
An Extensible Microcontroller and Programming

Environment

by

Alexandra Sara Theres Andersson

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Electrical Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2003

@ Alexandra Sara Theres Andersson, 2003. All rights reser

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES
ved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in Dart, and to grant others the right to do so.

Author
Department Qe1tical Engineering and Computer Science

)#9y 21, 2003

Certified by ............
David P. Cavallo

v 'i U'pervisor

Accepted by ......... ........
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER



2



An Extensible Microcontroller and Programming

Environment

by

Alexandra Sara Theres Andersson

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2003, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Electrical Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we designed and implemented an extensible microcontroller and a
Scheme compiler. We hope that by providing students a with portable, extensible
computational device capable of real world interaction through sensors and actuators
they will conceive of, and implement, projects that teaches more than traditional,
book based learning can provide. Programming and hardware development is often
written off as too difficult for both students and teachers. But when people are
provided with open ended devices and tools to develop them into artifacts that are
personally meaningful to them they often exceed all expectations for what someone
with no formal technical background can do. By writing technology off as too difficult
to understand we rob students of the chance they might otherwise have of developing
creativity in the area of technical design.

Thesis Supervisor: David P. Cavallo

3



Acknowledgments

thank you

4



Contents

1 Introduction 7

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Discussion of the suitability of Scheme . . . . . . . . . . . . . . . . . 8

1.3 Description of hardware extensibility . . . . . . . . . . . . . . . . . . 9

2 Hardware Design 11

2.1 Microcontroller selection . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Other hardware selection . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Power Management . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Parallel Addressing and Data Transfer . . . . . . . . . . . . . 13

3 Compiler Design 17

3.1 Memory managment . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Addressing memory . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Paging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.4 primitive data type encodings . . . . . . . . . . . . . . . . . . 22

3.2 Primitive procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 arithmetic operations . . . . . . . . . . . . . . . . . . . . . . . 25

5



3.2.2 pair operations . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 hardware specific operations . . . . . . . . . . . . . . . . . . . 27

3.2.3 extensibility of primitives . . . . . . . . . . . . . . . . . . . . . 28

A Language Specification 29

A.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.1.1 W hitespace, comments and parentheses . . . . . . . . . . . . . 29

A.1.2 Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.1.3 Syntactic keywords . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.2.1 special forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

B Assembly Routines 33

B.1 addition subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B.1.1 1-byte signed integer addition . . . . . . . . . . . . . . . . . . 33

6



Chapter 1

Introduction

Microcontrollers provide an interesting oppertunity in enhancing learning environ-

ments by offering students small, portable, low cost, programmable devices capable

of real-world interaction. This thesis investigates how one might design hardware

and software that students without technical background can learn to use. The de-

vice should in particular not just support one project, or even one type of projects,

but be extensionable enough on both the hardware and software side to handle the

desired task.

1.1 Motivations

The importance of technology for the education of middle- and high-school students

has certainly been embraced by the educational and political establishment. The

availability of computational facilities in public schools have proliferated, but to what

end? The availability of technology alone does not guarantee that the student will

take away any useful knowledge or technical skills. In many cases computers are

simply used to provide students drill in subjects they would otherwise have learned

on paper. The Future of Learning group have run many workshops in schools around

the world trying to do something more interesting with technology. Microcontrollers

have been a central component in many of these projects. This thesis attempts to

design hardware and software around a microcontroller to allow for arbitrary future

7



extensions. Both software a nd har d ware was designed with extendibility feremost in

mind.

1.2 Discussion of the suitability of Scheme

We would like students to learn programming at earlier ages. But more than learning

how to program we would like for the to develop computational thinking skills. As

a beginner to programming it is easy to get lost in the details of the language, and

attempt to write early, and therefore easy, programs through a trial and error process

that teaches how to write particular pieces of code without quit understanding exactly

why anything works. An understandable computational model is of great importance

in learning the skill of computational thinking. Instead there is a tendency to dumb

a system down for use by students on the assumption that they will otherwise be

unable to use it. One example of this is the evulation of the programming language

LOGO. At its conception LOGO was a real programming language with plenty of

power. Fearing that it might prove to difficult to use, power was sacrificed in favor

of simplicity. The language is now useless except to write trivial, short programs. A

more useful language would have a low threshold to allow beginners to learn while

doing, as well as a high ceiling, provideing advanced students not only with plenty of

computational power, but also with the ability to extend the language as they see fit.

Scheme was chosen as the language to adapt for use in this project for these reasons.

Scheme was designed as a teaching language and has been used in MIT's introduc-

tory programming course for many decades. It has a well developed computational

model. Its syntax is easy and the number of primitives to learn is few. At the same

time it is a very powerful language. It is also relatively easy to understand how the

language compiles to PIC assembly, at least if one ignores the details of implementa-

tions of primitives and memory management. The compiler developed here is derived

from the compiler in Chapter 5 of Structure and Interpretations of Computer Pro-

grams. It can be understood separately from the specifics of primitive implementation

and memory ianagement issues. With some knowledge of PIC assembly, software

8



support of new hardware functionality can easily be added to the compiler.

1.3 Description of hardware extensibility

Whenever one designs a board one might implicitly exclude certain use because of

inherent hardware limitations. We made extensionability of the hardware a primary

concern in the design of this device. The base board comes with 19 controller I/O

pins that can be used to extend the hardware. We have also designed some template

extension boards to dernonstarte extensionability and describe two different multi-

plexing protocols to further extend the use of these pins. It is hoped that this type

of extensionability will promote use of the board beyond the intent of the author.

9



10



Chapter 2

Hardware Design

2.1 Microcontroller selection

Peripheral Interface Controller (PIC) microcontrollers are cheap and incorporate

many useful peripheral features on the chip, such as a 10 bit analog to digital con-

verter, a Universal Synchronous Asynchronous Receiver Transmitter (USART) mod-

ule, and a Inter Integrated Circuit (12 C ) module. The PIC18F452 from Microchip[3]

was selected over other PICs primarily for it 8bit hardware multily module which

will significantly speed up multiplication and division algorithms. Useful peripheral

features are the USART module used for serial communication with PCs, and the

12C module for communication with peripheral chips, such as the EEprom and Real

Time Clock (RTC).

