A Package Management System for Web Based
Applications
by
Edmund Chou

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science
and
Master of Engineering in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
‘May 2003
© Edmund Chou, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part. MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES

Certified by .f e NUTTTE
Harold Abelson

WULASS \J: oo o e e wHarndMiRaw rpaar‘}\;no; FGHOW

sorvisor
Accepted by G e

Chairman, Department Committee on Graduate Students

BARKER

A Package Management System for Web Based Applications
by
Edmund Chou

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2003, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science
and
Master of Engineering in Computer Science and Engineering

Abstract

As web sites are increasingly used to provide complex functionality through web pro-
gramming, this thesis offers a solution through which modular components known as
packages provide specific features. The entire system is managed through the organi-
zation and configuration of individual packages in a modular fashion and promoting
the reusability of code components. With the additional use of a package repository
and publicly consumable web services, package management systems immediately re-
ceive current information about latest releases and user comments and feedback from
a centralized location. Developers submit completed packages to the repository so
that interested site administrators can be notified of the new addition ready for con-
sumption. Those interested in a package also participate on a discussion forum with
a web service interface, allowing both developers and administrators to easily share
feedback and comments. The result is that developers can easily receive constructive
feedback from several users to aid in the continuous improvement in released versions
of the software. By forming a united community from what would normally be a
disjoint group of developers and administrators, participants in the package manage-
ment system have access to the information and knowledge of other peers allowing
for a more productive environment.

Thesis Supervisor: Harold Abelson
Title: Class Of 1922 Professor and MacVicar Teaching Fellow

Acknowledgments

I would like to acknowledge the guidance I received in writing this thesis from Prof.
Hal Abelson who offered his invaluable advice. Credit is also due to David Mitchell
and Eric Carlson for their visions in project management which helped me with my
feature design. Hal, Dave, and Eric all have had a significant role in every positive
experience associated with the iCampus Project.

I would also like to thank Al Essa, Andrew Grumet and Tracy Adams for their
constant support throughout the design and development of this project. They have
given me the rare opportunity to work on the starting phases of a project with the
potential to grow in to something very special, and for that I am grateful.

Finally on a more personal note, I have always believed that my friends and family
have a profound effect on the sculpting of my personality over the years of my life. To
my father, mother and sister who have always had faith in my abilities, to my friends

who taught me the things I could not learn just by attending class, I thank you all.

Contents

1 Introduction

2 Scenario

2.1 Site Administration oL o
2.1.1 Installation and Upgrade
2.1.2 Context Creation and Path Resolution
2.1.3 Contexts and Settings
214 Uninstall.
2.1.5 Dependency Relationships
2.1.6 Repository Community

22 WebSite User e
2.2.1 Portlets o
2.2.2 Path Resolution

2.3 Package Development oL
231 Contexts o . e e e e
2.3.2 Dependency Relationships
2.3.3 Multiple Database Support
2.3.4 Package Repository oo 0oL

3 Overview

3.1 Design Goals
3.1.1 Packages

3.1.2 Package Manager

15

17
17
18
19
22
24
24
26
26
27
27
27
28
28
28
28

3.1.3 Package Repository oo oL 34

3.2 Implementation 35
3.2.1 Microsoft NETo 35
3.2.2 Platform Independence 35
3.2.3 Database Support L. 36
3.2.4 Development Software 36

4 Package Management System 37

4.1 Packageso 37
4.1.1 Naming Conventions 38
4.1.2 File System Structure 38
4.1.3 1IPackage Interface 40
4.1.4 Package Configuration File 42
4.1.5 Versioningo e e 43

4.2 Package Manager oo o 43
4.2.1 DataModel 44
4.2.2 Class Structureo 44
4.2.3 Installation L oL 49
424 Upgrade e 49
4.2.5 Dependency Resolution. 51
426 Uninstall L o4
4.2.7 Contexts and Settings 54
4.2.8 Path Resolution 55
429 Portlets L o6
4.2.10 Web Based User Interface 58

5 Package Repository 59

5.1 Functionality 59
5.1.1 Community Site 60
5.1.2 Web Services e 60

5.2 Web Services API 61

5.3 Package Management Integration
5.3.1 Feedback and Community
5.3.2 Obtaining Packages
5.3.3 Dependency Resolution 0L

6 Comparison with Related Work
6.1 Operating Systems e e
6.1.1 Debian Relationships
6.2 EMACS e
6.3 OpenACS Package Manager (APM)

7 Future Work
7.1 Web Services
7.1.1 Caching Repository Data
7.1.2 Multiple Repositories00
7.1.3 Additional Functionality
7.2 Package Manager
7.2.1 Locking Packages
7.2.2 Platform Independence

8 Conclusions

8.1 Obtainingthe Code,

A Package Configuration File

65
65
66
67
68

71
71
71
73
74
74
74
75

77
78

79

10

List of Figures

2-1
2-2
2-3

2-4
2-5
2-6

4-10
4-11
4-12
4-13

Package Manager Web Interface Default Page 18
Package Manager View of Repository Packages through Web Services 20
Package Manager View of Repository Package Upgrades through Web

SErvices e e e 21

Package Manager Web Interface Default Page after Install and Upgrade 21

Package Manager Web Interface for Context Setting Configuration . . 23
Workflow for Required Dependency Resolution during Installation . . 25
Standard Package Directory Structure 39
IPackage Interface Definition 40
Sample Namespace Property in IPackage 40
Sample Request Resolution in TPackage 42
Package Management System Data Model 45
PackageManager Class Diagram 46
PackageProfile Class Dependency Diagram 47
IReport Interface Definition 48
Package Manager Installation Procedure o0
InstallPlan Class Diagram 51
Dependency Resolution for Multiple Package Installations. 52
Sample Code-Behind Page Demonstrating Contexts 57
Work Flow of the User Interface of the Package Manager 58
Package Repository Web Services 61

11

12

List of Tables

2.1 SiteMap e
2.2 Configurable Package Context Settings

13

14

Chapter 1

Introduction

The growth of the Internet has resulted in the birth of services and functionality
offered by several web sites with an overlapping set of features. Despite multiple web
sites requiring the use of similar systems such as message boards or calendars, new
code is often written by web software programmers to replicate a feature previously
developed elsewhere. Needless to say, the time and resources of talented programmers
could be saved if web sites were able to collaboratively share a set of functionality by
reusing completed code that has been thoroughly tested by a community of users.
This situation would greatly benefit from encapsulating individual features as
packages and using a central package manager to fully configure and maintain a web
site. Having a notion of packages providing common features to a web site would allow
administrators to quickly and easily modify the site structure with minimal knowledge
of the underlying code. With the added flexibility from the package management
system, administrators can effortlessly customize aspects of the behavior and layout
of their sites, and the modular design limits the effect of modifications to individual
components of the site rather than affecting a monolithic structure in its entirety.
Furthermore, common packages could be distributed and incorporated in to other
web sites with minimal effort as well. The model of wide distribution and usage of
single components allows developers to create a single package serving functionality to
be duplicated at multiple locations. Employing the principles of code reusability and

modularity, package developers can collaboratively participate in creating a network

15

of features in an efficient and effective manner.

The goal of this thesis is the development of a package system capable of effectively
reusing and managing software in web based applications. While a significant portion
of this thesis is focused on the process of package development and the design of the
local management system, an innovative use of packages at the repository level and
web services makes this system unique with respect to existing package management
systems. The introduction of web services to a package system integrates all the
aspects of the system and forms a community focused on the development, usage
and discussion of packages leading to code being widely used, thoroughly tested and
reviewed, and further improvement. The entire system described will be used in
conjunction with the iLearn system under the iCampus [9] research alliance between
MIT and Microsoft Research. .

Chapter 2 introduces the benefits of the package management system and the
scenario for users of the system. Chapter 3 gives an overview of the problem by
describing the design goals and implementation for the iLearn package management
system. Chapters 4 and 5 provide greater detail about the features and designs of the
package management system and package repository respectively. Chapter 6 com-
pares the resulting system with the designs of related work and Chapter 7 describes
future steps and possible improvements, particularly with the services supported by

the package repository. Finally, Chapter 8 will conclude this thesis.

16

Chapter 2

Scenario

The encapsulation of web site functionality in to an individual package allows the
application of code reusability to benefit web site administrators and developers. This
chapter focuses on the specific usage scenarios of the package management system,
demonstrating the power and importance of such a system for site administrators and
developers, as well as how the repository based on web services can further enhance

the end user experience.

2.1 Site Administration

Site administrators face the problem of being unable to effectively specify the desired
behavior and functionality associated with their managed sites. They want a system
that allows them the ability to configure the available features of a web site, with out
modifying the associated code or causing massive disruptions to their site. By tak-
ing advantage of previously developed web site components in the form of packages,
site administrators can solve this problem by dynamically adding, modifying or re-
moving functionality through a simple web based user interface. Additional features
of the package management system such as path resolution, contextualization and
configuration settings allow site administrators the flexibility they need.

Using the web based user interface, a site administrator starts at a default page

displaying a summarized list of installed packages. Consider an administrator who is

17

Default Page

Packages currently installed on the system:

Calendar, version 1.0 (Released: 02-10-03)

The Calendar package is used to manage appointments which
occur on time periods specifiable by date and/or time.

Version Notes: (None)

~ Photo Album, version 2.2.0 (Released: 02-18-03)

Photo Album organizes digital images to allow easy browsing.

Version Notes: Added support for thumb nails and folders;
Allow customization for displayed images per page.

~ Discussion mms,vefé;on 1.0-BETA (Released: 02—03—&3)

Discussion Forums allows users to read and post messages to
a community bulletin board.

Version Notes: Greater stability over ALPHA release.

