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Abstract

This thesis presents the design and implementation of an energy-efficient, multiple
target tracking system developed to run in real-time on the MIT pAMPS wireless
sensor nodes. The system integrates line-of-bearing data obtained from a field of
acoustic sensors to provide an optimal position and velocity estimate of a moving
sound source such as a vehicle engine. The Kalman filter and probabilistic data
association techniques used in this application provide a significant improvement in
tracking performance versus basic triangulation. These algorithms are combined with
harmonic line association, a frequency-domain detection algorithm, to create a com-
plete, real-time target detection and tracking system. Functionality and performance
are verified through simulation and experiment using a real-time implementation.
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Chapter 1

Introduction

Wireless sensor networking is an important emerging technology with a wide variety

of applications, including target tracking, environmental sensing, medical monitoring,

machine diagnosis, and security systems. Networks of distributed microsensors offer

several advantages over the traditional approach using small numbers of macrosensors.

These advantages include fault tolerance, improved sensing resolution, and potentially

lower cost. This thesis focuses on the vehicle tracking application, and presents the

design and implementation of a real-time tracking system to run on the MIT pAMPS

wireless sensor nodes.

Figure 1-1: uAMPS Wireless Sensor Node
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1.1 The uAMPS Wireless Sensor Node

The pLAMPS sensor node [11] measures approximately 2 inches by 4 inches and

consists of three stackable boards. The lower board contains the power supply, four

acoustic sensor inputs, and the A/D converters. The node is currently powered by 4

AA batteries.

The middle board contains the Intel StrongARM CPU and its associated compo-

nents, including SRAM and flash ROM chips. The StrongARM CPU allows dynamic

voltage and clock frequency scaling to match the power consumption of the processor

to the performance demands of a particular application. The clock speed can be set

from 59 MHz to 221 MHz, and the voltage scales from 0.9 volts to 2.00 volts.

The top board holds a Bluetooth-based 2.4 GHz radio. It operates at a raw data

rate of 1 Mbps, but Manchester encoding reduces the operational throughput to 500

Kbps. The power amplifier of the radio allows six different output power settings,

ranging from 0 dBm to 20 dBm. The power consumption of the radio can thus also

scale to match the range and reliability requirements of a particular application. The

radio board also contains an FPGA to interface between the processor and the radio.

Implemented on
an FPGA

Mic.
D6ewr. 'Sai AM FahRO oto Antenna

Batterv- DCCPwrSppis FF Shtr

Sensor Processor Radio

Figure 1-2: Block Diagram of uAMPS Node
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1.2 Tracking Problem Formulation

The acoustic target tracking problem to be addressed is formulated as follows. Each

node has three microphones attached to its acoustic sensor inputs. The microphones

are arrayed at 120 degree angles from each other to form an equilateral triangle. See

Figure 3 for an overview of the setup. The node then runs a beamforming algorithm,

described in Section 2.5, to analyze inputs from the three microphones and compute

a line-of-bearing to the most likely sound source.

The tracking application will consist of a field of these sensor nodes each commu-

nicating their line-of-bearing to a local base station. The question then becomes how

to integrate the data to produce the most accurate estimate of the target position.

LOB measurements

Base Station node

Sensing node

Sound source

Figure 1-3: Tracking Scenario Overview

1.3 Approach

The line-of-bearing measurements produced by the beamforming algorithm are quite

noisy in practice and simple triangulation would yield poor tracking performance. To
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achieve superior estimation accuracy we have implemented algorithms based on the

Kalman filter, a fundamental technique of estimation theory.

The Kalman filter has two main advantages. First, it incorporates information

regarding the statistical properties of both the target's motion and the measurements

available, allowing for improved performance in the presence of noise. Second, it

produces not only the estimate of the target's state, but also probabilistic information

regarding the accuracy of the estimate (covariance matrix) [2].

The covariance matrix, along with other probabilistic information computed by

the Kalman filter serves a variety of purposes. For example, it can be used to validate

measurements and reject those that are clearly spurious by computing the probability

a particular measurement came from the target [1]. Monitoring the covariance matrix

can also indicate which sensors are providing useful information to localize the target,

and allow for unneeded sensors to be shut down to save power.

The second phase of the project involved extending the system to simultaneously

track multiple targets. In this scenario the main challenge involves determining the

measurement to target associations. The technique used is known as the Joint Prob-

abilistic Data Association filter (JPDAF), and computes the probability that each

measurement validated for a target actually originated from that target. The state

estimate is then updated with an appropriately weighted combination of all validated

measurements.

In addition to the estimation filters described above, a frequency-domain detection

algorithm known as Harmonic Line Association (HLA) [13] [12] has been implemented

to run in real-time on the sensing nodes. This algorithm analyzes the spectrum of the

microphone signal looking for harmonic signatures signifying the presence of vehicle

engine sounds. It then provides information regarding the likelihood a real target is

present versus a false alarm caused by spurious noise or reflections.

11



1.4 Thesis Organization

The remainder of this paper is organized as follows. Chapter 2 presents an overview

of related work and alternative approaches to the Kalman filter-based system used

for this project. Chapter 3 describes the basic Kalman filter, and discusses some

of the challenges involved in applying it to this specific application. In Chapter 4,

the JPDAF multiple-target tracking extension is described. Chapter 5 discusses the

implementation of the HLA frequency-domain detection algorithm. Finally, Chapter 6

presents conclusions and ideas for future work, including power-saving enhancements

using the covariance information produced by the filter.
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Chapter 2

Previous and Related Work

This chapter describes other research work related to this project, including the beam-

forming algorithm used to generate the line-of-bearing measurements and some al-

ternatives to the Kalman filter-based system implemented for our application. Some

additional improvements that can be made to the Kalman filter are also described.

2.1 Information Utility and Grid-Based Distribu-

tions

Work done for the CoSense project at PARC described in [14] proposes an interesting

method of using information theory to determine which sensors should be involved

in a given sensing task. The authors have developed a closed-form expression for the

expected utility of adding the measurement for a particular sensor, given its location

and characteristics. Their system uses a distributed algorithm that at each time step

passes the target state estimate and distribution information to the node expected

to produce the largest increase in the estimation accuracy. This system is similar

to our method for reducing power consumption by shutting down unneeded sensors

presented in Section 5.3.

The system in [14] also differs from our application in that it uses a grid-based

representation for the probability distribution of the state estimate. In contrast, our
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work uses a parameterized distribution, i.e. the state is assumed to have a Gaussian

distribution and thus characterized entirely by its mean and covariance matrix. The

grid representation can capture non-Gaussian distributions, and strikes a balance

between the simple but restrictive parametric representation and the most general

approach of approximating an arbitrary distribution with a very large set of discrete

samples. The CoSense system offers the flexibility to handle non-Gaussian distribu-

tions, but the extra computational complexity required to compute the information

utility and evaluate the estimate distribution over the grid points makes it unsuitable

for implementation on our low-power sensor nodes.

2.2 Particle Filters

As mentioned above, the Kalman filter-based techniques used in our application model

the target state probability distribution as Gaussian and thus characterized entirely

by its mean and covariance. This technique offers the lowest complexity but is the

most restrictive in its assumption that the state can be modeled as Gaussian. At the

other end of the spectrum is the particle filter approach described in [4][3][5]. The

particle filter models the state distribution as a large number of discrete particles,

allowing it to capture an arbitrary probability distribution. This flexibility comes

at the cost of increased complexity, however, in both computation and the memory

required to store the larger state representation.

