes.

need to locate additional information related to some pieces of

information on their local computer sometimes.

These responses serve as an indication that the tasks chosen for this user study were realistic.

12 -

10 - v

8 --

6 - I1I

4 -

2

0

m Never m Once or twice o Sometimes 0 Often

Figure 48. Subjects' responses to how often they need to perform particular types of task

Figure 49 shows the subjects' responses to whether Haystack or Windows was easier, or both were

equally easy or hard, for particular types of task. The highest fraction of the subjects felt that

Haystack was easier for manipulating embedded pictures, multiple categorization, and locating

131

J

additional information. The highest fraction felt that both environments were almost equally easy or

hard for attaching embedded photos to messages and for collecting together items of different types.

There was no type of task in which the highest fraction of subjects felt that Windows was easier.

16

14

12

10

8

6

4

2

0
3.1 3.2 3.3 3.4 3.5 3.6

a Windows m Equal 3 Haystack

Figure 49. Subjects' answers to whether Haystack or Windows was easier, or both were
equally easy, for particular tasks indicated in six survey questions

7.4.3 Written Responses

Transcribed survey written responses are included in Appendix C. There are four comments

resonated by many subjects:

1. In Haystack, there is no need to open a separate program for editing images.

2. Drag and drop just seems easier in Haystack.

3. In Windows, the subjects had to consciously think about copying when they needed to

classify an item in more than one way.

4. Many subjects felt that it was impossible to find picture information in Windows.

132

Note that the subjects' performances and responses might have been drastically different were all

functionalities left intact in Haystack. The subjects might have had just as hard a time finding

information in Haystack as in Windows.

7.4.4 Conclusion

It is worth reiterating that this user study was a preliminary attempt to evaluate the Haystack

platform. The study had several flaws that were recognized and minimized but could not be fixed

entirely due to the nature of user interface testing. The results are positive and they indicate that

Haystack, as set up for the study, was easier for some realistic information management tasks as

compared to Microsoft Windows XP and relevant applications. No statistical significance is claimed

for these results. They simply serve as encouraging indication that "we are on the right path".

133

134

CHAPTER 8

Future Work

With encouraging indications of the Haystack UI's usability, this chapter briefly discusses

improvements to be made to the current UT framework.

8.1 Component Architecture

The component architecture of the Haystack UI framework needs to incorporate versioning

information and needs to make use of such information for resolving evaluators from prescriptions.

Policies and mechanisms for importing, exporting, and upgrading components will need to be

devised and implemented.

Security and privacy issues need to be addressed over the entire Haystack platform while considering

specific needs of the UI framework. Note that perhaps the greatest challenge here lies in the use of

RDF itself: the fine-grained nature of RDF makes it difficult to implement access control

mechanisms inasmuch as the boundaries between objects are blurred when they are represented in

RDF.

Investigations are needed on the topic of user programming. It may be beneficial to allow power

users to interact with Haystack components directly to express and customize computations for their

own purposes.

135

8.2 Views

In the current implementation of the UI framework, view requests can only contain specifications for

view classes. There is a need to specify more expressively the desired characteristics of views, some

examples of which are listed in section 5.2.2.

View resolution also needs improvements. For example, it is conceivable that a view request can be

shipped to a different machine to be resolved if that machine understands best the specifications in

that view request, or if the information required to resolve the view is restricted to that machine only.

Currently, view requests are only resolved locally. In addition, view resolution has not been made

dynamic in the sense that once a view request has been mapped to a view, the mapping is not

changed while the view is still being shown. This lack so far can be overlooked because the rendering

abstraction and the data computation abstraction keep dynamic the most frequently changing aspects

of the presentations.

Views of information can also be in the form of speech as well as natural language text. The latter

involves formulating output text strings in complete, grammatically correct sentences such as "Your

appointment with Dr. Kane has been postponed to next Thursday afternoon at 2 p.m. at your

mother's request." Note that this example illustrates several subtle signs of intelligence of the system;

for examples:

* The string "your mother" is used instead of the name of the person who is the mother of

the user;

* The string "next Thursday afternoon at 2 p.m." is used instead of something less humanly

such as "Thursday, May 1 2003, 14:00:00 EST"; and

* The string "at your mother's request" is used instead of "at a request of your mother",

showing some level of mastery of the English language;

Finally, the term "View" subtly implies that the UI is read-only. This is not true with the current UI,

although the UI is not as editable as it should be. In many systems, there is a clear distinction

between the view mode and the edit mode (or the run time and the design time). We wish to blur this

distinction by allowing users to edit not only user information but also UI layouts on the fly at

runtime. This capability will let users customize Haystack UT flexibly to their needs.