Figure 2-1: Package Manager Web Interface Default Page

managing a simple community site focused on sharing and discussing digital photog-
raphy images. The administrator has a site with packages for calendars, discussion
forums, and photo albums as illustrated in the sample default page in Figure 2-1.
The purpose of the default page is to summarize the current state of the system, and

the features available at the site.

2.1.1 Installation and Upgrade

To extend the available functionality available at the photography community site,
the site administrator can either install a new package or upgrade an existing pack-
age. The simplest case for these procedures is where the administrator uploads a
new package file to the system for installation or upgrade. However, this use case

requires the administrator to have knowledge of the new packages and furthermore

18

had previously downloaded the relevant package files. This is a drawback to several
package management systems, but the introduction of web services at the package
repository will create a more usable environment.

The repository provides the additional benefit of allowing administrators to use
web service queries in order to obtain lists of available packages for installation or
upgrade. Figure 2-2 shows a sample full repository listing of package summaries, and
Figure 2-3 shows a listing of summaries indicating which packages may be upgraded.
From these pages, the site administrator can select a package then have the package
manager retrieve the file from the repository and appropriately start an installation
or upgrade process. Although the available functionality on the package upgrade page
is a subset of that on the full repository package listing, the upgrade page provides a
more concise view of packages likely to interest the site administrator.

Suppose the site administrator follows the appropriate links to install or upgrade
additional functionality on the site. After installing a Community Directory package
and upgrading the Discussion Forums package to the release version, the default page
will display the new state as illustrated in Figure 2-4. A new entry for the installed
Community Directory package is now included, and the new version of the Discussion

Forums package is reflected in the list of packages.

2.1.2 Context Creation and Path Resolution

Although several packages are present on the site, contexts must be created and
mounted for the packages to be publicly viewable. A context or instance of a pack-
age is an isolated usage of the package’s functionality independent of the data and
configuration settings associated with other contexts. By mounting a context at a
named URL, visitors to the site will be able to view package contexts derived from
intelligible names through the path resolution mechanism.

Table 2.1 shows a sample site map that would associate URLs with the specific
package contexts. Mappings can be created automatically during various events or
manually by site administrators. For example, in the site map given in Table 2.1,

the user registration process follows the default behavior of creating a single context

19

e

Action: View det

This package is out of date.
Action: View details of current installation

i

This package is out of date.
Action; View details of current installation

This package is out of date.
Action: View details of current installation

Figure 2-2: Package Manager View of Repository Packages through Web Services

20

Reposi_tcry Package Upgrades

The following packages can be upgraded:

Discussion Forums, version 1.0 (Released: 02-20-03)

Action; Upgrade to this version

Figure 2-3: Package Manager View of Repository Package Upgrades through Web
Services

Packages currently installed on the system:

~ Calendar, version 1.0 (Released: 02-10-03)

The Calendar package is used to manage appoeintments which
occur on time periods specifiable by date and/or time.

Version Notes: (None)

~ Photo Album, version 2.2.0 (Rele

Photo Album organizes digital images to allow easy browsing.

Version Notes: Added support for thumb nails and folders;
Allow customization for displayed images per page.

~ Discussion Forul) | 0-0%
Discussion Forums allows users to read and post messages to
a community bulletin board.

Version Notes: Fixed various bugs from ALPHA and BETA.

- Community Directory, version 1.0 (Released: 02-15-03)

The Community Directory package is used to find other users
by searching or browsing listings.

Version Notes: (None)

Figure 2-4: Package Manager Web Interface Default Page after Install and Upgrade

21

H Context ID I Package Name

| Context Name

[URL

100 Discussion Forums Photo Discussions /photo-forum

101 Discussion Forums Equipment Comparison | /equipment-forum
102 Discussion Forums Miscellaneous /misc-forum

103 Photo Album Alice’s Photo Album /alice/photos

104 Photo Album Bob’s Pictures /bob/photos

200 Calendar Alice’s Calendar /alice/calendar
201 Calendar Bob’s Calendar /bob/calendar
300 Community Directory | Directory Jusers

Table 2.1: Site Map

for each of the Photo Album and Calendar packages and mounting them under a
URL derived from the name of the user. However, a web user with the required
authorization, presumably the site administrator, could edit the mapping to use a
different URL, or create an additional mapping used as an alias to a context. Finally,

a context can be unmapped and removed if, for example, a user decides that he does

not require usage of the Calendar package.

2.1.3 Contexts and Settings

Package contexts can be used to customize the feature usage granularity on the site
by specifying the number and location of mounted packages. An additional capability
in the contextualization of packages is the customized settings unique to each context,
as shown in the sample settings in Table 2.2. The site administrator has modification
access to the settings associated with each context, allowing for customized behavior
in the various parts of the site.

For example, of the three Discussion Forum package contexts, the context for
photography discussions has been configured to be moderated since the administrator
wants to protect against the possibility of users being overly harsh and critical of other
works. Other customizations are simply based on user preferences, as shown in the

separate contexts for user photo albums. While Alice prefers the use of thumbnails

22

”7Context ID | Context Name

[Setting Name

| Is Global? | Setting Value

100 Photo Discussions Is Moderated? False True

101 Equipment Comparison | Is Moderated? False False

102 Miscellaneous Is Moderated? False False

103 Alice’s Photo Album Show Thumbnails | False True

103 Alice’s Photo Album Images Per Page | False 10

103 Alice’s Photo Album Local Directory True photo-uploads
104 Bob’s Pictures Show Thumbnails | False False

104 Bob’s Pictures Images Per Page | False 100

104 Bob’s Pictures Local Directory True photo-uploads

Table 2.2: Configurable Package Context Settings

SR e e e

Photo Album organizes digital

» Show Thumbnails = True

images to allow easy browsing.

Contexts:
103 - Alice's Photo Album
104 - Bob's Pictures

images Per Page = 10
Local Directory* = photo-uploads

* Global Seiting

Y

Show Thumbnails = False
Images Per Page = 100
Local Directory* = photo-uploads

Figure 2-5: Package Manager Web Interface for Context Setting Configuration

for browsing images and displaying only a small number of images per page, Bob

would rather have many images per page but without the use of thumbnails.

Also note that configuration settings can be global, usually for the case of system

wide settings for a package. This is also illustrated in Table 2.2 where the Photo

Album package requires a configuration setting for the local directory where uploaded

images will be stored relative to. As shown in the example, uploaded images are

stored relative to the local directory named photo-uploads and changes made to

this configuration setting will affect all other contexts as well.

The web interface for this feature is illustrated in Figure 2-5 where the package

details page has a list of contexts and links to configure the individual contexts.

23

2.1.4 TUninstall

Now consider the situation where the administrator realizes that members of the
photography web community rarely use the functionality supplied in the Calendar
package. Instead of individually removing each of the package contexts on the site,
the site administrator can simply uninstall the Calendar package which will delete

the contexts and remove the functionality from the site.

2.1.5 Dependency Relationships

While the usage scenario for package management seems simplistic for basic installa-
tions and removals, the nature of software development is that dependency relation-
ships are common between separate components. Especially in the package system
where components implement a specific functionality, there may be several require-
ments for a package installation since it depends on the features in other packages.
This dependency is called a required dependency.

To demonstrate the role of required dependencies on the system, suppose the site
administrator wishes to install a Photo Album Bookmarks package which requires
that the Photo Album package is installed. For the sample site configuration in Fig-
ure 2-4, the installation would proceed normally since the required dependency is
present. However, if the Photo Album package was not previously installed, the site
administrator will be prompted to resolve the dependency and install a compatible
version of the Photo Album package either by uploading the package file or retriev-
ing the package from the repository through web services. Again it is expected that
system administrators will perform dependency resolution through the packages re-
trieved from the repository. As with a basic installation procedure, the web services
eliminate the need for the site administrator to search for the correct package and
obtain a local copy to upload to the package manager.

The workflow of this required dependency resolution process is shown in Figure 2-
6, and can be extended for the installation of a more complicated web of required

relationships. The specific mechanism for the general case is described in detail in

24

Begin install of Photo Album
Bookmarks package
{Reguires Photo Album)

Select Photo Album package

is Photo Album present? version from repository

Instalf Photo Album Bookmarks
package

-t Instell Photo Album package [

Figure 2-6: Workflow for Required Dependency Resolution during Installation

section 4.2.5. There the dependency resolution implementation is considered in depth
since required dependency relationships may result in the installation of multiple
packages in one procedure, where the order of commands must be correct for a working

system.

The opposite of a required relationship is a conflicting relationship where two
conflicting packages cannot both be present on a system at any time. This rule is
enforced during the installation and upgrade processes, and displays an error mes-
sage to the site administrator if any attempts are made to add a package conflicting
with any currently installed package. Suppose the site administrator finds a Message
Board package which conflicts with the Discussion Forum package because they have
conflicting namespaces. An unchecked installation would result in broken pages due
to ambiguous naming of namespaces and classes. Therefore, if the site administra-
tor carelessly attempts to install the conflicting Message Board package, the package
manager will refuse to install the package and display a message indicating the vio-

lated relationship.

25

2.1.6 Repository Community

As demonstrated in the installation and upgrade processes, the package repository
offers useful web services allowing site administrators to easily keep their packages up
to date. Furthermore the repository allows dependency resolution so that required
components can be easily retrieved and installed. Finally, the repository also al-
lows site administrators to participate in community discussions through their local
package management pages so that users and developers of the package management

system can share their knowledge with each other.

The package community discussion focuses on particular packages and the site
administrator can simply view or submit comments through the package details page.
Although the comments are actually stored at the repository, web services make it
possible for the site administrator to easily obtain relevant information associated

with a package.

