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Abstract

We have built a system for acquiring and rendering high quality graphical models of objects
that are typically difficult to scan with traditional 3D scanners. Our system employs an

image-based representation and can handle fuzzy materials such as fur and feathers, and

refractive materials like glass. The hardware setup of the system include two turntables,

two plasmas displays, a fixed array of cameras and a rotating array of directional lights.

Many viewpoints can be simulated by rotating the turntables. By an automatic process, we

acquire opacity mattes using multi-background techniques. We introduce a new geometric

representation based on the opacity mattes, called the opacity hull. It is an extension of the

visual hull with view-dependent opacity, and it significantly improves the visual quality of

the geometry and allows seamless blending of objects into new environments. Appearance

models based on the surface reflectance fields are also captured by a hybrid sampling of the

illumination environment. The opacity hull, coupled with the reflectance data, can then be

used to render the object in novel lighting environments from arbitrary viewpoints photo-

realistically. This system is the first to acquire and render surface reflectance fields under

arbitrary illumination from arbitrary viewpoints.

Thesis Supervisor: Leonard McMillan
Title: Associate Professor
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Chapter 1

Introduction

Creating faithful 3D models manually demands considerable time and expertise. This can

be a bottleneck for many practical applications. For 3D models to become ubiquitous, one

important milestone would be to make 3D content creation as easy as taking a picture with

a digital camera. Currently, it is both difficult to model shapes with complex geometry and

to recreate a complex object's appearance using standard parametric reflectance models.

3D scanning is the most straightforward way to create models of real objects, and these

capturing techniques have been employed frequently in the gaming and movie industry.

An ideal 3D scanning system would acquire any object automatically, and construct a de-

tailed shape and appearance model sufficient to be rendered in an arbitrary environment

with new illumination from arbitrary viewpoints. Scalability is also important as different

applications require a vastly different level of details for the 3D model, both in terms of

geometry and appearance.

Although there has been much recent work towards this goal, no system to date satisfies

the requirements of every application. Many current acquisition systems require substan-

tial manual involvement. Many methods, including most commercial systems, focus only

on capturing accurate geometry. In cases when the reflectance properties of 3D objects

are captured they are usually fitted to parametric reflectance models, which often fails to

represent complex materials and does not model important non-local effects such as inter-

reflections, self-shadowing, translucency, and subsurface scattering. These difficulties sug-

gest that image-based method would be an viable alternative. Image-based methods do not

8



rely on any physical models, they merely interpolate between observations from cameras.

As the images are produced from real cameras, the aggregate effects of all light transport

are captured, taking care of general reflectance modeling and all other nonlocal effects,

and they are by definition photorealistic. However, previous image-based methods all have

some limitations, such as lack of 3D geometry, only support static illumination, or allow

rendering from only a few viewpoints.

We have developed a prototype of an image-based automatic 3D scanning system that

strikes a unique balance between acquiring accurate geometry and accurate appearance. It

is very robust and capable of fully capturing 3D objects that are difficult, if not impossible,

to scan with existing scanners (see Figure 1). Coarse geometry based on the visual hull and

sample-based appearance are captured at the same time. Objects with fine-detail geometry,

such as fuzzy objects, are handled correctly with acquired pixel-level opacity. Transparent

and refractive objects can also be handled. The system automatically creates object rep-

resentations that produce high quality renderings from arbitrary viewpoints, either under

fixed or novel illumination. The system is built from off-the-shelf components. It uses

digital cameras, leveraging their rapid increase in quality and decrease in cost. It is easy

to use, has simple set-up and calibration, and scans objects that fit within a one cubic foot

volume.

Figure 1-1: Renderings of acquired objects with a mixture of highly specular and fuzzy
materials.

The main system has been described in a paper jointly authored with Matusik et al [34].

The environment matting extension to the system that facilitate acquisition of refractive/transparent

objects is described in a follow-up paper [35]. In this thesis, a more thorough description
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and discussion of the system and the results will be given. The main contribution of this

thesis includes:

" An automatic system that acquire surface light fields and surface reflectance fields.

" Opacity Hull, a novel extension on the visual hull, which enhances geometric detail

by view-dependent opacity.

" Compression of the acquired surface reflectance data using principal components

analysis(PCA).

" Separation of the illumination field into high- and low-resolution partitions for ef-

ficiently employing environment matting techniques for the capturing of refractive

objects.

" Rendering of the acquired view-dependent data under novel illumination, which in-

clude smooth interpolation of environment mattes.

A review of background and previous work in the related fields will be given in Chap-

ter 2. We will describe the acquisition process in Chapter 3, including the hardware setup,

the opacity mattes computation using multi-backgrounds techniques, and the acquisition

of appearance images. In Chapter 4 we will introduce the opacity hull, a new shape rep-

resentation based on the visual hull, especially suited for objects with complex small-scale

geometry. In Chapter 5 we will describe the appearance modeling based on the surface light

fields and the surface reflectance fields. In Chapter 6 we will describe the rendering method

of our point-based model and the scheme for interpolating between acquired viewpoints.

Quantitative results with discussion will be presented in Chapter 7. Finally, in Chapter 8

we will conclude the thesis, and propose possible directions for future research.
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Chapter 2

Background

In this chapter we will give an overview of the background and previous works relevant to

the thesis, such as geometry digitization, reflectance modeling, image-based modeling and

rendering, and image matting and compositing techniques.

In Section 2.1 we will briefly look at different methods of acquiring geometry includ-

ing passive and active techniques, and the visual hull technique we employ. In Section 2.2

we will describe previous works in image-based modeling and rendering. Then in Sec-

tion 2.3 we will give an overview of the acquisition and modeling of surface reflectance.

In Section 2.4 we will describe image matting, where the foreground object with partial

transparency is extracted from an image. In Section 2.5 we will describe environment mat-

ting, which generalize traditional image matting to incorporate effects like reflections and

refractions from the environment.

2.1 Geometry Acquisition

There are many approaches for acquiring high quality 3D geometry from real-world ob-

jects, and they can be mainly classified into passive and active approaches. Passive ap-

proaches do not interact with the object, whereas active approaches make contact with the

object or project light onto it. Passive methods attempt to extract shape, including shape-

from-shading for single images, stereo triangulation for pairs of images, and optical flow

methods for video streams. These methods typically do not yield dense and accurate dig-

11



itizations, and they are often not robust in cases when the object being digitized does not

have sufficient texture. Most passive methods assume that the BRDF is Lambertian or

does not vary across the surface. They often fail in the presence of subsurface scattering,

inter-reflections, or surface self-shadowing.

Active digitizing methods include contact digitizers and optical digitizers. Contact dig-

itizers typically employ calibrated robot arms attached to a narrow pointer. The angles at

the joints of the arm give an accurate location of the pointer at all times, and by making a

contact on the surface with the pointer, it is possible to record 3D locations. This method

is very flexible but slow and usually requires human effort.

Active digitizing based on optical reflection, such as laser range scanners, are very pop-

ular. The survey by Besl [4] gave a very comprehensive survey of optical rangefinding. Of

the many available methods, the systems based on triangulation are the most popular. The

object is typically illuminated by a laser sheet and imaged by a camera. As the laser source

and the camera positions are both known, depth information can be calculated based on

geometric intersection of the eye ray and the laser beam. The entire shape of the object can

then be acquired by either translating or rotating the object, or by moving the laser beam.

The depth values are recorded as range images, which can then be used to reconstruct

the surface using various techniques. Digitizers based on triangulation techniques can be

used with a large range of object sizes, and they have been employed to acquire very large

models with fine resolution [29, 44].

However, all optical digitizers place restrictions on the types of materials that can be

scanned, as discussed by Hawkins et al [21]. For example, fur is very hard to digitize since

it does not have a well defined surface. The laser would scatter through the fur, failing

to provide a clear depth value. Specular materials also present problems as the laser is

dominantly reflected in the specular direction and cannot be observed by the range camera

from other directions. Hence, specular objects often need to be painted with white diffuse

material before scanning. Similarly, transparent objects, or objects that exhibit significant

surface scattering, are very difficult for laser scanners. Moreover, these methods also re-

quire a registration step to align separately acquired scanned meshes [48, 13] or to align the

scanned geometry with separately acquired texture images [3]. Filling gaps due to miss-
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ing data is often necessary as well. Systems have been constructed where multiple lasers

are used to acquire a surface color estimate along the line of sight of the imaging system.

However, this is not useful for capturing objects in realistic illumination environments.

In order to support the broadest possible range of materials in our system, we have cho-

sen to employ an image-based approach, and relax the requirement for accurate geometry.

As our acquisition is always coupled with appearance data, the lack of accurate geometry

can be compensated by view-dependent appearance. This relaxed requirement allows us

to use a geometric representation based on the visual hull. The visual hull is constructed

using silhouette information from a series of viewpoints, where the inside and outside of

an object are identified. Each of the silhouette, together with the calibrated viewpoint, rep-

resents a cone-like shape in space that enclose the object. These cone-like shapes can then

be intersected in space to produce a conservative shell that enclose the object. Matusik et

al [33] described an image-based algorithm that render the visual hull in realtime based on

multiple video streams, without explicitly constructing a representation of the actual geom-

etry. Our system employ similar techniques to efficiently produce a point-sampled visual

hull from the acquired opacity mattes.

It is clear that the fidelity of shape produced by the visual hull is worse than that of active

digitization methods. However, the relatively simple and robust acquisition of silhouettes

make the method much more general, handling all kind of materials including those that

are fuzzy, specular or semi-transparent. Moreover, to enhance the visual quality of the

geometry, we have devised a new representation called opacity hull, by extending the visual

hull with view-dependent opacity information. The computation of the visual hull and the

opacity hull will be described in more details in Chapter 4.

2.2 Image-based Modeling and Rendering

QuickTime VR [8] was one of the first image-based rendering system. A series of captured

environment maps allow a user to look at all directions from a fixed viewpoint. Chen and

Williams [9] investigated smooth interpolations between views by optical flow. McMillan

and Bishop [36] proposed a framework of image-based methods based on the plenoptic
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function. The plenoptic function is a parameterized function that describes radiance from

all direction from a given point. It is a 5D function parameterized by the location (x,y,z)

in space and direction (0, )). Paraphrasing McMillan and Bishop, given a set of discrete

samples from the plenoptic function, the goal of image-based rendering is to generate a

continuous representation of thatfunction. Light field methods [28, 20] observe that the

plenoptic function can be described by a 4D function when the viewer move in unoccluded

space. Lumigraph methods by Gortler et al. [20] improves on these methods by including a

visual hull of the object for improved ray interpolation. However, all these methods assume

static illumination and cannot be rendered in new environments.

The view-dependent texture mapping systems described by Pulli et al. [42] and De-

bevec et al. [17, 18] are hybrid image-based and model-based methods. These systems

combine simple geometry and sparse texture data to accurately interpolate between the im-

ages. These methods are extremely effective despite their approximate 3D shapes, but they

have some limitations for specular surfaces due to the relatively small number of textures.

Also the approximate geometry they require can only be acquired semi-automatically.

