
I

A Distributed Data Acquisition Network for

Vibration Measurement

by

Jeremy Thomas Braun

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

@ Jeremy Thomas Braun, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis and to

grant others the right to do so.

Author.

uYepartment of Electrical Engineering and Computer Science
May 19, 2003

Certified by........
J. Kim Vandiver

Professor of Ocean Engineering
T 4esis Supervisor

Accepted by.........
Arthur C. Smith

Chairman, Department Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES

2

A Distributed Data Acquisition Network for Vibration

Measurement

by

Jeremy Thomas Braun

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2003, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering

Abstract

Current data acquisition technology for studying vortex-induced vibration (VIV) in
underwater pipes is insufficient for studying mode shape and high mode number vi-
brations. This work presents a prototype data acquisition system capable of acquiring
high mode number data suitable for mode shape analysis. A suitable VIV experimen-
tal setup is presented, and the instrumentation design hurdles are analyzed. Using
modern surface mount technology electronics, a prototype printed circuit board was
designed and built. The prototype node is capable of being networked with other
devices on an RS-485 serial bus to provide many simultaneous data capture points
along the length of a pipe. Bi-axial acceleration data are sampled using a sigma-delta
analog to digital converter, and stored in a local EEPROM by a PIC microcontroller.
A networked serial communications protocol is developed, and the software for both
the node microcontroller and a host computer that controls the sampling process is
described. Sampling parameters and firmware updates can be carried out remotely
over the serial bus, and captured data can be uploaded back to the host computer
at the surface. The prototype's analog and communications performance is analyzed
for robustness and scalability. Recommendations for future work to improve the
performance of the device are given.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering

3

4

Acknowledgments

Many people have helped me through my time at MIT. First and foremost, my parents

put me through my first four years of school and always have offered their support

freely. Kim Vandiver, John Kassakian, Jeffrey Lang, Paul Gray, Ron Roscoe and

Kent Lundberg all had an enormous impact on my academic life throughout college.

My roomates Rita and Emily deserve thanks for putting up with me while I wrote

my thesis, and for valuable proof reading comments. Sherri, for being a friend and

companion. Anne Hunter, for being available and clueful at all hours of the day. The

theater staff at Rinaldi Tile Company for teaching me to sew, build and relax. TE41

Xi chapter for many fond memories and a rich undergraduate life. Rachel, for always

having a shoulder free.

5

6

Contents

1 Introduction 13

2 Background and Motivation 15

2.1 Vortex Induced Vibration . 15

2.2 Limitations of Current VIV Data . 16

3 Proposed Experiment 19

3.1 Physical System Requirements . 20

3.2 Accelerometer and ADC . 22

3.3 Communications Bus . 23

3.4 D ata Storage . 23

3.5 C ontrol . 23

4 System Implementation 25

4.1 Accelerometer Node . 25

4.1.1 Accelerom eter . 26

4.1.2 Buffer and Filter . 26

4.1.3 Analog to Digital Converters and Coupling Network 28

4.1.4 M icrocontroller . 30

4.1.5 External Data EEPROM . 31

4.1.6 RS-485 Serial Bus Transceiver 31

4.2 Serial Communication Protocol . 31

4.2.1 Start of Packet and Baud-Detection 32

7

4.3 Node Firmware . 34

4.3.1 Bootloader . 34

4.3.2 User Firmware . 36

4.4 Host Computer Software . 39

4.5 Sampling Process Overview . 40

5 Results 45

5.1 Printed Circuit Board . 45

5.1.1 Layout Considerations . 46

5.2 Software Test . 47

6 Future Work 49

6.1 Data Transmission . 49

6.2 A liasing . 51

6.2.1 Filter Types . 51

6.2.2 Filter Implementation . 56

6.3 ADC Selection and Analog Front End 57

6.4 Board Size and Layout . 57

7 Conclusions 59

A Sallen-Key Circuit Analysis 61

B Prototype PCB CAD Drawings 63

C Bessel Filter Design 67

C.1 sallenkey.m . 67

C .2 besselvalues.m . 68

C.3 Implementation . 68

D PIC Bootloader Assembly Code 71

E PIC User Firmware Assembly Code 83

8

List of Figures

2-1 A cylinder shedding vortices

3-1 Cut-away view of a section of pipe

3-2 Accelerometer node in a coiled section of

4-1 System block diagram

4-2 Acceleration signal path detail

4-3 Low pass filter frequency response

4-4 Typical switched capacitor input

4-5 ADC input coupling network

4-6 Packet contents

4-7 Autobaud timing diagram

4-8 Experiment setup window

4-9 Flowchart of the sampling process

4-10 Sample cookie node selection dialog . . .

4-11 Default experiment configuration dialog .

5-1 Prototype printed circuit board

5-2 Accelerometer mounting

5-3 Captured test traces

6-1 Dual serial bus implementation

6-2

6-3

6-4

Sample 5 Vpp square wave captures demo

Sample anti-aliasing filter frequency respo

Filter transient responses to a 10 Hz squa

. 19

pipe 20

. 25

. 26

. 27

. 29

. 30

. 32

. 33

. 40

. 42

. 43

. 44

. 45

. 46

. 47

. 50

nstrating aliasing 52

nses 54

re w ave 55

9

. . . 15

A-i Generalized Sallen-Key op-amp circuit . .

Prototype schematic

Top copper layer

Ground copper layer

Vcc copper layer

Bottom copper layer

C-i Schematic: 12th order Bessel low-pass filter

C-2 Prototype 12th order Bessel low-pass filter

10

B-i

B-2

B-3

B-4

B-5

. 6 4

. 6 5

. 6 5

. 6 5

. 6 5

69

69

. . . 61

List of Tables

4.1 LTC2440 oversampling ratios and data output rates 29

4.2 Serial control characters . 32

4.3 Serial command definitions . 43

6.1 Summary of filter characteristics . 55

11

12

Chapter 1

Introduction

Modern offshore oil and gas production requires floating drilling and processing facil-

ities in water depths exceeding 5000 feet in the Gulf of Mexico. Exploration drilling

and oil and gas production require long cylindrical drilling risers and production tub-

ing and pipelines. These cylinders reach 55 inches in diameter for vertical drilling

risers and 28 inches for catenary production risers. They are most often made of

steel. In the case of catenary risers they may exceed 8000 feet in length. Ocean

currents can cause these large steel cylinders to experience vortex-induced vibration

(VIV). Vortices shed off the pipes as water flows past them. Lift and drag forces from

the vortices cause the pipes to vibrate, which may result in fatigue of the steel and

possible failure.

Low mode number vibration has been studied on short pipe lengths in controlled

laboratory environments. Experiments with longer pipes have been conducted in

limited numbers under uniform flow conditions. Real offshore risers experience non-

uniform, or sheared, currents in the ocean. These currents can excite multiple modes

and higher mode numbers in long sections of pipe. Few high quality data sets are

available that permit the evaluation of high mode number vibration and mode shape

identification. Data samples must be taken at many locations simultaneously along

the length of the pipe which is not feasible in a long pipe using current instrumentation

schemes.

The distributed sensor system presented in this thesis is intended to permit nea-

13

surement at a large number of locations for a reasonable cost. The system will enable

response amplitude and frequency analysis over the entire riser length. The design

solves many deficiencies of currently available instrumentation schemes.

14

Chapter 2

Background and Motivation

Some background information about VIV is necessary to understand some of the

requirements and challenges present in the design of this data acquisition system. The

limitations and shortcomings of current data collection methods are also discussed.

2.1 Vortex Induced Vibration

A cylindrical body positioned perpendicular to a fluid flow will shed vortices in its

wake. For a particular cylindrical body in a flow, the Reynolds number is defined as

Re =!2 where D is the diameter of the pipe, u is the flow velocity, and v is the

kinematic viscosity of the fluid. As the Reynolds number becomes larger than about

100, vortices shed from alternate sides of the cylinder, as shown in Figure 2-1.

Fi~ft

Increased Flow
Speed

Fluid Flow drag
Speed = u

Figure 2-1: A cylinder shedding vortices

Increased local flow speed where the vortex is formed leads to reduced pressure,

which applies a lift force transverse to the flow to the cylinder. When a vortex is shed

from the opposite side of the pipe a force is experienced in the opposite direction.

15

The frequency at which this shedding occurs is called the Strouhal frequency, and

can be found as
_ SeU
SD

The constant st is the Strouhal number (experimentally found to be ~ 0.17 for flexible

moving cylinders). Each vortex also has a drag component associated with it inline

with the flow direction. This force is applied with each vortex so it occurs at twice

the Strouhal frequency. The lift and drag forces are both proportional to the square

of the flow speed.

If f, is close to a natural frequency of the pipe the vortices will positively reinforce

its vibration. This is a behavior called lock-in, and typically exhibits vibrations with

the largest amplitude, and most strain.

When the Strouhal frequency and the pipe's natural frequencies do not coincide

the behavior of the pipe is hard to predict. Several different modes can be excited in

the pipe, and the amplitude fluctuates drastically. In some cases the higher frequency

inline vibrations, caused by the drag force of every vortex, can dominate the pipe's

response if they occur near a natural mode of the pipe. When the fluid flow is sheared

(varies with depth) multiple vibrational modes of the pipe can be excited at the same

time.

2.2 Limitations of Current VIV Data

The mode shape of long pipes experiencing high mode number VIV is of immediate

interest in this research area. There is a paucity of data that is of sufficient spatial

density to analyze this type of behavior. In order to look at mode shapes, the acceler-

ation of the vibrating pipe must be sampled at many locations simultaneously along

the length of the pipe. VIV acceleration data are not always collected in a manner

which allows easy mode-shape analysis.

There are two main sources for VIV data: smaller laboratory research experi-

ments and real data from offshore risers. Laboratory experiments often have many

accelerometers wired back to a central data collection computer, which does collect

16

data samples simultaneously along the length of the pipe. Since these experiments

are usually conducted in a laboratory setting, they are often on too small a scale to

excite higher mode numbers in the test pipes.

Data collection on offshore risers presents some other interesting challenges. It

is prohibitively expensive to wire a significant portion of the riser with accelerome-

ters each of which is connected directly back to the surface. Large portions of the

risers can be instrumented using small, autonomous battery-powered units which are

attached to the riser as it is deployed and collected weeks or months later. Unfortu-

nately, because each node's sampling clock is free-running, the samples are all taken

at different times with respect to one another. Thus the data are often useless for

mode-shape analysis.

Clearly another instrumentation solution is needed. This paper details the design

of a data acquisition system that would be suitable for acquiring the synchronous

data sets needed to study high mode number VIV.

Fairing research is another area where this system would be useful. The industry

standard way to prevent VIV is to add pivoting fairings to the risers, which prevent the

formation of vortices in ocean currents. Few data are available on how long sections

of pipe perform with different fairing coverage patterns. A suitably instrumented pipe

could be used to determine whether 25%, 50%, or 100% of the pipe's surface requires

fairings to effectively suppress VIV.

17

18

Chapter 3

Proposed Experiment

In order to study high-mode-number VIV, a very long (relative to its diameter) pipe

is required. The proposed experimental apparatus consists of a 400 foot length of

fiber reinforced composite tubing with a 1" inner diameter, and 1.38" outer diameter.

Inside the pipe will be a number of nodes, each equipped with a bi-axial accelerometer

with its sensitive axes perpendicular to the axis of the pipe. Figure 3-1 contains a

Instrumented Pipe Cross Section

Approximately 400 ft long
1" ID fiber reinforced epoxy

pipe filled with urethane Molded top end connector

Approximately 50 networked bi-axial
accelerometer nodes

Additional instrumentation nodes possible
(bi-axial inclinometer shown)

Figure 3-1: Cut-away view of a section of pipe

19

'41;

conceptual cut-away view of a section of the pipe. Each individual node will contain

analog-to-digital converters for each accelerometer axis to digitize the acceleration

data, and a storage element to hold that data. All of the nodes will be linked together

on a communications bus, so they can be controlled remotely from the surface, and

so that the experimental data can be transmitted back to the surface.

The number of required nodes is driven by a spatial Nyquist criterion. Mode

shapes are approximately sinusoidal. At least two measurement points per wavelength

are required. For the planned experiments the mode number may be as high as 30.

The number of wavelengths is n/2, so the required minimum number of sensors is

approximately 30. The number of required sensors increases in proportion to peak

flow velocity.

3.1 Physical System Requirements

The biggest design challenge is making the printed circuit board (PCB) small enough

to fit inside the pipe. In order to store and transport the pipe, it must be coiled

into a spool about eight - ten feet in diameter. Therefore, the board must be made

narrower to keep it from binding inside the coiled pipe and breaking. Figure 3-2

shows a diagram of a coiled section of pipe containing an accelerometer node. From

I i

Figure 3-2: Accelerometer node in a coiled section of pipe

the diagram, the required width of the board in inches can be found as

W = 60.52 - - 5.

20

A a six inch long board would require a width of not more than .91".