One important case where this is useful is the ability to quickly share knowledge
about a package, for example, if a bug is found. When a site administrator discovers
a bug in a package, he can simply submit a comment describing the problem and
any relevant fixes through the details page of the faulty package. Other users of the
package management system will also receive the message and be able to make the
precautionary fix as well. The package developer, upon receiving the notification of
a bug, can also make changes to the package and respond by releasing a new version
with the fix. Once the package is placed in to the repository, it becomes available to

all the users of the package management system.

2.2 Web Site User

Certain features of the package management system are intended to create a more
user friendly experience. Since the package management system is intended for web
based applications, particularly community web sites, this section describes how the

package system creates a usable environment for a member of the web site.

26

2.2.1 Portlets

Since packages generally have components intended for display through web pages,
they may optionally supply custom controls providing a summarized view of the
package. These custom controls known as portlets are intended to contain the most
recent or important data associated with a package for placement on portal or other
aggregation pages. Portlets have the ability of being contextualized, thus users can

customize the layout and content of their personal portals.

2.2.2 Path Resolution

The path resolution mechanism not only serves as a mount point for a package context,
but also allows pages to be served at human readable URLs. This feature is an
aesthetic benefit for users who type URLs directly in to their browsers, or wish to

save readable URL bookmarks.

2.3 Package Development

The package management system is only useful if developers create packages to be
used for web sites. Therefore, a package system without benefits for the developer
would be unsuccessful since the community would never develop. The process of
creating a package is intended to offer many benefits to the package developer in
terms of convenience and core functionality so that programmers can exploit the
features to expedite their development and release cycles.

Mainly the argument for using a package system is that the modular design is more
manageable and flexible than a large monolithic design. The package management
system is the framework that allows developers to collaboratively work on individual
components rather than forming complicated intricate dependencies in a large system
that will inevitably be inadaptable to the variety of needs that web site administrators
demand. Here we discuss the more detailed advantages of using the features supported

by the package model from the perspective of the developer.

27

2.3.1 Contexts

Since the package management system understands the concept of package contexts,
the framework simply informs the package of the current context. This eliminates
the burden on the developer to organize the package contexts or attempt to support
multiple installations; instead the developer uses the assigned context to retrieve and

apply any configuration settings.

2.3.2 Dependency Relationships

Developers who wish to develop packages for the system will be able to include the
functionality in other packages by specifying a required dependency. This prevents
developers from reinventing solutions so they can decrease their development time

and efforts.

2.3.3 Multiple Database Support

Web site developers often face the difficultly of supporting multiple database plat-
forms since subtle differences in database architectures may result in data models
being incompatible across multiple systems. To alleviate this problem, the pack-
age manager supports the usage of a library to abstract the database type from the

developer.

2.3.4 Package Repository

The benefits of participating in the package repository community are two fold. First
the package developer has access to a medium where completed work is quickly and
easily distributed to a large audience of users. Since the repository can be accessed
by other package management systems through web services, site administrators can
immediately browse recently submitted packages and make use of the developer’s
work.

The second advantage of the package repository is that the wide audience cre-

ates a community of site administrators willing to use and test the new functionality.

28

The site administrators who share feedback will provide useful information to de-
velopers about the positive and negative points of the package, as well as possible

improvements for future versions.

29

30

Chapter 3

Overview

Principles such as modularity and code reusability are not new to software system
designs. The concept of a package manager has in fact been applied to other systems
to achieve these design goals. Here we discuss the design goals and implementation of
our own system, some based on the existing systems involving the dynamic addition
and removal of componentized pieces of software, while others are emphasized for the
purposes of a web based application. The design goals are also focused on creating a
system to exploit the introduction of web services to a package system for the benefit

of site administrators and developers.

3.1 Design Goals

The goal of this thesis is to provide a package management systemn that simplifies
usage for both developers and web site administrators. Ease of use through basic
operations is an important aspect, but without losing the ability to make packages
customizable and flexible in terms of both implementation and functionality. To fur-
ther enhance the usability aspect of such a system from previous work, user feedback
in a community type environment will be used to ensure that developers and ad-
ministrators can be quickly alerted of recent developments and discoveries related to
packages relevant to their usage.

This thesis will incorporate several important ideas from the OpenACS system

31

[16, 17]; however, this is certainly not a port of an existing system. Although we
will borrow several ideas for a local package management system, this thesis will offer
ways to improve web site package administration through the use of web services
interaction with a central package repository in conjunction with the local system,
further described in section 6.3. Following the scenario description in Chapter 2, we

can now specify and define the design goals of the local package management system.

3.1.1 Packages

As with the previously described package management system, a package is a mod-
ular encapsulation of a single functionality or feature for usage in the system. A
calendar system, a message board or a pluggable authentication module are all pos-
sible examples of packages. This separation of functionality is beneficial for the web
site administrator who can easily manage individual components by installing new
packages, removing unused or obsolete packages, and upgrading individual packages
to their latest versions. Developers also benefit since writing code to modify or add
behavior to a site affects only individual packages and their dependencies.

Since a package may implement a specific feature that should be duplicated on a
web site, the design must support the ability to contextualize and mount packages.
By this we mean that installing a package simply means that the functionality exists
in the system. However, to activate the package at a viewable URL, the site admin-
istrator must create a context of the package mounted at a URL mapping through a
web based user interface. Several contexts of a package can be made, unless a package
specifies that it is a singleton type meaning it allows at most one context.

The design supports package contexts so that web sites can easily duplicate func-
tionality. An example would be the use of message boards on an educational web
site where each class would have their own message board for group discussions. In
this usage scenario, each class would have a mounted context of a message board, so
that the message board package would be installed once on the system, but used in
multiple contexts.

A further benefit to this design is that individual contexts may have their own

32

configuration settings. Each package defines the configurable parameters that are
unique to separate contexts. Following the example of multiple message boards for
classes on an educational web site, the message board package could perhaps supply
configuration parameters for threaded view, access control, background color and
other miscellaneous user interface settings. The point here is that individual contexts
are not only independent of each other in terms of content and data, but can be

contextualized by their configuration settings as well.

3.1.2 Package Manager

The package manager is the mechanism by which packages are organized on the sys-
tem. A major design goal with respect to the coordination of individual packages and
their associated files is to provide a package management system that simplifies the
operations of package installation, upgrade, and removal for web site administrators.
The primary interface will be a web based user interface, but these operations should
be exposed by an API that allows future developers to create other interfaces such as
command line tools and windows based applications.

There are several complications with the package operations that must be con-
sidered by the package manager. The most important consideration when package
installations are modified on the system is the management of their dependency re-
lationships. Since packages are designed to contain specific functionality rather than
supplying an entire collection of features, it will be quite common for packages to
depend on other packages for certain functionality. This type of relationship is a
required dependency where a package cannot be installed if the dependent package is
not also included in the system. Similarly, a package that is depended on by another
cannot be removed from the system.

The opposite of a required relationship is a conflicting relationship. As the name
implies, in this case, conflicting packages may not both be simultaneously present on a
system because they have known issues that prevent proper functionality. Conflicting
relationships are only relevant during the installation and upgrade operations since

package removal will never violate a conflicting relationship.

33

3.1.3 Package Repository

Existing package management systems have a web repository of packages as well as
a newsgroup or discussion board for users to ask questions and post feedback about
packages. The design goal of creating a package repository system to facilitate the
distribution and use of packages is therefore not a new idea for package management.
The new innovation is actually the use of web services so that the centralized package
repository hosted at a known location is capable of communication with the package

management systems.

Other existing package management systems provide the repository and discussion
functionalities on the web, but in disjoint locations making it less trivial to determine
where relevant information could be found. Placing a web services API exposing key
functionality of the repository allows the package management system a great wealth
of functionality to simplify administrative tasks. Package installation and upgrade
procedures query the repository for a list of missing required dependencies, allowing
administrators to automatically download additional packages. The package manager
also displays a list of packages which may be upgraded to a newer version by obtaining

a list of the latest packages from the repository.

Another useful application of web services is the sharing of information between
all the users of the package management system. The web based user interface of the
package management system displays all the comments and feedback about particular
packages retrieved from the repository, serving as a discussion board integrated in to
the site administrator’s view of the local system. Site administrators may also use
web services to post feedback and comments so that other users of a package may
benefit from the information, or developers can quickly receive constructive criticisms

or praise for their work.

The design is meant to support a web interface and supply the functionality de-
scribed. Beyond the scope of this design, but potentially useful web services in such
an application may include a ratings system for packages, information regarding usage

statistics of a package, or popular alternatives for particular packages. More detail is

34

given about possible extension of the web services API in section 7.1.

3.2 Implementation

The implementation of the package management system takes in to account the spec-
ified design goals. An important aspect to choosing the implementation details is the
desire to make the system easily adaptable for users accustomed to different software
in terms of database and development environment. The intention is to create a

system with fewer barriers of entry in hopes of adoption by a wide audience.

3.2.1 Microsoft .NET

Since web services play a significant role in the package management system, the
development platform of choice was Microsoft .NET. The web pages were created
using ASP.NET and all source code is in C#, so the .NET Framework Software
Development Kit (SDK) [10] is a required portion of the installation. Development
work was primarily done in Microsoft Visual Studio .NET on Windows XP, while
serving pages from an Internet Information Services (IIS) web server backed by an
SQL Server database. Although it is expected that this is a similar configuration to
what most users of the system will use for development or production environments,

here we discuss the alternatives for users wishing to use non-Microsoft software.

3.2.2 Platform Independence

The package manager currently requires running on the Microsoft Windows platform
mainly because the .NET Framework requires installation on Windows. However, the
Microsoft Shared Source Common Language Interface (CLI) Implementation (code
named “Rotor”) [20] and the Ximian Mono Project [22] both show great potential to
allow support for the .NET Framework and thus the package management system on
other platforms in the future. At the time of development, the priority was to create

a working system for the Windows platform, and consider ports to other platforms

35

when the Rotor and Mono projects have matured.