Surface light fields [38, 52, 40, 22, 10] can be viewed as a more general and more

efficient representation of view-dependent texture maps. On each of the surface vertex,

the outgoing radiance is sampled from all directions, and the surface can then be rendered

from arbitrary viewpoints by interpolating the sampled radiance data. Wood et al. [52]

store light field data on accurate high-density geometry, whereas Nishino et al. [40] use a

coarser triangular mesh for objects with low geometric complexity. As the radiance data are

acquired from real photographs, surface light fields are capable of reproducing important

global effects such as interreflections and self-shadowing. Our scanning system is capable

of automatic surface light field acquisition and rendering (Section 5.1).

2.3 Surface Reflectance Acquisition and Modeling

Surface reflectance represents how light interacts at a surface and it relates to the radiance

that eventually reaches the eye under different illumination. Reflectance is often described

using the bidirectional reflectance distribution function (BRDF) [39], the ratio of the light
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incident at a surface point from each possible direction to the reflection in each possible

direction. The BRDF is a 4D function, as direction in three-dimensional space can be spec-

ified with two parameters. Bidirection texture function (BTF) [14] is a 6D function that

describes varying reflectance over a surface, and bidirectional surface scattering distribu-

tion function(BSSRDF) [39] is a 8D function that takes surface scattering into account, by

allowing the outgoing location of a light ray to be different from the incident location.

Since the early days of computer graphics, numerous parameterized reflectance mod-

els of the BRDF have been proposed. There are phenomenological models which try to

simulate natural phenomenon by devising a function with approximate behavior, of which

the Phong model and its variants are the most well-known [5, 24]. Physically based mod-

els derive equations guided by the underlying physics, and the common ones include the

Cook-Torrance model [12] and the Ashikhmin model [1]. All these models are designed

with different goals in terms of efficiency and generality. Simpler models like the Phong

model are quite limited in terms of the class of materials they can represent, but they are

simple and, hence, often employed in realtime rendering. The more complex models are

more general and are typically used during offline rendering. Nonetheless, even the most

complicated parametric models do not encompass all the different kinds of BRDFs. Also,

even when a model is general enough, recovering the parameters are generally non-trivial,

even with human intervention.

Inverse rendering methods estimate the surface BRDF from images and geometry of the

object. To achieve a compact BRDF representation, most methods fit parametric reflectance

models to the image data with certain assumptions. Sato et al.[46] and Yu et al. [53] assume

that the specular part of the BRDF is constant over large regions of the object, while the

diffuse component varies more rapidly. Lensch et al. [27] partition the objects into patches

and estimate a set of basis BRDFs per patch.

Simple parametric BRDFs, however, are incapable of representing the wide range of

effects seen in real objects. Objects featuring glass, fur, hair, cloth, leaves, or feathers

are very challenging or impossible to represent this way. As we will show in Chapter 7,

reflectance functions for points in highly specular or self-shadowed areas are very complex

and cannot easily be approximated using smooth basis functions.
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An alternative is to use image-based, non-parametric representations for surface re-

flectance. Marschner et al. [32] use a tabular BRDF representation and measure the re-

flectance properties of convex objects using a digital camera. Georghiades et al. [19] apply

image-based relighting to human faces by assuming that the surface reflectance is Lamber-

tian.

More recent approaches [31, 15, 21, 23] use image databases to relight objects from a

fixed viewpoint without acquiring a full BRDF. Debevec et al. [15] define the 8-dimensional

reflectancefield of an object as the radiant light from a surface under every possible incident

field of illumination. To reduce the acquisition time and data size, they restrict the illumi-

nation to be non-local, or in other words only directional illumination is supported. This

reduces the representation to a non-local reflectance field, which is six-dimensional. De-

bevec et al. further restricted the viewpoint to a single camera position to further reduce the

dimensionality of the reflectance field to 4D. Human faces [15] and cultural artifacts [21]

were captured and shown to be re-illuminated convincingly. However, these reflectance

field approaches are limited to renderings from a single viewpoint. Our scanning system

capture an appearance model based on the reflectance field from many viewpoints. We

also extend the reflectance field capturing to sample part of the illumination environment

at high-resolution to support transparent or refractive objects, using environment matting

techniques. The details of our reflectance modeling will be described in Chapter 5.

2.4 Image Matting

The pixels of an image can be augmented in many ways to facilitate flexible image syn-

thesis. Porter and Duff introduced an alpha channel at each pixel to allow images to be

processed and rendered in layers and then combined together [41]. The first stage of our

scanning involves acquiring such alpha channel, which we call the opacity mattes. The

opacity matte describes the per-pixel opacity of the foreground object. An opacity value of

1 means the pixel is totally occupied by the foreground object, a value of 0 means the pixel

does not coincide with the object, or equivalently the foreground is totally transparent. In-

between values denote partial occupancy, either due to subpixel coverage or translucency.
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Recovering an opacity matte from images is a classical problem well known as the matting

problem. Vlahos [47] pioneered the algorithms to solve the problem assuming a constant

colored background(typically blue), and that the foreground object is significantly different

from that color. To formally define the problem, we follow the exposition of Smith and

Blinn [47]:

For a pixel, given background color Ck and foreground color Cf, solve for ao and Co

Cf = Co + (1 - ao)C (2.1)

such that ao and Co gives the opacity and opacity-premultiplied color of the object respec-

tively.

Here, the foreground image is a picture of the object and the background image is the

same picture with the object removed. The same equation can also be used to composite the

foreground onto another image, simply by replacing Ck with the new background. Smith

and Blinn showed that the matting problem is under-specified with one set of background

and foreground images. However, a general solution exist when two or more pairs of

background/foregrounds are available. The solution to the matting problem with two pairs

of background/foreground is as follows:

_ Xi-r,g,b(Cf1 - Cf2)(Ck1 - Ck2)

1i=r,g,b(C1 - Ck2) 2

where Ck1 and Ck2 are the colors of the two different background pixels, and Cf I and

C1 2 are the corresponding foreground colors.

Our system use techniques based on Smith and Blinn's multi-background matting to

acquire opacity mattes. Two plasma displays are placed on the opposite side of the cam-

eras to provide a computer controlled background. Further details and discussion of our

implementation will be given in Section 3.4.
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2.5 Environment Matting and Compositing

Traditional image matting extract the foreground object with per-pixel opacity. While the

opacity values accurately represent subpixel coverage for opaque objects, for refractive

objects straight-through transparency is incorrect in general, as the direction of the light ray

is altered due to refraction. Also, objects that do not exhibit perfectly specular transparency

(e.g. stained glass) usually blur the background through refractions, and hence a general

region of the environment can contribute to a single pixel. To deal with the general matting

problems of this kind, Zongker et al. [55] developed the techniques of environment matting,

a generalization of traditional matting techniques which also gives a description of how the

foreground object refracts and reflects light from the scene. Chuang et al. [11] extended

their techniques to produce more accurate results.

The environment matte describes how the illumination from the environment is at-

tenuated and transported at each pixel, in addition to the traditional opacity and fore-

ground/background colors. To capture such an environment matte, the object are sur-

rounded with multiple monitors which can provide controlled color backgrounds. Many

pictures of the object are then taken with different patterned backgrounds on the monitor.

A naive approach would turn on one pixel of the background monitors at a time and record

the response on the object by taking a picture. This would in theory give the most accurate

result, but the capturing time and data size is clearly impractical. Hence both Chuang et al.

and Zongker et al. employed coded background patterns to reduce the number of images

they need to take to acquire the mattes. The main differences between the two methods

lie in the patterns they used and the way they approximate the resultant mattes. Zongker

et al. use square-wave stripe patterns of two colors in the horizontal and the vertical di-

rections, according to one-dimensional Gray codes. Chuang et al. used sweeping white

Gaussian stripes in the horizontal, vertical and diagonal directions. Zongker et al. assumed

the contribution from the environment to a pixel can be modeled using a single axis-aligned

rectangle, while Chuang et al. used a sum of several orientable Gaussian kernels, giving

more accurate results. The remainder of the section will follow the exposition of Chuang

et al., whose method is used in an extension of our system to capture a high-resolution
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reflectance field.

Following Blinn and Newell [6]'s exposition on environment mapping work, we can

express the color of a pixel in terms of the environment, assuming the environment is at

infinity:

C= W(co)E(w)dw (2.3)

where E(o) is the environment illumination in the direction w, and W(a) is a weight-

ing function, and the integral is evaluated over all directions. W comprises all means of

light transport through the pixel, which may include reflections, refractions, subsurface

scattering, etc. However, the illumination model is directional, which means local illumi-

nation effects cannot be captured. For example, the occlusion pattern of a local light source

is different from a directional one, so some of the self-shadowing effects cannot be modeled

correctly.

Equation 2.3 can be rewritten as a spatial integral over some bounding surface, for

example the monitors surrounding the object. As these monitors typically do not cover the

entire sphere, we include a foreground color F, which describe color due to lighting outside

the environment map, or emissitivity. Equation 2.3 becomes

C=F+JW(x)T(x)dx (2.4)

where T(x) is the environment map parameterized on the pixel coordinates of the mon-

itors. With this formulation, the problem of environment matting is then to recover the

weighting function W. Zongker et al. represent W as an axis-aligned rectangle. Chuang et

al. generalize it to a sum of Gaussians:

n

W(x) = IRiGi(x) (2.5)
i=1

where Ri is an attenuation factor, and each Gi is an elliptical oriented 2D Gaussian:

Gi(x) = G2D(X; ciu, i) (2.6)
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Figure 2-1: Illustration of the variables used in recovering an unknown elliptical, oriented
Gaussian by sweeping out convolutions with known Gaussian stripes. As a titled stripe
T(x, r) of width as and position r sweeps across the background, it passes under the ellip-
tical Gaussian weighting function W(x) associated with a single camera pixel. The camera
records the integral, which describes a new observed function C(r) as the stripe sweeps
(Reprinted from [11] with author's permission).

where G2D is defined as

G2D(X; c, a, 0) =ex 2 (2.7)
27rauav 2 qu2 2

with

u = (x -cx)cos 6 -(y -cy) sinO ,v = (x -cx) sinO +(y -cy)cos 0 (2.8)

where x = (x,y) are the pixel coordinates, c = (cs, cy) is the center of each Gaussian,

a = (ou, av) are the standard deviations in a local uv-coordinate system on the two axes,

and 0 is the orientation of the Gaussian.

To acquire the environment matte with this formulation, images of the object in front of

a sequence of backdrops of swept Gaussian stripes are taken. The camera will, in theory,

observe a evolving Gaussian, the result of the convolution of the weighting function W and

the Gaussian backdrop (See Figure 2-1). The number of Gaussians, and the parameters for

each Gaussian can then be solved using the optimization procedure described in Chuang
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Figure 2-2: Some results from the high-accuracy method of Chuang et al. (Reprinted
from [11] with author's permission).

et al. With each sweep we can observe the center and the spread of the Gaussian along

that direction. By sweeping in three directions it is possible to locate multiple oriented

Gaussians in the response. For further details of the optimization process the reader is

referred to the original paper [11]. Figure 2-2 shows some results from [11], illustrating the

accurate composite of some acquired reflective/refractive objects onto new backgrounds.

Our system optionally employs environment matting techniques for capturing of semi-

transparent objects. Environment mattes are acquired from every viewpoint using the tech-

nique described in [11]. The incorporation of the environment mattes into our surface

reflectance fields representation will be discussed in Section 5.3.
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Chapter 3

Acquisition Process

In this chapter we describe the acquisition process of our scanning system. In Section 3.1

we describe our hardware setup, and an overview of the entire process will be given in Sec-

tion 3.2. Finally we describe each pass of the acquisition, including: calibration (Sec 3.3),

opacity(Sec 3.4), surface light fields(Sec 3.5), surface reflectance fields(Sec 3.6) and envi-

ronment mattes(Sec 3.7).