Another physical restriction on the design of the PCB is that components which

stand a significant distance off of the board can not be used, as they will not clear the

wall of the pipe - especially near the edges of the board. For these reasons, surface

mount technology (SMT) components should be used wherever possible as they save

50% or more of the space of normal through-hole components.

To insert the nodes into the final 400 foot long pipe, they will have to be pulled

along on a string or other strength member. It is a poor idea to use the communica-

tions or power wires for this as it is too easy to break a solder connection, and render

the entire system unusable. One way to prevent this is to run a long kevlar string

along the underside of all the boards. Each board is anchored to the string, leaving

some slack in the connecting wires to protect them from damage. When laying out

the circuit board, space must be left for this strength member to run so that it does

not rub against any components and damage them.

Once inside the pipe, the nodes have to be physically coupled to the pipe to

accurately measure its acceleration. If they are left free, the circuit boards will rattle

inside of the pipe, corrupting the quality of the data. The usual solution to this

problem is to fill the pipe with a potting compound upon final assembly. Potting

compounds in general are liquid mixes which can be poured into hollow spaces and

which harden later. Care must be taken to select a potting material that is not too

stiff, as using too hard a potting compound may cause the solder joints or PCB traces

to break when the pipe is vibrating. The potting compound must have enough give

to prevent it from ripping components from the board during operation and storage.

It must also be non-conductive to prevent it from causing electrical shorts on the

boards.

Filling the pipe with potting compound is an irreversible procedure. Once the

compound hardens, physical access to the nodes is no longer possible, short of cutting

the pipe open. Therefore, during the design process it is important to keep in mind

that the device should be electronically configurable from the surface through the

communications bus.

21

3.2 Accelerometer and ADC

Once the nodes are potted inside of the pipe, the orientation of the accelerometer's

sensitive axes needs to be determined relative to each other. The easiest way to do

this is to place the pipe flat on the ground and roll it over slowly while collecting data.

The earth's ig gravitational field will register on a DC-sensitive accelerometer and

the orientation of each accelerometer can be determined from these data. Accurate

DC sensitivity will heavily influence the design choices made in the analog signal path

in section 4.

The fundamental frequencies of interest range up to about 25 Hz. Ideally the third

harmonic would be preserved as much as possible as this is often a significant com-

ponent of vortex-induced vibration. The Nyquist Theorem requires that a sampling

rate of at least 150 Hz be used. Since building a perfect low-pass filter is impossible,

increasing the target sample rate to 250 Hz gives about an octave in which to design

an appropriate anti-aliasing filter.

As discussed in section 2.2, every ADC needs to sample at the same time in

order to study mode shapes of the pipe. Therefore, the converter chosen should be

externally triggerable. In addition, some method of distributing a triggering signal

to all of the ADCs in the pipe needs to be developed.

Other considerations include ADC resolution and accelerometer range. In order

to provide the needed dynamic range for slower speed (lower amplitude) experiments,

an ADC with at least 16 bits of resolution is desired. Recall from section 2.1 that

the forces exerted by the vortices are proportional to the square of the flow speed.

For the faster planned experiments the peak acceleration experienced will be on the

order of 20g - 30g. The chosen accelerometers must be able to measure signals of this

magnitude. A programmable gain element in the analog signal path could also be

useful in increasing the dynamic range for lower-amplitude signals.

22

3.3 Communications Bus

A serial communication bus is the ideal choice for data transfer in this system. The

number of wires that can fit inside the pipe is small, so the less wires, the better.

RS-485 is an asynchronous serial communications protocol which allows for speeds

up to 10 Mbps, and up to several hundred nodes to be connected together on a

shared bus up to 4000 feet in length. The data signal is transmitted along a pair

of differentially-driven wires, which provides high noise immunity and good data

retention over long distances. RS-485 transceivers are available in tiny packages

from several manufacturers, and inexpensive 100 Q unshielded twisted pair (UTP)

Ethernet cable is perfect for wiring the bus.

3.4 Data Storage

To extract useful information from an experiment's data set, at least 20 cycles of

steady-state VIV need to be monitored. With two 16-bit channels sampling a 1.0 Hz

signal at 250 Hz the storage required for each node is

32 bits . 2 5 0 samples . 20 cycles = 160 kbits
sample sec 1 Hz

A few EEPROM products are available in small SMT packages with this capacity,

and many FLASH products are available in much larger capacities, if desired. The

prototype uses 512 kbit 24LC515 EEPROM from Microchip. It provides plenty of

storage space and is available at reasonable costs from Digikey and other distributors.

3.5 Control

Each node needs to have a microcontroller or microprocessor to control the syn-

chronous sampling procedure, data storage and retrieval, serial communications, etc.

The chosen microcontroller should be small, easy to program, and should have periph-

eral units that facilitate these functions. Because physical access to the nodes will be

23

impossible once installed in the pipe, it is extremely useful to chose a microcontroller

with the ability to re-program itself remotely from the surface.

24

Chapter 4

System Implementation

The first part of this section discusses the actual node hardware components. The

second section details the serial communication protocol used. The third and fourth

sections discuss the software for the individual nodes, and the host computer, respec-

tively.

4.1 Accelerometer Node

A system block diagram is shown in Figure 4-1. A detail of the acceleration signal

RS485 Serial Bus

Transceiver

1zC Ser

EEPROMMicrocontroller

Control Control 'igntize

Signal 2r Sepr't
Accelerometer LPF ADC 2 Sepate

alg 0 Channels

Figure 4-1: System block diagram

path is shown in Figure 4-2. The acceleration signals from the accelerometers

pass through some buffering op-amps, a low pass filter, and a compensation network

into the analog to digital converters (ADCs). A microcontroller interfaces with the

25

ial

Analog Analog
AccelerometerT--+ Low-Pass -+Coupling

Filter Network

|ADC 1

Sigma-Delta Decimating Local Digital
Modulator Digital Filter Data Storage

Figure 4-2: Acceleration signal path detail

ADCs, triggering each sample and retrieving the last conversion performed. The

microcontroller stores the data in an external EEPROM and provides various services

over the RS-485 bus, described in sections 4.3.1 and 4.3.2.

4.1.1 Accelerometer

The accelerometer chosen for the prototype node is the ADXL250 from Analog De-

vices. The ADXL250 contains two micro-electromechanical (MEM) accelerometers,

oriented orthogonal to each other in the plane of the chip. It comes in a 14-lead

surface mount cerpac package, small enough to fit inside of the composite pipe. Both

channels are capable of producing a ±50g signal, at 38 mV/g.

Both channel outputs are differential signals referred to a reference voltage gen-

erated on-chip which is nominally one half the power supply voltage. The reference

voltages for the x and y channels are available at the x 0ff and yoff terminals of the

ADXL250 respectively. It also offers decent noise performance of about lmg/v/Hz,

and can operate from a single 5 V supply.

4.1.2 Buffer and Filter

The output resistance of the accelerometer reference channel is 30 kQ, and the output

amplifier of the device is capable of supplying up to 100jA. In order to drive the

ADCs, these signals must be buffered by a unity-gain op-amp. In addition, the

accelerometer signals need to be low-pass filtered to avoid aliasing problems. The

LTC2440s sample at 1.8 MHz. The low-pass filter consists of a second-order low-pass

26

filter implemented with a Sallen-Key circuit. See appendix A for a treatment of the

Sallen-Key architecture. The 3 dB point is located at 880 Hz. The 40 dB/decade

rolloff provided by the low pass filter provides 120 dB of attenuation at half the

sampling frequency (900 kHz). The phase shift of the filter is about -4' at 25 Hz,

the highest principle frequency of interest, and the magnitude is only attenuated by

7 mdB. The frequency response of the low-pass filter can be found in figure 4-3.

0
-10-

-20-

R -30 -

-40

0) 50

-60 --

-70-

-8@
-45-

D-90 --

-135

-180-
102 3 104 105 10

Frequency (rad/sec)

Figure 4-3: Low pass filter frequency response

Accurate DC performance is also a requirement of the sampling system. Most

op-amps have a small (several mV) DC offset voltage associated with them. At sen-

sitivities of 38 mV/g, several offset voltages added together will become a significant

source of error at low amplitudes of experienced acceleration. In order to preserve

performance with little DC offset error, expensive chopper-stabilized op-amps can

be used. The LTC2052 was selected for its low noise, rail-to-rail output capability,

and single 5 V supply operation. The op-amps periodically disconnect the op-amp

(internally) from the input and output pins, and measures the offset voltage. The

measured offset voltage is applied back to the inputs of the amplifier to correct the

error. In this manner, offset voltages of several microvolts per op-amp, rather than

27

several millivolts, can be obtained. To prevent the input voltage from exceeding

the input range of the LTC2052, a resistive divider is used to half the accelerometer

output with respect to the reference voltage.

4.1.3 Analog to Digital Converters and Coupling Network

Many analog-to-digital converters were considered for use. Most ADCs currently in

production are free-running devices. An internal or external clock is divided down

by the ADC and is used to determine the sampling rate. It is impractical to share a

high-frequency ADC clock between all the nodes in the pipe. The majority of suitable

externally triggerable ADCs are manufactured by Linear Technologies.

Both the LTC1864 and the LTC2440 were considered as potential ADC choices.

The LTC1864 is a 16-bit switched-capacitor successive approximation device, while

the LTC2440 is a 24-bit sigma-delta modulator ADC. Both also offer differential in-

puts, useful for the bipolar signals provided by the accelerometers. For the prototype

the LTC2440 was chosen because its sigma-delta architecture offers a unique feature

not provided by successive approximation ADCs.

Sigma-delta modulator ADCs work by purposefully oversampling the input signal

at many times the desired data output rate. The ratio between the frequency at which

the input is sampled and the frequency at which digital output codes are produced is

called the oversampling ratio (OSR) of the ADC. By sampling at a higher rate than

necessary, and using digital on-chip filtering to reduce the data rate by a factor equal

to the OSR, anti-aliasing filters can be made simpler for a particular application. In

addition, larger OSRs mean more samples are averaged together to produce an output

code. Larger averages mean higher resolutions are possible as the OSR increases. The

OSR of the LTC2440 is software configurable. The internal clock of the LTC2440

allows for the modes and oversampling ratios listed in Table 4.1. The 220 Hz mode

of the LTC2440 is close to the target 250 Hz sampling rate. At this data output rate,

the converter has an effective resolution of 16 bits. Slower experiments with lower

frequencies of interest also exhibit smaller pipe deflections, which lead to lower signal

levels. By increasing the OSR, the extra bits of resolution can be used to provide

28

Table 4.1: LTC2440 oversampling ratios and data output rates

OSR Output Rate
64 3.52 kHz
128 1.76 kHz
256 880 Hz
512 440 Hz
1024 220 Hz
2048 110 Hz
4096 55 Hz
8192 27.5 Hz
16384 13.75 Hz
32768 6.875 Hz

gains in powers of two in software by discarding the unused (zero) most-significant

bits. By providing a programmable gain in software, valuable circuit board space and

component cost are saved.

Both ADC converters considered have switched-capacitor analog inputs. A MOS-

FET acts as a sampling switch which connects and disconnects the input to a sam-

pling capacitor with a value between 1 pF and 30 pF. Figure 4-4 illustrates a typical

sampling switch
(MOSFET)

Input Pin To MoD

several
picofarads

Figure 4-4: Typical switched capacitor input

switched capacitor input. The current spikes caused by the sampling capacitor being

connected to the input can not be corrected by an op-amp alone. Glitches caused

by the sampling capacitor in the input voltage will cause erroneous conversions and

corrupt data from the ADC.

The ideal solution is to create a charge reservoir at the input by connecting a large

(typically 0.1 pF) capacitor to it, close to the chip. The current required to charge

the sampling capacitor will not change the voltage across the larger filter capacitor.

29

The input to the ADC will remain stable, and an accurate conversion will result.

Unfortunately, most op-amps, especially rail-to-rail output op-amps, cannot directly

drive large capacitive loads. Voltage gain in the output stage and the negative phase

shift caused by the filter capacitor cause the op-amp to oscillate. The solution is

the coupling network shown in Figure 4-5. The 100 Q resistor and 330 pF capacitor

100i
From Op-Amps -A bV To ADC

1O
m-330 pF

3.3 ptF

Figure 4-5: ADC input coupling network

attenuate frequencies above 5 MHz, keeping glitches caused by the sampling capacitor

from being fed back to the driving op-amps. The 3.3 pF capacitor provides the charge

reservoir necessary to stabilize the input voltage to the ADC. The 10 Q series resistor

keeps the op-amp from becoming unstable with such a large capacitive load.

4.1.4 Microcontroller

The microcontroller is the heart of the sampling node. It controls the data acquisition

process, the serial communications with the host computer, and the local storage of

acceleration data. Choosing a microcontroller is difficult as there are many different

manufacturers and models, each with different features.

The PIC16F876 was deemed the most appropriate choice for both its price and

features. The entire PIC16 model line offers a simple, easy to program 35-instruction

instruction set architecture. The PIC16F87X series of microcontrollers are able to

write to their own program memory, allowing for the remote update of the firmware.