2.3 Neural Network Approach

The Multiple Elastic Models (MEM) algorithm described in [10] proposes an improved

neural network method for solving the passive tracking problem composed of bearings-

only sensors. Traditional neural network approaches involve searching over the space

of all intersection points between all angles produced by the sensors, and thus do not

scale well to large numbers of sensors. In addition, neural networks identify a solution

by minimizing a specific objective function, and traditional neural networks are prone
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to becoming trapped in local minima before they can converge to a correct solution.

The MEM system attempts to address these shortcomings using a self-organizing

neural network adapted to a dynamic tracking scenario. It consists of a number of

neurons, each representing a point in the surveillance space, that attempt to converge

to the target locations. The MEM algorithm also introduces a parameter indicating

the accuracy of a particular neuron's estimate, which is updated dynamically and

enables the neuron to escape from a poor local minimum. Simulations are presented

in [10] showing the effectiveness of MEM at tracking up to 20 moving targets using

three bearings-only sensors. It is not clear, however, whether this system will be as

robust to noisy measurements and false alarms as the probabilistic data association

techniques described in Chapter 4. Nonetheless, the neural network technique offers

potential advantages, particularly in its ability to dynamically adapt to changing

numbers of targets by using extra neurons that continuously search for new targets.

2.4 Extended Kalman Filter Improvements

As will be discussed in Section 3.4, one of the problems in applying the Kalman

filter to the bearings-only tracking scenario lies in the nonlinear relation between the

measured angle and the Cartesian coordinate position of the target. The traditional

solution, known as the Extended Kalman Filter (EKF), has been shown to exhibit

a range and range-rate bias in its estimates due to a correlation between the filter

gain and innovations sequence introduced by the linearization process [8]. A method

for eliminating this bias by adjusting the a posteriori state update is presented in [7].

This improved EKF has been demonstrated to be effective in situations where the

original EKF is unsuited, particularly cases involving high measurement noises and

maneuvering targets.
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2.5 Beamforming Algorithm

The line-of-bearing (LOB) measurements computed by the sensor nodes are obtained

using a time-domain delay-and-sum beamforming algorithm [9]. This algorithm ex-

isted on the nodes prior to this project, however it has been slightly modified to

output multiple angles for use with the multiple-target tracking filter described in

Chapter 4.

The beamforming algorithm works with three microphones spaced 120 degrees

apart at a known distance from each other. It initially considers the sound source

as coming from one of a specific number of angles evenly spread around 360 degrees.

This number is set to 36 in our system. While a smaller number of angles may be

sufficient to distinguish a single dominant sound source, a higher resolution gain vector

is needed to determine multiple angles to multiple potential targets as described in

Section 2.5.1. For each of these 36 angles, the algorithm pre-computes and stores

what the delay would be for each microphone relative to a fixed reference if the sound

came from that angle.

Once a block of data is available for each microphone, the following steps are

performed for each of the 36 angles. The signals from each microphone are shifted

by their relative delay for the angle in question to align them in time with each

other. The realigned values of the three microphones at each time point are then

added together (Figure 2-1). If the angle used to align them is the correct angle to

the sound source, the signals will constructively interfere to produce a large signal

amplitude. For all other angles some samples will destructively interfere to produce a

much smaller amplitude. The energy in this new signal is then computed to produce

one number representing the likelihood the sound source originated from the angle in

question. The final result is thus a gain vector with 36 entries such that the correct

angle corresponds to the index of the largest value. The algorithm then interpolates

between the angles using a weighted average of the two neighboring points.

16



Mic I

Mic 2 Sum

Mic 3 Delay

IIIIIIIIIz

Data Frame

Figure 2-1: Delay and Sum Operation

2.5.1 Extension to Multiple Angles

Given we have a matrix of energy values corresponding to the sound originating from

each of 36 angles, the second, third, etc. most likely source angles can in theory

be identified by finding the next highest peaks in the energy vector. In practice,

however, the second highest peak value is often a small peak near the main angle

rather than one associated with a second sound source. Refer to Figure 2-2, which

shows a sample plot of this final gain vector with two targets present. One is at an

angle of 240 degrees and the other is at approximately 80 degrees. As can be seen

in the figure, simply choosing the peak with the second largest value would result in

assuming the second sound source is at 190 degrees, which is not correct. A better

method is to pick the next peak with the largest value relative to its neighbors. This

is done by passing the vector through the following filter:

for (i=1; i<NumAngles-1; i++) {

peaks[i]=((float)Gain[i])/(float) ((Gain[i-1]+Gain[i+1])>>1);

}

This code converts the gain vector to a peaks vector showing the relative magni-

tude at each angle compared with its two neighbors. The second largest value in this

peak vector now correctly corresponds to the second sound source at 80 degrees. It

must be noted, however, that this technique does diminish the chances of finding two

true sources that are very close to each other.
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Figure 2-2: Final Gain Vector With Two Targets Present

2.5.2 Statistical Properties

The Kalman filter algorithms used in this application make the assumption that the

LOB measurements come from a Gaussian distribution around the correct angle. To

test this assumption we have measured the angle distribution resulting from a single

sound source. Figure 2-3 gives the results. Attempting to simply fit a Gaussian dis-

tribution directly to the resulting angles by matching the mean and variance results

in the wide Gaussian indicated by the solid line in the figure. The wide Gaussian

does not accurately match the measurement distribution, as its variance is forced to

be unnaturally large to account for outlier measurements resulting from reflections

or other environmental noise. If these outliers are removed by eliminating the angles

outside the range 160 to 200 degrees, then the result has a mean and variance corre-

sponding to the thin dashed line Gaussian in the figure. This distribution is a good

fit to the measured data, suggesting that if we can eliminate outliers the resulting

measurements will fit the Gaussian assumption of the Kalman filter. The outliers

18
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will be identified and removed using

Section 4.1.

Oi

40F-

30 -

20

101

nI
140

measurement validation techniques discussed in

150 160 170 180 190 200 210 220

Figure 2-3: Distribution of Beamforming Results

2.6 Harmonic Line Association

In addition to the Kalman filter-based tracking algorithms, we have implemented a

frequency-domain target detection/identification algorithm known as Harmonic Line

Association (HLA) [13]. This algorithm operates on the principle that vehicle engines

produce a harmonic signature, while most false alarms would not. The HLA algorithm

was obtained as MATLAB code from the Army Research Labs, and for this project

has been converted from MATLAB to C and modified to run in real-time on the

pAMPS sensor node.

The HLA operates on a single channel of acoustic data. Samples from one micro-

phone are buffered into one-second blocks and then passed to the HLA procedure. The

data block is then converted to the frequency domain by a FFT routine. The power
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spectrum is then passed to a peak-picking function to identify potential fundamental

frequencies and harmonics. After the peaks are determined, the HLA procedure an-

alyzes the power contained in each harmonic line set to determine which sets are the

most likely to originate from a vehicle engine target [13].