3.1 Hardware Setup

Figure 3-1 shows a schematic diagram of our digitizer. The object to be scanned is placed

on a plasma monitor that is mounted onto a rotating turntable. A second plasma moni-

tor is placed vertically in a fixed position. The plasma monitors can provide controllable

background patterns during scanning, which are used for both the opacity and environment

matte acquisitions. There are six digital cameras fixed on a rig opposite to the vertical mon-

itor, spaced roughly equally along the elevation angle of the upper hemisphere and pointing

towards the object. By rotating the turntable at regular intervals, we can in effect take pic-

tures of the object with arbitrary number of virtual cameras in the longitudinal dimension.

Typically we use 5 or 10 degree interval to achieve a roughly uniform distribution of virtual

cameras in both angular dimensions. An array of directional light sources is mounted on

an overhead turntable and they are equally spaced along the elevation angle as well. Using

this overhead turntable we can rotate the lights synchronously with the object to achieve
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Monitors Rotating Platform

Figure 3-1: A schematic diagram of the sys- Figure 3-2: The actual 3D scanning system
tem

fixed lighting with respect to the object, or we can rotate it for 360 degrees for each object

position to capture the object under all possible lighting orientations.

Figure 3-2 shows a picture of the actual scanner. The two plasma monitors both have a

resolution of 1024 x 768 pixels. We use six QImaging QICAM cameras with 1360 x 1036

pixel color CCD imaging sensors. The cameras are photometrically calibrated. They are

connected via FireWire to a 2 GHz Pentium-4 PC with 1 GB of RAM. We alternatively

use 15 mm or 8 mm C-mount lenses, depending on the size of the acquired object. The

cameras are able to acquire full resolution RGB images at 11 frames per second.

The light array holds four light sources. Each light uses a 32 Watt HMI Halogen lamp

and a parabolic reflector to approximate a directional light source at infinity. The lights

are controlled by an electronic switch and individual dimmers through the computer. The

dimmers are set once such that the image sensor do not exhibit blooming for views where

the lights are directly visible.

In many ways, our system is similar to the enhanced light stage that has been proposed

by Hawkins et al. [21] as future work. Hawkins et al. describe a Evolved Light Stage, which

extend their single viewpoint acquisition of the reflectance field to many viewpoints. A key

difference in our system is that we employ multi-background techniques for opacity matte
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extraction and we construct approximate geometry based on the opacity hull. Also, the

number of viewpoints we acquire is less than that proposed by Hawkins et al. (16 cameras

on the rig), due to limitation of acquisition time and cost. Nonetheless, the availability of

approximate geometry and view-dependent opacity greatly extends the class of models that

can be captured and improve the quality of viewpoint interpolation.

3.2 Overview of the process

During the acquisition process the following types of images are captured for each view,

each of them in a different pass:

1. Image of a patterned calibration object. (1 per view)

2. Background images with the plasma monitors showing patterns. (several per view)

3. Foreground images of the object placed on the turntable, with the plasma monitors

showing the same patterns as the background images. (same number as background

images)

4. Radiance image showing the object under static lighting with respect to the object.

(1 per view)

5. Reflectance images showing the object under all possible lightings. (number of lights

per view)

6. Optional input images for computing environment mattes (300 per view, see Sec-

tion 3.7)

As 1 and 2 are independent of the acquired object, we only need to capture them once if

the cameras are not disturbed. We recalibrate whenever we change the lens of the camera,

or inadvertently disturb any part of the system. One issue that arises during our scanning is

that it is difficult to determine whether the calibration is still valid after some period of time,

or even during one scan. If the digitizer is upset significantly, the subsequently computed
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visual hull will produce an inaccurate shape. However, we have no general method to detect

these minor deviations.

Provided that we have the system calibrated and background images captured, we can

start scanning. First we put the object onto the turntable, roughly centered at the origin. We

capture the foreground images for all views by doing a full rotation of the bottom turntable.

Then we repeat another full rotation of the bottom turntable to capture either the radiance

or the reflectance images, depending on the type of data we want to acquire. Finally, if the

object is transparent or refractive, we optionally apply another pass to capture input images

for environment mattes from each viewpoint. It is clear that we require high precision and

repeatability of the turntable to ensure registration between the subsequent passes. One

way of validation is to composite the radiance/reflectance images, that are acquired during

the last pass, using the opacity mattes that are constructed from the foreground images in

the first pass. Misregistrations of more than a few pixels can be easily observed in the

composite image, however we have no general way of detecting more minor discrepancies.

All radiance and reflectance images are acquired as high-dynamic images using tech-

niques similar to that of Debevec et al [16]. Our cameras support raw data output so the

relationship between exposure time and incident radiance measurements is linear over most

of the operating range. We typically take pictures with four to eight exponentially increas-

ing exposure times and calculate the radiance using a least-square linear fit to determine the

camera's linear response. Our camera CCD has 10 bits of precision and hence has a range

of 0 to 1023 for each pixel. Due to non-linear saturation effects at the extreme ends of the

scale, we only use values in range of 5 to 1000 in our computation, while discarding the

under- or over-exposed values. These computations are done on-the-fly during acquisition

to reduce the storage for the acquired images. The high-dynamic images are stored in a

RGBE format similar to Ward's representation [51]. A pixel is represented by four bytes

(r,g, b, e), one each for the red, green, blue channels and one for an exponent. The actual

radiance value stored in a pixel is then (r, g, b) x 2e- 127. Our high-dynamic images are not

compressed otherwise.
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Figure 3-3: Image of the grid pattern for intrinsics , marked by the calibration software.

3.3 Calibration

To calibrate the cameras, we first acquire intrinsic camera parameters using Zhang's cal-

ibration method [54]. An object with a pattern of square grids is positioned in several

different orientations and captured from each of the six cameras. Figure 3-3 shows one

such image, with the corners of the squares tracked. With a list of these tracked points in

the five images, the intrinsics can be computed accurately using the Microsoft Easy Cam-

era Calibration Tool [37] which implemented Zhang's method. The intrinsics calibration

is repeated each time that the lens or focus setting are changed.

To acquire the extrinsic parametersI, we acquire images of a known calibration object, a

multi-faceted patterned object in our case (Figure 3-4), from all possible views (216 views

for 36 turntable positions with 6 cameras) . The patterns consist of multiple discs on each

face, each uniquely colored. Using Beardsley's pattern recognition method [2], we can

locate and identify the projections of each of the unique 3D points in all camera views

from which they are visible.

The extrinsic parameters are then computed by an optimization procedure that uses the

correspondences of the projections of the 3D points. Most of these points typically are

visible from at least a third of all views and in each view about a hundred points can be

observed. With a rough initialization of the camera extrinsics based on the rotational sym-

'These include the position of the center of projection, and the orientation of the camera.
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Figure 3-4: The calibration object with uniquely colored discs.

metry of our virtual cameras the optimization converges fairly quickly, and the reprojection

error is consistently less than 1 pixel.

3.4 Opacity Acquisition

In order to reconstruct the visual hull geometry of the object, we need to extract silhou-

ette mattes from all viewpoints, and distinguish between the object and the background.

Backlighting is a common segmentation approach that is often used in commercial two-

dimensional machine vision systems. The backlights saturate the image sensor in areas

where they are visible. The silhouette images can be thresholded to establish a binary

segmentation for the object.

However, binary thresholding is not accurate enough for objects with small silhouette

features such as fur. It does not allow sub-pixel accurate compositing of the objects into

new environments. To produce more precise result, we want to compute per-pixel opac-

ity(commonly known as the alpha channel) as a continuous value between 0 and 1. This

is commonly known as the matting problem. As noted by Smith and Blinn [47], the prob-

lem is under-determined for one pair of background and foreground pixels and thus do
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not have a general solution. They formulated the matting problem with multiple back-

ground/foreground pairs algebraically and deduced a general solution. For two pairs of

background/foreground images,

a0 = 1 _ Xi=rg,b(CfI -Cf2)(Ckl -Ck2) (3.1)
Li=rg,b(Ck1 -Ck2)

2

where Ck, and Ck2 are the colors of the two different background pixels, and Cf I and

Cf2 are the corresponding foreground colors. The only requirement for this formulation is

that Ckl differs from Ck2 so that the denominator is non-zero. If we measure the same color

at a pixel both with and without the object for each background, Equation 3.1 equals zero.

This corresponds to a transparent pixel that maps through to the background.

Figure 3-5: Alpha mattes acquired using multi-background techniques.

Based on Equation 3.1, we can compute opacity mattes using two pairs of background

and foreground images. After the calibration images are acquired, we capture two more

images from each viewpoint with the plasma monitors displaying different patterned back-

grounds. Then the object is placed on the turntable, and a second pass capture the two

sets of foreground images with the same patterns displayed on the plasma monitors as in

the first pass. The per-pixel opacity value can then be computed for every viewpoint using

Equation 3.1. Figure 3-5 shows two alpha mattes acquired with our method.

One common problem in matte extraction is color spill [47] (also known as blue spill),
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the reflection of the backlight on the foreground object, which confuses the matting algo-

rithm between these spill reflections and the background. As a result, opaque region of the

foreground object would be considered as semi-transparent, and in general opacity values

will be lowered because of the color spill. Spill typically happens near object silhouettes

because the Fresnel effect increases the specularity of materials near grazing angles. With a

single color active backlight, spill is especially prominent for highly specular surfaces, such

as metal or ceramics, as the reflection is typically indistinguishable from the background.

To reduce the color spill problem, we use a spatially varying color background pattern.

The varying color reduces the chance that a pixel color observed due to spill matches the

pixel color of the straight-through background. Furthermore, to make sure Equation 3.1 is

well-specified, we choose the two backgrounds to be dissimilar in color-space everywhere

such that the denominator remains above zero. Specifically, we use the following sinusoidal

pattern:

Ci(x,y,n) (1 +nsin(2IF(x±y) +i r))x 127. (3.2)

where Ci(x,y, n) is the intensity of color channel i = 0, 1, 2 at pixel location (x,y), and

A is the wavelength of the pattern. n = -1 or 1 gives the two different patterns. The user

defines the period of the sinusoidal stripes with the parameter A. Indeed, patterns defined

this way yield a constant denominator to Equation 3.1 everywhere.

Nevertheless, with this varying pattern we still observe spill errors for highly specular

objects and at silhouettes. If A is too big, the pattern has a low frequency and spill reflec-

tions at near silhouettes will still produce pixels with very similar colors to the straight-

through background, since reflections at grazing angles only minimally alter the ray direc-

tions. However, if A is set to be too small our output are often polluted with noise, possibly

due to quantization errors of the plasma displays and the camera sensors.

To reduce the spill errors we apply the same matting procedure multiple times, each

time varying the wavelength A of the backdrop patterns. Similar to Smith and Blinn's

observations, we observe that in most cases the opacity of a pixel is under-estimated due to

color spill. So for the final opacity matte we store the maximum a,, from all intermediate
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mattes. We found that acquiring three intermediate opacity mattes with relatively prime

periods X = 27,40 and 53 is sufficient for the models we captured. The time overhead of

taking the additional images is small as the cameras have a high frame rate and the plasma

monitors can change the patterns instantaneously.