This series also includes a built-in asynchronous serial port module, as well as an I2 C

serial interface, discussed in the sections below.

Microchip's microcontrollers are also relatively inexpensive, and are kept in stock

at several major component distributors. The 8051 architecture was considered, but

30

many 8051 clones do not allow for remote program updates, and most come in pack-

ages too large for practical use in this application. The author has also worked

extensively with similar microcontrollers in the PIC16 product line in the past.

4.1.5 External Data EEPROM

The external data EEPROM is used to store the samples taken during an experiment.

Ideally, the interface would be serial, not parallel, as wires and space on the circuit

board are scarce resources. An ideal interface choice is the I2 C serial bus. I2 C is

a two-wire, short-range serial bus standard invented by Philips for communication

between integrated circuits. Microchip makes I2C EEPROMs in a variety of sizes.

The 24LC515 is a 512 kilobit device that meets the storage requirements detailed in

section 3.4. It comes in an 8-pin wide small outline package, which fits easily on the

circuit board.

4.1.6 RS-485 Serial Bus Transceiver

The RS-485 transceiver is responsible for converting the 5 V logic levels used by the

PIC's on-board serial port to the differential RS-485 signal. It is also responsible for

tristating the bus drivers when in receive mode so that another transmitter can use

the bus. The normal input impedance of an RS-485 transceiver is 12 kQ, allowing

for a maximum of 32 nodes to be connected to the bus. By using a hi-impedance

RS-485 driver, that number can be more than doubled. A slew rate-limited device to

reduce electromagnetic interference from sharp transitions on the bus is also required.

The LTC1487 from Linear Technologies is one of many parts available that fit these

requirements, and is readily available from a number of electronics distributors.

4.2 Serial Communication Protocol

The RS-485 serial bus is a shared resource. Only one transceiver can actively drive

the bus wires at a time, otherwise data corruption results. A command/response

31

serial protocol is used to ensure that only one node or the host computer is trying to

transmit on the bus at any one time.

The protocol is packet-based and reserves three special control characters listed

in Table 4.2. One is for delimiting the start of packets, one is for delimiting the end

of packets, and one is used as an escape character.

Table 4.2: Serial control characters
Name Function Decimal Hexidecimal

STX Start of packet 15 OxF
ETX End of packet 3 0x03
DLE Escape character 16 OxlO

Figure 4-6 is a diagram of a data packet. The ADDRL, ADDRH, ADDRU, and DATA

sections are optional, however the rest of the bytes shown are necessary in a well-

formed packet.

The contents of a full packet are illustrated in Figure 4-6, and are discussed in

detail below.

Packet

STX STX NADDR CHKSUM ETX

.....................

CMANDI DLEN

Figure 4-6: Packet contents

4.2.1 Start of Packet and Baud-Detection

The first two bytes of any packet to be transmitted are two STX characters which mark

the start of a packet. Two STX characters are sent in order to allow the baud rate to

be auto-detected. When a node receives a byte at the beginning of its receive loop,

it counts the number of clock cycles between the first and last rising edges. Using

this count, it can automatically compute the baud rate being used on the serial bus

and configure the baud rate generator module appropriately. Figure 4-7 is a timing

diagram detailing this process.

32

r 0 0 0 0 1 1 1 1
RX Pin

counts cycles between these edges

Figure 4-7: Autobaud timing diagram

After the first STX character, a second is sent to signal the start of a packet.

A one-byte node address is also sent. Each hardware node stores a unique address

in its on-board non-volatile EEPROM storage, which is loaded during the power-

on sequence. If a packet's address matches the node's address after the packet is

received the node continues to process it. If the address does not match it waits

for the next packet. The COMMAND byte identifies a command or action to perform.

Available commands are listed in Table 4.3. The DLEN byte is used as a counter for

some of the commands, detailed in the section below. DLEN must be non-zero unless

a reset command is desired. The ADDRL, ADDRH and ADDRU bytes store addresses for

the data transfer commands. A variable length data field comes next. The length is

determined by DLEN and the particular COMMAND requested. The CHKSUM byte is the

two's complement of the 8-bit sum of all bytes from the address up to the last data

byte, inclusive. The ETX byte marks the end of the packet. If the ETX, STX, or DLE

bytes appear between the STX or ETX bytes that delineate a packet, they are preceded

by an extra DLE to escape them, to avoid a framing error.

Once a node correctly receives a packet addressed to it, it carries out the requested

command and responds with a similar packet to either return the requested data or to

indicate the reception of the command packet. After the response packet is sent, the

node frees the RS-485 bus and the host computer is free to transmit another packet.

33

4.3 Node Firmware

The firmware installed on every node is split into two different parts, the bootloader

and the user program. Both programs implement the serial communication protocol

described in Section 4.2, and a subset of the commands listed in Table 4.3. Hav-

ing separate program code spaces allows the sampling firmware on each node to be

updated remotely from the surface.

4.3.1 Bootloader

One reason the PIC16F876 microcontroller was chosen as the development platform

is its ability to rewrite its program memory. This allows self-updating code to be

written for the device. As discussed in section 3.5, remote updates are a necessity

for this system because the nodes will be embedded in potting compound in a pipe

section, and will be physically unavailable for manual repair and updates.

A small, well-tested piece of software that runs at startup called the bootloader

is responsible for providing command functionality to allow for remote updates. The

bootloader implements the first six commands in Table 4.3, as well as a special reset

command, described below. The assembly code for the bootloader can be found in

Appendix D.

Command: Reset

The Reset command, implemented in both the user firmware and the bootloader

causes the microcontroller to reset itself, and begin execution from the beginning of

the bootloader. To select this command, a packet with DLEN set to zero should be

sent to the node to be reset. For this reason, any valid packet which is not a reset

command should have a DLEN field not equal to zero.

Command: ReadVersion

The ReadVersion command returns two bytes in the data segment of the response

packet. This command is implemented in both the bootloader and the user firmware.

34

If the most significant bit is zero, the device is currently in bootloader mode. If it is

set, the node is in user mode. The remaining fifteen bits make up major and minor

version numbers which can be used to keep track of which software revision is running

on the node.

Command: WriteProgMem

WriteProgMem is a command used to write to the program memory on the micro-

controller to update the user program on the sampling node. It is given DLEN words

in little-endian order to write to the program memory address specified in the ADDR

bytes of the packet. Little-endian order means placing the least significant byte be-

fore the most significant bytes of a multi-byte number. This byte order is used on

Intel machines, on which the host computer software was developed. Writes to pro-

gram memory must be aligned on 4-word (8-byte) boundaries. This allows newer

PIC devices that only support writing the program memory in 4-word blocks to be

supported easily in the future.

Command: ReadProgMem

The ReadProgMem command is the companion to the WriteProgMem command. It

reads DLEN words from the microcontroller's program storage EEPROM, and returns

it in the response packet. This command's intended use is to verify that a user

program code update is successful.

Command: WriteEE

This command is used to write DLEN bytes of data from the packet to the data

EEPROM on the microcontroller. This is in a separate memory space from the

program memory. Writes to the internal EEPROM of the microcontroller can be

used to effect a change of address for a node. Care must be taken that the new

address does not exist on the serial bus already, otherwise potentially damaging bus

collisions could occur. This can also be used to write persistent configuration data to

each device, such as calibration data.

35

Command: ReadEE

This command reads DLEN bytes from the data EEPROM memory on board the

microcontroller. This can be used to verify that an address change was successful, or

to read other persistent configuration parameters that may be stored in the node's

EEPROM.

Command: DoRVReset

This command is implemented in both the bootloader and the user firmware. It

causes the node to restart at the user firmware entry point. This is useful for getting

address, or other configuration changes, to take effect. A simple response packet is

sent to let the host computer know the reset was successful.

When the user code starts, it becomes responsible for handling all serial commu-

nication. Commands that are implemented by the bootloader are no longer available,

unless a real reset is performed. The most significant bit in the version allows the

host computer to query a node to find out what state, bootloader or user, it is in.

Thus, an appropriate reset command can be carried out before attempting to use a

function unimplemented in the current mode.

4.3.2 User Firmware

The bootloader exists primarily to provide services that allow the host software to

update the user firmware and perform other maintenance tasks. The user code is

responsible for providing the ability to sample and store data, and to transmit it

back to the surface.

As section 4.3.1 mentioned, the user code implements the DoRVReset and Read-

Version commands, but none of the read/write commands that modify the microcon-

troller's internal memory stores. This is an attempt at program and data memory

security, to keep the user program from writing to the program or internal data mem-

ory, and corrupting it. The assembly code for the user firmware can be found in

Appendix E.

36

Command: SetSampleCookie

An experiment is defined as the collection of a single data set at a particular sample

rate, and the transmission of those data back to the surface. During an experiment,

every node on the bus must take a sample at the same time in order for accurate

studies of mode shapes to be performed. The sampling clock for the entire bus must

be derived from a single node. The node which generates the sampling clock is said

to hold the sampling cookie. Section 4.5 covers the sampling process in more detail.

The SetSampleCookie command is used to indicate to a node if it does or does

not have the sample cookie. If the first byte in the data section of the packet is

OxAA, then the node assumes it is to generate the sampling clock. Otherwise, the

node expects to be a slave node during sampling, and listens for the sample trigger

byte on the serial bus.

Command: Get SampleCookie

This command is used to ensure that only one node holds the sampling cookie before

an experiment begins. If more than one node has its cookie bit set at the time

of an experiment, bus contention will occur when sampling begins. This can cause

asynchronous sampling or missed samples, and can damage the RS-485 drivers on the

boards.

Command: Set/GetNumSamples

During an experiment each node maintains a count of how many samples it has taken.

Once it reaches the 24-bit number set by SetNumSamples, the node exits sampling

mode, and returns to the serial packet receive/response routine. GetNumSamples

is used to verify that every node has the correct number of samples set before an

experiment begins.

37

Command: Set/GetSampleRate

The node which holds the sampling cookie generates the sampling clock using the

onboard 16-bit TMR1 on the microcontroller. The value used to reset the timer, which

determines the sampling period, is set/read by SetSampleRate and GetSampleRate,

respectively.

Command: EnterSampleMode

Once an experiment is configured, each node is sent this command. Once a node

enters sampling mode, it must complete an experiment. After sending a response

packet to the EnterSampleMode command, the node waits to receive five STX bytes

in a row. In this way other packet-based transfers can occur on the bus without

causing a node to start sampling data (because only 2 STX bytes every appear in a

row in any packet transmission). Once every node has received and responded to the

the EnterSampleMode command, the host computer sends five STX bytes, and the

experiment begins. See section 4.5 for information on sampling process during an

experiment.

Command: Start/GetMemoryPage

In order to increase the utilization of the serial bus transactions when uploading exper-

iment data to the host computer the data retrieval functions have been pipelined. It

takes a significant amount of time to read data from the external EEPROM. Reading

128 bytes with a 384.6 kHz clock takes at least 2.6 ms, time enough to send another 33

bytes on the serial bus. If the page read size is larger, this wasted time grows as well.

Consequently, reading a memory page is split into two operations. StartMemoryPage

sets the length and address of the block to be read. The node responds immediately

with an acknowledge packet, and then reads the requested memory page into internal

memory, while the host computer is triggering page reads on other nodes.

After the node has acquired the page from the external EEPROM, the host com-

puter sends a GetMemoryPage request, and the node sends the page back from its

38

fast internal RAM, increasing the utilization of the serial bus during data upload.

Command: TakeSendSample

This is primarily a debugging command which causes the node to take one sample

from both accelerometer channels and send it back to the host computer. Note that

the ADCs used will output the result from the last conversion, not the one triggered

by reading a sample from it. To get a current result, two TakeSendSample commands

must be executed in a row. The value returned by the second command issued is the

result from the conversion triggered by the first command.

Command: Get/SetOSR

The LTC2440 ADCs used can have their over-sampling ratio programmed via the

serial bus. This command allows the host computer to select the particular OSR to

be used for the current experiment, or to determine the current OSR being used by

a particular node.

Command: GetEOC

The LTC2440 continuously samples the input over a conversion period. Since the

microcontroller reads data from the converter very close to the output rate, it is

possible that a conversion could still be in progress when the microcontroller tries

to read a sample. The end of conversion (EOC) output of the ADC is monitored

during an experiment. After an experiment is finished, the host computer can use

GetEOC to determine if this error occurred. If so, the timer reset value that controls

the sampling rate can be modified using the SetSampleRate command to increase the

sampling trigger period.

4.4 Host Computer Software

The host computer software is a program used to communicate with the sampling

nodes over the serial bus. It is written in C, and uses the Gimp Tool Kit (GTK)

39

widget set to provide an easy to use graphical user interface. The software allows

the user to update the user firmware on the sampling nodes on the bus. It also

allows the user to easily set-up and run experiments, through a simple point-and-

click interface. The sample rate and the number of samples is selected. The user

clicks 'OK', and the software sets up the serial bus to take data, has the nodes collect

the samples, and downloads the data to files in the host computer. It also stores data

about each experiment and can export the data as comma separated value or Matlab

files for import into popular signal processing programs. A planned enhancement

is an integrated experiment browser, that provides an Explorer-like interface to the

experiments stored on disk.

