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A Variational Approach to MR Bias Correction

by Ayres C. Fan

Submitted to the Department of Electrical Engineering and Computer Science
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Master of Science in Electrical Engineering and Computer Science

Abstract

Magnetic resonance (MR) imaging has opened up new avenues of diagnosis and
treatment that were not previously available. There are a number of artifacts which
can arise in the MR imaging process and make subsequent analysis more challeng-
ing. Probably the most drastic visual effect is the intensity inhomogeneity caused by
spatially-varying signal response in the electrical coil that receives the MR signal. This
coil inhomogeneity results in a multiplicative gain field that biases the observed signal
from the true underlying signal. A number of techniques exist that attempt to correct
this bias field, but none are wholly satisfying. We present an algorithm derived from
statistical principles that is based on our knowledge of the physical imaging model. Our
algorithm is a variational method that produces nonlinear estimates of the bias field and
true image. We regularize our solutions using f2 norms to ensure smoothness in the bias
field and ip norms to enforce piecewise smoothness in the true image. The latter has an
effect similar to an anisotropic filter that reduces the noise and preserves edges. We deal
with the nonlinearity in our equations by first using coordinate descent to convert the
difficult overall problem into simpler subproblems, and then using fixed-point iterative
methods to linearize our equations. This allows us to employ the large body of existing
work on fast iterative linear solvers. We also use multiresolution techniques to increase
our solver speed. This results in an algorithm that is non-parametric, fast, and robust.
We show how to extend our algorithm into a more general framework which allows us
to seamlessly handle multiple receiving coils and multiple image pulse sequences. We
demonstrate the utility of our algorithm on real prostate, heart, and brain data and a
synthetic brain phantom that allows us to quantitatively assess the performance of our
algorithm.

Thesis Supervisor: William M. Wells III
Title: Research Scientist, MIT AI Lab
Associate Professor of Radiology,
Harvard Medical School and Brigham and Women's Hospital
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Chapter 1

Introduction

N ON-INVASIVE imaging technology has changed the face of medicine in the 20th

Century. Medical imaging began with Roentgen's discovery of the X-ray in 1895

and continued with various three-dimensional (3D) imaging technologies such as com-

puted tomography (CT), magnetic resonance (MR), ultrasound (US), positron emis-

sion tomography (PET), single photon emission computed tomography (SPECT), and

a whole host of other acronyms [18]. Imaging technology has progressed dramatically

from simple X-rays which only provide a two-dimensional (2D) projection of tissue den-

sity. Modern imaging techniques allow full 3D reconstructions at high resolutions and

can show information beyond just tissue boundaries [18].

X-ray is still the most widely used medical imaging technique. The equipment is

ubiquitous and cheap and does a good job of showing many ailments. It is limited in

application due to the fact that it is a 2D projection and can only show how well the

tissue absorbs X-rays (it essentially shows tissue density). X-ray is commonly applied as

an initial onsite precautionary test as well as a diagnostic for many problems including

broken bones, oral cavities, respiratory problems, and breast cancer (mammography).

CT is simply X-ray technology extended to 3D. An X-ray image is the projection

of the 3D density map onto the imaging plane. By acquiring multiple X-ray images

in different planes and solving the inverse problem (called tomography), we can find

the density map that caused our observed images. With modern implementations, CT

is fast and has very good spatial resolution. It does an excellent job of displaying

bone and contrasting among hard tissue, soft tissue, and air. CT is widely used for

many applications such as cardiac analysis, virtual colonoscopy, and vascular analysis.

It is also the technology being used in the bomb-scanning machines being installed in

airports. CT also retains many of the disadvantages of X-ray including the usage of

radiation and the inability to display significant differentiation among soft tissues.

17



Another technique that is nearly as ubiquitous as X-ray is ultrasound. Ultrasound

uses sonar-based echo location techniques to construct images. Probably the most well-

known use of ultrasound is in viewing the fetus in pregnant women. Other uses include

checking for the presence of gall stones and investigating growths in the kidney or liver.

Ultrasound is very good with soft tissue but is not as good with bone and air cavities.

Because ultrasound is constructed using sound waves instead of photons, the spatial

resolution tends to be quite limited, and overall image quality is much inferior to that

obtained from MR and CT.

MR is different from most other medical imaging techniques because it does not

use tomography to obtain a 3D image. MR has revolutionized our ability to diagnose

ailments, especially those involving soft tissue where its ability to provide contrast is

unparalleled. MR imaging is based on the phenomenon known as nuclear magnetic

resonance (NMR), and MR images are aggregate measurements of tissue composition

at the molecular level. The extent that this molecular structure stays constant within

tissue and varies among different tissues determines the effectiveness of MR imaging.

MR is by far the most flexible imaging technique because there are an enormous number

of parameters that can be controlled during the imaging process. It can measure things

as simple as proton density to things as complex as brain activation maps (functional

MRI) and blood flow (angiography). The main difficulty with MR is cost. The machines

cost millions of dollars, the operating expenses are high, and only trained radiologists

can interpret the results. MR is widely used for cancer detection, ligament and joint

evaluation, and various brain diagnoses.

* 1.1 Medical image processing

Along with the advances in generating medical imagery, our ability to process the

images has also increased dramatically. A lot of the tasks required of radiologists

can be repetitive and boring (e.g., looking for tumors on mammographies, delineating

organ boundaries). The number of medical scans being taken has increased dramatically

while the number of radiologists trained to interpret the results has not. In the image

processing and artificial intelligence (AI) communities, there has been a great deal

of active research to shift the burden of the more repetitive tasks from humans to

computers.

The image processing techniques required for medical imagery can range from the

18 Sec. 1.1. Medical image processing



classical such as denoising and contrast enhancement to more modern techniques such

as segmentation and registration. The former can be viewed as preprocessing for either

radiologist evaluation or computer processing. The latter can be viewed as fundamental

building blocks for more complex image analysis tasks such as automated computer

diagnosis. Registration is the process of aligning two or more images. This is a task that

would be nearly impossible without the assistance of computers (especially registrations

which allow non-rigid deformation). Registration is useful in a wide variety of contexts

including multiple-modality alignment (e.g., MR and CT) and comparison of patients

with anatomical atlases. Segmentation is the division of an image into regions. The

criteria for what constitutes a coherent region can vary from application to application.

Segmentation is critical for many medical image analysis tasks including heart efficiency

calculations, schizophrenia diagnosis, cancer detection, and image guided surgery.

The original impetus for the work in this thesis was the work being done at Brigham

and Women's Hospital (BWH) involving prostate cancer treatment [72,88]. Prostate

cancer is a very serious disease that affects an enormous segment of the population.

Among American men, it is the most common cancer besides skin cancers, and one in

six men will be diagnosed with prostate cancer during his lifetime [2]. It is also a very

serious illness-prostate cancer is the 2nd leading cause of cancer death in men.

The most common method to treat this disease is called radical prostatectomy. This

procedure basically surgically extracts the prostate and perhaps some surrounding tissue

such as the lymph nodes. A thorough description of the exact surgical details can be

found in [72]. This technique has been used for quite some time and has advanced

to the point that nearly 100% of cancers that remain confined to the prostate can be

cured. A number of side effects make radical prostatectomy less than ideal. Impotence

results in approximately 25% to 30% of the patients. Around 10% of patients experience

incontinence months after the surgery, and another 3% to 12% experience bladder neck

contracture.

Several alternative treatments are being developed to address these concerns. Cryo-

surgery (also known as cryotherapy and cryoablation) treats localized cancers by freez-

ing cells with a metal probe. Hormone therapy can slow the spread of cancer. Radiation

therapy uses high-energy electromagnetic waves to kill cells. A newer type of radiation

therapy known as brachytherapy involves surgically placing radioactive seeds at the

cancerous locations. This is a minimally invasive procedure that allows clinicians to

target the cancerous cells with high doses of radiation without severely impacting the

CHAPTER 1. INTRODUCTION 19



20 Sec. 1.1. Medical image processing

surrounding healthy tissue.

There is a wide variety of image processing problems that need to be tackled for

the treatment of prostate cancer using brachytherapy. At the earliest stage, work is

being done to investigate the usage of specialized MR scanning techniques such as

diffusion tensor imaging for initial tumor detection and localization [15]. Diffusion

tensor imaging gives a view of the diffusion of water at the cell level. One of the

differentiating characteristics of tumors is their increased oxygen consumption which

leads to an increased level of diffusion. MR can also be used in cancer staging. An

imaging protocol called T-weighted is useful for determining the boundaries of the

prostate. Expansion of the prostate is a common symptom of prostate cancer. Another

imaging protocol called T 2-weighted allows us to see internal structure in the prostate

as well as differentiate cancerous tissue from healthy tissue.

In brachytherapy the radioactive seeds must be precisely placed, so accurate knowl-

edge about the shape and location of the patient's prostate is required. The MR images

captured in conventional scanners can also be used for surgical planning, but real-time

imaging information is necessary during the surgery to ensure full dosage of the can-

cerous regions. The open-configuration MR machine allows the surgeon access to the

patient while still obtaining detailed imaging information of internal structures [88].

The surgical procedure requires both registration and segmentation steps. We need to

be able to fuse the current location of the anatomy with the surgical plan. The con-

ventional MR scans will be of higher quality than the real-time data, so we would also

like to be able to incorporate information from the pre-operative scans into the intra-

operative scans. Once the intra-operative data are acquired, segmentation is needed for

precision needle targeting and to indicate to the surgeon areas to be avoided (such as

the rectum wall and the seminal vesicles) [74,75]. Computation of the radiation dosage

as a function of space is also needed. This is to ensure that the cancerous regions

are sufficiently radiated. This calculation can be made easier by getting precise needle

location data from the real-time images.

One thing that all of these image processing procedures do is that they operate on

the intensity values obtained in MR images. This behavior is not restricted to prostate

image processing. Image processing in general relies on the intensity values and can be

significantly impaired by imperfections in the image collection process. MR images are

constructed from electromagnetic responses and are captured using coils of wire. These

intensities are corrupted both by random noise as well as systematic electromagnetic
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(a) (b)

Figure 1.1. Axial mid-gland T2-weighted prostate images acquired using (a) a body coil and (b) an

endorectal coil and pelvic phased-array coil combination. FOV is 12 cm x 12 cm and slice thickness is

3 mm.

(a) (b)

Figure 1.2. Gradient echo axial brain images acquired using (a) a body coil and (b) a four-coil

phased-array.

21CHAPTER 1. INTRODUCTION
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(a) (b)

Figure 1.3. Fast-spin echo heart images acquired using (a) a body coil and (b) a four-coil phased-array.

FOV is 32 cm x 32 cm and slice thickness is 8mm.

22 Sec. 1.1. Medical image processing



effects. The latter are collectively known as bias fields or intensity inhomogeneities.

The bias in this case is a multiplicative bias rather than an additive bias that is more

common. We use the term bias because the intensity inhomogeneity is a systematic

effect and not a random effect. Both the noise and the bias can confuse automated

image processing algorithms, and we would like to minimize both as much as possible.

The bias fields can be minimized by using a coil such as a body coil that has a very

homogeneous spatial sensitivity profile. This spatial homogeneity comes at the expense

of signal response which leads to a decrease in the signal-to-noise ratio (SNR). In most

MR imaging applications, we are only interested in a small region of the body. We can

exploit this fact by using surface coils which are placed close to the region of interest

(ROI) [4,23]. These coils have high signal response close to the coil and the response

diminishes with distance. This variable signal response allows much better visualization

of the object of interest but is also the main cause of the bias field.

The endorectal coil is a surface coil used in imaging the prostate and probably

has the most pronounced bias field among widely used surface coils. The reason for

this is the extremely small size of the ROI which requires significantly higher signal

response to maintain adequate image quality. Figure 1.1(a) depicts a prostate image

captured using the homogeneous body coil, and Figure 1.1(b) shows a prostate image

of the exact same location captured with an endorectal coil and pelvic phased-array coil

combination. The surface coil image may not appear to be more usable than the body

coil image, but radiologists can use simple correction techniques such as window/level

to make the image more palatable locally. In Figure 1.2 and Figure 1.3, we show two

more imaging applications where body coil and surface coil images are acquired. The

body coil images for both the brain and the heart display much better SNR than for

the prostate. This is because the objects being imaged are much larger and can use

spatial averaging to decrease the noise. The lower noise means that the maximum coil

response of the surface coils does not need to be extremely large, and the larger region

to be imaged means that the response of the coil cannot diminish too rapidly. This

means that the bias field in these images is not very pronounced. Even though both

the brain and heart surface coil images do not display severe intensity inhomogeneities,

we would still like to have the better SNR of the surface coil images and the improved

homogeneity of the body coil images.

The bias correction problem is currently an open one and is very widely studied. One

reason for the number of different approaches is that many groups begin working on an
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application involving MR images and quickly find that much of their progress is stymied

by the corrupting effects of the bias field. The importance of this problem will increase

as MR magnets increase in strength and electromagnetic effects become more and more

pronounced. There currently are not any wholly satisfying bias correction methods

in the literature. We introduce a very general framework for bias correction that can

provide superior results for a wide variety of applications with minor adjustments. Even

better results can be obtained by adjusting the implementation to reflect the special

properties of the imaging application being considered.

* 1.2 Main contributions

The main contribution of this thesis is a fully-automatic non-parametric approach to

MR bias correction that provides qualitatively and quantitatively appealing results. In

addition, we present a unified approach that simultaneously debiases and denoises the

image. All existing bias correction techniques have trade-offs that affect their utility

or their usability, and our method is no exception. Some methods are fast but provide

limited bias correction capabilities. Others provide excellent results but require signifi-

cant operator training and supervision to provide optimal results. Our method imposes

additional requirements at the image acquisition step: we require a body coil image to

be captured in addition to the surface coil image which we wish to correct. The need to

separately acquire the body coil image is probably unavoidable due to coil coupling is-

sues [623. Otherwise, once parameters are chosen for a particular scanning protocol, our

method requires no user input. We produce our corrected images by iteratively solving

a variational problem which we have found to have nice convergence properties and to

be resistant to poor initialization. In fact, initialization with random noise usually con-

verges to the correct result. In addition, with multiresolution approaches, our algorithm

is fast and computationally stable. We feel that the quality of our results makes this

additional scanning requirement worthwhile, especially for certain applications such as

the prostate which have severe intensity inhomogeneities.

We derive our algorithm using a statistical approach with some simplifying assump-

tions. This leads to an energy functional which we seek to minimize. At a simplest

level, this provides us with intuition about what the resultant bias correction should

do. We can then use this energy functional to optimally select parameters for other

traditional bias correction techniques such as linear filters [12,33]. Directly minimizing



the functional leads to an intuitive method for combining our multiple observation im-

ages once we have reliable bias field estimates (regardless of how those estimates were

generated). The resultant image has noise characteristics superior than those available

from either observed image.

We can also take a non-parametric approach and solve the variational problem of

fully minimizing the energy functional. The bias field and the true MR image combine

in a multiplicative manner. Many techniques available in the literature make this an

additive relationship by taking the log and neglecting the noise term. We solve the prob-

lem directly in the original multiplicative form. This results in a cleaner formalism but

imposes the need to do nonlinear estimation. We can perform this estimation using a

fixed-point iterative method which leads to a set of simpler estimation problems. These

smaller estimation problems can be viewed as a partial differential equation (PDE) in

the continuous domain or a large linear system in the discrete domain. This results

in bias and image estimates that are optimal from a mean squared error standpoint.

By choosing appropriate priors, our algorithm can impose constraints on our estimated

bias field and intrinsic image that make our estimates conform to our physical model.

Specifically, we can make our bias field smooth and our intrinsic image piecewise con-

stant. The former is necessary to make our algorithm give meaningful results. The

latter is not necessary to generate adequate results, but it is similar to putting an

anisotropic edge-preserving filter into our method and consequently produces results

with less noise. By fully integrating the denoising operation into our algorithm, the

resulting image and bias field estimates are better than what could be obtained by

performing both operations sequentially because knowledge of one estimate improves

our ability to obtain the other estimate.

* 1.3 Outline

Chapter 2 contains background information on a variety of subjects needed to under-

stand this work. We begin with mathematical and statistical preliminaries such as

stochastic estimation, regularization of ill-posed problems, the calculus of variations,

and nonlinear optimization. Knowledge of calculus and linear algebra is assumed,

though the main features of the latter that we will use in this thesis are included

in Appendix A. We then discuss the physics involved in MR image formation. This

knowledge gives us insight into the cause of the bias field which allows us to accu-
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rately model the problem. We also survey some of the copious number of existing bias

correction techniques published in the literature.

Chapter 3 introduces our imaging model. We discuss the simplifications we make in

order to make our problem formulation tractable. We construct a variational problem

which we solve to provide estimates of the bias field and the corrected image. We discuss

the statistical roots of the energy functional we construct. Analytical solutions are not

possible, so we present iterative techniques to quickly obtain approximate results. A

number of techniques are used to rapidly increase the convergence speed of our solvers.

Generalizations to our model are presented to allow us to solve problems using general

4, norms, operate on 3D volumes, process multiple-modality, multiple-coil scans, and

apply multiresolution techniques to increase convergence speed.

We then present our results in Chapter 4. We begin by demonstrating our bias

correction techniques on a variety of MR imaging applications: the prostate/rectum, the

heart, and the brain. We demonstrate the robustness of the technique to very different

imaging modalities and surface coil configurations. We show the result of using different

parameter choices and different initial estimates as well as a unified approach that

simultaneously performs bias correction and denoising. We then apply our correction

to phantom brain images acquired from the Montreal Neurological Institute [19,40].

These brain images are constructed using a very precise physical model of the brain.

This allows us to test our method with very different surface coil profiles, and it gives

us ground truth to compare our reconstruction results to.

Chapter 5 summarizes the thesis and presents some future research directions.

* 1.4 Notation

Most of the notation that we will use in this thesis is fairly standard for this field.

We italicize mathematical variables in a serif font, e.g., x. When it is important to

differentiate between a random variable and an observation, we will denote the random

variable using an upright sans serif font, e.g., x. Vectors are lower case and bold, e.g., x

while random vectors are lower case, bold, sans serif, and upright, e.g., x. Matrices are

upper case and bold, e.g., A. Any deviation from this convention is explicitly noted in

the text.

We use a few mathematical operations that may perhaps be a bit obscure. The

Hadamard product [29] (or Schiir product or entrywise product) is an operator for
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two vectors or two matrices of identical size. The elements of the output are simply

the elements of the input multiplied entrywise. For example, let a, b, c E R1. Then

a = b o c results in

a[k] = b[k]c[k] V kE {1, 2, .. . ,n} . (1.1)

We also use generalized ip norms quite a bit in this work. We define a fp norm as

||X||= ( |xiP . (1.2)

We describe a few special cases. The Lo norm counts the number of non-zero elements in

x. The fi norm is simply the sum of the absolute value of the elements. The standard

Euclidean norm is the f2 norm. The f,, norm selects the absolute value of the element

of x farthest from zero.
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Chapter 2

Background Information

T HIS chapter covers background material that is essential to understand the main

contributions of this thesis. We begin with mathematical preliminaries: statistical

estimation, regularization, variational methods, and nonlinear optimization techniques.

The first two we use to develop our problem formulation, and the last two we use

to solve the problem. The reader is assumed to be familiar with calculus and linear

algebra. A brief synopsis of the main results of linear algebra that we use appears in

Appendix A. The second section talks about the MR image formation process. We

will later use these concepts in creating our image formation models. Finally we review

previous work in MR bias correction. We will discuss the strengths and limitations of

various approaches.

* 2.1 Mathematical Preliminaries

* 2.1.1 Statistical Estimation

The basic setup for most statistical problems (estimation or detection) is that there

is some underlying process (random or non-random) x E R" which we cannot directly

observe. What we do observe is y C R' which is related to x through a function

h : R' - Rm and a noise process n:

y=h(x) +n . (2.1)

If h(-) is a linear function (i.e., y = Hx + n, H is a m x n matrix), then this is termed

a linear estimation problem.

We typically characterize y (and x if it is random) through their probability density

functions (PDFs). See [57] for a comprehensive treatment on probability and random

variables. We begin with examining a scalar x. PDFs must integrate to one and always
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be non-negative. It is a probability density (and not a probability function) in the

following sense:

P[a < x < ]= px(x)dx . (2.2)

The value of px(x) for any particular x can be much greater than one.

We can define the expected value of a function over x in the following manner:

E () [fV(x)] J f(x)px(x)dx . (2.3)

We often drop the subscript on the expected value if it is clear what density we are

using. Essentially this is a weighted average of f(x) with more weight given to higher

probability outcomes.

We can then define some common statistics that are expected values of various

functions of x. The moments of x are defined as

p[i E [xm = Jxipx(x)dx (2.4)

The first moment is simply the expected value of x and is referred to as the mean. This

is not necessarily the most common value of x. It is simply the average value we would

observe of x over a large number of trials.

The variance a.2 is another commonly-used statistic. It is a second order statistic

because it depends on the second moment:

.2 = E [(x- x) 2 ] =E[x2 ]- . (2.5)

The variance tells us how far away we can expect to find x from its mean. The square

root of the variance is often referred to as the standard deviation.

We can also define probabilities over pairs of random variables. The function

px,y (X, y) is known as the joint PDF of x and y and is a density in the sense of (2.2). From

px,y(x, y) we can obtain the density of just x (which is termed the marginal density):

px (X) = px,y(xy)dy . (2.6)

A similar expression holds for py(y). The random variables x and y are called statis-

tically independent if the value of one variable has no effect on the value of the other.

This is true if and only if

px,y(XY) = px(X)py(y) .7

30 Sec. 2.1. Mathematical Preliminaries

(2.7)



The covariance of two random variables is a statistic that measures how they vary

with each other:

Axy = E [(x - px)(y- py)] = E [xy} - xpy . (2.8)

If x and y are independent, then E [xy] = E [x] E [y] and Axy = 0. If Axy = 0, x and

y are said to be uncorrelated. Note that independent random variables are always

uncorrelated, but the converse is not always true.

We can easily replace a scalar x with a vector x in the preceding discussion. The

PDF px(x) must be defined in a similar manner to the multivariate PDF described

above. When we compute the moments, we must compute them between every element

combination in order to get all of the mth-order statistics. We can store the first-

order statistics in a vector and the second order statistics in a matrix. A general

mth-order moment requires a rn-dimensional matrix. Hence third and higher moments

become quite unwieldy, and we do not generally use them. The first moment is largely

unchanged except we take the expectation elementwise:

AX = E [x] . (2.9)

The variance becomes a vector outer product (and is now known as a covariance matrix):

E [(x - pt.)(x - px)T] = E [xxT] - px . (2.10)

We define a conditional probability as the probability of observing y if we know that

x occurred:

pyix(yIx) = pxY Y) (2.11)
Px(X)

Note that if x and y are independent, pyix(ylx) = py(y). In the context of the model

introduced in (2.1), pylx(ylx) is the known as the measurement model. It relates the

observed values to the underlying process. We refer to px(x) as the a priori or prior

probability density and pxly(xly) as the a posteriori or posterior probability density.

The former is what we know about x before the experiment is performed, and the latter

is what we know about x after the experiment is performed (i.e., after we observe y).

We can compute the conditional expectation of x given y:

EPI(1Y) [Xly] JPxly(xly)xdx . (2.12)

Note that previous expected values that we defined yielded numerical results while this

conditional expectation yields a random variable (because y is a random variable).
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We see that (2.11) can be easily rearranged as

px,y (x, y) = pyl.(ylx)px(x) = pX1y (Xy)py (y) .(2.13)

This observation leads us to Bayes' Rule which relates the two conditional probabilities:

px1y(x1y) = Py.x(YIX)Px(X) (2.14)
py (y)

The significance of Bayes' Rule is that it allows us to relate the measurement model

and our a priori density to the a posteriori density.

There are two main ways to approach statistical estimation: Bayesian and non-

random [87]. Bayesian estimation imposes a prior on x and non-random does not. If

we only have the measurement model available to us, x may be random or non-random,

but it does not really matter because we have no distribution for x. Hence we can

simply treat it as non-random. Given an observation y, it makes sense to estimate x

in the following manner:

xML (y) = arg max py (y; x) . (2.15)

The function py(y; x) is also known as the likelihood function of the data. We say that

the PDF for y is parameterized by x. It does not give a probability of x, but it gives

some sense of how likely a certain x occurred given that we observed y. This method

is usually called maximum likelihood (ML) estimation. This method is also applicable

in situations where x is random, but we do not know the prior probability:

xML(Y) = argmaxpylx(ylx) . (2.16)

Note that when we maximize the likelihood, we are not choosing the i that has the

highest probability of occurring given our observations. We are choosing the ' that

maximizes the probability of us observing the data. This is a subtle distinction that

will be made clearer later in this section.

The log function is strictly monotonic, so finding the maximum of the log probability

is equivalent to finding the maximum of the probability. Hence we can rewrite (2.15)

as

xML (y) = arg max log py (y; x) . (2.17)

A large number of problems are easier to handle using log probabilities.
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ML estimation is popular for a number of reasons. Statistical estimators are char-

acterized by two main properties: the bias and the variance. The bias is the expected

error, and the variance is the variance of the error estimate. The Cramer-Rao bound [87]
gives a lower bound on the variance of any unbiased estimator. If an estimator satisfies

the Cramer-Rao bound with equality, this estimator is said to be efficient. If an efficient

estimator can be found, then that estimator must be the ML estimator. The converse

is not true in general. Additionally, ML estimators tend to be very nice to use in prac-

tice. Even if closed-form expressions cannot be found, a wide variety of optimization

techniques can be used to compute ML estimates.

In Bayesian estimation, the goal is usually to choose an estimate that minimizes the

expected value of some cost function. A common choice of cost function would be the

4p error (with p - 0, 1, 2 being the most prevalent choices):

S = E [lix - xJlP] . (2.18)

Using a t, norm is often referred to as minimum absolute error (MAE) estimation, and

it can be easily shown that the proper estimate is the median of the posterior density

pxIy(xIy). When we use a t2 norm, this becomes a least-squares optimization problem.

If the full joint probability is known, we can do Bayes least-squares (BLS) estimation:

XBLS(y) = E [x~y] . (2.19)

This, of course, is the mean of the posterior density.

We term an estimate as being linear when it is composed solely of a linear combi-

nation of the observations along with a constant offset':

-i(y) = Ay + b . (2.20)

We can find the linear estimator that minimizes the expected £2 error. This is called

linear least-squares (LLS) estimation:

:iLLS (Y) = ftx + AxyA y1 (y - ty) -(2.21)

Axy is the covariance matrix of x and y, and AY is the covariance matrix of y. A

common framework to develop this equation involves the use of abstract vector spaces

'This should be more properly be known as affine, but the usage of the term linear is fairly en-

trenched.
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and projections [37]. LLS estimation is much simpler than BLS estimation because it

only requires knowledge of the first and second order statistics.

When we use a fo norm as a cost function, we end up with what is known as

maximum a posteriori (MAP) estimation:

xMAP(y) = argmaxpx1 y (xjy) . (2.22)

This is the mode of the posterior distribution. This is closely related to ML estimation.

We can use the fact that log is monotonic along with Bayes' rule to obtain the following:

XMAP(Y) = arg max log py.(yjx) + log px (x) - log py(y) (2.23)

= argmaxlogpyl1 (ylx)+logpx(x)

Note that we can drop the term involving the probability of y because it does not vary

with x at all. To perform the MAP estimate, we need the full distributions of both the

measurement model and the prior probability. We can see that if the prior distribution

of x is uniform, the MAP estimate reduces to the ML estimate. Otherwise the MAP

estimate finds the b that has the highest probability of occurring given the data. MAP

is popular for reasons similar to that of ML: computational tractability. BLS estimation

is difficult to approach as a variational problem, and LLS estimation is limited to only

producing linear estimates.

There are a number of interesting things that happen when we examine the case

where x and y are jointly Gaussian2 . In the non-random case, the estimation becomes

quite simple. Let n - J1(0, A). Then y ~ A(Hx, A). We write the log likelihood as

logpy(y;) = - log ((27r)m/2|AI1/2 - j(y - Hx)T A-(y - Hx) . (2.24)

Differentiating with respect to x yields

a log py (y; x) = HT A-ly - HT A-1Hx = 0 . (2.25)

Thus the ML estimate is 3

iML(Y) = (HTAlH)-HTAly . (2.26)
2 Usually two random variables are jointly Gaussian only when each component is Gaussian, and the

two random vectors are related through a linear observation model with additive Gaussian noise.
3 The maximum is unique because A is positive definite and hence the likelihood function is strictly

concave.
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This is the projection of y onto the column space of H with the distance defined as a

f2 norm weighted by A-'.

Now we can assign a prior probability distribution to x. Let x ~ M(p., A.) and

n ~ M(0, An). This leads to y ~ K(Ht., Ay) where Ay = HAHT + An if x and n

are independent. This leads to the following criterion for the MAP estimate:

a
Tlog p1,Y(xy) = HTAnly - HT AnHx + A-ipA - AX 1x = 0 . (2.27)

This results in the following estimation equation:

XMAP (Y) = (HT An1H + AXl)-(HTAnly + AX 'tx) (2.28)

- px + AxHT(HAxHT + An)- 1 (y - Htix) (2.29)

where the transition from the first line to the second line is accomplished using the

matrix inversion lemma [34]. In the jointly Gaussian case, XMAP = XBLS = XLLS-

The first equality holds for any unimodal symmetric posterior distribution. The latter

equality is only true in the jointly Gaussian case.

U 2.1.2 Regularization

Many optimization problems are ill-posed. This can mean that the solution does not

exist, is not meaningful, or is unstable. One example of this is deblurring. For any

given blurred image, there are many corrected images that can produce the input image.

Regularization is a technique that can make the problem well-posed at the expense of

biasing the solution4.