Spill problems are not completely eliminated, but our method is able to significantly

reduce its effect. Also, while common matting algorithms acquire both the opacity(aO)

and the uncomposited foreground color(C) at the same time, we acquire only the opacity

values. The color information of the foreground object is captured in another pass with

different illuminations, where the surroundings of the object are covered with black felt.

Thus, even though our opacity values could be inaccurate due to color spills, we avoid the

foreground object color from being affected by the undesired spill reflections.

3.5 Radiance Images

After we acquire opacity mattes for all viewpoints, we cover the plasma monitors with

black felt, with extra care not to disturb the object. This is mainly to avoid extra reflections

of the lights on the plasma monitor surfaces, which could then act as undesired secondary

light sources.

Multiple lights can be set up on the overhead turntable to achieve the desired illumina-

tion. We have three mounting positions on the overhead turntable with rigs attached and

lights can be mounted on these rigs. We then acquire high dynamic range radiance images

of the illuminated object at each viewpoint, by doing a full rotation of the turntables. The

object turntable and the overhead turntable are rotated synchronously so the illumination is

fixed with respect to the object. These images are stored in RGBE format and will be used

to construct the surface light field, described in more details in Section 5.1.

3.6 Reflectance Images

Alternatively, we can acquire objects under variable illumination conditions from every

viewpoint to construct a representation that can be re-illuminated under novel environment.
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For each object turntable position, we rotate the light rig around the object. For each light

rig position, each of the four lights are sequentially turned on and a high dynamic range

image is captured from each of the six cameras. We call this set of images reflectance

images as they describe the reflections2 from the object surface as a function of the input

illumination environment. All the reflectance images are stored in RGBE format, which

will be later used to construct the surface reflectancefield. The reflectance model based on

these reflectance images will be described in more detail in Section 5.2.

3.7 Environment Mattes

In [35] we extended our system to also handle transparent and refractive objects by employ-

ing the environment mattes, which provide high-resolution sampling of our illumination

environments.

We use the plasma monitors as high-resolution light sources that complement the light

rig. Ideally, the entire hemisphere would be tiled with plasma monitors to produce a

high-resolution lighting environment everywhere. However, this would require many more

plasma monitors, or fixing the monitors on a rotating platform. Both methods are costly

and mechanically challenging to build. Also, the size of the acquired data will be enor-

mous. Thus, we make a simplifying assumption that most transparent objects refract rays

from roughly behind the object, with respect to the viewpoint. With this assumption, we

split the lighting hemisphere into high- and low-resolution area, Qh and Q, respectively

(see Figure 5-2). Note that this separation is viewpoint dependent, Qh is always on the

opposite side of the cameras. We measure the contribution of light from Q, by rotating the

light rig to cover the area and capture the reflectance images as described in the previous

section (Section 3.6). The contribution of light from Qh is measured using the environment

matting techniques.

The acquisition process for environment matting involves taking multiple images of the

foreground object in front of a backdrop with a ID Gaussian profile that is swept over time

2We use the terms reflection and reflectance loosely. Indeed the reflectance images capture all light paths

that subsequently reach the camera. The paths include refraction, transmission, subsurface scattering, etc.
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in horizontal, vertical, and diagonal direction. We uses a standard deviation of 12 pixels

for our Gaussian stripes, and the step size of the sweeping Gaussian is 10 pixels. As the

aspect ratio of our monitors are 16:9, we use a different number of backdrop images for

each direction: 125 in diagonal, 100 in horizontal and 75 in vertical direction. Hence,

300 images are captured in total for a single viewpoint. This process is repeated for all

viewpoints in an optional final pass.

However, for some positions in the camera array, the frames of the plasma monitors

are visible, which gives incomplete environment matte and those viewpoints are practically

unusable. Consequently, we only use the lower and the two upper most cameras for the ac-

quisition of environment mattes. The lower camera can only see the vertical monitor, while

the two upper ones can only see the rotating monitor. Hence, for 36 turntable positions,

we only acquire environment mattes from 3 x 36 viewpoints. All the images are acquired

as high dynamic images. Using these images as input, we solve for the environment matte

for each viewpoint. For each pixel we solve for at most two Gaussians to approximate the

weighting function W we described in Section 2.5.

W(x) =_ al G1(x; C1, a,, 01)+ a2G2(X; C2, G2, 02) (3.3)

We perform a non-linear optimization using the same technique of Chuang et al. [11]

to compute the parameters for the two Gaussians. These parameters are then saved as

environment mattes used later for rendering.
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Chapter 4

Geometry Modeling

Many previous methods of acquiring 3D models have focused on high accuracy geometry.

Common methods include passive stereo depth extraction, contact digitizers, and active

light system. In particular, there has been a lot of success in structured light technologies

such as laser range scanners based on triangulations. They reproduce the geometry of a

wide range of objects faithfully with fine resolution. They have been employed to acquire

very large models, for example in the Digital Michelangelo Project [29] and another project

that digitized Michelangelo's Florentine Pieta.

However, active light methods are not suitable for all kinds of models. For exam-

ple, specular or transparent objects are very hard for these methods as the laser cannot be

detected in non-specular directions. Materials like fur or fabric, which have very fine ge-

ometry, are also very difficult to handle. More discussions of limitations of these scanning

methods can be found in Section 2.1.

At the same time, it is often unnecessary to acquire high-precision geometry in order

to render a convincing visualization, where the subtle complexity of the geometry could be

ignored. The goal of our system is to scan a wide class of objects as is (i.e. without painting

or any other preprocessing), without imposing any restrictions on the type of material or the

complexity of the geometry. We achieve this goal by relaxing the requirement for accurate

geometry. We represent the geometry of the model using a conservative bounding volume

based on the visual hull. While the visual hull only provides an approximate geometry, we

compensate by applying view-dependent opacity to reproduce fine silhouette features. In
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Section 4.1 we will discuss the construction of the visual hull from our opacity mattes. In

Section 4.2 we will discuss the opacity hull, which extend the visual hull by employing

view-dependent opacity.

4.1 Visual Hull

Using silhouette information from calibrated viewpoints, we can construct a generalized

cone emanating from the center of projection that enclose the object. Laurentini [25] in-

troduced the visual hull as the maximal volume that is consistent with a given set of sil-

houettes. This volume can be produced by a intersection of all the cones constructed from

the silhouettes of each viewpoint, and the result is the visual hull, which always conserva-

tively encloses the object. As the number of viewpoints approaches infinity, the visual hull

converges to a shape that would be identical to the original geometry of an object without

concavities. The visual hull is easy to acquire, can be computed robustly, and it provides a

good base geometry for us to map view-dependent appearance and opacity onto. Also, in

cases when fuzzy geometry is present, the visual hull could be the only choice as accurate

acquisition of the very fine geometry is difficult.

Our system acquires an opacity matte from each viewpoint during acquisition, using

multi-background techniques as discussed in Section 3.4. To construct the visual hull, first

we apply binary thresholding on the opacity mattes to produce binary silhouette images.

We denote the opacity value of a pixel by the variable a, and it ranges from 0 to 1. Theo-

retically, each pixel with a > 0 (i.e., not transparent) belongs to the foreground object. We

use a slightly higher threshold because of noise in the system and calibration inaccuracies.

We found that a threshold of a > 0.05 yields a segmentation that covers all of the object

and parts of the background in most cases.

In theory, we can compute a visual hull by volume carving or by intersecting the gen-

eralized cones analytically in object space. However, such direct computations are very

expensive and may suffer from a lack of robustness. Volume carving methods typically

sample the space uniformly with voxels, and intersection is achieved by carving away those

voxels outside the projected silhouette cones of each viewpoint. The result is quantized due
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to the grid sampling, and the computation is costly when a high resolution is required.

Our system computes the visual hull efficiently using Matusik et al.'s image-based vi-

sual hull algorithm [33]. It produces more accurate geometry than volumetric methods as

it does not quantize the volume, and it is more efficient than naive 3D intersection methods

by reducing the intersections to 1 D.

To compute the visual hull, we first build the silhouette contours from each silhouette

images, represented as a list of edges enclosing the silhouette's boundary pixels. The edges

are generated using a 2D variant of the marching cubes approach [30]. We then sample the

object along three orthogonal directions, sending a user-specified number of rays in each

direction, typically 512 x 512. We intersect each of the 3D ray with the visual hull. Since

the intersection with the visual hull is equivalent to intersection with each of the generalized

cones, the 3D cone intersection can be reduced to a series of cheaper 1 D ray intersections

with a 2D silhouette image. The 3D ray is projected to an silhouette image and intersected

with the contours in that image. The intersection produces intervals which are inside the

object according to the contours. The intervals are then lifted back to 3D object space. We

repeat the intersection with all viewpoints and at the end we have a set of intervals along

the ray direction which are inside the visual hull of the object. We repeat this procedure for

all rays and the results of all the intersections is combined to form a point-sampled model

of the visual hull surface, which is stored in a layered depth cube(LDC) tree [56].

The visual hull algorithm removes improperly classified foreground regions as long as

they are not consistent with all other images. Hence it is tolerant to some noises in the

silhouette image as the background regions incorrectly classified as foreground would be

removed in most cases during the intersection with other viewpoints.

Finally, to allow correct view-dependent texturing, we precompute visibility informa-

tion for each sampled point, which describes the set of viewpoints from which the sampled

point on the visual hull is visible. This is computed efficiently using the visibility method

from [33], and the result is stored in a visibility bit-vector for each surface point.
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4.2 Opacity Hull - View-dependent opacity

Each point on the visual hull surface can be reprojected onto the opacity mattes to estimate

its opacity from a particular observed viewpoint. When coupled with this view-dependent

opacity, we can visually improve the geometric appearance of the object during rendering.

For example, very fine geometric features like fur, which are not captured with the visual

hull, present the aggregate effect of partial coverage in terms of opacity. We call this new

representation the opacity hull.

The opacity hull is similar to a surface light field (see Section 5.1), but instead of storing

radiance it stores opacity values in each surface point. It is useful to introduce the notion

of an alphasphere W. If o is an outgoing direction at the surface point p, then .W(p, )) is

the opacity value seen along direction o.

Figure 4-1 shows the observed opacity values for three surface points on an object for

all 6 x 36 viewpoints. The opacity values are presented as 6 x 36 images, the x- and y-axis

representing the latitudinal and the longitudinal indices of the virtual cameras respectively.

B C
AA

Figure 4-1: Observed alpha values for points on the opacity hull. Red color indicates
invisible camera views.

Each pixel has been colored according to its opacity. Black corresponds to a = 0, white

corresponds to a = 1, and grey corresponds to values in between. Red indicates camera

views that are invisible from the surface point.
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The function d is defined over the entire direction sphere. Any physical scanning

system acquires only a sparse set of samples of this function. As is done for radiance

samples of lumispheres in [52], one could estimate a parametric function for Q/ and store

it in each alphasphere. However, as shown in Figure 4-1, the view-dependent alpha is not

smooth and not easily amenable to parametric function fitting. For example, Point A is on

the scarf of the teddy bear, and in most views it is occluded. Point B is one of the surface

point on the glasses and some views can see through the glasses directly to the background.

These kinds of effects could lead to problems when trying to fit to a simple parametric

model. Point C is a more typical point that lies on the fuzzy surface.