2.1.1 Programming

The board is set up for In Circuit Serial Programming (ICSP). We can use standard

PIC programming tools, i.e. MPLAB, to program the device in assembly or C. The

board connects to the PIC programmer via 5 pins on the chip, made available through

a connector on the board. Two of these pins, Vdd and MCLR, need to be isolated

from the circuit for the programming phase becausae of excessive capacitance on these

pins in regular operation. This isolation achieved by a Double Pole Double Throw

11



(DPDT) switch.

PIC

vdd
vdd

MCLR
RB6
RB7

'l~s

Vdd

DPDT
3

So44. MCLRnet 5

C 6 ICS connector

Figure 2-1: In Circuit Serial Programming circuit

2.2 Other hardware selection

2.2.1 Real Time Clock

A battery backed up RTC[6] is provided for convenient real time readout. When the

board is not powered it is powered off its backup battery to accuratly keep time. It

is interfaced to the PIC through the 12 C bus.

Vdd

10k
10k

PIC SCL pin

PIC SDA pin

5 SDA~ A0
6 SC Al 2

73 -

WP A2

Vdd
EEPROM

6 SCL SQW/OUT
Xl X2 2
SDA

DS1307

I.768kHZ.

Figure 2-2: 12 C bus

12



2.2.2 Power Management

LT1579[2], a 5V dual source regulator was selected for power managment. The pri-

mary power source is 9V DC adaptor input, secondary source is 4x1.5V battery pack.

The chip has several nice features: low dropout voltage, if both sources are present

it draws power only from primary source. It has an output pin that gets pulled low

when voltage starts to drop out of regulation. This pin can sink enough current to

allow for directly connecting an LED to this pin, providing convenient low battery

indication. The board is intended to operate on standard alkali batteries.

2.2.3 PCB layout

The PIC and peripheral chips were selected in surface mount packages fcr smaller

board size. A smaller board means a cheaper board. Some components (resistors and

battery backup for RTC) are on the bottom of the PCB to shrink size further.

2.3 Extensions

The board was designed to be easily extendible. 19 Input/Output (I/O) pins are

provided as extension pins. These pins are all of ports B and D, and three pins from

port C. Several protocols for multiplexing these pins have been developed.

2.3.1 Parallel Addressing and Data Transfer

If we need no more than 8 extension board and no more than 16 pins per board we

would choose 3 pins for addressing the boards, and the remaining 16 for data transfer.

Addressing is done by comparing voltages on address pins with board address using

the CD74HC85 [4] 4-bit comparator. In its simplest version we just pass the 16

data lines through two 8-bit bi-directional bus switchs, SN74CBT3245A.[5] With this

design we can only drive outputs on the extension board while it is addressed, when

we address a different board all outputs will become high impedance on the old one.

If we need to drive some output pins while the board is not addressed we designate

13



some pins as outputs in hardware and put a latch on them. The latch is transparent

when the board is addressed, sending all signals through to the output side. When

the board is de-addressed the voltages are latched and will hold their values until the

board becomes addressed again.

Extension board example 1: Parallel Addressing, no latches

This template extension board uses the three port C pins for addressing and the port

A and B pins for data transfer. Two bi-directional bus switches provides a data path

when the board is addressed, and high impedance on both sides of the swith when it

is not.

bus switch

(A= Bout

5 4' R RD0-7=

bus switch

Figure 2-3: Parallell addressed extension board

Extension board example 2: Parallel Addressing, latch on one data byte

Here we demonstrate the use of output latches to drive devices on an extension board

while it is not addressed.

14



C - CA~

C) -C'I Cf

bus switch

RBO-7a

=RD0-74 t

latch

Figure 2-4: Extension board with latches

Extension board example 3: Serial Addressing, no latches

15



Vdd

1 D74HC85
-1/0AO BO13

NM74HC595 Al0

QA A2 B2 0RCO Q I'~<Bjll,
RCK QB A3 B3

QC-
RCI QDSRCK QE D74HC85

QE h
Q 1/0

C2QG AO 5 BO /
SER QH A] BI U/O

QHI A2 B2 - 1/
A3 B3

EN

Figure 2-5: Serially addressed extension board

16



Chapter 3

Compiler Design

We would like to provide a Scheme compiler and interface to the controller board.

Compiling a high level language such as Scheme to a small device such as the PIC has

some challenges. The processor speed is only 40MHz, limiting our execution speed as

compared to a PC. For the type of computation this board will support that will not

be a significant problem. The user of the board needs to be aware of the processor

speed, and the limitations it imposes, to avoid costly operations, such as floating

point arithmetic whenever possible. A more severe limitation is the small size of

data memory available on the PIC. We have 1kByte available in data memory after

reserving memory for low level PIC opertions, such as primitive implementations and

garbage collection. The PIC has much more program memory available, 32kByte,

but moving data into program memory is an expensive operation. The processor

will stall for about 2ms to write 8 bytes to program memory. The serial EEprom on

the board has an internal write time of about 5ms for 64bytes, and a transfer time

of 1.5ms. Not only is this faster than the on-chip program memory, execution can

also continue during the internal write time, as well as during the data transfer using

interrupts. There is still a limitation on EEprom access during this time makeing the

solution non-ideal. A better approach would be to use off chip memory with faster

write time. Those are inconvenient because they necessitate the implementation of a

separate serialization scheme to interface to their parallel address/data lines, or we

must give up our hardware extension lines. Future development of the board would

17



include further study of the memory implementation in an attemet to find a quicker

scheme while maintaining extension lines on the PIC. This design will use a serial

EEprom designed to run off the I2C bus, as described in the hardware section.

Because of the small amount of memory available to us we have chosen to compile

only a subset of the scheme implementation given in the Revised(4) Report on the

Algorithmic Language Scheme, which is the language implementation our version is

based on [1] A specification of the language of our compiler is given in Appendix A.

3.1 Memory managment

3.1.1 Addressing memory

We have a total of 64kByte available to us in the EEprom. The selected garbage

collection scheme is of stop and copy nature, thus permitting us use of half the

memory at any instant. Memory will be allocated to scheme code in 16bit words,

leaving us with 14bits/address in the EEprom. Objects created at compile time will

be located in program memory on the PIC. We thus extend our addresses to 15bits to

allow for addressing both program and data memory. This size was chosen primarily

to allow for 4-byte pairs. We anticipate that much of our memory allocation will be

in pairs, as this is the nature of Scheme programs, allowing a relatively small pair

size is thus of importance on a system with limited memory, such as this.