There are many different approaches to regularization. We will focus on the so-

called Tikhonov framework [38,73]. With Tikhonov regularization, a term is added to

the energy functional to enforce the effect that we want. These are generally referred to

as penalty functions because they enforce the constraint in a soft manner. If the data

indicate something strongly enough, the penalty can be overcome. Energy functionals

in this framework break down into two parts: a data fidelity term and a regularization

term. The data fidelity term ensures that our estimate is consistent with our observa-

tions while the regularization term ensures that our estimate is consistent with our prior

knowledge about the signal. For a continuous formulation, this can be characterized as

E(f) = DYT(f) + aRZ(f) (2.30)
4 1f the regularizing term ends up exactly describing the solution, then no bias will be introduced.

The chances of this happening, especially for real data, are very slim.
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where DY is the data fidelity term (for observation y), R is the regularization term, and

a is a parameter that controls the tradeoff between our data and our prior.

The regularization term can be any continuous function that operates on func-

tions. As we will detail in Section 3.3.3, when R involves derivative operations, it has

some attractive solution properties. Choosing R to incorporate derivatives means that

derivative energy is penalized. This can be interpreted as penalizing higher frequency

components if we examine the Taylor series expansion of f. Common choices for the

regularization are

RZ(f) = J|Vf(x)I2dx (2.31)

R(f) = IV2f(X)12dx (2.32)

For a discrete formulation, the complete energy functional becomes:

E(f) = Dy(f) + aR(f) . (2.33)

A common choice for R is the f, norm of a linear operator applied to f:

R(f) = IILfII1 . (2.34)

The linear operator can be a series of linear operators (e.g., a discrete Fourier trans-

form and a frequency-selective filter). Using a £2 norm is convenient because then the

regularizer becomes a linear term when we compute the gradient of the energy func-

tional. Generally we want L to be high-pass in nature to ensure that high frequencies

are penalized and low frequencies are not.

Rudin et al. [63 were the main drivers for the usage of total variation (TV) regu-

larization. In continuous form, the TV norm is

R(f) = JVf(x)|idx . (2.35)

In discrete form, TV is simply (2.34) with p = 1 and L representing a gradient operator.

One reason for using an L, penalty as opposed to an C2 penalty in the continuous

domain is that step edges are permitted under the former but not the latter. We

will illustrate this with a ID example. Let our model and data be such that without

regularization, our signal estimate would be the unit step function u(t). We define our
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L, and L2 penalties using a first-order differential operator dt

11(f) = f(t)Idt (2.36a)

R2(f) = J f(t)|2dt . (2.36b)

Then Ri(f) = f 6(t)dt = 1 while R 2(f) = f 62 (t)dt is unbounded. Hence for any

choice of a > 0, a step edge is impossible using a L2 penalty while it is possible using

a Li penalty. This idea does not carry over perfectly into the discrete domain (with

discrete functions, all changes in value cause step discontinuities), but the fact that TV

is more permissive of edges continues to be true.

TV gets its name because it seeks to minimize the sum of the absolute variation

over the image. It does not try to remove large gradient values and is willing to accept

a large gradient at one place if it makes sense according to the data. For instance, let

the true signal be

fAt)={0 : t < 2.5 (2.37)
1 :t > 2.5

We observe a function

g(t) = h(t) * f (t) + n(t) (2.38)

where h is a Gaussian filter kernel and n is white Gaussian noise. We observe g at six

times: {0, 1, 2, 3, 4, 5}. We observe a sample path of (2.38) as

g = [0.01,0.05,0.18,0.76,1.02, 0. 9 7 ]T (2.39)

We examine two guesses for the true signal:

f 1 = [0 .0 , 0 .2 , 0 .4 , 0 .6 , 0 .8 , 1.0 1T (2.40a)

f2 = [0 , 0, 0, 1, 1, 1 ]T . (2.40b)

Both have the same TV value but very different e2 values (0.2 vs 1). So if we were to

attempt to denoise f using a e2 data fidelity term, we would prefer f1 if we used the e2

penalty while we would prefer f 2 if we used a f, penalty (with appropriately balanced

regularization parameter). Thus we see that using a f2 penalty punishes large gradient

values with extreme prejudice. Unfortunately, large gradient values are desirable if we

are trying to reconstruct data with edge features.
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* 2.1.3 Variational Techniques

Variational techniques are methods to find stationary points of energy functionals where

we are optimizing over sets of functions. They are commonly used in image processing

by representing the true image as a continuous-domain function. The calculus of vari-

ations is the counterpart to ordinary calculus, and it describes the conditions required

for stationary points. We will only discuss the machinery that we will use in deriving

our algorithms. For a more comprehensive treatment, see [69] or [83].

We can define a functional E as

E(u) = J J(x, u, it)dx . (2.41)

The variational problem is to find u* such that all other choices of u result in a higher

energy:

u* =arg min E(u) . (2.42)
U

Much as ordinary vector calculus computes derivatives using infinitesimal disturbances

in R", the calculus of variations computes variations using infinitesimal disturbances in

the function space. Let v be a small function5 . Then we define the first variation (with

respect to u) as

E v-+n d . (2.43)
6u Ou -iVa)n

This is known as the Gateaux derivative. It is similar in concept to a directional

derivative: it is the derivative of E at u in the direction v. The weak form of the

condition for a stationary point is that the first variation be zero:

S = (V a+a ) dx=OVv . (2.44)
6U a u ale

This is not very useful because we must evaluate this condition over every v. If we apply

integration by parts (ignoring the boundary conditions) and the divergence theorem to

(2.44), we obtain the strong form:

a - V - =0. (2.45)Ou N6

This is the Euler-Lagrange differential equation. The left-hand side of the equation is

often referred to as the Euler-Lagrange derivative of J.

5 By small, we mean that some norm of the function (e.g., the L2 norm) is small.
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The Euler-Lagrange differential equation can be solved in multiple ways. First, an

analytical solution may exist. Otherwise we can simply discretize the PDE using finite-

difference approximations and solve the resulting linear system. This is sufficient for

cases when (2.45) results in a linear PDE for u. To handle more general PDEs, we can

introduce a dummy time variable t. We define t in such a way that the derivative of 3

with respect to t equals the negative of the Euler-Lagrange derivative of J:

du _ J Ddt - +V. ) (2.46)

This ensures that d is always pointing in a descent direction of E. The right hand side

of the equation is the Euler-Lagrange operator applied to J, so at a stationary point it

is equal to zero. So when we find a stationary point, u stops changing with respect to

time which is the desired behavior. To obtain an estimate of u*, we can simply integrate

both sides of (2.46) with respect to t:

fi(x) = uo(x) ± du(t, x) dt (2.47)
Jo dt

where uo(x) represents our initial conditions. This integral can be evaluated as a

discrete sum.

M 2.1.4 Nonlinear Optimization

In this thesis, all of our discrete algorithms solve some sort of optimization problem of

the form

6: = arg min E(x) (2.48)
WER"

where E : Rn - R is a nonlinear function of x. This is commonly referred to as uncon-

strained nonlinear optimization, and there is an extremely large body of work dealing

with iteratively solving these sorts of problems. All methods can be broadly classified

into two categories: derivative and non-derivative. Non-derivative techniques include

methods such as Powell's level set technique, downhill simplex, and Gauss-Seidel. These

techniques perform iterative updates using only past and present values of the variables

and the energy functional. Derivative techniques can access this information as well

as knowledge of the first and possibly higher-order derivatives. Needless to say, gra-

dient methods generally outperform non-gradient methods. Oftentimes non-derivative

methods are more appropriate when analytical expressions for the derivatives cannot

be found, or the derivative does not exist. For the class of problems we encounter here
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this is not the case, so we will only discuss derivative-based methods. All results and

theorems in this section are adapted from [8].

Our objective in solving an optimization problem is to find x* such that for all

x c R", E(x*) < E(x). This is saying that we want to find a global minimum. A

global minimum may be difficult to find, it may not be unique, and it may not even

exist. For instance, if E(x) = x, then a minimum does not exist. Even if we deal only

with functions that are bounded below, a minimum may not exist. Let E(x) = .
Then the infimum is 0, but no choice of x can ever achieve that value.

In any case, necessary and sufficient conditions for a local minimum of E are

VE(x*) = 0 (2.49)

'H{E(x*)} > 0 . (2.50)

Note that the Hessian must be strictly positive definite. If it is zero, the critical point

may not be a maximum or a minimum. For instance, if E(x) = x3 , the derivative of E

is zero at x = 0. The second derivative is also zero there. But x = 0 is a saddle point

of E.

The local minimum is guaranteed to be related to the global minimum only when

E has some convexity properties. We include a theorem from Bertsekas without proof.

Theorem 1. Let E : X -+ R be a convex function and X be a convex set. Then if x*

is a local minimum for E, x* is also a global minimum over X. If E is also strictly

convex, then there is at most one global minimum over X.

We employ iterative solvers to find minimums of our objective function. With an

iterative solver, we begin with an initial guess x(o), and we wish to iteratively produce

a succession of revised estimates x(l), X(2), ... such that limn.+o x(') = x*. Without a

convex objective function, we cannot guarantee that the last relation holds true. For

non-convex problems, the best these types of algorithms can guarantee is convergence

to a local minimum. Which local minimum gets chosen depends largely on what initial

conditions are chosen. One method of finding a better local minimum is by trying

several x(') and choosing the local minimum that has the lowest energy value.

The class of iterative gradient solvers we will study here will all have updates of the

form

i(k+1) - (k) + 7(k)d(k)Vk > 1 (2.51)
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with ,(O) = .4 as the initial guess and d(k) as the descent direction at iteration k. So

these methods all provide incremental updates to our estimate using the estimate from

the previous iteration. Generally d(k) is related to the gradient of the energy functional

at ;i(k). The only requirement that we place on E is that it be everywhere differentiable.

This necessarily implies that E is continuous.

Gradient Descent

Gradient descent is the simplest of the gradient-based solvers. It is also commonly

referred to as steepest descent. For (2.51), we define

d(k) = g(k) (2.52)

where 9 (k) = VE(:j(k)). With this method, we descend in the direction where E(x) is

locally decreasing the fastest. Each iteration is guaranteed to be a descent iteration as

long as n(k) is small enough (we discuss later in this section how to choose q(k)). The

step size q(k) can be chosen in a variety of manners, but it is important to ensure that

E(j(k+1)) < E(.(k)) (otherwise we are moving away from the minimum). We see that

the linearization of E around ,k is

E(x) ~ E(:(k)) + (X _ (k))Tg(k) . (2.53)

This approximation holds with some tolerance e within some region 11x - j(k)I < &.

So for q(k) very small (chosen such that j(k+1) is within the hypersphere of radius JE),
the linearization provides a good approximation to the full function, and we observe

the following change in the energy functional:

E(6(k+l)) - E(,(k)) 7 g(k)(d(k) (k)) (2.54)

- (k) 1g(k)11 2

This value is always negative except at a local minimum. We can see that the general

condition for a direction d(k) to be a descent direction is (d(k), 9 (k)) < 0. This is

equivalent to saying that the angle between the gradient and the descent vector must

be between 1 and .
When the stepsize i(k) is too small, convergence to the minimum will be slow. For

7(k) too large, our gradient descent step may turn out to increase the energy. For every

iteration, there is some stepsize that minimizes the energy along the descent direction:

-(k) = arg min E(i (k) + 77d(k)) .5

41CHAPTER 2. BACKGROUND INFORMATION

(2.55)



Solving this minimization problem is referred to as a line search. Sometimes it may be

possible to easily compute q(k) in closed form and perform an exact line search. Other

times we can use iterative techniques to perform approximate line searches.

If even performing an approximate line search is too difficult, we can use a heuristic

method. We begin by setting 7(0) = 7o where qo is some predetermined constant. We

let q(k) = 7o until iteration k is no longer a descent step. Then we set q(k) = .17 and

continue with that value until we no longer decrease the energy. We continue in this

manner until we reached the desired convergence tolerance. This method is known as

successive stepsize reduction, and it works well it practice. But it is not guaranteed to

converge to a local minimum for all cases. Armijo's Rule [3] is a modification of this

technique to alleviate this theoretical difficulty. We fix /, s, and o- such that 0 < 3 < 1

and 0 < a < 1. Then we choose q(k) = s/3mk where m(k) is the smallest m E Z+ such

that

E(.(k)) - E(j(k) + s#'d(k)) > -OsS'(VE(X(k)))Td(k) . (2.56)

For gradient descent it can be shown that if 77(k) is chosen using line minimization

or Armijo's Rule, then the limit point of the iterative solver will be a stationary point.

Similar statements can be made when the step size is constant or decreasing 6 and certain

technical assumptions (such as the gradient of E is Lipschitz continuous) are made.

A common technique to describe convergence rates is to compare the error at each

iteration with an infinite sequence. We can define the error as, e.g.,

e(k) - I1X(k) - x*I (2.57)

or

e(k) = IE(X(k)) - E(x*) . (2.58)

Then we characterize the convergence rate of an algorithm through a comparison test:

eG) < asi V i C Z+ (2.59)

where a c R+. When there exists an a such that the above expression is true for all i

and

si = ri (2.60)

'The sum E' r7(k) needs to be unbounded otherwise the iteration sequence can converge to a

non-stationary point.
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for some r E [0,1), then the error is said to have linear (or geometric) convergence.

When there exists an a such that (2.59) is true for all i and

si = r2 (2.61)

for r c [0, 1) and p > 1, then the algorithm has superlinear convergence. When p = 2

the error has quadratic convergence. To give an idea of the difference between linear and

quadratic convergence, linear convergence adds a digit of accuracy every -1/logo(r)

iterations. Quadratic convergence doubles the number of digits of precision every iter-

ation.

Gradient descent generally has linear convergence. This property can be easily

shown on quadratic optimization problems. We define a general quadratic optimization

problem as

E(x) = lXTQX - aTX + c (2.62)

with Q > 0 and c = laTQ1a. The minimum value of the energy is then 0. The

worst case convergence rate of gradient descent for quadratic problems is related to the

condition number of Q. Let M be the largest eigenvalue of Q and m be the smallest.

Then the condition number is the ratio M/m. It can be shown that the cost decrease

(when the step size is chosen through line minimization) takes the following form:

E(pC(k+1)) <(M/M -- 1) 2 (3( M. -' 2(2.63)
E(.(k)) - M/m+1)

Thus gradient descent displays linear convergence with the rate determined by the

condition number. When the condition number is large, Q is termed ill-conditioned.

In these instances, there is often a steep "valley" in the energy functional. Even for

convex energy functionals, the gradient (which can only measure local rate of change)

is nearly orthogonal to the vector that points from the current iterate c(k) to the global

minimum. This convergence rate is of course simply an upper bound, but in practice

the average rate is fairly close to the worst case.

Newton's Method

Newton's method (also known as Newton-Raphson) is a technique that incorporates

the Hessian into the updates. We define the descent direction for (2.51) as

(2.64)
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Newton's method was originally developed to find the zeros of equations:

f(X) = 0 (2.65)

where f : R' -+ R'. Let xo be a zero of f(x). If we have an initial estimate 6(O), we

can build a linear approximation to f(x) around -. (O):

f (x) ~ f(.(0)) + [-x-f (0)(x .i (0)) . (2.66)

We then pick our next iterate ,i(1) as the zero of this approximate function:

j(1) - () + [d f@ 0 )f .(0)) (2.67)

We choose iN,2 , I... in a similar manner. We can apply Newton's method to find

local minima/maxima by having it solve for the condition that the gradient is zero:

f (x) = VE(x) = . (2.68)

This leads naturally to (2.64).

If the Hessian is positive semi-definite, then the direction we take is a descent

direction. Otherwise there are no guarantees. If we are dealing with non-positive

Hessians, we generally regularize the Hessian to make it positive definite:

d(k) = -[7.{E(x(k))} + (jj-Ig(k) . (2.69)

The value of ( needs to be chosen sufficiently large so that N{E(x(k))} + (I > 0. This

means that ( should be at least as large as the absolute value of the most negative

eigenvalue of the Hessian.

The main advantage of Newton's method is that it is extremely fast. For conven-

tional Newton's method, the stepsize 7 (k) is fixed at 1. For a quadratic problem, this

will guarantee that the minimum is found in exactly one iteration. The error converges

superlinearly when Newton's method is used with Armijo's Rule.

Besides the possibility of a non-positive Hessian, there are also some other drawbacks

with using Newton's method. The main problem is poor capture range. When our

initial estimate is far from the true solution, Newton's method often cannot find the

true solution, even for convex problems. This is compounded by the fact that Newton's

method only finds points where the gradient is zero. This can occur at a maximum,

a minimum, or a saddle point. So Newton's method is as attracted to local maxima
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as it is to local minima. In large problems, the inversion of the Hessian can be very

computationally consuming. In some problems, the gradient may be available in closed

form, but the Hessian may be difficult to compute7 . In practice, the algorithm often

begins with a method such as steepest descent to get an estimate that is close to a local

minimum. Then this result is used as the initial estimate for Newton's method. This

allows us to obtain the quadratic convergence of Newton's method close to the solution

and the wide capture range of gradient descent far from the solution. Regardless of the

large number of these difficulties, Newton's method is widely applied in practice due to

the extremely fast convergence rate.

Conjugate Gradient

We can characterize the two previous techniques as being memoryless. When generat-

ing i(k+1), the only thing that matters is the current state at k. All of the previous

iterations do not matter (except for how they lead to us arriving at jjk)). In contrast,

with conjugate gradient, every previous iteration affects the next iteration. So running

conjugate gradient for 10 iterations is not the same thing as running conjugate gra-

dient twice for 5 iterations each time. Even though conjugate gradient only uses first

derivative information in generating descent directions, it is able to achieve superlinear

convergence.

Conjugate gradient is best suited to solving unconstrained quadratic optimization

problems. Let the dimensionality of our problem be n. Then conjugate gradient will

find the exact minimum of this functional in n iterations.

We say two vectors are Q-conjugate when (X 1 , x2)Q = 0. Conjugate gradient begins

by performing a gradient descent step for the first iteration. Then subsequent descent

directions are chosen so that the direction is Q-conjugate with all previous descent

directions. Let g(k) be the gradient of the energy functional at iteration k and g(k) =

{XlX = Ek o aig () Vai E R} be the subspace spanned by the gradient vectors from

iterations 0 through k. To generate 6c(k+1), we want to choose an orthogonal basis for

g(k). We have an orthogonal basis from iteration k for g(k-1), and g(k-1) c g(k) with

the dimensionality of the latter being 1 greater than that of the former. Hence we

can simply add g(k) to {d(0), ... , d(k-1)} to obtain a basis for g(k), and we can apply

Gram-Schmidt orthogonalization [70] to choose d(k). Doing this leads to the following

7 This can be partially alleviated using so-called quasi-Newton methods which slowly build up ap-

proximations to the Hessian as we progress through the iterations.
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relation:

d(k) _ _(k) ± ,(k)d(k-1) (2.70)
(g(k) 112

-= g(k-1)11 2 (2.71)

Note that this is true only if all of the stepsizes qr(k) for (2.51) are chosen through exact

line minimization. If approximate line minimization techniques or other methods such

as Armijo's Rule are used, we slowly lose Q-conjugacy, and the solver needs to be reset

every so often with a gradient step.

Conjugate gradient can also be adapted to general nonlinear functionals. One

method to accomplish this would be to construct a quadratic local approximation of

the energy functional and apply conjugate gradient to that. This has been found to not

work as effectively as more heuristic methods of choosing 3 (k) such as

, (g(k) - g(k-1))Tg(k)
)= - g (k-(1)2 .7

The general nonlinear conjugate gradient needs to be reset with a gradient descent step

every once in a while because conjugacy gets lost, even with exact line searches.

To see why conjugate gradient is much more effective than gradient descent, we note

two main results for quadratic optimization problems with convex energy functionals

(i.e., Q > 0). We define a manifold M(k) - { X - Ci(0) + Z Vz E g(k)}. We note that

g(k) is spanned by both {g(O),... g(k)} and {d( 0),...,d(k)}.

Theorem 2 (Expanding Manifold Theorem). Let ,(O) be any point in R' and

{&i),...,:(') } be generated by conjugate gradient with exact line search. Then

i(k) = arg min E(x) . (2.73)
xGM(k)

This theorem guarantees that after k iterations, we have found the optimum (when

Q > 0) over the manifold M(k- 1). The Expanding Manifold Theorem tells us why

we could make the claim that conjugate gradient solves convex quadratic optimization

problems of dimension n in exactly n iterations or less. If we do n conjugate gradient

steps, then we have an iterate :(n) that satisfies the following property:

i(n) - arg min E(x) . (2.74)
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We then note that M(n- 1) = R" , and we have thus found the global minimum. An

even stronger statement can be made. As noted by Bertsekas, conjugate gradient is

optimal for solvers with update equations of the form:

2(k+1) _ i(k) + (k)g(0) + ... ± ( 1 k)(k) (2.75)

Optimal in this sense means that conjugate gradient finds the coefficients y ) that

minimize E(&i() + yk)g(O) + ... + 7ykg(k)). Gradient descent falls in this framework

with (k) - 0 for i = 0, ... , k - 1.

Theorem 3. Let Q have n-k eigenvalues in the interval [a, b] and k eigenvalues greater

than b. Additionally let i (k+1) be the vector resulting from k + 1 steps of conjugate

gradient with initial vector e( 0) any vector in Rn. Then

E (.+(k+1)) < b-a 2 (.6
E(.,(O)) - b+ a

Theorem 3 is valid for the functional E(x) = IXTQx. It shows that each conjugate

gradient iteration eliminates the effect of the largest remaining eigenvalue of Q. This

property is true for general quadratic functionals as well but is more cumbersome no-

tationally. Many problems tend to have a few really large eigenvalues, and once those

are eliminated, convergence is very fast. This is observed in practice with conjugate

gradient having the tendency to take a couple of ineffective steps to begin with, and

then suddenly take a number of really fast steps.

Preconditioners

As discussed above, the convergence rate of techniques such as gradient descent and

conjugate gradient tend to be characterized by the condition number of the Q matrix.

For a non-invertible matrix, the linear system has no solution, and the condition number

is infinite. A matrix with a condition number of one is well-conditioned. The level sets

of the energy functional are hyperspheres and both gradient descent and conjugate

gradient will find the minimum in exactly one iteration (using exact line search).

The basic idea of using preconditioners is to replace the system Qx = a with another

system Q0 = et. We design the second linear system so that the answer it produces can

be used to get to the solution of the first system while also minimizing the condition

number of Q. This can be viewed as incorporating some knowledge of the curvature of

the problem (because Q is the Hessian of a quadratic problem).
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In order to do this, we transform the original linear system into a new set of coor-

dinates:

i = SX (2.77)

S should be symmetric and invertible. Then in order for both linear systems to be

equivalent subject to (2.77), the following need to be true:

Q = S--QS-1 (2.78)

a = S-a . (2.79)

If S = Q1/ 2 (Q is assumed to be positive definite so a square root always exists), then

Q = I, and the system is well-conditioned. The goal of using preconditioners is to

make S approximate Q1/ 2 while also making the operation computationally efficient.

Multigrid

The error for iterative solvers does not diminish in a uniform manner with respect

to frequency. The high-frequency errors diminish much more rapidly than the low-

frequency errors. The reason for this is that high-frequency errors are reflected in local

interactions while low-frequency errors result in more global interactions. Multigrid

attempts to address this issue [13,86] .

Multigrid is generally associated with non-gradient solvers such as Gauss-Seidel or

successive over-relaxation (SOR). There are many variations, but the essential idea is

that the low-frequency components of the solution converge faster when the problem

is sampled on a coarser grid, and, as an added bonus, iterations require less time to

compute. The classical multigrid techniques involve so-called V-cycles. One iteration

of the iterative solver is performed at the finest level. This is termed a presmoothing

step. The result of that iteration is resampled onto a coarser grid, and another step

of the iterative solver is performed. This is repeated until we reach the coarsest level

desired. Once that level is reached, the last iteration is interpolated onto a finer grid.

Then a step of the iterative solver is executed. This is called a postsmoothing step.

This is repeated until the finest level is reached. This entire process is called a V-cycle

because we begin at the finest level, descend to the coarsest, and rise back up to the

finest. The graph of this procedure looks like a "V". Multiple V-cycles are run until the

desired convergence level is achieved. Multigrid can be proven to have 0(n) complexity

properties. Many multigrid-like implementations do not go through multiple V-cycles
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because the transitions between levels can be costly in terms of computation. We will

use multigrid to refer to the class of algorithms that use a multiresolution representation

of the image and use the coarse representations to obtain the low-frequency components

of the final reconstruction.

Half-Quadratic Optimization

Half-quadratic optimization is a technique popularized by Geman and Reynolds [26]

and Geman and Yang [27]. Half-quadratic techniques can optimize problems of this

form:
NI

: = argminlAx- yj12 + CZ0(jTX) . (2.80)

We define a matrix L such that its ith row is 1T. We choose #(t) = ItIP to make this into

a ep regularization problem. Half-quadratic methods are more general than this, but

we are only interested in this special case. Note that gradient descent can also be used

to perform this optimization, but half-quadratic optimization has proven to be faster

empirically [78].

Let E be the energy functional we are trying to minimize in (2.80). We can define

an augmented cost function

N,

E(x, w) = l|Ax - y|l2 +a (Q(l4 x, wi) + V(wi)) (2.81)

where wi is the ith element of w, Q(t, w) is a function quadratic in terms of t, and (-) is

called the dual function. We choose Q(t, w) - t 2w to obtain the so-called multiplicative

form [54] of half-quadratic optimization. This makes the energy functional

N

&(x, w) = ljAx - y112 + ct(Lx)TW(k)(Lx) + a (wi) . (2.82)

The function 4(-) must be chosen to make the two energy functionals equivalent:

#(t) = |t|p = inf{t 2w + ,(w)} . (2.83)

Then the minimum of (2.81) occurs for the same argument as for (2.80). The equivalent

constraint written for 0(-) is

(W) = sup{Itlp - t 2 w} . (2.84)
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If p > 1, the problem is convex, and the limit exists. Hence we can replace inf and sup

in the preceding equations to min and max.

We can minimize (2.81) using coordinate descent. This is an iterative technique

that alternatively minimizes the energy with respect to x and w. Define a diagonal

matrix W such that the entries of w are along the diagonal. Then

N1  N1

-(k) -- arg min((k 1),w - argmin wil (k 1 )) 2 + Z (wi) (2.85)

=~k arg min E(x, W(k)) - argminliAx _ Y112 + (Lx)TW(k) (Lx) (2.86)
X X3

It turns out that the first optimization can be done element-by-element:

(k)lTX(k-1))W ( .xk (2.87)
21T(k-1)

The second optimization can be written in terms of a matrix inversion:

C(k) = (ATA + aLTW(k)L)-ATy . (2.88)

* 2.2 Magnetic Resonance Imaging

In this section we will discuss the physics of MR imaging. We begin by covering the

NMR effect and how the MR imaging process exploits it to provide data about the

tissue at the molecular level. We then discuss the sources of noise in the resulting

MR image and accurate statistical characterizations of the noise. We introduce the

bias field problem by explaining many of the systematic errors introduced in the MR

imaging process and the effects they have on the final MR images.

* 2.2.1 MR Physics

The nuclear magnetic resonance (NMR) effect was first observed separately by Bloch

et al. and Purcell et al. in 1946 [10,601. They observed that nuclei of different atoms

absorbed electromagnetic waves of different frequencies. MR imaging was developed in

the 1970s with Damadian et al. capturing the first whole-body image in 1977. It is

extremely popular in a variety of clinical settings for its excellent soft-tissue contrast

and imaging flexibility. One of the major deficiencies of computed tomography (CT)

is that all it can measure is tissue density. All details from this section are adapted

from [82] and [51].
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MR imaging generally deals with NMR of the hydrogen atom. The human body is

composed of 70% water of which each molecule contains two hydrogen atoms. In its

most common form, the hydrogen atom contains one proton and one electron. Quantum

mechanics tells us that the angular momentum or spin of the nucleus can take on one of

two values in the presence of an applied magnetic field B 0
8 : ±h/2 where h = h/27r and

h is Planck's constant. The strength of the applied field sets the distribution of positive

and negative spins. In practice, the excess number of protons with positive spin is very

small9 . Because the nucleus is positively charged, the spin causes a magnetic moment

which points in the same direction as the spin. The two properties are related by the

scale factor y which is referred to as the magnetogyric ratio. -y varies depending on the

atom being targeted. For hydrogen, -y = 42.57 MHz/T' 0 .

Without loss of generality, we will assume that B0 points in the z-direction. The

angular momentum of the nucleus does not point in the exact direction of B 0 , but

instead the spin wobbles around that direction like a spinning top. This wobble is called

precession. The Larmour equation tells us that the frequency of precession (known as

the Larmour frequency) is:

Wo = -7||Bol . (2.89)

This means that the frequency is proportional to the strength of the applied magnetic

field. This provides the key to MR imaging. Because we deal only with hydrogen

nuclei, y is constant. If we vary the intensity of Bo in space, the Larmour frequency

will then vary in space. This means that the response of different locations in space

will be encoded at different frequencies.

Once the large B0 field is in place, we apply a series of radio frequency (RF) pulses

to the system at the Larmour frequency. These RF pulses tip the net magnetization

vector into a coherent direction in the xy-plane. Once the pulses are applied, the

steady-state tendency of the system is to have all spins realigned with B0 . While that

occurs, the magnetization vector in the xy-plane will also destabilize. Both can be

8We deviate from our standard notation of using lower-case letters for vectors and upper-case letters

for matrices. The usage of Bo is so standard in the literature that it would simply be confusing trying

to use something else.
9The excess number of protons with positive spin is mainly a function of the strength of Bo. This

is why researchers continually attempt to increase the strength of the B0 field. The larger the excess

in positive-spin protons, the larger the observed NMR effect.
10 T represents the Tesla which is a unit of magnetic flux density. MR magnet strengths are often

specified in terms of the Tesla.
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approximated as exponentially decaying processes. The time constant associated with

the recovery of the longitudinal z-magnetization vector is referred to as T 1 . This is

known as spin-lattice relaxation. The time constant associated with the decay of the

transverse xy-magnetization is called T2 . This is known as spin-spin relaxation. These

values vary depending on tissue type.

