
A Package Management System for Web Based

Applications

by

Edmund Chou

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degrees of

Bachelor of Science

and

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2003

© Edmund Chou, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part. MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

JUL 3 0 2003

LIBRARIES
A uthor

eparA ent of Electriaal Enprinppring and Computer Science
May 21, 2003

Certified by.. J---....
Harold Abelson

-- b Ca TFellow

ir~sor

Accepted by..--
. Smith

Chairman, Department Committee on Graduate Students

BARKER

2

A Package Management System for Web Based Applications

by

Edmund Chou

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2003, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science

and
Master of Engineering in Computer Science and Engineering

Abstract

As web sites are increasingly used to provide complex functionality through web pro-
gramming, this thesis offers a solution through which modular components known as
packages provide specific features. The entire system is managed through the organi-
zation and configuration of individual packages in a modular fashion and promoting
the reusability of code components. With the additional use of a package repository
and publicly consumable web services, package management systems immediately re-
ceive current information about latest releases and user comments and feedback from
a centralized location. Developers submit completed packages to the repository so
that interested site administrators can be notified of the new addition ready for con-
sumption. Those interested in a package also participate on a discussion forum with
a web service interface, allowing both developers and administrators to easily share
feedback and comments. The result is that developers can easily receive constructive
feedback from several users to aid in the continuous improvement in released versions
of the software. By forming a united community from what would normally be a
disjoint group of developers and administrators, participants in the package manage-
ment system have access to the information and knowledge of other peers allowing
for a more productive environment.

Thesis Supervisor: Harold Abelson
Title: Class Of 1922 Professor and MacVicar Teaching Fellow

3

4

Acknowledgments

I would like to acknowledge the guidance I received in writing this thesis from Prof.

Hal Abelson who offered his invaluable advice. Credit is also due to David Mitchell

and Eric Carlson for their visions in project management which helped me with my

feature design. Hal, Dave, and Eric all have had a significant role in every positive

experience associated with the iCampus Project.

I would also like to thank Al Essa, Andrew Grumet and Tracy Adams for their

constant support throughout the design and development of this project. They have

given me the rare opportunity to work on the starting phases of a project with the

potential to grow in to something very special, and for that I am grateful.

Finally on a more personal note, I have always believed that my friends and family

have a profound effect on the sculpting of my personality over the years of my life. To

my father, mother and sister who have always had faith in my abilities, to my friends

who taught me the things I could not learn just by attending class, I thank you all.

5

6

Contents

1 Introduction

2 Scenario

2.1 Site Administration .

2.1.1 Installation and Upgrade .

2.1.2 Context Creation and Path Resolution

2.1.3 Contexts and Settings .

2.1.4 Uninstall .

2.1.5 Dependency Relationships .

2.1.6 Repository Community .

2.2 Web Site User .

2.2.1 Portlets .

2.2.2 Path Resolution .

2.3 Package Development .

2.3.1 Contexts .

2.3.2 Dependency Relationships .

2.3.3 Multiple Database Support

2.3.4 Package Repository .

3 Overview

3.1 Design Goals .

3.1.1 Packages.. .

3.1.2 Package Manager .

7

15

17

17

18

19

22

24

24

26

26

27

27

27

28

28

28

28

31

31

32

33

3.1.3 Package Repository . 34

3.2 Implementation . 35

3.2.1 Microsoft .NET . 35

3.2.2 Platform Independence . 35

3.2.3 Database Support . 36

3.2.4 Development Software . 36

4 Package Management System 37

4.1 Packages . 37

4.1.1 Naming Conventions . 38

4.1.2 File System Structure . 38

4.1.3 IPackage Interface . 40

4.1.4 Package Configuration File . 42

4.1.5 Versioning . 43

4.2 Package M anager . 43

4.2.1 Data Model . 44

4.2.2 Class Structure . 44

4.2.3 Installation . 49

4.2.4 Upgrade . 49

4.2.5 Dependency Resolution . 51

4.2.6 Uninstall . 54

4.2.7 Contexts and Settings . 54

4.2.8 Path Resolution . 55

4.2.9 Portlets . 56

4.2.10 W eb Based User Interface . 58

5 Package Repository 59

5.1 Functionality . 59

5.1.1 Community Site . 60

5.1.2 W eb Services . 60

5.2 W eb Services API . 61

8

5.3 Package Management Integration . 62

5.3.1 Feedback and Community . 63

5.3.2 Obtaining Packages . 63

5.3.3 Dependency Resolution . 64

6 Comparison with Related Work 65

6.1 Operating Systems . 65

6.1.1 Debian Relationships . 66

6.2 EMACS 67

6.3 OpenACS Package Manager (APM) 68

7 Future Work 71

7.1 Web Services . 71

7.1.1 Caching Repository Data . 71

7.1.2 Multiple Repositories . 73

7.1.3 Additional Functionality . 74

7.2 Package Manager . 74

7.2.1 Locking Packages . 74

7.2.2 Platform Independence . 75

8 Conclusions 77

8.1 Obtaining the Code . 78

A Package Configuration File 79

9

10

List of Figures

2-1 Package

2-2 Package

2-3 Package

Services

2-4 Package

2-5 Package

Manager Web Interface Default Page

Manager View of Repository Packages through Web Services

Manager View of Repository Package Upgrades through Web

Manager Web Interface Default Page after Install and Upgrade

Manager Web Interface for Context Setting Configuration . .

2-6 Workflow for Required Dependency Resolution during Installation

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

Standard Package Directory Structure

IPackage Interface Definition

Sample Namespace Property in IPackage

Sample Request Resolution in IPackage

Package Management System Data Model

PackageManager Class Diagram

PackageProfile Class Dependency Diagram

IReport Interface Definition

Package Manager Installation Procedure

InstallPlan Class Diagram

Dependency Resolution for Multiple Package Installations.

Sample Code-Behind Page Demonstrating Contexts

Work Flow of the User Interface of the Package Manager .