3.1.2 Paging

To optimize for speed in our slow memory transfer to off chip memory we have chosen

to page the EEprom memory into twenty 64-byte pages. The page size was chosen

based on teh EEprom page write size. We use sixty registers in datamemory for low

level memory managmeny. Registers PSAkH, PSAkL, and PSAkme keep track of the

k th page in data memory. PSAkH/PSAkL hold the EEprom address corresponding to

the kth page. Since each page is only 64 bytes the 6 low order bits in PSAkL hold no

information pertaining to the page in use. Rather, they will hold the value of the first

18



modified. location in data memory on the page. PSAkme will hold the lat modified

location. When a page is read into data memory from the EEprom these registers

will indicate that nothing has been modified. As the program modifies lications in

datarnemory the registers will be updated to reflect these changes. When a page is

swapped out of data memory we write only the range of locations indicated by these

two registers, which might be none.

Decoding an address

When we wish to access a value corresponding to a memory address we have to

interface it through the paging scheme set up above. The address we start with will

reference either a location in program memory or data memory, as determined by the

high bit of the address. An assembly subroutine, ADDDEC, has been developed for

this purpose. If it is a program memory address we can just returned whatever is

at that location using operations native to the PIC, in this case we just return that

address from ADDDEC. If we are specifying a location in data memory ADDDEC

will check if the corresponding page is in program memory by chacking PSAkH and

PSAkL. If the page is already in data memory we compute the data address from

the k of the corresponding PSAkH. If the page is not in data memory we will have

to fetch it from the EEprom before computation can proceed. ADDDEC will take

care of this, and ultimatly return the PIC data memory address associated with that

value. The caller at that point has an address that can be accessed by PIC primitives.

Reading a page from EEprom

A low level assembly routine for reading a page from EEprom into data memory has

been developed and debugged. It utilizes the hardware I2C module on the PIC to

issue commands to the EEprom and read data values. Below is a pseudo code outline

of this routine, the complete routine can be found in Appendix B.

check write-in-progress bit in GCstatus register

if set, loop until clear

19



generate start condition

send slave address specifying a write operation

send address to start reading at

generate a repeated start condition

send slave address specifying a read operation

generate an acknowledge following each recieved byte

after 64 bytes have been received, generate a stop condition

rather than an acknowledge

This routine has been tested and timed. The read time for 64bytes is approximatly

2ms. We must check if a write is in progress before we start, or we will interfere with

the interrupt driven write routine and cause unpredictable memory behaviour. The

read routine does not use interrupts since continuing execution is pointless when we

are waiting for a value we need to be moved to data memory.

Writing a page to EEprom

This complementary low level assembly subroutine implements the necessary instruc-

tions for writing a page to the EEprom from data memory. The write routine will be

invoked after we have started using the last free page in data memory, in hope that

the write will be done by the time we need another free page. We write the oldest

page at this point, and then update our free page pointer to the newly freed data

memory page. This routine does use interrupts since execution can continue while

we are transfering data, as long as we don't need yet another free page. We set the

write-in-progress bit in the GCstatus register at the begining of a write to keep other

routines from interefering. Two registers; WRcontH, and WRcontL; keep track of

where we should continue our write operation at an interrupt.

check write-in-progress bit in GCstatus register

if set, loop until clear ;only allow one page page write

enable \ic interrupts

generate start condition

20



Program counter + 4 -> WRcont

return

send slave address specifying a write operation

Program counter + 4 -> WRcont

return from interrupt

send address to start writing at

Program counter + 4 -> WRcont

return from interrupt

send first byte

Program counter + 4 -> WRcont

return from interrupt

send second byte ...

after last byte, send stop condition

disable \ic interrupts

return from interrupt

3.1.3 Garbage Collection

We use a stop and copy algorithm. Since our memory is paged into PIC data memory

from EEprom it is to our advantage that values occur as densely in pages as possiblem,

with values of the same data structure in a small physical memory range. To this

end we use stop and copy to allow for data compactification. We will first attempt

to garbage collect all the pages currently in data memory, pushing addresses not in

data memory onto a wait stack. Only when all our addresses to copy are not in data

memory will we swap an old page for a new one. The stop and copy garbage collection

algorithm used is standard for scheme. The root set is the current environment and

the time garbage collection is initialized, everything reachable from the bindings in

that environment, and its chain of ancestors, is live and will be copied to new locations.

As of the writing of this thesis the garbage collector has not been fully debugged.

21



3.1.4 primitive data type encodings

Ve refere to data by its ad(ress iii memory. In the case of pairs, sv nbols, and

procedures this address is also the value of the data object. In the case 'f numbers

and strings we need to dereference the address to get the value. We nirst always

dereference the address to check the type of a primitive.

symbols

We have restricted our version of scheme to only allow symbols defined At compile

time. Symblos will therefore be created only by the following special fornis: quote,

lambda, and define. Since symbols are guaranteed to be unique we store the printed

representation of each symbols exactly once. Any place that symbol is used them

simply references that loation in memory. Since all symblos are known at compile

time we place their printed representations in program memory to save valuable data

memory space. We further restrics symbols to occupy a restricted part of program

memory, addressable by 12bits, to allow for smaller environments. In Table 3.1 we

see the symbol encoding. The last byte is a byte of zeros, indicating the end of

this symbol. This is the encoding for an even number of characters in the printed

representation of the symbol. If the number of characters was odd we would have two

bytes of zeros deliminating the symbol.

F E D C B A 9 8 7-0
0 0 0 1 X x x x c 7-c0

Ck7 Ck 6 | Ck 5 Ck 4 ck Ck
2 Ckl CkO 0

Table 3.1: Symbol implementation

pairs

We want to allocate pairs as efficiently as possible since scheme expressions tend to

produce a lot of them. A pair needs to be able to hold two addresses, which requires

30 bits with 15bits per address. We also need a tag to identify pairs, and a bit to hold

22



garbage collection information. We thus tag pairs with one bit, and reserve another

bit for the garbage collector to use. The table below shows this pair implementation.

a16-al is the address of the car, b16-bI is the address of the cdr.