In most commercial MR systems the B 0 field is generated using a superconducting

magnet. We can transmit and receive using the same coil, but generally separate

coils are used in order to maximize SNR. The transmitting coil begins sending its

pulses at time 0. At a time referred to as the time of echo (TE), we measure the

voltage in the receiving coil (Faraday's Law tells us that a voltage is induced by the

changing magnetic moment). The RF pulse sequence is usually repeated at an interval

TR. Spatial coherence is obtained through frequency encoding using gradients on B0 .
This variation in space is typically referred to as the B1 field. Because the spatially

distributed data are now located in the frequency domain (often called the k-space), we

can use the Fourier transform to recover the image data. Due to slight phase errors,
we typically obtain a complex-valued image. The absolute value of this image is used

as the final image.

The image intensity that we observe at a specific voxel can be described in terms of

two main imaging parameters (TE and TR) and three main intrinsic properties of the

tissue (T 1 , T2 , and the proton density p):

<(x) = p(x)e-T/T2()(1 - e-TR/T(m)) . (2.90)

This equation holds for spin-echo sequences. Other pulse sequences will produce differ-

ent dependencies on the imaging parameters.

By choosing a small TE and a large TR, the images we observe have little dependence

on T and T 2 and are termed PD-weighted. By choosing a small TE and a moderate TR,
there is little dependence on T 2 and the images are termed Ti-weighted. By choosing a

moderate TE and a large TR, we observe few effects from T and the images are called

T2 -weighted. Thus through appropriate manipulation of TE and TR, we can capture a

variety of images that will hopefully allow us to differentiate tissue types.

For our purposes the important thing is not absolute measure of these intrinsic tissue

properties. This is in contrast to, e.g., NMR spectroscopy which tries to examine the

fundamental properties of molecular structures. We just want our imaging process to

produce contrast among different tissue types. X-ray based CT is very good at depicting
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contrast between bone and soft tissue. However, most soft tissues have similar densities.

Properties such as T, and T 2 get more at the molecular structure of the organs and

hence can show good contrast between different tissue types, indicate the liquid vs.

solid content, depict some internal structure within organs, and even highlight tumors.

N 2.2.2 Noise

The radio frequency signals that are observed at the receiver are corrupted by thermal

noise which is accurately modeled as Gaussian-distributed and white. The data is then

Fourier transformed to convert from the k-space representation to spatial coordinates.

Because the Fourier transform is a linear transformation, the noise remains Gaussian at

the output. As mentioned earlier, due to phase encoding errors, the reconstructed image

will be complex. Thus there is white Gaussian noise on both the real and imaginary

components of the signal. When we take the absolute value of this, the noise becomes

Rician [61,66].

The Rician PDF is generated by taking the absolute value of the sum of two Gaussian

random variables with non-zero mean. It is often used in wireless communications to

model channel fading. Say that we observe two deterministic measurements corrupted

by additive Gaussian noise:

x, = pi + ni (2.91a)

X2 = /Z2 + n2  (2.91b)

where ni ~( (O, a 2 ) and n2 ~ M(0, U2 ). Then x, and x 2 are both Gaussian random

variables with x, A~(p-i, 2 ) and x 2 - K(P 2 , a 2 ). We define our Rician random

variable as r = Vxy + x2. This has a PDF of

rf.x (r 2±+A 2' (Ar\
pr(r) = a exp - 2 I (2.92)

a 2a (a

for r > 0. 1o is the zeroth-order modified Bessel function of the first kind:

Io(X) = I exp(xcos(9))dO

and A2 
= + p2

The total power of the signal is

P = E[r2] = E[x2 + x2] = P2 + a 2 + P2 + a 2 = A 2 + 2a 2
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The signal power is A 2 , and the noise power is 2U2. It is common to reparameterize the

Rician distribution in terms of the SNR. This is referred to as the k factor: k = A2 /2a 2 .

We can now summarize the equations that govern the relationships between k, P, A,
and o:

A2

k = 2A2 (2.94a)

P = A 2 + 2u2 (2.94b)

92 - (2.94c)2(k + 1)

A 2 - kP (2.94d)
k+1

This allows us to rewrite our PDF in terms of k and P:

2(k + 1) 2

pr(r) = /,. exp -(k + 1) - k) Io (2V/k(k + 1) . (2.95)

Even moments of r are easy to calculate, but computing odd moments is difficult

due to the square root. The general equation for the moments can be characterized

using the confluent hypergeometric function 1F1 and the gamma function F:

bn = E [r"] = (P)n/2F(1 + )1F1 (-a; 1; -k) . (2.96)

The confluent hypergeometric function is defined as

1F(a, b; z) F(b) 1 eZtta-1(j _ tgb-a-idt (2.97)
F (b - a)F(a) jo

and the gamma function as

F(x) j- tx-letdt . (2.98)

Numerical aspects of these functions can be found in [1].

When we are evaluating an even moment n = 2m, then all of the n/2 terms become

integers:

A2m = E [r2m] = )mr(m + 1) 1 F1 (-m; 1; -k) . (2.99)

For this special case, the confluent hypergeometric function can be described in terms

of the Laguerre polynomials:

1F1 (-in; 1; -k) = Lm(-k) = M . (2.100)
m -i i
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The gamma function can be viewed as a generalization of the factorial operation to the

entire real line. It has the following special property:

lF(x + 1) = x! for x Z . (2.101)

All other values of x must be evaluated using (2.98). Substituting (2.100) and (2.101)

into (2.99) shows that even moments are easily described using polynomial functions of

k and P (or alternatively A and a).

Regardless of whether the noise is Gaussian or Rician, high noise levels can signif-

icantly decrease the usability of medical imagery. The noise in the complex image is

thermal in nature and can be viewed as continuous white Gaussian noise in four di-

mensions (three spatial and time). We may maximize SNR by increasing acquisition

time, increasing voxel size, increasing coil sensitivity, and applying appropriate edge-

preserving filtering techniques. All of these methods have corresponding limitations.

As noted earlier on Page 52, the pulse sequence is usually repeated a few times with

the time between repetitions denoted as TR. The signals measured for each repetition

are then averaged to form the final k-space image. This results in the noise being

averaged over time, and the noise level can be viewed as being inversely proportional to

signal acquisition time. The main issue is increasing the number of excitations increases

the overall imaging time. This makes the scanning procedure more uncomfortable for

the patient and also proportionately increases image acquisition costs (time is money).

Additionally, longer imaging times increase the likelihood that the patient will shift

during the scanning procedure. For prostate imaging, the voxels may have dimensions

of about 0.5 x 0.5 x 3.0 mm. So even imperceptible movements by the patient can

result in significant blurring between voxels. In reality large patient movements are

fairly common and can result in fairly serious motion artifacts.

The digital MR image is sampled from the continuous signal in 3D voxels. Thus

the noise observed in each voxel is inversely proportional to the volume of the voxel

(relating to both intra-slice dimensions as well as slice thickness). In choosing voxel

size, there is a trade-off between noise and resolution. Larger voxels are desirable

due to noise considerations. Smaller voxels are good because they let users discern

finer-scaled structure. Larger voxels also suffer more from partial volume effects where

voxels on tissue boundaries contain more than one tissue type. This results in blurring

of intensities on tissue boundaries. For large objects such as the brain, the relevant

structures tend to be fairly large so the voxels can be commensurately large. Imaging
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small objects is more problematic. For a small object (e.g., the prostate) in order to

attain the same SNR possible for larger objects, a much wider FOV (relative to the size

of the object of interest) must be used. This can limit fine-scaled detail.

An immense number of filter techniques have been published in the literature, in-

cluding a method by Nowak [55] specifically designed for MR images. These filtering

techniques can take advantage of the locally-smooth nature of our data to reduce the

noise. Unfortunately there is a tradeoff between SNR and edge fidelity. Linear low-pass

filters are commonly employed to take advantage of the fact that white noise has a

uniform frequency spectrum whereas most of the energy in real images tends to be in

low-frequency bands. A linear filter can eliminate the noise in frequency bands where

the image and noise do not overlap but can only partially suppress the noise in re-

gions where they do overlap. Nonlinear filters such as the anisotropic diffusion method

of Perona and Malik [58] provide improved edge-preservation performance. Neverthe-

less without explicit foreknowledge of the edge locations, it is impossible to completely

prevent blurring of the edges.

Finally, rather than reduce the noise level, we can also increase the signal level to

boost SNR. The signal strength is proportional to the coil sensitivity which is a function

of space. Unfortunately, it is only possible to increase the sensitivity in a small region of

space while reducing the sensitivity in other regions [17]. A higher desired maximum coil

response results in more pronounced inhomogeneities. This spatially-varying sensitivity

is the primal cause of MR intensity inhomogeneities. We will discuss this further in the

next section.

* 2.2.3 Intensity Inhomogeneities

The MR bias problem occurs in all MR imaging applications. The extent with which

it occurs and the amount of correction that is needed varies from application to appli-

cation. Intensity inhomogeneities occur due to a large number of reasons [39]. Most

tissue has some magnetic susceptibility which can distort the magnetic field. The main

magnetic field BO is not truly uniform in space, and the slope of the gradient-encoding

field B 1 is not truly linear. The response of the transmitting coil (usually the body

coil) is not completely uniform. And, of course, the response of the receiving coil is also

not uniform, often very much so. The variations in BO and B 1 actually produce spatial

location errors rather than intensity errors. The other effects can be grouped into one
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spatially-varying function 3:

(x) = (x)s(x) . (2.102)

In this instance, sp is the function defined in (2.90) on page 52. We will refer to so as

the intrinsic image (using a term from computer vision [84]) or the true image. Bias

field, intensity inhomogeneity, and coil reception profile will be used interchangeably

to describe 3. We will concentrate on the effects caused by the inhomogeneity in the

receiving coil. In surface coil imaging, this effect dwarfs the other effects. The bias

differs from noise because it is a systematic error. Under identical scanning conditions,

the bias will remain unchanged while the noise will randomly fluctuate.

In some applications the body coil is used to receive the MR signal. In others a

surface coil is used. The problem with using the same coil to transmit and receive is that

different and largely incompatible design characteristics are desired for the two tasks

[51,82]. The transmitting coil needs to have as homogeneous a response as possible.

Inhomogeneities in that response have a highly nonlinear effect on the resulting image

without a commensurate gain in SNR1 1. The transmitting coil should also have a fairly

decent Q-factor [56]. The Q-factor describes how peaky the response is in the frequency

domain. High sensitivity near the Larmour frequency and low sensitivity for other

frequencies is desired, but the Q-factor should not be too high otherwise ringing will

occur in the pulse sequence. For the receiving coil, the main design consideration is

sensitivity in the region to be imaged. High Q-factors are desirable, and ringing is less

of a concern. Inhomogeneities are still unwanted, but maximizing SNR is the main goal.

Surface coils are coils that are placed very close to the object of interest [4]. They

exhibit a strong response close to the coil, and the response rapidly decreases with

distance. This maximizes SNR in the region of interest at the expense of intensity

homogeneity. Surface coils are widely used in a variety of applications such as the knee,

pelvis, and spine. Studies have shown that radiologists are more adept at ignoring the

bias field (in effect performing a mental bias correction) than they are at ignoring noise.

This leads to more accurate diagnosis [64]. There are a third class of receiving coils

typified by the head coil. The more general class is termed quadrature birdcage coils,

and they are a compromise between the higher signal levels of surface coils and the

homogeneity of body coils.

"There are also federal limitations in place that regulate the level of the transmitted MR signal to

prevent excessive tissue heating. These signal levels can be achieved using the body coil so higher gains

are unnecessary.
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Designing surface coils for most applications is relatively straightforward. Most

surface coils are just a loop of wire placed near the object of interest. To design a

surface coil for the prostate, however, some rather ingenious measures needed to be

taken [49, 65]. The prostate is embedded in the middle of the body with no direct

exposure to the outer surface. The coil used for the prostate is an endorectal coil which

is copper wire taped to the inside of a concave balloon. The balloon is inserted into the

rectum and inflated with the concave side facing towards the prostate. The concavity

allows the coil to tightly nest against the prostate.

Bias fields tend to be spatially smooth in nature. The strength of the bias field is

proportional to the norm of the magnetic field that would be induced by a constant

current running through the coil. This magnetic field can be described by the solution

to a vector Poisson's equation [17]. With a constant current, the solution is infinitely

differentiable (i.e., a member of C"). This means that there cannot be any discon-

tinuities in the field and imposes a certain amount of smoothness as well. When the

norm of the vector field is taken (which is an analytic operation), these properties are

preserved.

U 2.3 Intensity Correction Techniques

The fundamental problem with most approaches in the literature is that the bias field

and intrinsic image are simply not separable without more information. We know

a priori that the bias field is low frequency and smooth, and the intrinsic image is

piecewise smooth. This does not sufficiently restrict the space of possible solutions.

We can broadly classify existing bias correction techniques as retrospective or non-

retrospective. The non-retrospective techniques simplify the problem by altering the

scanning protocol to acquire more information. The various retrospective approaches

build in mechanisms that restrict the solution space to make the problem tractable.

This restriction can transform an ill-posed problem into a well-posed problem, but the

true solution is most likely not within the solution space anymore (an answer very

close to the true solution may remain). Some methods do linear filtering which ignores

the fact that the bias field and the intrinsic image are not separable in the frequency

domain. Others build bias field estimates in a parametric manner. Some recognize

that segmentation and bias correction are related problems and attempt to perform

simultaneous bias correction and segmentation.
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We add noise to (2.102) to generate the typical observation model:

)(x) = 0*(x)p*(x) + n(x) . (2.103)

We use /* and p* to refer to the true bias field and intrinsic image respectively. The

objective of bias correction algorithms is to estimate p*. This can be done through

directly estimating p* or by estimating /* to get p*. Many of these methods operate

on the log transform of these quantities. We will use the following notation:

)= log V(x) (2.104a)

*= log /*(x) (2.104b)

*= log *(x) (2.104c)

M 2.3.1 Classical Techniques

The traditional method for radiologists to manually compensate for dynamic range

issues in medical imagery is referred to as window/level. The window and level define a

function that maps values generated by the imaging process to grayscale intensities to be

displayed on a screen. In practice the window and level are used to specify an interval of

input values that are mapped onto the full range of grayscale values. Anything falling

below the interval is assigned to the lowest grayscale intensity, and anything higher

than the interval receives the highest grayscale intensity. There is a linear map for any

intensities inside the interval. The window value specifies the width of the interval,

and the level value specifies the center of the interval. It is essentially a two-parameter

gamma correction. This produces results that can cut off the worst effects of the bias

field and thus make the images accessible for human qualitative analysis.

The earliest computer-aided bias correction techniques relied on phantoms [5]. An

object with known intrinsic image (e.g., a water or oil phantom which have uniform

intensity in MR images) is placed in the MR machine with the surface coils appropriately

mounted. Scans of the phantom and the patient are taken, both received with the

surface coil. Because the intrinsic image for the phantom is known, we can get a good

estimate of the bias field. We can then use this bias field estimate to correct the scan

from the patient. There are a number of issues with this approach. Probably the most

serious concern is registration. The bias fields in the two images need to be at the same

location in order to provide adequate correction. This method also ignores loading

effects which can alter the bias field.
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The multiplicative effect of the bias field inspired many people to try homomorphic

filtering [56] solutions. If the noise is small compared to the signal level, after we take

the log we observe that

# + *() + () .(2.105)

The noise h in the log image is related in a complicated manner to 0*, 0*, and n, the

noise in the observed image. We know that /* is mainly comprised of low-frequency

components, and cp has some high-frequency components due to edges. Let h be a

kernel for a low-pass filter. Then we can estimate log/3* as

log 13(x) = h(x) * V (x) . (2.106)

The corrected image is then

-~z) = = (2.107)
(0) exp (h(x) * (x))

This filtering method can be seen as doing unsharp mask filtering in the log domain

and is commonly termed homomorphic unsharp mask (HUM) filtering. If p* and 0* are

separated in frequency, this method should be fairly effective. Unfortunately this tends

to be too optimistic of an assumption for real data, and the results from this method

tend to be fairly mediocre. As a slight variation on this, some methods will apply the

low-pass filter directly on the observed image:

0(x) = V* - * (2.108)
(X) h (x) * V)(x)

The results from both techniques tend to be similar.

Haselgrove and Prammer [33] were the first to apply these ideas using (2.108).

Lufkin et al. [48] applied homomorphic filtering using (2.107). Axel et al. [5] apply

homomorphic filtering and compare the results to those obtained using phantom-based

correction. They imaged a bag of saline for the phantom image and a wrist for the

test image. They observe that phantom correction provides much better results than

homomorphic filtering but is also much more difficult to use in a clinical setting. Gelber

et al. [25] apply homomorphic filtering to spine images. They have radiologists evaluate

the quality of the results, and, while filtering does not produce optimal results, the

radiologists thought it was better than no correction at all. Brinkmann et al. [14] assert
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that homomorphic unsharp filtering is the most prevalent method of bias correction and

link to a number of references. They construct brain phantoms by hand segmenting

real data and compute RMS error for a number of different choices for h. They find

that mean filters with wide kernels is most effective.

One of the many issues that homomorphic filtering has is that it tends to underes-

timate the bias field at tissue/air boundaries. There is no meaningful information in

0 about the bias field in those regions, and homomorphic filtering uses information in

local neighborhoods to make bias estimates. Wald et al. [80] attempt to correct this

using an edge-completed filter. They use a rudimentary thresholding scheme to discern

tissue/air boundaries and fill-in the air regions using nearby tissue intensities. The

bias field is then estimated on this modified observation image. Guillemaud [30] uses

normalized convolution to estimate the bias field. Let r(x) be 1 in tissue regions, 0 in

air regions (roughly estimated using a threshold). Then Guillemaud estimates 3* as

h(x) * '(x)#()) = exp . (2.109)

In regions far away from air boundaries, this behaves exactly like regular homomorphic

filtering. In regions near air boundaries, the pixels that contain air are ignored and

only the pixels in tissue regions are used construct the bias field estimate.

* 2.3.2 Parametric Methods

A number of techniques attempt to deal with the overwhelming number of degrees of

freedom by using parametric estimation techniques. In these methods the bias field is

represented as a sum of basis functions, and the bias correction algorithm only modifies

the parameters that control the sum. Generally an energy functional is constructed and

minimized to determine which parameters provide the best fit. A number of choices

are possible. Maintaining fidelity to the data with a f norm is a common choice due

to the computational aspects. In general, we would classify parametric techniques as

computationally efficient and stable but limited.

Dawant et al. [21] propose using a least-squares method to fit basis functions to the

bias field. They use thin-plate splines as example basis functions. The final bias estimate

is a linear combination of the basis functions with the weights chosen to minimize the

squared error at N reference points within one tissue class. The main assumption is

that intensity within that tissue class would be constant except for noise and bias.
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They detail manual and semi-automatic methods to select the fitted points. The latter

method has the user select a few initial points. Then the algorithm uses a neural network

classifier to select other points that it believes are in the same class. The parameters

are chosen to minimized the E2 error over the chosen control points.

Styner et al. [71] and Brechbiihler et al. [11] use orthogonal Legendre polynomials [1]

as a basis. They operate on the log transform of the image and assume that the true

image is piecewise constant. The user must specify the mean and noise variance of each

tissue class. They construct an energy functional that punishes at each pixel minimum

deviation from any of the class means. The error norm that they use can be viewed

as a smoothed eo norm in that it equally penalizes all errors above a small threshold.

They then use an evolutionary search algorithm to minimize the energy functional over

the polynomial weights.

Likar et al. [44,45] and Viola [77] postulate that adding the bias field to the un-

derlying true image increases the entropy (distributions that are "peaky" tend to have

lower entropy than smoother PDFs because the observations of this distribution are

more constrained). They parameterize the bias field using polynomials and find the

parameterization that minimizes the entropy of the reconstructed image.

A review of various correction techniques has been performed by Velthuizen et al.

[76]. Brain images captured using a head coil were processed using phantom corrections,
homomorphic unsharp filtering (with filtering being performed in both the image and log

domains), and Dawant's basis function method. The goal was to automatically measure

brain tumor volume. Segmentation was performed using a k-nearest neighbor approach

(kNN) and results were compared with an expert's segmentations. Surprisingly, the

method that produced the highest degree of correlation with the expert results was

that of not doing any correction at all. Dawant's technique trailed by a large margin,
and the other three techniques produced results similar to that of no correction. The

authors conclude that this may not be meaningful for general segmentation problems

because tumors tend to be small so the effect of slowly-varying bias fields may not be

significant. It is difficult to put much stock in these findings because without ground

truth, much of this analysis is subjective.

* 2.3.3 Non-Parametric Methods

More recently, a number of non-parametric techniques have been proposed which hope

to alleviate the difficulties in using parameterized representations of the bias field. Wang



et al. [81] address the issue of inter-scan inhomogeneities. MR images tend to be very

sensitive to environmental factors, and the actual intensities observed in an image can

vary from day to day even when using the same coil and scanner. They correct for this

by aligning the histograms from different scans.

Sled et al. [68] apply a log transform to the image which results in the bias becoming

additive. They observe that if p*(x) and 3*(x) are modeled as independent stationary

random processes, then (ignoring the noise) the PDF of O(x) is equal to the convolution

of the PDFs of @*(x) and /*(x):

p ('0) = p . (*) * p- ( *) . (2.110)

They approximate pg.(/*) as Gaussian. They then take an iterative approach where

they alternately deconvolve the PDF of the corrected image with a small Gaussian and

then use that PDF to do Bayes least-squares estimation of 3*(x).

Lai and Fang [42] operate on the log transform of the observed image and model

the intrinsic image as piecewise constant. Then, except at discontinuities in <p*, they

observe that

V (x) ~ V*(X) . (2.111)

In 2D, this leads to two linear equations for each pixel not on an edge, and the resulting

linear system can be solved to estimate 3*. Regularization is needed to minimize the

effect of the noise as well as to interpolate across edge boundaries and into regions

where little signal information is available (e.g., air-filled regions).

Vokurka et al. [79] have techniques to deal with inter-slice and intra-slice inhomo-

geneities. The inter-slice correction uses quadratic functions to parameterize the bias.

The intra-slice correction is a technique similar to Lai and Fang. The gradient of the

bias field is estimated from the gradient of the image in a more complex manner (i.e.,

not strict equality), and then the bias field estimate is constructed by integrating.

* 2.3.4 Simultaneous Segmentation and Bias Correction

Many approaches recognize the duality behind the segmentation and bias correction

problems. If perfect bias correction is available, segmentation becomes much easier. If

perfect tissue segmentation is available, then bias correction is simple. The methods in

this section alternate back and forth between bias correction and segmentation steps

with the result from one step helping to improve the results from the other.
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Meyer et al. [50] discuss a technique that uses the Liou-Chiu-Jain (LCJ) [47] seg-

mentation algorithm. The LCJ algorithm is edge-based and uses gradient values to

determine boundaries. An initial coarse segmentation is performed with relatively high

thresholds. The algorithm then attempts to fit a polynomial to each region in a least-

squares manner. If the error residual is too high, it lowers the threshold in that region

and subdivides it. Otherwise that region becomes part of the final segmentation. This

method produces a segmentation, and the polynomial error functions can be consid-

ered as the bias field estimate. This approach has a number of shortcomings. If the

true image is not piecewise constant, the bias field estimate will include variation from

the tissue texture. Also, it seems that the bias field will have discontinuities at tissue

boundaries because the algorithm constructs several local bias field estimates rather

than one global estimate.

Lee and Vannier [43] also use an existing algorithm that allows for piecewise smooth

segmented regions. They use an adaptive fuzzy k-means statistical classifier to segment

T1-weighted brain images (looking for regions of either gray or white matter). Tradi-

tional k-means clustering finds a mean value for each cluster. The authors make it

adaptive by defining local means that vary across a segment. The information from the

local means are propagated throughout the image with a low-pass filtering operation.

Wells et al. [85] use a statistical approach to estimate the bias field. They use the

expectation-maximization (EM) algorithm [22] to alternately optimize the segmentation

map and the bias field estimate on brain images. The bias field is modeled as a Gaussian

random vector, and the true image is modeled as piecewise-constant plus Gaussian noise.

This method requires initial probability density functions on all of the tissue classes in

the image as well as an initial bias field estimate. The E-step calculates the posterior

class probabilities, and the M-step computes the MAP estimate of the bias field for a

given set of tissue probabilities.

A number of techniques have been implemented to overcome shortcomings of the

method of Wells et al. Guillemaud and Brady [31] propose some extensions to better

deal with outliers and to provide better parameter initializations. In addition to a

class for each tissue, they introduce an "other" class that is uniformly distributed.

This prevents structure that is not explicitly modeled from corrupting the tissue class

probabilities. They also use an initialization that is similar to that of Likar et al. in that

they minimize the entropy for a parameterized representation of the bias field. Zhang

et al. [89] improve on the Gaussian assumption of Wells et al. They model the observed
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image as a Hidden Markov Model (HMM) with an underlying Markov Random Field

(MRF) that spatially couples the pixel probabilities.

The main issue with the EM-based segmenters is that a statistical classifier must be

able to segment the data in question. This is not practical for many applications such

as prostate segmentation where the intensity distributions inside and outside of the

object do not differ very much. Initialization and parameter selection is also an issue.

All the methods require relatively accurate prior models on the tissue classes. Despite

these difficulties, the key idea to take away from this section is that segmentation and

bias correction need not be independent tasks.

U 2.3.5 Non- Retrospective Techniques

A number of techniques have been proposed that we will term non-retrospective. These

methods require modifications to the actual imaging procedure and cannot be applied

to previously acquired MR images. A few techniques attempt to modify the imaging

coil. Foo et al. [24] propose using a special dielectric in the coil to reduce the bias effect.

Singh and NessAiver [67] use a special endorectal coil that contains an embedded tube

filled with oil. The oil shows up as strong intensities in the observed image, and these

marker points can then be used to pinpoint the exact location of the coil. This method is

not always applicable because the coil may not be in the FOV. Once the coil location is

known, the sensitivity profile can be computed using the Biot-Savart Law [17]. Moyher

et al. [52,53] apply a similar technique for brain imaging.

Other researchers capture additional scans beyond those required by the imaging

protocol. Liney et al. [46] propose a technique specific to the prostate. They claim that

capturing a proton density scan will give a good estimate of the bias field in the pelvic

region. Everything near the rectum is just soft tissue, so the hope is that the density

will be approximately homogeneous. Then the proton density image will behave just

like a phantom image to correct the bias.

Brey and Narayana [12] suggest capturing a low SNR image using the body coil and

capturing a high SNR image using the surface coil. The surface coil image is has low

noise near the coil but has a very pronounced coil artifact. The body coil image 4B is

essentially bias free1 2 but has a large amount of noise. We can minimize the effect of

1
2 We will discuss this assumption more in depth in Section 3.1.1.
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the noise by low-pass filtering both of the images by a kernel h:

h(x) * 's(x) h(x) * (I3*(x)p*(x)) (2.112)

h(x) h (X) ~ (x) * p*(x) . (2.113)

The bias field is then estimated as the ratio of the filtered surface coil image to the

filtered body coil image:

h(x) * Vs (x) _)*(*( _p*())

= h(x) * /B (X) h(x) * *(x) (2.114)

Thus we see that if filtering by h(x) does not disturb /*(x)*(x) and 0*(x) very much,

/3(x) will be a very good approximation to 3*(x).

Lai and Fang [41] take a more sophisticated approach. They take the ratio of the

surface coil image to the body coil image and select a number of control points which

they believe accurately represent the bias field. They then fit a thin membrane model

to those points to interpolate over the rest of the image. Pruessmann et al. [59] take a

similar approach except they fit a local polynomial at every point in the image. Both

of these methods have the effect of producing smoother and more accurate sensitivity

profiles, but, as we shall see later, the method of Brey and Narayana actually produces

very respectable results.
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Chapter 3

Bias Correction

T HE near-field effect causes MR signal strength to be greatly increased close to the

surface coil. This results in a multiplicative bias field which can impair image

analysis. Most traditional bias correction techniques attempt to estimate the bias field

directly from the MR surface coil image without any other information. In general,

the approaches in the literature have major shortcomings. It is difficult to separate the

bias field from the underlying structure without significant operator involvement. Our

approach is to use side information to help us correct for the bias in a fully automated

fashion.

Our method corrects the intensity inhomogeneities present in MR surface coil images

by using simultaneous or near-simultaneous capture of body and surface coil images.

We start from the basic imaging framework used by Brey and Narayana [12]. We have

access to two images that are functions of the true underlying signal. One is corrupted

by a significant bias field but has little noise, and the other is corrupted by heavy noise

but has no bias field. We wish to recover estimates 0 and 4 of the intrinsic image <p*

and the bias field ,3* such that 0 is compatible with the observed intensities in the body

coil image; the product of 3 and 0 is compatible with the observed surface coil image;

and 0 and 3 satisfy predetermined smoothness constraints. Our approach differs from

Brey and Narayana in that we attack the problem from a first-principles variational

approach. This allows us to not only obtain reasonable-looking estimates, but also

allows us to understand the nature of the errors we make in the estimation process.

Our framework also allows us to generalize to problems that cannot be easily handled

using Brey and Narayana's technique.
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S 3.1 Observation Model

In this section, we will formulate a model for the imaging process that we observe. Our

imaging processing at the moment employs near-simultaneous image acquisition. Both

acquisitions use the body coil to transmit the RF pulse sequence. Then we use the

body coil to receive the signal in one image, and we use the surface coil to capture the

other image.

It is possible to simultaneously capture images using both the body coil and the

surface coil, but we would not get the results that we desire. When multiple coils

are active, the magnetic fields that they receive are determined not just by the self

inductance of the coil, but also the mutual inductance between all of the coils [17].

There has been work done to receive multiple surface coil images simultaneously, but

these coil arrays need to be carefully crafted to minimize mutual induction between

the coils [62]. It is not possible to uncouple the body coil from the other coils (which

are fully contained within the body coil). Hence if we tried to simultaneously acquire

data from the body coil and the surface coils, the image received by the body coil will

be partially determined by the surface coil and vice versa. This is clearly not useful

because we never have access to an image that is not influenced by the surface coil.