136

8.3 UI Elements

Ozone's text handling capabilities fall short in several aspects. First, advanced text styles (e.g. small

caps, drop cap), full justification of text, international text support (e.g. vertically flowing text), and

custom text wrapping support (e.g. around images) are currently missing. Second, there is no uniform

support for text selection and text editing. Currently, a piece of text can only be selected or edited if

it is inside a text box. Third, punctuation marks are not handled properly since the slide: Text

element does not distinguish punctuation marks from other characters. In certain cases, punctuation

marks fall onto new lines rather than stay with the preceding words. Fourth, sorting is not supported

on compound text output: that is, if a piece of text on the screen is rendered by several UI elements,

it is put together at the pixel level, is not represented as a whole internally, and hence cannot be

sorted by. For example, an onscreen text string such as "the authors of paper X are Y and Z" is

painted by six different UI elements that render the following six substrings individually: "the authors

of ", "paper X", " are ", "Y", " and ", and "Z". This is because the second, fourth, and sixth

substrings are "expanded" at runtime from view requests made for three different objects: the paper

and the two authors. An effect of these late expansions is that the entire string seen on the screen is

never stored in its entirety internally.

In addition to text functionalities, various graphics capabilities of the framework need improvements.

First, there is no support for zooming. If text editing is allowed everywhere, for uniformity, zooming

will be needed everywhere rather than just within document editors and viewers as provided in

current information management environments. Second, printing should also be supported.

Together, zooming and printing require the UI framework to abandon its pixel-based coordinate

system in favor of a coordinate system that is more flexible. This change would be a major overhaul,

not a minor re-factoring. Third, zooming requires icons to scale gracefully at any level of

magnification. This in turn requires vector graphics. Fourth, animations should be supported to allow

exploration of more dynamic UT concepts. This list of graphics capability improvements can go on

and on.

Input event handling is also currently lacking. Events such as keyboard accelerators (shortcuts) are

currently not supported. The scheme for routing keyboard events is underdeveloped in the UI

framework. Unlike mouse events which are fired against very specific UI elements on the screen,

keyboard events are fired to the whole environment, which then routes the events to appropriate UI

elements based on the concept of an abstract keyboard focus. However, certain keyboard events are

not get routed to the UI element having keyboard focus if they are deemed to be keyboard

137

accelerator events. A keyboard accelerator event is rather sent to whichever UI element that has

registered itself to handle that accelerator.

A multi-tool paradigm may be investigated. The current UI framework only accepts mouse and

keyboard events for input. It can be made to handle more input devices, such as pen, multiple mice,

multiple keyboards, touch, etc. There needs to be a unified paradigm for binding physical input

devices and input events to abstract tools in the system. A user can use several tools at the same time

to accomplish complex tasks. Convenience should be modeled so that each tool is made easily

accessible where its use is appropriate.

Recognition logic can be added for accepting gesture and speech input. Recognition-based user

interfaces are more complicated than event-based user interfaces in that the formers have to divine

high-level user intentions from streams of low-level input events. Some difficulties involved in

recognition-based user interfaces are summarily discussed in [33].

8.4 Data Computations

Currently, a data request might have a syntax very different than that of an Adenine expression while

they both express the same computation. The syntax of the Adenine expression is always much

simpler. There is a high probability that the syntax of the data request can be simplified to resemble

the Adenine expression.

Not all UI elements currently understand data requests and are able to work with data producers.

Even if a UI element can understand a data request, it only chooses to interpret data requests

assigned to only a few of the attributes of its rendering requests. All UI elements should be made

capable of understanding data requests attached to any attribute of their rendering requests so that

the UI can be responsive to any change to rendering requests. Before this can be done, however,

more framework support is required to make data producers easier to interact with.

138

Appendix A - User Study Instructions

Please read the following scenario and the list of tasks thoroughly. Then let the user study
coordinator know when you have finished reading. These instructions will be available to
you throughout the study-there is no need to memorize them.

Scenario:

You are starting to work on a group project with your friend Alisa. This project involves collecting
information about famous Canadian singers and writing an essay about them.