It is important to keep in mind that the opacity hull is a view-dependent representa-

tion. It captures view-dependent partial occupancy of a foreground object with respect to

the background. The view-dependent aspect sets the opacity hull apart from voxel shells,

which are frequently used in volume graphics [49]. Voxel shells are not able to accurately

represent fine silhouette features, which is the main benefit of the opacity hull.

Also recognizing the importance of silhouettes, Sander et al. [45] use silhouette clipping

to improve the visual appearance of coarse polygonal models. However, their method

depends on accurate geometric silhouettes, which is impractical for complex silhouette

geometry like fur, trees, or feathers. Opacity hulls are more similar to the concentric, semi-

transparent textured shells that Lengyel et al. [26] used to render hair and furry objects.

They augment their opacity model with a simple geometric proxy called textured fins to

improve the appearance of object silhouettes. A single instance of the fin texture is used

for all silhouettes of the object. In contrast, opacity hulls can be looked at as textures with

view-dependent opacity for every surface point of the object. We can render silhouettes of

high complexity using only visual hull geometry, as we will illustrate in Section 7.1.

In an attempt to investigate the viability of a parametric model, we studied the behavior

of the view-dependent opacity on uniform materials. For example, we wrapped black felt

on a cylinder and capture it with our system. We sampled the opacity densely at 1 degree

intervals on the turntable, and thus have 360 x 6 views on the cylinder. We cannot achieve

denser sampling on the latitudinal dimension as our physical setup limits us to only have six

cameras. This would not cause a problem if we assume the opacity function is isotropic.
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An analysis, with the isotropic assumption, failed to find a systematic model that fit the

observed data well. This is clearly an avenue for future research. It is difficult to make

conclusions based on our study, as our data could be polluted with noises. There are inac-

curacies on the camera calibration and the turntable positions of each different pass. These

errors are especially significant for the study of opacity as opacity is the aggregate result

of tiny geometry and subpixel alignment in screen space. Also, as the visual hull is only a

conservative bounding volume, the surface samples are generally not on the surface. Even

on a model with uniform material and simple geometry, different samples would be in a

range of different distances from the true surface. Possible future directions may consider

a probabilistic study of the distribution of opacity functions on a surface.

Consequently, we do not try to fit our acquired opacity data to any parametric model,

instead we store the acquired opacity mattes and use an interpolation scheme to render the

opacity hull from arbitrary viewpoints (see Chapter 6).
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Chapter 5

Reflectance Modeling

In this chapter we will discuss appearance acquisition of our system. Employing an image-

based acquisition, our system is capable of capturing and representing a large class of

objects regardless of the complexity of their geometry and appearance. Materials with

anisotropic BRDFs, or global illumination effects like self-shadowing, inter-reflections and

subsurface scattering are all handled implicitly through the use of real photographs of the

object from many viewpoints.

In Section 5.1 we will describe the surface light field, which stores the view-dependent

appearance of a surface captured under fixed illumination. Our system is capable of auto-

matically acquiring surface light fields. In Section 5.2 we will discuss the modeling of the

surface reflectance fields that incorporate variable illuminations to the appearance model.

In Section 5.3 we will discuss the extension on our surface reflectance fields to handle

transparent and refractive materials using environment matting techniques.

5.1 Surface Light Fields

A surface light field is a function that maps a surface point and an outgoing direction to

a RGB color value [52, 38]. When constructed from observations of a 3D object, a sur-

face light field can be used to render photorealistic images of the object from arbitrary

viewpoints. They are well suited to represent material with complex view-dependent ap-

pearance which cannot be described easily with parametric BRDF models. Surface texture,
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rapid variation in specularity and non-local effects like inter-reflection, self-shadowing and

subsurface scattering are all correctly handled.

Following the exposition of Wood et al [52], the surface light field can be defined as a

4D function on a parameterized surface

L : Ko xS 2 -+RGB (5.1)

where KO is the domain of the parameterized surface, S2 denotes the sphere of unit vectors

in R3. Radiance is represented by points in R3 corresponding to RGB triples. Let 0 be the

parameterization of the surface. If u E KO is a point on the base mesh and o is an outward

pointing direction at the surface point 0 (u), then L(u, w) is the RGB value of the light ray

starting at $ (u) and traveling in direction w. 1

Using the opacity hull and the radiance images acquired by our system, we can produce

a surface light field similar to that described by Wood et al [52]. They parameterized the

surface light field on a high-precision geometry acquired from laser range scans. Instead,

we use the opacity hull as an approximating shape, as described in Chapter 4. The opacity

hull is a point-sampled model with view-dependent opacity associated with each point.

During acquisition, we have acquired radiance images from every calibrated viewpoint

under the desired fixed illumination, by rotating the overhead turntable synchronously with

the captured object. Each of the surface point on the opacity hull can be projected to each of

the radiance images where they are visible. Each of these projections then corresponds to

a sample of the surface light field at the surface point, along the outgoing direction defined

by the vector from the point to the camera.

In fact, we do not explicitly reparameterize our surface light field. Instead we keep the

radiance images acquired from all the viewpoints, and they are used directly for lookup

during rendering (see Chapter 6). To save storage, we discard regions of the images that do

not cover the object. Each of the radiance images are partitioned into 8 x 8 pixel blocks.

After the construction of the opacity hull, we project it back to each of the image and

discard all the pixel blocks that do not coincide with the object. The blocks remained are

'Radiance is constant along a straight line in a non-participating medium.
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then stored in an indexed table, allowing constant time retrieval of the data. We do not

attempt to perform any further compression on the data.

However, compression of the surface light field data is clearly possible and indeed in

some cases necessary to handle the large amount of data. Wood et al. demonstrate com-

pression methods based on function quantization and/or principal components analysis.

They achieve a compression ratio of about 70:1. Light field mapping techniques by Chen

et al. [10] approximate the light field data by partitioning it over elementary surface primi-

tives and factorizing each part into a product of two two-dimensional functions. Combining

with hardware texture compression they are able to achieve up to 5000:1 compression. Our

research has been more focused on the re-lightable surface reflectance fields, and the size

of the uncompressed data for surface light fields are typically tractable(around 2 GB), as a

result, compression methods were not applied. However, Vlasic et al. [50] have success-

fully employed light field mapping techniques to compress our data, and they were able to

render our opacity-enhanced surface light fields in real time.

5.2 Surface Reflectance Fields

5.2.1 Modeling and Acquisition

Surface light fields can only represent models under the original illumination. To overcome

this limitation, we acquire an appearance model that describes the appearance of the object

as a function of variable illumination environment.

Debevec et al. [15] defined the non-local reflectance field as the radiance from a sur-

face under every possible incident field of directional illumination. It is a six-dimensional

function R(P, oi, or), where P is a surface point on a parametric surface, and oi and or are

the incident and outgoing directions respectively. It gives the radiance from P along the

direction ar, when the object is subject to a directional illumination from Wi. Notice that

P can be in a shadowed region with respect to oi but still be lit through surface scattering.

This is almost equivalent to the BSSRDF, except that the parametric surface is not assumed

to coincide with the physical surface, and that the illumination is limited to be directional.
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Hence the reflectance field cannot be rendered correctly under local light sources. How-

ever, generalizing to include local illumination effects will require two more dimensions

and acquisition and storage will be highly impractical.

Debevec et al. use a light stage with a fixed camera positions and a rotating light to

acquire such a reflectance field of human faces [15] and cultural artifacts [21]. Our work

can be viewed as a realization of the enhanced light stage that has been proposed as future

work in [21], where the reflectance field is sampled from many viewpoints. Also, as our

system acquire geometry based on the visual hull and the reflectance field is parameterized

on this surface, we call our representation the surface reflectancefield.

During acquisition, we sample the surface reflectance field R(P, oi, Or) from a set of

viewpoints 0r and a set of light directions Qi. In previous approaches [15, 21, 23], the

sampling of light directions is relatively dense (e.g., IQiI = 64 x 32 in [15]), but only very

few viewpoints are used. In our system, we sample the reflectance field from many view

directions (lirI = 6 x 36). To limit the amount of data we acquire and store, our system

uses a sparse sampling of light directions (IKi1 = 4 x 15).

For an observation of the surface reflectance field from an original viewpoint, it is useful

to define a slice of the reflectance field called a reflectance function Ry(oi) following

the exposition of Debevec et al. [15]. P and Or are encoded by the pixel location (x,y)

implicitly. It represents how much light is reflected to the camera through pixel (x,y) as

a result of illumination on the object from direction wi. With this formulation, the light

arriving at a camera pixel (x,y) can be described as:

C = JRxy (oi)E(ai)do. (5.2)

Cxy is the recorded color value at camera pixel (x,y), E(wi) is the environment illumi-

nation from direction ai and Rxy is the reflectance function, which comprises all means of

transport from the environment through the object to the camera, contributing to the pixel

(x,y). The integration is carried out over the entire sphere Q and for each wavelength. It

is important to integrate over all directions to account for non-local effects. We drop the

wavelength dependency, assuming that all equations can be evaluated independently for
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the red, green and blue channels. Using this formulation, with known reflectance function

Rxy we can reconstruct a pixel from the original viewpoint under novel illumination E' by

evaluating Equation 5.2, substituting E by E'.

From here on we will drop the xy subscript, with the understanding that each pixel

is acquired and modeled in the same manner. To measure R we discretely sampled the

environment using directional lights and measure the response when each of the different

light is turned on sequentially. It is a physical limitation of our system that we cannot

acquire viewpoints or illuminations from below the turntable, so we only sample the upper

hemisphere of the environment. In our setup, we have a light rig with 4 direction lights.

By rotating the light rig around the object, we can achieve a variable number of lights

on the longitudinal dimension. We typically use 15 positions for the light rigs, producing

4 x 15 = 60 discrete lights. The lights are photometrically calibrated and all have intensity

L, and they all point towards the center of the object so that their subtended solid angles are

equal. By taking a picture each time with a single light on from direction Wi, we have an

observation Ci:

Ci ~R(coi)L (5.3)

The sampled value R(wi) is hence within a constant multiple of Ci. The image formed

by Ci at each pixel is exactly what we capture as reflectance images, described in Sec-

tion 3.6. For each viewpoint we have 4 x 15 = 60 reflectance images.

With the discrete sampling, we can approximate Equation 5.2 as

n

C= R(wi)E(wi dA(wi) (5.4)

As we have a very sparse sampling of the environment, our re-illumination is accurate

only for relatively diffuse surfaces. For example, a focused highlight on a highly spec-

ular object will jump from one location to the next instead of moving smoothly under a

moving light source. Based on Ramamoorthi and Hanrahan [43]'s formalization of inverse

rendering under a signal-processing framework, BRDF recovery can be viewed as a de-

convolution problem. Hence we can only recover the the high-frequency components of
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the BRDF when the lighting environment have similar frequencies. This applies similarly

to the recovery of our reflectance field. With a sparse sampling of the environment, we

can only acquire the illumination-dependent effects of relatively diffuse materials, and ar-

tifacts will be visible on very specular materials during rendering. To solve this problem,

especially to handle transparent and refractive objects, we employ environment matting

techniques to provide a much-denser sampling of part of the environment, which will be

discussed in Section 5.3.

5.2.2 Compression

The raw reflectance image data would require about 76 GB of storage for 6 x 36 viewpoints.