This need to capture the images sequentially poses a few problems. The recon-

structed image will be more prone to motion artifacts because we are basing the image

off of a time interval that is twice as long as would be the case if we only had a surface

coil capture. It may also be possible for the patient to shift slightly between scans.

This could cause misregistration between the two images. Also the longer imaging time

increases patient discomfort and imaging costs.

In both images, the same imaging pulse sequence is used-the only difference is

which coils are activated to receive. It is possible to vary the number of excitations

(NEX) in the different scans. Thus we can capture a normal surface coil image and a

body coil image with fewer excitations. This will make the body coil image noisier but

will reduce the image acquisition time. The coil that is inactive must have its receiving

circuit be open so as to not interfere with the other coil. The patient is not moved nor

is anything else in the imaging FOV. This means that the surface coils are still present

when we capture the body coil images. This is very important in applications such

as prostate imaging. The endorectal coil that is used in prostate imaging is mounted

inside a balloon that is inflated and inserted into the rectum. The balloon will actually
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change the shape of the rectum and surrounding tissue. In order for the body coil image

and surface coil image to be properly registered, it is important to leave the coil in the

body.

* 3.1.1 Signal model

We recall that the intrinsic MR signal can be written in terms of operator-determined

parameters (TE,TR) and tissue-dependent parameters (p, T 1 , T2 ) (see (2.90) on Page

52):

<p*(x) = p(x)e-TE T2 ( -TR /1 (31)

We will refer to this signal as the true signal or, to borrow a term from the computer

vision literature, the intrinsic signal. The observed signal is then the product of the

intrinsic signal with the receiving coil's sensitivity profile plus additive noise.

We assume that the sensitivity profile for the body coil is largely homogeneous

in the ROI. Because the body coil is also the transmitting coil, its most important

characteristic is uniform sensitivity. For something like the prostate where the ROI is

on the order of centimeters, this uniformity assumption is probably true. For larger

objects such as the brain or spine, this assumption is more questionable. We will show

later in this section that not accounting for this effect will simply result in an error

equal to the body coil inhomogeneity.

We observe a body coil image i'B and a surface coil image V's and wish to obtain

estimates of the true image <p* and the bias field 3*. We can either view 'is and

OB as continuous random processes or discrete random vectors. From a continuous

perspective, 0s and 4'B are both maps from Q -- R (where Q C Rd and d is the

dimensionality of the image):

'B kp* (x) + nB(x) (3.2a)

os(x) = #*()9(*()+ns(X) (3.2b)

x E Q

where k is an arbitrary scale factor and nB and ns are white noise. We then wish to

estimate the continuous functions Vp* and 3*. For a 2D image, Q is generally a square

but can be rectangular. We will term its dimensions as N x M (width and height). For

a 3D volume, we will refer to the dimensions as N x M x 0.
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Note that if we wished to accurately model our observations, we should have the

following relationship for the body coil image:

OB (X) = 3B(x) *(x) + nB(x) (3-3)

where 3B is the sensitivity profile of the body coil. When the sensitivity is perfectly

homogeneous, this simply reduces to (3.2a). Otherwise we can make the following

transformation to see the result of neglecting this effect:

(X) = 3B(X)W*(X) (3.4a)

,3(x) = 3*(X)/OB(X) (3.4b)

B(X) = @(x) + nB(X) (3.4c)

s(x) = /(x)3(x) + ns(x) . (3.4d)

So we replace the estimation of V* and #* with the estimation of p and /. The inho-

mogeneity from the body coil remains in our image estimate. But this inhomogeneity

is much less pronounced than the bias field from the surface coil, so at worst we replace

the large inhomogeneity with a much smaller one. Note that because both fB and 3*

are smooth, 3 is also smooth (for instance, if both /3B and 3* are differentiable, then /

is also differentiable at all points where 3B # 0).

From a discrete perspective, we can sample our continuous observations on a grid

with spacing 1. This results in a matrix size M x N. Generally it is easier to stack the

columns of the matrix into a vector. To do this, we form sampling vectors i and j:

i[n] = [n (3.5a)

j[n] = n mod N (3.5b)

n E {0, 1, ... , MN--1}

We then form observation vectors ys and YB and parameter vectors b* and f*:

YB [n OB(i [n], jn) (3-6a)

ys[n] =Os(i[n], j[n]) (3.6b)

b[n] = 0(i[n],j[n]) (3.6c)

f[n] = y(i[n],j[n]) . (3.6d)



We introduce two diagonal matrices B* and F* which have b* and f* respectively

as their diagonal entries. We can then formulate our observation model as

YB = kf*+nB (3.7a)

ys = B*f*+ns=F*b*+ns=b*of*+ns (3.7b)

where o is the Hadamard entrywise product.

E 3.1.2 Noise modeling

As mentioned in Section 2.2.2, MR images are the absolute value of a signal corrupted

by complex Gaussian noise. This results in the signal in the final image being Rician.

The signal and the noise cannot be readily separated here in a linear manner, but we

will establish some terminology here to allow some differentiation. Let us have a vector

x of n non-zero mean Gaussian random variables with the same variance U.2 . Then

x - Ar(pA, a.2 I). We can then define a Rician random variable r = v/xTx. We refer to

A 2 = ATiA as the signal power, na.2 as the noise power, and P = A 2 + nU.2 as the total

power. We can separate r into its deterministic and random components:

r=A+i . (3.8)

The PDF of f is just the PDF of r shifted by A. The noise terms that we defined earlier

(nB and ns) correspond to i. We will refer to the mean of f as the noise bias and the

variance as the noise variance.

Rician noise has a few aspects that makes it troublesome to deal with. The bias is

always positive, and the bias and variance depend upon the SNR at each voxel. This

makes it difficult to create unbiased estimators. The Rician PDF is unwieldy to work

with which makes it difficult to generate analytical results. For these reasons we treat

the noise as Gaussian and zero-mean in our algorithm. In high-SNR regions, Rician

noise is well approximated by a Gaussian random variable and non-zero bias, and the

bias asymptotically approaches zero. We examine two special limiting cases. When

A 2 - 0 then r is Rayleigh distributed with the following statistics:

E [r] = o- (3.9)

E [r 2] = 20.2 (3.10)

a 2 = (2- a) .2 (3.11)
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Figure 3.1. Plots versus k value of the (a) means of Gaussian and Rician random variables for a fixed

power level of P = 1 and (b) the bias (difference in the two means). The x-axis in both plots is in dB,

so (b) is a log-log plot.

Normalized bias 10% 3% 1% 0.3%

kdB value 4.4 dB 9.4 dB 14.2 dB 19.4 dB

Table 3.1. kdB value for half-decade intervals of normalized bias values

When A > a, then r is approximately Gaussian with the following statistics:

or2
E [r] ~ A+--E A+2A

E [r2] = A 2 + 2U2

2 2

(3.12)

(3.13)

(3.14)

Thus we see at one extreme when there is no signal, the bias is very large. At the other

extreme when the SNR is high, then the bias asymptotically approaches 0 while the

variance approaches a2 .

In Figure 3.1(a) we depict how E [r] and A vary with k for a fixed total power level.

We can see that as the signal level approaches zero, the mean of the Rician observation

plateaus at a very high level. Figure 3.1(b) plots the Rician bias which is the difference

between those two curves. At the right end of the curve (which is a log-log plot), we

see the bias decreasing almost linearly which reflects the fact that the bias at high

SNR is approximately 1/4k. Table 3.1 lists a number of SNR levels needed in order

5 10 150

(b)
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Figure 3.2. Plot versus k value of the Kullback-Leibler divergence between the Rician PDF and the

underlying Gaussian PDF for a fixed power level of P = 1.

to guarantee normalized bias values below a certain threshold. We define normalized

bias as the bias divided by the true signal level A. So even for reasonable SNR levels,

a moderate upward bias is introduced. This behavior can be irritating but is not a

huge concern in many applications. Often the actual value of the intrinsic image is

not of importance. The various tissues just need to appear different enough so we can

readily discern tissue boundaries. This upwards bias from the noise does not affect this

behavior.

The Kullback-Leibler (KL) divergence [20] can be viewed as a quasi-distancel mea-

sure between two PDFs:

D(pI p2 ) = Ep [log P2 . (3.15)

In Figure 3.2, we vary k and plot the KL divergence between a Rician PDF and its

underlying Gaussian PDF (.A/(A, a.2)) for a fixed P = 1. This distance measure is

affected both by the bias and the change in the shape of the PDF. We can see that the

KL divergence becomes quite small once we achieve SNR levels in the 10 dB range.

For surface coil images, the signal level near the coil is very high so the observed

noise tends to behave similarly to our Gaussian noise assumption. It is convenient that

the region near the coil is usually the part of greatest interest to us. It is difficult to

state any certainties about the behavior of the noise for body coil images because so

'We say quasi-distance because the KL divergence is not symmetric nor does it satisfy the triangle

inequality. Nonetheless, it does tend to behave as a monotonic map of a true distance function.

1I
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Figure 3.3. (a) Plot of Rician PDF with kdB = 7 and Gaussian PDF with same mean and

variance= 2(k1 . (b) Plot of log probabilities.

much can change from application to application. For the prostate, we have a SNR of

approximately 7 dB inside the gland for T2-weighted images. At this level, the noise is

fairly close to a Gaussian in shape, but there is a definite bias. For the heart and brain

images we present, the body coil images have SNR of about 20 dB. The bias at these

levels is quite small, and the noise is well approximated by a Gaussian.

In Figure 3.3(a) we plot a Rician PDF with parameter k = 7dB. Note that this is

a normalized Rician (P = 1) so the x-axis really represents r/vK7. We simultaneously

plot a Gaussian with the same mean2 and variance equal to 1/2(k + 1). This is the

variance of the underlying Gaussian process that generated the Rician process. We can

see that even at 7 dB, the two behave similarly except the Gaussian puts a slightly

higher weight in the middle and the Rician has heavier tails. Figure 3.3(b) plots the

log probabilities of the two processes to emphasize the differences at the tails. These

plots do not include the bias introduced by the Rician random variable. For k = 7dB,
the signal level is A = 0.9131. The mean of the Rician random variable is 0.9600

which results in a normalized bias of 5.1%. We can conclude that at 7 dB, using a

squared-error penalty (which a Gaussian noise assumption induces) is reasonable, but

our estimates will have a fairly significant upward bias.

2 We omit the bias in this graph to show how close the overall shape of the Rician PDF and a

Gaussian PDF are at this SNR level.

5
raussisn
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The most pronounced effect from the wrong noise model will occur in extremely

low SNR regions such as air-filled regions. This is where the KL divergence between

our assumed noise distribution and our actual noise distribution is at a maximum.

In air-filled regions, ignoring other signal distortions, the true value of the MR signal

should be uniformly zero. It is almost impossible for our imaging model to produce

proper estimates in this regime. Luckily, in most medical imaging applications, we do

not really care about the intensity values in air-filled regions. It is important that we

estimate low signal values there, but the actual number is unimportant.

* 3.2 Problem Formulation

Minimizing the noise and eliminating the bias field are two interrelated problems. If

noise was not an issue, we would simply use the body coil to capture images, and there

would not be a bias field. So in some sense, there is a trade-off we must make between

intensity homogeneity and SNR. Looking at equivalent body coil and surface coil images

(equivalent in the sense of imaging parameters), it is clear that once rudimentary bias

correction techniques are applied (such as window/level), surface coil images are much

more informative than body coil images in regions in close proximity to the coil. Due

to the many different types of surface coil configurations, image quality away from the

coil can range from terrible to moderate.

With our algorithm, we want to be able to get the best of both worlds: high SNR

and low intensity inhomogeneity. We use the body coil image to obtain intensity ho-

mogeneity, and we combine both the body coil and the surface coil images along with

non-linear filtering techniques to provide superior noise properties. Given our data

observation model derived in the previous section, we can now formulate a method to

estimate the intrinsic image and the bias field using a statistical approach. With appro-

priate regularization, this results in a bias correction algorithm that is non-parametric,

fully automatic, and robust. We begin by presenting our algorithm and discussing its

main features. We then use our observation model to show the statistical basis for our

variational formulation.

N 3.2.1 Variational Formulation

Our method is based on the following observations:

1. The body coil images are generally bias-free but noisy.
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2. The surface coil images have high SNR in the ROI but have strong intensity

inhomogeneities.

3. The bias field is a relatively slowly-varying function of space.

4. The bias field is only a function of the magnetic field profile of the surface coil

and is thus independent of tissue class.

Let W* be the intrinsic image we wish to recover and 0* be the actual intensity

profile of the surface coil. We use f* and b* to indicate the discrete counterparts. We

pose the estimation of p* and 3* as an optimization problem. We define an energy

functional:

E(y,/3) = EB(W) + AEs(W, 3) + aR 3 (13) + yR(w) (3.16)

where A, y, and a are positive weights. In a statistical framework, the optimal choice

of A is related to the noise variances of *s and 4'B. EB and ES are data fidelity terms

for /B and V/s respectively. R, and R,3 are regularization terms designed to impose

smoothness or piecewise-smoothness on # and / respectively.

We choose our optimal # and 3 as the functions that minimize E(W, 0):

~,3= arg min E(,3) . (3.17)

If our energy functional is specified correctly, then b W* and 3 3*. This uncon-

strained optimization can be viewed as the penalty version of a constrained optimization

problem:

= arg min EB(W) + AEs(W, 1) (3.18)

subject to R,(3) < ci

and R,(p) < C2 -

The regularization parameters a and -y are then the corresponding Lagrange multipliers

that make the constraints true.

We define our data fidelity terms as the L2 estimation errors:

EB(p) (V)B(x) - kp(x))2dx (3.19)

Es(p,,O) = (s(x) - #(x)P(x))2dx . (3.20)
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Without the regularizers, the minimization is a well-posed problem (in the sense

the solution is attainable and unique), but it produces a trivial result. Without any

constraints on or /, we see that the minimum of E is 0 and is achieved for b= VB/k

and / = kV's/ B.

As discussed in Section 2.1.2, there is a great deal of prior work on regularization for

ill-posed problems. We will use Tikhonov regularization (or, more generally, Lp-norms):

RZ(O) = jL,(p(x))||[dx (3.21)

R4(# = |L0(#(x))|||dx (3.22)

where Lo(-) and L3(.) are linear operators, and p and q are positive numbers chosen to

enforce desired properties in yo* and 3*. Derivative operators are common choices to

enforce smoothness. Nonlinear operators can be used, but they make the optimization

much more difficult.

These energy functionals can also be discretized for f, b, ys, and YB by using fP
norms:

EB(f) = (YB ]- 2  (3.23a)

Es(f,b) = Z(ys [n] - b[n]f [n]) 2  (3.23b)
n

f (f) = E|Lf (f)I[n]P (3.23c)
n

Rb(b) = ElLb(b)[n]l . (3.23d)
n

These can be written equivalently in vector notation:

EB(f) = IIYB - kf 112 (3.24a)

Es(f,b) = Iys-bo f||2  (3.24b)

7f(f) = lLffIIP (3.24c)

Rb(b) = ILbbIIq . (3.24d)

For the most part we will work with the discrete formulation. All of our observa-

tions are discrete to begin with, so even a continuous solution must be implemented

numerically. It is conceptually easier to deal with finite vectors than infinite function

spaces. We will also see how our discrete formulation allows us to apply some powerful

computational tools.
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N 3.2.2 ML Estimation

For simplicity, we will formulate the results in this section from a discrete perspective.

We can rewrite our discrete observation model as

y= (yB _) =t

ys

where pt is the mean vector defined as

kf

b o f

and n is modeled as zero-mean Gaussian independent and identically distributed (ID)

white noise with covariance matrix

0 o
Then the PDF for y is:

py (y; f, b) = (( 2 7r)2MN 1 )l/ 2 exp (- (y - p)T l-

and, ignoring the constant terms, we write the log likelihood as

logpy(y; f, b) = - | IyB - kfI2 - yIs - bo f1 2  (3.25)

For ML estimation, we choose our parameter estimates as to maximize the log

likelihood:

fb = argmaxlogpy(y;f,b)
f,b

= arg min jYB - kfI12 + 1|ys - b o f112
f,b UB

= argmin (yVB[n] - kf[n])2 + (yS [n] - b[n]f[n])2 . (3.26)
f,b n s

So we can see minimizing (3.16) with no regularization is identical to performing

ML estimation with a Gaussian noise assumption and A = a2//a2.

0 3.2.3 MAP Estimation

The above formulation did not take advantage of any prior knowledge we have about f*
and b*. For instance, we know that b* is smooth. We can add spatial priors to j and 6
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by assigning them Gaussian probability densities. Let f ~ I(, Ef) and b - K(O, Eb).

The E matrices are chosen so that the entries appropriately model the local interactions

of f and b. Note that it does not really make sense to view b and f as Gaussian since

both are always non-negative. We will address this concern later in this section.

We apply Bayes' Rule and maximize the posterior probability for f and b condi-

tioned on observing y:

f,b = argmaxlogpf,b(f,bjy)
f,b

= arg max log [Pyjf,b(yjf, b)Pf,b(f, b)]
f,b

= arg maxlog p1 yf,b(yjf, b) + log pf(f) + logpb(b)
f,b

= arg min ryB+ bT b (3.27)
f,b - k + s f b

Note that this is in the same form as (3.24) with p = q = 2, Lb and Lf as linear

operators (i.e., matrices), E- = LTLb, and E LTLf.

This factorization exists for any valid covariance matrix (see Appendix A). Be-

cause the covariance matrices are symmetric and positive definite, their inverses have

a Cholesky factorization E-1 = LLT (where L is lower triangular). They can also be

factored into the product of more arbitrary matrices by using an orthogonal matrix Q
to form L = HQ. Then F-' = LLT = (HQ)(HQ)T = HQQTHT = HHT. For

an arbitrary covariance matrix, it may be difficult or impossible to find a factorization

with an appropriate sparsity structure so that the Cholesky factorization corresponds

to a pleasant linear operator (for computational purposes). Thus we generally specify

a sparse linear operator that produces an approximation to the behavior of the true

covariance matrix.

An alternative view when the regularization terms are f2 norms is that (3.27) models

a distribution, not of b, but of a linear function applied to b. Then we can view this as

6 = Hbb, and thus we can see that we are assuming that b is Gaussian and IID with

a mean of zero and variance of 1/a. A similar argument can be applied for f. This

viewpoint can be useful in computing optimal choices for a and Y if we have ground

truth.

The f2 penalty that we apply to f is not ideal due to the presence of strongly defined

edges at tissue boundaries. These edges tend to create large derivative values. A typical

empirical distribution of some derivative of f would have tails that would be much

heavier than would be the case for a Gaussian distribution. Thus, using a Gaussian
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distribution overpenalizes large derivative values and has the effect of oversmoothing.

This is why it is better to use 4 norms with p < 1. A f1 norm applied to Lff carries

an implicit assumption that Lff is Laplacian distributed and IID with a mean of zero

and variance 2/y 2 . This is in some ways related to the work in understanding statistics

of natural images [35]. Here Huang and Mumford note that the best 4, norm to use in

conjunction with natural image derivatives is p = 0.55. We will use p = 1 because it

preserves convexity in the f-step.

* 3.2.4 Regularization

We briefly talked about a number of regularization techniques in Section 2.1.2. For our

continuous formulation, we use a Tikhonov approach with derivative operators because

there are a number of techniques that can be used to obtain stationary points [38,73].

The gradient operator penalizes any deviation from a constant field. This type of

regularization is sometimes referred to as the thin membrane model. Deviation from

a constant field is allowed but only when the evidence from the observed images is

sufficiently strong. We will show that for our problem, Euler-Lagrange tells us that

applying a L2 gradient regularizer is equivalent to solving a damped Poisson's equation.

The Laplacian operator penalizes curvature. It allows linear functions with zero energy

penalty. This type of regularization is associated with thin plate splines. Applying a

L2 Laplacian regularizer to our problem ends up being the same as solving a damped

inhomogeneous biharmonic equation.

For the discrete formulation, we can approximate derivative operators as finite dif-

ferences. This means that we can write derivatives as linear combinations of a local

neighborhood of each point. Because the linear combination is space invariant, the

derivative operator can be expressed as a linear filter and can be implemented using

convolution. An equivalent method would be to express it as a matrix (all linear oper-

ators can be expressed as a matrix). The exact form of the matrix will vary depending

on how we convert our image into an observation vector as well as the nature of our

boundary conditions (e.g., periodic, reflected, zero-padded). If we do it in the manner

discussed in Section 3.2.1 and simply stack the columns, the resulting matrix will be

sparse and banded. For the 1D case, the matrix is Toeplitz; for the 2D and higher case,
the matrix is block Toeplitz. Tikhonov regularization allows us to use our MAP inter-

pretation from the previous section. Regularization with f2 norms are the easiest to

handle computationally because they turn into linear terms when we take the gradient
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(a) (b) (c)

Table 3.2. Kernels for the x-derivative operator (dx) for the (a) double-sided case, (b) left-sided case,

and (c) right-sided case. The zero offset occurs in the middle of the kernel.

of the energy functional.

The gradient operator is actually composed of two operators (dx and dy) stacked

as a vector. In Table 3.2, we list possible kernels to implement an x-derivative approx-

imation. There are three reasonable choices we can make: double-sided, left-sided, and

right-sided. None of them are ideal. The double-sided approximation is nice because

it is symmetric with respect to the origin. Unfortunately it is wider than it needs to

be and does not incorporate the value of the current point in computing the deriva-

tive. The even-indexed pixels have derivatives that are independent of values from the

even-indexed pixels and similarly for the odd-indexed pixels. So we get the strange

situation where we are imposing a smoothness constraint for the odd-indexed pixels

and a separate one of the even-indexed pixels, and never the twain shall meet. Hence

when using a two-sided approximation, if this is the only spatial coupling that is used,

we are really solving two separate optimization problems over the even-indexed and

odd-indexed pixels. The single-sided derivatives avoid this problem, but the derivatives

are always off by half a pixel due to their asymmetry with respect to zero. For instance,

let f(x) = x2 . We sample this function at unit intervals. The derivative at zero should

be zero. This is the case when using the double-sided approximation. But when using

the left-sided approximation, we compute that the derivative is -1, and when using

the right-sided approximation, we get a derivative of +1. The same issues occur for

y-derivatives. The kernels for those operators are the same as the x-derivative case,

except they are oriented vertically.

Table 3.3 contains the kernel for a Laplacian operator. Because the width of a

second derivative operator can be three, the symmetry issues that we experienced in

the first derivative case no longer exist. The biharmonic operator in Table 3.4 also has a

nice symmetry property. Our discrete formulation allows arbitrary linear convolutional

kernels to be used instead of the derivative operators we have discussed here. In fact

the linear operator does not need to be convolutional. There are no computational
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Table 3.3. Kernel for a 2D Laplacian

0 1 0

1 -4 1

0 1 0

(V 2 ) operator. The origin is located in the middle of the kernel.

0 0 1 0 0

0 2 -8 2 0

1 -8 20 -8 1

0 2 -8 2 0

0 0 1 0 0

Table 3.4. Kernel for a 2D biharmonic (V4 ) operator. The

kernel.

origin is located in the middle of the

constraints on our choice of linear operators, but to have it enforce smoothness, the

frequency response should be high-pass in nature.

By using these regularization techniques, we will usually end up biasing our answer

from the true answer. This is in general impossible to avoid because we will not know

a priori the correct model for either the bias field or the intrinsic image. All we can

really hope to do is to pick a model that is computationally tractable and approximates

the true distributions as closely as possible.

E 3.3 Solutions

This section details the solution to the optimization problem defined in Section 3.2.1.

As detailed earlier, the solution to the energy functional with no regularization term

can be easily found in closed form, but it is not useful. If we formulate the problem

as continuous estimation, we must use the calculus of variations to find a stationary

point. If we formulate the problem as discrete estimation, we find that we can write

the necessary conditions for the existence of a minimum in terms of a pair of coupled

sparse linear systems. A closed-form solution for simultaneously obtaining both f and

I is not possible, so we are forced to turn to an iterative scheme to find a solution.

In the algorithms we will present, we always minimize our energy functional using

coordinate descent. This is a technique that can be used to optimize a function of
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several variables. It is useful in problems where computing solutions over all of the

variables is difficult, but computing solutions over a subset of the variables is easy. The

idea is to successively iterate over different subsets of the variables (making sure that

each variable is in at least one subset) and hope that the result converges. It is easy

to create special cases where this technique will break, but in practice this is a well-

behaved method. In our problem, solving for either 0 or / individually is easy. Finding

the minimum simultaneously over both is not as clean. We will refer to a sub-iteration

where we update @ as an f-step and a sub-iteration where we update 3 as a b-step.

For our discrete iterative methods, we use 6(k) to indicate our estimate of b* at

iteration k. We indicate our initialization using 6(o. Similar notation holds for f(k)
and other parameters that arise in the iterations. For the continuous iterative methods,

we use the notation P) to indicate our estimate of 1 at time t. Time begins at t = 0,
and we set (O) to our initialization (initial conditions for the PDE).

* 3.3.1 Parameter Estimation

There are a large number of parameters that need to be set in (3.16): A, a, -y, p, q, and

k. Selection of the proper , and tq norms is probably the most fundamental decision

because they directly affect the type of features we are looking for, not just how strongly

we look for them. The choice of p and q should be a conscious decision in the modeling

process.

Through experimentation, we have found that our solutions are relatively resistant

to incorrect selection of the weighting parameters. Being off by a factor of 2 in one

of the parameters may result in a suboptimal image, but the method does not have

convergence issues and the result still looks reasonable. With real data, there is no such

thing as a "right" answer, so we can tune the parameters to highlight features that

we want in the resulting output. Incorrect specification of A will result in higher noise

variance in the estimated image. Small errors in A generally will not affect 3 because

the regularization term allows us to smooth over the extra noise. Incorrect specification

of a or -y are fairly decoupled. Changing a will have a fairly dramatic effect on 3 but

does not impact b much and vice versa.

As shown in Section 3.2.2, if we wish to formulate things from a statistical viewpoint,

we should set the weighting parameter between the two data fidelity terms as A = a2/a .

We can see that this choice penalizes errors in high variance measurements less than

in low variance measurements. In Section 3.3.4 we show how this term becomes a
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weighting factor when combining YB and Ys into f.
In order to properly estimate UB and os, we use the observation from Nowak [55]

that the true signal should be uniformly zero in air-filled regions. Thus the variance

of the underlying complex Gaussian process can be estimated from the second moment

of the observed Rayleigh noise in air-filled regions. Because second-order statistics of

Rician random variables are easy to calculate in general, this technique is not necessarily

restricted to air-filled regions. But it is difficult to find other large regions that we can

guarantee to have homogenous intensity values.

Air-filled regions are present in nearly all imaging applications. Most scans (e.g.,
brain, breast, and spine) include the body part centered in the frame with air surround-

ing the outside of the body. Others (e.g., prostate and rectum) have an air cavity inside

the body adjacent to the object of interest. In fact, if no air-filled regions were present

in the image, there would not be any place for the surface coil to go. In practice, these

air-filled regions are not homogeneous due to ghosting that results from patient move-

ment and other artifacts. This adversely affects our noise estimates but in a manner

that is difficult to quantify. If many scans are taken using the exact same imaging

protocol, the noise parameters should be the identical across the data sets. We can

then obtain more reliable estimates of the noise parameters by averaging our estimates

from each separate data set.

We recall that the second moment of a Rician random variable r was derived in

Section 2.2.2 (and repeated here for convenience):

E [r2] = A 2 + 2, 2 . (3.28)

A 2 is the power of the noiseless signal, and ,2 is the variance of each Gaussian noise

component. We define a subset A={ili an air-filled location in space}. A 2 = 0 in

air-filled regions, and we get the following estimate of t7 for body coil images:

0' = 21A [Bi]2B = 2 1I 1YBi1 . (3.29)
iE A

Note that because we do this in a region with zero intensity, the bias field has no effect,
and we can also perform this technique on surface coil images.

The proper choice of k directly affects the proper choice of a and -Y. Generally this

k value will arise in situations where the overall 'B and V/s images have been scaled by

different factors. The actual scale factors do not matter because we do not care if the
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final image is scaled by some unknown number. All that we are concerned with are the

relative scale factors. We can thus arbitrarily fix the scale factor for 's at 1 and call k

the scale factor for z/B.

Let 0/ be the body coil image if k = 1 and OB be the body coil image we actually

observe. Then we get the following equation:

OB(X) = kb ((x) = k(o*(x) + n* (x)) = kW*(x) + nB(x) . (3-30)

We see that we should scale the noise variance r2 by k2 to obtain the variance of nB
If we estimate that noise variance directly from the observed image OB, then the scale

factor will be built into our estimate, and we only need to concern ourselves with the

effect of k as in our original model formulation.

Say that we choose the wrong value for k, k = rk. Then we see OB but think we see

IB(x) = ky(x) + nB (X) = k (x) + nB(X) (3-31)

where 3 = rp. So we actually estimate 3 instead of p.

At first glance, this would not appear to be a problem. We already stated that

scaling the final result by an arbitrary (and unknown) scale factor does not matter. An

issue arises in the choices of a and -y. Imagine a scenario where we have no noise. Then

we would produce the following estimates for y and 3:

O(x) = (X) (X) (3.32a)
k

3() = ks(X r3(x) . (3.32b)
OB(X)

If we choose a and y assuming k but actually having k, we end up having a being

off by a factor of Trq and y being off by a factor of 1/TP. Say r > 1. Then by choosing

the wrong k, we end up over-regularizing 3 and under-regularizing ('. The opposite is

true for r < 1. Thus the sensitivity to error in k is solely determined by sensitivity to

error in a and y.