Alisa has managed to get some contact information for Celine Dion, a famous Canadian singer, who
is incidentally one of your favorites. Alisa has sent you an e-mail message with a contact
information card attached.

Please perform the following 12 tasks in sequence.

If you cannot perform a particular task after trying as much as you deem necessary, go on to the
next task.

1. From Alisa's e-mail message, view the contact information of Celine Dion. Note that the
contact information card includes a portrait of her and the map to her home.

2. You intend to conduct a face-to-face interview with Celine, hopefully tomorrow. As a result,
you want a quick way to return to the map later when you need to drive to her home. Create
that quick way. You will be asked to return to the map later.

3. The photograph of Celine Dion is in a wrong orientation. Rotate that photo to orient it
correctly. When this task is done, the photograph that you see in the contact
information card should be right-side up.

4. Another friend of yours, Ben, is also a fan of Celine Dion. You want to send her photograph
to him. Compose a new e-mail message and attach the (properly oriented) photo.

139

5. After attaching the photograph, you remember that it is actually very large. To be courteous

to Ben who is on dialup, make sure that you send the photo at only 50% of its original
size. That is, reduce the image to be sent to half of its width and half of its height. Don't

actually send the message.

6. Now that you have some information about Celine Dion, you decide to include her

information in your project. Since you already have one of her songs, you want to collect it

together with other information in your project. Go to your collection of songs and

organize Celine's song into your project.

a. In Windows, all information in your project is stored in the folder C:\Canadian-
Singers-Project, accessible through a shortcut on the Desktop. Or you may choose

any other means available for collecting the information together.

b. In Haystack, all information in your project is classified into the category labeled

"Canadian Singers Project" shown on the right pane.

7. The e-mail message from Alisa is also relevant in your project. Also put it in your project.

8. You will need to include Celine's (properly oriented) photograph in your project as

well.

9. Your friend Alisa's e-mail message also talks about a plan for the weekend and gives you

some tips about interviewing with IBM for a summer internship. File the message away
taking into account these two points.

a. In Haystack, there is a category labeled "Fun" and a category labeled "Internship".

b. In Windows, Outlook has two e-mail folders labeled "Fun" and "Internship".

10. Find out the name of the photographer who took Celine's photograph, as he might

have taken other pictures of her or of other famous Canadian singers.

11. Browse the photographer's collection of photographic work.

12. Quickly return to the map to Celine's home.

140

Appendix B - User Study Survey

1. For how many years have you used Microsoft Windows (any version)?

L < 1 year L 1 - 2 years L 2 - 5 years

Select one:

J > 5 years

2. For how many years have you used the World Wide Web? Select one:

Li < 1year L 1 - 2 years L 2 - 5 years Li > 5 years

3. For each of the six (6) tasks below:

* select one option to indicate whether you have ever had a need to do that task or

something similar to it outside this user study (choose one among "never", "once or

twice", "sometimes", and "often");

* select one option to indicate whether it is easier for you to have done the task in Windows or

Haystack, or to indicate that both environments are almost equally easy or hard;

* if one environment is easier with respect to that particular task, briefly explain how or why it

is easier in your opinion, drawing from your experience during this user study.

Tasks:

1. Creating a quick way to return to a piece of information that you have previously
encountered (as done with the map in steps #2 and #12 in user study instructions).

LI once or twice Li sometimes

LI almost equally easy or hard LI Windows easier LI Haystack easier

141

LI never LI often

If one is easier, why or how?

2. Rotating or resizing a picture embedded within a larger piece of information such as a

contact information card or an e-mail message (steps #3,5).

U never L once or twice U sometimes J often

U almost equally easy or hard L Windows easier D Haystack easier

If one is easier, why or how?.

3. Attaching a photo already embedded within a larger piece of information to an e-mail

message (e.g. attaching Celine's portrait in her contact information card to the message to

Ben, step #4).

U never U once or twice U sometimes U often

U almost equally easy or hard U Windows easier U Haystack easier

If one is easier, why or how?

4. Collecting together items of several types (e.g. putting various things into the project, steps

#6,7,8).

U never U once or twice U sometimes U often

U almost equally easy or hard U Windows easier

If one is easier, why or how?

U Haystack easier

142

5. Classifying an item in more than one way (e.g. classifying Alisa's message into both Fun and
Internship categories, step #9).