3.2.3 Database Support

To avoid locking in users to a Microsoft SQL Server database, all database interaction
in the system is abstracted through the iLearn multi-database API which hides the
specific database type backing the system. The library offering this support was writ-
ten by Andrew Grumet and can be seen by obtaining the source code and compiling
the documentation. For more information, see section 8.1 for instructions to access
the code through CVS.

By using the multi-database package, developers place named queries in XML
files segregated by queries that are specific to SQL Server, Oracle or PostgreSQL,
or use standard SQL92 syntax. When executing a database command, the multi-
database package uses the correct query depending on which database is installed on
the system. Through this mechanism, the package manager and other packages can

rely on the multi-database code to easily support multiple databases.

3.2.4 Development Software

Rather than forcing users to type long compilation commands using the Microsoft
C# compiler bundled with the Microsoft .NET Framework, we require NAnt [12]
as the build environment for usability purposes. NAnt is a free .NET build tool
allowing the use of scripts conforming to an XML specification to build the source
code for the package manager and packages. Through NAnt and the associated
scripts, packages include build files that specify the source files, references and other
parameters required to properly compile the source.

By separating the build and text editing environments, developers can use their
text editors of choice. Thus package developers who wish to use Microsoft Visual
Studio .NET as their development environment for editing and building may do so,

and those who prefer other text editors and simply use NAnt for compilation.

36

Chapter 4

Package Management System

Before discussing the package repository and the exposed web services, this chapter
describes the design details of the local package management system. This includes

the specification of packages, and the workings and features of the package manager.

4.1 Packages

As mentioned earlier, packages provide the functionality to be used in a system or-
ganized by the package management system. These modular code components are
responsible for implementing specific features and give site administrators the power
to easily modify the feature set of their web site by installing, removing, or upgrading

packages.

Packages are distributed as single ZIP compressed files conforming to an expected
specification set forth by the package manager. Here we discuss the expectations of a
package including naming conventions, implementation of the package interface, file
system structure and the XML specification file describing the properties of a package

release.

37

4.1.1 Naming Conventions

Because namespaces must be unique to a particular application, we make use of the
package’s namespace for several conventions. We also set the convention that packages
are nested under the ILearn.Packages namespace. The distributed package file is
named after the namespace and may optionally be followed by the version number for
the package separated by a hyphen. For example, the fictitious package MyPackage
whose namespace would be ILearn.Packages.MyPackage could be distributed in a
file named ILearn.Packages.MyPackage.zip or assuming that the version number
is 1.0, ILearn.Packages.MyPackage-1.0.zip.

Packages are rooted at subdirectories also named after the namespace. However,
because serving web pages from subdirectories whose name contains a period causes
problems for IIS, the convention for the root directory is to replace periods with
underscores. The sample package would therefore be rooted at a directory named
ILearn_Packages_MyPackage. Note that the version number is not included in the
package root directory.

Finally, it is expected that all the standard files are named after the namespace
with the appropriate extensions. These files include the NAnt build file, the Microsoft
Visual Studio solution and project files, and the standard package configuration file.
Section 4.1.2 describes the placement of files within the root directory, and section

4.1.4 describes the package configuration file.

4.1.2 File System Structure

The standard directory structure format is to separate files based on their function
as shown in Figure 4-1. The 1ib subdirectory contains C# code supplying backend
functionality. ASP.NET pages and their code-behind files are placed in the www
subdirectory. The www subdirectory also contains any other files associated with user-
visible pages such as custom controls and images. The sql subdirectory contains the
XML files containing named queries to be used for multi-database support described

in section 3.2.3.

38

ILearn_Packages_MyPackage\

—— www\

+__

+__

-- Ilearn

--— ILearn

—-— JLearn

-- ILearn

MyPackage.cs

oracle\

I

+ —— ILearn.Packages.MyPackage.xml

postgresql\
|

+ —- ILearn.Packages.MyPackage.xml
59192\

l -— ILearn.Packages.MyPackage.xml
sqlserver\

+ —— ILearn.Packages.MyPackage.xml

default.aspx

default.aspx.cs

.Packages.MyPackage.build
.Packages .MyPackage.config
.Packages.MyPackage.csproj

.Packages.MyPackage.sln

Figure 4-1: Standard Package Directory Structure

39

E}Pq¢k;g§€j

string Namespace | get; !
void RegisterNewContextilong id, string name);
void RegisterDeletedContext (long id);
void InstallPackage();

pid UpgradePackage{string oldVersion);
void UninstallPackage()
FesolvedRequest ResolveHttpRegquest (string relativePath);

Figure 4-2: IPackage Interface Definition

namespace ILearn.Packages.MyPackage

i
public class MyPackage : ILearn.Core.Packages.IPackage
1
public string Namespace
i
get { return typeof (MyPackage) .Namespace; }
X
b
X

Figure 4-3: Sample Namespace Property in IPackage

The package manager expects to find the configuration and setup files in the root
directory of the package. These files include the NAnt build file, solution and project
files used with Microsoft Visual Studio, and the package configuration file.

4.1.3 IPackage Interface

For a package to be managed by the package management system, the package must
adhere to the IPackage interface definition by supplying a class that implements
IPackage from the ILearn.Core.Packages namespace, shown in Figure 4-2. The
most basic method a package must implement is the property to return the namespace
of the package by using a hard coded string or supplying an implementation based
on the sample code in Figure 4-3.

The installation and removal methods provide an opportunity for package imple-

mentations to perform custom actions during the installation and removal phases of

40

a package. The most common usage of these methods is the creation and deletion of
database tables used specifically by the package. IPackage also requires an implemen-
tation of the upgrade method which accepts the old version string being upgraded.
The purpose of this method is to make any changes to the system necessary for the
upgrade. For example, an upgrade may require the creation of new database tables,
the removal of old tables or copying data between tables. This allows the package
to supply a customized method to preserve data that should be maintained in an

upgrade process.

Another purpose of the IPackage definition is to perform any custom actions
during the creation and deletion of the package contexts. During the creation or
deletion of a package context, the package manager will register a new or deleted
context supplying the context identifier and the name where necessary. Note that
the package implementation does not have to create or remove the package context
settings since those values are maintained by the package manager. For more detail
about package contexts and context settings, refer to section 4.2.7. The intentions
of these methods were to allow the package implementation to initialize any context

data, or remove generated data as a result of context creation and usage.

Finally the package must be able to resolve HTTP requests by implementing the
request resolution method. Since the functionality of the site is componentized by
the package management system, the ILearn.Core.PathResolution namespace in-
cludes an implementation of System.Web.IHttpModule to handle the BeginRequest
event to resolve requests for server objects. During the handling of this'event, the
implementation of IHttpModule calls the custom request resolution method of the
requested package, supplying the relative path of the request. Refer to section 4.2.8

for more information about path resolution in the package management system.

Because it is expected that most packages intend on resolving the request by re-
turning the corresponding page from the www subdirectory according to the standard
directory structure as specified in section 4.1.2, the ILearn.Core.PathResolution
namespace supplies an AbstractRequestResolver class supporting this default be-

havior. Packages adhering to the naming convention of placing displayable files under

41

namespace ILearn.Packages.MyPackage

{
public class MyPackage : ILearn.Core.Packages.IPackage
{
public ResolvedRequest ResolveHttpRequest(string relativePath)
{
AbstractRequestResolver arr = new AbstractRequestResolver(
this.Namespace
);
return arr.ResolveHttpRequest(relativePath);
}
}
}

Figure 4-4: Sample Request Resolution in IPackage

the www subdirectory can implement the custom request resolver following the sample
implementation in Figure 4-4. Of course packages are free to use their own cus-
tom implementations if their request resolution scheme is different from the default

behavior.

4.1.4 Package Configuration File

Each package must supply a package configuration file named after the package names-
pace. The configuration file is an XML file used to describe the package properties
such as name, description, version, contact, information and type. The configuration
file also defines the dependency relationships the package has (conflicts and require-
ments), describes the portlets supplied with this package, and lists the configuration
settings to be managed by the package manager. Finally, the package configuration
lists files and references for compilation during installation, or optionally specifies a
NAnt build file or Microsoft Visual Studio solution file to use for compilation. Ap-
pendix A provides the detailed specification of the XML configuration file.

42

4.1.5 Versioning

Rather than force each package in to a standard versioning scheme, the package man-
agement system allows each package to specify its version number as a free form
string. However, this imposed the difficulty of attempting to compare version strings
within packages. For example, it would be difficult for the package manager to pro-
grammatically determine the relative recentness of packages with the versions “1.1”,
“1.1.6”, “1.02” and “1.1-Beta” which are all legal version strings.

One solution was to use the release date in the package specification, but this
scheme would prevent package developers from releasing versions out of order. To
solve this problem, each package is required to specify a serial which is an integer
used by the package manager to compare versions where a larger serial indicates a
newer package. The serial also allows a more robust mechanism of specifying package
dependency versions where asterisks can be used as wildcard characters (“1.*” would
specify any package version string starting with “1.”) or comparison operators can
be used with the serial (“>10” would specify any package with a serial greater than

10).

4.2 Package Manager

The package manager refers to the user interface and backend functionality available
to web site administrators that organizes the packages on the local system. The
operations supported by the package manager for organizing packages on the system
are installing, removing and upgrading packages. These operations also include a
dependency resolution and checking mechanism to verify that package operations
will not cause the system to be in a state where package relationships are unmet.
'To make the package system more flexible, the package manager also handles the
notion of package contexts and their configurable settings. Finally, since the package
manager is geared towards usage for a community web site, packages may optionally
include portlets. Portlets are custom controls providing a summarized view of a

package context for the purpose of placement on a portal or aggregation page.

