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Abstract

The widespread acceptance of personal digital assistants (PDAs) has led to research
into the interaction people have with these devices. Speech is a natural choice for this
interaction. However, traditional speech recognition systems require an abundance of
memory and processor cycles. On limited machines like an iPAQ, implementing an
entire speech recognition system would be debilitating to the device. A solution to
this problem is to allow the iPAQ to communicate with a server that does the actual
recognition task. This method is better known as distributed speech recognition
(DSR).

This thesis examines the problems of implementing DSR on an iPAQ. We faced
the challenge of reducing the bandwidth required by the system while maintaining
reasonable recognition error rates. We examined using a fixed-point processing in
reducing the computational demand put on the iPAQ. The word error rates for the
baseline floating-point front-end system and our fixed-point front-end were 9.8% and
9.6% respectively. However, using the fixed-point front-end actually increased our bit
rate. Next, we focused on the effects of quantizing Mel-Frequency Cepstral Coeffi-
cients (MFCCs) before sending them to a recognizer on the server side. We evaluated
both scalar and vector quantizers using non-uniform bit allocation. Our optimal vec-
tor quantizer reached a word error rate of 9.8% at 6400 bps. Finally, because our
recognizer further processes the MFCCs to arrive at boundary measurements, we ex-
plored the idea of quantizing these boundary measurements. The scalar boundary
measurement quantizer reached a word error rate of 9.6% at 150 bits per hypoth-
esized boundary. We averaged 21.1 hypothesize boundaries per second on our test
data; thus, we could transmit boundary measurements at 3165 bps and maintain a
9.6% word error rate.

Thesis Supervisor: I. Lee Hetherington
Title: Research Scientist
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Chapter 1

Introduction

1.1 Problem Definition

The widespread acceptance of personal digital assistants (PDAs) has led to research
into the interaction people have with these devices. Because they are too small
to have traditional keyboards, developers are constantly looking at better ways to
manipulate these hand-helds. Speech is a natural choice for this interaction. Speech
requires no special learning on the part of the user and enables the screen of the PDA
to be used for other things. However, traditional speech recognition systems require
an abundance of memory and processor cycles. On limited machines like an iPAQ,
putting an entire speech recognition system on it would be debilitating to the device.
A solution to this problem is to allow the iPAQ to communicate with a server that
does the actual recognition task. This method is better known as distributed speech
recognition.

There are two main problems faced when implementing a distributed speech rec-
ognizer. The first is how to choose which parts of the recognition process are handled
by the server and which by the client (the iPAQ in our case). Many systems have
been built that employ server-only processing. When this is the scheme used, the
speech is merely compressed on the client side then transmitted to the server for
expansion, feature extraction, and recognition. Another common place to break up
the computation flow is at the feature level. Here, the features are computed by the
client, then quantized and sent to the server for recognition. This scheme has the
added advantage that feature vectors tend to be more robust to quantization than
the original signal and, therefore, require less bandwidth than original waveform. The
second problem faced by distributed speech recognition stems from the necessity to
quantize. In many packet-based transmission schemes or narrow-band channels the
bit rates of these features are unattainable. Thus, we are forced to quantize these
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features to a feasible bit rate. If the quantization scheme is chosen carefully, it can
actually improve the accuracy of the recognizer by removing unnecessary information.

1.2 Previous Work

For this thesis we looked at work done both in the implementation of fixed-point
processing and in distributed speech recognition.

1.2.1 Fixed-Point Front-End

In an attempt to lower power consumption on the Hewlett Packard Labs Smartbadge
IV that is the client of a distributed speech recognition system, Hewlett Packard im-
plemented a fixed-point front-end [3]. The Smartbadge IV uses a fixed-point stron-
gARM processor which has a floating-point emulation program to run floating-point
code similar to the processor used in the iPAQ. Hewlett Packard used the HMM-based
SPHINX II recognizer as their baseline system. They did not concern themselves with
the compression and transmission of their features, merely the computation of them.
The real-time factor for each code version of their front-end can be seen in Figure 1.1.
The real-time factor is the amount of time to process 1 second of speech. Here, for
example, the baseline system takes 1.51 seconds to process 1 second of speech. The
optimized floating-point code included special FFT algorithms which reduced the size
of the FFT by half. They also implemented an optimized floating-point front-end that
used 32-bit floating-point calculations. The fixed-point system reduces the computa-
tion time of the baseline by 98%. The word error rate (WER) for all of the systems
except the fixed-point version is 4.2%. For the fixed-point system the word error rate
is 4.3%. This increase of 0.1% was eliminated by training on fixed-point front-end
data.

1.2.2 Distributed Speech Recognition

In the interest of performing speech recognition over the Internet or over cellular
telephones much work has been done in the quantization of features. Some of this
work focuses on the quantization of Mel-Frequency Cepstral Coefficients (MFCCs) [4].
Others focus on the quantization of coded speech for both recognition and synthesis
[9, 11].

One study that focused on speech recognition over the Internet looked at speech
compression algorithms and scalar and vector quantization of MFCCs [4]. Their first
experiments were doing server-only processing. They used both [t-Law and GSM
compression algorithms, but neither proved to be a reasonable method since both

14
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Figure 1.1: Real-time factors for each version of front-end code from [3].

Bit Rate (Kbps) WER

Baseline - 6.55%
constant bits per 10.4 6.53%

coefficient, non-uniform 3.9 6.88%
variable bits per 3.0 6.55%

coefficient, non-uniform 2.4 6.99%
Vector Quantization 2.0 6.63%

Table 1.1: Some results from Digalakis, et al, 1999 [4].

doubled the baseline word-error rate. They also explored using both uniform and
non-uniform scalar quantization of the MFCCs with a constant number of bits per

coefficient. Some of their results are reported in Table 1.1. Here, they found they
could reduce the bit rate to 3.9 Kbps and only increase the WER by 5% relative when
using non-uniform scalar quantization as seen in Row 3 of Table 1.1. In addition they
explored scalar quantization where the number of bits per coefficient could vary. Do-
ing this allowed them to decrease the bit rate to 2.8 Kbps and slightly improve the
word error rate over the constant bit allocation method. Finally, they tried product-
code vector quantization (VQ). To determine subvectors they used both correlation-
based partitioning and knowledge-based partitioning. Knowledge-based partitioning
outperformed the correlation-based partitioning. This may have been caused by the
small data set used to determine the correlation-based partitioning or the low corre-
lation between coefficients leading to arbitrary partitioning. The results of one test
using knowledge-based partitioning is shown in Table 1.1.
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IS-641 Encoder IS-641 Decoder

Speech Analysis Quantize Unquantize Synthesis

Co C1 C2 C3 C4

Figure 1.2: Diagram of of IS-641 Encoder and Decoder with locations where features
are extracted labeled with Cx from [11].

In another study perceptual linear predictive analysis (PLP) was quantized and
transmitted for distributed recognition [9]. PLP is similar to LPC (linear predictive
coding) in that it creates and all-pole model for each frame of the speech. It differs
because it exploits some auditory perception information to reduce the number of pa-
rameters needed per frame. They quantized and unquantized these parameters using
vector quantization and used dynamic time warping to recognize the digit sequence.
They showed the remarkable ability to reduce the bit rate to 400 bps with statistically
similar word error rates to using no quantization. At this rate both PLP and speech
coder parameters could be transmitted over a standard cellular channel.