Storing only the pixel blocks within the object silhouette still would require between 20 and

30 GB, depending on the size of the object. To make this data more manageable, we use a

simple compression scheme using principal component analysis (PCA). From each view-

point, we divide the pixels into 8 x 8 blocks. For each block we have an observation under

each of the 60 lights. Now we rearrange each observation under the ith light into a vector ri

of 8 x 8 x 3 floats2 . PCA compresses a set of vectors by finding the most significant vectors

(called the principal components) that span the set with minimal distortion. Each element

of the set can then be re-expressed as linear combinations of these principal components,

and the coefficients are called the eigenvalues. As we add more principal components to

our approximation, the error is monotonically decreasing. We apply PCA on the set of

vectors {rt}, and only store the first k principal components (V, V2 ,... , Vk) such that the

root-mean-squared error of the reconstruction is less than a threshold. We typically set the

threshold to be 1% of the average radiance of all the reflectance images. After the com-

pression, each block is represented as k principal components, and 60k eigenvalues (yj) as

we have k eigenvalues for each of the 60 lights. The block of the reflectance image under

the ith light is approximated by:

k
Clock = .v (5.5)

j=r

2There are 8 x 8 floats for each of the R,G,B channels.
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Figure 5-1: PCA decompositions of the reflectance functions from two viewpoints. The
first six components are shwon from each viewpoint.

The average number of principal components for the models we captured is typically

four to five per block and thus the size of the reflectance data is reduced by a factor of about

10. Figure 5-1 shows two views of a doll model, and their respective PCA decompositions.

The components images (first six are shown, labeled 0 to 5) are falsely colored as the

principal components contain negative values in general. Also, as each block has a variable

number of principal components stored, some of the pixel blocks in the third or higher

component images are empty. During rendering, we can recompute a radiance image of

each view efficiently under a new illumination environment, and the final image from an

arbitrary viewpoint can be interpolated from these radiance images. We will discuss the

reconstruction and rendering methods in details in Chapter 6.

5.3 Surface Reflectance Fields with Environment Mattes

The surface reflectance field that we acquire allows us to put the scanned object in novel

environment illuminated correctly. However, the very sparse sampling (4 x 15) of the il-

lumination environment during acquisition limits the accuracy of the reconstruction. First,
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a) b)0 b

Figure 5-2: Illumination environment and light propagation model in our system. a) High-
resolution sampling across Uh. b) Low-resolution sampling across 01.

the object cannot be rendered accurately under high-frequency illumination environment3 .

Also we cannot handle very specular materials, as the specular highlight will be very fo-

cused and artifacts due to undersampling would be visible. One of the most difficult mate-

rials is glass, which both reflects and refracts light in a highly specular fashion. To capture

such materials, we have to sample the illumination environment at a much higher frequency.

As stated in Section 3.7, ideally we would use multiple plasma monitors to cover the en-

tire hemisphere to achieve a high-resolution sampling everywhere. However, due to cost

and efficiency constraints, we have chosen to employ a hybrid approach. We use the same

plasma monitors used for multi-background matting to also act as high-resolution lights

from behind and below the objects. The remaining regions of the hemisphere is covered by

our light rig used in Section 5.2. Thus, the illumination hemisphere is partitioned into high-

and low-resolution regions, 9h and 0i respectively (Figure 5-2). With this partitioning, we

can rewrite Equation 5.2 as

n'

C = W(x)T(x)dx+ XR(<o)E(i )dA(oi). (5.6)

The integral is across the high-resolution region Qh, while the region C; is sampled the

same way as in Section 5.2. We rename the reflectance function parameterized on T (the

plasma monitors) to W for notational purpose. The discrete sum of Equation 5.4 now only

sums over the region covered by 01. The plasma monitor roughly cover 120 degrees of the

31n other words, the color and intensity in the illumination sphere have rapid variation spatially.
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illumination hemisphere, and so we only employ 11 light rig positions roughly covering

240 degrees. Hence, n' = 4 x 11 = 44.

Our plasma monitors both have a resolution of 1024 x 768, and in theory we can regard

each pixel on the monitors as a single light and use the same capturing method described in

Section 5.2. However, this is clearly very inefficient and the amount of data is intractable.

Thus, we choose to employ environment matting techniques from Chuang et al [11], which

allows us to capture the reflectance function efficiently and provide an implicit compression

of the data.

Environment mattes describe for each pixel the origin of the contributing illumination.

For example, glass object is typically lit by rays from behind the object through refraction.

Following Chuang et al.'s exposition (Section 2.5, Equation 2.5), we modeled W as a sum

of Gaussians. Also, to simplify our rendering, we assume W can be modeled with two

Gaussians, one dominantly reflective and the other refractive. Hence,

W(x) = a1 G(x; C1, a,, 01)+ a2G2 (x; C2 , CF2 , 02) (5.7)

GI and G2 are elliptical, oriented 2D unit-Gaussians, and a, and a2 are their amplitudes,

respectively. x = (x,y) is the camera pixel position, Ci the center of each Gaussian, ai are

their standard deviations on the two axes, and Oi their orientations.

Now we can rewrite Equation 5.6:

n'

C =f (alG 1T(x)+a 2G2 T (x))dx+ I R(woi)E(wi)dA(oi). (5.8)
foh i=1

With this formulation, we provided a hybrid sampling of the illumination environment,

and we assume that most of the refracted and reflected rays arriving at a pixel originate

from behind the object. This is true for most refractive objects, and for objects with a

strong reflected components at grazing angles. This does not correctly reproduce specu-

lar reflections on the front of the object, or transparent objects with large-scale internal

structure or surface facets, such as crystal glass.

The acquisition and processing of these data was described in Section 3.7. After acqui-

sition, the environment mattes are produced using an optimization procedure, and at each
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pixel we have the parameters for the Gaussians G1 and G2 . To save storage and computa-

tion time for the non-linear parameter estimation, we identify and remove areas outside the

object silhouette like we did for the surface light field data. The environment matte is sub-

divided into 8 x 8 pixel blocks and only pixel blocks that contain the object are processed

and stored.

With this hybrid sampling we are able to capture and render refractive objects convinc-

ingly. The rendering of surface reflectance fields with the environment matting extension

will be discussed in Section 6.4.
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Chapter 6

Rendering

In this chapter, we are going to describe the rendering of the geometric and appearance

model acquired by our system. To recapitulate, the input to our rendering system includes

(supposing we have acquired the surface reflectance field of the object):

" A point-sampled model of the visual hull, based on intersection of the opacity mattes.

" Opacity mattes from each viewpoint.

" Compressed reflectance images from each viewpoint.

" A new illumination environment.

" Environment mattes from each viewpoint. (Optionally acquired)

For rendering surface light fields, the last three items are replaced with a set of radi-

ance images of the object under fixed illumination. In Section 6.1 we will describe the

preprocessing of the surface reflectance fields under novel illuminations. In Section 6.2 we

will discuss the surface splatting approach we employ to render the point-sampled model.

Section 6.3 will be focused on the interpolation of radiance and opacity between different

viewpoints. Section 6.4 describe the additional processing and special interpolation for the

optionally acquired environment mattes.
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6.1 Relighting under novel illuminations

Before we render the surface reflectance field of an object we precompute a set of radiance

images as if the object was captured under the new given illumination. For now, we fo-

cus on one particular pixel from one particular viewpoint. Recall our lighting model (see

Section 5.2) in terms of the reflectancefunction:

n

C= R(wi)E(oi)dA (oi) (6.1)
jr=1

For each pixel, the radiance value is equal to the sum of the product of environment il-

lumination and the reflectance function, downsampled to n discrete illumination direction,

multiplied by the subtended solid angle. For our reflectance field acquisition without envi-

ronment mattes, the number of lights is equal to 4 x 15 = 60. To relight the model under

novel illuminations, we first need to filter and downsample the new environment map E' to

our light resolution. Also, similar to Debevec et al., we need to normalize the environment

map based on solid angle, as our sampled illumination has more samples near the pole. We

call the normalized, downsampled environment map E"

E"(wi) = E'(wi) sin4 (6.2)

where 0 is the azimuth angle of the light direction. Recall that our reflectance images

captured during acquisition is in the form

Ci = R (wi )L (6.3)

where L is the intensity of our lights. From a particular viewpoint, for the ith light, we

have a pixel Ci observed in the ith reflectance image. Now we sum over the product of Ci

and E"(oi). We have

n n

S= CiE"(wi) =L R(wi)E'(widA(wi) (6.4)

The sum S is equal to our desired radiance value according to Equation 6.1, multiplied
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by L, the intensity of the light in our light rig. As we do not explicitly measure the actual

value of L, we are only able to evaluate the re-illuminated pixel with respect to a scalar

factor of L. This factor is left as a user parameter, and can be considered loosely as the

exposure time setting of the rendering.

The description above illustrates how we compute a single re-illuminated pixel. To

actually compute the desired radiance images, we do the computation in pixel blocks of

8 x 8. Recall that our reflectance images are compressed by principal components analysis.

For a particular block in a viewpoint, the n = 60 captured blocks under the different lights

are compressed into k principal component blocks V, and n x k eigenvalues yj. The block

of the reflectance image under the ith light can be reconstructed by:

k
Cfl"ck = yV (6.5)

j=1

Given the normalized environment map E", the re-illuminated block Sb ock is then equal

to

n n k
Sblock X lockE"I(oj = y Vj)E"(opi) (6.6)

i=1 i=1 j=1

This evaluation is repeated for all blocks for all viewpoints. The result is then stored as

a radiance image for each viewpoint. This allows us to render surface reflectance fields in

the same way as surface light fields.

6.2 Surfel Rendering

The input to our rendering stage include the visual hull represented as a point sampled

model, the opacity mattes, and the radiance images either acquired as a surface light field

or computed from surface reflectance fields using the procedure described in Section 6.1.

For each surfel (surface element) on the visual hull, we can compute interpolated opac-

ity and radiance values using the unstructured lumigraph interpolation method described in

the next section. Once we have these interpolated values, the final task is to render these

surfels to an image. Since the surfels are generally positioned irregularly, a naive rendering
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approach will most likely suffer from aliasing. Thus, we use the elliptical weighted average

(EWA) surface splatting approach of Zwicker et al [56], a hierarchical forward-warping al-

gorithm projects the surfels onto the screen. A screen space EWA filter reconstructs the

image using the opacity, color, and normal stored per surfel. A modified A-buffer provides

order-independent alpha blending and edge anti-aliasing. For further details of surface

splatting, please refer to [56].

While the surfel rendering approach is a powerful tool for rendering our acquired ob-

jects in general, our acquisition system is in no way tied to a surfel representation. It is

conceivable that we can construct a polygonal representation of our visual hull and render

the model using polygons. The opacity mattes and reflectance images are both separate

from the representation of the visual hull.

6.3 Viewpoint Interpolation

To interpolate the radiance images of the original viewpoints to arbitrary viewpoints, we

employ the unstructured lumigraph interpolation of Buehler et al. [7].