43

This section begins with an overview of the package implementation with a data
model and class structure, and then continues to describe each of the operations
and features of the package management system. Finally, the section ends with a

description of the user interface for package management.

4.2.1 Data Model

Figure 4-5 shows the data model used by the package management system. The
core_metadata table is part of the iLearn core object system written by Andrew
Grumet, and for the purpose of this data model is used to provide unique primary
keys for the package properties, package_portlet and package_context tables.
When a package is added to the system through installation, appropriate entries are
inserted in each of the relevant tables to store the specified configuration of a pack-
age. The creation of a package context inserts a row in to the package_context
table, and also inserts the appropriate context configuration setting values in to the
package_context_setting table. To uninstall a package, the package manager exe-
cutes these commands in the reverse order to remove the database entries and ulti-

mately the package from the system.

4.2.2 Class Structure

The main functionality of the package manager is encapsulated in the PackageManager
class of the ILearn.Core.Packages namespace. As shown in Figure 4-6, the package
manager contains public static methods intended to be used by the web based inter-
face for the package management operations. Since these methods are public, other
interfaces can be developed using the package management functionality. For exam-
ple, a console based application or a Windows forms application could be written to
allow site administrators the ability to organize packages without using a web based
interface. The web based interface is explained in terms of an interaction scenario in
section 2.1 and in terms of workflow in section 4.2.10.

As shown in the data model in section 4.2.1, there are several aspects of an installed

44

applayer_class
one_line_name
uri
creation_user
creation_date
creation_ip
last_modified
modifying_user
modifying_ip

FK1

vid —>

dependent_uid
dependent_version

type

FK1
FK2

id
namaspace
control_file
description

uid

namespace
description
version

serial
version_description
contact_name
contact_email
contact_url
singleton_p
package_classname
comment
release_date

namespace

FK1
FK2

context_id
setting_id
value

FK1 | namespace
name
description
default_value

global_p

Figure 4-5: Package Management System Data Model

45

Packageﬁanége?

/7 Zupplies static methods for the management of the package system.

Gat collections of package-related obfects
PackageProfile(] GetinstalledPackages();
PackagePortlet[] SetPortlets();

/¢ Package context operatlions
long CreatePackageContext (long packageIl, string name);
vold RemovePackageContext {(long contextII);

/¢ Install a new package
PackageinstallPRsport InstallPackage(stzing path);
PackagelInstallBeport InstallPackage(str path, string workingDir};

PackageInstallReport InstallPackageInPlace(string ramespace);

// Upgrade existing packages
PackageUpgradeReport UpgradePackage(stzing path);
PackagelUpgradeReport UpgradePackage (stx

g path, string workingDir);

/4 Uninstall an existing package
PackageUninstallReport UninstaliPackage(
long packagell,
bool ignorewWarnings,
bool remowveSourcellir
Vi

Figure 4-6: PackageManager Class Diagram

package to represent in the system. There are the basic properties describing the
package, as well as parameters that describe the behavior of the package such as
dependencies, portlets and configuration settings. Furthermore, an installed package
may have had several contexts created, each with unique settings. Figure 4-7 depicts
these individual aspects of the package representation, the relevant properties of each
component, and the PackageProfile class which aggregates all the classes to form
a complete representation of the package in the system. For performance purposes,
the PackageProfile uses a caching mechanism to partially retrieve the data from

the database, and uses in memory values where appropriate.

The final component of the class structure is the IReport interface which is used
by the package manager to return the results of an operation. Figure 4-8 shows the
IReport members, as well as the IDispatchReport interface which is intended to
add methods and properties expected by reports generated for dispatch operations

such as installations and upgrades. Not included in the class diagram for IReport and

46

{long packagelID);

Packag e
e{string namespace);
3
e

-Bri
n

PackageP
PackageP
PackageP

{Guis packagelUid);

long ID { get: }
d Uid { get: !}
string Namespace { get; }

PackageProperties Properties { get;
PackageContext|] Contexts { get; }
PackageDepencency({]| Dependencies |
PackageSetting|] Sertings | get: 1}
PackagePortlet|] Portlets { get: }

{PackageProperties package);

[

]

PackageDepencency{

Guid package,

Guid dependent,

atring version,
PackageDependencyType type
Vi

¢ PackageUid |)
id Dependentlid | getr |}

string DependentVeraionPattern { get; }
PackageDependencyType Type { get; |}
bool ictsWith {Guid uig,
kool uid, string versi

Confl

Peguires {Fuid

=0,

FackageProper
PackagePropertie
PackagePropertie

get; 1}
get; i}
get; |}

long PackageID §
Guid Packagelid |
Hamespace {
Description |
Ue*sint i
tal { get; }
?er&*o*“escr:p
Contactlame | H
ContactEmail { get
ontactUrl {
isSingleton { get; }

string PackageCiassName { get; }

string Comment { get;)

get; |}
get; |}

[#]

string version,

int

string
stringi}

ublic PackageContext (long chiectlil);

[get; }
Namespace { gekt; }
Items {string setting) {

n gat;)}
GetSetringNanmes();

int
serial);

PackageSetting(

long id,

string namespace,
name,
description,
defaultvalue,

bool isGlcobal
1i
{ get: }
Namespace | get; |}

get; }
ption | i
BefauitValue 4
Global { get;
¥ textiID { get:; }
ontextvValue { get; }

Figure 4-7: PackageProfile Class Dependency Diagram

47

bool TsValid { get:
HaswWarning { get; }

g GetErrorstringii:

g setWarningstring(y;
ReportError{] Errors { get; }
ReportErrori{] Warning { get; 1}

)

PackageUninstailReport(long Package

PackageProfile Package { get; }

PackageDependency{} ViolatedReguireszDependencies | get;)
PackageContext|] ExistingClontexts { get;]
PackagePortlet{] McuntedPortlets { get; }

bool IshlreadyUninstalled { get; }

ackageProfile ckage { gebt; }
pendency (] ViclatedReguiresDependencies { get; ;

Packagebependency(] ViolatedConflictsDependencies { get: |}

PackagelnstallReport(PackageUpgradeReport (

PackageConfigurationFile pkgCeontig PackageConfigurationFile pkgConfig

Vi bi
ke IaAlreadyInatalled { get; } PackagzProfile CldPackage | gekb; }
bool HasNamespaceConflict { get: |} PackageConfigurationFile NewPackageConfigurationFile |
bool ExiatsinfFileSystenm { geti } gek;

)
kool MotInstalled { get;
bool InvalidNamespace { get; }
boel Inwvalidversion { get;
PackageDependency|] OldVsrsionRequiresDspendenciss |
gety
\

Figure 4-8: IReport Interface Definition

48

implementing classes is the definition for ReportError which is simply an enumeration
of possible report errors and omitted for brevity. The implementations of TReport
are PackageInstallReport, PackageUpgradeReport and PackageUninstallReport

are returned for the appropriate package manager operations.

4.2.3 Installation

The installation procedure is illustrated in Figure 4-9, showing a flowchart of the
package manager’s behavior and order of operations. The intent of the package install
operation is to fully complete the package installation, or make no changes to the file
system and database. Therefore to accomplish this, the package manager simply
undoes any generation of files at any signs of error.

PackageInstallReport is a safeguard against many potential errors in the instal-
lation since it makes system wide checks to verify that the package can be properly
added to the system. If the report predicts that an error will occur, the installation
procedure simply returns a report with flagged errors without creating new files on
the system. Possible errors are that the package is already installed, the namespace is
already in use, or the expected location on the file system already exists and cannot
be overwritten. PackageInstallReport also detects dependency violations, such as
installing a package that conflicts with an existing package, or installing a package
while a required dependency is missing from the system.

Assuming that no errors are found, the installation operation proceeds by decom-
pressing the package file, compiling the sources of the package, executing the installa-
tion method implemented by the package (in the class definition of IPackage), then
finally appropriately updating the configuration in the database.

4.2.4 Upgrade

The upgrade procedure is similar to the installation procedure with the exception of
a few key differences. The upgrade process follows the principle of fully upgrading

a package or failing without any modifications to the system. However, to undo

49

Extract the configuration specification
from the package file

:

Generata the package Instaliation
report

Is report valid?

Decompress the package file

h A

Comgile the source files of the
package

Y

Return the package installation report

Throw exception describing error

F 3

Execute the package's implementation
of the Instail {} method

Excaption?

k4

Remove the decomprassed package
sournce files

&

Save package corfiguration in
database

Removed the generated package
binary

F 3

Figure 4-9: Package Manager Installation Procedure

50

:Znsta;iﬁlan_

InstallPlan{strsing path, IDispatchReport report):

PackageDependency Currentlependency { get;
Packag=Dependency] Unresolvedlependencies { get; |
FackageProfile!! LocalPackages { get; !

string[] LocalPackagePaths { get;

void Add{string path);
IDispatchReport|] Execute();
vold Cancel (};

Figure 4-10: InstallPlan Class Diagram

the operations of a failed upgrade, the package manager must backup the source and
binary files of the previous version to revert in case of errors. Other than the additional
backup of files, the upgrade procedure uses the same mechanism of verifying upgrades
with a PackageUpgradeReport predicting potential flaws.

A non-trivial complication in the final step of upgrading is when the database
must be modified to the new configuration of the package. This is accomplished
by updating new properties in the package_properties table and replacing all the
relevant entries in the package_dependency and package_portlet tables. Finally to
maintain the upgrades for package contexts and configuration settings, the package
manager removes obsolete entries from the package_setting table, appropriately
updates any existing settings that are changed in the new version, and inserts new
entries while setting the context values in the package_context_setting table to the

default values.