Li never Li once or twice Li sometimes Li often

Li almost equally easy or hard Li Windows easier

If one is easier, why or how?

Li Haystack easier

6. Locating additional information related to some pieces of information on your computer

(such as identifying authors of photographs, steps #10,11).

Li never Li once or twice Li sometimes Li often

L almost equally easy or hard Li Windows easier Li Haystack easier

If one is easier, why or how?

Do you have any other comment about this user study or your experience in performing the tasks it
includes?

(End of Survey)

143

144

Appendix C - Survey Written
Responses

USER 1

3.2: With Haystack, I just rotated inside. In Windows, I had to open a separate program.

3.3: With Haystack, I ended up making mistakes (attaching extra files) that I couldn't fix. In Outlook,

it's much easier to remove unwanted files.

3.A It was impossible to find picture info in Windows. In Haystack, all I had to do was click.

Overall comment: Part of the reason I've had so much difficulty in this study is because I use Eudora

as opposed to Outlook. Regardless, Haystack still seems easier (except when it comes to deletion),

yet just as flexible as Windows.

USER 2

3.1: In Haystack it was easier to just drag and drop info, as opposed to copying/pasting it in

Outlook.

3.3: It was easier to drag and drop in Haystack.

3.4: Drag and drop in Haystack worked faster than organizing materials from different Windows

programs.

145

3.5 Haystack was easier than new version of Windows; this task was easier to do in older version of

Windows.

3.6: In the Haystack version, the source info on the photograph was easier to access (couldn't find it

in Windows).

Overall comment: I was more experienced in older version(s) of Outlook; new version seems harder

to use. (Also, I had very little experience with Media Player.)

Once I got used to Haystack, it seemed easier to use, more intuitive than Windows (though I had

some problems with ???, mostly with tasks I normally never do).

USER 3

3.1: You could just click on it in the margin; though I imagine with lots of files on your computer

Windows is easier because it has such a strong organizational system in place.

3.2: You did not have to export the image to a new application.

3.3: In Windows, I would normally just forward the email; but in Haystack it was easier to attach it.

3.4: Haystack was easier, but it bothered me that the file didn't actually move; it was just a series of

shortcuts being created.

3.5: I think had I known how to do it in Windows, it would have been fine, but it seems this is what

Haystack is designed for.

3.6: Perhaps I was just ??? with Windows.

Overall comment: I think Haystack seems like great software, but I would be wary of things getting

cluttered in a way they don't in Windows. Windows is harder to use and more time consuming

because it is basically like a filing cabinet. Haystack seems more like a notice board.

USER 4

Overall comment: This new user interface is great, but for new users, it seems there are too much

information /or options.

USER 5

146

3.1: Full status appears to exist in object pointer structure... So one click or a double click and your

back.

3.2: There were fewer options to choose from.

3.4: There are constraints in Windows that do not permit universally qualified "pointers" or

references.

3.6: Once one knows the presentation "format", very easy.

Overall comment: The differentiation of validity of test due to "users" a priori knowledge. The tasks

were simple from users view but quite complicated computationally! Good luck...

USER 6

3.2: With Haystack, I do not have to look for a photo editor. Luckily, there was a shortcut in

Windows on the desktop.

3.3: With Windows, I would have to look for the file name. Drag + drop did not work for me to

attach.

3.4: One click. No looking for project folder.

3.5: It was impossible in Windows without making a copy of the message.

3.6: Right click accomplishes this in Haystack. In Windows there are many options and pulldown

menus at the top.

Overall comment: Normally, I would know where the files are (i.e., if it were my computer).

This time, I needed to find the file location from media player and then browse there. Normally, I

would go directly there and have less trouble.

Icons need to be clickable in Haystack. I never understood the difference between left & right panes.

USER 7

3.1: Everything is right in the "favorites" list, always open. W/ Windows you have to navigate

through folders and click a lot of buttons.

147

3.2: No need to open a photo editing program.

3.5: I couldn't figure out how to do it in Outlook...

USER 8

3.3: Was able to locate the Haystack message easier since it all shows without overlapping on the

screen.

3.5: Could not recopy or recreate message using Windows

3.6: Also, could not find the info in Windows as opposed to Haystack's being shown on the

photograph.

Overall comment: No.