A fairly comprehensive study used the IS-641 coder and explored using features
from different parts of the coding stream for recognition [11]. The IS-641 coder can
be thought of in two blocks, an analysis block which is similar to LPC analysis and
a quantization block. They look at the word error rates generated when features are
computed from the original speech waveform, from just after the analysis block, from
just after the unquantization, and from the decoded speech as shown in Figure 1.2 by
the labels CO through C4. They also did experiments training on one set of features
and testing on another. In addition they ran tests on large vocabularies, recognition
in the presence of noise, and recognition with channel impairments. They found
that when they included voicing information with features generated at C3, they got
statistically similar results to those using features derived from the original speech,
Co.

1.3 Goals and Overview

This project was motivated by the desire to reduce the bandwidth needed in a dis-
tributed speech recognition system on an iPAQ. Earlier work by Scott Cyphers of
SLS yielded a recognition system that included an iPAQ client that transmitted an

p-law utterance to a server for recognition. To reduce the bandwidth required, we
needed to do more than just compress the speech waveform. Previous work by Jon
Yi of SLS showed that by quantizing the MFCCs with a uniform scalar quantizer,
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the bandwidth needed to transmit MFCCs could be decreased while the recognition
accuracy remained unchanged.

This thesis can, then, be viewed as three distinct parts. The first is the creation
of a fixed-point front-end for execution on the iPAQ. The second is the study of
the the effects of quantization of the cepstral coefficients on the word error rate of
the recognizer. The third is the investigation of the effects of quantization of the
boundary measurements on the word error rate of the SUMMIT recognizer.

Because the iPAQ uses a fixed-point StrongARM processor, we implemented a
fixed-point front-end to compute the cepstral coefficients. The goal of this portion of
the project was to translate our floating-point front-end into fixed-point computation
avoiding the pitfalls of overflow while reducing the computations needed on the iPAQ.

Once the cepstral coefficients were computed, we performed non-uniform scalar
and vector quantization and looked at the effects on word error rate. We used a greedy
algorithm to do bit allocation where a variable number of bits are used for each of the
cepstral coefficients. In addition we computed the covariance matrix for the MFCCs
and used several algorithms to come up with good covariance-based partitions for
product-code VQ. We also tried knowledge-based partition methods for product-code
VQ similar to [4].

Many people have studied putting the computation of MFCCs on the client. This
is natural for a recognizer that is HMM-based since its features are MFCCs. In our
SUMMIT recognizer, however, we perform additional computations to compute bound-
ary measurements for our features. Because of this difference we explored the effects
of quantizing these boundary measurements with both scalar and vector quantiza-
tion methods. Scalar and vector quantization tests similar to the ones done on the
MFCCs were run on the boundary measurements with a few differences. Because the
boundary measurements are derived to be uncorrelated with each other, covariance-
based partitions were not explored. We did explore weighting the bit allocation by
the eigenvalues.

Chapter 2 goes into the background for front-end processing, scalar and vector
quantization and fixed-point processing. Chapter 3 discusses the research issues en-
countered when implementing the fixed-point front-end. In Chapter 4, we give results
for the experiments in quantizing the MFCCs. Chapter 5 reports the results from
recognition experiments using quantized boundary measurements. Finally Chapter 6
summarizes and draws conclusions.
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Chapter 2

Background

In this thesis we deal with the ideas of creating a fixed-point front-end and quantizing
feature vectors. In the following sections we give background information on how the
MFCCs are computed in the front-end, boundary measurements computation, fixed-
point numbers, and quantization.

2.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) are a commonly used representation
of the speech waveform. They are the features used most regularly in HMM-based
speech recognizers and are intermediary features within the MIT SUMMIT segment-
based recognizer. Some good references for the computation of MFCCs are [5, 17]. A
block diagram of the front-end which computes the MFCCs is included in Figure 2.1.
A brief description of each block is given.

Speech starts as a continuous waveform. It is recorded and discretized. In order
to process it, we break it into small overlapping blocks or frames and analyze each
frame's frequency content. This first dividing of the stream of speech into individual
frames occurs in the Framing block. In our system we compute a frame every 5 ms,
and each frame is 25.6 ms long. We will use xi [n] to represent the ith frame of the
input speech.

Next, we run each block through a pre-emphasis filter p[n] (as defined in Equa-

Pre-e+ phasize FFT1 Mel Filter Log DCT MFCCs

x[n] x [n] y [n] Y [k] Z[j] Zj] c,[n]

Figure 2.1: Illustration of the front-end.
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Frequency 0

Figure 2.2: Illustration of the Mel-Scale Filter Bank.

tion 2.1) which puts more emphasis on the high-frequency regions of the waveform.

We apply this gentle high-pass filter to counteract the radiation characteristics of

the mouth. We, then, multiply the block by a window w[n]. Here, we use a Ham-

ming window which tapers toward its edges to minimize the interference effects from

framing. Let yi[n] represent the output of the Pre-emphasize and Window block.

p[n] 6[n] - .976[n - 1] (2.1)

yi[n] = w[n](p[n] * xi[n])
Next we take an FFT. The FFT computes the frequency spectrum of the frame.

Y [k] is the output of the FFT and is given by:

Y[k] = FFT{yj[n]}

Now that we have the frequency spectral information we can filter it into various

bands. Illustrated in Figure 2.2 is an approximation of the Mel-Scale Filter Bank

we used[2]. A Mel-Scale Filter Bank has filters which are linearly spaced in the low

frequency range and logarithmically spaced in the high frequency range. This means

that in the high frequency range we are melding more of the frequencies together
than in the low frequency range. This filter bank approximates how the human ear

filters the frequencies it encounters. We apply this filter bank to the square of the

magnitude of Y [k] The output of the filters is Zi [J], and the Mel-Filter bank is H [k].

N/2

Zj[ j] = I |Y[k]|12Hj[k] (2.2)
k=O

The next block is the Log. This block takes the natural log of the output of the

Mel Filters.

Zi[j] =_ ln(Zilj])

The DCT block is a Discrete Cosine Transform. In this scenario it yields the same
results as an IFFT (taking frequency information and transforming it into the time

20
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MFCC Full Boundary PCA Trim eBoundary
Stream Computation Measurements

Boundary>

Detector

Figure 2.3: Illustration of the computation of boundary measurements.

domain), but uses less computation. Because we have an FFT, Log and DCT in
sequence, we are transforming our data into the cepstral domain, creating MFCCs.
We save only the first 14 MFCCs, ci[n].

ci[n] = DCT{Zi[j]}

We compute the cepstrum to deconvolve the source from the filter [13, 14, 19]. In
our case the vocal source is either vibration from the vocal folds or noise, and the
filter is derived from the shape of the vocal tract. It is the shape of the vocal tract
that gives speech the spectral characteristics we distinguish to understand different
sounds. Getting rid of the vocal source is desired in speaker-independent speech
recognition systems since, in English, pitch information does not give us information
about the words that were spoken. In fact we hope to throw away pitch information
so the same models can be used for speakers with different speaking pitches.

2.2 Boundary Measurements

A typical speech recognizer uses an HMM with MFCCs as its features. The SUMMIT
system, however, goes a few steps further in processing to get features which represent
boundary measurements [8]. A block diagram of how we get from MFCCs to boundary
measurements is in Figure 2.3.

The MFCC stream computed in the previous section is used in two different
blocks. One is Cepstral Mean Subtraction (CMS) [10, 17, 7]. Mathematically, this
is just computing the mean for each coefficient across all the frames in the utterance
and subtracting that mean from each cepstral vector as seen in Equation 2.3. Since
we are dealing with the cepstrum, responses that were convolved in the time domain
are now added. By subtracting off the mean, we are essentially subtracting off any
constant convolutional effects. One example of a constant convolutional effect is the
frequency response of the room. By subtracting off the mean, speech that is recorded
in an opera house and speech recorded in a closet should yield the same features.
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uec 

t o r

time proposed boundary frame

Figure 2.4: Illustration of full boundary measurements computation.