5-1 Package Repository Web Services

11

18

20

21

21

23

25

. 39

. 40

. 40

. 42

. 45

. 46

. 47

. 48

. 50

. 51

. 52

. 57

. 58

61

12

List of Tables

2.1 Site M ap . 22

2.2 Configurable Package Context Settings 23

13

14

Chapter 1

Introduction

The growth of the Internet has resulted in the birth of services and functionality

offered by several web sites with an overlapping set of features. Despite multiple web

sites requiring the use of similar systems such as message boards or calendars, new

code is often written by web software programmers to replicate a feature previously

developed elsewhere. Needless to say, the time and resources of talented programmers

could be saved if web sites were able to collaboratively share a set of functionality by

reusing completed code that has been thoroughly tested by a community of users.

This situation would greatly benefit from encapsulating individual features as

packages and using a central package manager to fully configure and maintain a web

site. Having a notion of packages providing common features to a web site would allow

administrators to quickly and easily modify the site structure with minimal knowledge

of the underlying code. With the added flexibility from the package management

system, administrators can effortlessly customize aspects of the behavior and layout

of their sites, and the modular design limits the effect of modifications to individual

components of the site rather than affecting a monolithic structure in its entirety.

Furthermore, common packages could be distributed and incorporated in to other

web sites with minimal effort as well. The model of wide distribution and usage of

single components allows developers to create a single package serving functionality to

be duplicated at multiple locations. Employing the principles of code reusability and

modularity, package developers can collaboratively participate in creating a network

15

of features in an efficient and effective manner.

The goal of this thesis is the development of a package system capable of effectively

reusing and managing software in web based applications. While a significant portion

of this thesis is focused on the process of package development and the design of the

local management system, an innovative use of packages at the repository level and

web services makes this system unique with respect to existing package management

systems. The introduction of web services to a package system integrates all the

aspects of the system and forms a community focused on the development, usage

and discussion of packages leading to code being widely used, thoroughly tested and

reviewed, and further improvement. The entire system described will be used in

conjunction with the iLearn system under the iCampus [9] research alliance between

MIT and Microsoft Research.

Chapter 2 introduces the benefits of the package management system and the

scenario for users of the system. Chapter 3 gives an overview of the problem by

describing the design goals and implementation for the iLearn package management

system. Chapters 4 and 5 provide greater detail about the features and designs of the

package management system and package repository respectively. Chapter 6 com-

pares the resulting system with the designs of related work and Chapter 7 describes

future steps and possible improvements, particularly with the services supported by

the package repository. Finally, Chapter 8 will conclude this thesis.

16

Chapter 2

Scenario

The encapsulation of web site functionality in to an individual package allows the

application of code reusability to benefit web site administrators and developers. This

chapter focuses on the specific usage scenarios of the package management system,

demonstrating the power and importance of such a system for site administrators and

developers, as well as how the repository based on web services can further enhance

the end user experience.

2.1 Site Administration

Site administrators face the problem of being unable to effectively specify the desired

behavior and functionality associated with their managed sites. They want a system

that allows them the ability to configure the available features of a web site, with out

modifying the associated code or causing massive disruptions to their site. By tak-

ing advantage of previously developed web site components in the form of packages,

site administrators can solve this problem by dynamically adding, modifying or re-

moving functionality through a simple web based user interface. Additional features

of the package management system such as path resolution, contextualization and

configuration settings allow site administrators the flexibility they need.

Using the web based user interface, a site administrator starts at a default page

displaying a summarized list of installed packages. Consider an administrator who is

17

Packages currently installed on the system:

The Calendar package is used to manage appointments which
occur on time periods specifiable by date and/or time.

Version Notes: (None)

Photo Album, version 2.2.0 (Released: 02-18-03)

Photo Album organizes digital images to allow easy browsing,

Version Notes: Added support for thumb nails and folders;
Allow customization for displayed images per page.

Discussion Forums. version 10-BETA (Released: 02-03-03)

Discussion Forums allows users to read and post messages to
a community bulletin board.

Version Notes: Greater stability over ALPHA release.

Figure 2-1: Package Manager Web Interface Default Page

managing a simple community site focused on sharing and discussing digital photog-

raphy images. The administrator has a site with packages for calendars, discussion

forums, and photo albums as illustrated in the sample default page in Figure 2-1.

The purpose of the default page is to summarize the current state of the system, and

the features available at the site.

2.1.1 Installation and Upgrade

To extend the available functionality available at the photography community site,

the site administrator can either install a new package or upgrade an existing pack-

age. The simplest case for these procedures is where the administrator uploads a

new package file to the system for installation or upgrade. However, this use case

requires the administrator to have knowledge of the new packages and furthermore

18

had previously downloaded the relevant package files. This is a drawback to several

package management systems, but the introduction of web services at the package

repository will create a more usable environment.

The repository provides the additional benefit of allowing administrators to use

web service queries in order to obtain lists of available packages for installation or

upgrade. Figure 2-2 shows a sample full repository listing of package summaries, and

Figure 2-3 shows a listing of summaries indicating which packages may be upgraded.

From these pages, the site administrator can select a package then have the package

manager retrieve the file from the repository and appropriately start an installation

or upgrade process. Although the available functionality on the package upgrade page

is a subset of that on the full repository package listing, the upgrade page provides a

more concise view of packages likely to interest the site administrator.

Suppose the site administrator follows the appropriate links to install or upgrade

additional functionality on the site. After installing a Community Directory package

and upgrading the Discussion Forums package to the release version, the default page

will display the new state as illustrated in Figure 2-4. A new entry for the installed

Community Directory package is now included, and the new version of the Discussion

Forums package is reflected in the list of packages.

2.1.2 Context Creation and Path Resolution

Although several packages are present on the site, contexts must be created and

mounted for the packages to be publicly viewable. A context or instance of a pack-

age is an isolated usage of the package's functionality independent of the data and

configuration settings associated with other contexts. By mounting a context at a

named URL, visitors to the site will be able to view package contexts derived from

intelligible names through the path resolution mechanism.