USER 9

3.2: Haystack: easier to do the resizing

Windows: easier to save a copy of both the original and the resized version

3.3: 1 liked having all my current info simultaneously available on the screen - made drag and

drop/check boxes much simpler

3.5: (often - but not usually within an application - usually just a file)

easier because can just select and click check box; which of Haystack of Windows uses len space to

do this?

3._6 because Haystack was created to display this info very easily - I don't even known where this

info is in Windows.

Overall comment: Note: Although I have used Windows @ work and during labs (6.182; 12.307) my

day-to-day computer use is usually Athena (Unix) and Mac OS X.

For simple tasks I would definitely prefer Haystack to Windows once the response time improves.

But I'm not sure I would like it very much for more complex tasks - e.g. it wasn't clear how to find

general system information, etc.

148

USER 10

3.1: Just drag it to the side of the screen instead of saving it in a different place or creating a shortcut.

3.1 Again the dragging instead of messing with save windows and searching for it.

3.4: The files were pretty much easily accessible to start off with. In Windows I had to go searching

for them before I could start gathering.

3.5: Could drag or check the same object in multiple places instead of making sure you copy it to the

right place or copy it instead of moving it. (I had trouble finding in Windows copy to command.)

Overall comment: Unfamiliar Haystack tasks were easier to figure out in general than in Windows

tasks. I like the Haystack layout. I don't have much experience with music programs or altering

photos.

USER 11

3.3: never use address books - images always separate files

3.4: Sometimes using multiple sources would get clumsy/cluttered w. Haystack interface.

3.5: shortcuts

3A ??? in PSP if you don't know the program (look how easy it is for read/alter 103 tags)

Haystack seems too perfectly set up for these tasks. As if giving a random tasks it would not be easy

to do.

Overall comment: PSP is not really an easy/intuitive program for these tasks.

Don't know about anyone else, but I've never worked with email this way (trying to edit in message,

etc.) and I don't think I'd want to...

USER 12

3.2: You don't have to open a separate prog. to edit pictures

3.3: I can't seem to just drag and drop in Windows like I did in Haystack.

149

3.6 Haystack makes the info/properties really easy to find-just by right click

Overall comment: I could have done better in Windows if I was familiar with where all the files are

stored. But overall I think Haystack made the tasks slightly easier to perform.

USER 13

3.1: It was more straightforward (click + drag).

3.6: Clicking once presented more information at a time, so less searching involved, therefore less

wasted time.

Overall comment: I found Haystack easier b/c I tend to be a more visual learner. Haystack had

concise information on various aspects on ONE screen, so it saved time + frustration in figuring out

the tasks.

USER 14

3.2: It was all done within one program.

3.4: It was much easier to find information. I had trouble finding a way to more Celine's song.

3.5: Didn't force me to copy the image over and over again.

Overall comment: I really enjoyed using Haystack. I usually use Windows Explorer on my own

computer so I like the feel of the browser applied to a computer and not just the Internet.

USER 15

3.2: Haystack will perform the rotation/resize without loading an external program-built-in

functionality

3.A; Categories aren't limited to a certain type of media and doesn't obviously clutter the directory

tree.

3.5: The groups are sufficiently abstracted away from the workings of the OS that arbitrary

membership seems to be more intuitive-a long way of saying "it's just easier"

150

3.6: Haystack seems to be intelligent enough that it can recognize what operations one might want to

perform-much better than Windows

USER 16

3.1: I used to use Windows, that's all. Beside of that, almost equally easy.

3.2: You don't need to use another program to do it.

3A.6 Because in Haystack you see an author.

Overall comment: But generally interface of Haystack now is not very user-friendly. Sometimes it's a

long way to see how you can do simple things, e.g., send an e-mail.

USER 18

3.1: I'm used to using Windows + never used Haystack before today.

3.A; Haystack seemed more intuitive.

3.6: I couldn't locate the function in Windows to get the add'l info (I could in Haystack).

USER 19

3.1: Because I have more experience with M.W.

3.2: Because I was working with this program before.

3.3: It's easier because you need just drag the photo to the attachment line

3.4: It's easy a little bit because you can drag and dropp function.

3.5: You just need click the button "fun" and "internship" and information will be classified. In

M.Windows it's terrible!!!

3.6: I found information very quickly because it was located on the same screen. In Windows it takes

10 min to find it.

Overall comment: I found that Haystack is easy in operating in general.