1T
= [n] = ci[n] - TE cj [n] (2.3)

j=1

The simultaneous block Boundary Detector hypothesizes where boundaries be-
tween segments may be. A segment can be thought of as one phone, so in the word
bad boundaries should be detected between the b and the a and between the a and
the d.

Once frame j is hypothesized as a boundary frame, the frames around it are
buffered and averaged together in the Full Boundary Computation block. A schematic
of what goes on in this block is included in Figure 2.4. In this figure the vertical hashes
represent a vector of normalized MFCCs. The shaded boxes in Figure 2.4 show which
vectors get averaged together. For example, if the proposed boundary frame is Ej[n],
then Ej+i[n] and B3+2 [n] will be averaged together as will j-4[n], 6j-5 [n], Ej-6[n] and
Ej-7[n]. This yields 8 averaged cepstral vectors, each of length 14, which are then
stacked to create one very big full boundary vector of length 112.

The next block, PCA, does a principle component analysis that multiplies the
boundary vector by a rotation matrix which approximately makes the coefficients
uncorrelated. The output vector is still of length 112, but now the coefficients are
ordered by variance with the coefficients with highest variance first. We then trim this

22



vector down (in the Trim block) to its first 50 coefficients to reduce the computational
demand. This paring down of the boundary vector also aids in classification because
higher dimensional features require more training data. Because of the ordering
imposed by the PCA, we know that we are keeping the 50 coefficients that have the
highest variance and hopefully the 50 most important coefficients.

2.3 Fixed-Point Numbers

A fixed-point number is an integer that the programmer can interpret as rational
number. When you use a floating-point number to represent fractional information,
you have no control over how many bits and, therefore, how much accuracy, is assigned
to that fraction. Your computer handles this and increases or decreases the number of
bits used for the fractional portion of a number depending on the resolution needed.
In a fixed-point number the developer gets to decide how much resolution is given
to the fractional information. The best way to explain this is in an example. Let's
assume that we have an unsigned 8-bit fixed-point number. To keep track of the
number of bits used for the fractional information (or behind the decimal point), we
adopt a Qn notation where n designates the number of fractional bits [3]. Let say
the binary representation of our number is 01101011. If this number is in QO then
there are 0 bits behind the decimal point, and, thus, all bits are used for the integer
portion of the number, so we would interpret it as the number 107.

01101011. = 2 6 + 2' - 2 3 - 21 - 20 = 107

If this number is in Q1, then the last bit is used for the fractional portion. Similar to
how each bit represents a positive power of two in binary, any bits used behind the
decimal points now pertain to the negative powers of two.

0110101.1 = 2 + 2 + 22 + 20 + 2-1 = 53.5

If this number was in Q6 format, it would represent:

01.101011 = 20 + 2-1 + 2- + 2 + 26 1.671875

There are a few things to note. First 53.5 is half of 107. 1.671875 is 1/64 of 107.
In fact, to translate any integer into its Qn value, simply divide that integer by 2".
Another point to consider is the trade-off between the largest integer that can be
represented and the resolution of the fractional portion. Notice that in Q6 the largest
integer that can be represented is 3 while in QO it is 255. This factor comes into play
when one must consider the possibility of overflow in computation. We will explore
this problem further in Chapter 3.
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2.4 Quantization

Quantization is the process of considering a variable that could take on any value

(continuous-amplitude) and restricting it to take on only a discrete set of values [20].
In this way a value can be represented with less information (bits). Most quantization
schemes follow the method below.

" Initialize: Choose a number of levels or bins. Determine which ranges of values
belong to each bin. Choose a representative (or quantized) value for each bin.
Assign each bin a label.

" Quantize: For a given value of a variable, choose the bin it falls into and record
its bin label.

" Unquantize: Translate each bin label to the representative value of that bin.

A key metric of how well a quantizer works is a distortion measure (also known
as a dissimilarity measure or a distance measure). The distortion measure gives
information about the difference between the original value and the quantized value.

A simple quantization example is a street address on a letter; it has many levels of
quantization. Let's let our distortion measure be the likelihood that a letter delivered
to the quantized address will get to me. The letter will start with just my name on
it and a 37 cent stamp. First let's think about how the state in the address is an
example of quantization. There are 50 states, so there are 50 quantization levels. the
range of each bin is determined by the state boundaries. Let the quantized value for
each state be the address of city hall in the state's capital. The label for each bin is
the state's two letter abbreviation. On the state level my address is quantized to the
label MA and is unquantized to the address of the state house. Since it is unlikely
that any mail delivered to Beacon Hill would make it to my house in Somerville, we
can say the quantization error is high. Next we quantize each state. Each state is
quantized by city. Let the quantized value of the address now be city hall. My address
is now quantized to the label Somerville, MA and unquantized to the address of
city hall in Somerville. At this level of quantization, it is slightly more likely that
I will get the piece of mail, but the odds are still against me. At this point, let's
consider the zip code. A zip code contains information about not only state and city,
but also about a zone within a city. If we let the quantized address be the address
of my local post office, then my chances of getting the letter might be estimated at
about 50/50. And the process continues. The post office uses these course to fine
quantizers to ensure that a letter can be easily deliverable with a reasonable amount
of information in the address.
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Figure 2.5: Illustration of Uniform Quantization Scheme
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in 2.5(a). Illustration of

2.4.1 Scalar Quantization

Scalar quantization is just the quantization of each variable by itself. There are two
main schemes of scalar quantization: uniform and non-uniform. In uniform quanti-
zation, sometimes called linear quantization, the bins are equally spaced across all
possible values. Non-uniform quantization merely implies that the bins are not of
equal size. A common non-uniform schemes uses information about the probability
distribution of a variable to make each bin have the same probability of occurring.
Examples of each are shown in Figure 2.5. In these figures the vertical lines represent
the boundaries of the bins, and the curve is a Gaussian distribution for the vari-
able being quantized. In the uniform quantization example, each bin has the same
width. In the non-uniform quantization scheme, the bins are narrower where there is
a higher probability of a value occurring. The advantage of the non-uniform scalar
quantization is that by having bins of variable size, the expected value of the distor-
tion measure can be minimized [12]. In reality we tend not to know the underlying
statistics of our variables. To handle this problem we train our quantizers on the type
of data it will see to approximate the distribution of the variable.

The most common distortion measure is the mean-square error (mse) [12]. Here
we represent the ith value of our original variable x as xi, its quantized value as xi,
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Figure 2.6: Illustration of a Uniform Scalar Quantization Scheme for a 2-D vector
shown in 2.6(a). Illustration of a Uniform Vector Quantization Scheme for a 2-D
vector shown in 2.6(b).

and the mean-square error as d(x, z).

N

d(x, ;) (Xi - i)2

2.4.2 Vector Quantization

Instead of quantizing just one continuous variable, let's consider the quantization
of a vector of continuous variables [18]. Let x = [x 1 x2 . .. XINT. For visualization
purposes we will deal with the 2 dimensional case. Figure 2.6 shows two uniform
vector quantization schemes. Both of these quantizers partition the space into a
uniformly shaped bin and then choose a quantization value for that bin. As we get
into higher dimensional spaces it is harder to choose a shape for a bin. Especially when
we know little about the statistics of this data. In this case we train our quantizer
on a randomly selected set of real data points. In the Initialize stage now, we use
a clustering algorithm to divide our training data into appropriate bins. We then
choose a point within each bin to be the quantization value, commonly the average of
the points in a given bin. In the Quantize step, then, in order to find the bin that a
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Figure 2.7: Illustration of binary splitting training.

new vector falls into we need only compute the distortion measure between the vector
and the quantized value: the quantized value with the lowest distortion measure gives
us the bin to which the vector belongs.