Table 2.1 shows a sample site map that would associate URLs with the specific

package contexts. Mappings can be created automatically during various events or

manually by site administrators. For example, in the site map given in Table 2.1,

the user registration process follows the default behavior of creating a single context

19

The following packages were located at the repository:

Action: View details of current installation

Discussion Forums, version 1.0 (Released: 02-20-03)

Action: Upgrade to this version

Discussion Forums, version 1.0-BETA (Released: 02-03-03)

Action: View details of current installation

Discussion Forums, version 1.0-ALPHA (Released: 01-25-03)

This package is out of date.
Action: View details of current installation

Photo Album, yersion 22,0 (Released: 02-18-03)

Action.- View details of current installation

Photo Album, version 2.0 (Released: 02-12-03)

This package is out of date.
Action: View details of current installation

This package is out of date.
Action: View details of current installation

Action. Install this package

News, version 1ofa (Reeased 02-02t03)

Action: Install this package

Figure 2-2: Package Manager View of Repository Packages through Web Services

20

The following packages can be upgraded:

-Action: Upgrade
to this version

Figure 2-3: Package Manager View of Repository Package Upgrades through Web
Services

Packages currently installed on the system:

Calendar, version 1.0 (Released: 02-10-03)

The Calendar package is used to manage appointments which
occur on time periods specifiable by date andlor time.

Version Notes: (None)

Photo Album organizes digital images to allow easy browsing.

Version Notes: Added support for thumb nails and folders;
Allow customization for displayed images per page.

Discussion Forums allows users to read and post messages to
a community bulletin board.

Version Notes; Fixed various bugs from ALPHA and BETA.

The Community Directory package is used to find other users
by searching or browsing listings.

Version Notes: (None)

Figure 2-4: Package Manager Web Interface Default Page after Install and Upgrade

21

Context ID Package Name Context Name URL

100 Discussion Forums Photo Discussions /photo-forum
101 Discussion Forums Equipment Comparison /equipment-forum
102 Discussion Forums Miscellaneous /misc-forum
103 Photo Album Alice's Photo Album /alice/photos
104 Photo Album Bob's Pictures /bob/photos

200 Calendar Alice's Calendar /alice/calendar
201 Calendar Bob's Calendar /bob/calendar

300 Community Directory Directory /users

Table 2.1: Site Map

for each of the Photo Album and Calendar packages and mounting them under a

URL derived from the name of the user. However, a web user with the required

authorization, presumably the site administrator, could edit the mapping to use a

different URL, or create an additional mapping used as an alias to a context. Finally,

a context can be unmapped and removed if, for example, a user decides that he does

not require usage of the Calendar package.

2.1.3 Contexts and Settings

Package contexts can be used to customize the feature usage granularity on the site

by specifying the number and location of mounted packages. An additional capability

in the contextualization of packages is the customized settings unique to each context,

as shown in the sample settings in Table 2.2. The site administrator has modification

access to the settings associated with each context, allowing for customized behavior

in the various parts of the site.

For example, of the three Discussion Forum package contexts, the context for

photography discussions has been configured to be moderated since the administrator

wants to protect against the possibility of users being overly harsh and critical of other

works. Other customizations are simply based on user preferences, as shown in the

separate contexts for user photo albums. While Alice prefers the use of thumbnails

22

Table 2.2: Configurable Package Context Settings

Photo Album organizes digital
images to allow easy browsing.

Contexts:
103 - Alice's Photo Album
104 - Bob's Pictures

Show Thumbnails = True
Images Per Page = 10
Local Directory* = photo-uploads

*Gobal Setting

Show Thumbnails False
Images Per Page = 100
Local Directory* = photo-uploads

Figure 2-5: Package Manager Web Interface for Context Setting Configuration

for browsing images and displaying only a small number of images per page, Bob

would rather have many images per page but without the use of thumbnails.

Also note that configuration settings can be global, usually for the case of system

wide settings for a package. This is also illustrated in Table 2.2 where the Photo

Album package requires a configuration setting for the local directory where uploaded

images will be stored relative to. As shown in the example, uploaded images are

stored relative to the local directory named photo-uploads and changes made to

this configuration setting will affect all other contexts as well.

The web interface for this feature is illustrated in Figure 2-5 where the package

details page has a list of contexts and links to configure the individual contexts.

23

Context ID Context Name Setting Name Is Global? I Setting Value

100 Photo Discussions Is Moderated? False True
101 Equipment Comparison Is Moderated? False False
102 Miscellaneous Is Moderated? False False
103 Alice's Photo Album Show Thumbnails False True
103 Alice's Photo Album Images Per Page False 10
103 Alice's Photo Album Local Directory True photo-uploads\
104 Bob's Pictures Show Thumbnails False False
104 Bob's Pictures Images Per Page False 100
104 Bob's Pictures Local Directory True photo-uploads\

2.1.4 Uninstall

Now consider the situation where the administrator realizes that members of the

photography web community rarely use the functionality supplied in the Calendar

package. Instead of individually removing each of the package contexts on the site,

the site administrator can simply uninstall the Calendar package which will delete

the contexts and remove the functionality from the site.

2.1.5 Dependency Relationships

While the usage scenario for package management seems simplistic for basic installa-

tions and removals, the nature of software development is that dependency relation-

ships are common between separate components. Especially in the package system

where components implement a specific functionality, there may be several require-

ments for a package installation since it depends on the features in other packages.

This dependency is called a required dependency.

To demonstrate the role of required dependencies on the system, suppose the site

administrator wishes to install a Photo Album Bookmarks package which requires

that the Photo Album package is installed. For the sample site configuration in Fig-

ure 2-4, the installation would proceed normally since the required dependency is

present. However, if the Photo Album package was not previously installed, the site

administrator will be prompted to resolve the dependency and install a compatible

version of the Photo Album package either by uploading the package file or retriev-

ing the package from the repository through web services. Again it is expected that

system administrators will perform dependency resolution through the packages re-

trieved from the repository. As with a basic installation procedure, the web services

eliminate the need for the site administrator to search for the correct package and

obtain a local copy to upload to the package manager.