4.2.5 Dependency Resolution

A complication with package installation and upgrades that should be discussed in
further detail is the case where the operation cannot be completed because of missing
required dependencies. If this is the only error with the install or upgrade, the package
manager is equipped with a mechanism to resolve the required dependencies through

the InstallPlan class shown in Figure 4-10.

51

Package A requires Package B
Package A requires Package C
Package B requires Package D

path-to-package-A,
package-iastall-report-for-A

yi

CuarventDapendancy

Package B

Package C Package A

Unresolved Resolved

Lurrent Dependency

Package D Package B
Package C Package A
Unresolved Resolved

inscallPlan.Add (path- package-D);

Package D

CarrentiDependency

Packags B

Package C Package A

Unresoived Resolved

installiPlan.Add(path-to-package-C);

arrentiependency

Package C

Package D

Package B

Package A
Unresolved Resolved

Figure 4-11: Dependency Resolution for Multiple Package Installations

32

The InstallPlan class is constructed with a package file and the associated report
for installation or upgrade. The scenario described in section 2.1.5 was a basic example
of dependency resolution where the installation of a Photo Album Bookmarks package
required the Photo Album package in a two-step installation process. However, as the
resolution process illustrated in Figure 4-11 indicates, installations with multiple steps
can involve significantly more complication which InstallPlan must be equipped to

handle.

We expand our example by considering the case where package A is to be installed,
but it requires packages B and C which are not found in the system. By adding paths
to the required packages the InstallPlan will generate an ordering of packages to
install so that ultimately package A can be flawlessly installed. This idea is similar
to directed graph of procedure calls used in the design for the Tcl Content-Derived
Name (Tcdn) package system [11].

Continuing the example, the InstallPlan therefore has package A in the list of
local packages, and packages B and C are listed as unresolved dependencies. Package
B is the current dependency this InstallPlan is attempting to resolve. The easiest
thing to do is to repeatedly add a path to a package file satisfying the current depen-
dency, used to generate the order of package installations. However, what if package

B also cannot be installed because it requires yet another package D?

This is problem is solved by generating the installation plan with two stacks; one
stack for the package paths is used to resolve dependencies, and another stack is used
for unresolved dependencies. As packages are added to the system, the algorithm
is to push the package on to the resolved package stack and to pop the dependency
from the unresolved stack. Any new required dependencies are pushed on to the unre-
solved stack. The current dependency is a peek of the top element in the unresolved
dependency stack, so that a completely resolved InstallPlan will have an empty

unresolved stack.

The completed plan is executed by popping and installing or upgrading the pack-
ages from the resolved stack. In our example, the order of installation is package C,

D, B, then A. Through this mechanism, each package is installed on the system at

93

a point where all of its required dependencies are present. Packages C and D are
installed first since they have no dependencies, and are required by other packages.
The installation of package B is successful because its dependency (package D) was
just installed. Finally, package A is successfully installed on the system since each of

its dependencies (packages B and C) are installed.

4.2.6 Uninstall

As with package installation and upgrade, removing a package also requires the use
of an IReport implementation. One difference with the PackageUninstallReport
is the use of warnings, which are flagged if a package to be uninstalled either has
existing contexts or mounted portlets. The uninstall procedure accepts an argument
to indicate if these warnings should be ignored, in which case portlets and context are
deleted. Errors caught by the PackageUninstallReport, which can not be ignored,
include a package not found error, and violated dependencies where the package to
be removed is required by another package.

Once these issues are handled, removing a package is a straight-forward process.
The package implementation of the removal method is invoked, the binary and source

files are removed from the system, and the relevant database entries are deleted.

4.2.7 Contexts and Settings

Once a package is installed on the system, the site administrator must create a pack-
age context and mount it at a viewable URL. This design allows the functionality of a
package to be replicated for several usage contexts so that multiple users can customize
their individual configuration settings. The procedure for creating a context inserts
the appropriate values in to the package context and package_context_setting
tables by assigning default values for the context settings. Finally the package man-
ager registers the new package context with the package implementation. Removing
a package context simply does the reverse of the creation procedure.

The notion of package contexts is a powerful feature to benefit the site admin-

o4

istrators as well as the developers. Imagine an educational web site where classes
have message boards for group discussions. In several architectures, the students of
each class are forced to participate on a shared message board context by starting
new discussion threads for relevant topics in their classes. This has the disadvantage
of grouping several unrelated contexts in to one system, making the usability more
difficult than it needs to be. Alternatively in the package management system, each
participating class of the framework can have an individual context of the message
board designed to carry out their discussions. No longer are the message board users
required to be overloaded with irrelevant posts in the case of having one large message
board shared by the entire community.

Furthermore, an added benefit is that configurations can be applied at the level of
classes for each of the contexts. Functional or user interface changes can be customized
through context settings and applied for individual classes so that the message boards
are uniquely tailored to the purposes of each class. This would allow for example, one
class to have a moderated message board with threaded views, while another class
uses a public message board with a flat view. More trivial customizations such as
colors and fonts can add an additional sense of user friendliness to a package context

as well.

4.2.8 Path Resolution

While it might seem burdensome for package developers to create the functionality to
allow package contexts and settings, the package management API supports this fea-
ture quite elegantly with help from functionality in the ILearn.Core.PathResolution
namespace written by Andrew Grumet. Because of the componentization of the pack-
age management system, the path resolution model in the system implements the
System.Web.IHttpModule interface so that the BeginRequest event can be appro-
priately handled to resolve requests for server objects.

Since mounted package contexts are registered by the site map, the path resolution
module is able to use the components of the URL to determine the requested object

and the intended context. The path resolution module then rewrites the path to the

55

requested object, and places the context identifier in to the current session. From the
package developer’s perspective, each page load will have a context identifier stored
in the session which is used to construct a PackageContext object corresponding to
the requested context. As shown in the class diagram in Figure 4-7, PackageContext
supports a simple interface for retrieving configuration settings values. Demonstrating
the simplicity of using the available API is shown in Figure 4-12 which is the source
code of a page that would customize the colors on a calendar web control based on

the context settings.

4.2.9 Portlets

Portlets are custom controls providing a summarized view of a package context for
the purpose of placement on a portal or aggregation page. This feature is a general
improvement to the usability design since it allows the package management system
to be better suited for large portal web sites. A portlet is specified by a name,
description and control file that displays the contents. The usage model is that
portlets are registered with the system by insertion in to the package_portlet table
during installation. Users of the system are presented with a portal customization
interface to select which portlets they wish to display, or mount, on their portal pages.
A customized portal page is often the start page for a user, allowing him or her to view
summaries of any relevant portions of the entire site, and allowing quick navigation

to the items of interest.

To implement a standard portlet in the system, the package must supply a user
control that inherits from the PortletControl abstract class found in the iLearn
portals framework written by Tracy Adams. Inheritance from PortletControl re-
quires portlets to supply properties for the context identifier displayed in the portlet
and the site node where the portlet’s package context is mounted. It is also required
for the portlet to have properties that allow customized header and footer controls to
be set. This gives the parent portal the ability to dynamically customize the look of

each portlet on a page, making it possible to conform the user interface of the portal.

56

using System;

using System.Web;

using System.Drawing;
using ILearn.Core.Packages;

namespace ILearn.Packages.Calendar

{

public class _default : System.Web.UI.Page

{

// The calendar control displayed on the page
protected System.Web.UI.WebControls.Calendar calendar;

private void Page_Load(object sender, EventArgs e)

{

// Get the package context for this request

long contextID = Convert.ToInt64(
HttpContext.Current.Items["PackageContextID"]
);

PackageContext pkgContext = new PackageContext(contextID);

// Set the calendar colors based on context configurations

calendar.BackColor = Color.FromName (
pkgContext ["Background Color"]
)

calendar.BorderColor = Color.FromName(
pkgContext["Border Color"]
)

calendar.ForeColor = Color.FromName (
pkgContext ["Foreground Color"]
)

Figure 4-12: Sample Code-Behind Page Demonstrating Contexts

o7

 uninstall.aspx - view-package.aspx - configure-context.aspx
Removes a package from the system Displays a detailed view of a package Shows the settings of a context
'y
Actions: Actions:
- Submit a comment to the repository - Configure a package context

- Create a new package context
- Delete an exislting package context

4 y

Displays a list of packages currently installed View the results of an executed install plan
Actions: \
» - View the properties of a package - ——
- Install a new package from a file ~ multiple-install.aspx
- Upgrade a package from a file B :
- View the repository packages Generate an install plan by resolving dependencies
- View new versions from the repository R
- Uninstall a package Actions:)
T T - Execute a completed install plan

Displays a full list of packages al the reposilory Installs a package in to the sysiem
Actions: Aclions:

- Install a new package from the repository » - Complete installation

- Upgrade a package from the repository - Resolve missing dependencies

i
= i B ol Upgrades a package to a new version
Displays a new list of packages at the repository >
Actions:
Actions: » - Complete upgrade
- Upgrade a package from the repository - Resolve missing dependencies

Figure 4-13: Work Flow of the User Interface of the Package Manager

4.2.10 Web Based User Interface

Figure 4-13 illustrates the work flow of the web based user interface for managing
and organizing packages. Staring at the default page, the site administrator views a
list of package summaries installed on the system. Possible actions include viewing
the details of an installed package, installing or upgrading a package by uploading a
file, uninstalling a package, or viewing either a full list of repository packages or a
shortened list of packages that have newer versions. Actions involving the repository
are discussed in further detail in sections 5.2 and 5.3, describing the implementation

specifics behind the web service usage scenarios from section 2.1.

58

Chapter 5

Package Repository

The package repository is a central location for developers to submit new packages for
usage on other systems, or for site administrators to find and download new compo-
nents. Implementing a package repository as a central location for locating packages
is not a new idea and is commonly found in several existing package management
systems. What distinguishes the iLearn package repository from others is the layer
of web services built on top of the repository system to allow package management
systems to consume the public APL.