Two important metrics for any quantizer are the number of computations and the
amount of storage it requires [12]. Let N be the dimensionality of the random vector
- in the case of a mse distortion measurement N is also the number of multiply-adds
needed per distortion computation. In a standard vector quantizer we expect the
computational cost C to be C = NL where L is the number of levels in the vector
quantizer. In addition the storage cost M is given by M = NL. Computing the
distortion measure for every quantized value can be expensive. One way that we
avoid this is to use binary splitting. Instead of clustering the training data right away
into the desired number of bins in the Initialize step, first we cluster it into 2 clusters
and we record the average vectors for each cluster. We then cluster each of those
clusters into 2 clusters, recording their average vectors and so on, until the desired
number of quantization levels is reached. Then when the test data is quantized, it
is compared to the first pair of average vectors, the cluster to which it belongs is
determined, and a 0 or 1 is recorded specifying its cluster. Then it is compared to
the next pair of average vectors, and so on until it is in a single bin. This has the
added advantage that by recording a 0 or 1 at each decision, we are writing down
the bin label. This is illustrated in Figure 2.7. If a binary splitting vector quantizer
is implemented the computation cost drop significantly to C = 2N log 2 L. However,
the storage costs now increase because we are left storing intermediate vectors at
each stage of the binary splitting. The storage cost for binary splitting is given
by M = 2N(L - 2). One way to reduce the amount of storage necessary is to do
product code quantization where one splits the vector into subvectors and quantizes
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each independently. For example, if we were to split our vector into two subvectors
of dimensionality N1 and N2 and quantize them to levels L1 and L 2, respectively,
then the overall storage for a standard vector quantizer would be M = N1 L1 + N2L2.
Product code quantization does not necessarily reduce the computational costs. One
condition in which the computational costs may be reduced is when the component
vectors are quantized independently and the distortion measure is separable. If this
is the case then the computational costs are reduced similarly to the storage costs.
With product code vector quantizers, as with all quantizers, an optimal quantizer will
minimize distortion. An optimal product code quantizer occurs if all the subvectors
are statistically independent. If subvectors are not independent, that dependency will
effect the quantizer's performance. To maximize performance of a product code vector
quantizer, the number of subvectors should be small and the number of quantization
levels should be big.

2.5 Chapter Summary

In this chapter we have reviewed the necessary knowledge for understanding the
research that follows. Comprehension of the production of MFCCs and fixed-point
numbers is necessary for creating a fixed-point front-end. The sections on quantization
and MFCC computation cover material that is seen again in Chapter 4. Finally,
knowledge of both quantization and the creation of boundary measurements will be
used in Chapter 5. This chapter is not conclusive. Please review the references for
further discussion on the topics presented here.
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Chapter 3

Fixed-Point Front-End

In this chapter we delve into the specifics of creating a fixed-point front-end for the
creation of MFCCs on the iPAQ. First, we cover the main differences in the algorithms
for fixed-point versus floating-point front-ends. Next, we talk about the testing con-
figuration under which our experiments were performed. Finally, we will discuss the
resulting word error rates using the fixed-point front-end and some directions further
research in this area could take.

3.1 Algorithm Optimization

In some parts of the computation of MFCCs, the algorithms remain very much the
same in the fixed-point front-end as in the floating-point front-end, but others have
had to be re-engineered to yield similar results. In this section we revisit the front-
end computation flow, as previously shown in Figure 2.1, highlighting the major
differences in the algorithms.

3.1.1 Framing, Pre-emphasis, Window

The framing block is not included in the fixed-point front-end; it is handled by the
audio server in our implementation. The fixed-point front-end starts by being handed
xi[n], an array of 16-bit integers from the audio server. We immediately translate xi[n]
into Q8 by shifting each element 8 bits to the left. We know that this will not cause
overflow because the numbers were shorts to begin with, and we are using 32-bit
arithmetic. In the pre-emphasis step we store the factor 0.97 as a Q8 fixed-point
number as well. When two fixed-point numbers are multiplied together their Qn
factors add. So, by applying this factor to an element of the array, we end up with a
number in Q16 which we promptly shift back to Q8. Again here, there is no risk of
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overflow.
The windowing step is where we first start making changes to accommodate for

the fixed-point processing. The window we use is a Hamming window which can be
derived by the equation below.

0.54 - 0.46 cos(27rn/M) 0 < n < M
[] 0 otherwise

All the values in the Hamming window are, therefore, less than one, so we choose to
represent them in Q8. Because we do not have a fixed-point cosine function, we must
compute them using floating-point computations and translate them to fixed-point.
To avoid computing this window for every frame, we compute the window just once
upon instantiation and store it for use with every frame thus reducing our floating-
point and translation computations. There is low risk of overflow when applying this
filter.

3.1.2 FFT and the Mel Filter Bank

Because FFTs have become a very common computation in many fields, they have
been implemented in both fixed-point and floating-point, in hardware and in software.
The fixed-point FFT we use is derived from one developed by HP based on "Numerical
Recipes in C" [3, 16].

When we square the output of the magnitude of the FFT, we are in real danger
of overflow. Upon further inspection of Equation 2.2 (reproduced below),

N/2

Zi[ j] = 1 |Yi[k]|12Hj [k]
k=O

we can rewrite it as:
N12 2

Zi [j] = ( | Yi [k]| Hj [k]| (3.1)
k=O

From Equation 3.1 we can delay the square until after the Mel Filters have been
applied. This is advantageous because the amplitudes of the Mel Filters are less than
one; thus, their square roots are also less than one. By multiplying by the Mel Filters
before the square, we greatly reduce the risk of overflow. Similar to the Hamming
window, the components of the Mel Filters are computed upon instantiation using
floating-point code, translated to fixed-point and cached; thus, storing their square
roots does not increase our storage cost and has no effect on the post-initialization
computation cost.
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However, by using Equation 3.1, we must now compute jY[k]j. In floating-point
front-ends jY [k]j2 is computed directly from the real and imaginary parts of Y[k]
without computing IY [k] . Doing a fixed-point square-root is very difficult, so we use
an approximation suggested in [3, 6].

x ~ amax(jR{x}, |G{x}|) + 3min(jR{x}|, 1!{x}j) (3.2)

To estimate a and 3 we use polar coordinates and minimize the distance between r
and the estimate for jxj. For the following derivation we assume that the real part is
bigger than the imaginary part. This narrows the range of 6 to 0 to i. If the opposite
were true, swapping a and 3 would result in the correct approximation.

R{x} = r cos 0 £{x = r sin 6

min(r - (ar cos 0 + Or sin 0))2

a

= 2(-r sin0)(r - ar cos 0 - r sin 0) = 0

j 7/4 a d6 = -sinr +a (-0+ - sin 20 cos20}7r 4  0
0 a 2 4 2 0f r/4  a d cos -c o +/ 7r/

dO = cos 0 - -Cos -0- - sin 20 0
o 0 2 (2 4 )0

a = 0.9475 =0.3925

The error for this approximation is given in Figure 3.1. In this figure the actual
magnitude has been held at 1, while the angle 6 was swung through 0 to *. The

4.
maximum error, achieved at 6 = 0 or 0 = 7, is .0525. The average value of the error4,
is on the order of 10-4.