The workflow of this required dependency resolution process is shown in Figure 2-

6, and can be extended for the installation of a more complicated web of required

relationships. The specific mechanism for the general case is described in detail in

24

Begin install of Photo Album
Bookrarks package

kRsquiras Photo Aburn)

Is Poto lbur preentUpload Photo Album Select Photo Album package
s Phto bumpreenpackag file? version from repository

Instll PotoAlbuall Photo Album package -
package

Done]

Figure 2-6: Workflow for Required Dependency Resolution during Installation

section 4.2.5. There the dependency resolution implementation is considered in depth

since required dependency relationships may result in the installation of multiple

packages in one procedure, where the order of commands must be correct for a working

system.

The opposite of a required relationship is a conflicting relationship where two

conflicting packages cannot both be present on a system at any time. This rule is

enforced during the installation and upgrade processes, and displays an error mes-

sage to the site administrator if any attempts are made to add a package conflicting

with any currently installed package. Suppose the site administrator finds a Message

Board package which conflicts with the Discussion Forum package because they have

conflicting namespaces. An unchecked installation would result in broken pages due

to ambiguous naming of namespaces and classes. Therefore, if the site administra-

tor carelessly attempts to install the conflicting Message Board package, the package

manager will refuse to install the package and display a message indicating the vio-

lated relationship.

25

2.1.6 Repository Community

As demonstrated in the installation and upgrade processes, the package repository

offers useful web services allowing site administrators to easily keep their packages up

to date. Furthermore the repository allows dependency resolution so that required

components can be easily retrieved and installed. Finally, the repository also al-

lows site administrators to participate in community discussions through their local

package management pages so that users and developers of the package management

system can share their knowledge with each other.

The package community discussion focuses on particular packages and the site

administrator can simply view or submit comments through the package details page.

Although the comments are actually stored at the repository, web services make it

possible for the site administrator to easily obtain relevant information associated

with a package.

One important case where this is useful is the ability to quickly share knowledge

about a package, for example, if a bug is found. When a site administrator discovers

a bug in a package, he can simply submit a comment describing the problem and

any relevant fixes through the details page of the faulty package. Other users of the

package management system will also receive the message and be able to make the

precautionary fix as well. The package developer, upon receiving the notification of

a bug, can also make changes to the package and respond by releasing a new version

with the fix. Once the package is placed in to the repository, it becomes available to

all the users of the package management system.

2.2 Web Site User

Certain features of the package management system are intended to create a more

user friendly experience. Since the package management system is intended for web

based applications, particularly community web sites, this section describes how the

package system creates a usable environment for a member of the web site.

26

2.2.1 Portlets

Since packages generally have components intended for display through web pages,

they may optionally supply custom controls providing a summarized view of the

package. These custom controls known as portlets are intended to contain the most

recent or important data associated with a package for placement on portal or other

aggregation pages. Portlets have the ability of being contextualized, thus users can

customize the layout and content of their personal portals.

2.2.2 Path Resolution

The path resolution mechanism not only serves as a mount point for a package context,

but also allows pages to be served at human readable URLs. This feature is an

aesthetic benefit for users who type URLs directly in to their browsers, or wish to

save readable URL bookmarks.

2.3 Package Development

The package management system is only useful if developers create packages to be

used for web sites. Therefore, a package system without benefits for the developer

would be unsuccessful since the community would never develop. The process of

creating a package is intended to offer many benefits to the package developer in

terms of convenience and core functionality so that programmers can exploit the

features to expedite their development and release cycles.

Mainly the argument for using a package system is that the modular design is more

manageable and flexible than a large monolithic design. The package management

system is the framework that allows developers to collaboratively work on individual

components rather than forming complicated intricate dependencies in a large system

that will inevitably be inadaptable to the variety of needs that web site administrators

demand. Here we discuss the more detailed advantages of using the features supported

by the package model from the perspective of the developer.

27

2.3.1 Contexts

Since the package management system understands the concept of package contexts,

the framework simply informs the package of the current context. This eliminates

the burden on the developer to organize the package contexts or attempt to support

multiple installations; instead the developer uses the assigned context to retrieve and

apply any configuration settings.

2.3.2 Dependency Relationships

Developers who wish to develop packages for the system will be able to include the

functionality in other packages by specifying a required dependency. This prevents

developers from reinventing solutions so they can decrease their development time

and efforts.

2.3.3 Multiple Database Support

Web site developers often face the difficultly of supporting multiple database plat-

forms since subtle differences in database architectures may result in data models

being incompatible across multiple systems. To alleviate this problem, the pack-

age manager supports the usage of a library to abstract the database type from the

developer.

2.3.4 Package Repository

The benefits of participating in the package repository community are two fold. First

the package developer has access to a medium where completed work is quickly and

easily distributed to a large audience of users. Since the repository can be accessed

by other package management systems through web services, site administrators can

immediately browse recently submitted packages and make use of the developer's

work.

The second advantage of the package repository is that the wide audience cre-

ates a community of site administrators willing to use and test the new functionality.

28

The site administrators who share feedback will provide useful information to de-

velopers about the positive and negative points of the package, as well as possible

improvements for future versions.

29

30

Chapter 3

Overview

Principles such as modularity and code reusability are not new to software system

designs. The concept of a package manager has in fact been applied to other systems

to achieve these design goals. Here we discuss the design goals and implementation of

our own system, some based on the existing systems involving the dynamic addition

and removal of componentized pieces of software, while others are emphasized for the

purposes of a web based application. The design goals are also focused on creating a

system to exploit the introduction of web services to a package system for the benefit

of site administrators and developers.

3.1 Design Goals

The goal of this thesis is to provide a package management system that simplifies

usage for both developers and web site administrators. Ease of use through basic

operations is an important aspect, but without losing the ability to make packages

customizable and flexible in terms of both implementation and functionality. To fur-

ther enhance the usability aspect of such a system from previous work, user feedback

in a community type environment will be used to ensure that developers and ad-

ministrators can be quickly alerted of recent developments and discoveries related to

packages relevant to their usage.