F E D C B A 9 8 7-0
1 a16 a14 a13 a12 all alO 9 a8-al
GC b16 b14 b13 b12 bl blO b9 b8-bl

Table 3.2: Pair implementation

environments

Environments is another one of scheme's datatypes that is heavily used. We would

like a memory efficient implementation of environments as well. An environment

is a list of bindings and an enclosing environment. Each binding has a reference

to a variable and a value associated with that variable. Syntactically a variable is a

symbol. We therefore know that it will be located in specific part of prograrn memory,

addressable with 12 bits. Further, we know that the enclosing environment is located

in data memory, since no environments are created at compile time. We thus need

only 14 bits to address the enclosing environment. Table 3.3 gives the environment

encoding for an environment with k bindings.

F E D C B A 9 8 7-0
0 0 1 GC v112 v111 v1 10 v19 v18-v11.
1 b1 16 bi1 4 b1 13 b1 12 bill b110 b19 bj8-b11

1 x x x Vk12  Vkll Vk10 Vk 9  Vk8 -Vkl
1 bk16 bk14 bk13 bk12 bkll bklO b9 bk8-bkl
0 x e14 e13 e12 eli elO e9 e8-el

Table 3.3: Environment implementation with k bindings

numbers

We have four different number sizes: 1, 3, and 5, byte signed integers, as well as 5

byte floating point numbers. Tables 3.4, 3.5, 3.6, and 3.7 shows the encoding of those

23



numbers. The sign bit is the hight order bit of the first non-tag byte,. denoted by:

b1 7. In the floating point nminber case ek denotes the k bit of the exponent.

F E D C B A 9 8 7-0
0 0 0 0 GC x 0 0 b1 7-bt0

Table 3.4: 1 byte signed integer

F E D C B A 9 8 7-
0 0 0 0 GC x 0 1 b17-b10

b2 7 b26 b 2 5 b2 4 b23 b2 2 b21 b2 0 b3 7-b 30

Table 3.5: 3 byte signed integer

F E D C B A 9 8 7-0
0 0 0 0 GC x 1 0 b,7-b0

b2 7 b2 6 b25 b2 4 b2 3 b2 2 b2 1 b2 0 b3 7-b 30
b4 7 b4 6 b45 b4 4 b4 3 b4 2 b4 1 b4 0 b57-b50

Table 3.6: 5 byte signed integer

booleans

#t and #f are the two scheme booleans. They are unique values. We represent them

in data structures as references to program memory locations forbidden to compiled

Scheme code, i.e. OxOOOO and OxOOOl respectivly.

procedures

Procedure bodies are known at compile time and thus go in program memory. A

procedure body is thus referenced as the location in program memory where execution

should start. Procedures themself are located in data memory. They have two parts:

a reference to the body in program memory, and a pointer to an environment captured

by that procedure. We thus need 14 bits each for these addresses. The procedure

encoding is given in Table 3.8.

24



F E D C B A 9 8 7-0
0 0 0 0 GC x 1 1 e7-e0

1 )7 b1 6 _)_ 
1 4  1)3 b1 2 b11 1)10 b27-b20 I

b37 b36 b3 5 b34 b3 b32 b31 b30 b4 7-b 4 0

Table 3.7: 5 byte floating point number

F E D C B A 9 8 7-0
0 1 0 GC b12 b11 b10 b9 b8-b1

bl4 b13 e14 e13 e12 elO e9 e8-el

Table 3.8: Procedure encoding

3.2 Primitive procedures

scheme primitives such as arithmetic operations are implemented as assembly sub-

routines.

3.2.1 arithmetic operations

All arithmetic operations work on any combination of number sizes by dynamically

selecting the appropriate operator, after converting all operands to the larges size

of the operands. They produce an output that is the smallest size possible. They

use registers NargAO, NargAl, NargA2, NargA3, NargA4, NargBO, NargBI, NargB2,

NargB3, and NargB4. NargA and NargB are used for the two inputs, NargA is used

for the output.

addition and subtraction

Addition and subtraction is straight forward after we have gotten the numbers into

the correct registers as specified above. We add/subtract the low bytes first, then

consecutively the higher order bytes with carry/borrow. Then, finaly we check for

overflow in the carry/borrow bit and adjust number size accordingly. In the case of

floating point numbers the add/subtract operation begins with adjusting the number

with the smaller exponent to equal the larger exponent before proceeding with the

25



addition/s 'taction

multiplication

Multiplication is fairly straight, forward as well because of the availability of a hard-

ware 8-bit multiplication routine. In this case we also have to check for negative

numbers as the harware multiplier only works with unsigned bytes. This is, again,

straight forward.

division

We do not, have hardware division. We use a naive division algorithm, coiputing the

bits of the result one by one by comparing the sizes of the arguments, and subtracting,

elementary school style.

3.2.2 pair operations

cons

Cons allocates a new pair. The car and cdr of the cons cell have already been allocated

and have addresses at the point of cons allocation. These addresses will be in NargA,

and NargB. Cons thus calls the low level memory allocation routine, which returns to

it an address paged into PIC data memory. The addressed can then be put in their

appropriate locations withing the 4-byte pair block, along with the tag bit, and GC

bit.

car, cdr

Car and cdr takes the address of a pair and returns the addresses of the elements stored

there. It is the responsanility of the caller to further dereference these addresses, and

return the corresponding number since the value of a number is the actual number,

not the location of that number.

26



3.2.3 predicates

type predicats

Our primitive datatype predicates are pair?, number?, string?, symbol?, and proce-

dure?. The implementation of these is straignt forward, performing a Tag check of

the location to determine type, and returning wither of the booleans #t. or #f.

predicates for numbers

Our number comparison predicates are: =, >, <, <=, and >=z. These are imple-

mented using the PIC native comparison operations on bytes, consecutively, starting

at the hight byte, and moving down. They have to persorm the appropriate number

conversions as well to allow for comparison of different size numbers.

other predicates

Our only other predicate implemented at this time is eq?. eq? simply checks whether

or not two object have the same location in memory. We can therefore use the PIC

native equivalence comparison operation.

3.2.4 hardware specific operations

time

A subroutine is avaiable to get the current time off the RTC chip. This routine simply

invokes the correct 12 C commands.

run-timeri, run-timer2, set-timerl! set-timer2!