Thus, to compute the outputs of the Mel filter bank without overflow, we approx-
imate the magnitude with Equation 3.2, multiply the magnitude by the root of the
Mel filter parameters and square the outputs of the filters.

3.1.3 Natural Log and DCT

The computation of the natural log is another place where a new algorithm must be
derived to handle fixed-point numbers. Because the representation of numbers in a
computer is inherently binary, we choose to implement a fixed-point log base-2 and
then scale by ln(2) to arrive at the natural log. This base-2 log algorithm was used
in [3] and developed by [1]. The algorithm follows.
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" Find the position of the leftmost 1 when the number is represented in binary.
The lowest order bit is position 0. Let that position be b

" Interpret the three bits to the right of position b on their own. Call this number
n.

" The approximation for the log is 8b + n in Q3

Here is an example using the number 50. The log base-2 of 50 is 5.644. We represent
50 in binary as 00110010. b for 50 is 5 since the leftmost 1 is in position 5. The next
three bits after position 5 are 100 thus n = 4. Our estimate for the base-2 logarithm
of 50 is 44 in Q3 or 5.5 in Q1.

The DCT remains the same with all the necessary cosine values precomputed-
computed, translated into fixed-point and cached.

3.2 Testing Conditions

The recognizer used for all of the experiments is part of the JUPITER system. JUPITER

provides various weather information such as forecasts, temperatures, wind speeds,
and weather advisories for over 300 cities around the world [22]. It is accessible
via a toll-free number, and all conversations are recorded for research endeavors.
Utterances are transcribed on a regular basis and are added to the training corpus,
saving a few for testing purposes. All the utterances then in the training and test
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corpora are telephone quality recordings. The test set we used consisted of 1711
utterances deemed clean by the transcriber. The training set consisted of about
120,000 utterances whose MFCCs were computed with a floating-point front-end.

Although the iPAQ was perfectly capable of recording utterances computing fixed-
point MFCCs and transmitting them to the server for recognition, not enough data
from the iPAQ was available to make a reliable training set. Creating a test set that
used iPAQ recorded data also did not make sense because of the mismatch between
the 16KHz iPAQ recorded test set and the 8KHz telephone recorded training data.
Thus all the experiments done using the fixed-point front-end were performed in a
simulated distributed environment, using telephone recorded speech and running it
through the fixed-point front-end.

3.3 Results

Most of the work from this chapter was done in implementation of the fixed-point
front-end. There are, however, several metrics we can look at to examine how this
front-end compares to the floating-point front-end. One important metric is looking
at the word error rates generated by each. Another way to compare the two front-ends
is to look at the computation and storage costs associated with each.

3.3.1 Word Error Rate

One expects that because we are discarding information about the speech by doing
fixed-point processing, word error rates would increase. However, we found that error
rates actually improved. The error rates for the baseline floating-point front-end was
9.8%, and the fixed-point front-end recognizers had a word error rate of 9.6%. To
compare the performance, we performed a matched-pair sentence segment significance
test. In a matched-pair sentence segment significance test segments of utterances
which contain at least two consecutive words both systems recognized correctly. It,
then, computes the difference in the number of errors made by each system [15]. The
significance test found that the difference between the fixed-point front-end system
and the floating-point front-end system was not significant. These recognizers used
models trained on clean telephone speech processed by a floating-point front-end.
We also retrained our models using the fixed-point features and saw no increase in
performance by doing so.
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3.4 Discussion

Our results show that using the fixed-point front-end improves the performance of the
recognizer. We feel this could be because the fixed-point front-end gives an approxi-
mation of the coefficients, and is, therefore, not as sensitive to the minor fluctuations
in them that could affect recognition. In Chapter 4 we see similar results: as we
quantize the coefficients, we can achieve better recognition rates over the baseline.

The system presented here is still far from complete. At this point the system
can record data on the iPAQ, quantize it (as discussed in Chapter 4), and send it to
the server for recognition, but the recognizer still uses models trained on telephone
speech, so there is a fundamental mismatch between the test utterances and the
models. Although retraining our models on fixed-point features did not improve
recognition, collecting a large corpus, recorded on the iPAQ, is still needed so that an
iPAQ recognizer may be built that will achieve comparable recognition rates to the
simulations done here. Additionally at this time there is no response sent back to the
iPAQ from the recognizer. Having either text or speech response would complete the
system.
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Chapter 4

Quantization of Mel Frequency

Cepstral Coefficients

Quantization is a necessary part of any distributed speech recognition system. The
bit rate of the system that does not do any front-end computation on the iPAQ is
64Kbps (8 bits p-law sampled at 8KHz) or 128Kbps (8bits p-law sampled at 16KHz
for wide-band speech). Without quantization of the MFCCs the bit rate of the fixed-
point system is 89.6Kbps (14 32-bit integers every 5 ms). In this chapter we will show
the methods and results from both scalar and vector quantization of MFCCs.

4.1 Quantizer Design

We chose to experiment with non-uniform scalar and vector quantizers. In this sec-
tion we will discuss how we did bit allocation for both scalar and vector quantizers,
effectively choosing the number of levels of the quantizer. We will also discuss how
the subvectors were chosen and how the quantizer was actually created.

4.1.1 Bit Allocation for Scalar and Vector Quantization

The bit allocation scheme for both our scalar and vector quantizers is basically the
same. One could see the scalar quantizer being a special case of the vector quan-
tizer where each subvector consists of just one parameter. The greedy algorithm is
described below.

" Initialize: For each subvector allocate one bit per coefficient in that subvector.

" Iterate: Add one bit to subvector i, compute the word error rate for the given
bit allocation. Repeat for all subvectors.
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* Assign: Assign one bit to the subvector that resulted in the lowest error rate.
If desired number of bits or error rate is reached, quit. Otherwise return to
Iterate step.

There is one case where this algorithm fails. That is when the lowest error rate

occurs at more than one bit allocation. In the scalar quantization case we always
add the bit to the lowest order coefficient. In the vector quantization case the bit

went to the subvector that had the lowest number of bits at present. In addition to

limit computational complexity in the scalar case, we capped the number of bits any
coefficient could have at 8 bits. In the essence of speed, in the vector case we allocated
two bits at a time in the vector case until a total of 30 bits had been reached.

4.1.2 Choosing Subvectors for Vector Quantization

Before we can allocate bits to subvectors, we must choose which coefficients go into

each subvector. We used two methods of partitioning: a correlation-based method and
a knowledge-based method. Correlation-based methods are methods that partition
into subvectors based on information contained in the correlation matrix. Knowledge-
based partitioning puts consecutive coefficient together. In this way the more impor-
tant lower-order coefficients are kept together.

We used several methods to come up with an appropriate subvector using the

correlation matrix. The first method progressively adds subvectors together based
on the average correlation until the desired number of partitions is reached. This

process is illustrated in Table 4.1. We start by having 5 subvectors. We find the two

most correlated coefficients and put them in a subvector together to yield a partition
of 4 subvectors. To compute the correlation between groups that contain more than

one coefficient, the average of all the pairwise correlations of all coefficients in each
group was computed. As shown in Table 4.1, to find the correlation value between
coefficient 1 and the group {4,5}, we averaged the correlations between 1 and 4, 1 and
5 and 4 and 5((.3+.1+.8)/3 = .4). This method was used to develop the subvectors
for partition I shown in Table 4.2.