As we discussed in Section 3.2.3, one way to view the regularization parameter for

the discrete formulation is as an IID statistical prior on derivatives of our fields f and

b. A f, norm imposes a zero-mean Laplacian prior on the derivative while a f2 norm

imposes a zero-mean Gaussian prior. The regularization parameters a and -y can then

be interpreted from a statistical viewpoint as having some relationship to the variance

we expect to see in our fields.
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We will only address the choice of a here. Arguments for the choice of 7 can be

made in the same manner. Let L represent our derivative operator (or, more generally,

linear operator). For a £2 penalty on f>, a = a/o 2 where U2 is the variance of Lb*.

Ordinarily the weight would be 1/2or2 from the Gaussian PDF. We only use three weight

parameters for the four terms in our energy functional (3.16) by normalizing by 1/2U2

which would otherwise appear as the weight for the body coil data fidelity term. The

inverse relationship to the variance of Lb* properly reflects the fact that if we know

that there are many high derivative values, then we should penalize large derivative

values less.

Perhaps the best way to compute a would be to have some training data consisting

of known bias profiles of the surface coil we are employing. We could then apply our

derivative operators to these bias fields and calculate the sample statistics and use these

values in our algorithm. In the absence of training data, there is not really a good way

to estimate these parameters from the data. If we attempt to estimate a from an

initial estimate of b*, we are then forcing our final bias field estimate to have similar

smoothness properties as this rough estimate.

There is a technique in the literature for regularization parameter selection called the

L-curve [7,32]. The method is based on the following observation: close to the optimal

value, to one side the regularization energy is very sensitive to the regularization penalty

while the data fidelity term is relatively insensitive; the opposite is true on the other

side. Hence we can find the optimum choice by looking for the point where this change

occurs. This method is not theoretically justified and its asymptotic behavior is proven

to give incorrect results. Nonetheless, it seems to provide good results in practice.

Another common ad hoc method is manually adjusting the regularization penalty until

desirable results are achieved. This can be useful when automatic techniques fail. This

may still be incorporated into a fully automatic algorithm if training data are available,
and the data produce a consistent choice for the regularization penalty (or a consistent

relationship can be easily calculated).

E 3.3.2 Initial Values

All of the techniques that we will describe require initial guesses to begin the iterative

solver. The performance and behavior of the solvers can be greatly impacted by our

choice of initializations. The closer we start to the correct answer, the less time it will

take to converge to the global minimum and the less likely it will be to get caught in
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local minima. Here we will just briefly mention a few techniques that can be used to

initialize our algorithm.

If we look at our measurement model, the obvious choice for 0(o) is to take $B,

put it through a low-pass filter, and divide by k. This will help average out the noise

at the expense of blurring across regions and losing some edge information. We can

also use VPs to generate c(0) by dividing by (O), but it may be better at first to begin

with an estimate that is explicitly bias free. If we were confident that (O) does a good

job correcting ?Ps, then the problem would be solved. Additional problems can arise

in areas that are far away from the surface coil. At these points, the sensitivity of the

surface coil is very low and the noise will overwhelm the signal.

Our choice for (3(O) was simple because we have access to a signal that is just p*
corrupted by additive noise. It is not quite as simple for the bias field because we do not

have access to 3* isolated from W*. Generating a good (O) is equivalent to generating a

good estimate of 3*. So we can apply other techniques already in the literature to create

(O). We have already discussed a variety of methods in Section 2.3. Most techniques

in the literature require either significant computation or user involvement. We desire

for the initialization calculations to be much less than the computation required for the

remainder of the algorithm, and one of the goals of our algorithm is to have zero user

input.

The simplest of the techniques to apply is homomorphic unsharp mask filtering.

Using this method, we set (O) as the result of a low-pass linear filter applied to either

0s or log(4Os). This method ignores the extra data that we have available in V)B.

Homomorphic filtering will hopefully minimize the noise and give us the low frequency

part of the product of 3* and W*. This results in our initial bias estimate still having a

lot of tissue dependence.

A more effective technique is to apply the method of Brey and Narayana. This

method utilizes both the surface coil image and the body coil image to generate an

estimate of the bias field. This method actually produces very good results and is only

slightly more complicated than homomorphic filtering. To generate (o) we need to

apply low-pass filters to both os and V/B and divide the results.

One thing we notice using these initializers is that we do not get a good estimate

of 3* in regions where W* is near zero-we are unable to observe the effects of the bias

field due to the lack of signal intensity. So when we run our solver on this, it takes

a while for the bias to propagate into the air-filled regions. This is especially evident
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when using a large a which imposes a lot of spatial smoothness. One solution to this

is to estimate i(O) from the images only in regions where V)B is large. In the regions

where V)B is small, we interpolate the bias field from the part where we have meaningful

observations. Essentially we fill in the missing data such that the regularization term

is minimized. This interpolation does not affect the rest of the energy functional. The

data fidelity term for OB does not involve 1. Assuming we have a reasonable estimate

for W*, the data fidelity term for 0s should also be unaffected. 0 should be small in

these regions which mitigates the effects of errors in 3. For a Laplacian penalty, this

initialization is equivalent to solving Laplace's equation with boundary conditions. For

a gradient penalty, it is impossible to get zero energy from air-filled regions unless all

of the values on the boundary are exactly the same. So we seek to minimize |IL,130i

by altering the values within the air-filled region. When q = 2, we can minimize the

energy by again solving Laplace's equation.

There is also the question of whether we wish to begin on a f-step or a b-step.

Generally we will want to begin on the step that corresponds to whichever initialization

we have the least confidence in (i.e., if we trust 0(0) more than we trust 3(0), then we

should keep 0(o) and begin on a b-step). This is because we use /3 to compute 0 and

vice versa. If we are not very confident in (0), then there is little point in starting on

a f-step and propagating our uncertainty in (O) into 0. In general, the choice of which

step to begin with does not affect whether the algorithm will converge. But it can affect

how quickly we converge.

The A in (3.16) should reflect the total uncertainty we have in our estimates of 4'B

and V)s. When 0 and 1 are close to V* and 3*, most of the uncertainty will be noise. In

this case we should primarily determine A from the noise variances. We should generally

determine A based on the total estimation error, not just that due to noise. This is

relevant in our algorithm because we minimize our energy functional using coordinate

descent. In this method, we alternately iterate over 3 and 0 while fixing the other

variable. So when we minimize (3.16) over 1 assuming 0, we should account both for

the uncertainty in our measurement of 0s and the uncertainty in our estimate 0. It

is difficult to do this quantitatively because a lot of the uncertainty in 0 comes from

the noise in V)B and 0S. But the idea we should take from this is that when estimating

P* at the beginning of the algorithm, we are better off putting more emphasis on the

data fidelity with OB than with 0s because the latter can be heavily influenced by an

incorrect 1. Generally this is not as big of an issue with 3 because we know we can get
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reliable estimates of W* from OB-

M 3.3.3 Continuous variational solution

The calculus of variations was described in Section 2.1.3. We can use it to find functions

which minimize an energy functional. A stationary point can only occur at the solution

of the Euler-Lagrange equation. So we will construct the appropriate Euler-Lagrange

equations and solve the resulting PDEs. We will derive the appropriate equations for

gradient and Laplacian regularizers with L2 norms on / and @. In addition, we will

generate methods to solve minimization problems when using the TV-norm (gradient

penalty and a L, norm) on .

No regularization

We begin with a discussion of the solutions that occur for the no regularization case. The

unregularized solutions for both # and 3 later become components of the full solution

using regularization. We often implement the energy functional with no regularization

on 0. The reason for this is that the problem is sufficiently constrained by our body

coil observations-0 will not deviate significantly from bB . The implementation of

regularization on 0 will improve the results by reducing the noise, but it is not necessary

and slows down computational speed.

To minimize (3.16) with respect to W given / and -y = 0, we see that we only need

to minimize the following functional:

E(p) = EB(W)+AEs(p,0) (3.33)

f [('B (x) - kp(x))2 + A(,Os(x) - 4(X)W(x)) 2]dx . (3.34)

We can clearly see that given any x, and x 2 with x1 $ X2 , altering the value of

p(x) does not affect the choice of W(X 2). There is no spatial coupling. Hence we can

simply optimize E on a pointwise basis:

(X) = arg min ('B (x) - kp(x)) 2 + A (s(x) - /(x (x)) Vx E . (3.35)
()

Necessary and sufficient conditions for the minimum are that the first derivative is

zero and the second derivative is positive:

-dE = -2k(B(X) - kp(x)) - 2A/(x)(?s(x) - 4(x)W(x)) = 0 (3.36)

a 2 dE = 2k2 + 2A4 2 (X) . (3.37)
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Clearly the condition on the second derivative is always satisfied (for positive A),
and the condition on the first derivative is satisfied when

kVbB(X) + A(x)V/s(x)
k(x) = 

(3.38)k2 + A,32(X)

Note that when 3(x) > k, '(x) '4 Os(x)//3(x). When O(x) < k, @(x) ?B(x)/k. An

interesting observation we can make is that 0 is the noise-weighted convex combination

of OB/k and Os/ where the weighting factor in the combination is spatially varying.

The noise variance of VB/k is o/ 2 , and the noise variance of Vis(x)//(x) is Uj/S 2 (x)
So we can rewrite (3.38) as

(x) + (I - ))(3.39)

k22
@() 7) k2

(Bx)
.k2()k + k2 32(X) k _______

aB OS

This provides a natural way to combine both of our input images into our resulting

output image. The results that we obtain are similar to those obtained by Roemer et

al. [62]. We will discuss these connections in more detail in Section 3.4.3.

This reconstruction from both observation images is different than the method of

Brey and Narayana [12] which only uses the data from V/s to construct 0. Assuming

we know the optimal solution, then /= /* and the error variance of OBN is

E[(OBN(X) - P(x)) 2] = U2/0*2(X) . (3.40)

When /* is large, the error variance is small. When 3* is small, the error variance is

large. For our reconstruction using both images, the error variance is

2i /k 32 2(X )o2rr (x) = E[(O(x) - W*(x))2] = =./ka (3.41)
e + A/ 2 (x)/k 2  I + lk 2 /3* 2 (x)

When A > k2//* 2 (X),
2 2

2k2 err 2

When A < k2 13*2 (X),
2 2

S Cerr(X -'
2=* 2 (X) we seetha

Let c7
2

. - inu1/*2, 0-2/k 2 ) . Then we see that

1 nn 2 < Oe2rr < 0,22< err-- min (3.42)
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Thus we see that in the worst case-which occurs when one of the observation signals

is zero--we achieve variance equal to that of the best corrected image. In the best

case-which occurs when both corrected images have the same variance-we achieve

variance that is half that of the best corrected image. This boosts the SNR from 0 to 3

dB above that attainable by just using the best corrected image. While this may not be

a dramatic increase, it can be many dB better than the error achieved using the Brey

and Narayana method. In a location far from the surface coil, the variance of V)s/I3* is

much greater than the variance of OB/k. Brey and Narayana will achieve error variance

of oj/I3*2 (x) while our method will have error variance approximately equal to ol/k2

This can be a tremendous gain as we will demonstrate in Chapter 4

We can do a similar analysis for 3 with a = 0 and a given '. We can again optimize

E pointwise:

3() = arg min A (Vs(x) -- (X)0(x)) 2 V E . (3.43)

The derivatives are

-- dE = -2AO()( s() - O(x)#(x)) = 0 (3.44)
a'3

6dE = 2A (3.45)

and the solution is trivial to compute:

/3(x) - O's~ (3.46)
s(x)

Gradient regularization

We begin with the analysis on a b-step. In applying the Euler-Lagrange equation, we

can break the equation into two parts. One part corresponds to the data fidelity portions

of our energy functional, and the other corresponds to the regularization portion (we

make 0 implicit in J):

E(#) = J(x,,3)dx= J J . (3.47)

The first variation of J)Q with respect to / is zero, and the first variation of JfA

with respect to 3 is also zero. Therefore we can write the Euler-Lagrange differential

equation as

v- ( - - = data _=0 .(3.48)
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The first term of the equation is simply the derivative that we carried out earlier when

there was no regularization term. We see that when a = 0, this reduces into the same

condition on the first derivative that we observed previously.

For a gradient regularization with a L2 norm, we get the following equations (we

drop all terms that do not directly involve 0):

J'ata() = (OS - 0,3)2 (3.49a)

Jreg()=& |. (3.49b)

We take the first variations so we can form the Euler-Lagrange equation:

data = - 2 0(os - 00) (3.50a)

aJeg 2V/ . (3.50b)

Thus we conclude that a stationary point occurs when

-2AQ(4's - b33) - 2aV 20 = 0

= aV 20 - 20 = -A00s . (3.51)

This is a damped Poisson's equation for which a solution does not generally exist in

closed form. We can solve this numerically by introducing a time variable t and time

dependence into /:

d/3 )J -J+V=2A (4s -@ )+2aV 2  
. (3.52)dt 00 (00

In order to solve this equation, we set /(0, ) = g(O)(-) as our initial conditions. We can

then integrate both sides with respect to t to obtain our solution:

( = 0 d/3(t, x) dt + ()0 (x) . (3.53)
Jo dt

To actually implement this integration on a computer, we can approximate it as a

discrete sum. If / converges to a local minimum, - -- 0, so we only need to sum adt

finite number of terms. We must choose the step size so that it is small enough to ensure

that each gradient step is a descent step but large enough to minimize convergence time.

On a f-step, we can do the same analysis:

Jata(P) (OB - kp)2 + A(4's 2 (3.54a)

Jr'eg() = IV(PH 2 , (3.54b)
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and we arrive at the following PDE:

dy _ J 2A34' J (.5
-- = - + V - - 2k(4'B - kVW) + 2A ( s - 3) + 2yV 2  (3.55)
dt 0 p (00

t(0, -)= 0)

When we have a Li norm on a f-step (we omit the derivation for a b-step because

we do not use L, norms on the bias field), this only alters the regularization term:

Jr'eg (9 ) = IV (3.56)

The first variation with respect to 0 is:

&Jr~g -Vp

- . (3.57)

This results in the following gradient flow:

de(VWoI- 2k(B - ko) + 2A(,Os - p) + 2yV - (3.58)

0(0, )= 0)()

Laplacian regularization

We can follow the same analysis track for a Laplacian regularizer. As noted earlier,

the data fidelity term does not change with the regularization, so we can leave that

untouched. For a b-step, the only change we need to make is to the regularization term

Jfeg(#3) = (V 2 3)2 . (3.59)

We take the first variation with respect to f:

_____ = -2V (V 2
0l) .(3.60)

This results in the following gradient formulation:

-= 2A(Os - 0,3) - 2aV40 (3.61)d(

0(0, -)= (O)(.
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Note that if we do not add the time variable, the PDE that needs to be solved is an

inhomogeneous damped biharmonic equation.

We simply state the gradient flow for the f-step:

do- 2k(ObB - k~p) ± 2A,3QOs - i3p) - 2-yV 4(p (3.62)
dt

W(0, -)=04().

E 3.3.4 Discrete Solution

Instead of formulating our solution from a continuous problem and then using discrete

methods to implement the solution, we can model our problem as discrete and directly

proceed from there. There are many advantages for modeling the entire problem as

discrete rather than implementing a discrete/continuous hybrid. The discrete method

allows us to perform exact line searches at each gradient step. This not only makes

gradient descent more attractive, it also lets us apply more advanced gradient search

algorithms such as conjugate gradient with preconditioners. We gain a great deal more

flexibility in the regularization because the discrete framework easily extends to allow

any linear filter rather than the derivative operations we were limited to using in the

continuous solution. We will only deal with f 2 norms in this section. More general 4,
solutions are covered in Section 3.4.1.

Quadratic Subproblems

We write our discrete energy functional here for convenience, constructing it by substi-

tuting (3.24) into (3.16):

E(f, b) = IIYB - kfII 2 + AIlys - Bf|I2 + ac|LbbII 2 + -yLf f112 . (3.63)

For notational simplicity, we again use the diagonal matrices F and B which have f
and b respectively along the diagonals. The second term can be equivalently written in

terms of b by noting:

Ilys - Bf 112 = Ilys - Fb 2 . (3.64)

When we use f2 norms, all of the terms in our energy functional are quadratic. Thus

we have a quadratic optimization problem in terms of either f or b, but the overall

problem is complicated by the cross multiplication between f and b. Unfortunately,
the discrete energy functional does not lend itself easily to analysis. It can be shown
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that the discrete problem is non-convex due to the Hadamard product. But the problem

is much simpler in terms of just f or just b. We observe in (3.63) that if we hold b

constant (and thus B as well), E would be quadratic in terms of f. Similarly, using

(3.64), if f were a constant, then E would be quadratic in terms of b.

If we use a coordinate descent approach again, we find that the individual opti-

mization problems are much simpler and have nice properties. When we consider the

optimization of just one coordinate, we can put the energy functional into standard

quadratic form:

E(x) =.IXTQX - aTX + c (3.65)

where Q is a MNxMN matrix, a E RMN, and c E R.

For obtaining f with a given 6, we see that the energy functional is equivalent to

the following choices for Q and a (c is inconsequential):

= 2k 21 + 2AB + 2yLTLf (3.66)

af = 2 kYB + 2ABys . (3.67)

When y = 0, Qf is a diagonal matrix, and all of the values of f are decoupled from

each other. In general, Qf is a sparse and banded matrix when Lf implements a local

linear filter. The sparsity of Qf is determined by the width of the filter kernel.

For obtaining 6 (given f), we get the following for Q and a:

Qb = 2A2 + 2aLTLb (3.68)

ab 2A~ys . (3.69)

When a = 0, Qb is a diagonal matrix. Otherwise it will also be sparse and banded. An

interesting thing to note is that YB does not appear in the expressions for Qb and ab.

This is not to say that YB does not contain any useful information in estimating b. If

this were the case, we could save ourselves a great deal of trouble and not generate the

body coil images. All this tells us is that all the information that YB contains about

the bias field is contained in f.
The Q matrices are positive semi-definite so the subproblems are convex and have

nice convergence properties. Note that in certain degenerate cases, Qb is not invertible.

For instance, let P = 0. Then Qb = 2aLTLb. If Lb implements a derivative operator,

the nullspace should include constant vectors3 , and Lb is singular. Thus Qb is not

3A derivative is a local differential operator, so the derivative of a constant function should be zero.
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invertible. Qf does not have this problem due to the data fidelity term for the body

coil image. We will ignore this degenerate case and stipulate that we cannot initialize

our solver with fvh(0 ) = 0. Our iterative solver will not converge to a f that is zero

except in the degenerate case where both YB and ys are zero. In this case, there really

is not any information present in our observations. Thus except in rare instances, we

do not have existence problems for either of our quadratic subproblems.

Because each subproblem has a positive definite Q matrix, each subproblem is

strictly convex. Strict convexity implies that a unique global minimum exists (for a

specific choice of b or f and solving for the other variable), and any local minimum we

find is also the global minimum. The convexity can be seen if we compute the first and

second derivatives for quadratic functions:

VE(x) = Qx - a (3.70)

'=E(x)} Q . (3.71)

Both of our Q matrices are positive definite so the Hessian is positive definite which is

a necessary and sufficient condition for strict convexity.

Necessary and sufficient conditions for a local minimum are that the gradient is zero

and the Hessian is positive definite. We see that this occurs only when

Qx = a . (3.72)

We know Q > 0, so it is invertible. We can write the solution as

Q-'a (3.73)

which is unique.

Unfortunately Q tends to be a large matrix for realistic data sets (e.g., a 256x256

image generates a Q matrix that is 65536x65536 and has over four billion entries). The

sparsity of Q makes it feasible to compute and store, but it is still computationally

difficult to generate the inverse. There are 2MN variables in the linear system and

directly solving the linear system is then a O(M 2N2 ) operation. Doubling the resolution

(e.g., from 256x256 to 512x512) increases the computational complexity by a factor of

16. In practice the difference is not quite so severe due to the banded and sparse nature

of Q, but it is still not computationally efficient.

If the function is constant, all local differences should be zero which means that a constant vector is in
the nullspace of the matrix.

96 Sec. 3.3. Solutions



In addition, in our coordinate descent framework, it is wasteful to compute an

exact answer when there is error in the other coordinate (e.g., f 0 f*). Going all

the way to the exact solution may in fact be taking you further away from the correct

answer. Luckily there are a number of iterative methods that can generate sub-optimal

approximations. These were detailed in Section 2.1.4 and include techniques such as

gradient descent, conjugate gradient, and Newton's method.

Solutions without regularization

When solving for f and -y = 0, Qf simplifies to 2k 2 1 + 2AB 2. This matrix is diagonal,

so it is trivial to solve Qjf = af as

f~]=kYB[r] ± Ab[n]ys[nl 3.4f[n] = k2+A2 . (3.74)

A siilarsitutionexiss whn sovin for b and] gie )

6[n] = 'sL)] (3.75)
f [n]

We note that these are the same results that we obtained in (3.38) and (3.46) for

the continuous problem (except for a change in notation to reflect our discrete signal

model).

Gradient solvers

For finding suboptimal solutions, there are a number of iterative techniques that are

guaranteed to find the global minimum for convex optimization problems (as detailed

in Section 2.1.4). By using an iterative algorithm to compute the solutions to the

subproblems, we now have our coordinate descent iterations and then subiterations

within each f- and b-step. We indicate our current estimate for f* as fj where i

refers to the current coordinate descent iteration and j refers to our current iteration

in the solver for the subproblem. Similar notation holds for all other parameters. In

this section, for simplicity, we will refer to the current subiteration as j with the i

being implicit. When we are on a b-step, f is our current estimate for f* that we are

holding fixed. Similarly, when we are on a f-step, b is our current estimate for b* that

we are holding fixed.

Because we are solving a quadratic problem, it is easy to compute gradients. The

simplest method that uses this information is gradient descent which only requires the
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gradient value at each iteration. When minimizing (3.65), the update equations take

on a very simple form using the quadratic gradient as defined in (3.70):

dW = -VE( M)) = -Qi + a (3.76a)

;(j+) ,(i) + n()d) . (3.76b)

The conjugate gradient update equations are also relatively simple, and we shall

just state them:

g) = VE(. (A) = Qd,0~) - a (3.77a)

d(o) __g(0) (3.77b)

d =- g) + (()d(-1)(j E Z+, j 1) (3.77c)

(- (j C Z+,j 1) (3.77d)

i(j+1) + 770d . (3.77e)

Once we compute the gradient using Q and a, it is a trivial matter to get the other

update values for either gradient descent or conjugate gradient except for the stepsize

7(i). There are a number of ways to choose the stepsize. We can use a constant stepsize

as we did for our continuous solver. But it is more efficient to do a line search to find

the minimum value in the direction d). In fact, for conjugate gradient methods, line

searches are required in order to maintain Q-conjugacy among descent directions. Note

that this line minimization is occurring for the conjugate gradient step, not for the

overall coordinate descent step.

It turns out that line searches are easy to obtain for quadratic functions, and a

closed-form expression can be found. Given a descent direction d), we wish to find

77U) to minimize our energy functional:

qi = arg min E(i(i) + d)) . (3.78)

A necessary and sufficient condition for the minimum is for the derivative in the direction
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of d) at (. + 7A)) to be zero (this is true because E is strictly convex):

-E(!( + d()) = E'(i,(') + d ; d(i))

= VE( bi) + 1d(i) )T d)

- [Q(i(i) + ndU)) - a]T d)

- )[Q.,() - a]Tdi) + 7(d))TQd)

= (g ())Td(i) ± +(di))TQd(i) = 0

Hence we conclude
S0) (g(i), dU))

= Ild(A)2 . (3.79)

In the case of gradient descent where dN') = -g(j), we see that

7 = IldU') 112 (3.80)

We can see that applying conjugate gradient requires minimally more computation

than gradient descent. Most of the computation for both methods is involved in gener-

ating the gradient and the step size. There is also a minimal amount of extra storage

overhead (g(-l) must be saved).

We can compare the descent direction we obtain in (3.76) to the direction we com-

pute for the continuous case. For a b-step, we get the following equation in the discrete

case:

d) = 2A4 o (ys - 0 o f) 2aLTL,0b . (3.81)

When Lb represents a gradient operator, we can write it as

Lb = D (3.82)
_ DY )

where Dx is the x-derivative operator and DY is the y-derivative operator. Both of the

derivative matrices are skew symmetric, so LTLb = DTDx ± Dy7Dy = -(D2 + D2).

This is the negative of the Laplacian operator. We compare this equation then to (3.52)

which is the descent direction we obtain in the continuous case:

d)3-- = 2AO(V4 s - sb/3) + 2aV 2 /3, (3.83)

and we can clearly see that they are identical once the difference in notation is accounted

for. Similarly, when Lb represents a Laplacian operator, the matrix is symmetric. Thus
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LTLb = L2. The Laplacian operator applied twice is simply the biharmonic operator.

The equivalent gradient flow in the continuous case is (3.61):

dfld/ = 2A{(bs - 00) - 2aV4/. (3.84)

This is also the same as the discrete case. Similar observations can be made for the

f-step. Thus we see that there is no real difference between our continuous and discrete

formulations.

We can convince ourselves that the gradient descent is doing the right thing from a

qualitative analysis. We will do this analysis for an iteration on the b-step. We write

our update equation here, combining (3.76) and (3.68):

(J+1) - ) + 2 (A.P(ys - Fb(j)) - cLe Lb . (3.85)

We assume for this example that Lb represents a gradient operator, so LbLb is the

negative Laplacian. If we examine a point n that is in the middle of the image (so

boundary effects do not complicate the analysis), we get the following update equation:

+ [n]= b) [n + 2q(AA X[n] (s [n] - f[n]6(j) [n])

+ 27 U)o,(- 4b (j)[n] + 0+ 1] ]+ [n-M]+ (j[n+M])

The first portion of the gradient is the estimation error for ys [n] scaled by the true

image estimate. When 0) [n] is too large (meaning f [n](k) [n] > Ys [n]), this error is

negative, and we will decrease the value of 0+1) [n] relative to j [n]. The opposite

happens when 6 [n] is too small. The second part results from the regularization. We

can see that the result is to do a low-pass filtering operation. We decrease the current

point by a little and add in a little from all of the neighbors. Both of these effects are

what we desire, and a stationary point is reached when they exactly counterbalance for

every point in the image.

Using the Hessian

Newton's method does not provide any extra utility for solving quadratic problems.

Even though it will converge in one iteration, Newton's method also requires inver-

sion of the Hessian. This defeats the purpose of using iterative methods because the

Hessian matrix is the Q matrix. So doing Newton's method simply solves (3.72), the

necessary condition for the minimum. Quasi-Newton methods are also inappropriate.
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They do not require computation of the inverse, but they do require storage of the

inverse approximation which is not feasible for large matrices. Even a 256x256 image

will produce a Hessian with 232 elements which requires 32 GB of storage using double

precision variables.

Even though Newton's method is not effective, there are ways that we can enhance

the regular gradient-based methods by using some information from the Hessian. The

average convergence rate for quadratic problems of gradient descent and, to a lesser

extent, conjugate gradient is determined by the condition number of the Q matrix.

In many instances, we can transform the original optimization problem into a new

coordinate system:

i = SX (3.86)

In order to make the following analysis possible, S should be symmetric and invertible.

We also define another matrix H = S2
This changes (3.65) into

E(c) = !izS-QS-iz - aTS-:i + c (3.87)

= Qb - &TC + C (3.88)

Following the treatment by Bertsekas [8], we can generate a steepest descent update

in the form of (3.76) for zi. Through appropriate manipulation, we can then write the

updates directly in terms of x (this is often called scaled steepest descent):

d(i) = ±Qi( )+a (3.89a)

:(J+1) _ - (i) + 7(i)H-ld(i) (3.89b)

We can do a similar analysis to produce conjugate gradient update equations:

9 (j) Q () - a (3.90a)

d(-) -H1 g(0) (3.90b)

d()= -H-g0) + (()d(i- 1)(j E Jj > 1) (3.90c)

(() H1 (3.90d)
|9 |H -1

0(j+1) ) + ()d) (3.90e)

We can still use (3.79) to compute 7() because it finds the minimum along any line in

any direction. This method is usually called preconditioned conjugate gradient.
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Note that in both methods, we never need S directly. All computations are done in

terms of H 1 . The matrix H is referred to as a preconditioner. The maximal gain is

provided when H closely approximates Q. One important characteristic of H is that

it should be easily invertible. If inverting H is as difficult as inverting Q, then using a

preconditioner does not benefit us. Due to the size of our problems, another condition

we place on H is that either H or H 1 must be sparse (for storage purposes). This

rules out other methods such as approximate Cholesky factorizations.

Even when H only loosely approximates Q, significant speed increases can be

achieved. A good example of this is simply letting H be a diagonal matrix with the di-

agonal entries equal to the diagonal entries of Q. This can provide significant speedups

in problems where the units in the parameter vector produce wildly different scaling.

This scaling will be reflected in the Q matrix with a large condition number, and it is

precisely this type of scenario that gradient descent has the most trouble with.

For our problem, the Q matrix is well scaled. For instance, Qb is composed of the

sum of AF 2 and aLTLb. In a typical prostate example, the ratio between the largest

entry of AF 2 and an entry on the diagonal of aLTLb is approximately 0.025. This

means that there is not much fluctuation on the diagonal of Q. In other applications,
this ratio is actually lower because most coils have smoother sensitivity profiles than

the endorectal coil. This results in high a values because the smoothness means that

large derivatives should be penalized more heavily.

If we add entries to H from the subdiagonals of Q directly adjacent to the main

diagonal, we can generate tridiagonal or quindiagonal matrices. These linear systems

can be solved in order O(MN). Because we form our vectors by stacking the elements of

our images columnwise, the subdiagonals directly adjacent to the diagonal represent the

interactions of a pixel with the pixels directly above and below it (except at the image

boundaries where the vector wraps around). It may be possible that if we alternate

between horizontal and vertical stacking (and thus the interactions that get included in

our tri- and quindiagonal matrices) when generating our matrices, this could increase

the effectiveness of our preconditioning.