We provide access to two of the hardware timers on the PIC, with interrupts. This

is an attempt to start looking at the possibility to do interrupt driven programming

using scheme on the PIC. set-timerx! takes an unsigned 16bit integer and sets the

timer to this value. run-timerx takes a procedure as argument. It will enable inter-

rupts for that timer. and then enable it. While execution is occuring that timer will

27



count up. incrementing once per instruction. When a rollover occurs the PIC will

have an interrupt, vectoring to a location that then will run the procedire provided

as an argument to run-timerx. When that procedure is done the PIC will return from

interrupt to the point it was at whenthe interrupt occurred. The value returned by

that procedure will be discarded since there is no place to return it it.

3.2.5 extensibility of primitives

All primitives are implemented as PIC subroutines. If we would like to extend the

compiler with some different hardware routine we need simply write it in PIC assembly

and bind that routine in the initial environment at compile time.

28



Appendix A

Language Specification

In this appendix we will give a specification of the subset of Scheme used for this

project. It does not include all the features marked as essential in the formal language

it is based on, and should therefore perhaps be renamed. This is, however, only

intended as a starting point for compiling Scheme for small processors. Future work

would therefore include extending the compiler with all essential features.

A.1 Syntax

The syntax for our language is as specified in the Revised(4) Report on the Algorith-

mic Language Scheme. We will summnerize the important points here.

A.1.1 Whitespace, comments and parentheses

Any type of whitespace (space, tab, and newline to name a few), as well as paren-

theses, seperate character sequences on either side into tokens. Parentheses also have

an important semantic role. A semicolon, ;, begins a comment, which extends until

the next newline character. Comments will be ignored by the compiler and is used

exclusivly to improve readability of programs to humans.

29



A.1.2 Identifiers

Any sequence of characters that begin with a character other than a digit, +, or -, is

an identifier. Our set of characters include all alpha-numeric characters, s well as the

following extended alphabetic characters: + - . * / < => ! ? : $ &

A.1.3 Syntactic keywords

Certain identifiers are syntactic keywords. Any identifier that is riot a syntactic

keyword can be used as a variable. The identifiers in Table A.1 are reserved as

syntactic keywords, although some of them are not implemented in th( compiler,

beyond being disallowed as variable names.

=> do or

and else quasiquote

begin if quote

case lambda set!

cond let unquote

define let* unquote-splicing

delay letrec

Table A.1: Syntactic keywords

A.2 Semantics

We will now define the meaning of various constructs in our language. The syntax:

(< exp1 > < Cxp 2 > ... < expn, >) in general means evaluate < exp1 > through

< exp,, > in any order, then apply the value of < expi > to < exp 2 > through

< exp, >. Our full expression above is known as a combination. The sub-expressions,

< expi > through < expn >, can be primitives, or combinations themself. If < expi >

is a syntactic keywrord we do not follow the rule above, but rather look at the rule

associated with the special form associated with that keyword. The special forms

implementedl here described below.

30



A.2.1 special forms

define

Syntax: (def ine name < exp >)

Define does not evaluate its first argument, but does evaluate the second. It interprets

the first argument as a name, and bind it to the value of its second argument in the

current environmert.

lambda

Syntax: (lambda (vi ... v,) < bexpi > ... < bexpo >)

A lambda creates a procedure that can be applied. None of the arguments in the

lambda gets evaluated. Rather, we create a procedural object. If that procedure gets

applied we substitute the values of the arguments for the formals, (vi ... v"), in the

body, < bexp 1 > ... < bexpn >.

set!

Syntax: (set! name < exp >)

Works like define, except name must be bound in the current environment, or one of

its ancestors, and that binding is changed to the value of < exp >.

if

Syntax: (if < test - exp > < then - exp > < else - exp >)

If starts by evaluating < test - exp >. If it evaluates to #f < else - exp > is evaluated

next, and its value is returned. If it does not evaluate to #f < then-exp > is evaluated

next, and its value is returned. In particular, any value other than #f is interpreted

as true by if, including the number 0.

quote

Syntax: (quote <exp>)

Quote keeps < exp > from being evaluated. Rather it parses it as a syntactic expres-

31



sion and return its internal representation.

32



Appendix B

Assembly Routines

B.1 addition subroutines

B.1.1 1-byte signed integer addition

;this is the memory managment stuff. the PICs data memory is divided

;into twenty 64 byte pages that are swapped in and out from EEPROM

;memory. all these pages start out empty, with corresponding addresses

;from the begining of EEPROM memory. They are filled as memory is

;used. when we start using the last page in data memory we will also

;start transfering the oldest page to the EEPROM. As we start

;accumulating more data in the EEPROM than would fit in the data

;memory we will have to start swapping pages in and out. when a page

;is read in to data memory page defined by PSAk (0<=k<=19) PSAkms will

;start at OxFF, and PSAkme will start at OxOO. this is to indicate

;that nothing has been modified in this page yet. when a modification

;occurs we set those two registers to correspond to the modified

;value's location in EEPROM memory. PSAkms will thereafter be

;maintained to point to the first modified address in the block, and

;PSAkme to the last modified one. that way we can write a minimal

;amount when we have to swap that page out again. page writes to the

33



;EEPROM are done based on interrupts. we start writing a page when we

;start using the last free page in data memory (the first time we get

;to PSA19). PSAO will be written out first since that was the first

;created one. we initiate this write right after we have claimed

;PSA19. we hope to be done by the next time we need to access the

;EEPROM. after that we initiate writing a page to EEPROM memory

;whenever we need a new data memory page. the page after the current

;free data memory page will be written out since that is the oldest

;one. when the EEPROM memory is half full (PSAkH=Ox7F, PSAkL=OxCO for

;some k) garbage collection is initiated. we use a stop and copy GC

;algorithm, moving data to the other half of the EEPROM. data memory

;is cleared and the pages will be moved from the EEPROM to be copied

;and moved back. only 16 pages will be available to hold data to be

;copied. of the remaining 4, one page will hold data being transfered

;to the EEPROM, another will accumulate values to be copied. the

;remaining two will hold locations yet to be copied. this is where we

;will place locations that are not currently in data memory in hope

;that we can first copy as much as possible from the pages already in

;memory.

;most of the PSA registers will be accessed indirectly only. they are

;named to indicate they are taken, and so that we can refere to them

;in comments.