A second method used a set of coefficients as bases for each subvector then clus-

tered the remaining coefficients to the base with which it was most correlated. For

example, if we wanted 5 subvectors, we would find the 5 least correlated coefficients
by first finding the first pair (just the pair with the lowest correlation coefficient) then
adding one coefficient to the set of bases by choosing the parameter that increased
the average pairwise correlation in the set the least. Specifically, let each coefficient
be represented by xi and the set of all coefficients be X. Let the current base set be

B where each base coefficient is represented by bj, the size of B is n - 1 and (A, B)

is the average of the pairwise correlations between all elements of A and B. Then it
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1 1 .6 .4 .3 .1
2 1 .4 .2 .4
3 1 .1 .2
4 1 .8
5 1

11 2 3 4,5
1 .6 .4 .4

2 1 .4 .467
3 1 .367

4,5 1

1,2 3 j4,5
'12 1 .467 .4
3 1 .367

4,5 1

Table 4.1: Progression of correlation
relation based subvectors.

matrices for the first method of obtaining cor-

Label Subvectors Method
I [0,1,10,11,12,13], [2,3,5,6],[4,8],[7],[9] Correlation
II [0,1,6,71,[2,3,51,[4,8],[9,10],[11,12,13] Correlation
III [0, 1] , [2,3] , [4,51 , [6,71 , [8,9] , [10, 11] , [12,13] Knowledge
IV [0, 11 , [2,3] , [4,5,61 , [7,8,91 , [10, 11, 12, 13] Knowledge

Table 4.2: Subvector Partitions for VQ experiments.

can be said that

xi =- b,, if (xi, B) < (xj , B) Vxj c X \ B

This process of adding parameters to the base set was continued until the size of B
reached 5. Now we thought of each base coefficient as the seed for a subvector. We
went through each coefficient not included in the base set and assigned them to the
subvector with which it had the highest average pairwise correlation.

add xi to bj if (xi, bj) > (xi, bk) Vbk E B

Using this method to come up with a correlation-based partition led to the creation
of partition II shown in Table 4.2

In addition to using information obtained from the correlation matrix, we also
tried knowledge-based partitioning. In these we simply grouped the coefficients in
their numerical order to create subvectors. Two knowledge-based partitions were
explored they are given in Table 4.2 partitions III and IV. Partition III simply used
pairs of coefficients as subvectors. This partition is different that the others because it
uses 7 subvectors. All the other partitions use 5 subvectors. Partition IV was similar
to partition III except there are 5 subvectors of varying dimensionality.
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Figure 4.1: Plot of Scalar Quantization versus Vector Quantization.

4.1.3 Quantizer Creation

In order to create a non-uniform quantizer, we needed information about the statistics
of our MFCCs. We created a random subset of 25000 utterances and computed the
MFCCs for each. For scalar quantization then we merely ordered each coefficient
and created equal probability bins by putting the same number of seen coefficients in
each bin. For vector quantization we use binary splitting with k-means as described
in Section 2.4.2.

4.2 Results

When comparing quantization schemes, we looked at two aspects: resulting word
error rates and computational and storage costs. Here, we compare word error rates
from the above bit allocation algorithm for both scalar and vector quantization. In
order to choose a reasonable quantizer for the iPAQ, we must also look at the load it
puts on the device, so we explore the computational and storage costs for the given
quantizers.

4.2.1 Word Error Rates

In Figure 4.1 we show the results from the scalar quantization scheme and one vector
quantization scheme. The vector quantizer shown here is partition I, but is represen-
tative of all of the vector quantizers used. One can see that the vector quantization
scheme achieves convergence at a lower bit rate than the scalar quantizer. The bit
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Bit Rate Bit Allocation Word Error Rate
4000 2 2 2 2 2 2 1 1 1 1 1 1 1 1 30.4%
5000 2 2 3 3 2 2 2 2 2 1 1 1 1 1 18.3%
6000 2 2 3 3 3 3 3 2 2 2 1 2 1 1 14.4%
8000 4 4 4 4 3 4 3 2 2 3 2 2 2 1 10.5%
9600 4 7 4 5 4 4 3 2 3 4 2 2 2 2 10.0%
11200 4 8 5 5 6 5 5 3 3 4 2 2 2 2 9.8%

Table 4.3: Bit rates, Allocation and corresponding Word Error Rates for Scalar Quan-
tization.

rates, word error rates, and bit allocations for scalar quantization are given in Ta-
ble 4.3. For this system the baseline floating-point recognizer has a word error rate
of 9.8%. The fixed-point recognizer (with no quantization) also has a word error rate
of 9.6%. It is interesting to note that with scalar quantization we can reach rates of
9.8%. Again we performed a matched-pair sentence segment significance test [15]. It
found that the difference between the fixed-point front-end recognizer and the scalar
quantized MFCC recognizer was insignificant. We must also point out that our SUM-
MIT recognizer has a frame rate of 200 Hz which is uncommon. Most recognizers use
a 100Hz frame rate and thus the bit rate would be half what is recorded here.

For the four vector quantization schemes Table 4.4 shows their resulting word
error rates at different bit rates. We did not attempt as high bit rates in the vector
quantization schemes as in scalar quantization because of the computation and storage
costs. However, for the rates explored they all performed equally or better than scalar
quantization. We performed a matched pair sentence significance test to compare
partition II and partition III [15]. It found that at 8000 bps the recognizers were
insignificantly different. Unlike in Digalakis, et al. [4], since the knowledge-based
partition was not significantly better than the correlation-based one, we found no
appreciable difference between them for product-code vector quantization. Moreover,
when we retrained our models using the quantized MFCCs, we saw no improvement.

4.2.2 Computational and Storage Costs

To effectively compare the different quantization schemes presented in this chapter,
we must also consider the computational and storage costs associated with each. In
Section 2.4.2 we give equations to estimate of the computational and storage costs
associated with different quantizers. Here, all of our vector quantizers are product
code quantizers implemented with binary splitting. Since we perform an indepen-

39



Bit Rate I II III IV
3200 34.6% 22.4% 38.2% 35.9%
4000 19.1% 15.2% 18.3% 18.1%
4800 13.4% 13.3% 12.0% 12.3%
5600 11.5% 12.0% 10.5% 10.7%
6400 10.0% 10.8% 9.8% 10.1%
7200 9.8% 10.4% 9.8% 10.0%
8000 9.8% 9.9% 9.5% 9.8%

Table 4.4: Bit rates, and Word Error Rates for Vector Quantization Schemes.

dent quantization of each subvector and are using a separable distortion measure

(mse), we can compute the total computational cost as being the sum of the compu-
tational costs of each subvector (C = E1 Nilog 2 Li where K is the total number

of subvectors). This figure is reduced by a factor of 2 from the equation quoted in
Section 2.4.2 because we are using an mse distortion measure [12]. A plot of the
resulting computational costs is shown in Figure 4.2(a).

The storage costs are computed similarly: the storage cost is the sum of the
storage costs for each of the subvectors. Since we are using binary splitting, the
resulting storage cost is M = E Ni(Li - 2). Thus, we estimated the storage cost
for each of the scalar and vector quantizers proposed in this chapter. Those costs are
displayed in Figure 4.2(b). It is important to note that these are merely estimates
of the costs. They should be proportional to the actual costs and adequately display
the relationships between quantizers.

4.3 Discussion

Overall we found that the vector quantizers were more efficient (lower word error rates
at lower bit rates) than the scalar quantizer. Although the scalar quantizer had the
lowest error rate at 9.8%, we found the difference between the scalar quantizer and the
vector quantizer (partition III) that operated at 8000 bps with 9.5% word error rate
was not statistically significant. Thus, we concluded that neither quantizer is more
accurate than the other. Additionally, we found that the difference in performance
between the 4 vector quantizers was not consistent. So, we do not draw the conclusion
that the knowledge quantizers outperform the correlation quantizers as was done in
[4].