4.5 Sampling Process Overview

The first step in initiating an experiment is to set the sampling parameters for all of

the nodes. Figure 4-8 shows the window used to set these values. The first option

1:,lPipeHost-exe IW
File _Edit Actions

Nodle Vie-- Experiment SetUp/Run Past Experimens

Default Sample Rate (Hz): 220 Hz

Number of Samples 8800
Duration 0:40

Est. Download Time 020

Test Name Experiment 6251

Run Experiment

Figure 4-8: Experiment setup window

is the sampling rate. The LTC2440 ADC is capable of several different oversampling

ratios and data output rates. This dialog box allows the user to select the particular

OSR/data rate that is best for the particular experiment being run. The user must

also select the number of samples to be taken. For data output rates lower than

40

220 Hz, a software-configurable gain of powers of two could be added, because the

LTC2440's resolution exceeds 16 bits for these lower data rates. This is not currently

implemented in the prototype node software. The comments in the TakeSample

procedure in the user assembly code found in Appendix E describe how this feature

may be added to the prototype. The number of samples together with the sample

rate determines the length of the experiment. Once these two parameters are set,

'Run Experiment' can be selected.

Figure 4-9 is a flow chart that outlines the sampling process. Before an experi-

ment starts, the host computer sets the number of samples on each node and ensures

that only one node on the bus has the sampling cookie. By default the node with

the lowest address on the bus is given the sampling cookie. The user may select a

different node to hold the cookie from the serial bus view screen, shown in Figure

4-10. The timer reset value is computed and set on the node with the cookie. Every

node is sent the EnterSampleMode command, and five STX bytes are written to the

bus. At this point the sampling process is taken over by the node that holds the

sampling cookie.

During the sampling process, the cookie node waits for its timer to overflow,

indicating that a sample should be taken. It takes control of the serial bus, and sends

a DLE byte. Every node monitors the serial bus for a falling edge caused by the start

bit of the DLE. On this falling edge each node takes a sample and stores it into the

external data EEPROM. The DLE byte is removed from the serial receive buffer, the

number of samples counter is decremented, and every node continues to wait for the

next falling edge on the serial bus. When all the samples have been taken, the nodes

return to the packet reception routine. As mentioned in section 4.3.2, the first sample

taken from the ADCs is old, and should be discarded. Each node throws away the

first sample it takes, and does not store it in the data EEPROM.

Using the serial bus as the sampling trigger line offers several advantages. No extra

wires besides the power and the two RS-485 lines need to be run in the pipe. Because

the RS-485 hardware is designed to accurately carry digital signals long distances,

no extra hardware is needed to prevent erroneous samples from being taken. The

41

User sets
sampling parameters
on host computer

I All nodes on bus

'Run Experiment' are updated with

is selected sampling parameters,
one node given the

sampling cookie

Five STX bytes written
to bus by host computer, All nodes sent the
beginning the sampling EnterSampleMode command

process

Sample cookie node waits for
timer to expire, other nodes

wait for DLE byte on bus

Sample cookie node
sends a DLE byte to

trigger a sample

AE nodes take
a sample

First no Store Sample to
Sample? data EEPROM

yes

Last sample no
taken?

yes

Host computer downloadsExeintFisd
data from nodes to disk ExHietFnse

Figure 4-9: Flowchart of the sampling process

42

Table 4.3: Serial command definitions

Name
ReadVersion
ReadProgMem
WriteProgMem
ReadEE
WriteEE
DoRVReset
SetNumSamples
GetNumSamples
SetSampleRate
GetSampleRate
SetSampleCookie
GetSampleCookie
EnterSampleMode
StartMemoryPage
GetMemoryPage
TakeSendSample
GetOSR
SetOSR
GetEOC

Value
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Description

I Bootloader Version IFirmware Version

101

102 0
103 0
104 0

A

1.0

1.0
1.0
1.0
i n

222.173

222.173

222.173

222.173

Figure 4-10: Sample cookie node selection dialog

43

I I
get firmware version number
read a block of program memory
write a block of program memory
read a block of EEPROM data memory
write a block of EEPROM data memory
execute a soft reset to the user code
set the number of samples for an experiment
get the number of samples for an experiment
set the sample rate for an experiment
get the sample rate for an experiment
mark this node as the sample clock
check if this node is set as the sample clock
enter the sampling loop
read an external EEPROM block to RAM
send the last page fetched using StartMemoryPage
take a single sample and transmit it
get the LTC2440 oversampling ratio
set the LTC2440 oversampling ratio
see if an End of Conversion error occurred

host computer can also count the DLE bytes that appear on the bus to provide an

experiment progress bar for the user.

After all the samples have been collected, the host computer begins issuing Start-

MemoryPage and GetMemoryPage requests to nodes on the bus. Data are written in

comma separated value (CSV) format to files in the experiment directory, specified

in the entry box shown in Figure 4-8. Each node's data are placed in a separate file,

named after the node address. The resulting files can be imported into Matlab or

Excel for processing later. Data can be written as either raw digital output codes

(numbers ranging from -215 to 215 -1), or as float values representing voltages. The

selected output format is chosen in the default configuration dialog, shown in Figure

4-11.

Pip I pions

COM Port: COM2

Default Sample Rate (Hz): 220 Hz

Duration 1:12
Est. Download Time 1:10

Experiment Folder c:\experments

Convert Output To Floats

OK X Cancel

Figure 4-11: Default experiment configuration dialog

44

Chapter 5

Results

5.1 Printed Circuit Board

The Eagle automated printed circuit board (PCB) design CAD package was used to

design a circuit board that implements the system described in section 4. A complete

schematic of the board can be found in Figure B-1. Figure 5-1 is a photograph of a

completed prototype. The final circuit board is 0.95" wide and 31" long.

The PCB is composed of four layers. The top and bottom layers are both for

routing signals. The two inner layers form power and ground planes which help reduce

noise and aid routing signal traces in such a small space. Almost all components used

are surface mount technology in order to conserve space. Most of the components

were laid out on the top side of the board in order to leave a clear path for the kevlar

strength member to run along the bottom.

Figure 5-1: Prototype printed circuit board

45

5.1.1 Layout Considerations

Accelerometer Mount

As the sensitive axes of the accelerometer are in the plane of the chip, it must be

mounted in the plane of the cross section of the pipe in order to measure inline

and crossflow vibration. Figure 5-2 illustrates how the accelerometer is attached

Main Board, Bottom Side

Accelerometer Board

electrii
L contac

Assembled Side View

[Ii
solder
joints

electrical
contacts

Assembled Front View

11r-riI : - II
Figure 5-2: Accelerometer mounting

to the main circuit board. It is soldered onto it's own PCB which has a tab with

solder contacts on one side. This is inserted through a slot on the main board, and

the contacts are soldered to each other on the reverse side. Note the accelerometer

mounted on the left in Figure 5-1.

Power Planes

The 5 V power plane is split into two separate sections, one for the analog circuitry,

and one for the digital components. Each has its own voltage regulator and filter

capacitors. This is an attempt to keep the high-frequency digital noise present on

the microcontroller's 5 V supply from contaminating the analog supply. The ground

plane for both supplies is joined at only one point on the board, to keep large ground

46

currents on the digital side of the board from affecting the analog ground plane.

Figures B-3 and B-4 of the board's copper layers illustrates this separation.

5.2 Software Test

The host computer software was successfully compiled and installed on a Windows 98

computer. Communication tests were successful, and multiple prototype nodes were

successfully connected together on the RS-485 bus. An RS-232 to RS-485 converter

was used to connect the host computer to the RS-485 bus. The 485SD9TB from B&B

Electronics was selected for its low cost and ease of use. Example experiments were

run using a Hewlett-Packard signal generator as input. Figure 5-3 shows a few exam-

ple waveforms captured with the sampling hardware.

ADC Output(Volts)

N

0

0 0.1 0.2 0.3 0.4

4A

N
I
I.O

-40 0
0 0.1 0.2 0.3 0.4

4A

0 0.1 0.2
time (seconds)

(D

N
M
tO
C'j

0.3 0.4

4

2

0

-2

-4
0

4

2

0

-2

-4
0

4

2

0

-2

-4
0

The ability to remotely update

ADC Output(Volts)

0.1 0.2 0.3 0.

0.1 0.2 0.3 0.

0.1 0.2
time (seconds)

0.3 0.4

Figure 5-3: Captured test traces

the user program was also successfully implemented and tested on the prototype.

47

4

2

0

2 -2

-4

as

C,,

N
3:
LO

2

0

-2

.4

4

U)

Csj

2

0

-2

-4

LIXJX\JF\VVTYT\TV\J

00

Chapter 6

Future Work

Several problems exist in the final design of this prototype. Data transmission, alias-

ing and ADC selection, and board size/layout are all issues that should be addressed

in future versions of this data acquisition system.

6.1 Data Transmission

The RS-485 serial bus was chosen because it allows for a large number of devices to

be connected together on long wire lengths using only two signal wires and a common

ground connection. The specification allows for speeds up to 10 Mbps. However, the

maximum speed of most RS-232 serial ports on computers today is only 115 kbps or,

at most, 230 kbps.

For example, assume that a 60 second long experiment has just been run, sampling

at 250Hz. Each node has

samples bits
250 -60 sec -32 = 480000 bits

sec sample

to upload to the host computer. With 50 nodes on a 115 kbps connection, this can take

up to four and a half minutes, not including the serial protocol overhead. Waiting

five minutes or more for the data from a one minute experiment is unacceptable,

especially when experiment time on a boat is being billed.

49

One solution is to use a dedicated RS-485 card capable of higher bus speeds. The

largest disadvantage of this is that most RS-485 interface boards capable of speeds

greater than a normal serial port are PCI cards for desktop computers, not PCMCIA

cards for laptops. Taking a desktop computer, monitor, keyboard and mouse to run

experiments is much more inconvenient than using a laptop. One option to consider

in the final implementation of the system is splitting the serial bus into two separate

busses, with adjacent nodes on alternate busses. This is illustrated in Figure 6-1.

Two separate serial ports on a laptop can be used to transmit data from both busses

To Host Computer

- Node

Node

Node

Node

Node

Node

Figure 6-1: Dual serial bus implementation

in parallel, effectively halving the upload time. This has an added advantage. If one

bus breaks, the other might remain functional, and the entire pipe may not be lost.

A special node could sit at the surface, connected to both serial busses, to provide a

simultaneous sample trigger.

Other communication protocols could also be considered. Unshielded twisted pair

Ethernet offers speeds of 10 or 100 Mbps. The wire pairs in 10Base-T and 100Base-T

wiring are not shared. All connections are dedicated links between two transceivers.

Packets from the far end of the bus would have to be relayed up the bus from node

50

to node to reach the host computer. This chaining would also require that another

sample triggering method be used. 1OBase-2 Ethernet is a shared two-wire bus that

would probably serve best. Unfortunately, lOBase-2 uses 50 Q coaxial cable, which

is physically large and unwieldy. Such a cable could probably be used in place of the

kevlar strength member, but finding room for such a thick wire in the pipe, and the

taps to provide electrical connections to the nodes will be problematic.

6.2 Aliasing

Another reason the LTC2440 was chosen as the ADC is because the datasheet claims

that "Combined with a large oversampling ratio, the LTC2440 significantly simplifies

anti-aliasing filter requirements" [10]. Other sigma-delta modulator ADCs such as

the one included on Burr-Brown's PCM3501 claim that because the over-sampling

ratio is 64 times the sampling frequency, only a single-pole filter is required for 16-bit

resolution [3]. After construction of the prototype it was determined that the anti-

aliasing filter described in section 4.1.2 is radically insufficient for this application.

Figure 6-2 shows a few example captures that exhibit significant aliasing problems.

To prevent aliasing, a better low-pass filter must be inserted into the signal path

before the ADC. There are many different filter choices, and implementation options,

outlined below.

6.2.1 Filter Types

There are several different low-pass filter designs that offer distinct advantages and

disadvantages over each other. They are Butterworth, Chebychev, elliptical, and

Bessel filters.

Butterworth Filters

Butterworth filters offer the steepest rolloff of any filter whose magnitude response

is maximally flat in the pass-band. Additionally, the pole-pairs that make up the

the transfer function of a Butterworth filter have low Q, or quality factors. This

51

10 Hz Square Wave
5

0
0-

-5'
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

75 Hz Square Wave

0
>0

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

110 Hz Square Wave

0
>0-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

220 Hz Square Wave

0 -0.026--

0 .2
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

time (seconds)

Figure 6-2: Sample 5 Vpp square wave captures demonstrating aliasing

52

means that the poles lie a fair distance away from the real axis in the s-plane, and

the circuits used to build these filters are easily tunable. The phase response of a

Butterworth filter can cause significant peak overshoot to occur, however, which can

reduce its usefulness.