2.7 Differences in Approach

Our approach differs from that of Sections 2.1, 2.2, and 2.3 in that we use a pure

Kalman filter-based technique that models the target state esitmate with a Gaussian

distribution. This approach achieves lower computational complexity suitable for

real-time implementation at the cost of losing flexibility to accurately arbitrary dis-

tributions. In contrast to previous work, our system focuses on the challenges involved

in designing and implementing a real-time tracking system using power-constrained

sensor nodes. We also explore methods for utilizing the probability information com-

puted by the Kalman filter to lower the power consumption of the overall system.
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Chapter 3

The Kalman Filter

The Kalman filter is a fundamental technique for estimating the state of a dynamic

linear system observed with noisy measurements. If the assumptions of the Kalman

filter, discussed below, are satisfied then the filter is known to provide the optimal

state estimate for the system. In our application the state to be estimated consists

of the target's position and velocity. The main advantage of the Kalman filter lies

in its ability to incorporate the target's previous estimate, expected behavior, and

measurement data appropriately weighted by probabilistic information regarding the

accuracy of each component. Refer to [2] for more detail and derivations related to

the material presented in this chapter.

3.1 Setup

The evolution function of the system state is assumed linear and known, described

by the discrete-time difference equation

x(k +1) = F -x(k) + G -v(k) (3.1)

where x(k) is the nr dimensional state vector at time k, F is the known constant

system evolution matrix, and v is a sequence of zero-mean white Gaussian noise

21



[_1 Iq, ol 1, , ,,
vectors with covariance Q = L 0 qy J shaped by the matrix G. v(k) is known as

the process noise, and models disturbances in the state evolution of the system.

The measurement vector z(k) is described by the equation

z(k) = H(k) - x(k) + w(k) (3.2)

where w(k) is the sequence of zero-mean white Gaussian measurement noise, with

diagonal covariance R.

3.2 Modeling Assumptions

The assumptions underlying the Kalman filter are as follows:

" The state evolution is driven by additive zero-mean Gaussian noise with known

covariance.

* The measurements are known linear functions of the state with additive white

zero-mean Gaussian noise with known covariance.

* The initial state is a random variable with known mean and covariance.

* The initial error and noises are mutually uncorrelated.

It can be shown that if the above assumptions hold, the Kalman filter provides the

optimal minimum-mean-squared-error (MMSE) estimate of the state variable. If the

initial error and noises are not Gaussian, but still have known means and covariances,

then the Kalman filter provides the optimal linear estimate. These assumptions

lead to several challenges in the use of the Kalman filter in our tracking scenario.

One limitation is the requirement that the measurements be a linear function of the

state. Since we have nonlinear line-of-bearing measurements, they will have to be

linearized as described in Section 3.4. Another limitation is the assumption that the

state evolution is driven by additive Gaussian noise. This noise represents unknown
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acceleration in our model, and thus cannot necessarily be accurately modeled as

Gaussian with known covariance. This issue is addressed in Section 3.5.

3.3 Algorithm Overview

The basic Kalman filter algorithm consists of a two-step predict/update cycle. See

Figure 3-1' for a flowchart of one iteration. First, the predicted state estimate is

computed using the known system evolution matrix.

x(k + Ilk) = F -x(klk) (3.3)

where x(k + 1k) denotes the predicted value of x at time k + 1 given all information

available through time k. The covariance of the predicted estimate is given by

P(k + I|k) = F -P(kk) - F' + Q (3.4)

Next, the measurements are predicted using the known measurement function and

the predicted state estimate,

z(k + lk) = H(k + 1) -x(k + 1Ik) (3.5)

The covariance of the predicted measurement is given by

S(k + 1) = H(k + 1) -P(k + Ilk) H(k + 1)'+ R (3.6)

Once the estimate and measurements have been predicted, their covariances are used

to obtain the filter gain W(k + 1),

W(k + 1) = P(k + 1k) - H(k + 1)' -S(k + 1)-' (3.7)

The state estimate and covariance are now updated using information from the mea-

'Figure based on p. 24 of [1].
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surements. As the Kalman filter is a linear estimator, the updated state estimate is

a linear combination of the predicted estimate and the difference between the actual

and expected measurements, weighted by the filter gain. The difference

v(k + 1) = z(k + 1) - z(k + Ik) (3.8)

is known as the innovation or measurement residual. S is thus referred to as the

innovation covariance.

The updated state estimate is therefore given by

x(k + Ilk + 1) = x(k + Ilk) + W(k + 1) - v(k + 1) (3.9)

The filter gain W thus determines the weighting of the measurements versus the

predicted state estimate. One would therefore expect W to decrease as uncertainty

regarding the measurements increases, and to increase as uncertainty regarding the

predicted state increases. Indeed, this relationship is shown in (3.7), as W depends

directly on P(k + 1k), and inversely with S(k + 1).

Finally, the update estimate covariance is computed as

P(k + Ilk + 1) = P(k + lk) - W(k + 1) - S(k + 1) -W(k + 1)' (3.10)

Note that in the previous expressions the values of P(k+1Ik), S(k+ 1), W(k+ 1), and

P(k + Ik + 1) do not depend on the measurements z(k). Thus in this formulation

these quantities can be pre-computed offline. As we shall see in the next section,

however, the use of line-of-bearing measurements requires linearization techniques

that introduce a measurement-dependence into these quantities.

3.4 Extended Kalman Filter

The basic Kalman filter described above requires several modifications before it may

be used for the line-of-bearing tracking problem in our application. First, the mea-
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State at k, State estimate at t,
x(k) x(k)

Transition to tk+1 State prediction

x(k+1) = F xlk) + v~k) x k+1) = F x(k)

Measurement prediction

~f(k+1) = H(k+1)R(k+1)

Measurement Innovation
z(k+1) =

H(k+1)-x(k+1) + w(k+1) v(k+1) = z(k+1) -z(k+1)

Updated state estimate

x(k+1) = x(k+1) + W v(k+1)

State covariance at t
P(k)

State prediction covariance
P(k+1) =

F-P(k) F' + G-Q-G

Innovation covariance
S(k+1) =

H(k+1)P(k+1)-H(k+1)' + R

Filter gain
W(k+1) =

'P(k+ 1)- H(k+1)'. S(k+ 1)-1

Update state covariance
P(k+1) = P(k+1)

- W(k+1 ) S(k+1)W(k+1)'

Figure 3-1: Basic Kalman Filter Flowchart
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surement equation (3.2) assumes the measurements are a linear function of the state,
i.e. H is a matrix with constant, known elements. We have only line-of-bearing mea-

surements, however, which cannot be written in this form. As shown in Figure 3-2,
we have measurements 6 given by the nonlinear function

6 = tan- [Y :] (3.11)

where x and y give the position of the target in rectangular coordinates and xs and

ys denote the sensor position.

y -Target

YS Sensor

xs x

Figure 3-2: LOB Measurement

The method for handling nonlinear measurement functions is known as the Ex-
tended Kalman Filter, or EKF. It involves taking a first-order linearization of the
measurement function using a Taylor series expansion. This linearization introduces
several sources of error into the estimate. One error source results from discarding
the higher-order terms in the Taylor expansion. This error can be mitigated by using
a higher-order expansion, though in practice moving to a second-order expansion may
introduce increased complexity for little gain. Second, in order for the linearization
to be accurate it must be done around the true state of the target. However, the
true target state is of course not known by the filter, so the estimated state is used
instead. This substitution introduces an additional source of error.
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3.5 Adaptive Filtering

Another aspect of the standard filter that poses a problem for our implementation

is the requirement that the system evolution function, F, be known in advance.