To choose an optimal quantizer for this system, we must think of the trade-off
between bit rate and storage and computational costs. Let's consider that we want to
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Figure 4.2: The computation costs for the scalar quantizer and all four vector quan-
tizers are shown in Figure 4.2(a). In Figure 4.2(b) the storage costs for the scalar
and vector quantizers are shown.

maintain a word error rate of less than 10%. In experiments we found that we could
attain an error rate of 10% at 6400 bps in the vector quantize and 9400 bps in the
scalar quantizer. However, at these rates the vector quantizer has a computational
cost relative to 66 and a storage cost relative to 484. The scalar quantizer has an
approximate computational cost of 42 and a storage cost of 138. Ultimately the
decision to use a scalar or vector quantizer should be determined for an individual
system preference.
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Chapter 5

Quantization of Boundary
Measurements

Because our segment-based recognizer does not directly use MFCCs as its features,
we explored the quantization of the derived boundary measurements. We hoped
that if the boundaries were not hypothesized too frequently, we might be able to
further reduce the bit rate needed. In addition, because the principle component
analysis is incorporated in the computation of the boundary measurements, each
coefficient of the features is independent of all others. We hoped to use this fact to our
advantage when quantizing. Finally, we wanted to explore the effect on recognition
performance because the resulting boundary measurements would be fed directly into
the classifier, as opposed to the MFCCs which are further processed, thus, smoothing
the quantization error, before being used in the classifier.

Unlike the MFCCs we do not have fixed-point code that computes these boundary
measurements. To complete the system that computes boundary measurements on
the client, we need to create a boundary detector that works on fixed-point MFCCs
using fixed-point operations. Additionally, we need to implement cepstral mean nor-
malization and principle component analysis. The cepstral mean subtraction would
be the same as the floating-point version. The principle component analysis can be
thought of as a matrix multiplication. That matrix could be computed in floating-
point on the server, translated to fixed-point, and cached on the iPAQ. At this point
we have not implemented any of these in fixed-point. This chapter focuses on explor-
ing quantization issues that would be faced when fixed-point boundary computations
have been implemented.
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5.1 Quantizer Configuration

Because the length of the boundary measurement feature vector is so long, using our
previous bit allocation algorithm was not reasonable for scalar quantizers. For this
reason we did several uniform allocations with both scalar and vector quantization.
Additionally, we experimented with weighting the bit allocation by the eigenvalues.
We also tried using the previous bit allocation method for vector quantization and
using a gentle weighting of the lower order coefficients.

5.1.1 Uniform Bit Allocation

We varied the number of bits from 2 bits per subvector to 13 bits and the number
of coefficients per subvector from 1 to 5. In the 2 coefficients per subvector case,
the partitioning began [0, 11 , [2,3] , [4,51 and so on. In the 5 coefficient per

subvector case, the partitioning looked like this [0,1,2,3,41, [5,6,7,8,9] and so
on. We then varied the number of bits assigned to a subvector. In each case the same
number of bits was used for each subvector; thus, in the 2 coefficient per subvector
case if the bit allocation was 2 bits per subvector the total number of bits for the
quantizer was 50. In the 5 coefficient per subvector case, if 5 bits per subvectors were
used, then the total bit allocation was 50 bits. The results from these quantizers are
seen in Section 5.2.

5.1.2 Eigenvalue Weighted Bit Allocation

In addition because the principle component analysis removes the linear correlation
between the coefficients, exploring correlation-based partitioning did not make sense.
For non-uniform bit allocations in the scalar quantizer, we explored using information
from the eigenvalues generated for each PCA component when the PCA matrix was
computed. We weighted each coefficient relative to its corresponding eigenvalue as
given by:

Xi

Here, wi is the weight given to the i"t coefficient. N is the total number of bits per
boundary, and xi is the eigenvalue for the ith coefficient. Results for this bit allocation
are shown below.
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5.2 Results and Costs

Similar to the experiments that we ran with the MFCCs, we looked at both the word
error rates from each quantization scheme and the computational and storage costs
for each to determine the empirically optimal quantizer. Those results are reported
here.

5.2.1 Word Error Rates

We found that overall scalar and vector quantization of the boundary measurements
had similar convergence regions as shown in Figure 5.1. All of the quantizers shown
here are uniform bit allocation quantizers. From this figure we can see that at very
low bit rates vector quantizers with more coefficients per subvector outperformed
those with fewer coefficients per subvector. But, as we move to a word error rate
range with acceptable performance, all of the quantization schemes are comparable.

With MFCCs we found that we could out perform uniform bit allocation quanti-
zation by using non-uniform bit allocation quantization. We thought that the same
might be true for boundary measurements. When we compute the principle compo-
nent analysis rotation matrix, we also compute the eigenvalues for each component.
We designed a bit allocation that follows the general trend of the eigenvalues as spec-
ified in Section 5.1.2. Using this bit allocation for scalar quantization, we computed
the resulting word error rates. Those results are shown in Table 5.1. At 150 bits
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Bits per Boundary Word Error Rate

107
150

14.3%
12.1% H

Table 5.1: Scalar quantization results using eigenvalues as guides for bit allocation.

per boundary the uniform scalar quantizer yields a word error rates of 9.6%. The

eigen-inspired bit allocations perform over 25% (relatively) worse than the uniform
scalar quantizer.

Since using the eigenvalues as a guide did not improve recognition rates, we decided
to try a more gradual bit allocation schemes. Because none of these uniform bit

allocation quantizers stood out as being better than any of the others, we performed
these bit allocations on a vector quantizer with 5 coefficients per subvector. We

explored using the bit allocation algorithm (adding 2 bits at a time) to go from 50 bits
to 60 bits. These results are shown in Table 5.2. In the first and second rows we report
the error rates for uniform bit allocations of 50 and 60 bits. In the third row the results
from the bit allocation algorithm are shown. Although the difference between the

uniform 60 bit allocation and the non-uniform 60 bit allocation were found significant
at a level of 0.009 by a matched-pair sentence segment significance test [15], we decided
not to further pursue using the bit allocation algorithm. Additionally, we tried just a
simple knowledge-based allocation as seen in the last row of Table 5.2. Here we just
set the first 5 subvectors to have one more bit and the last 5 subvectors to have one
less bit, thus not changing the total number of bits per subvector, but putting more

resolution on the lower order coefficients. We found this strategy also did not give us

any improvement over uniform bit allocation.

5.2.2 Computational and Storage Costs

The underlying computational and storage costs for vector quantizers are discussed
in Section 2.4.2. In Figure 5.2 we have plotted the theoretical computational and

storage costs for the uniform bit allocation scalar quantizer and 4 of the uniform bit

allocation vector quantizers. The general trend shown in the graph is that for every
additional bit added per subvector the storage cost doubles, and the computational
cost increases linearly. Since the word error rate seems to be independent of the

quantizer for low word error rates, we should choose the quantizer with the lowest

computational and storage costs. Here, it is clear that the best choice is the scalar
quantizer.
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Bits per Boundary Bit Allocation 11 Word Error Rate

50 5 5 5 5 55 5 5 5 5 32.3%
60 6 6 6 6 6 6 6 6 6 6 19.9%
60 7 5 7 9 5 7 5 5 5 5 18.9%
100 10 10 10 10 10 10 10 10 10 10 11.3%
100 11 11 11 11 11 9 9 9 9 9 11.3%

Table 5.2: All of the results shown in this table are for a vector quantizer with 5
coefficient per subvector. The first two rows of this table show bit allocation and
word error rates for uniform distribution of 50 and 60 bits per boundary. The third

row shows bit allocation and word error rates for the 60 bits per boundary (non-

uniform bit allocation vector quantizer). The next to the last row shows the uniform
bit allocation for a total of 100 bits per boundary, and the last row shows the word
error rate and bit allocation for a gently weighted non-uniform bit allocation.