151

USER 20

3.1: Windows gives the option of having necessary files open and minimized in order to return. In

Haystack I didn't need to keep it open, because I had folders explored and could see files I need.

3.2: We almost always have to rotate or resize pictures when sending e-mails, and Windows allows

you to do so only by using specific programs. Haystack had it in right place.

3.1 In both programs I just drag and drop pictures.

34 I would say I still drag and drop, but with Haystack I didn't need to open the folder before

droping there. In Windows I use "move to folder" button.

3.5: Didn't need to copy before moving.

3.6: Haystack opened picture properties with picture. Didn't need to go to specific program and

check image properties.

Overall comment: Study is good in identifying weak spots of Windows, with which each of us is

dealing dayly. But I really see not a substitute to Windows, but an improved Outlook Express or

other e-mail programs. The overall impression about Haystack was positive.

152

References

[1] BrownSauce RDF Browser. http://brownsauce.sourceforge.net/.

[2] Common Liip Interace Manager (CLJM): Re/ease 2.0. Symbolics, Inc., 1994.

[3] CORBA. http://www.corba.org/.

[4] Haystack. http://haystack.lcs.mit.edu/.

[5] IBM Lotus software. http://www.lotus.com/.

[6] JsaViZ Overview. http://www.w3.org/2001 /11 /IsaViz/.

[7] Microsoft COM Technolqgies. http://www.microsoft.com/com/default.asp.

[8] OEone Operating Environment. http://www.oeone.com/.

[9] Resource Desciption Framework (RDF) Model and Syntax Speafi cation.
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[10] Resource Descrntion Framework (RDF) Schema Specification. http://www.w3.org/TR/1998/WD-
rdf-schema/.

[11] Ambrosio, Ana Paula. Introducing semantics in conceptual schema reuse. In Proceedings of the 3I
International Conference on Inlbrmation and Knowledge Management, pages 50-56, 1994.

[12] Berners-Lee, T. Primer Getting into RDF & Semantic Web using N3.
http://www.w3.org/2000/10/swap/Primer.html.

[13] Berners-Lee, T., Hendler, J., and Lassila, 0. The Semantic Web. Scientl/icAmerican, May 2001.

[14] Buxton, W., Lamb, M. R., Sherman, D., Smith, K. C. Towards a comprehensive user interface
management system. In Proceedings of the 10"' Annual Conference on Computer GraphicY and Interactive
Techniques, pages 35-42, 1983.

[15] Craig, David T. Canon's Cat Computer The RealMacintosh. http://archaic-
apples.shauny.de/files/cat/canon.html.

153

[16] Dourish, Paul, Edwards, W. Keith, LaMarca, Anthony, and Salisbury, Michael. Using
properties for uniform interaction in the Presto document system. In Proceedings of the 12"

AnnualACM Symposium on User Interface Software and Technology, pages 55-64, 1999.

[17] Eriksson, H., Fergerson, R., Shahar, Y., and Musen, M. Automatic Generation of Ontology
Editors. In Proceedings of/he 12"'Banff Knowlege Acquisition Workshop, Banff, Alberta, Canada,

1999.

[18] Frakes, William and Terry, Carol. Software reuse: metrics and models. ACM Computing Surveys
(CSUR), 28(2), June 1996.

[19] Gabriel, Richard P., White, Jon L., and Bobrow, Daniel G. CLOS: integrating object-oriented
and functional programming. Communications of the A CM, 34(9):29-38, 1991.

[20] Halasz, Frank G. Reflections on "Seven Issues": Hypertext in the Era of the Web. ACM

Journal of Computer Documentation, 25(3), August 2001.

[21] Handschuh, S., Staab, S., and Maedche, A. CREAM-Creating relational metadata with a

component-based ontology-driven annotation framework. K-CAP '01.

[22] Hayes, Philip J., Szekely, Pedro A., and Lerner, Richard A. Design alternatives for user

interface management systems based on experience with COUSIN. In P3roceedings ofthe SIGCHJ
Conference on Human Factors in Computing Systems, 1985.

[23] Hill, Ralph D. Supporting concurrency, communication, and synchronization in human-
computer interaction-the Sassafras UIMS. ACM Transactions on Graphics (TOG), 5(3):179-210,
July 1986.

[24] Hudson, Scott E. and Mohamed, Shamim P. Interactive specifications of flexible user interface

displays. ACM Transactions on Information Systems (TOIS), 8(3):269-288, July 1990.