For a realistic vehicle tracking scenario the motion models of the vehicles are in

general unknown. For example, a vehicle may stop or execute a maneuver (e.g.

turn) at an unknown time. The simplest solution to this problem is to artificially

increase the process noise parameter to account for variations in the target's motion

model. A larger process noise allows the filter to track larger deviations from the

expected motion, and thus adapt to situations such as a changing velocity. Changing

the process noise presents a tradeoff, however, as making it larger allows for quick

adaptation to unexpected maneuvers, but reduces tracking performance when the

target is behaving as expected (i.e. moving with constant velocity). Conversely, a

low process noise allows improved noise reduction and tracking performance when

the target follows the model, but poor adaptation to maneuvers.

Given this process noise tradeoff, if one could detect the onset of a maneuver

then the process noise could be switched to a high value to allow the filter to quickly

adapt, then returned to a low value to provide improved noise reduction when the

target has returned to expected behavior. A maneuver manifests itself as a larger

than expected innovation, leading to the detection procedure described below. This

technique, known as adaptive discrete process noise-level switching, offers improved

tracking performance in practice with little additional complexity.

The maneuver detection is performed by monitoring a quantity known as the

normalized innovation squared (NIS), given by

NIS =v(k)' - S-' - v(k) (3.12)

Under the linear Gaussian assumptions, the pdf of the NIS is chi-square distributed

with n,, the dimension of the measurement vector, degrees of freedom. If the NIS

exceeds a certain value, the upcrossing threshold, then the process noise is switched to

its high value. Once the NIS drops below a downcrossing threshold the process noise
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is returned to its low value. The upcrossing threshold is chosen from the chi-square

probability tables such that the probability of the NIS exceeding it under normal

conditions is very small.

A more complex adaptation technique that offers higher performance is known as

the Interacting Multiple Model estimator, or IMM [6]. This method can be thought

of as running several Kalman filters in parallel, each with a different target motion

model, then combining the results based on the probability that each model is correct.

The IMM requires a non-negligible increase in complexity, however, and has not been

implemented in our system.

3.6 Sequential vs. Block Processing of Measure-

ments

The Kalman filter algorithm described above processes all measurements simultane-

ously using the n, dimensional measurement vector, z = [zi(k), z 2(k), ..., zn,(k)]'. If

the measurement noise covariance matrix R is diagonal, meaning the measurement

noise vector components are uncorrelated, then the state update can be computed by

taking the measurement vector components one at a time. This technique is known

as sequential measurement processing, and reduces complexity and memory require-

ments compared to the standard block processing. Sequential processing is a natural

fit to our application, as each measurement comes from a different sensor and the

measurement noises can be reasonably modeled as independent across sensors.

The sequential update algorithm begins with the same predicted estimate and

covariance as the block case, now denoted as x(kIk, 0) and P(kIk, 0). The following

sequence of calculations is then performed for i = 1, ..., nz.

The innovation covariance is now the scalar quantity

s(k, 1) = hi(k)' - P(kk, i -- 1) -hi(k) + ri(k) (3.13)

where hi(k) is the row of H(k) corresponding to sensor i, and ri(k) is the correspond-
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ing measurement noise variance.

The filter gain is then computed as

P(klk i - 1) -hi(k)
W(k, s) =Z (3.14)

s(k, i)

Note the matrix inversion has been replaced by a scalar division. The updated state

estimate is now

x(klk, i) = x(klk, i - 1) + W(k, i) [z (k) - hi(k)' -x(klk, i - 1)] (3.15)

with covariance

P(klk, i) - P(klk, i - 1) - W(k, i) - hi(k)' - P(kk, i - 1) (3.16)

For the ith update, x(klk,i - 1) and P(klk,i - 1) play the roles of predicted

state update and covariance, respectively. This approach reduces the computational

and memory requirements of the algorithm as no matrix sizes now depend on the

dimension of the measurement vector, nz. This dimension corresponds to the number

of sensors used in our application, meaning the matrix sizes used in the algorithm

system are now independent of the number of sensors. The memory requirements are

thus constant with the number of sensor nodes, as opposed to linear in the block case.

In addition, computational complexity now increases linearly with nz as opposed to

exponentially with block processing.

3.7 Real-Time Implementation

Based on the above algorithms, we have implemented a first-order Extended Kalman

Filter using adaptive noise-level switching and sequential measurement processing to

run in real-time on the StrongARM CPU of the [AMPS sensor node. The following

sections describe the parameters used for implementation and present some tracking

results showing the improvement over simple triangulation.
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3.7.1 Filter Parameters

Our filter uses a constant-velocity motion model with process noise modeling any

unknown acceleration. We thus have

1 0 T 0

0 1 0 T
F =(3.17)

0 0 1 0

0 0 0 1

and
T2 /2 0

G 0 T 2 /2 (3.18)
T 0

0 T

so the system evolves as in (3.1), where the state vector is x(k) = [x, y, dx/dt, dy/dt]'

and the vector v(k) = [vx(k), vy(k)]' represents the white Gaussian process noise for

each coordinate.

The process noise variance q is assumed the same for each coordinate and is

switched dynamically between q, = 2 and q, = 20. The switching algorithm works

by monitoring an exponential weighted moving average of the NIS (3.12),

NIS"(k) = aNIS"(k - 1) + NIS(k) (3.19)

where a = 0.8. The effective window length of (3.19) is the sum of the weights

multiplying NIS0 (k), given by the geometric series

1
s=1 + a + 2 + ... (3.20)

which yields an effective window length of 5 for o = 0.8. One can assume as a

first approximation that NIS'(k) is chi-square distributed with sacn degrees of free-

dom. The switching thresholds described in Section 3.5 are then determined from
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the chi-square distribution tables. The up-crossing threshold has been set to 16.7,

which has a 0.01% probability of being exceeded if everything in the model is correct.

The down-crossing threshold is set to 2.67, which corresponds to a 75% probability

that the high-noise model is no longer correct. This noise-level switching provides a

good complexity/performance tradeoff by yielding the majority of the benefits of an

adaptive filter without the extra complexity of the IMM estimator.

The standard deviation of the LOB measurements produced by the beamform-

ing algorithm has been measured to be 1.45 degrees under ideal conditions (i.e. no

multipath reflections). In practice, however, the LOB measurements do not fit a

Gaussian distribution, but are more akin to a Gaussian with "fat tails." These tails

correspond to the fact that measurements many standard deviations from the mean

can be received quite frequently due to multipath reflections or other environmental

noise. For this reason a higher measurement noise variance of r = 0.05 is used in the

filter, which corresponds to a LOB standard deviation of 12.8 degrees.

3.7.2 Real-Time Display

The filter described above runs on a base station node, which then sends the results

to a PC over a serial port to a Java program providing a visual display. Figure 3-3

shows a screenshot of the display tracking a single target with three sensor nodes.