10100 150
bits per boundary

(a)

106

10 5

10

0

200 250
10

5 0 100 150
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Figure 5.2: The computation costs for the scalar quantizer and all four vector quan-
tizers are shown in Figure 5.2(a). In Figure 5.2(b) the storage costs for the scalar

and vector quantizers are shown.
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Type Bit Rate iWord Error Rate

Boundary, SQ, 3 bits per coefficient 3315 9.6%
Boundary, SQ, 4 bits per coefficient 4420 9.7%
Boundary, SQ, 5 bits per coefficient 5525 9.6%

MFCC II 3200 22.4%
MFCC III 4800 12.0%
MFCC III 5600 10.5%

Table 5.3: Bit rates and word error rates for quantizing boundary measurements
versus MFCCs.

5.3 Discussion

In comparing the performance of the scalar quantizers with the vector quantizers

(using uniform bit allocations), we saw no significant difference. At the very low bit
rates the vector quantizers with more coefficients per subvector outperformed those

with less. However, at those very low bit rates the word error rates were so unattrac-
tive they would not rationalize the very low bit rate. It is not surprising that these

quantizers performed similarly. Vector quantizers exploit the statistical dependence
between coefficients to yield better results over the scalar quantizers. In quantizing
the boundary measurements, we are quantizing coefficients that have been decorre-

lated. Since each coefficient is approximately independent of all other coefficient using
vector quantization can give little improvement over scalar quantization schemes.

Our results showed that changing the bit allocation from a uniform to a non-

uniform scheme had little effect on the word error rate. We know that the lower

order coefficients have higher variances than the higher order coefficients and are
thought to be the more important of the coefficients. Therefore, that no non-uniform

bit allocation outperformed the uniform bit allocation is surprising. This result may
be explained by the fact that we do not know how the classifier weights these co-

efficients. With MFCCs we know that the lower order coefficients give the general

spectral shape, but here, after the principle component analysis, it is not clear which

of these coefficients are most important to the classifier. From these experiments

the empirically optimal quantizer is the uniform bit allocation scalar quantizer. In

addition we performed a matched pair sentence significance test [15] and found the

difference between the baseline and the scalar quantizer to be insignificant. Thus, we

have not degraded performance by quantizing our boundary measurements.
Because boundaries are not proposed at uniform intervals, the bit rate is hard to

estimate. On our test set we averaged 21.1 boundaries per second. At this rate the bit

rates and word error rates for the uniform scalar quantizer of boundary measurements
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Figure 5.3: Overall performance of quantized recognizers.

and those for several MFCC quantizers are shown in Table 5.3. A plot of the overall
performance is given in Figure 5.3.

In this table the boundary measurement quantizers are all uniform scalar quan-
tizers with the number of bits per coefficient indicated in the Type column. The
results from vector quantizers of the MFCCs that are of similar rates to those from
the boundary measurement quantizers are reported here. Which MFCC quantizer
was used in indicated by the roman numeral in the Type column and corresponds
to the label definitions in Table 4.2. Despite having the unquantized values of the
boundary measurements going straight into the classifier, the boundary measurement
quantizer outperforms the MFCC quantizer on this range. Also if we were to look at
the number of hypothesized boundaries per second as a function of word error rate,
for the word error rate of 10.5% the MFCC quantizer achieves a bit rate of 5600 bps.
For the boundary measurement quantizer to maintain a lower bit rate, boundaries
can be hypothesize at most 44 times per second.

Clearly, since quantizing the boundary measurements does not degrade perfor-
mance, and since they are hypothesized so infrequently, a DSR system using a
segment-based recognizer should implement the computation of boundary measure-
ments on the client.
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Chapter 6

Conclusions

In this thesis we aspired to improve upon our existing iPAQ DSR system. By moving
the transmission point to after the signal processing, we hoped to both reduce the
bandwidth required and not degrade performance. What follows is a summary of the
work completed in this thesis and proposed future directions for this work.

6.1 Summary

By creating a fixed-point front-end, we endeavored to reduce the computations nec-
essary to compute the features on the iPAQ. This was supported by work by Hewlett
Packard [3]. We carried out all of our experiments in a simulated DSR environment
using telephone speech recorded from our JUPITER system and processing with the
fixed-point front-end. We found that although there is some loss of resolution by
using fixed-point numbers and special fixed-point approximations of the magnitude
and the natural log, using our fixed-point front-end did not degrade the performance
of the recognizer. However, using the fixed-point MFCCs actually increased our bit
rate from 64Kbps for the original system to 89.6Kbps in the fixed-point system.

To combat our increase in bit rate due to using the fixed-point front-end, we ex-
plored different quantizers for MFCCs. We evaluated both scalar and vector quantiz-
ers using a bit allocation algorithm given in [4, 12]. Neither quantizer outperformed
the other in terms of accuracy. However, the vector quantizer was more efficient:
reaching error rates at lower bit rates than the scalar quantizer. Still, the scalar
quantizer was far less computational intensive and used far less memory.

Finally, because our recognizer further processes MFCCs to arrive at boundary
measurements, we explored the idea of quantizing boundary measurements. We found
that quantizing the boundary measurements outperformed quantizing MFCCs. Due
to the independent natures of the features within the boundary measurements we
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Figure 6.1: Overall performance of systems.

could implement a uniform bit allocation scalar quantization scheme that performed
similarly to the vector quantizer yet had lower computational and storage costs.
Moreover, the boundary measurements were proposed on an average of 21.1 times
per second, thus even lower bit rates could be arrived at by quantizing the boundary
measurements. A plot of the overall performance of the systems described here is
shown in Figure 5.3 and reproduced here.

6.2 Future Directions

As described in Chapter 3, there remains much work to do to have a complete DSR
system. Collection of a large database of iPAQ recorded data is a start. Creating a
fixed-point computation of boundary measurements and quantizers is also necessary
for creating a complete system.

To have a system that takes advantage of the low error rates and bit rates achieved
by the boundary measurement quantizer, the boundary measurements must be com-
puted on the iPAQ. The biggest task in this implementation is designing for a fixed-
point boundary detector. With this complete, cepstral mean subtraction and com-
puting the full boundary measurements would be simple. Additionally, the principle
component analysis matrix could be computed on the server and cached in fixed-point
on the iPAQ itself.

Although the quantizers parameters could be computed ahead of time in floating-
point, the quantizers themselves would need to be translated into fixed-point and
stored on the iPAQ. Currently all the quantizers except the scalar MFCC quantizer
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expect floating-point numbers and operate in floating-point themselves. However,
we do already have a bit packer implemented which sends packets of features to the
server.

Ideally, this system would eventually fold into the iPAQ itself. With natural
language processing done on the server side after recognition and a resulting command
sent back to the iPAQ for execution. Additionally, a conversational system could be
built with speech synthesis being performed on the iPAQ itself. The iPAQ could store
phones and the information for how to concatenate these phones could be sent from
the server [21].

This thesis shows great promise for the implementation of a DSR system with
both a fixed-point front-end and fixed-point boundary detector for the iPAQ. This
system would both decrease bit rate and leave accuracy unaffected. However, the
trade-off between low bit rates and the storage costs associated with the boundary
measurement quantizer would have to be weighed to design an optimal DSR system
for the iPAQ.
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