PSAOH equ 0x80

PSA1H equ 0x81

PSA2H equ 0x82

PSA3H equ 0x83

PSA4H equ0x84

PSA5H equ 0x85

34



PSA6H

PSA7H

PSA8H

PSA9H

PSA10H

PSA11H

PSA12H

PSA13H

PSA14H

PSA15H

PSA16H

PSA17H

PSA18H

PSA19H

PSAOL

PSAlL

PSA2L

PSA3L

PSA4L

PSA5L

PSA6L

PSA7L

PSA8L

PSA9L

PSA10L

PSA11L

PSA12L

PSA13L

PSA14L

PSA15L

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

equ

0x86

0x87

0x88

0x89

Ox8A

Ox8B

Ox8C

Ox8D

Ox8E

Ox8F

0x90

0x91

0x92

0x93

0x94

0x95

0x96

0x97

0x98

0x99

Ox9A

Ox9B

Ox9C

Ox9D

Ox9E

Ox9F

OxAO

OxA1

OxA2

OxA3

35



PSA16L equ OxA4

PSA17L equ OxA5

PSA18L equ Ox.A6

PSA19L equ OxA7

PSAOme equ OxA8

PSAlme equ OxA9

PSA2me equ OxAA

PSA3me equ OxAB

PSA4me equ OxAC

PSA5me equ OxAD

PSA6me equ OxAE

PSA7me equ OxAF

PSA8me equ OxBO

PSA9me equ OxBl

PSA10me equ OxB2

PSAilme equ OxB3

PSA12me equ OxB4

PSA13me equ OxB5

PSA14me equ OxB6

PSA15me equ OxB7

PSA16me equ OxB8

PSA17me equ OxB9

PSA18me equ OxBA

PSA19me equ OxBB

EEfreeH equ Ox7F ;points to next free

;byte in EEprom

EEfreeL equ Ox7E

PRptr equ Ox7D ;page register

;pointer, points to

;high byte register

36



GCstatus

BB

DMF

MADDH

MADDL

TMPO

EEaddh

EEaddl

DATAaddle

DATAnumB

equ

equ

equ

equ

equ

equ

equ

equ

Ox7C

0x7

0x6

Ox7B

Ox7A

0x79

0x78

0x77

0x76equ

equ 0x75

;of next free data

;page

;GC status word

;block bit for eeprom

;address in GCstatus

;data memory full bit

;in GCstatus

;memory address high

;byte

;memory address low

;byte

;EEPROM high address

;byte to be read/

;written, start

;address

;EEPROM low address

;byte to be read/

;written, start

;address

;EEPROM low address

;byte to be read/

;written, end address

;number of data bytes

;requested

;we want to get something from memory, but all we have is an EEPROM

;address. this subroutine expects that address in the MADDH, MADDL

;registers. it will find out if the page this address is on is already

37



;in data memory. if it is, the corresponding datamemory adcress will

;be returned in FSRO. if not, the correct page will be loaded from

;EEPROM memory

memorycheck:

MOVFF EEfreeH, TMPO

BCF

RLCF

BTFSC

STATUS, C, 0

DATAnumB, w, 0

STATUS, C

INCF TMPO, f, 0

ADDWF EEfreeL, w, 0

BTFSC

INCF

MOVF

XORWF

STATUS, C

TMPO, f, 0

TMPO, w, 0

GCstatus, w, 0

BTFSC WREG, 7, 0

GOTO

return

GC

;DATAnumB contains number of

;words requested

;checks if data fits in

;memory, if not GC first

;move high EEprom free address

;byte to temporary register

;multiply by 2, move to WREG

;carry is set if we rotate a

;1 out of DATAnumB

;if carry set, inc temporary

;version of EEfreeH

;add low EEfree to number of

;bytes requested

;test for carry

;if carry, increment temporary

;version of EEfreeH

;xor with GCstatus, bit 7 is

;block bit for both

;check bit 7, if 0 okay, if

;1 GC

;otherwise memory okay, return

memoryput:

MOVFF DATAwH, POSTINC1 ;move to memory location

38



MOVFF

MOVFF

MOVFF

INCF

INCF

BTFSC

INCF

MOVLW

ANDWF

BTFSS

return

memputrof:

DATAwL, POSTINC1

EEfreeH, MADDH

EEfreeL, MADDL

EEfreeL, f, 0

EEfreeL, f, 0

STATUS, Z

EEfreeH, f, 0

B'00111111'

EEfreeL, w, 0

STATUS, Z

MOVFF PRptr, FSROL

CLRF

MOVFF

MOVLW

ADDWF

MOVFF

MOVF

ADDLW

MULLW

MOVFF

MOVFF

FSROH, 0

EEfreeH, INDFO

0x14

FSROL, f, 0

EEfreeL, INDFO

;did we roll over a 1 to

;EEfreeH?

;if so, add 1

;did we roll over a page??

if not, return

;fixes page rollovers in

;EEfree pointer

;this is the next free data

;page pointer (points to

;PSAkH)

;put the EEprom high address

;in its place

;put the EEprom low address

;in its place

PRptr, w, 0

Ox84

Ox40 ;get address of corresponding

;data page in PROD

PRODL, FSR1L

PRODH, FSR1H ;free memory pointer updated

39



incPRptr

GCstatus, DMF, 0

EEPROMwpINIT

MemoryAdderssFetch:

;increment PRptr

;is data memory full after

;reading this page?

;otherwise, return

;initialize the page write if

;it is

;memory address to fetch is in

;MADD, will return data memory

;address

;of object in FSRO

LFSR 0, PSA19H

HavePage?:

MOVLW 0x13

SUBWF FSROL, f, 0

MOVLW 0x94

CPFSLT FSROL, 0

GOTO PageFetch

MOVF POSTINCO, w, 0

CPFSEQ MADDH, 0

GOTO HavePage?

MOVLW 0x13

ADDWF FSROL, f, 0

;check if our pointer is less

;than, or equal to, the last

;page address

;if not, page is not in

;memory, fetch it

;get page high address byte

;compare with the address we

;are looking for

;if not, try next page

40

CALL

BTFSS

RETURN

GOTO

return



MOVF

XORWF

ANDLW

BTFSS

GOTO

MOVLW

SUBWF

GetPageAddress:

MOVLW

SUBWF

MULLW

MOVFF

MOVFF

MOVLW

ANDWF

IORWF

RETURN

INDFO, w, 0

MADDL, w, 0

B'11000000'

STATUS, Z

HavePage?