This thesis will incorporate several important ideas from the OpenACS system

31

[16, 17]; however, this is certainly not a port of an existing system. Although we

will borrow several ideas for a local package management system, this thesis will offer

ways to improve web site package administration through the use of web services

interaction with a central package repository in conjunction with the local system,

further described in section 6.3. Following the scenario description in Chapter 2, we

can now specify and define the design goals of the local package management system.

3.1.1 Packages

As with the previously described package management system, a package is a mod-

ular encapsulation of a single functionality or feature for usage in the system. A

calendar system, a message board or a pluggable authentication module are all pos-

sible examples of packages. This separation of functionality is beneficial for the web

site administrator who can easily manage individual components by installing new

packages, removing unused or obsolete packages, and upgrading individual packages

to their latest versions. Developers also benefit since writing code to modify or add

behavior to a site affects only individual packages and their dependencies.

Since a package may implement a specific feature that should be duplicated on a

web site, the design must support the ability to contextualize and mount packages.

By this we mean that installing a package simply means that the functionality exists

in the system. However, to activate the package at a viewable URL, the site admin-

istrator must create a context of the package mounted at a URL mapping through a

web based user interface. Several contexts of a package can be made, unless a package

specifies that it is a singleton type meaning it allows at most one context.

The design supports package contexts so that web sites can easily duplicate func-

tionality. An example would be the use of message boards on an educational web

site where each class would have their own message board for group discussions. In

this usage scenario, each class would have a mounted context of a message board, so

that the message board package would be installed once on the system, but used in

multiple contexts.

A further benefit to this design is that individual contexts may have their own

32

configuration settings. Each package defines the configurable parameters that are

unique to separate contexts. Following the example of multiple message boards for

classes on an educational web site, the message board package could perhaps supply

configuration parameters for threaded view, access control, background color and

other miscellaneous user interface settings. The point here is that individual contexts

are not only independent of each other in terms of content and data, but can be

contextualized by their configuration settings as well.

3.1.2 Package Manager

The package manager is the mechanism by which packages are organized on the sys-

tem. A major design goal with respect to the coordination of individual packages and

their associated files is to provide a package management system that simplifies the

operations of package installation, upgrade, and removal for web site administrators.

The primary interface will be a web based user interface, but these operations should

be exposed by an API that allows future developers to create other interfaces such as

command line tools and windows based applications.

There are several complications with the package operations that must be con-

sidered by the package manager. The most important consideration when package

installations are modified on the system is the management of their dependency re-

lationships. Since packages are designed to contain specific functionality rather than

supplying an entire collection of features, it will be quite common for packages to

depend on other packages for certain functionality. This type of relationship is a

required dependency where a package cannot be installed if the dependent package is

not also included in the system. Similarly, a package that is depended on by another

cannot be removed from the system.

The opposite of a required relationship is a conflicting relationship. As the name

implies, in this case, conflicting packages may not both be simultaneously present on a

system because they have known issues that prevent proper functionality. Conflicting

relationships are only relevant during the installation and upgrade operations since

package removal will never violate a conflicting relationship.

33

3.1.3 Package Repository

Existing package management systems have a web repository of packages as well as

a newsgroup or discussion board for users to ask questions and post feedback about

packages. The design goal of creating a package repository system to facilitate the

distribution and use of packages is therefore not a new idea for package management.

The new innovation is actually the use of web services so that the centralized package

repository hosted at a known location is capable of communication with the package

management systems.

Other existing package management systems provide the repository and discussion

functionalities on the web, but in disjoint locations making it less trivial to determine

where relevant information could be found. Placing a web services API exposing key

functionality of the repository allows the package management system a great wealth

of functionality to simplify administrative tasks. Package installation and upgrade

procedures query the repository for a list of missing required dependencies, allowing

administrators to automatically download additional packages. The package manager

also displays a list of packages which may be upgraded to a newer version by obtaining

a list of the latest packages from the repository.

Another useful application of web services is the sharing of information between

all the users of the package management system. The web based user interface of the

package management system displays all the comments and feedback about particular

packages retrieved from the repository, serving as a discussion board integrated in to

the site administrator's view of the local system. Site administrators may also use

web services to post feedback and comments so that other users of a package may

benefit from the information, or developers can quickly receive constructive criticisms

or praise for their work.

The design is meant to support a web interface and supply the functionality de-

scribed. Beyond the scope of this design, but potentially useful web services in such

an application may include a ratings system for packages, information regarding usage

statistics of a package, or popular alternatives for particular packages. More detail is

34

given about possible extension of the web services API in section 7.1.

3.2 Implementation

The implementation of the package management system takes in to account the spec-

ified design goals. An important aspect to choosing the implementation details is the

desire to make the system easily adaptable for users accustomed to different software

in terms of database and development environment. The intention is to create a

system with fewer barriers of entry in hopes of adoption by a wide audience.

3.2.1 Microsoft .NET

Since web services play a significant role in the package management system, the

development platform of choice was Microsoft .NET. The web pages were created

using ASP.NET and all source code is in C#, so the .NET Framework Software

Development Kit (SDK) [10] is a required portion of the installation. Development

work was primarily done in Microsoft Visual Studio .NET on Windows XP, while

serving pages from an Internet Information Services (IIS) web server backed by an

SQL Server database. Although it is expected that this is a similar configuration to

what most users of the system will use for development or production environments,

here we discuss the alternatives for users wishing to use non-Microsoft software.

3.2.2 Platform Independence

The package manager currently requires running on the Microsoft Windows platform

mainly because the .NET Framework requires installation on Windows. However, the

Microsoft Shared Source Common Language Interface (CLI) Implementation (code

named "Rotor") [20] and the Ximian Mono Project [22] both show great potential to

allow support for the .NET Framework and thus the package management system on

other platforms in the future. At the time of development, the priority was to create

a working system for the Windows platform, and consider ports to other platforms

35

when the Rotor and Mono projects have matured.