We know our matrices are sparse and banded. The majority of the entries of the

first two subdiagonals are non-zero, and a very large percentage of the entries are lo-

cated within the first few subdiagonals. If our linear operator L represents a Laplacian

operator, the kernel of LTL has 13 non-zero elements. Both of the first and second sub-

diagonals will be mostly filled, so we can say that a tridiagonal matrix will incorporate



approximately 3/13 (23%) of the entries, and a quindiagonal matrix will have about

5/13 (38%) of the entries. If we have L represent a gradient operator and we implement

LTL to avoid the checkerboard effect, then the kernel will have 5 non-zero elements,

and a tridiagonal matrix will have 60% of the entries of Q. The quindiagonal matrix

provides no additional benefits. Thus we expect the preconditioners to work better

with gradient regularizers because we can incorporate more of the matrix information

into the preconditioner. We will investigate the performance of these preconditioners

in a later section.

* 3.3.5 Convergence

There are no general convergence properties for coordinate descent because it is a very

loosely defined concept. For our particular problem, we can show that we possess some

convergence qualities similar to the Expectation-Maximization (EM) algorithm [22].

The EM algorithm is a popular technique to solve missing- or hidden-data problems

and is similar in flavor to coordinate descent. It does ML estimation over an expected

log likelihood of the complete data. One of its nice features is that the likelihood of

the data increases monotonically with each iteration. This means that it is guaranteed

to converge to a local maximum (with certain technical assumptions). We can make a

similar claim about the discrete form of our algorithm. As we have noted, each separate

f- and b-step is convex. Assume that we begin with a f-step. Then we can say

f = arg min E(f, 6 ) E , b ) ~ )(.1
(i+1)=agiE (i) E((i+1),0()+1) (i+10) (3(9)f

b+) = argminE( 1 ),b) - E(f( ,b ) E b)) . (3.92)
b

Thus we can conclude that

E(j(+l), 0+1)) E(f),60)) , (3.93)

and thus each iteration of coordinate descent monotonically decreases the value of our

energy functional. There is a form of EM called generalized EM where the M-step

does not require finding the exact maximum of the expected likelihood. Instead the

same monotonicity property can be shown to occur for an M-step that simply increases

the value of the likelihood. In a similar manner, because we run descent algorithms

with exact line searches, each iteration in gradient descent or conjugate gradient is

guaranteed to decrease the value of our energy functional (unless we are already at a

local minimum).

103CHAPTER 3. BIAS CORRECTION



It makes sense in our algorithm to not let the solvers converge to the exact solution

in either the f- or b-step, at least early on. Because we are solving with an incorrect

f or b, finding the exact minimum may in fact be driving us further from the correct

answer than a result we could have obtained by stopping after a few iterations. It is

difficult to say exactly at what point we should stop, but we can exploit this observation

by having fairly loose convergence bounds at first and then gradually tightening them.

* 3.4 Extensions

So far we have presented results for correcting a single surface coil image while using

f2 norms to regularize the solution. There are a number of scenarios for which we

can extend our framework. Due to the presence of edges in the underlying intrinsic

image, we know that the probability distribution of its derivatives tend to be heavy-

tailed and are not well approximated by Gaussians (and hence not well modeled using

f2 norms). Therefore we explore the use of fp norms which are more forgiving of high

gradient values. We can also exploit the spatial structure in the third dimension to

produce even better results by doing a full 3D implementation. There are also many

imaging techniques where multiple surface coils are used to receive the same MR signal.

Traditional techniques use ad hoc methods to fuse these multiple observations into one

surface coil image. We present a method that optimally joins the data in a way that

minimizes distortions from the bias field. There are also situations where we capture

different images using identical surface coil configurations. We can produce better

bias field estimates by using our multiple observations. One thing that all of these

techniques have in common is that they all come with additional computational cost.

We thus present a simple coarse-to-fine multigrid implementation of our algorithm that

allows us to significantly reduce computation time by exploiting the multiscale structure

of our data.

N 3.4.1 Discrete Half-Quadratic Solution

When p 42, our optimization problem becomes non-quadratic, and thus the derivative

results in a non-linear condition for a minimum. We will only address this problem

for regularization on f. A £2 penalty provides an appropriate fit for b. There has

been a great deal of work in the literature about solving optimization problems with

4, regularization. Some of this work was discussed in Section 2.1.4. We are primarily
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concerned with the case when p = 1. This is the largest choice of p that admits step

discontinuities while also being the smallest choice that remains convex. The derivative

operator of interest to us is the gradient. This regularization scheme is simply total

variation (TV) regularization [63]. It is a common model for signals that are piecewise

constant. It penalizes non-constant regions and does not overly penalize edges.

We write our complete energy functional for Li regularization on f here for conve-

nience:

E(f, b) = IIYB - kfl12 + Allys - b o f112 + aoILbbiI + -yjL ffi . (3.94)

The fi norm is non-differentiable at zero. Thus we will use a smoothed version of

the 4i norm:

IIx II Z /Xz2 [i]+ . (3.95)

As ( -+ 0, the approximation approaches the unsmoothed norm.

The optimization problem for the b-step remains identical to that described in

Section 3.3.4. The f-step becomes more complicated because it can no longer be written

in a quadratic form. Once we use the smoothed approximation to the f, norm, we

can compute gradients and perform gradient descent. Our energy functional remains

convex, so gradient descent will converge to a global minimum on each f-step. But

gradient descent is not efficient. We can no longer do exact line searches in closed form,

so we must apply one of the many inexact approximations available in the literature or

simply use fixed step sizes. Vogel and Oman demonstrate in [78] that gradient descent

is very slow compared with half-quadratic optimization which we introduced in Section

2.1.4.

As we noted in Section 2.1.4, there has been a great deal of work with non-linear

image reconstruction. One method of solving f, minimization problems that has be-

come quite popular is known as half-quadratic regularization [16,26,54]. Half-quadratic

techniques can be used to minimize the following type of energy functional:

E(f) = ||z - Hf |2 + y|ILf f|i . (3.96)

In order to fit our observation model into this framework, we observe that the following

energy functional attains its minimum for the same argument as (3.96):

E(f) = -2(H T z)T f + f T (H T H)f + -yjILf fIg .97
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We can see that (3.94) fits this form with the following relations (and p = 1):

HTH = k21 + Ai 2  (3.98a)

HTz kyB + ABys . (3.98b)

In order to implement this minimization, we use the multiplicative form of half-

quadratic regularization. We form a weighting matrix W ) at each half-quadratic

iteration which is a diagonal matrix with the following entries along the diagonal:

[W(Aij 1 = 1 , (3.99)
((Lff(j-1 ))l])2 +

and we can write the following local quadratic approximation for E:

E(i)(f) - --2zT Hf + fT(HTH)f + 'yILf fIU) . (3.100)

This weights the f2 norm less in regions with a high gradient. This is what produces the

edge-preserving effect. To see why this is equivalent to minimizing (3.96), we examine

the stationary point. Let f* be the vector that minimizes (3.96), W* be the weighting

matrix generated from f*, and -> 0. Then we see the following:

I|Lff*| v* =E[W*]1,1((Lff*)[1])2

((Lf *) [l])2

(Lf *)[11|

- Z (Lf f*) [])

The last line is the f, norm of Lf f*, so the weighted-f 2 approximation holds when

f = f*. This simply shows that a fixed point for (3.100) is also a fixed point for the

half-quadratic iteration. More generally, the weighted-f 2 approximation holds at the

value of f that is used to generate W. Thus for each half-quadratic iteration when

using an iterative solver, we begin with the exact L1 energy functional, and then our

approximation gets progressively worse. For convergence properties, we refer the reader

to [26].

The quadratic approximation achieves a minimum for the following condition:

(HTH + yLTW(i)Lf) fW = HTz . (3.101)
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This is a positive definite linear system. It can be solved directly, but as was the case

for the f2 -norm problem, it is computationally inefficient to do so. We can again ap-

ply iterative techniques such as preconditioned conjugate gradient to find approximate

solutions.

Note that when using this half-quadratic technique, our algorithm expands from two

nested loops to three nested loops. There is the overall coordinate descent loop which

alternates between f- and b-steps. Then the half-quadratic method also uses a nested

pair of iterations: steps where we generate a new weighting matrix WW to form our

local quadratic approximation and then iterations to generate approximate solutions.

In general we will only run the half-quadratic regularization for one iteration per f-step.

There just is not much additional utility to be gained by letting it run longer, especially

as we near convergence. So even when using a f norm on f, we can still implement

both the f- and b-steps as conjugate gradient on a linear equation.

This f1 norm applied in our estimation framework will produce different results from

simply minimizing the following energy functional:

E(f) = I|| - f112 + yllLf ff 11 (3.102)

where j is the estimate of f* we obtain by minimizing (3.94) with y = 0. This would

be equivalent to simply applying an anisotropic post-processing filter to the output of

our algorithm. The reason for this difference is that this formulation does not properly

account for the spatially-varying noise levels in f. If we change the data fidelity term

in (3.102) to a weighted- 2 norm, we end up with this equation:

E(f) = |jf - f||2 + -y|JLff |I . (3.103)

The minimum f for (3.103) is the same as the minimum f for (3.96) when the weighting

matrix is diagonal with the following entries along the diagonal:

[U]1,1  k2 + A[l]2 , (3.104)

and f is constructed optimally from YB and ys using b and (3.74). This post-processing

still is not equivalent to using a f1 prior in the full minimization problem because it

does not allow 6 to adjust based on the regularized f.
We obtain the maximum benefit of using (3.96) or (3.103) instead of (3.102) in

regions close to the surface coil. We know that the SNR is very high in this region

so we are more inclined to believe the unfiltered results than we would otherwise. In
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regions far from the surface coil when we have a coil response that dies to zero, there

is no real benefit to the integrated f, regularization. In fact, in these regions the j
we would obtain without regularization is simply YB, so the reconstruction using the

full f1 method is in fact just f1 reconstruction from YB. When we fully incorporate

the regularization on j into our algorithm, these transitions between high-noise and

low-noise regions are handled seamlessly and automatically.

* 3.4.2 Higher dimensions

One of the major features of MR imaging is the ability to get data in three dimensions.

We get a series of parallel 2D planes, usually separated by a constant slice thickness.

We can, of course, estimate the bias field individually on each slice. This will be

sub-optimal because the smoothness of the bias field and the piecewise-smoothness of

the true image exists in all three spatial dimensions. So we are not using all of the

information available to us. In addition, a 2D implementation cannot hope to correct

any spatial inhomogeneities in the z-direction. These interslice inhomogeneities will

make it difficult to do 3D processing of the corrected volumes.

There are no theoretical complications with extending our algorithm to three dimen-

sions. Let our volume have dimension MxNxO. For the continuous case, the PDEs

that we obtain with the Euler-Lagrange equation remain identical except the differential

operators act in 3D instead of 2D. Similarly in the discrete case, everything has been

rewritten in terms of observation vectors. There is no underlying assumptions about

how our sampling lattices were constructed (e.g., we could have indexed the samples

in a consistently random order and the same solution would be found). The energy

functional remains in the same form as specified in Section 3.3.4, and we can use the

exact same linear solver. We need to place the elements of our 3D volume into a vector

in a consistent manner. From that point, all that needs to be done is to change our 2D

convolutional kernel into a 3D kernel and make the appropriate change in the linear

operator matrix. The linear operator matrix remains sparse and banded.

The major issue with a full 3D implementation is computational. These include

additional strains on both storage and processing time. MR volumes can be as large

as 512 x 512 x 400. In order to do 3D processing, we must have the full volume loaded

in memory. With double precision storage, this would require 800 MB just for one

vector of length MNO. To execute our algorithm, we need storage many times greater

than just one vector. An additional problem has to do with computation time. Our

108 Sec. 3.4. Extensions



0 0 0 0 1 0 0 0 0

0 r2 0 1 -4-2r2 1 0 r2 o

0 0 10 0 1 0 0 0 0

-1 0 +1

Table 3.5. Kernel for a 3D Laplacian operator. The three tables contain the entries for z = -1, 0, +1

from left to right.

solver does not scale linearly with problem size. As a rough approximation, we observe

computation time to be 0(n 2 ): computation per iteration is 0(n) and the number of

iterations is approximately 0(n). Thus if we have a volume with 30 slices, computation

time will increase by approximately a factor of 30 for full 3D processing versus 2D

processing of each slice.

Another issue that must be contended with is the aspect ratio. We define the aspect

ratio r as the ratio of the voxel length in the x- and y-directions to the voxel length in

the z-direction. The 3D voxels usually are not cubes. Generally in MR, r < 1 because

the slice thickness is greater than the dimensions in the imaging plane. This means that

in order to make our 3D filter isotropic in continuous space, it must be anisotropic in

the discrete space. In Table 3.5, we give an example of a Laplacian kernel for an image

with aspect ratio r. Other kernels are similarly generalized. In the context of our energy

functional, when r < 1, this anisotropic kernel penalizes change in the z-direction less

than it penalizes change in the x- or y-directions (change as measured on our discrete

samples).

Another case where we can couple data across slices is with 2D heart time-sequence

data. These images consist of multiple 2D images of the heart at different times in the

cardiac cycle. There are several ways we can handle this case. The most straightforward

method would simply be to capture both surface coil and body coil images at each time

step and then apply the correction to each slice. It may be helpful to somehow couple the

bias field estimates from each slice to achieve better estimates. One way to accomplish

this is to enforce a e, penalty for deviations in the bias field from slice to slice. This

would force the bias field to change slowly with time. Another way to accomplish this

would be to simply stack the time sequence data into a 3D vector. We could then use

a volumetric correction scheme as was detailed above.
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A more enticing method would capture surface coil images at each time step but

only one body coil image. We can estimate a sensitivity profile from the time step with

both body coil and surface coil images. To correct the other images, we could apply

the bias field estimate directly, but this may be suboptimal as the field may shift in

time as the anatomy moves. We could attempt to minimize this effect by putting the

bias field through a transformation for better alignment. If this proves insufficient, we

could capture body coil images at a subset of the time steps. We could then interpolate

between our "known" bias fields to produce sensitivity profiles in the intermediate slices.

N 3.4.3 Multiple Bias Fields and Intrinsic Images

So far we have dealt with applications where we have one surface coil image and one

body coil image, and we want to recover the true MR image along with the bias field.

There are several scenarios where we can extend our bias correction framework to be

more flexible. Among these are multiple surface coil imaging; multiple pulse sequence

imaging; and time sequence imaging. We will only derive results in this section for the

discrete case. Results for the continuous case can be similarly obtained.

We have Nf intrinsic images to estimate and Nb bias fields. We denote each intrinsic

image as f * and each bias field as b* . We define an ordered set * = {f*}Nf

which contains all of the intrinsic images and an ordered set B* = {b,}J4 which

contains all of the bias fields. In this section, we find it useful to exploit the concept

of graphical models [36]. Graphical models are a way of representing independence

between random variables. Nodes in the graph represent random variables and edges

in the graph represent possible dependence between the two nodes. The lack of an edge

between two nodes does not mean that the two nodes are independent. There can still

be indirect dependence due to coupling with other variables. Let there be two nodes x

and y. We define a cut set as a subset of nodes Q such that the removal of g completely

severs the graph between x and y (this generalizes to more than two nodes). Then

we say that x and y are conditionally independent given g. Using graphical models

give us insight into how our coordinate descent approach makes sense as well as the

consequences of our modeling decisions.

Multiple coils, one intrinsic image

In many surface coil imaging applications (including the prostate, heart, spine, etc.),
there are actually multiple surface coils present. The multiple coils are used due to



the typically sharp drop off in sensitivity far away from the coil. By distributing the

coils spatially, we can achieve better signal coverage in the FOV. The coils are usually

designed so that they are uncoupled (the mutual inductance between the coils is zero).

The images received by the surface coils are combined to generate the final surface

coil image. For instance, the prostate images that we use have five surface coils: the

endorectal coil and four additional coils arranged as a pelvic phased array (PPA).

The composite surface coil image that we receive from the MR machine as output is

generated from data from the five coils in an ad hoc manner. Rather than simply

performing bias correction on the composite image, we can estimate each coil profile

separately and fuse the resulting images together in a more consistent fashion.

We introduce a new measurement model for the N surface coil case. We receive

one body coil image and Nb surface coil images:

YB = kf*+nB (3.105)

ys, = b Of* + ns,i (3.106)

i c {1,2, ... , N}

Roemer et al. [62] discuss a number of techniques to combine the images received

simultaneously from multiple uncoupled surface coils. The simplest method would be

to simply sum them electrically and view the composite signal as the superposition of

the induced signal in each individual coil. Due to the linearity of the Fourier transform,

this is equivalent to converting each image from k-space to the image domain and

then summing the complex images. This method is problematic due to the variable

spatially-dependent phase for each coil. Working directly with the complex images

provides some benefits. In some applications, the phase of the MR signal is important.

Another important use of this technique is due to machine limitations. MR machines

can only receive input from a finite number of coils. Thus if we wish to use many coils,

we may need to combine signals before they reach the processing system. Roemer et

al. also discuss a technique that combines the images using the sensitivity profiles of

each coil to produce an image that is optimal from a SNR standpoint. This method is

basically a weighted sum (using the sensitivity profiles as a weight) with appropriate

phase shifting.

We can avoid the phase issues by working with the magnitude images. This does

not severely hamper us because we are only interested in the magnitude. It is fairly

easy to convert the complex reconstruction into a magnitude reconstruction. This again
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requires the sensitivity profiles of all of the coils. Using the magnitude images hurts

us from a SNR perspective because the noise that we observe in each coil is actually

not completely uncorrelated. Working in the complex domain allows us to exploit these

correlations. A common technique when these sensitivity profiles are not known is to

combine the individual magnitude surface coil images into one image using e, norms:

ys[n] = El1s,/n)p (3.107)
i=1

When p = 1, this is simply summing the magnitude images. When p = 2, this is

referred to as the sum of squares method. If we set p = oo, this simply chooses the

largest intensity value available from any of the surface coils. In all but the last case,

the overall noise in the composite image is being increased. In order for the SNR to

improve, the signal level in one or more of the coils must be much greater than the

noise level.

The sum of squares method is a commonly used technique to join images together.

It can be viewed as using the optimal reconstruction for magnitude images and applying

the image intensity values as a proxy for the sensitivity profile. If the complex Gaussian

noise processes that contaminate all of the surface coil images are identical, then the

noise here will remain Rician. If we simply summed the magnitude images, the noise is

much more complex because it would be the addition of Rician random variables. This

means that the PDF would be the convolution of multiple Rician PDFs which does

not have a simple description. So at least in this respect, the sum of squares method

is more attractive than the sum of magnitude method. Nonetheless, this is not ideal

because we can do better once we have the individual coil profile estimates.

Once all of the surface coil measurements have been combined into one image, we

only need to estimate one bias field instead of N bias fields. This is a win computa-

tionally, but it does hamper us in some respects. For instance, a must be chosen so

that our solver admits the strongest derivatives present in b*. So if our coils have vastly

different spatial structure, then we must choose a to admit the sharpest transitions

present in any of the coil profiles. For example, in the prostate, the endorectal coil has

a very sharp intensity drop off while the PPA coils have much smoother properties. So

we should choose a based on the characteristics of the endorectal coil. This works well

in the regions dominated by the endorectal coil, but far away, a will be set too low.

We tend to get a lot of tissue structure in the bias field estimates in those locations.
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Additionally, we can not only choose individual regularization parameter strengths, we

can also choose linear filters for each coil to pick out desired features. So an addi-

tional advantage of processing the coils separately is that we can individually tune the

regularization for each coil.

We modify (3.16) to be compatible with our new model:

Nb Nb

E(F, B) = EB(f) + ZAiEs,i(f, bi) + L am7Zb,m(bm) + y7Zf (f) . (3.108)
m=1

We can choose the functions for (3.108) in an analogous manner to the single coil case:

EB(f) = IYB - kf 112 (3.109a)

Es,j(f, bi) = IIys,i - b, o f 112 (3.109b)

Rb,m(bm) IILb,mbm 12 (3.109c)

JZf(f) = JLf f|I . (3.109d)

This problem is quadratic for each of the individual bias field estimates with the

following equations:

Qb,m = 2AmF 2 + 2'mLa mLb,m (3.ll0a)

ab,m = 2AmFy5,m . (3.11Ob)

Note that these are the exact same equations we would have if we only observed one

surface coil image. In fact, given f and all of our observation images, all of our bias

field estimates 6m are conditionally independent. So we can compute bm sequentially

or in parallel and receive the same results.

The problem for estimating the intrinsic image is quadratic in terms of f except for

the ep regularization term. We can put the f-step in the same form as (3.97):

Nb

HTH = k21+ AjB (3.111a)

Nb

HTz = kyB + AjBiys,i . (3.111b)

We only have these changes in H and z, otherwise we can apply the half-quadratic solver

in the exact same manner that we described in Section 3.4.1. In this way we continue

to use coordinate descent to iterate between b-steps and f-steps. On the b-step, all of
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the bin's are independent given f so we can compute the estimates individually. On

the f-step, we use all of our Nb + 1 observation images and all N bias field estimates

to construct an estimate of f*.
For the special case when y = 0, there is no spatial coupling in f and we get the

following solution:

kyB[n1 + Nb Aibi[][yS,i] (
f[n] = - = 2 .(3.112)

k2 + Zb 1 Aii [n]

This results in the output being a noise-weighted convex combination of YB/k and all

of the ys,i/bi images which is analogous to what we noted in Section 3.3.3 for the single

surface coil case. Thus the SNR will be at least as large as the best SNR from any

of the observation images and can be as much as 10 log1 o(Nb + 1) dB better. Except

in rare circumstances, processing the multiple surface coil images in this manner will

be superior to fusing the surface coil images into one image and then performing bias

correction on that.

We note that (3.112) is the same as the results derived by Roemer et al. for the

case when the sensitivity profile is known and noise correlations among the receivers are

ignored. The noise variances are simply the diagonal entries of their noise correlation

matrix. We set the bias field of the body coil uniformly to one to arrive at our equation.

We have arrived at the same results using similar but different approaches. Roemer et

al. wish to maximize the SNR while we wish to minimize the estimation error. Due

to our linear Gaussian approximation, the estimation error variance can be considered

equivalent to the noise variance. Because we are constructing bias corrected images,
the signal level is a constant, and maximizing SNR and minimizing estimation error

become the same.

Multiple intrinsic images, one surface coil

It is common practice to collect images of the same location in the body and the

same coil configuration but using different pulse sequences (e.g., T 1-weighted and T2-

weighted images). This allows different features to become visible. For instance, in

prostate imaging, Ti-weighted images are very good at providing a homogeneous inten-

sity within the entire prostate while T2 -weighted images allow differentiation between

internal structures in the prostate. A similar application is time sequence imaging of a

moving object such as the heart. Assuming that the movement of the object does not

greatly disturb the location of the coils, we have multiple intrinsic images with one sur-
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face coil configuration. Let Nf be the number of intrinsic images we wish to estimate.

We must also acquire an identical number of surface coil images. Each image has the

same coil configuration and bias field (ignoring tissue dependent effects) but different

intrinsic images. We would like to be able to acquire only one body coil image and use

that to correct all of our surface coil images. Without loss of generality, we assign f1

to correspond to the intrinsic image in the body coil image. We express our imaging

model in this way:

YB = kf+nB (3-113)

ys,j = b o fi + ns,j . (3.114)

We can rewrite (3.16) as

Nb Nf

E(F, B) =EB(fi) + 3 AiEs,i(fi, b) + aRb(b) + E Ynf,n(fn) . (3.115)
i=1 n=1

This model naturally leads to the following choices for (3.115):

EB(fi) = IIYB - kf 112  (3.116a)

Es,i(fi, b) = ||ys,i - b o fi||2  (3.116b)

Rb(b) = IILbbII2  (3.116c)

7Zf,n(fn) = ||Lf,nfnll . (3.116d)

The energy functional is quadratic in terms of b with the following choices:

Nf

Q = 2 AjF? + 2cLTLb (3.117)

Nf

ab = 2 AiFiys,i - (3.118)

We can again put the energy functional for f 1 into the form of (3.97):

H1Hi = k2 1+ AB2  (3.119)

HTzi = kyB + A1 bys,1  (3.120)

and similarly the energy functionals for fn, n $ 1:

HH = An2 (3.121)

Hn = AnBys,n . (3.122)
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We note that if -, = 0 V n, fi = (HT Hi)1 Hfy1 which can be solved pointwise:

kyB[n] + Aib[n]ys,[n]
fl[n] = 2+ l 2 .n (3.123)

k2 ± Aib 2 [nj

This is the solution for the single surface coil and single body coil case if we ignore the

other surface coil images. All of the other f n = (H H,)~Hnz_ = B-lys'. Note

that this is simply each surface coil image divided by the bias field estimate. When we

get these estimates, 6 becomes completely independent of all of our surface coil images

except for ys,1. This is because the only term in the energy functional where f , n $ 1

plays a role is in the data fidelity term corresponding to ys,n. Thus these terms can

always be forced to zero by setting in = B-'ys,.. So when minimizing E with respect

to b, we need only concern ourselves with the data fidelity terms for YB and ys,i as well

as 7b. Similarly, j, is not affected by any of the additional surface coil images that

we capture. This essentially says that if we do not want to enforce priors on any of the

fn then we should simply do bias correction on YB and ys,i. Then to debias all of the

other ys,,, just divide them by the resulting b.

General formulation

In the previous two subsections, we presented results that are simply special cases of a

more general observation model. This could be useful for a combination of the previous

two cases (e.g., four surface coil time-sequence heart imaging) or for more esoteric

imaging combinations. We observe No images. For each i C {1, 2,... , N}, yi is the

product of an intrinsic image f*. with either 1 or a bias field b*, plus white noise:

y= b* o f* ± n; . (3.124)

Without loss of generality, we drop the notion of the k scaling factor for the body coil

images (see Section 3.3.1). This is perhaps best formulated in terms of a graphical

model. We form observed nodes for each y; along with nodes for all of the fn and the

bm. In general there is always one connection from an f node to an observation node and

either zero or one from a b node depending on whether it is a body coil or surface coil

image. We can either draw a node for the bias field of a body coil image (which we set

to 1) and then treat it as observed, or we can omit it from the model entirely. Given our

observations and {fi} L1 , all of our bm are conditionally independent of each other.

We can make similar conditional independence statements for the fn. If the graph is

not connected, we can split the overall problem into independent subproblems.



f bi b 2 (b3 bD

B1 S,1 YS,2 YS,3 -S,4

Figure 3.4. Graphical model for four surface coils and one intrinsic image with four surface coil

observations and one body coil observation.

We define two sequences If = {n, n2,. , nNf } and T b = {m1, m2,. ,nNb}. We

also define sets Df,n and Db,m which specify the observation images that are dependent

on fn and bm respectively. If j E Df,n, this implies that nj = n. Similarly, if j E Dbm,

then mj = m.

To illustrate this, in Figure 3.4 we draw the graph for a set of four surface coil

images and one body coil image where we are trying to recover four bias fields and one

intrinsic image. This is the case we covered with our first example in this subsection.

Then one way we can choose our sets and sequences is through the following:

if = {1,1 1, 1, 1}

Ib = {0, 1, 2, 3,4}

Of,1 = {1, 2,3,4,5}

Db,1 = {2}

Db,2 = {3}

Db,3 = {4}

Db,4 = {5}

We use 0 to indicate the lack of a connection from any bm for a particular image. There

are 5! ways to uniquely specify these sequences and sets because there are 5! ways to

order our observation images. Choosing 2T and T b completely specifies Df,1 and all

of the Db,m, and the converse is also true. This is true in the general case as well.
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fi b f

YB,1 YS, S,2 YB,2

Figure 3.5. Graphical model for one surface coil and two intrinsic images with two surface coil

observations and two body coil observations.

Previously we observed that each bm could be computed completely independently of

the others. The reason for. this can be seen on the graphical model. The only interaction

among the different bin's are through f.
In Figure 3.5, we draw the graph for a set of two surface coil images and two body

coil images. Each surface coil image was captured using the same coil but with different

imaging parameters (and likewise for the body coil images). We wish to estimate one

bias field and two intrinsic images. One choice for our sets and sequences is this:

If = {11,,2, 2}

-T = {0, 1, 0, 1}

Df,1 = {1, 2}

Df,2 = {3,4}

Db,1 = {2,4}

For the next example, we assume that the bias fields for the two surface coil images are

similar but different. So now we wish to estimate two bias fields. We draw the graph in

Figure 3.6. Note that this results in an unconnected graph. Thus all we do is estimate

f1 and bi only using YB,1 and ys,i and similarly for f 2 and b2 . This method should

produce bias field estimates bj and b2 that are similar to b depicted in Figure 3.5. If

this is not the case, our assumptions used to estimate a single bias field are extremely

flawed.
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fi b

t 1 i

Figure 3.6. Graphical model for one surface coil and two intrinsic images with two surface coil

observations and two body coil observations with estimation of a sensitivity profile for each surface coil

image.

fi b If2 b2

,1J S, IY12Y ,

Figure 3.7. Graphical model for one surface coil and two intrinsic images with two surface coil

observations and two body coil observations with estimation of a sensitivity profile for each surface coil

image with some specified dependence between the two.
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The previous example seems quite unsatisfactory. We know that b1 and b2 are the

sensitivity profiles produced by the exact same coil. The bias fields will not be exactly

the same due to varying magnetic susceptibility of the tissue and other environmental

effects, but they certainly should be similar. We can indicate this dependence as in

Figure 3.7 by connecting b1 with b2 . The direction of the arrow does not matter. We

might model this dependence with e.g., a f2 norm which is equivalent to the assumption

that b2 given b1 is Gaussian.

We use our earlier definition of F and B to collect all of our intrinsic images and

bias fields into sets. We can slightly alter (3.16) to the following:

N. Nb Nf

E(F, B) = I AEi(f n, bm) + E amRb,m(bm) + 1 YnRf,n(fn) . (3.125)
m=1 n=1

There is now a data fidelity term for each observation image and a regularization term

for each intrinsic image and each bias field. We can write them as follows:

Ei= |yi - bmi o fai112  (3.126a)

Ilb,m ILb,mbm 112 (3.126b)

Zf,n = ILf,nfnII . (3.126c)

Of course p can change for each fn as well, but in general we do not find that necessary.