This chapter begins by discussing the basic functionality of the repository as a
web site separate from the package management system. The web services API will
then be explored in depth, with an explanation to justify the specification of the
APIL Finally, the chapter will end with a description of how the API is used with the

package manager functionality to improve the usability for web site administrators.

5.1 Functionality

The functionality of the package repository is two fold. The repository is designed to
act as an independent site separate from the package management system, much like
the FreshPorts [4] repository for the FreeBSD system. Users are thus given the option
of participating on the repository for either posting or obtaining packages without

actually maintaining a package management system of their own. This aspect of the

59

design gives the package repository a look and feel similar to that of a community
web site. The other aspect of the functionality is the web services allowing public

consumption of the core features found in the package repository.

5.1.1 Community Site

The web site for the package repository supports the obvious requirements of includ-
ing a basic user registration and authentication system (by e-mail and password),
forms for submitting new packages, and pages allowing users to view package details
and obtain the package file. To harvest the knowledge of experienced users, the repos-
itory site also allows registered users to submit comments and feedback concerning
packages to share information, usage experience, answer questions about a package,
and generally interact with other users.

While many existing package systems have message forums or mailing lists for user
discussions, the iLearn system purposely avoided creating several disjoint web com-
munities relating to the same topic. It is much more useful for users to consult a single
source for information, rather than searching through a variety of different places. For
example, FreshPorts, the previously mentioned FreeBSD ports repository, provides a
good interface for finding and obtaining ports, but users interested in downloading
ports receive no user feedback. Instead, users are left to do their own research on the
web or perhaps post a question in the sol.lists.freebsd.ports newsgroup. Rather than
splitting the information at two separate communities, the iLearn system allows the
package details page to include user feedback that may provide useful information

influencing a user to either download the package or find a better alternative.

5.1.2 Web Services

The features of the package repository as a community site are useful as web services
as well. The main purpose of the web services is to provide information for package
management systems that could facilitate site administration. Therefore, information

such as posted comments, package listings, newest packages, and possible dependency

60

Package Rgpqsitqﬁgfﬁgh Ségvizuﬁ'
bool PostComment (Guid nid, string wversion, string email, string comment):
PackageComment |{] GetComments (Suid uid, string version);

PackageSummary GetPackage (Guid uid, strin
PackageSummary|] SetPackages (Guid uid, st
PackageSummary|] GetAvailablePFackages{);
PackageSummary|] GetlLatestPackageVersions{Guid|) ulds);
string SetPackagelame {Guid ulid);

g version)s
o

ing wersionMatch);

Guid Uid;: string Comment;
strina Namespace; string Email;

string Name; string GiwvenNams;
string Description; string FamilyName;
string Version; DateTime SubmitDate;

int Serial;

siring VersicnDescription;
string ContactName;

string ContactEmail;
string Contactirl;

bocl IsSingleton;

DateTime Releaselate;
string WebPath;

Figure 5-1: Package Repository Web Services

resolutions would provide the greatest benefit for site administrators. Section 5.2
details the web services API supported by the package repository, and section 5.3

explains how the API is used to benefit the package management system.

5.2 Web Services API

To satisfy the goals of the web services for the package repository, Figure 5-1 shows the
API for public consumption. First the web services for package comments are rather
straight forward; the repository simply allows comments to be read or posted. Notice
that packages are identified by globally unique identifiers since the entire collection
of packages may potentially have overlapping names or namespaces. For any given
package, there may be multiple versions; therefore, the list of packages has a unique
constraint on the globally unique identifier and version pair. These parameters are

used to uniquely identify which package the consumer is attempting to retrieve or

61

post comments for, as shown in the method declarations for retrieving and posting
comments.

The same mechanism is used to identify a package to obtain a summary of the
package, but note that the version number is not required when getting the package
name because package names are consistent across each version. To support web
service consumers wishing to browse the entire list of packages, the repository exposes
a method to return a summary of every known package. Although sending every
summary in XML may be rather time consuming as the repository grows, future
work described in section 7.1.1 explains how this problem will be solved.

Because getting each package may consume too many resources, the repository
also exposes utility methods that return a subset of the available packages by filtering
unwanted results, instead of requiring the web service consumers to retrieve all the
packages before applying filters locally. One such method accepts a string indicating
the desired version or versions of a package to retrieve. Also, instead of returning every
package version of the specified globally unique identifiers, the repository exposes a
method that returns only the latest versions. The intended uses of these methods are

described in section 5.3.

5.3 Package Management Integration

Given the web services API at the package repository in section 5.2 and a descrip-
tion of the package manager user interface in section 4.2.10, we can now explore the
intended usage of the web methods exposed by the package repository with the pack-
age manager. This section describes the pages in the package manager web interface
which use the repository services, but first we mention two notes about performance
optimization.

As the number of packages grows, the amount of XML data returned by the
repository increases as well, potentially causing the latency of the web method to
reach intolerable levels. To solve this problem, the package manager will cache data

from the repository in the local database and simply ask for updates at periodic

62

intervals, rather than receiving fresh data at every page hit. This idea is explained
in further detail in section 7.1.1.

Another performance issue deals with a timed out request sent to the repository.
Since a page in the package manager cannot be rendered without the information
from the web services, an unreachable repository causing a time out would result in
several pages to have intolerable delays before rendering. This problem will be better
solved when the cached repository data can be used to render a page. However, before
the repository data caching mechanism is in place, we employ a simpler solution by
disabling the use of repository services when a time out occurs. Future calls to the
repository are then ignored to improve performance until the services are manually
re-enabled. This protects the system against repeatedly waiting for a web service

response on each page render when the repository is unreachable.

5.3.1 Feedback and Community

As part of the design goal to make use of information from knowledgeable users of the
package management system, the package manager renders the package details page
with the comments retrieved from the repository. Furthermore, to obtain information
from site administrators who have working experience with the packages, the interface
also allows site administrators to post comments through web services. This will
allow site administrators to use the functionality of the repository through their own

package manager interfaces, without visiting two different web locations.

5.3.2 Obtaining Packages

Packages are obtained from the repository through the package manager interface
can be done programmatically by invoking an installation or upgrade procedure, or
simply downloaded since the PackageSummary class contains a property specifying
the web path (see Figure 5-1), allowing the package manger to link the appropriate
file. Programmatic fetching of a package simply opens a request to the web path and

writes the file to a local stream, then invokes the install or upgrade procedure on the

63

local package file.

5.3.3 Dependency Resolution

Packages are also obtained during dependency resolution when multiple installations
are required. In this situation, a required dependency must be resolved for an instal-
lation to complete. The package manager uses the repository web method to specify
the required package and the version match string used to indicate which versions of
the package are required for installation. The package manager then displays a list
of possible packages to obtain for the purpose of resolving the required dependency,

or offers the option of uploading a new package file to satisfy the requirement.

64

Chapter 6

Comparison with Related Work

The idea of a package manager and the associated principles of modularity and code
reusability have been applied to many previous systems. Operating systems such as
Red Hat Linux [1, 21], FreeBSD [13, 14, 15] and Debian [3] offer their own imple-
mentations of package management systems for organizing installed components on
a computer. These principles have even been applied to EMACS [19], an extensi-
ble, customizable display-editor developed by Richard Stallman. This concept is less
explored in the realm of web site administration and development, with OpenACS
[16, 17] being the most successful implementation of a package management system

for web based applications.

6.1 Operating Systems

The design of the iLearn package management system is based on the principles used
by the Red Hat Linux, FreeBSD and Debian package management systems. There
are few appreciable differences between the package systems in these designs so a
general comparison will suffice. The general principles shared by the all of these
systems are modularity, code reusability, and the desire to avoid monolithic designs.
In terms of feature sets, installation and removal were obvious necessities, and the
upgrade operation was included to accommodate the need for changing software while

preserving the data associated with each package. These ideas are present in the

65

iLearn system and the operating systems.

Several details involved in package organization for the operating systems were
intentionally not included since creating many intricate features would go against the
design goal to make the management process straight-forward for site administrators.
Considering the installation procedure, operating systems support multiple instal-
lation parameters allowing the user to specify a variety of options which would be
unnecessary for a web application. For example, the RPM allows forced installations
which will ignore conflicts, or can optionally skip dependency checking. Although
modifying the iLearn code to support this option is not difficult, it adds a complica-
tion to the system which may eventually result in an inconsistent state. Compiling a
package while dependencies are unmet would also potentially result in a variety of er-
rors including namespace and class redefinitions, missing references, and a corrupted
data model.

Another installation option the design opted to ignore is the ability to set the
installation target. Specifying the installation target is appropriate in an operating
system, but for a web application created to simplify the administrative tasks and fully
function without any knowledge of the underlying file system, allowing this detailed
parameter for installation would also be an unwanted complexity. The interface was
specifically designed in a way that the site administrator desiring a certain feature
would only have to find the appropriate package, upload the file through the web
page or retrieve it from the repository, and the installation would complete. These
arguments about installation are also applicable to the upgrade procedure which is

meant to be a simple process as well.

6.1.1 Debian Relationships

The Debian Package System supports additional weaker relationships such as sug-
gested or recommended relationships. While additional relationships were considered
in the system, the benefits did not outweigh the costs. Supporting optional depen-
dencies would create complications since the installation of a package would require

compilation with an optional reference to the suggested dependency. Should the sug-

66

gested dependency package be installed at a later date, the original package would also
require recompilation because the suggested reference would then become present.
However, the most important factor in not supporting suggested relationships is
the burden it would place on the developer. Consider installing a package with a
missing suggested relationship where package A suggests package B because of the
recommended use of a function call in package B. Compiling package A without
a reference to suggested package B (when package B is missing) would result in a
compile time error because the function would be an undefined symbol. For the
package developer to work around this and allow suggested packages to be missing,
the released code would have to include many pre-compiler directives indicating all
the possible arrangements of missing or present suggested relationships wherever any
suggested functionality is used. If and when package B is installed, the reference
would be present and package A would have to be recompiled but with a different
pre-compiler directive. While this recompilation does not seem burdensome in a
simple case, multiple suggested dependencies could cause an installation procedure

to require several compilations of packages.