3.2.3 Database Support

To avoid locking in users to a Microsoft SQL Server database, all database interaction

in the system is abstracted through the iLearn multi-database API which hides the

specific database type backing the system. The library offering this support was writ-

ten by Andrew Grumet and can be seen by obtaining the source code and compiling

the documentation. For more information, see section 8.1 for instructions to access

the code through CVS.

By using the multi-database package, developers place named queries in XML

files segregated by queries that are specific to SQL Server, Oracle or PostgreSQL,

or use standard SQL92 syntax. When executing a database command, the multi-

database package uses the correct query depending on which database is installed on

the system. Through this mechanism, the package manager and other packages can

rely on the multi-database code to easily support multiple databases.

3.2.4 Development Software

Rather than forcing users to type long compilation commands using the Microsoft

C# compiler bundled with the Microsoft .NET Framework, we require NAnt [12]

as the build environment for usability purposes. NAnt is a free .NET build tool

allowing the use of scripts conforming to an XML specification to build the source

code for the package manager and packages. Through NAnt and the associated

scripts, packages include build files that specify the source files, references and other

parameters required to properly compile the source.

By separating the build and text editing environments, developers can use their

text editors of choice. Thus package developers who wish to use Microsoft Visual

Studio .NET as their development environment for editing and building may do so,

and those who prefer other text editors and simply use NAnt for compilation.

36

Chapter 4

Package Management System

Before discussing the package repository and the exposed web services, this chapter

describes the design details of the local package management system. This includes

the specification of packages, and the workings and features of the package manager.

4.1 Packages

As mentioned earlier, packages provide the functionality to be used in a system or-

ganized by the package management system. These modular code components are

responsible for implementing specific features and give site administrators the power

to easily modify the feature set of their web site by installing, removing, or upgrading

packages.

Packages are distributed as single ZIP compressed files conforming to an expected

specification set forth by the package manager. Here we discuss the expectations of a

package including naming conventions, implementation of the package interface, file

system structure and the XML specification file describing the properties of a package

release.

37

4.1.1 Naming Conventions

Because namespaces must be unique to a particular application, we make use of the

package's namespace for several conventions. We also set the convention that packages

are nested under the ILearn.Packages namespace. The distributed package file is

named after the namespace and may optionally be followed by the version number for

the package separated by a hyphen. For example, the fictitious package MyPackage

whose namespace would be ILearn. Packages. MyPackage could be distributed in a

file named ILearn. Packages. MyPackage . zip or assuming that the version number

is 1.0, ILearn.Packages.MyPackage-1. 0.zip.

Packages are rooted at subdirectories also named after the namespace. However,

because serving web pages from subdirectories whose name contains a period causes

problems for IIS, the convention for the root directory is to replace periods with

underscores. The sample package would therefore be rooted at a directory named

ILearnPackages-MyPackage. Note that the version number is not included in the

package root directory.

Finally, it is expected that all the standard files are named after the namespace

with the appropriate extensions. These files include the NAnt build file, the Microsoft

Visual Studio solution and project files, and the standard package configuration file.

Section 4.1.2 describes the placement of files within the root directory, and section

4.1.4 describes the package configuration file.

4.1.2 File System Structure

The standard directory structure format is to separate files based on their function

as shown in Figure 4-1. The lib subdirectory contains C# code supplying backend

functionality. ASP.NET pages and their code-behind files are placed in the www

subdirectory. The www subdirectory also contains any other files associated with user-

visible pages such as custom controls and images. The sql subdirectory contains the

XML files containing named queries to be used for multi-database support described

in section 3.2.3.

38

ILearnPackagesMyPackage\

+ -- lib\

I I
I + -- MyPackage.cs

+ -- sql\

+ -- oracle\

I I + -- ILearn.Packages.MyPackage.xml

I I
I + -- postgresql\

I I I
I I + -- ILearn.Packages.MyPackage.xml

I I
+ -- sql92\

I + -- ILearn.Packages.MyPackage.xml

I + -- sqlserver\

+ -- ILearn.Packages.MyPackage.xml

+ -- www\

I
I + -- default.aspx

I + -- default.aspx.cs

+ -- ILearn.Packages.MyPackage.build

+ -- ILearn.Packages.MyPackage.config

+ -- ILearn.Packages.MyPackage.csproj

+ -- ILearn.Packages.MyPackage.sln

Figure 4-1: Standard Package Directory Structure

39

string naI espace -get;
voCid RegisterNewContext (_'ona Id, strig nare);
void Regis terDeletedCorntext(Lcig id)
vn-id IntallPackage);
vo idc UpgradePackage (string oldVesion);
void Unins tall Package
Re3o1vedRequest Reso veittpRequest (tig relativePath);

Figure 4-2: IPackage Interface Definition

namespace ILearn.Packages.MyPackage
{

public class MyPackage : ILearn.Core.Packages.IPackage
{

public string Namespace
{

get { return typeof(MyPackage).Namespace; }
}

}
}

Figure 4-3: Sample Namespace Property in IPackage

The package manager expects to find the configuration and setup files in the root

directory of the package. These files include the NAnt build file, solution and project

files used with Microsoft Visual Studio, and the package configuration file.

4.1.3 IPackage Interface

For a package to be managed by the package management system, the package must

adhere to the IPackage interface definition by supplying a class that implements

IPackage from the ILearn. Core. Packages namespace, shown in Figure 4-2. The

most basic method a package must implement is the property to return the namespace

of the package by using a hard coded string or supplying an implementation based

on the sample code in Figure 4-3.

The installation and removal methods provide an opportunity for package imple-

mentations to perform custom actions during the installation and removal phases of

40

a package. The most common usage of these methods is the creation and deletion of

database tables used specifically by the package. IPackage also requires an implemen-

tation of the upgrade method which accepts the old version string being upgraded.

The purpose of this method is to make any changes to the system necessary for the

upgrade. For example, an upgrade may require the creation of new database tables,

the removal of old tables or copying data between tables. This allows the package

to supply a customized method to preserve data that should be maintained in an

upgrade process.