Chebychev and Elliptical

Chebychev filters allow steeper cutoff slopes than the Butterworth filter of a particular

order, at the expense of some ripple in the pass-band magnitude response. If more

ripple is tolerated, a steeper rolloff is attainable. Unfortunately, this also can translate

into worse overshoot and phase-distortion problems.

Like Chebychev filters, elliptical filters have some amount of ripple in the pass-

band. Elliptical filters also have ripple in the stop-band. They use a series of notch

filters to increase the cutoff slope dramatically. However, the transient response of

an elliptical filter is the worst of any of the filters discussed thus far.

In addition the Q values of Chebychev pole-pairs tend to be higher than Butter-

worth filters, and the Q values of an elliptical filter are higher still. High Q values

mean that the circuit implementations of these filters are highly sensitive to compo-

nent variations, and hence difficult to build. Most filters (especially elliptical) built

out of discrete components make use of trimmer capacitors or resistors to tune the

extremely high Q circuits. This is impractical in a design that must be as physically

small as possible.

Bessel Filters

Bessel filters exhibit the worst cutoff slope of any of the filters described thus far.

However, their phase response is almost linear with frequency. Since the time delay

of a sinusoid at a particular frequency is equal to the phase shift divided by the

frequency, a Bessel filter's transient response only looks like a time delay, with some

attenuation at higher frequencies. That is

AO -wAt -4At~

53

In addition, because the cutoff slope is so shallow, the Q's of the pole pairs tend to

be very low, which means the filter can be implemented using fixed 1% resistors and

capacitors.

Figure 6-3 shows example Butterworth,

frequency responses. Each filter exhibits 96

0

C.)

Ca

U)CO

Magnitude Response (db)

0

0 -

0 1

-4

-8

-12 U

0-

-40 -

-80 -

-120 -

0-

-40 -

-80 -

-120

0*

-40 -

-80 -

-120-
10 102 103

w (radians)

Chebychev, elliptical, and Bessel filter

dB of attenuation by 110 Hz, sufficient

Phase Response (deg)
0

-180-
-360-
-540-

-720

0
-180-
-360-
-540 -

-720 -

-900

180
0

-180-
-360 -

-540 -
-720-

.

-180
-360
-540
-720
-900

-1080
10 102 103

o (radians)

Figure 6-3: Sample anti-aliasing filter frequency responses

for 16-bit accurate conversions. Table 6.1 summarizes the characteristics of each

Figure 6-4 shows example transient responses for each of the filters to a 10 Hz

square wave. Notice the severe distortion that the first three filters produce.

Bessel filter's output, by comparison, is only smoothed and shifted in time.

system where the mode shape of the pipe is of particular interest, the Bessel

even with its poor cutoff slope, is the best choice for an anti-aliasing filter.

filter.

input

The

In a

filter,

54

Table 6.1: Summary of filter characteristics

Filter Type
Butterworth
Chebychev
Elliptical
Bessel

Poles -3 dB (Hz)
10
10
8
12

40.0
62.0
72.9
21.8

-96 dB (Hz)
121.0
125.0
116.7
124.7

Passband Ripple (dB)
n/a
.1
.1
n/a

2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.

2 1 1 1 1 1 1 I

0

-2 LL
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.

time (seconds)

Figure 6-4: Filter transient responses to a 10 Hz square wave

55

Z I f I I I I I

..

0
.. - - -- -- - --

-2 1 1 L 1-- -- I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.

1-
0

:3M

-C

2

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0. 5

5

5

5

5

6.2.2 Filter Implementation

There are several ways to implement electronic filters. A passive filter can be built

out of inductors, resistors, and capacitors. Another option is using an integrated

circuit that utilizes switched-capacitors to give a desired frequency response. Finally,

an active filter can be built using op-amps and discrete resistors and capacitors. Each

method has advantages and disadvantages.

A strictly passive filter suffers from many problems that make it unsuitable, es-

pecially for the higher-order filters required in this system. They require inductors,

which are large and difficult to manufacture. They are expensive, and exhibit gains

much less than unity.

Switched capacitor filters offer many advantages over passive elements. They offer

high-order transfer functions, up to 12 poles, in extremely small packages. Most filters

also have a tunable cutoff frequency which is controlled by an external clock running

at some multiple of the cutoff frequency. Their major disadvantage is that, like most

op amps, they exhibit DC offset voltages of several to tens of millivolts. As described

in section 3.2, DC performance is too valuable to this instrumentation system to

sacrifice.

Active filter implementations using chopper-stabilized op-amps can provide ex-

tremely low DC offset voltages and high-order transfer functions. The major disad-

vantage is that the number of components required is much larger for a given filter

order than in a switched-capacitor design. A popular circuit implementation for a

complex pole-pair is the Sallen-Key circuit. Appendix A describes the Sallen-Key

architecture and Appendix C is a Matlab script written to help design Sallen-Key

circuit implementations of Bessel filters. Figure C-1 shows a 12th order Bessel filter

designed using this Matlab script, and implemented on a protoboard.

In future versions of this data acquisition system, it would be beneficial to layout

such a filter for both accelerometer channels before the signal reaches the ADCs.

56

6.3 ADC Selection and Analog Front End

The primary reason for choosing the LTC2440 over the LTC1864 was that the sigma-

delta converter had "reduced anti-aliasing filter requirements." The apparent need for

an anti-aliasing filter in front of the device suggests that easier to operate LTC1864

should be used instead.

It would be worthwhile to add a programmable analog gain block after the low pass

filter, if space allows. This would allow slower experiments to increase their dynamic

range, reducing the quantization noise caused by the analog to digital conversion

process.

6.4 Board Size and Layout

The current prototype is approximately 0.95" by 3 i". It has been successfully fit

inside of a test section of the composite pipe. It is still a little too large for reasons

described in section 3.1.

If a low-pass filter such as the one described in Appendix C is added, layout issues

will become even more of a problem. It may be advantageous to find a microcontroller

that comes in a smaller package than the 28-SOIC used for the PIC16F876. Addi-

tionally, putting major components on both sides of the board could help alleviate

many space and width issues. An alternate means of attaching the kevlar strength

member must be found so that it does not interfere with any of the components, if

both sides of the board are heavily populated.

57

58

Chapter 7

Conclusions

The initial system design and testing was successful. There is still a great deal of

room for improvement, as detailed in section 6. The VIV research project which

motivated this thesis will work with a professional instrument contractor to design

of the data acquisition system for this experiment. This document, along with the

prototype device, provides a good starting point for further design work on similar

VIV data acquisition systems.

59

60

Appendix A

Sallen-Key Circuit Analysis

The generalized Sallen-Key circuit is shown in Figure A-1. Zi are impedance el-

V N 0-EZ1
-E2 F - VOUT

Figure A-1: Generalized Sallen-Key op-amp circuit

ements, with corresponding admittances Yi.

marked e and at the + input of the op-amp yiP

Writing node equations at the node

VOUT - e + VOUT

Z2 Z3

Collecting like terms gives

e = VOUT (1

e(Y+ Y2 +Y 4) - VINY +VOUT(Y 2 + Y 4)

61

VIN - e

Z1

VOUT - e

Z2

=0

-0
VOUT - e

Z 4

Substituting the first equation above into the second for e, and solving for "'OT gives

VOUT

VIN l+ Y3(Y+Y2+Y4)
Y1 Y2

VOUT 1
VIN - - + +Z3 Z3 Z3 Z4

If Z1 and Z 2 are replaced with resistors R1 and R 2 , and Z 3 and Z 4 are replaced

with capacitors C1 and C2, the transfer function becomes

VOUT 1
VIN 1 + (R1 + R 2)C 1s + R 1 R 2 C 1 C 2s 2

This is the transfer function of a second order low-pass filter. For small values of s the

transfer function has a value of 1. As s increases, the magnitude response decreases,

and the phase response moves toward -180'. Through careful choice of component

values, the poles of this circuit can be placed at any arbitrary locations. By chaining

together multiple Sallen-Key circuits, transfer functions of any arbitrary order can be

realized.

62

Appendix B

Prototype PCB CAD Drawings

63

-HE-- HF--

A F-
------A

I74

___ K

--- 9L
A 4"

Figure B-i: Prototype schematic

64

-

L a y e r 1

o ~ uw.E9M

o :j)P 7

Figure B-2: Top copper layer

L a yer 2

-

- 0
0

0
0

S -

- - -
0

0

0

I
0

I

0

.@

.0

*0~. ~0

0

.o

* 0

-- oo000

Figure B-3: Ground copper layer

L a y e r 3

0 -

00

0so 0

0

-- 40 *
0

. 0

. 0

0

.0
-0

a 0
.0

. . I

*00-00

Figure B-4: Vcc copper layer

L a y e r 4

o Q,.8 , c
--- ---- -

Q-4D-c§-O P. 00 7i1

Figure B-5: Bottom copper layer

65

I* -
e .. -

0

0
.0

0'

66

Appendix C

Bessel Filter Design

Computing the pole locations for a Bessel filter by hand is tedious. Matlab contains a

function called besself which will calculate the pole locations of an nth order Bessel

filter at a given cutoff frequency. The Matlab scripts below find the pole locations for

a specified filter and computes the required resistor values for a Sallen-Key implemen-

tation. The user can iteratively chose capacitor values until the computed resistor

values are acceptable.

C.1 sallenkey.m

function [r,Q} = sallenkey(cl,c2,p)
%takes in two capacitor values, and the coeffs for a order 2 poly,
%determins the r1, r2 values for a sallen-key implementation of
%unity gain

%note: p(l) rl*r2*cl*c2
%note: p(2) (rl+r2)*cl
Q = sqrt(p(1))/p(2);
prod = p(1)/cl/c2;
sqrt(prod); 10
sum = p(2)/cl;

%gives 2 values for R1
r = roots([1 -sum prod]);

67

C.2 besselvalues.m

% Uses sallenkey.m and the user-defined capacitor values below to
% determine resistor values for a Sallen-Key implementation of a
% bessel filter
format short g

[zeros,poles,gain] = besself(12,50*2*pi); %compute pole locations

%user-defined capacitor values
%pairs for each Sallen-Key circuit
caps = [.33e-6 .82e-6 ...

.68e-6 .82e-6 ... 10

.33e-6 .82e-6 ...

.33e-6 .82e-6 ...

.22e-6 .82e-6 ...

.068e-6 .82e-6 1;

for i=1:2:11,
r = abs(real(poles(i))); %real part of first pole pair
im = abs(imag(poles(i))); %imag part of first pole pair
%compute the characteristic equations for each circuit
polys((i+1)/2,:) = [1/(r^2+im^2) 2*r/(r^2+im^2) 1]; 20

end

for i=1:6,
% compute resistor and Q values for each pole pair

[r,q] = sallenkey(caps(i*2-1),caps(i*2),polys(i,:));
values(i,:) = [q r(1) r(2) caps(i*2-1) caps(i*2)];

end

C.3 Implementation

The example filter, whose capacitor values and cutoff frequency are given in the scripts

above, was implemented on a protoboard and tested as a proof-of-concept for later

work. The w, argument passed to besself was 27r * 50, resulting in a filter with a

-3 dB point at 21.8 Hz. Figure C-1 is a schematic of the resulting filter, and Figure

C-2 is a photograph of the protoboard implementation.

68

R1 R2 e CAICIS

PA4 31 N 2.2 k. 3 K0.P3 -PA4 I-, C5
JOPA4131N

GNO -033u

GND

R 7 R 8

4.Ck I. 2k C7 ,-- , -
OPA.I11tN

GND

R12 IC2B
+ 2

PA413 C11
OPA4131N

GND

Figure C-1: Schematic: 12th order Bessel low-pass filter

Figure C-2: Prototype 1 2th order Bessel low-pass filter

69

,IP

GN 15V

70

Appendix D

PIC Bootloader Assembly Code

;;; register definitions
CHKSUM equ 0x71 ; Checksum accumulator
COUNTER equ 0x72 ; General counter
ABTIME equ 0x73
MyAddr equ 0x77
RcvAddr equ 0x78

PCLATHTEMP equ x7D

STATUSTEMP equ x7E

W-TEMP equ Ox7F 10

DATABUFF equ 0x10 ; Start of receive buffer
;;; Data mapped in receive buffer
COMMAND equ Ox10
DATACOUNT equ 0x11
ADDRESS-L equ 0x12
ADDRESSH equ 0x13
ADDRESSU equ 0x14
PACKETDATA equ 0x15

20

ORG 0x000
VRese

bcf STATUS,RPO
bsf STATUS,RP1
clrf PCLATH
goto _Setup

ORG 0x0004

; Re-map Reset vector

71

_VIn
W-TEMP
STATUS,W
STATUS-TEMP
STATUS
PCLATH,W
PCLATH-TEMP
PCLATH
_RVInt

movwf
swapf
movwf

clrf
movf
movwf

clrf
goto

40

; Setup the appropriate registers.