6.2 EMACS

EMACS is a “real-time display editor which can be extended by the user while it is
running” [19]. EMACS is developed in a modular fashion so that users can add new
or modify existing editing commands while in the process of editing. Through the use
of collections of function names known as libraries, EMACS loads function definitions
in to a dispatch table allowing the command dispatcher to call functions by name or
by single key mappings. The iLearn package management system attempts to draw a
parallel to this design in the web application world by allowing packages to interact
through public methods. However, instead of maintaining a table of function calls, it is
more appropriate in the system to maintain a listing of namespace references because
of the differences in LISP and C#. While LISP is an interpreted language allowing
EMACS library functions to be dispatched by name, the package management system

67

must compile the C# source code with references to binary files for the public methods
to be used by other packages. This is also the reason binary files are named after
namespaces, to prevent an ambiguous binary file name to namespace correspondence.

This design is more appropriate for a web based application because of the in-
tended usage. In EMACS, a user attempting to modify an editing command but
attempts to dispatch a non-existent function will receive an error message when the
particular command is used. The analogous mistake in the package management sys-
tem would result in errors on publicly viewable web pages if a command dispatcher
mechanism was used. Therefore, it is more appropriate to prevent the improper
reference during the dependency checking phase of installation, and verify that the

function is valid during the compilation of the package’s source files.

6.3 OpenACS Package Manager (APM)

The Open Architecture Community System Package Manager (APM), now Red Hat’s
Content and Collaboration Management Community Platform [18], serves as the best
system for comparison with the iLearn package management system as they share sim-
ilar design goals. The major difference is that the iLearn package management system
added an emphasis on the design of a package repository to be integrated in to the
entire system through web services. OpenACS, like each of the previously mentioned
systems with dynamic organization of modular components, was developed before the
increased popularity of web services. This thesis not only designs and implements a
package system based on previous work in OpenACS, but introduces the beneficial
enhancements of applying web services to such a system. By allowing communication
between the package manager, repository and discussion forum through the use of
web services, the package management system no longer needs multiple disjoint lo-
cations for relevant information. This new improvement is not merely a convenience
for site administrators and developers, but offers a system capable of easily gather-
ing user feedback and comments and quickly distributing the knowledge to a variety

of audiences. This follows the open source movement’s basic idea of allowing source

68

code to be easily read and redistributed, and evolving the software based on continual

improvement.

69

70

Chapter 7

Future Work

As with any first effort towards software development, there are still improvements
that can be made in the system left for future work. Here the focus of future develop-
ment is on the web services and package repository, but also discusses considerations
to improve the package manager that have been omitted of this current version in the

interest of time.

7.1 Web Services

The web services exposed by the package repository API in section 5.2 simply be-
gin to demonstrate the usefulness of web services in a package management system.
This section indicates the possible improvements to the package repository web ser-
vices API in terms of caching for better performance, and extension for other useful

information.

7.1.1 Caching Repository Data

The most important and imminent change to the package repository web services API
is the addition and modification of methods to support caching of repository data.
This will be accomplished by overloading the repository method that retrieves every

package summary to accept a DateTime argument indicating the earliest submission

71

date that should be returned in the set of packages. Through this new method, the
package manager can simply ask for the latest updates to the repository packages to

update the local cache.

Note that the other package retrieval methods that are version specific would
become less frequently used as packages start relying on their cached data instead of
constantly retrieving real-time data. Using cached data would improve performance
and protect against the possibility of an unreachable repository, but may be relying
on stale data. In this system, the package data is unlikely to change frequently and

daily updates should be more than sufficient for a reasonably current cache.

The strategy for generating the cache of repository data for packages is equally
applicable to package comments. In a future revision of the package manager and
repository, two changes will be made to the API in relation to the web methods
for comment retrieval. In addition to simply overloading the method for getting
comments by accepting an argument the earliest timestamp, it would make more sense
to also retrieve all the comments for every package posted after a certain timestamp.
Retrieving all the comments after a certain timestamp allows the package manager
to build a complete cache of the repository data for all the comments as well as the

package summaries.

Another difference from generating a cache of package information is that com-
ments will also be more frequently posted than the submission of new packages.
Therefore in this case, synchronizing the local cache with the repository data on
a daily basis will be insufficient for displaying recent posts about a package. The
method for getting comments must accept an argument for the earliest timestamp so
that the local package manager can retrieve any of the latest comments if the reposi-
tory is available, while still relying on the cached data for performance optimization.
This approach is advantageous to the current implementation which simply retrieves
all the comments since the amount of data sent as XML through the web service will
be minimized for packages containing several comments. This also allows at least a

partial listing of comments if and when the repository is unreachable.

72

7.1.2 Multiple Repositories

Currently the assumption in the package management system is that only one reposi-
tory exists at a known iocation. As the popularity of the package management system
grows, it is possible that multiple repositories may come in to existence. To scale the
local system to accommodate the possibility of multiple repositories, it becomes more
important to implement the caching mechanism so that the package manager can
periodically collect information from the multiple known repositories. This prevents
the system from limiting itself to data from a single repository, and also maintains ac-
ceptable performance by avoiding the invocation of a web service for each repository

when querying for a large list of packages.

The issue of synchronizing package comments becomes rather difficult now that
repositories must either maintain their own comments, or act as peer distributed sys-
tems sharing the same comments. While the simple implementation is a benefit of
having repositories managing their own comments, it violates the previously stated
principle of creating a united community by instead creating several disjoint locations
for related information. The distributed commenting system approach is rather diffi-
cult to implement and requires package repositories to have knowledge of each other.
Furthermore, merging a collection of package comments would be a difficult task
to accomplish programmatically and may require human intervention to be feasibly

implemented.

The recommendation here is to avoid attempting to distribute user submitted data
between multiple locations. If the need for multiple repositories arises, the additional
repositories should only maintain a collection of packages and retrieve or post user
submitted data to a single primary repository. The primary repository, in addition
to collecting package files, has the added responsibility of maintaining the package
comments submitted by users of the system. Thus the additional repositories use
the package comment caching mechanism described in section 7.1.1 the same way a

package manager would.

Site administrators consuming web services from multiple repositories for package

73

files will thus only need one repository for comments. The primary repository guar-
antees to have the latest information while the additional repositories may potentially
have outdated cached data. Therefore, the additional repositories are sufficient for
package managers updating local caches of package comments, but the primary repos-
itory is the best source for receiving the latest comments. Alternatively, depending
on experimental usage data, the additional repositories may guarantee sufficiently
current data by updating their caches frequently enough so that package managers
may receive current data from any known repository in a scheme to distribute the
demand amongst the repositories more evenly instead of potentially overloading the

primary repository.

7.1.3 Additional Functionality

In addition to improving performance, the web services may be modified to supply a
greater wealth of information useful for site administrators. One example would be
to introduce a ratings system as a metric for how useful or popular a package is. The
package repository may also record usage information, either from user navigation on
the site or based on information sent by the package manager through web services.
Possible relevant information would be linking packages that are often used together,

or linking packages that are good substitutes.

7.2 Package Manager

Although the package manager will require modifications to make use of some of the
new web services considered in section 7.1, this section describes other changes that

would improve the local package management system.

7.2.1 Locking Packages

An important point neglected in the implementation of the package management

system is the locking of packages during operations such as installation, upgrade and

74

removal. Because of the dynamic nature of the system, and the design goal for the
mentioned operations to be simple and minimally intrusive on the site, a package
may be asked to handle a request while the package manger attempts to modify the
package. Currently the request will simply receive a 404 Not Found Error, where a
more user friendly solution is appropriate. By locking packages, the user making a
request could be redirected to a friendlier error message indicating that the particular
request for certain functionality is either under maintenance or is in the process of
being removed from the site.

This change can be implemented through the path resolution module explained
in section 4.2.8. In preparation for package modification or removal, the package
manager would register the package to be locked through the path resolution module.
Until the lock is removed, the path resolution would appropriately rewrite the path
to a standard page indicating the reason for the current request to be denied. Once
the package modification is complete, the package references will be removed in the
case of uninstalling the package, or the package operation will return to a working

and upgraded state.

7.2.2 Platform Independence

The design goals mentioned the desire to reach a broad audience through support for
multiple databases and platforms. While the current implementation handles support
for many database systems, the only supported operating system is the Microsoft
Windows platform since installation of the .NET Framework is required to compile
and run the package management system. Previously described in section 3.2.2,
support for various flavors of UNIX will be considered as the Rotor [20] and Mono
[22] projects mature and allow the .NET Runtime to function on other operating

systems.

75

76

Chapter 8

Conclusions

In conclusion, the package management system meets the design goals set forth to
create a framework benefiting web site administrators and developers. Modeled af-
ter package management systems in operating systems, EMACS and OpenACS, the
design described in this thesis has selectively implemented useful features for the
purpose of running a web based application.

The iLearn system introduces a package repository with a web service interface
creating several new possibilities for package management. Users of the package man-
agement system can not only obtain packages programmatically, but they can also
receive current information about the latest releases and dynamically resolve any
dependency issues during install and upgrade operations. This eliminates the need
for site administrators to constantly monitor repositories and message boards, tra-
ditionally at separate locations, for news about re