Figure 3-4 gives an example of how the shape of the covariance matrix changes

as measurements are received from different sensor positions. As shown in the figure,

when measurements are only available along one dimension the covariance matrix

quickly grows into an elongated ellipse along the corresponding axis.

3.7.3 Results

In this section we present real data traces from the real-time Kalman filter-based

tracking system described above to provide a clear picture of the improvement over

simple triangulation. The Java PC display mentioned in Section 3.7.2 is capable of

logging all received LOB measurements and Kalman filter outputs for offline analysis
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Figure 3-3: Real-Time Display
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Figure 3-4: Covariance Shape: One Sensor at a Time

using MATLAB. For the test setup the target is a speaker/subwoofer combination

playing the actual tank sound recorded by the pAMPS nodes at the Army Proving

Ground in Aberdeen, Maryland. Two sensor nodes are used, positioned at the north-

west and southwest corners of the surveillance area. The subwoofer "tank" is pushed

slowly past the two sensors at a velocity of approximately 0.5 m/s.

For the first run the target is positioned in the southern center of the surveillance

region and then moves in a straight line to the north. Figure 3-5 presents the results of

the run and clearly demonstrates the advantages of the Kalman-filter based system.

The positions computed by simple triangulation are not at all consistent with the

motion of the target, while the filter estimated position tracks much closer. Also note

that the true target position remains within the confidence region derived from the

Kalman filter covariance matrix.

For the second run the target is initially positioned between the two sensors and

then moves in a straight line to the east. Figure 3-6 presents the results. As shown

in the figure, the y-coordinate of the initial position cannot be determined with any

accuracy, as measurements are only available along one dimension. Once the target
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Figure 3-5: Tracking Results: Target Moving North
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Figure 3-6: Tracking Results: Target Moving East
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moves, however, the filter is able to converge to the correct y-position and track the

motion of the target. Again the advantage of the Kalman filter is clearly visible, as the

simple intersection of the two angles does not come close to accurately tracking the

motion. Note in the beginning of the run on the left side of the graph no triangulation

results are plotted since the angles do not intersect in this region. Only when the

target begins to move eastward do the angles begin to intersect and the triangulation

results appear on the graph. The Kalman filter, however, does not depend on the

angles intersecting and is able to successfully track the eastward motion of the target.

3.8 Computational Requirements

The computational requirements of the Kalman filter increase as 0(n3), where n is

the dimension of the state vector x(k) [2]. This complexity is due primarily to the

matrix operations involved in the filter. As mentioned in Section 3.6, the sequential

processing of measurements prevents the complexity from also increasing as 0(n 3)

with the dimension of the measurement vector, reducing complexity growth to 0(n).

The current beamforming setup produces four angles per second that are trans-

mitted to the base station from each sensor node for processing by the Kalman filter.

The number of instructions required for the filter have been measured at 0.57 million

instructions per iteration for a three sensor system using profiling tools on the SGI

platform. Since the filter must run four iterations per second this corresponds to a

processing requirement of 2.3 MIPS. On the StrongARM CPU of the /-AMPS node

running at 60 MHz, the filter requires 8 milliseconds to execute out of the 250 mil-

liseconds available between sample sets. The processing requirements are thus well

within the scope available on a low-power sensor node.

It should be noted that the Kalman filter runs on one base station node that

collects measurements from several sensor nodes. The computational burden is thus

spread unevenly throughout the system, leading to non-uniform power consumption.

This effect can be mitigated by using a distributed algorithm that rotates the filter

task among all nodes.
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Chapter 4

Probabilistic Data Association

We now extend the system to track multiple targets simultaneously. The main chal-

lenge in this scenario is determining which measurement is associated with each target.

The simplest approach would be to choose the measurement closest to the expected

measurement for each target. This technique is called the nearest-neighbor standard

filter (NNSF). As we shall show, however, this approach leads to very poor track-

ing performance in the presence of false measurements. A more powerful technique,

known as the probabilistic data association filter (PDAF), involves calculating the

probability that each measurement is associated with a particular target. The state

update for a particular target is then carried out using an appropriately weighted

combination of all measurements that could have originated from that target. The

PDAF assumes the number of targets is known; in practice this number will be deter-

mined by a separate track initialization/maintenance model. The material presented

in this chapter is described in more detail in [1], which also contains the derivations

of the results presented here.

4.1 Measurement Validation

This scenario assumes multiple LOB measurements are available from each sensor

node, some of which may be target originated and some of which will be false alarms.

The first step in the PDAF involves determining which measurements could poten-
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tially be associated with each target. This process, called measurement validation,

makes use of the idea that, given a state estimate and information about its accuracy

and the measurement accuracy, only certain measurement ranges have any significant

probability of originating from the target. See Figure 4-1 for an illustration of this

idea.

Valid measurement ranges

Estimate

Confidence Region

S S

Figure 4-1: Measurement Validation

4.1.1 Validation Procedure

The validation region for each target is in general the elliptical region

V(k, -y) = {z : [z - z(klk - 1)]S(k)-'[z - z(klk - 1)] < -y} (4.1)

In our case with sequential measurement processing the innovations and innovation

covariance S are all scalar quantities and the validation corresponds to an arc of valid

angles. Note the expression on the left-hand side of the inequality in (4.1) is the same

as that given for the NIS in (3.12). The gate threshold y is chosen from the chi-square

tables to give the desired probability that a valid measurement is inside the gate.
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4.1.2 Association Events

Once the measurements at each sensor have been validated as described in section

4.1, a validation matrix Q is constructed to summarize the potential measurement

associations for a given sensor. The number of rows is equal to the number of mea-

surements available from the sensor, the number of columns is equal to the number

of targets plus one, and the binary elements indicate if a particular measurement has

been validated for a particular target. An example of a validation matrix for two

targets and four measurements per sensor is

I 1 0

S(4.2)

1 0 1

The leftmost column, called column 0, corresponds to "none of the targets", or a

false alarm. Note column 0 contains all l's as all measurements are potential false

alarms. Here the two targets are "coupled" by the second measurement, which has

been validated for both targets.

A joint association event 0 is represented by an event matrix, which is a subset

of the validation matrix Q. For example, a possible association event taken from the

validation matrix (4.2) is

0 1 0

0 0 1
0 -=(4.3)

1 0 0

1 0 0

This event corresponds to measurement 1 originating from target 1, measurement 2

originating from target 2, and measurements 3 and 4 being false alarms. The set

of all feasible joint association events is generated from Q based on the following

assumptions:

* a measurement can have only one source, i.e. 0 can have only one '1' per row
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* at most one measurement can originate from a target for a given sensor, i.e. 0

can have only one '1' per column except for column 0 where the number of 'I's,

which is the number of false measurements, is not restricted

Once the set of feasible association events has been generated, the probability of each

event is calculated for use in the JPDAF as described in section 4.2.2. It is convenient

to define two binary detection indicator variables for use in later expressions. The

first is defined as

6w () = Wjwt(0) (4.4)
j=1

where wj,t(0) is the value of the association event matrix 0 for measurement j and

target t. 6t(0) is called the target detection indicator since it indicates whether a

measurement has been associated with target t in event 0.