Another purpose of the IPackage definition is to perform any custom actions

during the creation and deletion of the package contexts. During the creation or

deletion of a package context, the package manager will register a new or deleted

context supplying the context identifier and the name where necessary. Note that

the package implementation does not have to create or remove the package context

settings since those values are maintained by the package manager. For more detail

about package contexts and context settings, refer to section 4.2.7. The intentions

of these methods were to allow the package implementation to initialize any context

data, or remove generated data as a result of context creation and usage.

Finally the package must be able to resolve HTTP requests by implementing the

request resolution method. Since the functionality of the site is componentized by

the package management system, the ILearn. Core . PathResolut ion namespace in-

cludes an implementation of System. Web. IHttpModule to handle the BeginRequest

event to resolve requests for server objects. During the handling of this'event, the

implementation of IHttpModule calls the custom request resolution method of the

requested package, supplying the relative path of the request. Refer to section 4.2.8

for more information about path resolution in the package management system.

Because it is expected that most packages intend on resolving the request by re-

turning the corresponding page from the www subdirectory according to the standard

directory structure as specified in section 4.1.2, the ILearn. Core. PathResolut ion

namespace supplies an AbstractRequestResolver class supporting this default be-

havior. Packages adhering to the naming convention of placing displayable files under

41

namespace ILearn.Packages.MyPackage

{
public class MyPackage : ILearn.Core.Packages.IPackage

{
public ResolvedRequest ResolveHttpRequest (string relativePath)

{
AbstractRequestResolver arr = new AbstractRequestResolver(

this .Namespace

return arr.ResolveHttpRequest(relativePath);

}

}
}

Figure 4-4: Sample Request Resolution in IPackage

the www subdirectory can implement the custom request resolver following the sample

implementation in Figure 4-4. Of course packages are free to use their own cus-

tom implementations if their request resolution scheme is different from the default

behavior.

4.1.4 Package Configuration File

Each package must supply a package configuration file named after the package names-

pace. The configuration file is an XML file used to describe the package properties

such as name, description, version, contact, information and type. The configuration

file also defines the dependency relationships the package has (conflicts and require-

ments), describes the portlets supplied with this package, and lists the configuration

settings to be managed by the package manager. Finally, the package configuration

lists files and references for compilation during installation, or optionally specifies a

NAnt build file or Microsoft Visual Studio solution file to use for compilation. Ap-

pendix A provides the detailed specification of the XML configuration file.

42

4.1.5 Versioning

Rather than force each package in to a standard versioning scheme, the package man-

agement system allows each package to specify its version number as a free form

string. However, this imposed the difficulty of attempting to compare version strings

within packages. For example, it would be difficult for the package manager to pro-

grammatically determine the relative recentness of packages with the versions "1.1",

"1.1.6", "1.02" and "1.1-Beta" which are all legal version strings.

One solution was to use the release date in the package specification, but this

scheme would prevent package developers from releasing versions out of order. To

solve this problem, each package is required to specify a serial which is an integer

used by the package manager to compare versions where a larger serial indicates a

newer package. The serial also allows a more robust mechanism of specifying package

dependency versions where asterisks can be used as wildcard characters ("1.*" would

specify any package version string starting with "1.") or comparison operators can

be used with the serial (">10" would specify any package with a serial greater than

10).

4.2 Package Manager

The package manager refers to the user interface and backend functionality available

to web site administrators that organizes the packages on the local system. The

operations supported by the package manager for organizing packages on the system

are installing, removing and upgrading packages. These operations also include a

dependency resolution and checking mechanism to verify that package operations

will not cause the system to be in a state where package relationships are unmet.

To make the package system more flexible, the package manager also handles the

notion of package contexts and their configurable settings. Finally, since the package

manager is geared towards usage for a community web site, packages may optionally

include portlets. Portlets are custom controls providing a summarized view of a

package context for the purpose of placement on a portal or aggregation page.

43

This section begins with an overview of the package implementation with a data

model and class structure, and then continues to describe each of the operations

and features of the package management system. Finally, the section ends with a

description of the user interface for package management.

4.2.1 Data Model

Figure 4-5 shows the data model used by the package management system. The

core-metadata table is part of the iLearn core object system written by Andrew

Grumet, and for the purpose of this data model is used to provide unique primary

keys for the package-properties, package-portlet and package-context tables.

When a package is added to the system through installation, appropriate entries are

inserted in each of the relevant tables to store the specified configuration of a pack-

age. The creation of a package context inserts a row in to the package-context

table, and also inserts the appropriate context configuration setting values in to the

package-context-setting table. To uninstall a package, the package manager exe-

cutes these commands in the reverse order to remove the database entries and ulti-

mately the package from the system.

4.2.2 Class Structure

The main functionality of the package manager is encapsulated in the PackageManager

class of the ILearn. Core . Packages namespace. As shown in Figure 4-6, the package

manager contains public static methods intended to be used by the web based inter-

face for the package management operations. Since these methods are public, other

interfaces can be developed using the package management functionality. For exam-

ple, a console based application or a Windows forms application could be written to

allow site administrators the ability to organize packages without using a web based

interface. The web based interface is explained in terms of an interaction scenario in

section 2.1 and in terms of workflow in section 4.2.10.

As shown in the data model in section 4.2.1, there are several aspects of an installed

44

Core metadata

PK onkct id

applayerclass
onelinename
urt
creationuser FKI uid
creationdate dependentuid
creationip dependentversion
last-modified type
modifying user
modifying-ip

package_portlet

FKI Id
FK2 namespace

control-file
description

packgesetting

PK 1d

FK1 namespace
name
description
defaultvalue
global-p

Figure 4-5: Package Management System Data Model

45

PK,FKI li

uld
namespace
description
version
serial
version-description
contactname
contact-email
contact url
singleton-p
package_classname
comment
release-date

packaFKI i nd

PK,FK1 Ii~d

FK1 contextid
FK2 setting-id

value

pac kage properties

- pak- cotast -I

FK2 namespace

/ tupplies Static. nethda for the rna geet of t e packae aystem.