[25] Huynh, David. Haystack's User Interface Framework: Tutonal and Reference.
http://haystack.lcs.mit.edu/documentation/ui.pdf.

[26] Kahan, Jos6 and Koivunen, Marja-Ritta. Annotea: an open RDF infrastructure for shared Web

annotations. In Proceedings ofthe /1Qi International Conference on World Wide Web, pages 623-632,
2001.

[27] Klein, Daniel. Developing applications with the Alpha UIMS. interactions, 2(4):48-65, October

1995.

[28] Krueger, Charles W. Software reuse. ACM Computing Surveys (CSUR), 24(2), June 1992.

[29] Li, Wen-Syan and Holowczak, Richard D. Constructing information systems based on schema

reuse. In Proceedings of the 51 international conference on Information and Knowledge Management, pages

197-204, 1996.

[30] Manheimer, J. M., Burnett, R. C., and Wallers, J. A. A case study of user interface management
system development and application. In Proceedings of the SIGCHI conference on Human Factors in

Computing Systems, pages 127-132, 1989.

[31] Meerten, L. and Pemberton, S. The Ergonomics of Computer Interfaces - Designing a System

for Human Use. CWI Report CS-R9258, December 1992, CWI Amsterdam.

[32] M611er, Ralf. Symbolics Lisp Machine Museum. http://kogs-www.informatik.uni-
hamburg.de/ -moeller/symbolics-info/symbolics.html.

[33] Myers, Brad, Hudson, Scott E., and Pausch, Randy. Past, Present, and Future of User Interface

Software Tools. ACM Transactions on Computer-Human Interaction, 7(1):3-28, March 2000.

154

[34] Palay, A. J., Hansen, W., Kazar, M., Sherman, M., Wadlow, M., Neuendorffer, T., Stern, Z.,
Bader, M., and Peters, T. The Andrew toolkit: An overview. In Proceedings on Winter /988 Usenix
Technical Conference, USENIX Assoc., Berkeley, CA, 9-21.

[35] Pittman, Jon H. and Kitrick, Christopher J. VUIMS: a visual user interface management
system. In Proceedings of the 3rd annual ACM SIGGRAPH Symposium on User Interface Software and
Technology, pages 36-46, 1990.

[36] Platt, David S. The Essence of OLE: A Programmer's Workbook. 1s ed. Prentice Hall, 1996.

[37] Price, Roger. Beyond SGML. In Proceedings of the 3"rACM conference on Dzgital Libraries, pages
172-181, 1998.

[38] Puerta, Angel and Eisenstein, Jacob. Towards a General Computational Framework for
Model-Based Interface Development Systems. In Proceedins of the 4/1 International Conference on
Jntelligent User Intefaces, pages 171-178, 1998.

[39] Quan, Dennis. Metadata Programming in Adenine.
http://haystack.lcs.mit.edu/documentation/adenine.pdf.

[40] Quan, Dennis, Karger, David R., and Huynh, David. RDF Authoring Environments for End
Users. International Workshop on Semantic Web Foundations and Application Technologies (SWEAT),
2003.

[41] Raskin, J. The Humane Interface. Addison-Wesley, 2000.

[42] Roberts, Donald Bradley. Practical Analysis for Refactoring. PhD Thesis. University of Illinois
at Urbana-Champaign, 1999.

[43] Shneiderman, Ben. Direct Manipulation for Comprehensible, Predictable and Controllable
User Interfaces. In Proceedings of the 2" International Confjrence on Intelligent User Intefaces, pages 33-
39, 1997.

[44] Sibert, John L., Hurley, William D., and Bleser, Teresa W. An object-oriented user interface
management system. In Proceedings of the 13h Annual Conference on Computer Graphics and Interactive
Techniques, pages 259-268, 1986.

[45] Singh, G. and Green, M. A high-level user interface management system. In Proceedings of the
SIGCHI Confrrence on Human Factors in Computin5 Systems, pages 133-138, 1989.

[46] Storey, Margaret-Anne, Best, Casey, Michaud, Jeff, Rayside, Derek, Litoiu, Marin, and Musen,
Mark. Demonstration: SHriMP views: an interactive environment for information visualization
and navigation. Conference on Human Factors and Computing Systems, pages 520-521, 2002.

155