Next is the measurement association indicator,

NT

ry (0) =E Wj't (0) (4.5)
t=1

where NT is the known number of targets. T(0) indicates whether measurement j
is associated with a target in event 0. Note that using this definition the number of

false measurements in event 0 is

#(0) =_ [ - Ty(0)] (4.6)
j=1

4.2 The Joint Probabilistic Data Association Fil-

ter

The Joint Probabilistic Data Association Filter (JPDAF) computes the measurement-

to-target association probabilities jointly across all targets. This approach is necessary

to distinguish between multiple targets when measurements from one target may

appear inside the validation region of another target. (See Figure 4-2) Simply running

a standard PDAF separately for each target is not sufficient as the PDAF assumes all
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incorrect measurements are uniformly distributed false alarms. The joint probability

calculations of the JPDAF are necessary to distinguish the case where a neighboring

target gives rise to persistent interference.

Measurements in this
range could originate
from either target

Figure 4-2: Measurements Valid for Multiple Targets

4.2.1 Assumptions

The assumptions behind the JPDAF are as follows:

" There is a known number of targets established in the presence of clutter (false

alarms).

" Measurements from one target can fall in the validation region of a neighboring

target, potentially over several sample times, leading to persistent interference.

* All past information is summarized by an appropriate sufficient statistic-

state estimates x(kk) and covariances P(klk) for each target.

the

* Each targets has a dynamic and measurement model as in the standard Kalman

filter. The models for each target do not need to be the same.
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4.2.2 Association Probabilities

Determining the association probabilities first requires computing the probability of

each feasible association event 0(k). This probability can be written, using Bayes'

formula, as

P{0(k) Zk} = P{(k)IZ(k), m(k), Zk-1}

1
= p[Z(k) 0(k), m(k), Zk-1]PF{O(k) Zk-1, m(k)}

C

1
= p[Z(k)10(k), m(k), Zk-1]P{0(k) m(k)} (4.7)

C

where c is the normalization constant and m(k) is the number of measurements in

the union of the validation regions at time k. The irrelevant conditioning term Zk-l

has been omitted from the second term in the last line of (4.7).

The first factor of (4.7), known as the likelihood function of the measurements, is

given by
m(k)

p[Z(k)10(k), m(k), Zk-1] = 1 p[zj (k) I |j,(k), Zk-1] (4.8)
j=1

The product form of (4.8) requires the assumption that the states of the targets

conditioned on the past measurements are mutually independent.

The conditional pdf of a measurement given its origin is

p[zj(k)I ,j, (k), Zk-1] = ftj (4.9)

if T[0(k)] = 1, meaning the origin is assumed a target, or

p[zj(k)|IO,tj (k), Zk-1] = V-1 (4.10)

if T[0(k)] = 0, corresponding to a uniform distribution for false measurements.

Here

ftj [zj(k)] = N[zj(k); ztj (k k - 1), Sj (k) (4.11)

and zt- (kIk -1) is the predicted measurement for target tj, with associated innovation
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covariance Sa (k). Measurements not associated with a target are assumed uniformly

distributed in the surveillance region of volume V.

Using (4.9) and (4.10), the measurement likelihood function (4.8) can be rewritten

as

p[Z(k) 0(k), m(k), Zk-1] = V-J {ftj [zj (k)]} Ti (4.12)

In (4.12) V- 1 is raised to the power #(), the toal number of false measurements

in event 0(k), while the indicators 'r(0) select the measurement probability density

functions according to their associations in event 0(k).

The second factor in (4.7), known as the prior probability of an event 0(k), is

computed as follows. First, note that, given 0, the vector 6(0) of target detection

indicators (4.4) is completely determined, as is the number / of false measurements

given by (4.6). Therefore,

P{0(k) m(k)} = P{(k), 6(0), 0(0)nm(k)} (4.13)

which can be rewritten as

P{0(k) m(k)} = P{0(k) 6(0), # (0), m(k)}P{6(0), (0) 1m(k)} (4.14)

The first factor on the r.h.s. of (4.14) is determined as follows. Note that in event

0(k) the number of targets assumed detected is m(k) - 0. The number of association

events in which the same set of targets detected is thus given by the number of

permutations of the m(k) measurements taken as m(k) - #, the number of targets

to which a measurement is assigned under the same detection event. Assuming each

such event is a priori equally likely, one has

P{0(k)16(0), phi(0), m(k)} = ( )) (4.15)
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The second factor on the r.h.s. of (4.14) is, assuming 6 and q are independent,

P{(6), 0(0) m(k)} fl (PD)" (I - PD) 1-6PF () (4.16)
t

where PD is the detection probability of target t and PF() is the prior pmf of the

number of false measurements.

Combining (4.15) and (4.16) into (4.14) gives the prior probability of a joint

association event as

P{0(k)Jm(k)} - Fl(P)"(1 - Pbt (4.17)
m (k)!

Combining (4.12) and (4.17) into (4.7) yields the posterior probability of a joint

association event as

P{0(k) Zk} 1 - ,p t!-8Pf O~) l~k m- 1 ! PF(O)V' III {ftj [zj (k) ]}Ti ]7(Pt)'t (1 - Pt )1N 6t (4.18)c m (k).

Note that q, 6t, and Tr are all functions of the event 0(k) under consideration. The

above still requires the pmf of the false measurements, which we will assume is simply

a constant,

PF (4.19)

Combining this with (4.18) and combining m(k)!, the constant c, and the constant c

into the constant c2 yields the following expression for the association event proba-

bility:

P{0(k)|Zk} 1 ft(z\(k)]} 2 H(PL) t(1 - PL) 1- (4.20)

where c2 is the appropriate normalization constant.

To obtain the marginal association probabilities needed for the state estimation

in the next section, one simply adds the probabilities for each joint event in which

the marginal event of interest occurs. The marginal probability that measurement j
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is associated with target t is thus

&, pf= P{I,tlZk}

= ZP{|Zk}wjt(6)
0

= Z P{O|Zk} (4.21)
Q:Qa,t EQ

4.2.3 State Estimation

We denote the number of validated measurements at time k by m(k). The associ-

ation events Oj,t(k) are then defined to signify that the j-th validated measurement

is correct for the target t under consideration, for j = 1, ..., m(k), or that none of

the measurements are target originated for j = 0. These events are mutually exclu-

sive and exhaustive, allowing the use of the total probability theorem to write the

conditional mean of the state at time k as

x(klk) = E[x(k)|Zk]
m(k)

- S E[x(k)|IO,t(k), Zk]P{Ot(k) Zk}
j=0

m(k)

- 5 xy(k k)/j,t (k) (4.22)
j=0

where xi(klk) is the updated state conditioned on the event that the j-th validated

measurement is correct, and

& t(k) = P{O(,tk) Zk} (4.23)

is the conditional probability that the j-th validated measurement is correct, given

by (4.21).

The prediction equations for the state x(k k - 1) and measurement z(klk - 1) are

the same as the standard Kalman filter of Chapter 3. Likewise, the covariance of the

predicted state P(klk - 1) and the innovation covariance S(k) come from the same

equations as the standard filter.
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The state estimate conditioned on measurement j being correct is given by the

familiar Kalman filter equation

xj(klk) = x(klk - 1) +W(k)vj(k) j 1, ...,m(k) (4.24)

where the corresponding innovation is

vj(k) = zj(k) - z(klk - 1) (4.25)

The gain W is the same as the standard Kalman filter 3.7, as conditioned on Oj,t(k)

there is no measurement uncertainty.