As always, this results in a quadratic optimization for each bm given all of the fn. We

can specify the individual problems as follows:

Qb,m = 2 E Aj22, + 2LTmL,m (3.127a)
jElb,m

ab,m = 2 E Ajn .j (3.127b)
jE1

9
b,mn

This can be solved using an iterative solver such as preconditioned conjugate gradient

as before. We can also put our conditions for each fn into a form compatible with

(3.97):

HZ = Ajim. (3.128a)

jEDf,n

H zn = Aj mj . (3.128b)
jEDf,.
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We can then use our half-quadratic solver to do the f-step. The conditional indepen-

dence property that we cited earlier allows us to process the fa in any order on the

f-step and the 6m in any order on the b-step.

* 3.4.4 Multigrid

Multiresolution techniques are fast methods to solve problems that are either explicitly

multiscale or have multiscale structure. We can take advantage of this structure to

improve computation speed for large and/or complex problems. We briefly discussed

multigrid methods in Section 2.1.4. Traditional multigrid is built using simple iterative

solvers such as Gauss-Seidel using multiple so-called V-cycles. Each V-cycle is a fine-

to-coarse sweep followed by a coarse-to-fine sweep. Usually only one iteration of the

solver is used at each level. We use a much more basic form of the method where we

have a single coarse-to-fine sweep. We downsample our data to the coarsest level we

wish to process. We then run our coordinate descent solver at this level and upsample

the results to the next finest level. This cycle repeats until we have a solution at the

finest level.

As long as our problem has some multiscale structure, the solution at the coarser

scale will bear some relation to the solution at the finer scale. We find that this is the

case for our problem. Because the bias field is known to be smooth, most of its energy

will be concentrated in the lower frequency components. These components will also

exist in the downsampled versions of our image, so most of the work at the finest level

will be to smooth out the results from the coarser resolution and estimate the higher

frequency components. The intrinsic image will have more energy at high frequencies

than bias fields due to the presence of edges. But away from edges, we expect low

frequency behavior. So we expect the frequency to have a bimodal distribution. At the

coarser resolutions, we can obtain reliable estimates of the low frequency components.

At the highest scale, we can gain better edge resolution.

This technique is beneficial to us because our solver does not converge in linear time

(we estimate the computational cost as approximately 0(n2 )). So it is much faster to

solve the problem on a coarser grid. This speed increase makes the initial guesses for

f and b less important. We can converge to a result that is very close to the correct

answer at coarser scales and iterations at the coarser scale take very little time, so our

algorithm becomes more resistant to poor initializations. Besides the speed advantages,

multiresolution methods can also increase robustness by helping to avoid local minima.
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We now have an additional parameter for scale: s = {0, 1, 2,... S} where S is the

coarsest scale we wish to use. The finest level is indicated with s = 0. We will specify a

new multiscale observation model using the most general model used in Section 3.4.3:

yi-13 = bs* o f 11* + ni I. (3.129)

At each level, all of the variables are samples of their continuous counterparts (e.g., f Is]
is sampled from p) with new sampling vectors at each scale:

i = Is] (3.130a)

jsl[n] = (28 )n mod N (3.130b)

n E {0, 1, 2, ... , 4-sMN-1}

Each decrease in scale results in a decrease in problem size by a factor of four.

This results in an energy functional at each scale that we seek to minimize:

No Nb N1

E (T1 1 , B Is]) - Ai Is]Ei fni Is],bmSI) + L3 am [8]Zb,m (bm 18) + EZ-rn [ Zfn fn [9)
i=1 m=1 n=1

(3.131)
This technique works best when the .FI' and B'] that minimize the energy at scale s
are similar to the Fl-I and B[1 -I that minimize the energy at the next finer scale.

To implement this technique, we need to specify how we downsample and upsample.

To downsample, we can take a nearest neighbor approach (which on our fixed grid is

equivalent to block averaging), or we can optimally reconstruct the continuous-space

signal, low-pass filter (to avoid aliasing), and resample at a coarser resolution. To

upsample, there are a number of techniques we can employ. Among these are nearest

neighbor (block replication in our case), bilinear/trilinear interpolation, bicubic/tricubic

interpolation, and sampling from the optimal reconstruction of the continuous-space

signal.

We also need to decide how the reconstruction parameters A s), ails], and yi[sI change

with s. The Ai[sI's represent the inverse noise variance for yi2 ' and are increased by

a factor of 4 at each scale. This is only an approximation because the average of four

ID Rician random variables does not yield another Rician random variable with one-

fourth of the variance. To the extent that our Gaussian noise assumption holds, this

scaling by 4 also holds. There are also effects such as partial-volume effects that become

more pronounced at coarser resolutions, but we will ignore them. The regularization
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parameters are more difficult to choose. For wavelet-based multiscale reconstruction,

others [6,9] have found that a multiplicative scalar is often effective. Hence we need to

find scalars Ca,i and -y,i which we can then use in the following manner:

,Yisf = ('y,2) lyi (3.132)

ails] = (,)sai (3.133)

Vs E {0, 1, ... , S}.

The value of these scalars may vary from application to application. Sometimes the

relationship between regularization parameters across scale is not this simple, but we

get good results in practice using this method.

* 3.5 Summary

We began this chapter by introducing our observation model. We assumed that our

body coil image and surface coil image share a common intrinsic image that is the true

MR signal. The two images are assumed to differ only through additive noise and a

multiplicative gain field on the surface coil image that is independent of the underlying

tissue. The correct physical noise model is Rician, but we showed that a Gaussian noise

model will produce largely similar results while greatly simplifying computation. The

main effect of our Gaussian noise assumption is an upward bias that increases as SNR

decreases.

We then presented a variational problem whose solution approximates the true bias

field and intrinsic image. The main features of our energy functional were f2 norms

for data fidelity terms and 4, norms to regularize the bias field and intrinsic image

estimates. We showed the statistical interpretation of our energy functional as a way

of justifying its validity.

Our energy functional is difficult to minimize simultaneously for the bias field b and

the intrinsic image f. The individual subproblems of minimizing for b or f are relatively

simple, so we use coordinate descent and alternate between what we term b-steps and

f-steps. We showed how to efficiently solve the subproblems with both continuous

and discrete methods. In particular, preconditioned conjugate gradient seemed like a

promising method.

Finally we generalized our framework to handle a number of extensions. Previously

we had only used f2 norms to regularize our estimates. We use half-quadratic solvers
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to efficiently solve more complex fp regularization problems where p < 1. We also

discussed the special considerations needed to do full 3D processing. We generalized our

method to handle an arbitrary number of input images. This allows us to e.g., process

the images from each surface coil separately. Finally, we showed how multiresolution

solvers can be incorporated into our algorithm as a way to increase the convergence

speed.



Chapter 4

Results

W E present results in this chapter for four different applications: prostate imag-

ing using an endorectal coil and a pelvic phased-array coil; time-gated heart

imaging using a phased-array coil; brain imaging using a phased-array coil; and the

Montreal Neurological Institute (MNI) simulated brain phantom [19,40].

Using multiple real data applications allows us to demonstrate the utility of our

algorithm on examples with disparate SNR levels, bias field shapes, and tissue structure.

The brain phantom allows us to test our algorithm on realistic examples with known

ground truth. This allows us to quantitatively assess our performance. Note that our

phantom images explicitly conform to our observation model. The positive results on

real data that we will show seem to confirm the validity of our observation model.

The regularization parameters a and y used in each example are chosen manually to

provide optimal visual results. The a values are generally comparable across examples.

The bias field is a multiplicative gain function, so it is invariant to scaling of the intensity

values in the observation images. Thus the different a values in each example can be seen

as a measurement of the smoothness of the surface coil reception profiles. The different

tissue intensities across imaging protocols make the y values not directly comparable.

This is simply a consequence of the fact that different imaging pulse sequences are

designed to measure different fundamental tissue properties. However, the -y values are

comparable for different scans acquired using the exact same imaging protocol (e.g.,

the same choices of - in different T2-weighted prostate samples indicates similar levels

of regularization in each image).
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(a)

(b)

(c)

Figure 4.1. Three slices from prostate sequence A. (a) The body coil T 2 -weighted images (YB)' (b)

the composite T 2-weighted surface coil images (ys,T2 ), and (c) the composite Ti-weighted surface coil

images (ys,T1 ).

I



N 4.1 Prostate

In this section we demonstrate our bias correction techniques on prostate images cap-

tured using General Electric Signa 1.5-T MR machines. Both T1- and T2 -weighted

fast-spin echo (FSE) images were captured using the surface coil. Only T2 -weighted

body coil images were captured. The FOV is 12 cm x 12 cm with 3 mm slice thickness.

The surface coil images were captured using a transmitting body coil and five receiving

surface coils: four coils wrapped around the pelvis in a phased array and an endorectal

coil [49,64,65]. The endorectal coil is mounted inside a balloon that is inserted into the

rectum. The actual coil is a rectangular wire that is nestled up against the posterior

wall of the prostate. The same imaging parameters (e.g., pulse sequence, number of

excitations) used in the surface coil imaging were used in the body coil imaging.

Because the prostate is so small, less spatial averaging is possible. The SNR in the

prostate body coil images is the lowest out of any of our imaging applications. We can

compensate for the resulting high noise levels with higher local signal response. High

local signal response in the surface coil generally results in low signal response elsewhere.

This leads to a strong inhomogeneity which is quite prominent in the prostate images.

The combination of high noise and a strong bias field makes prostate bias correction

both more challenging and more essential.

We have acquired data from three patients: one is of very high quality, and the

other two have fairly significant visual artifacts. We will refer to the three data sets

using letters. The high quality data set is data set A, and the other two are data sets B

and C. All results in this section are generated using a Laplacian operator for the linear

matrix operator Lb and a gradient operator for Lf. The values of a (the regularization

parameter on b) and -y (the regularization parameter for f) for each example are noted

in the figure captions.

In Figure 4.1 we show the observed images YB, ys,T2 , and ys,T for three slices

from data set A. Needless to say, the intensity inhomogeneity is quite prominent in the

surface coil images. The SNR for the body coil image is approximately 7 dB in the

prostate. The SNR for the surface coil images (both ys,T2 and ys,T1 ) vary quite a bit

but can be as high as 35 dB. This means that the gain from the endorectal coil is up to

28 dB. These SNR and gain measurements are similar for all of our prostate data sets.

127CHAPTER 4. RESULTS



128 Sec. 4.1. Prostate

(a)

(b)

(c)

Figure 4.2. Intrinsic image and bias field estimates for the prostate data set A with no f regularization.

(a) The T 2-weighted intrinsic image estimates (.T 2 ), (b) the bias field estimates (b), and (c) the T1 -

weighted intrinsic image estimates (fT,). a = 125, yT 2 = 0, 7T, = 0.
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* 4.1.1 No Regularization on f

In Figure 4.2 we show the results of our bias correction algorithm on the data from

Figure 4.1. Because there is no regularization on fT,, the ys,T1 images do not affect the

bias field estimates (see Section 3.4.3). Overall the bias field is largely removed in both

fT 2 and fT 1 , though it is difficult to tell whether a slight inhomogeneity remains from

either the body coil or imperfect bias field estimates. The noise in the reconstructed

images can be seen to be much lower in the regions close to the rectum. The results

for the fT, images are fairly effective even without a body coil measurement. However,

there is more intensity variation within the prostate capsule than we would wish.

The effects of combining the multiple surface coil measurements into one composite

image can be seen in the bias field estimates in Figure 4.2(b). In order to accommodate

the large inhomogeneity from the endorectal coil, a must be set relatively low. This

ensures that we do not overpenalize the strong curvature associated with the rapidly

diminishing coil reception profile. In regions where the endorectal coil has little response

and the pelvic coils dominate, the bias field estimate becomes very lumpy. The value of

a is too low in these regions, and local variations from the noise and tissue become part

of the bias field estimate. This consequently has a deleterious effect on both estimated

intrinsic images for the T 2-weighted sequence and the T1-weighted sequence. There is

subtle oversmoothing in fT 2 within the prostate, and there are clear inhomogeneities

within the prostate in fT1 that can be seen to correspond with the lumpiness in b.

In Figure 4.3 we display the bias correction results obtained using Brey and Narayana's

method. In Figure 4.4, we correct the bias using homomorphic unsharp filtering. Over-

all Brey-Narayana correction provides results very similar to our correction, though the

bias field estimates are not as smooth and much more tissue residue remains. Homo-

morphic filtering can be seen to provide fairly homogeneous results at the expense of

contrast. We can, of course, achieve perfect homogeneity by setting the bias field equal

to the observed surface coil image. The estimated intrinsic image is then uniformly 1.

This is not informative, but homomorphic filtering approaches this if we decrease the

size of our filtering kernel. We will not include homomorphic filtering results with any

further examples due to the poor quality of the results.

In Figure 4.5, we display the absolute differences between reconstructed images

obtained using our algorithm (displayed in Figure 4.2) and Brey-Narayana (displayed in
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(a)

(b)

(c)

Figure 4.3. Intrinsic image and bias field estimates from prostate data set A using Brey-Narayana bias

correction. (a) T 2-weighted true image estimates, (b) bias field estimates, and (c) Ti-weighted image

estimates.
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Figure 4.4. Bias correction results for prostate data set A using homomorphic unsharp filtering.

Figure 4.3). The results in Figure 4.5(a) for the T2-weighted images are quite striking.

There is a halo around the rectum where both techniques produce nearly identical

results. Further away, there is a great deal of variation that appears white in nature.

For the T1-weighted images, the results are more varied. The largest differences occur

on tissue boundaries. Brey-Narayana tends to underestimate the bias field on one side

of edges and overestimate it on the other because it amasses the bias field estimate from

a local neighborhood of each pixel.

We show some sample slices from data sets B and C in Figures 4.6 and 4.8 re-

spectively. Both data sets display fairly severe motion artifacts. They can be seen

as horizontal disturbances appearing near the middle of the images. We display our

correction results in Figures 4.7 and 4.9. The results for data set B are not very good.

A great deal of noise remains in the final reconstructed images, especially in the T 2-

weighted images. The reason for this is that the endorectal coil is mounted so that the

largest effects of the endorectal coil are directed at the sides of the rectum rather than

on the anterior face adjacent to the prostate. Thus the SNR level within the prostate

in the surface coil images is much lower than for the previous example. There is also

excessive blurriness in the final reconstructed images. This may be caused by slight mis-

registration between the two input sequences. There is a brightness artifact on the left

side of the rectum that is present in YB and consequently in fT 2 . This brightness does

not appear to also exist in ys,T2 though the intensity inhomogeneity makes it difficult

to be sure. This artifact in the body coil images causes the bias field estimate to be too
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(a)

(b)

Figure 4.5. Absolute difference comparisons between our algorithm and Brey-Narayana using data

set A. Differences for the (a) T2 -weighted and (b) Ti-weighted intrinsic image estimates.
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(a)

(b)

(c)

Figure 4.6. Body coil and surface coil images from prostate data set B. T 2-weighted (a) body coil

(YB) and (b) surface coil slices (YS,T 2 ). (c) Ti-weighted surface coil images (ys,T).
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low in those regions and this artifact is then propagated into fT. This artifact could

probably be partially alleviated with stronger regularization on 6 to make our estimates

less data dependent. Unfortunately, the sharpness of the endorectal coil inhomogeneity

makes larger a values impossible.

Data set C does not suffer from the SNR and blurriness problems and has very nice

differentiation between the central zone and peripheral zone in the T 2-weighted images.

Large motion artifacts appear in the final Ti-weighted intrinsic image estimates. There

is also an interesting artifact that appears just above the prostate in f T. This excessive

brightness in two of the slices is caused by the low T2-weighted signal in those locations.

Our bias field estimates have a natural tendency to become small where YB becomes

small. Because we do not have a body coil image for the Ti-weighted images, errors in

the bias field estimate that may not impact fT 2 may cause problems in fT. Again,

more regularization in b away from the endorectal coil would help alleviate these issues.

* 4.1.2 f Regularization

In Figure 4.10, we minimize our full energy functional with regularization on both b and

. The edges in both the T2-weighted and T1-weighted images remain sharply defined

due to our usage of a f, prior. We can also directly compare these results with Figure

4.2 which contains our results without f regularization. The noise levels are visibly

lower in regions far from the endorectal coil, while the reconstructed image does not

change in the high-SNR regions surrounding the coil (see Section 3.4.1).

There is not an appreciable change in the bias field estimates when we add f regular-

ization. The reason for this is that we generally choose y so that f with regularization

looks like a denoised version of f without regularization. The regularization on 6 makes

the bias field estimates relatively resistant to the noise (or lack thereof) in fT 2 and fT 1 .

If -y is chosen too large, the bias field estimates will begin to change. The intensity

variation in ys,T2 must be accounted for by a combination of variation in b and fT 2.

Generally an edge will be incorporated into fT 2 . This choice is consistent with the edge

that should be present in YB 1 , and the f2 regularization for b penalizes large variation

more than the fi regularization on fT 2 . But when y becomes large enough, fT 2 varia-

tion is penalized as much as b variation, and part of the intensity change is assigned to

'If an edge in ys,T2 does not have a corresponding edge in YB, the variation is then properly

attributed to our bias field estimate.
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(a)

(b)

(c)

Figure 4.7. Intrinsic image and bias field estimates (no f regularization) from data set B. (a) T 2-

weighted intrinsic image estimates (fT2 ), (b) bias field estimates (b), and (c) Ti-weighted intrinsic image

estimates (fT,). a = 50, 7T2 = 0, yT, = 0.
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(a)

(b)

(c)

Figure 4.8. Body coil and surface coil images from prostate data set C. (a) Body coil T 2-weighted

images (YB), (b) surface coil T2-weighted images (ys,T 2 ), and (c) surface coil T1-weighted images (nsT1 )-

136 Sec. 4.1. Prostate

I

I



CHAPTER 4. RESULTS 137

I
(a)

(b)

(c)

Figure 4.9. Data set C intrinsic image and bias field estimates without f regularization. (a) Intrinsic

image estimates for the T 2-weighted sequence (fT2 ), (b) bias field estimates (b), and (c) Ti-weighted

intrinsic image estimates (f T ). a = 125, 7yT 2 = 0, -yT' = 0.

ill
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(a)

(b)

(c)

Figure 4.10. Intrinsic image and bias field estimates with f regularization from the prostate data set

A. (a) T 2-weighted intrinsic images (jT 2 ), (b) bias fields (b), and (c) T 1-weighted intrinsic images (fT1 ).

a = 125, yT 2 = 0.012, 7T2 = 0.010.
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6. Thus when y is very large, b changes to incorporate some of the edge information

that should be in fT 2 .

We demonstrate in Figure 4.11 the effects of minimizing our energy functional with

-y = 0 and then applying a post-processing filter step. The post-processing filter is a Li

reconstruction:

f = argminllfo - f 112 + 71ILffI1i (4.1)
f

where fo is f obtained with -y = 0. The top set of examples use the same regularization

strength as was used in Figure 4.10. The effects away from the endorectal coil are largely

similar, but inside the prostate, much of the detail has been blurred away. The bottom

set of examples use a weaker regularization strength that preserves fine details within

the prostate at the expense of noise outside. Clearly the latter example produces results

superior to those in Figure 4.2, so an edge-preserving filter is beneficial. But the results

are inferior to those with the fully integrated fi regularization.

We present results using our full algorithm on data set B in Figure 4.12 and for data

set C in Figure 4.13. For data set B, the value of -y used was much lower than for data

set A. As mentioned earlier, the endorectal coil does not appear to have been mounted

optimally, so the SNR within the prostate is relatively low. Due to the noise-weighted

smoothing effect that our algorithm imposes, we must lower -y to avoid oversmoothing

within the prostate. The results for data set C are fairly similar to those from data set A.

Note that in Figure 4.13(a), the motion artifact actually becomes more pronounced with

the f regularization. The artifact does not become larger, but it becomes more visible

when the noise is reduced. The f 1 regularization does little to reduce the motion artifact.

This is because the artifact is more edge-like (in fact, it is simply the actual edges

replicated over space) than noise-like, and our regularization is designed to preserve

edges. Hence the artifact is preserved while the noise is removed.

* 4.1.3 Parameter Variation

In this section, we examine the effects of varying the parameters in our total energy

functional (3.16). We only use f2 norms for b and f1 norms for f. Hence p is fixed at 1

and q is fixed at 2. The data fidelity weighting parameter A is determined by the noise

variances in the images, and we can obtain reliable estimates of these variances (see

Section 3.3.1). This leaves a and y as parameters that can affect the final solution.
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(a)

(b)

Figure 4.11. Post-filtered T2 -weighted intrinsic image estimates from prostate data set A using Li

reconstruction. (a) y = 0.012, (b) y = 0.005.
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(a)

(b)

(c)

Figure 4.12. Intrinsic image and bias field estimates (with f regularization) from prostate data set B.

(a) T2-weighted intrinsic images (fT 2 ), (b) bias field estimates (b), and (c) Ti-weighted intrinsic images

(fT,). a = 50, 'yT 2 = 0.005, -yT1 = 0.004.
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(a)

(b)

(c)

Figure 4.13. Intrinsic image and bias field estimates (with f regularization) from prostate data set

C. (a) T2 -weighted intrinsic image estimates (fT2 ), (b) bias field estimates (b), and (c) T 1-weighted

intrinsic images (f TI). a = 125, yT2 = 0.012, -yT, = 0.010.
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(a) (b)

(d) (e)

(c)

(f)

Figure 4.14. Dependence of the bias field estimate (b) on a (using a slice from data set A). (a) a = 5,

(b) a = 15, (c) a = 40, (d) a = 125, (e) a = 375, and (f) a = 1200.

In our experience, b is sensitive to changes in a while f is not. We show b for

six different choices of a in Figure 4.14 for one slice from data set A. It is difficult to

see the variation because the large bias field near the endorectal coil tends to drown

out all other details. The portions of the bias field that are most influenced by the

endorectal coil remain largely the same for all of our choices of a. This is because the

signal levels are large there so errors in the data fidelity term are punished much more

than in other regions. In regions that are farther away, the differences become more

apparent. For small a, the bias field is not very smooth. For large a, the regularization

term begins to dominate the data fidelity term, and the bias field estimate becomes

smoother and conforms less to the noisy observations. The change is more pronounced

for small a than large a, something we will quantify in Section 4.4. We do not display

NOW-
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(a) (b) (c)

(d) (e) (f)

Figure 4.15. Variation of prostate intrinsic image estimates (f T,) with -y. (a) -y = 0.003, (b) -y = 0.010,

(c) -y = 0.030, (d) -y = 0.100, (e) y = 0.300, and (f) y = 1.00.

the corresponding f because the differences are quite subtle.

In Figures 4.15 and 4.16, we vary 7 while holding a fixed and display the resulting

corrected images and bias field estimates. The images in Figures 4.15(b) and 4.16(b)

are the same as were displayed earlier. As y increases, the intrinsic image estimates

become less noisy but also more blurred. Note that even for the largest choice of 7, the

strong edges (e.g., the rectum) remain relatively sharp. Using a £2 penalty would have

destroyed the edges. As mentioned earlier on Page 134, as f becomes blurred, some of

the edge variation gets assigned to b. This can be seen in a subtle effect in Figure 4.16.

As y increases (and f becomes smoother), the bias field estimate gets lumpier.
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(a)

(d)

(b) (c)

(e) (f)

Figure 4.16. Variation of prostate bias field estimates (b) with Y. (a) y = 0.003, (b) -y = 0.010, (c)

y = 0.030, (d) y = 0.100, (e) -y = 0.300, and (f) y = 1.00.
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(a) (b) (c)

(d) (e) (f)

Figure 4.17. Observation images from the cardiac data sequence. (a) Body coil image (yB), (b)-(c),

(e)-(f) individual surface coil images (ys,1-ys, 4 ), and (d) composite surface coil image (ys).

* 4.2 Cardiac MR

In this section, we explore the application of our algorithm to cardiac image sequences.

A time-gated 2D sequence of a heartbeat was captured using a GE Signa 1.5-T machine.

FOV was 32 cm x 32 cm and slice thickness was 8 mm. We had available to us body

coil images as well as separate images from each of four surface coils arranged in a

phased array. Two coils were located on the chest, and two coils were mounted on the

back. All results in this section are generated with Lb as a Laplacian operator unless

otherwise specified, and Lf as a gradient operator.

In Figure 4.17 we show our five observation images-one body coil image and four

surface coil images. We also show the composite surface coil image produced from the
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four individual surface coil images using the sum-of-squares method. We only display

observations from one time step. All of the images at different times look quite similar

with the only variation being movement by the heart. The body coil image is much

cleaner compared with the previous prostate examples with a SNR inside the heart of

24 dB. This is mainly due to the larger voxel size. The intensity inhomogeneity in the

surface coil image is also much less pronounced than for the prostate. We can see how

each surface coil has limited spatial coverage but can be joined together into one image

that covers nearly the entire ROI. Note that there are still some regions that have poor

response from all of the surface coils (most notably at the top and bottom of the image).

The surface coils provide a gain of up to 18 dB though this gain is achieved only in a

very small region.

Figure 4.18 shows the reception profiles that we estimate for each surface coil. These

estimates are obtained by obtaining the more general energy functional we introduced

in Section 3.4.3. The results are largely what we would expect: a strong local response

that rapidly diminishes with distance. Note how much larger a is for the heart than the

prostate. The bias fields for the heart surface coils are probably similar in smoothness

to the bias fields from the pelvic phased array. The difference is that the phased-array

bias fields are much smoother than the endorectal coil bias field.

In Figure 4.19 we show the intrinsic image estimates we obtain when applying our

algorithm without f regularization. We can estimate the intrinsic image from each

surface coil image by dividing the surface coil observation by the bias field estimate.

This highlights the spatially-varying SNR we obtain with each surface coil image. Note

that areas far away from the coil that appear to have no signal in the observation images

actually contain fairly accurate (albeit noisy) intensity values. The result of applying

the naive (i.e., non-SNR weighted) method of simply averaging the four intrinsic image

estimates is shown in Figure 4.19(d). This produces an inferior result that is noisier

than the body coil image in most locations. Optimally combining the four intrinsic

image estimates with the body coil image results in Figure 4.19(a).

In Figure 4.20, we apply our algorithm to the composite surface coil image. The

intrinsic image estimate looks similar to that obtained from the multiple surface coil

processing. Figure 4.20(c) shows the areas where the major differences arise. In regions

where there is strong surface coil response, the difference is virtually zero. It is in

regions far from the surface coils where the largest differences arise. These errors are
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Figure 4.18. Bias field estimates (b1-b4) with no f regularization for the multiple surface coil frame-

work from the cardiac data set. There is one bias field estimate per surface coil. a = 5000, y = 0.
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(a) (b)

(d)

(c)

(e) (f)

Figure 4.19. Cardiac intrinsic image estimates with no f regularization. (a) Final intrinsic image

estimate (f), (b)-(c), (e)-(f) intrinsic image estimates from each surface coil, and (d) average of (b)-(c),

(e)-(f). ak = 3000, - = 0.

...... -5p"'W-'
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(a) (b) (c)

Figure 4.20. Results from the cardiac data set using the composite surface coil image. (a) Intrinsic

image estimate (i), (b) bias field estimate (6), and (c) absolute difference between f using the multiple

surface coil framework and f using the composite surface coil image. a = 30000, -y = 0.

quite small on a relative basis. The heart is perhaps not the best example for the

independent surface coil processing. The prostate would benefit more due to the large

difference in behavior between the endorectal coil and the pelvic phased array coils.

The ability to choose Lb and a for each surface coil would be a tremendous boost.

We obtain intrinsic image and composite bias field estimates in Figure 4.21 using

Brey-Narayana. Because the body coil image is not used to reconstruct the final image

estimate, there are regions where none of the surface coils has a large response and the

result is much noisier than we observed in Figure 4.19(a). This is most pronounced at

the top and bottom of the image as well as in the middle. This can be seen in Figure

4.21(c) where we show the absolute difference between the Brey-Narayana estimate and

our estimate using the separate surface coil images.

We show in Figure 4.22 how our bias field estimates b vary as we change a and Lb.

We only display the results from one of the coils. We can see that for identical values

of a, the gradient operator produces bias field estimates that are much smoother than

those obtained when using a Laplacian operator. The largest difference occurs outside of

tissue regions where the Laplacian operator allows the bias field to quickly drop to zero

while the gradient operator extends the bias field pretty far into the air regions. The

bias field estimates in air-filled regions are inconsequential and are primarily influenced

by the regularization term.
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(a) (b) (c)

Figure 4.21. Brey-Narayana applied to the composite surface coil cardiac image. (a) Intrinsic image

estimate, (b) bias field estimate, and (c) absolute difference between (a) and f using the multiple

surface coil framework.

We then display in Figure 4.23 the intrinsic image estimates that correspond to those

bias field estimates. The three estimates using Laplacian regularization look roughly

the same, though small differences can be seen. For the gradient regularization, a = 50

is too small. Too much of the edge information remains in the bias field estimate. On

the other hand, a = 500 is too large. The most prominent discrepancy occurs in the

middle of the patient's back on the right side of the image. The image is too bright

there which indicates that the bias field estimates were over-regularized and could not

properly incorporate the reception profile peaks.

Figure 4.24 shows the results of our algorithm using f regularization. The bias field

estimates are largely unchanged from earlier. We can see in Figure 4.24(d) that the

largest differences occur, as expected, in the regions with the least surface coil coverage.