Setup
OxFF
EEADR
STATUS,RPO
EECONI
EECON1,RD
STATUSRPO
EEDATA
MyAddr

; Point to last location

; Read the control code

_UartSetup:

bcf STATUSRPI
moviw b'10000000' ; Setup rx and tx, CREN disable
movwf RCSTA
bsf STATUS,RPO
bef TRISB,1 ; Setup T/R pin
bcf TRISC,6 ; Setup tx pin
moviw b'00100110'
movwf TXSTA
bsf STATUSJRP

Autobaud
p = The number of instructions between the first and last

rising edge of the RS232 control sequence OxOF. Other
possible control sequences are 0x01, OxO3, 0x07, 0xiF,
Ox3F, Ox7F.

SPBRG = (p / 32) - 1 BRGH =-1

72

; Re-map Interrupt vector

moviw

movwf
bsf
clrf
bsf
bef
movfw
movwf

50

60

70

30

STATUS,RP1
STATUS,RPO
b'00000011'
OPTION-REG
STATUS,RPO
RCSTA,CREN

-WaitForRise

clrf TMR{O ; Start counting

_WaitForRise

; Read the timerTMRO,W
ABTIME

STATUS,C
ABTIME,W
STATUS,C
OxFF

STATUS,RPO
SPBRG
STATUSRPO
RCSTA,CREN

; Rounding

; Enable receive

movf RCREG,W
movf RCREG,W

bsf STATUS,RPO
movlw b'11111111'
movwf OPTIONREG

;,; movfw MyAddr
call WrRS485

; Read and parse the data.
_StartOfLine

bcf STATUS,RPO
bcf STATUS,RP1
call -RdRS485
xorlw STX

; Look for a start of line
; <STX><STX>

73

bef
bsf
moviw
movwf
bcf
bef

call

80

call

movf
movwf

bcf
rrf
btfss
addlw

bsf
movwf
bcf
bsf

90

100

110

btfss STATUS,Z
goto
movIw
movwf
call
movwf
movwf

GetNextDat
call

_Autobaud
DATA-BUFF
FSR
-RdRS485
RcvAddr
CHKSUM

_RdRS485
xorlw STX
btfsc STATUS,Z
goto _StartOfLine

;was StartOfline
; Point to the buffer

; get address

; include in chksum calc

; Get the data
Check for a STX

130

; Yes, start over

NoSTX movf RXDATA,W
xorlw ETX
btfsc STATUS,Z
goto _CheckSum

NoETX movf RXDATA,W
xorlw DLE
btfss STATUS,Z
goto _NoDLE
call _RdRS485

NoDLE movf RXDATA,W
movwf INDF
addwf CHKSUM,F
incf FSR,F

Check for a ETX

Yes, examine checksum

; Check for a DLE
140

Check for a DLE
; Yes, Get the next byte

; Store the data
; Get sum

goto _GetNextDat
150

CheckSum
movf CHKSUM,F
btfss STATUS,Z
goto -Autobaud

;;; Pre-setup, common to all commands
movfw MyAddr
xorwf RcvAddr,W
btfss STATUS,Z
goto
bsf
movf

160

; set? address match
_Autobaud ; wait for next packet
STATUS,RP1
ADDRESSL,W ; Setup pointers for addresses

74

; Checksum test

120

movwf EEADR
movf ADDRESSH,W
movwf EEADRH
movlw PACKETDATA
movwf FSR
movf DATACOUNT,W ; setup COUNTER
movwf COUNTER
btfsc STATUS,Z
goto _VReset ; count is zero, error (Special Command)

CheckCommand
movf COMMAND,W
sublw d'5'
btfss STATUS,C
goto

movf
addwf

_Autobaud

COMMAND,W
PCL,F

; Perform calculated jump

goto _ReadVersion ; 0
goto _ReadProgMem ; 1
goto _WriteProgMem ; 2
goto _ReadEE ; 3
goto _WriteEE 4
goto _DoRVReset ; 5

.******** ****** * ** ** ** * * ******************* ***

DoRVReset:
clrf STATUS ;B2->BO
goto -RVRese

Commands

_ReadVersion
moviw
movwf
moviw
movwf

moviw
goto

200

BOOT-MINORNVERSION
DATABUFF + 2
BOOTMAJORVERSION
DATA-BUFF + 3

0x04
_WritePacket

75

170

; Test for a valid command

180

190

210

_ReadProgMem
RPM1 bsf STATUSRPO

bsf EECON1,EEPGD
bsf EECON1,RD
nop
nop
bef
movf
movwf
inef
movf
movwf

inef

incf
btfsc
incf

decfsz
goto

rIf
addiw

STATUS,RPO
EEDATA,W
INDF
FSR,F
EEDATH,W
INDF
FSR,F

EEADR,F
STATUS,Z
EEADRH,F

COUNTER,F
_RPM1

DATA-COUNT,W
0x05

220

230Not finished then repeat

; Setup packet length

goto -WritePacket

WriteProgMei
bsf
moviw
movwf
bcf
moviw
andwf

moviw
movwf

STATUS,RPO
b'10000100'
EECON1
STATUS,RPO
b'11111100'
EEADR,F

; Setup writes

240

; Force a boundry

Ox04
TEMP

_Lpl

movf
movwf
incf
movf
movwf
inef

INDF,W
EEDATA
FSR,F
INDF,W
EEDATH
FSR,F

76

250

call -StartWrite

incf
btfsc
inef

EEADR,F
STATUS,Z
EEADRH,F

260

decfsz TEMP,F
goto _Lpl

decfsz
goto

COUNTER,F
_WriteProgMem

goto -SendAcknowledge

_ReadEE
bsf
clrf

bsf
bcf
movf
movwf
incf

STATUS,RPO
EECONI

EECONiRD
STATUS,RPO
EEDATA,W
INDF
FSR,F

; Read the data

incf EEADR,F

COUNTER,F
_ReadEE

DATA-COUNT,W
0x05

; Adjust EEDATA pointer

; Not finished then repeat

; Setup packet length

goto _WritePacket

_WriteEE 290

INDF,W
EEDATA
FSR,F
-WriteWaitEEData

incf EEADR,F

COUNTER,F
_WriteEE

; Write data

; Adjust EEDATA pointer

; Not finished then repeat

77

; Not finished then repeat

; Send acknowledge

270

decfsz
goto

movf
addlw

280

movf
movwf
incf
call

decfsz
goto

300

goto _SendAcknowledge ; Send acknowledge

Send the data buffer back.

<STX><STX>[<DATA>.. .]<CHKSUM><ETX>

SendAcknowledge
moviw Ox01

310

; Send acknowledge

WritePacke
movwf

bsf
call
moviw
call
call
movfw
call
clrf

moviw
movwf

SendNext
movf
addwf
incf
call
decfsz
goto

comf
addlw
call

movlw
call
bcf

COUNTER

PORTB,1
_RS485Delay

STX
_WrRS485
_WrRS485
MyAddr
_WrRS485

CHKSUM

DATABUFF
FSR

INDF,W
CHKSUM,F
FSR,F
_WrData
COUNTER,F
-SendNext

CHKSUM,W
Ox01
_WrData

ETX
_WrRS485
PORTB,1

; Send start condition

320

; master address == 0
; Reset checksum

; Setup pointer to buffer area

; Send DATA

330

; Send checksum

; Send stop condition 340

goto _Autobaud

78

; Write a byte to the serial port.

WrData
movwf TXDATA

xorlw STX
btfsc STATUS,Z
goto _WrDLE

movf TXDATA,W
xorlw ETX
btfsc STATUS,Z
goto _WrDLE

movf TXDATA,W
xorlw DLE
btfss STATUS,Z
goto _WrNext

WrDLE
moviw
call

DLE
_WrRS485

WrNex
movf TXDATA,W

Save the data

; Check for a STX

; No, continue WrNext

; Check for a ETX

; No, continue WrNext

; Check for a DLE

; No, continue WrNext

; Yes, send DLE first

350

360

370

; Then send STX

-WrRS485:
bcf STATUS,RP1
movwf TXREG
bsf STATUS,RPO
btfss TXSTA,TRMT ; 1 if byte transmitted
goto $ - 1
bcf STATUS,RPO
return

RS485Delay:
;; 1 bit long delay, to allow for change-over
;; time between transmit/receive (43 cycles)
movlw OxD
movwf TEMP ;1

_RS485DelayLoop:
decfsz TEMP,F ; 1, 2

79

380

goto _RS485DelayLoop ; 2 cycles ;2+3*(x-1)+2+4 plenty 390

return

RdRS485:
btfsc RCSTA,OERR ; Reset on overrun
goto _VRese
btfss PIRRCIF ; Wait for RS485 Data
goto $ - 1 400

movf RCREG,W
movwf RXDATA
return

WaitForRise
btfsc PORTC,7 ; Wait for a falling edge
goto _WaitForRise 410

WtSR btfss PORTC,7 ; Wait for starting edge
goto -WtSR
return

Unlock and start the write or erase sequence.

StartWrite 420

bsf STATUS,RPO
movlw 0x55 ; Unlock
movwf EECON2
movlw OxAA
movwf EECON2
bsf EECON1,WR ; Start the write
nop
nop
bcf STATUS,RPO
return 430

80

WriteWaitEEData
bsf STATUS,RPO
movlw b'00000100'
movwf EECON1
call _StartWrite
bsf STATUS,RPO
btfsc EECON1,WR
goto
bcf

$ - 1
STATUSRPO

; Setup for EEData
440

; Write and wait

return

450

ORG 0x200
_RVReset

ORG 0x204
-RVIn

81

82

Appendix E

PIC User Firmware Assembly

Code

LIST P=pic16f876
include p16f876.inc

;OUT
#define RS485TXEN

; IN
#define P-SDIO
#define P-SDI
;OUT
#define P-SDOO
#define PSDO1

; OUTS
#define PSCLK
#define PADCS

PORTB,1

PORTB,3
PORTB,6

PORTB,7
PORTB,5

PORTB,2
PORTB,4

10

#define NUMCOMMANDS 18

#define MAJORVERSION OxDE
#define MINOR-VERSION OxAD 20

include bootloaderdef.h

eblock 0x20
;;; NOTE: These are in register bank 0

83

;;; DoubleNote: Register banks 2 and 3 are reserved for incoming/outgoing
packets

MemConfig
MemAddrH 30

MemAddrL
SampleO-L
SampleOH
SamplelL
SamplelH

OSR

NumSampL
NumSampH 40

NumSampU

SampRateL
SampRateH
FLAGS

MemLen
MemCounter
I2CState
MemPtr 50

MEMORY-BUFF
ende

CHKSUM equ 0x71 ; Checksum accumulator
COUNTER equ 0x72 ; General counter
MyAddr equ 0x77
RevAddr equ 0x78

;;; The following start in bank 2 60

DATABUFF equ 0x10 ; Start of receive buffer
;;;Data mapped in receive buffer
COMMAND equ 0x10
DATACOUNT equ 0x11
ADDRESSL equ 0x12
ADDRESSH equ 0x13
ADDRESSU equ 0x14
PACKET-DATA equ 0x15

PCLATHTEMP equ Ox7D 70

STATUSTEMP equ x7E

84

WTEMP equ Ox7F

COOKIE-BIT FLAGS,O
CALLWRITE-PACKET FLAGS,1
DISCARDSAMPLE FLAGS,2
EOC-ERROR FLAGS,3

include bootloaderstub.h
80

RVReset:
org
goto
org

int:
bsf
btfss
goto
bcf
btfss
goto

tmrlint:
bcf
bcf
movfw
movwf
movfw
movwf
bsf

int-return:
clrf
movfw
movwf
movfw
movwf
swapf
swapf
retfie

0x200 ; Remapped
start
0x204 ; Remapped

Reset Vector

Interrupt Vector

STATUS,RPO
PIE1,TMR1IE
int-return
STATUSRPO
PIR1,TMR1IF
int-return

T1CON,TMR1ON
PIR1,TMR1IF
SampRateH
TMR1H
SampRate-L
TMR1L
T1CON,TMR1ON

STATUS
PCLATH-TEMP
PCLATH
STATUSTEMP
STATUS
WTEMP,F
WTEMP,W

90

100
; enable timer

110

;;; Takes the next bit of the OSR, presents it on PSDO0/1,
;;; saves it in OSRSA VE
PRESENTOSR MACRO