If j=O or m(k)=0 then the state estimate is simply

xo(klk) = x(klk - 1) (4.26)

If at least one validated measurement is available then the final state update is then

given by

x(klk) = x(klk - 1) + W(k)ve(k) (4.27)

where v, is the combined innovation given by

m(k)

vc(k) = /j,3(k)vsj(k) (4.28)
j=1

The state estimate is thus performed using all validated measurements, each weighted

by its probability of being the correct target originated measurement. If no valid mea-

surements are received then the state estimate is simply equal to the state prediction

from the model.

4.2.4 Covariance Update

The covariance update equation consists of three components. The first is the pre-

dicted covariance P(klk - 1). It appears weighted by 00 (k), the probability that no
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measurements are correct, as no update would occur if no correct measurement was

received. The second term is the covariance updated with the correct measurement,

Pc(klk) = P(klk - 1) - W(k)S(k)W(k)' (4.29)

which is the familiar update equation from the standard filter. Another term is then

added to the updated covariance to account for the uncertainty regarding which of

the m(k) validated measurements is correct. This term is known as the spread of

innovations and is defined as

m(k) ~

P (k) = W(k) j t (k) vj (k) vj(k)' -v(k)v(k)' W(k)' (4.30)
j=1

This matrix is positive semidefinite and always acts to increase to resulting covariance

update to reflect the measurement origin uncertainty.

The final covariance update is then given by

P(klk) =_ o(k)P(kjk - 1) + [1 - fo(k)]PC(kjk) + P(k) (4.31)

The zero-measurement (prediction only) term is weighted by the probability that no

measurements are correct, the standard update term is weighted by the probability

that at least one measurement is correct, and the spread of innovations term is added

to reflect the uncertainty over which measurement is correct.

4.3 Real-Time Implementation and Results

The JPDAF algorithm described above has been implemented in C to run in real-time

on the CPU of the pAMPS node. Measurement processing is done sequentially as

described in (3.6) to allow scaling to large numbers of sensors and reduce complex-

ity and memory requirements. The algorithm process is described by the following

pseudocode:

for each target {
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predict state estimate

predict state covariance

}

for each sensor {

if data received for this sensor this time period {

for each target {

predict measurements

compute H by linearizing around predicted state

compute innovation covariance

validate measurements to create validation matrix

}

generate set of feasible association events

compute probability of each event

for each target {

compute marginal association probabilities for each valid measurement

compute combined innovation

compute filter gain W

update state estimate

update covariance

}

}

}

4.3.1 Real-Time Display

The graphical java display for the PC has been modified to detect the presence of

the JPDAF and display the multiple angles per sensor node and the multiple targets

with covariance matrices. Figure 4-3 shows a screenshot of the system tracking two

targets (speakers) using three angles per sensor. Note the covariance ellipse of the

left target is elongated along the vertical axis, as it is only receiving measurements

along that dimension. In contrast, the right target is receiving measurements along
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Figure 4-3: Real-Time Display Tracking Two Targets
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both axes, so its covariance ellipse is close to circular.
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Figure 4-4: Sample Tracking Run: Two Targets

Figure 4-4 shows the results of a tracking run on the [AMPS hardware with three

sensor nodes and two targets. Target 1 is moving straight up through the surveillance

area, while target 2 remains stationary. The JPDAF system is able to successfully

distinguish the targets and produce an accurate track.

4.3.2 Simulation Results

To test the performance of the JPDAF independently of the beamforming algorithm,

we have used MATLAB to generate the angle inputs corresponding to two targets

crossing paths. The following results come from the same JPDAF C code that runs

on the nodes; MATLAB is used only to generate the inputs and analyze the results.

The results are also compared to the NNSF under the same scenario to illustrate the

significant advantages of the JPDAF approach.

The simulation scenario is setup as follows. There are two crossing targets ob-
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served by three sensor nodes. Each node outputs three angles. For each node, one

angle is Gaussian distributed centered around the correct angle to the target with a

standard deviation of 5.7 degrees. Another angle is given by the same distribution

centered around the second target. The third angle is a random number uniformly

distributed between 0 and 360 degrees.

Figure 4-5 shows the results of the simulation. As the figure shows, the JPDAF

can successfully track crossing targets when given reasonable LOB inputs in the pres-

ence of noise. By comparison, Figure 4-6 gives the results of the NNSF, which simply

chooses the measurement closest to the expected measurement to use in the state

update without carrying out the probability calculations of the JPDAF. The simu-

lation results show that the NNSF yields significantly reduced performance, and in

fact cannot successfully track two targets crossing paths. Once the two targets are

near each other the same measurement will be used to update each of them, causing

their state estimates to converge and making them indistinguishable.
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Figure 4-5: Crossing Targets Using JPDAF

Next we investigate how robust the JPDAF will be to non-ideal beamforming
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Figure 4-6: Crossing Targets Using NNSF

outputs. For this scenario the measurements that before were always Gaussian dis-

tributed around the angle to the target can now be a uniformly distributed random

number with probability p, or drawn from the correct Gaussian distribution with

probability 1 - p. Table 4.1 gives the success rate for the JPDAF tracking crossing

targets for values of p from 0 to 1.0. The results are based on 100 trials for each p

value. Here "success" is defined as having each final state estimate be within a 2--

ellipse of the true final state. As shown in the table, even if 30% of the beamforming

outputs are random numbers, the JPDAF still has a 98% probability of successfully

tracking the crossing targets. At 50% false measurements the filter retains a 79%

probability of success. Figure 4-7 shows a sample run with only 50% correct mea-

surements. Note the final covariances in 4-7 are larger than those of Figure 4-5, as

the reduced number of good measurements increase the calculated uncertainty of the

estimate. These results clearly show the power of the probabilistic data association

techniques used in the JPDAF.
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Probablility of False Measurement JPDAF Success Rate
0 1.0

0.1 1.0
0.2 0.98
0.3 0.98
0.4 0.86
0.5 0.79
0.6 0.65
0.7 0.43
0.8 0.12
0.9 0.03
1.0 0

Table 4.1: JPDAF Success Rate with False Measurements

-150 -100 -50 0 50

Figure 4-7: Crossing Targets Using JPDAF with 50% False Measurements
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Chapter 5

Conclusions and Future Work

5.1 Kalman Filter Modifications

Several opportunities exist for future work extending this application. On the imple-

mentation side, moving from a standard Kalman filter to a square-root filter would

yield increased numerical accuracy. The square-root filter carries out the covari-

ance computations using the square root of the covariance matrix, which effectively

doubles the numerical precision and reduces vulnerability to rounding errors. Also,
implementing an adaptive IMM estimator would provide better tracking performance

for maneuvering targets.