It also appears that within the heart is moderately less noise than before. We do not

display results where we vary 7. The results are largely as expected and analogous to

the prostate example in Figure 4.15. When -y is low, the intrinsic image estimate looks

like the no f regularization result. When -y is large, the images become noise-free but

blurred.
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(a) (b) (c)

(d) (e) (f)

Figure 4.22. Bias field estimates from the cardiac data set with varying regularization on b. The

algorithm was run with all four surface coil images, but results are only presented for one coil. Laplacian

regularization with (a) ak = 500, (b) ak = 5000, and (c) ak = 50000. Gradient regularization with (d)

ak = 50, (e) ak = 500, and (f) ak = 5000. -y = 0 for all examples.
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(a) (b) (c)

(d) (e) (f)

Figure 4.23. True image estimates from the cardiac data set with varying regularization on b. Lapla-

cian regularization with (a) ak = 500, (b) ak = 5000, and (c) ak = 50000. Gradient regularization

with (d) ak = 50, (e) ak = 500, and (f) a, = 5000. All examples have y = 0.
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(a) (b) (c)

(d) (e) (f)

Figure 4.24. Cardiac intrinsic image and bias field estimates with f regularization. (a) Final intrinsic

image estimate (f), (b)-(c), (e)-(f) bias field estimates for each surface coil (bi-6 4 ), and (d) absolute

difference of intrinsic image estimate with result from no f regularization. ak = 3000, -y = 0.00055.
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Figure 4.25. Body coil GRE images (yB) from the brain data set.

U 4.3 Brain Imaging

We apply our bias correction method to real brain images in this section. We captured

a full 3D volume using a four-element phased array. We received gradient echo (GRE)

images with both the phased array and the body coil, and we received fluid attenuated

inversion recovery (FLAIR) fast-spin echo (FSE) using just the phased array. The latter

is a modified T2-weighted pulse sequence that suppresses fluid intensities. This is useful

in e.g., multiple sclerosis (MS) diagnosis where the cerebrospinal fluid (CSF) brightness

can overwhelm the MS lesions. FOV was 24 cm x 24 cm and slice thickness was 3 mm.

All results were generated with Lb implemented as a Laplacian operator and Lf as a

gradient operator. We do not present results using the composite surface coil because

we feel that the multiple surface coil framework provides superior results. We index

the GRE surface coils as ys,1 through Ys,4 and the FLAIR surface coil images as ys,5

through ys,8-

We display observation images from three slices in the brain. Figure 4.25 contains

the GRE body coil images. The image quality is comparable to the cardiac images

with a SNR of 21 dB in the brain. The corresponding GRE images for each of the

surface coils is located in Figure 4.26. The gain of the coils is as high as 17 dB. Figure

4.27 contains the FLAIR images from each of the surface coils. The SNR is up to 33

dB. Knowing the gain of the surface coils, we can estimate that a hypothetical FLAIR

body coil image would have SNR of approximately 16 dB. Note that the FLAIR images

reverse the typical intensities observed for gray/white matter so that the gray matter
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actually has higher intensity than the white matter.

* 4.3.1 Bias Correction Results

We present in Figure 4.28 the FLAIR and GRE intrinsic image estimates with 7GRE = 0

and 7FLAIR = 0. The GRE results have better noise than the body coil images and

much better homogeneity than the surface coil images. The FLAIR images also display

markedly improved homogeneity, but in the middle of the brain, the images become

quite noisy. The reason for this is that all of the surface coils have relatively poor signal

response in the middle of the brain, and we do not have a body coil image to help.

The noise in the middle of fFLAIR is better than would be available from any of the

individual surface coils, but it is still relatively large.

Figure 4.29 shows our bias field estimates that correspond to the intrinsic image

estimates that we just covered. There is an artifact in the slices in the left column that

emanates from the eyeballs. This artifact can also be seen in the original GRE surface

coil and body coil images but not in the FLAIR images. This imperfection does not

noticeably alter the final correction results because it appears outside of the head. The

reception profiles of the surface coils appear to be quite stable in the vertical direction

with little variation from slice to slice.

We show in Figure 4.30 images corrected using regularization on f. We do not

include the bias field estimates because they only change marginally from the earlier

results. The noise is reduced from the no regularization case, especially in the GRE

images. The FLAIR images are not able to benefit as much due to the preponderance of

small-scale structure. Though 7FLAIR is only 20% lower than yGRE, the regularization

in the FLAIR images is actually only half as strong as that in the GRE images due to

the differing intensity levels. We conclude that it is more beneficial to capture a body

coil image of the pulse sequence that results in the most fine-scale structure because

this scan benefits the least from the e1 reconstruction.

We display in Figure 4.31 the absolute difference between reconstructions obtained

with and without f regularization. We can see that the amount of correction steadily

increases the closer we get to the middle of the brain. This is because the SNR decreases

in the middle of the brain. This effect is more pronounced in the FLAIR images than

in the GRE images because the latter have a floor on the SNR level imposed by the

body coil image. We can see that the fi regularization does a good job of preserving
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Figure 4.26. Individual axial surface coil GRE images from the brain data set. Each column shows

the four surface coil images (YS,1-Ys,4) for each of three slices.
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I
I

Figure 4.27. Individual FLAIR surface coil images from the brain data set. Each column shows the

four surface coil images (YS,5-Ys,FL,8) for each of three slices.
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(a)

(b)

Figure 4.28. Intrinsic image brain estimates with no j regularization. (a) GRE images (YGRE) and

(b) FLAIR images (.FLAIR)- ak = 1000, '7GRE = 0, 'WFLAIR = 0-
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Figure 4.29. Individual bias field estimates (b1-b 4) from the brain data with no f regularization.

Computed from the GRE body coil and surface coil observations. ak = 1000, 'YGRE = 0, 'YFLAIR = 0.
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(a)

(b)

Figure 4.30. Corrected images (with regularization) from the brain data set. (a) GRE images

(f GRE) and (b) FLAIR images (f FLAIR)- C'k = 1000, YGRE = 0.025, 7FLAIR = 0.020.

pomp==
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(a)

(b)

Figure 4.31. Absolute difference of brain images for reconstruction with and without f regularization.

(a) GRE images and (b) FLAIR images. .k = 1000, 7GRE = 0.025, tPLAIR = 0.020.

edges as little tissue structure appears in the image differences except in the middle at

the ventricles.

N 4.3.2 Segmentation results

There are a variety of automatic segmentation techniques available in the literature.

Perhaps the simplest technique is statistical ML segmentation with an ID Gaussian

noise assumption. This results in a segmentation that is only based on thresholding-if

an intensity value falls within a proscribed range [ak, bk), it is assigned to the segmen-

tation class k. This technique can only be successful when the true tissue intensities are

approximately piecewise constant, and the noise and bias are low. Brain segmentation

falls into this category, though even when using a head coil, adaptive segmentation

162



techniques such as Wells et al. [85] must be used to account for the bias.

We show in Figure 4.32 thresholded white/gray segmentations of images corrected

using three methods: our algorithm without regularization on f (see Figure 4.28), our

algorithm with regularization on f (see Figure 4.30), and Brey-Narayana. We did not

include the intrinsic image estimates computed using Brey-Narayana because they did

not differ significantly from our results. The thresholds were chosen manually, and the

same thresholds were used for all three methods. Note that we use white intensities for

white matter and gray intensities for gray matter even though the relative intensities

are reversed in the observed FLAIR images.

The segmentations that we present are limited in quality by the homogeneity of the

body coil. Even the body coil does not present a perfectly homogeneous response, and

we found it difficult to choose one threshold that would provide consistent white matter

thickness. Our results are impacted even more because we do not have a body coil

image for the GRE images, so all we really have is a "second-hand" bias field estimate.

Partial volume blurring effects also affect the quality of the results.

All three segmentations behave similarly except for subtle differences. The segmen-

tations which used regularization on f FLAIR have fewer isolated classified pixels (which

are generally attributable to noise). This effect is most pronounced in the middle of

the brain due to the higher noise levels there. The ability of the f1 regularization to

preserve edges is highlighted by these segmentations. Even the gray/white boundaries

in the folds of the brain are largely preserved. Overall using regularization on fFLAIR

produces a modestly cleaner segmentation without sacrificing edge fidelity.

Varying 'YFLAIR has the expected results on our intrinsic image estimates: lower

values result in more noise while higher values result in blurry images. We can get a

clearer picture of these contrasts by presenting in Figure 4.33 the thresholded segmen-

tation results as we alter -YFLAIR. We only include results from one slice. Figure 4.33(b)

corresponds to the YFLAIR value used to generate the previous segmentation maps.

As 7FLAIR becomes large and we over-regularize the solution, the regions become

more contiguous. This has the effect of breaking apart some loosely connected regions

(that should be connected) and closing up some smaller regions (that should not be

closed). Overall, even with the high amount of regularization, many small structures

are preserved, and it is arguable that Figure 4.33(d) may be a better segmentation than

Figure 4.33(b).
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(a)

(b)

(c)

Figure 4.32. Thresholding-based segmentation results from corrected brain FLAIR images. Correction

using (a) our algorithm without j regularization, (b) our algorithm with f regularization ('/FLAIR =

0.020), and (c) Brey-Narayana.
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(a) (b)

(d) (e)

(c)

(f)

Figure 4.33. Thresholding-based segmentation results for corrected brain FLAIR images with (a)

-YFLAIR = 0.008, (b) 7FLAIR = 0.020, (c) YFLAIR = 0.060, (d) -YFLAIR = 0.180, (e) 7FLAIR = 0.50, and

(f) 7FLAIR = 1.50. ak = 1000.
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1 4.4 Phantom Brain Images

In this section, we create artificial body coil and surface coil images using the MNI

brain phantom. We use the Ti-weighted "normal" volume with 1 mm x 1 mm pixel

size and 3 mm slice thickness. We generate artificial bias fields by convolving a point

source with a Gaussian. We construct the bias fields so that they model a four-element

phased array that has its coils roughly equally spaced along the outside of the head.

Noise-free surface coil images are then generated according to our imaging model, and

the observation images are created by adding Rician noise. We chose the noise level

to provide SNR of 24 dB in the gray matter regions and 26 dB in the white matter

regions. All results were generated with Lb as a Laplacian operator and Lf as a gradient

operator. The maximum gain of our bias field is 5.78 which represents a gain of 15 dB.

We display our constructed observation images in Figure 4.34. The images are

somewhat artificial in appearance, but are reasonable facsimiles of the real brain data

we used in Section 4.3. The composite surface coil image is generated using the sum-of-

squares method. Combining all of the surface coil images provides fairly comprehensive

coverage of the entire tissue region. The lowest gain within the brain of the composite

surface coil image is 0 dB which is equivalent to the body coil gain.

In Figure 4.35 we show the segmentation map we obtain from the ground truth

intrinsic image. This segmentation map will later be used to evaluate the effectiveness

of our bias correction method. The thresholds were manually chosen to give the best

visual appearance, and non-brain structure (such as from the skull) were manually

removed. The threshold values are somewhat arbitrary because the boundaries between

regions are not step edges. This is because the brain phantom accurately models partial

volume effects, so there is significant blurring at tissue boundaries.

* 4.4.1 Qualitative Results

Figure 4.36 contains the results of our bias correction algorithm with -y = 0 and ce

chosen to minimize the mean squared error of the intrinsic image estimate. We show

the absolute error (compared with the ground truth) of our true image estimate in

Figure 4.36(d). We mask out the non-tissue region because the error there (mainly due

to the bias introduced by the Rician noise) is so much larger than the error in tissue

regions. We can see that the error diminishes in regions where our surface coils provide
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(a) (b)

(d) (e)

(c)

(f)

Figure 4.34. (a) Body coil image (yB), (b)-(c), (e)-(f) individual surface coil images (ysl-ys 4 ), and

(d) composite surface coil image from the MNI data set.

strong signal response.

Figure 4.37 contains the results of our algorithm when minimizing the full energy

functional. The bias field results are largely the same as before, and the intrinsic image

estimate looks similar as well (albeit with visibly reduced noise). The effects of the t1

regularization can be seen in Figure 4.37(d) where we show the absolute error. There

are still regions where the noise is clearly lower than other regions, but unlike Figure

4.36(d), these regions occur for large piecewise constant areas. The reason for this is

that in these areas, our f, prior behaves identically to a f 2 prior and most of the noise
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Figure 4.35. Gray matter/white matter ground truth segmentation of a slice from the MNI data set.

is eliminated. Conversely, on an edge, our i prior has little effect and the noise (which

is the main source of error) will remain largely unchanged.

U 4.4.2 Numerical Results

As mentioned earlier, the biggest draw for using the brain phantom is the ability to

compute numerical results. We computed errors and biases for various bias correction

methods in Table 4.1. The bias correction methods we used were our algorithm with the

individual surface coil images with (MSC f, -y = 0.014) and without (MSC f, y = 0)

regularization on f; our algorithm on the composite surface coil image without using

regularization on f (comp. f, -y = 0); and Brey-Narayana with (opt. B-N) and without

(B-N) the body coil in the final image reconstruction. We did not display the corrected

images obtained from the last three methods in this section because there are not large

visual deviations from the results already included.

Mean squared error and mean absolute error give two slightly different views of

the error. Mean absolute error weights all errors equally while mean squared error

weights large errors more heavily. As we would expect, the largest errors occur for

Brey-Narayana without the body coil, and the smallest occur for our algorithm with

the Li prior. We can see that we achieve a 24% reduction in mean absolute error from

the worst method to the best method. 12% of the reduction results from using the
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(a) (b)

(d)

(c)

(e) (f)

Figure 4.36. (a) Intrinsic image estimate (f), (b)-(c), (e)-(f) individual coil profile estimates (6 1-64 ),

and (d) absolute error (within the brain) of the intrinsic image estimate. ak = 2000, -y = 0.

I
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(a) (b) (c)

(d) (e) (f)

Figure 4.37. (a) Regularized intrinsic image estimate (f), (b)-(c), (e)-(f) individual coil profile

estimates (b1-b4 ), and (d) absolute error (within the brain) of intrinsic image estimate. ak = 2000,

-y = 0.014.
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comp. f MSC f MSC f opt.

f* YB Y= 0 y = 0 y = 0.014 B-N B-N

MSE (tissue) 0 14449 1144 1066 802 1318 1233

MAE (tissue) 0 96 26.79 25.53 21.91 28.68 27.87

GM bias 0 5.61 4.54 7.28 3.23 2.18 2.72

WM bias 0 2.31 4.61 6.00 -0.61 6.62 6.62

GM errors 0 1393 346 328 323 377 364

WM errors 0 823 198 189 188 212 208

Table 4.1. Quantitative results comparing several bias correction methods on the MNI brain phantom.

The top two lines are the mean squared error and mean absolute error (compared with f*) of the part

of the images in tissue regions. The next two lines are the intensity bias in gray matter and white

matter regions. The last two lines are the segmentation errors made in gray matter and white matter

regions.

body coil data in the final reconstruction, 16% results from our smoother bias field

estimates, 19% occurs from using the individual surface coil images separately, and

53% happens due to the noise reduction from the 4i prior. Of course this is only a

rough approximation as these effects are not linear.

The mean gray matter value is 1781 and the mean white matter value is 2335. Thus

we can see that the bias in the body coil is fairly negligible (0.31% in gray matter

regions and 0.10% in white matter regions). There are a number of interesting effects

to observe. The bias for the multiple surface coil f with -y = 0 is actually larger than

the bias in the body coil observation. The reason for this is that we regularize 6 but not

. Even though we only explicitly penalize curvature in b, all else being equal, lower

values in 6 will reduce the regularization energy. Thus to minimize the energy, b has

a slight downward bias which forces f to have a slight upward bias. In an analogous

manner, the bias for the solution with regularization on f is lower than the bias for the

body coil image. Lower values in f decrease the regularization energy for f, and this

forces f to become smaller.

In both of the Brey-Narayana corrections, we see the gray matter bias becomes

smaller while the white matter bias becomes larger. The reason for this is that on

gray/white boundaries, Brey-Narayana underestimates the bias field on the white mat-
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ter side (because it includes some of the gray matter intensities in its estimate) and

overestimates the bias field on the gray matter side (because white matter intensities

are incorporated into the estimate). Hence the final intrinsic image estimate will over-

estimate white matter intensities and underestimate gray matter intensities.

The ground truth segmentation results were shown in Figure 4.35. Overall 9814

pixels were classified as being white matter and 5466 pixels were classified as being

gray matter. This means that classification with YB results in gray matter error of

25.5% and white matter error of 8.4%. The various bias correction techniques reduce

this rate to 5.9-6.9% in the gray matter and 1.9-2.2% in the white matter. We do not

display the segmentation maps for the different bias correction techniques because they

look largely the same as the ground truth with minor errors interspersed throughout.

To obtain the segmentation errors, we thresholded the various images with the same

value used to obtain the ground truth. We define an error as a pixel that is either

included when it should not have been, or not included when it should have been. This

means that a pixel that is labelled as gray matter in the ground truth segmentation

but white matter in the corrected image segmentation is counted as an error for both

the gray matter and the white matter. Even though there are fewer gray matter pixels

than white matter pixels, all of the methods had higher misclassification rates for the

gray matter. This is because many of the white matter pixels are far away from other

tissue types and are less affected by partial volume effects.

We are only able to reduce the segmentation errors from Brey-Narayana by about

13%. Note that most of this reduction comes from our superior bias field estimates

rather than the anisotropic filtering. The reason why the regularization on f produces

a large reduction in the error while only a minimal reduction in the misclassification rate

can be seen in Figure 4.37. As we noted earlier, most of the benefits from the anisotropic

filtering come far away from edges. Unfortunately, most of the misclassification errors

occur near tissue boundaries due to the partial volume blurring. Hence, the f, prior on

f does not help in the segmentation as much as we would have expected.

Dependence on a

We examine the dependence of the mean squared error on a in Figure 4.38. We can see

that there is a definite value that minimizes the error, though the trough is not very

steep. We see that choosing a too small is much more detrimental than choosing a
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Figure 4.38. Mean squared error as a function of a from the MNI data set.

too large. As a -+ 0, more noise is admitted into bk, and f becomes more and more

like YB. So as a gets very small, the mean squared error should approach 14449. The

situation for large a is not as dire because the overall curvature in the actual surface

coil reception profiles is relatively low because the bias fields actually are smooth and

slowly varying. So for the optimal value of a, a small portion of the energy comes

from the regularization energy, and most comes from the data fidelity term. Thus the

intrinsic image estimates become relatively insensitive to changes in a because they are

constrained by the body coil observations.

Dependence on SNR

In Figures 4.39, 4.40, and 4.41, we vary the noise level used to generate the observation

images. The lowest noise level corresponds to a SNR of 30 dB in the gray matter and 32

dB in the white matter. The highest noise results in a SNR of -12 dB in the gray matter

and -10 dB in the white. The latter noise levels result in completely unusable images.

We evaluate three different bias correction techniques: our method with and without

regularization on f, and Brey-Narayana without the body coil in the reconstruction.

In Figure 4.39, we plot the mean squared error as a function of noise level. Brey-

Inn
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noise std
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Figure 4.39. Mean squared error as a function of noise level in the MNI data set.
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Figure 4.40. Gray matter segmentation errors as a function of noise level in the MNI data set.
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Figure 4.41. White matter segmentation errors as a function of noise level in the MNI data set.

Narayana is always seen to produce worse results than our method with y = 0, and

the latter is always worse than our method with y 5 0. As the noise becomes very

small or very large, all three methods produce similar results. In the middle region

(from approximately 100 to 1000 which corresponds to SNRs between 6 dB and 26 dB),

regularization on f opens a fairly significant performance advantage. The reason for this

behavior is that when there is little noise, all methods can produce good results. When

there is a lot of noise, there is little information available to perform good estimation,

so everyone does poorly. In the middle, the problem is hard, but not too hard, and

superior techniques provide superior results.

We observe slightly different behavior in Figures 4.40 and 4.41 where we plot the

misclassification rates in gray matter and white matter respectively. While the largest

gains in error occur around a standard deviation of 300, the largest gains in classifica-

tion error occur around a standard deviation of 1000. At the highest noise levels, the

misclassification rates level off. In this region, the classifiers basically resort to guessing

and they have a 50/50 chance of being right.

-- f no rag
. . . . B
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7 4.5 Summary of Results

The prostate was probably the example where our algorithm showed the most dramatic

gains. Comparison between our intrinsic image estimates with the original body coil

and surface coil images showed a large gain in both SNR and intensity homogeneity.

We were able to successfully correct both T2-weighted and Ti-weighted images, even

though we lacked body coil observations for the latter. This lack of Ti-weighted body

coil images resulted in a larger number of obvious artifacts in the T1-weighted intrinsic

image estimates. We demonstrated our algorithm on three prostate sets of varying

quality. Not surprisingly, the best results were obtained from the set with the highest

quality observation images. Even with the poorer quality data sets, the regularization

ensured that our bias field estimates ignore the motion artifacts. Unfortunately, the

quality of the intrinsic image estimates was limited by the quality of the observations.

Thus one set resulted in reconstructed images that were noisy and somewhat blurry

while another had large motion artifacts that spoiled the visual appearance.

Our bias correction algorithm was also quite successful on the cardiac images. We

demonstrated the utility with and without regularization on f. The regularization pro-

vided superior noise behavior, but the result was not as dramatic as in the prostate

because the heart SNR is much higher. We investigated the usage of both gradient and

Laplacian regularizers on b and found that gradient regularization tends to overcon-

strain the bias field estimates which visibly affects the final intrinsic image estimates.

We demonstrated the flexibility of our method by processing the multiple surface coil

images in one composite surface coil image and also in four separate images.

The results for the brain were largely what we would expect based on the previous

prostate and heart examples. The main difference was the nine observation images

available for each slice: one body coil GRE image, four surface coil GRE images, and

four surface coil FLAIR images. Note that if we had individual surface coil data for

the prostate, we could have up to eleven observations per slice. Our algorithm was

able to fuse these observations to generate two intrinsic image estimates and four bias

field estimates. An additional feature of the brain examples was the ability to get

a more concrete sense of the quality of the bias corrections. In previous examples,

we could only look at the images and visually compare them with our body coil and

surface coil observations. With the brain images, we could perform threshold-based
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segmentations to see how homogeneous the reconstructions really were. Overall we

found the corrections to be fairly good (and certainly superior to using the raw surface

coil data), though the quality was limited by partial volume effects, noise, and body

coil inhomogeneities.

The results with using the MNI brain phantom tracked our experiences with real

data. We generated quantitative error figures for different bias correction methods and

found that our method with regularization on f performed the best and Brey-Narayana

performed the worst, but the differences were fairly minor. We also investigated the per-

formance as a function of SNR and found that we generally outperform Brey-Narayana,

and the largest outperformance occurs for SNR ranges from 6 dB to 26 dB. This is a

positive result because this is also the typical range of SNR we observe in real data.
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Chapter 5

Conclusion

We have presented a novel bias correction method that relies on surface coil images

to provide superior noise characteristics and body coil images to help constrain the

space of possible solutions. The main contribution is a flexible variational framework

that unifies bias correction and anisotropic edge-preserving filtering to produce results

that are both homogeneous and have high SNR. We used f 2 norms to ensure that

our bias field and intrinsic image estimates conformed to our observations, and we

used regularization to help mitigate the effects of the noise on our estimates. A key

contribution is the ability to fuse together observation images from multiple surface coils

and multiple pulse sequences. Compared to similar techniques that use body coil and

surface coil images, we provide a more rigorous formalism and superior results to Brey

and Narayana [12] and our method is not limited by the parametric representations of

Pruessmann et al. [59] and Lai and Fang [41].
The energy functional we construct is difficult to minimize in terms of both the

bias field and the intrinsic image but is easy to do for just one of those quantities.

Hence we use coordinate descent to create subproblems that are easier to solve than

the main problem. We then iterate between f-steps and b-steps until our solutions

converge. We find that the b-step results in a quadratic optimization problem which

can be solved exactly through matrix inversion or iteratively using methods such as

conjugate gradient. The f-step results in a 4P regularization problem. We use half-

quadratic optimization to convert the nonlinear optimization problem into a series of

quadratic optimization problems which can be solved using conjugate gradient. We

embed our solvers into a multigrid framework to increase both speed and robustness.

We found the largest gains using our algorithm were achieved for the prostate.

This is because the prostate images had the highest noise and the largest intensity

inhomogeneities. We also presented results for heart and brain data where we had the
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separate data for the individual surface coils. We then used the Montreal Neurological

Institute brain phantom to acquire quantitative results on realistic-looking artificial

data.

* 5.1 Future Research Directions

There are a number of additional things that can be accomplished within our basic bias

correction framework. First is to apply the method to additional examples. Breast and

spine MR also make use of surface coils with fairly significant intensity inhomogeneities.

No major modifications to the algorithm should be needed to use these new applications.

It would also be interesting to test our algorithm on brain data acquired using a head

coil. The bias field in these images is not very severe, but it is enough to prevent

ideal results for statistical segmentation. We would also like to obtain prostate data

with separate images for each of the surface coils. As we noted earlier, the composite

surface coil image limits our ability to effectively regularize the bias field estimates in

the regions where the pelvic phased array dominates.

We would like to implement the solver to operate on full 3D volumes. There is

no real technical impediment to do so. The main concern is computational speed and

memory consumption. The current memory footprint is quite small, but using full

512 x 512 x 400 volumes could be problematic.

An important feature would be automatic or semi-automatic methods to choose

optimal settings for our regularization parameters a and -y. Currently we are able to

effectively estimate the noise variances, but the regularization strength must be chosen

through visual inspection and trial and error.

Better handling of the Rician noise would be desirable. Currently we model the

noise as IID Gaussian with zero mean. This ignores the bias (which can be quite large

in the prostate data set) and the dependence of the noise variance on the SNR. One

crude possibility to help reduce the effects would be to first run our bias correction

algorithm with the IID Gaussian assumption. We could then estimate the SNR at each

pixel from the corrected image and use this to estimate the true bias and noise variance

at each pixel.

For brain segmentations, we found that our segmentation quality may be limited

by the homogeneity of the body coil. We could use the main idea of Wells et al. [85

where we alternate segmentation and bias correction steps. The segmentation can help
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us estimate the reception profiles of both the surface coils and the body coil.

We use multigrid to force our algorithm into a multiresolution framework and we

use a frequency-selective penalty to regularize our bias field estimates. This can be

accomplished analogously with wavelets. The regularization is then placed directly on

the wavelet coefficients rather than derivatives of the bias field.

We can also attempt to improve our probabilistic modeling of both the bias field

and the intrinsic image. We can model the bias field as a Markov random field (MRF)

to provide better global coupling and more flexible representations without excessively

burdensome computation. We can use the MRF ideas of Geman and Geman [28 to

provide better explicit modeling of the edges in the intrinsic image.
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Appendix A

Linear Algebra

We will only cover the aspects of linear algebra and vector calculus that we use in

this work. For a more comprehensive treatment, see Strang [70] or Horn and Johnson

[34]. Let there be a function f (x) R" -+ R. The gradient is a differential operator

V : R- on f:

... T (A.1)

The Hessian is a nxn second derivative operator with

02
[Hli - = .(A.2)axio9xi

The Laplacian is another second derivative operator:

02 a2 02
V 2 =A=5-+ 2+ + . (A.3)

1~ +OX 2  nx

The directional derivative is the derivative of f in the direction of xO. This can be

written as:

f'(x; XO) = lim = + - f(X) Vf(x) T Xo . (A.4)
6-+0 6

A matrix is said to be positive semi-definite (PSD) if and only if:

1. All eigenvalues are non-negative

2. VX E Rn, XTMX > 0

3. All determinants of upper-left submatrices are non-negative

All three statements are equivalent. A matrix is positive definite (PD) if all inequalities

are strict.

The inner product of two vectors x and y is

(xV) = XTy . (A.5)
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The inner product weighted by W is

(x,y)w = xTWy. (A.6)

We can then define vector norms using inner products:

1411, = (x,x) (A.7)

I1xbSy = (x,x)w (A.8)

(A.9)

Matrix decompositions are methods to write a given matrix in terms of a few ma-

trices to give more insight into the structure of the original matrix. The simplest is the

LU decomposition:

A=LU (A.10)

where U is the result of Gaussian elimination on A (referred to as row echelon form)

and L is the product of the elementary row operation matrices. If we put U into

reduced row echelon form (with I's on the diagonal), we can write this as A = LDU

where D is a diagonal scaling matrix.

The eigenvector decomposition for an n x n matrix M highlights the role that the

eigenvalues and eigenvectors play:

M = SAS- 1 . (A.11)

The columns of S are the eigenvectors of M and A is a diagonal matrix with the

eigenvalues of M along the diagonal. This decomposition is valid for matrices that

have a full set of linearly-independent eigenvectors. When this decomposition exists, it

tells us that the action of the matrix on a vector x is to: first, transform x into the

vector space spanned by the eigenvectors of M; second, scale each component by the

appropriate eigenvalue; third, transform back into the original vector space.

When M is symmetric, all of its eigenvalues are real and all of its eigenvectors

are orthogonal to each other. Hence we can write S as an orthogonal matrix Q and

Q-1 = QT:

M = QAQT. (A.12)

We note that positive semi-definite matrices can be written as:

M=HHT. (A.13)



This can be seen from (A.12). When M is PSD, all entries of A are non-negative.

Hence A has a real square root and we can rewrite (A.12) as follows:

M = (QA1/ 2 )(QA/ 2 )T , (A.14)

and we can see H = QA 1/2 .

This suggests that in an LU decomposition, H = L and U = HT = LT. This is

known as the Cholesky decomposition:

M=LLT. (A.15)

Finally, for an arbitrary m x n matrix M, there is the singular value decomposition

(SVD). For simplicity, we will only consider matrices with m > n. For a matrix A with

n > m, the following results may be applied to AT and A is just that decomposition

transposed.

The SVD is based on decompositions of the two PSD matrices we can easily form

from M: MTM and MMT. We can decompose both of these matrices using the QA

decomposition:

MMT = Q 1A1QT

MTM = Q2 A2 QT.

So we see that we obtain two sets of orthogonal basis vectors: one for R" and one

for R". It turns out that the n largest eigenvalues of MMT are the same as the n
eigenvalues of MTM (the remainder are zero due to the fact that the rank of MMT

is at most n).

This leads to the following decomposition:

M = UEVT (A.16)

where U = Q, is m x m, E is m x n, and V = Q2 is n x n. E can be written as the

following block matrix:

( A 1/2

Om-nxn

The entries along the diagonal of E are known as the singular values.

We can verify this result by noting that MMT = UEVTVETUT = UEETUT =

Q 1 A1 QT and MTM = VETUTUEVT = VET EVT - Q 2 A2 TI.
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