85

#define
#define
#define
#define

PSDOO
P-SDO1
OSR,F
STATUS,C
PSDOO
STATUS,C
PSDO1

INCBUFPOINTER MACR
incf FSR,F
movlw 0x70
xorwf FSR,W
moviw
btfsc
movwf
ENDM

;;; No Wait N
I2CStartBit

bsf
bsf
bcf
btfsc
goto
btfsc
goto
bsf
btfsc
goto
bcf
ENDM

OxAG
STATUS,Z
FSR

eeded
MACRO XLab
STATUS,R
SSPCON2,SEN
STATUS,RPO
SSPCON,WCO
XLabel
PIR2,BCLIF
XLabel
STATUS,R
SSPCON2,SEN
$ - 7
STATUS,R

Check if reached end of bank
;bank 3 start

; end bank 2, move to bank 3

el ; MUST BE CALLED FROM BO or Bi

; do the start

140

;;; No Wait Needed - check 12C docs
I2CReStartBit MACRO XLabel

BSF STATUS,RPO
BSF SSPCON2,RSEN
bcf STATUS,RPO
btfsc SSPCON,WCOL
goto XLabel
btfsc PIR2,BCLIF
goto XLabel
bsf STATUS,R
btfsc SSPCON2,RSEN
goto $ - 7

86

bcf
bef
rlf
btfsc
bsf
btfsc
bsf
ENDM

120

L30

150

160

L

bcf
ENDM

STATUS,RPO

;;, No Wait Needed - check I2C docs
I2CStopBit MACRO XLabel

BSF STATUSRP0
BSF SSPCON2,PEN
bef STATUS,RP0
btfsc SSPCON,WCOL
goto XLabel
btfsc PIR2,BCLIF
goto XLabel
bsf STATUS,R
btfsc SSPCON2,PEN
goto $ - 7
BCF STATUSRPO
ENDM

I2CWriteW MACRO XLabel
MOVWF SSPBUF ; initiate write cycle
bef STATUS,RPO
btfsc SSPCON,WCOL
goto XLabel
btfsc PIR2,BCLIF
goto XLabel
bsf STATUS,RPO
btfsc SSPSTAT,RW
goto $ - 7
bef STATUS,RP0
ENDM

I2CNoAck
BSF
BSF
BSF
bcf
btfsc
goto
btfsc
goto
bsf
btfsc
goto
BCF

MACRO XLabel
STATUS,RPO
SSPCON2,ACKD
SSPCON2,ACKEN
STATUS,RPO
SSPCON,WCOL
XLabel
PIR2,BCLIF
XLabel
STATUS,R
SSPCON2,ACKEN
$ - 7
STATUS,RPO

170

180

190

200

87

ENDM

;;; No Wait
I2CAck

BSF
BCF
BSF
bcf
btfsc
goto
btfsc
goto
bsf
btfsc
goto
BCF
ENDM

Needed - check I2C docs
MACRO XLabel
STATUS,RPO
SSPCON2,ACKD
SSPCON2,ACKEN
STATUS,RPO
SSPCON,WCOL
XLabel
PIR2,BCLIF
XLabel
STATUS,R
SSPCON2,ACKEN
$ - 7
STATUS,RPO

;;; No Wait Needed - check I2C docs
I2CStartRead MACRO XLabel

BSF STATUS,RPO
BSF SSPCON2,RCEN
bcf STATUS,RPO
btfsc SSPCON,WCOL
goto XLabel
btfsc PIR2,BCLIF
goto XLabel
bsf STATUS,R
btfsc SSPCON2,RCEN
goto $ - 7
BCF STATUS,RPO
ENDM

I2CTest Ack MACRO XLabel
bsf STATUS,RPO
btfsc SSPCON2,ACKSTA
goto XLabel
bcf STATUS,RPO
ENDM

TransmitEnable MACRO
bsf RS485TXEN
call RS485Delay
ENDM

88

210

220

230

240

250

TransmitDisable MACRO
bsf STATUS,RPO
btfss TXSTA,TRMT ; 1 if byte transmitted
goto $ - 1
bcf STATUSRP0
bcf RS485TXEN
ENDM

start:
bsf STATUS,RP0
movlw b'01001001'
movwf TRISB ; set outputs
movlw d'12'
movwf SSPADD ; 384kHz 12C bus
clrf SSPSTAT ; slew rate control, I2C levels
clrf SSPCON2 ; reset all flags
bcf STATUS,RPO
movlw b'00101000' ; enable port, enable master clock bgen
movwf SSPCON
bcf PSCLK ; idle state
bsf PADCS ; idle state

;;; The following defaults produce a 220Hz sampling rate
movlw b'00101000'
movwf OSR ; OSR = 220Hz
clrf TiCON
movlw OxA7
movwf SampRateH
movlw 0x22
movwf SampRateL
clrf FLAGS
goto SendAcknowledge

recv-packet:
bcf
bcf
call
xorlw
btfss
goto
call
xorlw
btfss
goto
bsf
moviw

STATUS,RPO
STATUSRP1
RdRS485
STX
STATUS,Z
recv-packet
RdRS485
STX
STATUS,Z
recv-packet
STATUS,IRP
DATABUFF

;Look for a start of line
; <STX><STX>

; was StartOfline
;Look for a start of line
; <STX><STX>

was StartOfline
; INDF is bank 2/3 now
; Point to the buffer

89

260

270

280

290

movwf FSR
call RdRS485
movwf RcvAddr
movwf CHKSUM

GetNextDat
call RdRS485
xorlw STX
btfsc STATUS,Z
goto recv-packet

NoSTX movf RXDATA,W
xorlw ETX
btfsc STATUS,Z
goto CheckSum

NoETX movf RXDATA,W
xorlw DLE
btfss STATUS,Z
goto NoDLE
call RdRS485

NoDLE movf RXDATA,W
movwf INDF
addwf CHKSUM,F
INC-BUFPOINTER
goto GetNextDat

CheckSum
movf CHKSUM,F
btfss STATUS,Z
goto recv-packet

; Store the data
; Get sum
; trashes w

; Checksum test

get address

; include in chksum calc

; Get the data
Check for a STX

Yes, start over

Check for a ETX

Yes, examine checksum

Check for a DLE

Check for a DLE
Yes, Get the next byte

320

330

;;;Pre-setup, common to all commands
MyAddr
RcvAddr,W
STATUS,Z ; set? address match
recv-packet ; wait for next packet
STATUS,RP1
ADDRESS_LW ; Setup pointers for addresses
EEADR
ADDRESS-H,W
EEADRH
PACKET-DATA

90

movfw
xorwf
btfss
goto
bsf
movf
movwf
movf
movwf
moviw

340

300

310

movwf FSR
movf DATACOUNT,W ; setup COUNTER
movwf COUNTER
btfsc STATUS,Z
goto _VReset ; count is zero, error (Special Command)

;;; ALWAYS check that the jump table below doesn't cross a 256-byte page 350

CheckCommand
moviw HIGH $
movwf PCLATH ; Preserve memory moundary...
movf COMMAND,W ; Test for a valid command
sublw NUMCOMMANDS
btfss STATUS,C
goto recv-packet

movf COMMANDW ; Perform calculated jump 360

addwf PCL,F

goto GetVersion ; 0
;; To overwrite the bootloader, modify this file with new
;; code that contains ReadProgMem/WriteProgMem
;; load that user code, write the bootloader area
;; then re-load old usercode
;; hopefully that's pretty fail-safe
goto ReadProgMem ; 1
goto UnImplemented ; 1 370

goto WriteProgMem ; 2
goto UnImplemented ; 2
goto ReadEE ; 3
goto UnImplemented ; 3
goto WriteEE 4
goto UnImplemented ; 4
goto DoRVReset ; 5
goto RVReset ; 5

goto SetNumSamples ; 6 380

goto GetNumSamples ; 7
goto SetSampleRate ; 8
goto GetSampleRate ; 9
goto SetSampleCookie ; 10 OxA
goto GetSampleCookie ; 11 OxB
goto EnterSampleMode ; 12 OxC

91

goto StartMemoryPage ; 13 OxD
goto GetMemoryPage ; 14
goto TakeSendSample ; 15
goto GetOSR ; 16 390

goto SetOSR ; 17
goto GetEOC ; 18

;;; Commands
;; Set/Get Number Of Samples To Take (3 bytes) (sample - 4 bytes)
;; Set/Get Sample Rate (2 bytes in form of timer 1 reset value)
;; Set/Get Sample Cookie
;; Enter Sample Mode (5 STX bytes) 400

;; Start Read of Memory Page
;; Send Memory Page
;; Take a sample

;;; Commands
410

GetVersion
moviw MINORVERSION
movwf DATABUFF + 2
moviw MAJOR-VERSION
movwf DATA-BUFF + 3

moviw 0x04
goto WritePacket

SetNumSamples: 420

bcf STATUS,RP1

movfw INDF ; starts at PACKET-DATA
movwf NumSampL

inef FSR,F
movfw INDF
movwf NumSampH

incf FSR,F 430

movfw INDF

92

movwf NumSampU
goto SendAcknowledge

GetNumSamples:
bef STATUS,RP1

NumSampL
INDF starts at PACKET-DATA

440

inef FSR,F
NumSampH
INDF

FSR,F
NumSampU
INDF
Ox8
WritePacket

SetOSR:
bcf STATUSRP1
movfw INDF
movwf OSR
goto SendAcknowledge

GetOSR:
bef STATUS,RP1
movfw OSR
movwf INDF
movwf Ox6
goto WritePacket

GetOSR:
bcf
movlw
btfsc
movlw

starts at PACKET-DATA
460

STATUSRP1
Ox0
EOCERROR
OxAA

movwf INDF
movwf 0x6
goto WritePacket

SetSampleRate:
bcf STATUS,RP1

93

movfw
movwf

movfw
movwf

incf
movfw
movwf
movlw
goto

; starts at PACKET-DATA

450

470

movfw INDF
movwf SampRateL

incf FSR,F
movfw INDF
movwf SampRateH

; starts at PACKETDATA

480

goto SendAcknowledge

GetSampleRati
bcf

movfw
movwf

incf
movfw
movwf

movlw
goto

STATUS,RP1

SampRateL
INDF

FSR,F
SampRateH
INDF

Ox7
WritePacket

490

; starts at PACKET-DATA

500

SetSampleCookie:
bef STATUS,RP1
bef COOKIE-BIT
movlw OxAA
xorwf INDF,W
btfsc STATUS,Z
bsf COOKIEBIT
goto SendAcknowledge

510

GetSampleCookie:
bcf STATUS,RP1
movlw 0
btfsc COOKIEBIT
movlw Oxi
movwf INDF
movlw x6
goto WritePacket

; starts at PACKET-DATA

520

StartMemoryPage:

94

bef STATUS,RP1
;; get the address bytes and len out first
;; note: address is 16 bytes long. bit 16 is used as bit 2
;; (of 3) in the configuration word chip select
movlw DATACOUNT ; Point to DLEN field

FSR
INDF
MemLen

FSR,F
INDF
MemAddrL

; AddrL

movwf
movfw
movwf

incf
movfw
movwf

incf
movfw
movwf
;; send
bsf
call
;; Mak
movlw
movwf
bcf
rlf
rlf
rrf
rlf
rlf
rlf

now in carry

onfig=0001010a<15>

onfig=0l01 0a<15>0

onfig=01010a<15>00
onfig=1010a<15>000

InitI2CReadPage:
bcf STATUS,RPO
bef PIR2,BCLIF
bcf SSPCON,WCOL
movfw MemLen
movwf MemCounter
;; MemLen field will be length in bytes to read
;; addrh/addrl is address (addru unused)
;; places data starting at MEMORYBUFF in banks 0 and 1
bef STATUSJRP
movlw MEMORYBUFF ; beginning address of data
movwf FSR
;; StartCond
I2CStartBit Initl2CReadPage

95

530

FSR,F
INDF ; AddrH
MemAddrH
acknowledge so bus not held
CALLWRITEPACKET
SendAcknowledge

e the configureation word
b'00001010' ; see below
MemConfig
STATUS,C
MemAddrH,F ; addr<15>
MemConfig,F ; C=0,MemC
MemAddrH,F ; reset, C=0
MemConfig,F ; C=0,MemC
MemConfig,F ; C=,MemC
MemConfig,F ; C=0,MemC

540

550

560

I

;; Write MemConfig w/ack
movfw MemConfig
I2CWriteW InitI2CReadPage
I2CTestAck Initl2CReadPage
;; Write MemAddrH w/ack
movfw MemAddrH
I2CWriteW Initl2CReadPage
I2CTestAck Initl2CReadPage
;; Write MemAddrL w/ack
movfw MemAddrL
I2CWriteW InitI2CReadPage
I2CTestAck Initl2CReadPage
;; RepeatedStartCond
I2CReStartBit Initl2CReadPage
;; Read MemLen-1 bytes w/ack
bsf MemConfig,O
movfw MemConfig
I2CWriteW Initl2CReadPage
I2CTestAck Initl2CReadPage
goto MemReadLoopStar

MemReadLoop:
I2CAck InitI2CReadPage

MemReadLoopStart:
I2CStartRead Initl2CReadPage
movfw SSPBUF
movwf INDF
INCBUF-POINTER
decfsz MemCounter,F
goto MemReadLoop
;; Read 1 byte w/ noack
I2CNoAck InitI2CReadPage
I2CStopBit InitI2CReadPage
goto recv-packe