Each surfel is associated with its position and a precomputed visibility bit-vector de-

scribing the set of cameras from which the surfel is visible. We first compute the normal-

ized direction r,(i) from the surfel position to each visible camera i using the visibility bit

vector and the global array of camera positions. We also compute the normalized viewing

direction r, from the surfel position to the center of projection of the current view. We then

assign a penalty p(i) = 1 - cos 6i to each visible camera, where cos i= - r . We consider

only the k = 4 cameras with smallest penalty p(i) when interpolating a value. All other

cameras are assigned an interpolation weight w(i) of zero. We take care that a particular

camera's weight falls to zero as it leaves the set of the closest four cameras. We accomplish

this by defining an adaptive threshold cos Ot = r4 -r, where r4 is the direction of the surfel

to the fourth closest camera. The blending weight w(i) for each camera is:

cos ei - cos (6.7)
1- cos Ot
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This weight function has its maximum value of one for cos (i = 1, and it falls off to zero

at cos (; = cos 6,. To ensure epipole consistency, we multiply w(i) by 1 /p(i). Epipole

consistency means that rendering the object from original camera viewpoints reproduces

exactly the original images. We also normalize all w(i) so that they sum up to one. Finally,

we scaled the interpolated radiance value by the user-specified exposure time parameter.

As we do not calibrate the intensity of the input lights of our system, the user is only able

to control the exposure in terms of a scalar factor of the acquired illumination.

Figure 6-1: Rendering from arbitrary viewpoints. Left and right: Original images. Middle:
Interpolated view.

Unstructured lumigraph interpolation for viewpoints other than those seen by reference

cameras introduce small artifacts, most notably in specular or concave areas. Figure 6-1

shows acquired images of an object (Figures 6-la and c). Figure 6-lb shows the object

from an intermediate viewpoint.

Note that the figure shows only the two closest views, but we actually use the four

closest views for interpolation. As can be seen in the figure, the artifacts are generally

small. The smoothness of the interpolation can only be fully appreciated by a rendered

video with a moving viewpoint. Please refer to our demonstration video on the website .

'URL: http://graphics.Ics.mit.edu/iddy/video/sig2OO2.mpg
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6.4 Rendering with environment mattes

To render surface reflectance fields with the environment mattes extension, we need to

relight the pixel according to following equation (Equation 5.8):

C = J(ai G1 T(x) +a 2 G2T(x))dx+ R(o i)E(i)dA(o)i). (6.8)
i=1

The discrete sum in the second term can be precomputed as radiance images in the

same way discussed in Section 6.1. The radiance images can then be interpolated using

the method described in Section 6.3. To compute the first term, we interpolate the views

before rendering. We first evaluate interpolated Gaussians from the observations of the

closest viewpoints, and then use them to compute the integral.

Before we start we need to pre-process our environment mattes. The acquired environ-

ment mattes are parameterized on the plane T of the background monitor. However, for

rendering they need to be parameterized on a global environment map T. Figure 6-2 shows

a 2D drawing of the situation.

C

'I G .--

P

E T

Figure 6-2: Reprojection of the environment matte Gaussian G from the monitor plane T
into the environment map T.

During system calibration we determine the position of each monitor plane T with

respect to each viewpoint. This information is globally stored per viewpoint. T is the

parameterization plane of the new environment map. The mapping from T to T may be
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non-linear, for example, for spherical environment maps. A 3D surface point P on the

object is projected onto a pixel of the environment matte E, which stores the parameters

of the 2D Gaussian G. We compute the Gaussian G that best approximates the projected

Gaussian G on the parameterized surface 7.

We represent the new Gaussian G using the following parameters: a (the amplitude

of G), C (a 3D vector), (a,P) (the opening angles), and 0 (the new rotation angle). This

projection is performed for each change of the environment map.

As we have two reprojected Gaussians (GI, G2) per pixel, we need to perform a match-

ing of the Gaussians before interpolation. Figure 6-3 shows a simplified ID drawing of the

matching process. The two Gaussians per pixel are classified as reflective (6r) or trans-

missive (6t). We compute the angle 0 of their center vectors Cr and C0 with the surface

normal N. If 0 > 900, we classify the Gaussian as transmissive. If 4 <= 901, we classify

it as reflective. If both Gaussians are reflective or refractive, we only store the one with the

larger amplitude a.

Vi

NN -00

V2  N . . QG2r

G2t

Figure 6-3: Matching of reflective and refractive Gaussians.

After the matching, for each of the two Gaussian (U) we interpolate the parameters of

the 4 matching Gaussians (ai = 1,2,3,4) from the closest views. Using the weight wi

from unstructured lumigraph interpolation described in the previous section, we compute

linear combinations for the amplitudes at and the directional vectors C1. The angular pa-

rameters (a1 , i) and 6i are blended using quaternion interpolation. The result is a new
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Gaussian G that is an interpolated version of the Gaussians Gi, morphed to the new view-

point.

To compute the color contribution C' from the interpolated environment mattes we com-

pute Equation 6.8 under the reparameterized environment:

C J(a,$r t(x) +at tT(x))dx+ R(a )E (o) d (a ). (6.9)
i=1

where the first and second term of the integral gives the contribution from the reflective

and transmissive Gaussians respectively.

Note that by interpolating the environment matte before rendering we have achieved

smoother interpolation, compared to interpolating the radiance values rendered from the

original viewpoints. Suppose at a surface point p, we acquire the environment matte from

two adjacent viewpoints, and for each viewpoint we have a Gaussian associated with p.

Using the latter method, any in-between views will interpolate by cross-blending the two

Gaussians convolved with the environment. The region in the environment between the two

Gaussians does not contribute to these interpolated views. This introduces very noticeable

artifact for refractive objects like glass as the refraction is nearly perfectly specular. By

interpolating the Gaussians before convolution instead, we are able to produce a continu-

ously moving Gaussian between the two observations, and no cross-fading artifacts would

be observed.

Nonetheless, our interpolation of the Gaussian is only an approximation. In order for

the interpolation to be valid, we have implicitly assumed that the direction of the Gaussian

changes linearly between viewpoints, which is not true in general when there is more than

one reflection/refraction present, and when the topology of the light transport paths change

between viewpoints. However, to acquire and reproduce these complex light path is very

difficult, and our approximate interpolation has produced smooth and reasonable rendering

for the transparent and refractive objects we have acquired (see Section 7.5).
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Chapter 7

Results

We have collected a wide range of objects with our scanning system. These include dif-

ficult surfaces of various genuses, with concavities, and with fine scale features. We have

also captured different models with fuzzy, specular and refractive materials. In this chapter

we will present and discuss results from the various stages of the acquisition and rendering

processes. These include opacity mattes(Sec 7.1), visual hulls and opacity hulls(Sec 7.2),

surface light fields(Sec 7.3), surface reflectance fields(Sec 7.4) and the extension with en-

vironment matting(Sec 7.5). We will conclude the chapter with quantitative measurement

of the performance of the system (Sec 7.6).

7.1 Opacity Mattes

We capture opacity mattes by using multi-background techniques, with the plasma mon-

itors serving as active backgrounds (See Section 3.4). Our method is robust and gives

high-quality results on most materials. To reduce the color spill problem, we take several

pairs of foreground/background images, and we take the maximum of the opacity values

calculated from the different pairs.

Figure 7-1(a) shows a typical opacity matte we acquire. The opacity mattes are stored

as a common greyscale image and thus the opacity values range from 0 to 254, while

we reserve the value 255 to represent missing data. We classify opacity into three types:

opaque(o ~ 254), transparent(o ~ 0), and partial(not opaque nor transparent). In this model

57



Figure 7-1: Opacity mattes of: (a) a decorative basket and (b) a toy dinosaur.

of a toy dinosaur, the dominant partial opacity values are at the silhouette due to partial

occupancy of pixels. Within the silhouette the values are close to 254, and outside the

silhouette they are close to 0. The typical maximum error without color spill problem is

around 10.

Figure 7-1(b) shows delicate partial opacity of a decorative basket captured. Partial

opacity values are observed almost everywhere within the basket due to the many holes in

the weaving structure.

As the plasma monitors are framed and we cannot put the bottom monitor too close

to the vertical one, there are regions in images from some viewpoints that lie outside the

range of the display rectangles of the monitors. In these regions we cannot apply multi-

background techniques and hence cannot measure opacity. For example, in Figure 7-1(b)

the white bars represent missing data due to the frame of the bottom monitor. These opacity

values are not used during interpolation.

Figure 7-2 shows an opacity matte of a bonsai tree with complex geometry. On the

ceramic pot color spill is noticeable. The ceramic pot is highly specular and the reflection

of the displayed pattern of the bottom monitor has confused the algorithm that the pixels
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Figure 7-2: Opacity matte of a bonsai tree. Problems caused by color spill can be observed
on the ceramic pot.

are partially transparent. On this matte the lowest opacity value on the opaque ceramic pot

is 179, or 70%.

Nevertheless, our matting process yield high-quality results for most objects. In many

objects with fine-detail structure, opacity mattes allow us to obtain the aggregate effect

of geometric detail from a macroscopic point of view. This allow us to produce faithful

rendering of the acquired objects without tackling the nearly impossible task of capturing

the exact geometry.

7.2 Visual Hull and Opacity Hull

The visual hull is computed based on the opacity mattes using the algorithm described

in Section 4.1. We conservatively assume the missing opacity values as opaque.1 As the

visual hull is an intersection process, conservative overestimation of the geometry and noise

is eliminated, as long as they are not consistent with respect to all viewpoints.

IThis is the reason we choose the special value 255 to represent missing opacity data.
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Figure 7-3: a) Photo of the object. b) Rendering using the opacity hull. c) Visual hull. d)
Opacity hull.

60



Figure 7-3(c) shows the visual hull of a bonsai tree model(photograph showed in Fig-

ure 7-3(a)), using normal shading with surface splatting. The resulting geometry is a crude

approximation of the true surface. However, it is the coarseness of the geometry that allow

us to have a compact representation regardless of geometric complexity. It also allows the

visual hull algorithm to be very robust. It worked on all models we acquired without any

problems.

Figure 7-3(d) shows a rendering using the opacity instead of the radiance values to

visualize the opacity hull. Notice the coarse shape of the visual hull and the much improved

quality using the view-dependent opacity, despite the fact that their geometry is identical.

Figure 7-3(b) shows the final rendering of the opacity hull with the surface light field.

Finally, to evaluate the number of images required to compute the visual hull, we instru-

mented our code to compute the change in volume of the visual hulls as each silhouette is

processed. We then randomized the processing order of the images and repeated the visual

hull calculation multiple times. The plots shown in Figure 7-4 illustrate the rather typical

behavior.

Generally, the visual hull converges to within 5% of its final volume after processing

around 20 images, and seldom is this plateau not reached by 30 images. Collecting data

over the entire hemisphere ensures that this volume closely approximates the actual visual

hull. This implies that the visual hull processing time can be dramatically reduced by

considering fewer images to compute the hull model. However, dense alpha mattes are

still important for representing view-dependent opacity. The view-dependent opacity and

radiance measurements dramatically improve the final renderings.

7.3 Surface Light Fields

Acquiring surface light field is an easy and quick process. One of the challenge for some

objects is the setup of the illumination. To simulate the effect that the illumination is fixed

with respect to the object, in theory we should only use lights that are mounted on the upper

turntable, and that the upper turntable rotate synchronously with the object. However, as

we only have three mounting positions on the upper turntable, the light positions are very
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limited. Also, as we are only able to provide illumination in the upper hemisphere with

the existing light rigs, sometimes the bottom part of the object is not well lit, especially

when there is self-occlusion. To give a better distribution of the lights on the object, we

use a standing lamp to provide ambient illumination. We cover the sides of the lamp to

make sure the light does not directly illuminate the object. This provides an approximately

rotation-invariant ambient lighting. Figure 7-5 show some renderings of acquired surface

light fields from novel viewpoints, composited onto new backgrounds.