Ox13

FSROL, f, 0

Ox7D

FSROL, w, 0

Ox40

PRODH, FSROH

PRODL, FSROL

B'00111111'

MADDL, w, 0

FSROL, f, 0

PageFetch:

MOVFF PRptr, FSROL

CLRF

MOVF

MOVWF

MOVWF

FSROH, 0

MADDH, w, 0

INDFO, 0

EEaddh, 0

;get page low address byte

;check if bits match

;ignore low 6 bits

;check for zero result

;(address match)

;else keep going

;subtract to get value

;relating to data address

;of object

;multiply with 64 for high

;and low data address values

;get low six bits of address

;move a page from EEPROM

;memory to data memory

;get register for high EEPROM

;address placement

;move high address to PSAkH

41



MOVLW

ADDWF

MOVLW

IORWF

MOVWF

ANDLW

MOVWF

MOVLW

ADDWF

MOVLW

MOVWF

MOVF

ADDLW

MULLW

MOVFF

MOVFF

Ox14

FSROL, f, 0

B'00111111'

MADDL, w, 0

INDFO, 0

B'11000000'

EEaddl, 0

Ox14

FSROL, f, 0

Ox00

INDFO, 0

PRptr,

Ox84

Ox40

PRODH,

PRODL,

;corresponding low address

;register

;low address, six low order

;bits are is to indicate

;nothing

;modified in page

;get modify end address

;write modify end address to

;its register

w, 0

FSROH

FSROL

CALL EEPROMrp

MOVF MADDL, w, 0

ANDLW B'00111111'

ANDWF FSROL, f, 0

;data memory corresponding to

;current data page register

;read page to data memory,

;EEPROM address in

;EEADDH/EEADDL

;data memory address in FSRO

;after this call FSROH is the

;same, FSROL has bits 7 and 6

;same as before, bits 0-5 are

;1s

;now make them the value

42



CALL

BTFSS

RETURN

GOTO

incPRptr

GCstatus, DMF, 0

EEPROMwpINIT

;set up addresses to start and end the

;PSAkms, and PSAkme if PSAkme < PSAkms

;memory (it hasn't been modified since

;corresponding to the address

;we wanted

;is data memory full after

;reading this page?

;otherwise, return

;initialize the page write

;if it is

writing at according to PSAkH,

we don't need to write page to

it was fetched.

;also, fix page write so that it is interrupt driven since we don't

;need to wait for that write to finish, need it done by the next time

;we need to read/write EEPROM memory use ISR vector registers to come

;back to right place in code on interrupt probably need to turn on

;buss collision interrupts as well as SSPIE

incPRptr:

PRptr, f, 0

Ox93

PRptr, 0

GCstatus, DMF, 0

;if less than Ox93, no page

;rollover

;if we are at the last page,

;set the Data Memory Full bit

;and restart the pointer atMOVLW Ox80

43

INCF

MOVLW

CPFSGT

RETURN

BSF



;PSAO

MOVWF

RETURN

EEPROMwpINIT:

MOVF

ADDLW

MULLW

MOVF

CPFSEQ

GOTO

MOVF

ANDLW

CPFSEQ

GOTO

CALL

EEPROMwpTHIS:

MOVFF

CLRF

MOVFF

MOVLW

ADDWF

MOVFF

PRptr, 0

PRptr, w, 0

Ox84

Ox40

PRODH, w, 0

FSR1H, 0

EEPROMwpTHIS

FSR1L, w, 0

B'11000000'

PRODL, 0

EEPROMwpTHIS

incPRptr

PRptr, FSROL

FSROH, 0

INDFO, EEaddh

Ox14

FSROL, f, 0

INDFO, EEaddl

;data memory corresponding to

;current data page register

;are the high bytes of PRptr

;data page and the current

;free page the same? if not,

;okay to write this page

;ignore 6 low bits

;compare low bytes

;otherwise, next page is the

;page to write

;point to high EEprom address

;get high EEprom address of

;page

;point to low EEprom address

;get low EEprom address to

44



;start writing

MOVLW

ADDWF

MOVF

MOVWF

CPFSLT

return

MOVF

ADDLW

MULLW

MOVF

ANDLW

IORWF

MOVWF

Ox14

FSROL, f, 0

INDFO, w, 0

DATAaddle, 0

EEaddl, 0

PRptr, w, 0

Ox84

Ox40

DATAaddle, w, 0

B'00111111'

PRODL, w, 0

DATAaddle, 0

MOVFF PRODH, FSROH

MOVF EEaddl, w, 0

ANDLW B'00111111'

IORWF PRODL, w, 0

MOVWF FSROL, 0

;point to end write EEprom

;address

;get end write EEprom address

;compare start address with

;end addres

;if start address is not less

;than end, nothing to write

;get end wite EEPROM address

;preserve low 6 bits

;get high bits from PRODL

;move to DATAaddle

;data memory high address

;corresponding to current

;data page register

;preserve 6 low bits

;get high bits from PRODL

;now we have the start EEprom

;address in EEaddh/l, the end

;data

;low address in DATAaddle, the

;corresponding start data

;address

45



;is in FSRO. ready to let

;EEPROMwp write page

PIR1, SSPIF, 0

PIR2, BCLIF, 0

;subroutine for wrIting a page

;of 64 bytes to EEPROM

;write can't cross 64 byte

;page boundries

;clear possible transmit done

;flag

;clear possible bus collision

;flag

CALL EEPROMadd

dataloopwp:

CALL

MOVF

MOVWF

CALL

BTFSC

GOTO

MOVF

CPFSLT

GOTO

datadonewp:

CALL

BSF

I2Cidle

POSTINCO, w, 0

SSPBUF, 0

waitforSSPIF

SSPCON2, ACKSTAT, 0

EEPROMwp

FSROL, w, 0

DATAaddle, 0

dataloopwp

I2Cidle

SSPCON2, PEN, 0

;check if we are idle

;move data value to W,

;increment FSRO

;did the slave acknowledge?

;otherwise, start over

;current low address

;test if end address in less

;than current address

;if not, keep going

;generate stop condition

46

EEPROMwp:

BCF

BCF



RETURN

EEPROMadd: ;subroutine for specifying an address to be

;read or written on the EEPROM

PIR1, SSPIF, 0

PIR2, BCLIF, 0

;clear possible transmit done

;flag

;clear possible bus collision

;flag

CALL I2Cidle

BSF SSPCON2, RSEN, 0

CALL waitforstart

BTFSC PIR2, BCLIF, 0

GOTO EEPROMadd

CALL I2Cidle

MOVLW B'10100000'

BTFSC GCstatus, BB, 0

;generate start condition

;check for bus collision

;if detected, try again

;slave address specifying a

;write

;what is the high bit in the

;address??