570

580

590

600

GetMemoryPage:
bef STATUS,RP1
TransmitEnable
movlw STX
call WrRS485
call WrRS485
movfw MyAddr
call WrRS485

610

movlw OxD ; Command

96

movwf CHKSUM
call WrData

movfw MemLen ; DataLen
movwf COUNTER
addwf CHKSUM,F
call WrData

movfw MemAddrL 620

addwf CHKSUM,F
call WrData

movfw MemAddrH
addwf CHKSUM,F
call WrData

movlw 0 ; AddrU
call WrData

630

bcf STATUS,IRP
movlw MEMORYBUFF
movwf FSR
goto SendNext

EnterSampleMode:
;; First send acknowledge
bef STATUS,RP1
bsf CALLWRITEPACKET
call SendAcknowledge 640

;; Wait for 5 STXs in a row

SampleModelnitVars:
clrf MemAddrH
clrf MemAddrL
movlw b'10100000'
movwf MemConfig
bsf DISCARDSAMPLE
bef EOCERROR

EnterSampleModeWaitSTXinit:
movlw Ox5 650

movwf COUNTER
EnterSampleModeWaitSTX:

call RdRS485
xorlw STX
btfss STATUS,Z ; is STX?
goto EnterSampleModeWaitSTXinit

97

decfsz COUNTER,F
goto EnterSampleModeWaitSTX
;; received 5 STXs in a row
btfss COOKIEBIT 660

goto SampleModeSlaveLoop
SampleModeMasterLoopInit:

TransmitEnable ; Enable Transmit
bcf T1CON,TMR1ON ; Reset the timer first time
bef PIR1,TMR1IF
movfw SampRateH
movwf TMR1H
movfw SampRateL
movwf TMR1L
bsf T1CONTMR1ON ; Start timer 670

SampleModeMasterLoop:
btfss PIR1,TMR1IF ; timer expire wait
goto SampleModeMasterLoop
bcf T1CON,TMR1ON ; reset timer
bcf PIR1,TMR1IF
movfw SampRateH
movwf TMR1H
movfw SampRateL
movwf TMR1L
bsf T1CON,TMR1ON 680

movlw DLE ; sample trigger byte
;; don't need to wait for TX to be free, as the timer
;; delay ensures this for reasonable serial speeds
call WrRS485
call TakeSample ; take the sample
btfsc DISCARD-SAMPLE
goto SampleModeMasterLoopClearDiscard
call StoreSample ; Store the sample
decf NumSampL,F ; dec low
comf NumSamp-L,W ; see if rollover 690

btfss STATUS,Z
goto SampleModeMasterLoop ; no rollover, continue
decf NumSampH,F ; dec high
comf NumSampH,W
btfss STATUS,Z
goto SampleModeMasterLoop ; no rollover, continue
decf NumSamp-U,F ; dec upper
comf NumSampU,W
btfss STATUS,Z
goto SampleModeMasterLoop ; no rollover, continue 700

TransmitDisable ; stop

98

goto reev-packet ; return
SampleModeMasterLoopClearDiscard:

bcf DISCARDSAMPLE
goto SampleModeMasterLoop

SampleModeSlaveLoop:
;; Wait for the falling edge of the start bit
bef STATUS,RPO
bcf STATUS,RP1
btfss PORTC,7 ; Wait for a positive value
goto $ - 1

WtSR btfsc PORTC,7 ; Wait for falling edge
goto $ - 1
;; sample byte began transmitting, continue
call TakeSample ; take the sample
btfsc DISCARDSAMPLE
goto SampleModeSlaveLoopClearDiscard
call StoreSample ; Store the sample
decf NumSampL,F ; dec low
comf NumSampL,W ; see if rollover
btfss STATUS,Z
goto SampleModeSlaveLoop ; no rollover, continue
decf NumSampH,F ; dec high
comf NumSampH,W
btfss STATUS,Z
goto SampleModeSlaveLoop ; no rollover, continue
decf NumSampU,F ; dec upper
comf NumSampU,W
btfss STATUS,Z
goto SampleModeSlaveLoop ; no rollover, continue
goto recv-packet ; return

SampleModeSlaveLoopClearDiscard:
bcf DISCARDSAMPLE
goto SampleModeSlaveLoop

UnImplemented:
movlw 0
movwf E
movlw 0
movwf E
movlw 0
movwf E
movlw 0
movwf E
movlw 0

xFF
ATABUFF

xC
ATABUFF + 1

x0
ATA-BUFF + 2

x0
ATA-BUFF + 3

x0

710

720

730

740

99

movwf DATABUFF + 4
movlw ' N '
movwf DATABUFF + 5
moviw '0' 750

movwf DATABUFF + 6
moviw I
movwf DATABUFF + 7
moviw ' I'
movwf DATABUFF + 8
moviw 'M'
movwf DATABUFF + 9
moviw ' P '
movwf DATABUFF + OxA
moviw Ox0 760

movwf DATABUFF + OxB
moviw Ox0C
goto WritePacket

TakeSendSample:
;; Takes a single sample, sends it back
bcf STATUS,RP1
call TakeSample
bsf STATUSJRP
movlw DATABUFF+2 770

;;; Little Endian Format
movwf FSR
movfw SampleOL
movwf INDF

incf FSR,F
movfw SampleOH
movwf INDF

incf FSR,F 780

movfw Samplel-L
movwf INDF

incf FSR,F
movfw SamplelH
movwf INDF

movlw 0x6
goto WritePacket

790

StoreSample:

100

bcf STATUS,RPO
bcf PIR2,BCLIF
bcf SSPCON,WCOL
bcf STATUSJRP
movlw MemConfig
movwf FSR
movlw 0x7
movwf COUNTER
I2CStartBit StoreSample 800

StoreSampleLoop:
movfw INDF
I2CWriteW StoreSample
I2CTestAck StoreSample
inef FSR,F
decfsz COUNTER,F
goto StoreSampleLoop
I2CStopBit StoreSample
movlw Ox4
addwf MemAddrL,F 810

btfsc STATUS,C
incf MemAddrH,F
return

TakeSample:
;; To implement a software gain,
;; shift out extra (more than 16 bits) here, save the sign bit
;; and discard some of the higher order bits (depending on an 820

;; extra variable set by an additional Set/Get command)
;; Then, store this sample. It is also probably worthwhile
;; to ensure that these bits are always the same as the sign
;; bit (to ensure that the dynamic range of the device is being
;; exceeded).
movIw Ox10
movwf COUNTER
bcf P-SCLK
bcf PADCS ; Start ADC output

830

;; save OSR for restore later
movf OSR,W
movwf TEMP

;; present OSR<4>, EOC appears
PRESENTOSR

101

PSDIO
EOCERROR
PSDI1
EOCERROR

three bits
PSCLK
PSCLK

840

btfsc
bsf
btfsc
bsf
;skip
bsf
bcf

;; present OSR <3>, '0' appears
PRESENTOSR
bsf PSCLK
; next bit is the sign bit, then data bits

samplebitloop:
bcf PSCLK ; clocks in next bit 850

;; present next OSR bi
PRESENT-OSR

bcf
btfsc
bsf
rIf
rIf

We don't care that this gets
repeated/trashed as the remaining
bits don't matter to the 2440

STATUS,C
PSDIO
STATUS,C
SampleOL,F
SampleOH,F

bsf PSCLK

bcf
btfsc
bsf
rIf
rf

; Put this here to make clock symmetrical

STATUS,C
PSDI1
STATUS,C
Sample1_L,F
SamplelH,F

870

decfsz COUNTER,F
goto samplebitloop
bsf PADCS
bcf PSCLK ; r
;; restore OSR
movf TEMP,W
movwf OSR
movlw b'10000000'
xorwf SampleOH,F
xorwf SamplelH,F
return

; start new conversion
eturn to idle state

880

; return value

102

; EOC, OSR<4> sampled

860

; Send the data buffer back.

; <STX><STX>[<DATA>...]<CHKSUM><ETX>

SendAcknowledge
moviw Ox01 ; Send acknowledge

890

WritePacket:
movwf COUNTER

TransmitEnable
movlw STX
call WrRS485
call WrRS485
movfw MyAddr
call WrRS485
clrf CHKSUM

; Send start condition

; master address == 0
; Reset checksum

moviw
movwf

DATABUFF
FSR

SendNext
movf INDF,W
addwf CHKSUM,F
call WrData
INC-BUFPOINTER
decfsz COUNTER,F
goto SendNext

comf CHKSUM,W
addlw 0x01
call WrData

; Setup pointer to buffer area

; Send DATA

; trashes w
910

; Send checksum

movlw ETX ; Send stop condition
call WrRS485
TransmitDisable
btfss CALLWRITE-PACKET ; we did a call, need to retur
goto recv-packet
bcf CALLWRITEPACKET
return ; return

103

920

900

; Write a byte to the serial port.

WrData
movwf TXDATA

xorlw STX
btfsc STATUS,Z
goto WrDLE

movf
xorlw
btfsc
goto

movf
xorlw
btfss
goto

WrDLE
moviw
call

TXDATA,W
ETX
STATUS,Z
WrDLE

TXDATA,W
DLE
STATUS,Z
WrNext

DLE
WrRS485

; Save the data

Check for a STX

No, continue WrNext

Check for a ETX

No, continue WrNext

Check for a DLE

No, continue WrNext

Yes, send DLE first

WrNex
movf TXDATA,W ; Then send STX

WrRS485:
bcf
btfss
goto
movwf
return

RS485Delay:

STATUSRPI
PIR1,TXIF
$ - 1
TXREG

; not needed, as we always transmit a byte
full

960

; 1 bit long delay, to allow for change-over
; time between transmit/receive (43 cycles)

movlw OxD
movwf TEMP ;1

RS485DelayLoop:
decfsz TEMP,F ; 1, 2
goto RS485DelayLoop ; 2 cycles ;2+3*(x-1)+2+4
return

970

104

930

940

950

RdRS485:
btfss RCSTA,OERR ; Reset on overrun
goto RdRS485Con
bcf RCSTA,CREN
bsf RCSTA,CREN

RdRS485Cont:
btfss PIR1,RCIF ; Wait for RS485 Data 980

goto $ - 1
movf RCREG,W
movwf RXDATA
return

org Ox21FF
;;; Node Address follows. Note! de, not db (EEPROM storage)

de Ox65
990

END

105

106

Bibliography

[1] Analog Devices, Norwood, MA. ADXL150/ADXL250 Datasheet, Rev. 0, 1998.

[2] Axelson, Jan. Serial Port Complete: Programming and Circuits for RS-232 and

RS-485 Links and Networks. Lakeview Research, Madison, WI, 2000.

[3] Burr-Brown Corporation, U.S.A. PCM3501 Datasheet, 1999.

[4] The GTK+ Development Team. GTK+ 2.2 API Reference, 2003.

[5] Lenk, John D. Simplified Design of Filter Circuits. Newnes, Boston, MA, 1999.

[6] Linear Technology Corporation, Milpitas, CA. LT1129-5 Datasheet, 1994.

[7] Linear Technology Corporation, Milpitas, CA. LTC1387 Datasheet, 1997.

[8] Linear Technology Corporation, Milpitas, CA. LTC2052 Datasheet, 2000.

[9] Linear Technology Corporation, Milpitas, CA.

2001.

LTC1864/LTC1865 Datasheet,

[10] Linear Technology Corporation, Milpitas, CA. LTC2440 Datasheet, 2002.

[11] Meiksin, Z. H. Complete Guide to Active Filter Design, OP AMPS, & Passive

Components. Prentice Hall, Englewood Cliffs, NJ, 1990.

[12] Microchip Technology, Chandler, AZ. PIC16F87X Datasheet, 2001.

[13] Microchip Technology, Chandler, AZ. AN851: A FLASH Bootloader for PIC16

and PIC18 Devices, 2002.

107

[14] Microchip Technology Inc., Chandler, AZ. 24L C515 Datasheet, 2002.

[15] Middlehurst, Jack. Practical Filter Design. Prentice Hall, New York, NY, 1993.

[16] Vandiver, J. Kim. Dimensionless Parameters Important to the Prediction of

Vortex-Induced Vibration of Long, Flexible Cylinders in Ocean Currents. Jour-

nal of Fluids and Structures, 7:423-455, 1993.

[17] Vandiver, J. Kim. Research Challenges in the Vortex-Induced Vibration Predic-

tion of Marine Risers, number OTC 8698 in Offshore Technology Conference,

Houston, TX, May 1998.

[18] Vandiver, J. Kim and Cornut, Stephane F. A. Offshore VIV Monitoring

at Schiehallion - Analysis of Riser VIV Response, number OMAE 005022 in

ETCE/OMAE 2000 Joint Converence, New Orleans, LA, February 2000.

[19] Vandiver, J. Kim and Mazel, Charles H. A Field Study of Vortex-Excited Vibra-

tions of Marine Cables, number OTC 2491 in Offshore Technology Conference,

Houston, May 1976.

108