Figure 7-5: Surface light fields of several objects from new viewpoints.
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7.4 Surface Reflectance Fields

We acquire surface reflectance fields by acquiring, under every viewpoint, all possible il-

luminations with our light rig. In this section we are going to discuss results from the

low-resolution surface reflectance fields, and the environment matting extension will be

discussed in Section 7.5.

Figure 7-6: Measured reflectance function data for several surface points.

In the process of acquiring surface reflectance fields, we have made many interesting

measurements and observations. Figure 7-6 shows plots of the measured reflectance field

data for three surface points on an object. We chose the surface points to be in specular

and self-shadowed areas of the object. The darker parts of the plots are attributable to self

shadowing. The data lacks any characteristics that would make it a good fit to standard

parametric BRDF models or function approximation techniques.

Figure 7-7 shows a visualization of the number of PCA components per 8 by 8 pixel

block of the reflectance images from an original viewpoint. We set the global RMS re-

construction error to be within 1% of the average radiance values of all HDR reflectance

images. Note that areas with high specularity or high frequency texture require more com-
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Figure 7-7: a) Original view. b) Visualization of number of PCA components per block
(Max. = 15, Mean = 5).

ponents than areas of similar average color. The maximum number of components for this

view is 10 while the average is 5. This is typical for all of our data.

Figure 7-8: Re-lightable model under novel illumination.

With the captured surface reflectance fields, we can render our models in novel illumi-

nations. Figure 7-8 shows a doll rendered under novel illuminations, the first four images

by using several colored lights, and the final one using an environment map of the Uffizi

gallery, courtesy of Paul Debevec.

To further illustrate the power of our surface reflectance fields techniques in seamlessly

blending with the environments, we have taken a real video sequence from a library. We

captured the illumination environments using light probes and techniques similar to De-

bevec et al [16]. We then scanned the surface reflectance fields of four object using our

system, and render these objects into the video sequence captured. Figure 7-9 shows these
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Figure 7-9: A combination of scanned and real objects in real environments. The scanned
objects were illuminated using surface reflectance fields.
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objects rendered into the scene, illuminated by light probes captured roughly at the same

locations as the synthetic objects. We observe that the re-illumination is faithful, and the

opacity mattes produced seamless blending into the background for objects with fine-detail

geometry, e.g. the bonsai tree, the feather of the hat and the strings of the ship model.

7.5 Surface Reflectance Fields with Environment Matting

Figure 7-10: Left: High-resolution reflectance field from the environment mattes. Middle:
Low-resolution reflectance field from the reflectance images. Right: Combined.

We have captured three refractive objects with our environment matting extension.

Figure 7-10 shows renderings using only the environment mattes (left), using only the

reflectance images (middle), and combining the two (right). Note that the environment

mattes, storing the high-resolution reflectance field, mostly capture refractions, while the

reflectance images, storing the low-resolution reflectance field, mostly capture reflections.

Figure 7-11 shows a few frames from an animation with a rotating viewpoint. Note how

the specular highlights and refractive effects are accurately preserved by our interpolation

procedure. The actual quality of the models and of our interpolation method can only

be observed in an animated sequence, where the benefits of ray-interpolation rather than

radiance interpolation would be obvious.
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Figure 7-11: Frames from an animation with rotating viewpoint.

7.6 Performance

7.6.1 Acquisition

For all objects, we use six cameras and 36 or 72 turntable positions. For the performance

study of this section we assume 36 turntable positions, unless otherwise stated. We use

4 x 15 light positions when only the low-resolution surface reflectance field is captured,

and 4 x 11 light positions when environment matting techniques are employed.

The cameras have a resolution of 1360 x 1036. All the regular dynamic range images

are stored as raw bitmaps, sized 1360 x 1036 x 3 ~ 4.1MB. High-dynamic images are taken

using 4 exponentially increasing exposure time, and the response line is computed on the

fly to avoid excessive storage. The final high-dynamic images are stored using the RGBE2

format and thus are sized 1360 x 1036 x 4 ~ 5.5MB.

The data size and acquisition time of the different acquisition stages are as follows:

Calibration Images: We take one image per view of the calibration object. The acqui-

sition process took about 22 minutes, and we store all frames uncompressed. The total size

for 36 x 6 = 216 views is 890MB.

2 See Section 3.2 for details of the RGBE format
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Background/Foreground Images: We take three backgrounds and three foregrounds

per view in different passes. The backgrounds can be reused if the system calibration does

not change. The total size for each pass is 36 x 6 x 3 x 4.1 ~ 2700MB. The acquisition

time for each pass is 54 minutes.

Radiance Images: We take one high-dynamic range image per view of the object under

fixed illumination. The total size is 1217MB for 36 x 6 views and the capturing last 30

minutes.

Reflectance Images: Using a light resolution of 4 x 15, we capture 60 high dynamic

range reflectance images per view. The total number of reflectance images is 36 x 6 x

60 = 12960, and the total uncompressed size is about 70GB. The acquisition process takes

approximately 18 hours.

Environment Mattes: If we employ environment matting techniques, we only need

to capture 4 x 11 light positions for the reflectance images. The remaining 4 rig positions

are covered by the plasma monitors. We acquire 300 images for environment matting for

each viewpoint, but we only capture the mattes from 3 cameras (See Page 32). The total

data size is more than 150GB for a full acquisition. Also, as the refractive objects are

typically also very specular, we usually employ 72 turntable positions. Because the data is

so huge, we have only acquired half or 1/4th of all views for the three objects we acquired.

The acquisition time for a full acquisition with 36 turntable positions is estimated to be 18

hours.

We summarize the acquistion time and data size for each type of the images in the

following table:

Image Type Time(minutes) Size(MB)

Calibration 22 890

Background 54 2673

Foreground 54 2673

Radiance(HDR) 30 1217

Reflectance(HDR,60 lights) 1178 73040

Environment mattes 540 150000
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7.6.2 Processing

The results of this section are based on computation on a 2GHz Pentium 4 PC with 2GB

of memory. We compute the opacity mattes from the set of background and foreground

images using the algorithm described in Section 3.4. An opacity matte is produced from

each viewpoint and stored as a greyscale image. The process for 36 x 6 viewpoints with

three pairs of background/foreground took about 20 minutes, and the total size of the final

opacity mattes is about 300MB.

The processing of the environment mattes take about 10 minutes per viewpoint, or 36

hours for 216 viewpoints. The size of the resulting mattes typically range from 1 GB to 5

GB, depending on the size of the object in the image.

With the opacity mattes we can compute the visual hull. We resampled all of our visual

hull models to 512 x 512 resolution of the LDC tree. The processing time to compute the

visual hull and build the point-based data structure is typically less than 10 minutes. The

size of the result LDC tree is about 100MB.

We apply principal component analysis on the surface reflectance fields for compres-

sion. The PCA analysis of the surface reflectance field takes about 36 hours on a single

PC using non-optimized Matlab code. To speed up the computation, we typically use a PC

cluster to process different viewpoints in parallel. We achieve a compression ratio of about

10 to 1, and the total size of the result PCA images are about 2-4GB.

The rendering of the surface light field, or a surface reflectance fields preprocessed with

novel illumination, takes between 60 to 200 seconds, depending on the number of point

samples in the model. With environment matting, the rendering time goes up to about 300

seconds per frame.
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Chapter 8

Conclusion and Future Work

We have demonstrated the techniques of image-based 3D scanning based on the opacity

hulls with our system. It fulfilled our goal of an automatic scanning system which can

handle objects made of general materials, and objects that have complex fine-scale geome-

try. The system acquires both an approximate geometry, based on the opacity hull, and the

surface reflectance field which allows for reillumination under novel environments. High-

quality renderings of the objects are produced by interpolation of the observed viewpoints,

and the object blends seamlessly with the background with the aid of view-dependent opac-

ity. View-dependent opacity also improve the fidelity of geometry visually on the visual

hull, especially on the silhouettes. The application of environment mattes have extended

our system to handle transparent and refractive objects, and the ray-interpolation scheme

during rendering produces smooth transitions of the environment mattes between observed

viewpoints.

However, the system and the methods employed are not ideal, and there are many av-

enues for future work in related topics. Our hardware setup, being a prototype system, is far

from perfect. The main bottleneck of our scanning are the turntables, which take about 20

seconds to achieve a 10 degree rotation. Our cameras have fast frame rates and the scanning

time can be improved significantly if we can rotate the turntables at a higher speed while

maintaining stability. Also, while we can have an arbitrary dense set of cameras along the

longitudinal dimension with the variable step size of the turntables, the resolution of our

light field/reflectance field sampling is highly limited as we can only put six cameras on the
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latitudinal dimension. This limitation is due to the physical size of our cameras. We can

improve the density if we use smaller cameras, or if we position the cameras at a further

distance from the object. Also, our physical setup only allows us to capture views and illu-

mination in the upper hemisphere. One solution would be to invert the object for a second

scan, and combining the data from the two scan by aligning the two visual hull.

Our scanning hardware also limits the size of the acquired objects to be about 1 foot

in each dimension. It does not allow scanning of faces, people, or dynamic objects. One

could imagine extending our approach to hand-held or room size scanners. Major technical

difficulties include accurate camera calibration, opacity mattes extraction, and controlled

illumination. However, our approach is scalable and we believe there is a spectrum of

possible digitizer implementations with varying quality and features based on our approach.

Due to the approximate visual hull shape, our techniques have problems in areas of

concavities. The lack of accurate geometry can lead to jumping of features over a concavity

with a pronounced texture. This could be addressed by improving the geometry using

computer vision techniques. Another solution is to use adaptive sampling by taking more

images in areas where the change of view-dependent radiance data per surface point is

sufficiently non-smooth.

The opacity hull has produced nice results in terms of reproducing the aggregate effects

of tiny geometry. While a general parameterization of opacity does not seem to be practical

based on our pilot study, it is possible that we can parameterize it under certain constraints.

Also, we have employed the unstructured lumigraph interpolation for our opacity inter-

polation. While this has the advantage of being consistent with the interpolation for the

radiance values, it is not obvious that it would be the best way to interpolate opacity.

With environment matting, we are able to sample part of the illumination hemisphere at

high-resolution (Qh), to correctly represent refractive objects with dominant contributions

from the opposite side of the cameras. Refractions that originate from Q, possibly due

to multiple bounces, and mirror reflections from the front are heavily undersampled. To

represent general reflections/refractions, we would need to employ environment matting

for the entire hemisphere, which would require more monitors or a rotating setup. Also we

have assumed that reflectance at each surface point can be modeled by single refracted and
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reflected rays. This is clearly not general. Exploring the implications this has on factoring

and interpolation is a subject of future work.

We have applied only minimal lossy compression to our data. The availability of alpha

mattes for each image allows the application of the shape adaptive compression available

in JPEG 2000 and MPEG-4. The temporal coherence of the acquired images should help

in achieving high compression ratios. We also plan to use adaptive reconstruction errors

for lossy compression of the reflectance field data.

Finally, the rendering speed of our objects are far from interactive. Indeed, recent work

by Vlasic et al [50] has employed hardware acceleration to render our surface light fields

with view-dependent opacity interactively. Further research could investigate interactive

rendering of surface reflectance fields under dynamic illumination environment.
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