5.2 Initialization Procedure

In this application we have deferred the track initialization and maintenance problem

to focus on the tracking itself. As mentioned in Chapter 4, the JPDAF assumes a

known number of targets. The task of determining this number falls to a separate

track initialization/maintenance module. One possible method would be to compute

all intersections of the LOB measurements at each time step and consider each new

intersection as a potential target. If a potential target exists for two time steps then a

Kalman filter is initialized for it, and if it persists for a certain number of subsequent

sampling times it is accepted as a target. Otherwise it is dropped. This method could
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work well for relatively small numbers of sensors. It would have problems scaling,

however, as the number of intersections would become prohibitively large. Another

initialization method would be to simply initialize a grid of potential targets with

large covariances covering the entire surveillance area, then prune off those that do

not persist over subsequent sampling times.

5.3 Power-Saving Enhancements

A main focus of the pAMPS research has been designing systems that are both low

power and power-aware. While low power refers to components designed to minimize

power consumption, power-aware refers to systems designed to adapt their power

consumption intelligently in response to the demands of a particular application at a

particular time. The tracking system designed here has the potential to reduce power

consumption by using the estimate uncertainty (covariance) produced by the Kalman

filter to identify sensors that may be shut down without unacceptably degrading

performance.

One such method involves monitoring the covariance matrix as the measurements

from each sensor are processed, and flagging sensors whose measurements are not

decreasing the covariance. These sensors are not contributing to a more accurate

estimate and thus may be shut down to save power without losing performance. This

technique has been implemented on the iAMPS nodes as part of this project.

5.3.1 Covariance Reduction Metric

The first decision to be made in this system is the choice of metric to capture a

decreasing estimate uncertainty. The correct method would be to calculate the area

of the ellipse given by the position elements of the state covariance matrix. A less

computationally complex metric, however, which still captures the same effect is to

simply add the magnitudes of the position elements of the covariance matrix. This

simplified metric retains the desired property that an increase in the uncertainty along

one dimension can be offset by a larger decrease along the other dimension.
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5.3.2 Sleep Command System

The next design choice involves the method of shutting down the node. For this ap-

plication, we have extended the [AMPS communication protocol to include a "sleep"

control packet, which when received tells a node to enter a sleep mode for the next

three seconds. Whenever the tracking application flags a particular node as not con-

tributing to the estimation accuracy, the base station sends a sleep packet to that

node. No explicit acknowledgement is sent for a sleep packet, as the system contains

an inherent feedback mechanism. If the sleep packet is not received then the node

in question will still send unhelpful measurements, causing the base station to send

more sleep packets. Once the node does go to sleep, the base station will not receive

measurements from it and thus no longer send sleep packets.

5.3.3 Power States During Sleep

Several choices exist for setting power consumption modes for the node sleep state.

The processor power modes include active, idle, or sleep mode in decreasing order

of power consumption. The radio board can likewise be set to active, standby, or

shutdown. In shutdown mode all power to the radio board is turned off, while standby

mode shuts down all radio circuitry but retains power to the FPGA providing the

processor interface and the TDMA timing.

The lowest power consumption upon receiving a sleep packet would involve setting

the processor to sleep mode and the radio to shutdown. Doing this, however, would

lose TDMA synchronization, which would have to be reestablished upon wakeup be-

fore any communication could occur. This synchronization process can take several

seconds on the current node, which is significant overhead. For this reason the pro-

cessor is instead set to idle mode and the radio to standby, which allows TDMA

synchronization to be maintained during the sleep state and communication to re-

sume immediately after wakeup. The extra power consumed by using idle and standby

during sleep mode is more than compensated by the avoidance of full power radio

overhead that would otherwise be needed to reestablish TDMA synchronization.
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5.3.4 Other Power-Saving Techniques

Several other power saving methods could be explored in addition to those imple-

mented here. For example, the shape of the covariance matrix can be used to deter-

mine which sensors are expected to provide the most improvement in the estimate. In

Figure 5-1, nodes B and C have provided good information about the target position

along the axis perpendicular to them but little is known about the position along the

axis between them. It would therefore be more power-efficient to briefly shut down

nodes B and C and bring up nodes A and D to provide a balanced estimate. Another

idea would be to make the application adapt to specific quality demands set by the

user. The system could power on additional sensors when the computed uncertainty

is greater than the limit set by the user, and power down sensors to save power when

the quality of the estimate is greater than necessary. This adaptation would allow

the power consumption of the system to scale gracefully with the quality demands of

the user.

XSSA B

Figure 5-1: Selecting Sensors for Efficient Tracking

5.4 Conclusion

This work has successfully designed and implemented a tracking application capable

of fusing measurements from a number of LOB sensor nodes to produce the optimal

position and velocity estimates for one or more targets. Three algorithms have been

demonstrated: the single-target Kalman filter, the multiple target tracking JPDAF,
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and the frequency-domain Harmonic Line Association detection algorithm. We have

presented both simulation and real-time results showing the ability of the Kalman

filter-based algorithms to compensate for noisy measurements and to successfully

track targets in situations where basic triangulation fails.

The Kalman filter returns not only the state estimate, but also its covariance

matrix. We utilize the covariance matrix, represented as an ellipse in 2-D Cartesian

space, to determine which sensor nodes are providing useful information by reducing

the estimate covariance. The overall power consumption of the system is then reduced

by shutting down unnecessary sensor nodes.

These power-saving techniques, combined with the three algorithms mentioned

above, form the basis of a complete real-time target detection and tracking system.

HLA provides information on target presence, probabilistic data association tech-

niques associate the LOB measurements to targets, and the underlying Kalman filter

produces the optimal target state estimate and covariance. The system has been suc-

cessfully implemented to run in real-time on the pAMPS sensor nodes, and provides

significant performance improvements over a standard triangulation approach.
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Appendix A

Documentation

The source code for the programs described in this thesis is located on the machine

eleventh-hour.mit.edu in subdirectories off of /usr/local/uamps/demos/.

The directory /usr/local/uamps/demos/kalman/ contains the single-target Kalman

filter described in Chaper 3. The file kalman.c contains the filter itself, while beam-rx.c

is the top-level file for a base station node. The file beam-tx.c contains the top-level

code for a sensor node, which uses the beamforming algorithm code in lob.c. Run-

ning the makefile in this directory will produce beam-rx.s19 to be loaded into the

base station, and beamtxX.c to be loaded into sensor node number X.

The Kalman filter requires knowledge of the location and orientation of each sen-

sor node. Sensor location is set by calling kalmanset-pos(int pos[ ][ ]) with a two-

dimensional array specifying x and y coordinates for each node in arbitrary units.

Orientation is specified in the NODEOFFSETS[ ] array in kalman.c, which contains

the positive angle in degrees needed to rotate each nodes zero-degree reference to

point directly east. Refer to comments in kalman.c for more detailed information

regarding filter parameters.

The directory /usr/local/uamps/demos/kalman-jpdaf'/ contains he code for the

JPDAF filter described in Chapter 4. The JPDAF code is contained in kalman.c, and

names for the remaining files are the same as the single-target case described above.

The lob.c file in this directory contains the modified beamforming code that produces

three angles per sensor node. This file can be used with a base station running a
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single target filter - the extra angles will simply be ignored.

The code for the HLA algorithm is stored in /usr/local/uamps/demos/hla-seq/.

The algorithm itself is contained in hla.c, while beam-tx.c provides a modified sensor

node top-level file integrating the HLA procedure with the beamforming. The beam-

forming output rate will be reduced to one angle per second in an integrated node

due to the long delay required for the HLA procedure.
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