BSF WREG, 3, 0

MOVWF SSPBUF, 0

CALL waitforSSPIF

BTFSC SSPCON2, ACKSTAT, 0

GOTO EEPROMadd

;if 1, set the corresponding

;bit in the slave address

;see 24LC515 datasheet for

;detailed addressing info

;load shift buffer with slave

;address

;did the slave acknowledge?

;otherwise, start over

CALL I2Cidle

47

BCF

BCF



MOVF

MOVWF

CALL

BTFSC

GOTO

CALL

MOVF

MOVWF

CALL

BTFSC

GOTO

RETURN

PIR1, SSPIF, 0

PIR2, BCLIF, 0

EEaddh, w, 0

SSPBUF, 0

waitforSSPIF

SSPCON2, ACKSTAT, 0

EEPROMadd

I2Cidle

EEaddl, w, 0

SSPBUF, 0

waitforSSPIF

SSPCON2, ACKSTAT, 0

EEPROMadd

;clear possible transmit done

;flag

;clear possible bus collision

;flag

CALL EEPROMadd

EEPROMrpstart:

CALL

BSF

CALL

BTFSC

GOTO

CALL

MOVLW

I2Cidle

SSPCON2, RSEN, 0

waitforstart

PIR2, BCLIF, 0

EEPROMrpstart

I2Cidle

B'10100001'

;generate start condition

;check for bus collision

;if detected, try again

;slave address specifying a

48

;load shift buffer with high

;EEPROM memory address

;did the slave acknowledge?

;otherwise, start over

;load shift buffer with high

;EEPROM memory address

;did the slave acknowledge?

;otherwise, start over

EEPROMrp:

BCF

BCF



BTFSC GCstatus, BB, 0

BSF WREG, 3, 0

MOVWF SSPBUF, 0

;read

;what is the high bit in the

;address??

;if 1, set the corresponding

;bit in the slave address

;see 24LC515 datasheet for

;detailed addressing info

;load shift buffer with slave

;address

CALL

BTFSC

GOTO

waitforSSPIF

SSPCON2, ACKSTAT, 0

EEPROMrp

;did the slave acknowledge?

;otherwise, start over

datalooprp:

CALL

BSF

CALL

MOVF

XORLW

ANDLW

I2Cidle

SSPCON2, RCEN, 0

waitforRCEN

FSROL, w, 0

OxFF

B'00111111'

;enable reading

;we are done when last 6 bits

;are is

BTFSC

GOTO

MOVF

MOVWF

BCF

BSF

GOTO

STATUS, Z, 0

datadonerp

SSPBUF, w, 0

POSTINCO, 0

SSPCON2, ACKDT, 0

SSPCON2, ACKEN, 0

;move read value to w

;move data value to file

;register, increment FSRO

;acknowledge

datalooprp

datadonerp:

49



SSPBUF, w, 0

INDFO, 0

;move read value to w

;move data value to file

;register

MOVF

MOVWF

BCF

CALL

BSF

RETURN

;generate stop condition

I2Cconfig:

0x19

SSPADD, 0

SSPSTAT, SMP, 0

SSPSTAT, CKE, 0

TRISC, SCL, 0

TRISC, SDA, 0

SSPCON1, SSPEN,

SSPCON1,

SSPCON1,

SSPCON1,

SSPCON1,

SSPM3,

SSPM2,

SSPM1,

SSPMO,

;400kHz operation

;enable slew rate control for

;high speed

;disable SMBus specific inputs

;clock line output

;data line output

;enable the serial port on

;SCL and SDA

0

0

0

0

0 ;12C master mode

B'00011111'

SSPCON2, w, 0

SSPSTAT, 2, 0

WREG, 5, 0

Ox00

SSPCON2, RCEN, 0

I2Cidle

SSPCON2, PEN, 0

MOVLW

MOVWF

BSF

BCF

BCF

BCF

BSF

BSF

BCF

BCF

BCF

return

I2Cidle:

MOVLW

ANDWF

BTFSC

BSF

ADDLW

50



BTFSS STATUS, Z, 0

GOTO I2Cidle

;check if we are idle

;wait until we are

return

waitforstart:

BTFSC PIR2, BCLIF, 0

GOTO buscoll

BTFSS PIR1, SSPIF, 0

GOTO waitforstart

BCF

;check for bus collision

;check if we are done with

;the start condition

PIR1, SSPIF, 0

return

waitforRCEN:

BTFSC SSPCON2, RCEN, 0

GOTO waitforRCEN

BCF PIR1, SSPIF, 0

return

waitforSSPIF:

BTFSS PIR1, SSPIF, 0

GOTO waitforSSPIF

BCF PIR1, SSPIF, 0

;wait for transmit/recieve to

;finish

;clear transmit done flag

return

buscoll:

BCF

BCF

PIR1, SSPIF, 0

PIR2, BCLIF, 0

return

7)1



END

52



Bibliography

[11 William Clinger and Jonathan Rees Editors. Revised(4) report on the algorithmic

language schene. ACM Lisp Pointers IV, July-September 1991.

[2] Linear Technology Corporation. LT1579 Data Sheet.

http://rocky.digikey.coni/WebLib/Linear%20Tech%2OWeb%2OData/LT1579.pdf, 1996.

[3] Microchip Technology Inc. PIC18FXX2 Data

Sheet. http://www.inicrochip.com/download/lit/pline/picinicro/families/18fix2/39564b.pdf,

2002.

[4] Texas Instruments. CD54/74HC85, CD54/74HCT85 Data Sheet.

http://rocky.digikey.com/WebLib/Texas%20Instruments/Web%20data/CD74HC(T)85.pdf,

2002.

[5] Texas Instruments. SN74CBT3245A Octal FET Bus Switch.

http://rocky.digikey.com/VebLib/Texas%2OInstruments/Web%20data/SN74CBT3245A.pdf,

2002.

[6] Dallas Semiconductor. DS1307 64x8 Serial Real Time Clock Data Sheet.

"http://rocky.digikey.coim/WebLib/Dallas/Dallas%2Web%2OData/DS1307.pdf.

53