// Get collections of package-re-lated obects
Packa-geProf ile[Get nsta.LedPacka es);
PackagePortlet[] GetPort'ets ();

// Package context operation..s
long CreatePackageContext ('.onq package~D, strIng nare);
void RemovePackageContext (ioq context:3);

// Install a new package

PackageInstallReport InstallPackage(string path);
PackageInstallReport :nstal Packag-e(striTg path, string work'inaDir);
PackageInstallReport : nsta.PackaenP ace(strng narmespace);

// Upqrade existinq packages

PackageUpgradeReport UpgradePackage (string path);
PackageUpqradeReport UpgradePackagestring path, string worki.gDi);

/ Uninstall an existing package
PackageUninstallReport Uni.nsta'1Package(

long packageID,
bool ignoreWarnings,
bool removeSorceDir

Figure 4-6: PackageManager Class Diagram

package to represent in the system. There are the basic properties describing the

package, as well as parameters that describe the behavior of the package such as

dependencies, portlets and configuration settings. Furthermore, an installed package

may have had several contexts created, each with unique settings. Figure 4-7 depicts

these individual aspects of the package representation, the relevant properties of each

component, and the PackageProfile class which aggregates all the classes to form

a complete representation of the package in the system. For performance purposes,

the PackageProfile uses a caching mechanism to partially retrieve the data from

the database, and uses in memory values where appropriate.

The final component of the class structure is the IReport interface which is used

by the package manager to return the results of an operation. Figure 4-8 shows the

IReport members, as well as the IDispatchReport interface which is intended to

add methods and properties expected by reports generated for dispatch operations

such as installations and upgrades. Not included in the class diagram for IReport and

46

P Ba VOFil

e SanageW's view of a package

e (ong packageID);
elstring namespace);
e(Guic packageUid);
e (PackageProperties package);

1;
t;
ace get;

ties Properties (get;
t[I Contexts j get; }

ency3] Dependencies I get; 3
gl] Settings (get; }

til Portlets I get; }

qe Q.rtlet
o (1 -:- c lbDec

ace '' get;
get; },

ption 'get;

Pa ka .?roiti

PackagePopeites ng objectID);
Packa-,.Properti'ez (Cuid uid) ;
PackageProperties string namespace);

long Package:D get;
Gcid PackageUid i et;
string Namespace (get;
t-r-ng Description get;

string Version get;}
int Serial j get; ;
string ersionDescription 1 get;

string ContactName get; }

string ContactEmail get;
string Contactih j get; }

bool :sSingLeton ' get; }

string PackaeClassName get;
String, Corwrent ge!t;

public PackageCntext (long objectID);

ong Mt get; ge
string Nanespace jg et;
string iterts~string setting) j get; }

stri.nq } GetSettinqNarfes();

PackageDepencancy4 string description,

Guid package, string defau.tval-e,

Guid dependent, boo! isGlobal
string version,);

PackageDependencyType type
) .ong :D j get;

strin: Namespace j get; }

Guid PackageUid get; } string Name 1 get; j
Guid DependentUid I get; } atring :e scription J get; }

string DependentVersionPattern f get; string Defadltvalue i get; I

PackageDependencyType Type { get; 1 bool sGlobali get;

bool ConflictsWith Guid uic, string version, it serial); long ContextD g Oet; 3

bol RequiresiGuid uid, atring verain, int ser Ia) sting ContextValue. i get;

Figure 4-7: PackageProfile Class Dependency Diagram

47

/Y The packag

PackaqeProfil
PackagProfil
PackageProfii

PackageProfiL

long ID { get
Guid Uid ge
string Namesp

PackageProper
PackagjeContex
PackageDepend,
PackageSettin
PackagePortle

pPcka

Paag-eport-

long :: j get

string Nanesp
string Fie jc

strz-ng Dpescri 1*

Packa g et ting
long id,
string namepace,

string name,
PackageDependency

IpnPort

boo! !sValid I get;
boo! HasWarning get;

string GetErrorStrinqi);
string GetWarningStringq);
ReportErrort Errors i get: }

ReportError'j Warning { get;

I
lDi3FpatChlle-prl

PackageProfile Package (t; }

PackageDependency[Violat dRqresDependencie get;
PackagetrpendanCy[l Violted(on totependecie { get;

nPackageOpgradeRepoyt

PackageinstaliReport(
Pkg uratlonFile pkgConfig

boo! !ALreadynutalled { get; }

boo! Ha3NameapaceConflict i get; 1
btoi. Ex'sts~fl'systePm I get; I

Figure 4-8: IReport Interface Definition

48

PackageUninzta.-Report (log Package-')

PackageProfile Package i get:)
PackageDependencyl' ViolatedRe;ireDependencies I get;

PackageContextil Exist 'gContextA , get; I
PackaqePortleti. MountedPartlets j get;
boo! lsAlreadyUninsta--ed (get;

PackageU.p adeReport (
Packaqet NiqurationFi e pk Config

PackageProfiLe OldPackage i get; I
PackageConfigu-ratlonFile NewPackageConfigurationFile

get;

boo NotInstalled get;
bool inva idNamespace (get;
boo! invalidVersion i get;
Packageaependency2) OdMrsimo.equiresDependencies I

get;

implementing classes is the definition for ReportError which is simply an enumeration

of possible report errors and omitted for brevity. The implementations of IReport

are PackageInstallReport, PackageUpgradeReport and PackageUninstallReport

are returned for the appropriate package manager operations.

4.2.3 Installation

The installation procedure is illustrated in Figure 4-9, showing a flowchart of the

package manager's behavior and order of operations. The intent of the package install

operation is to fully complete the package installation, or make no changes to the file

system and database. Therefore to accomplish this, the package manager simply

undoes any generation of files at any signs of error.

Package InstallReport is a safeguard against many potential errors in the instal-

lation since it makes system wide checks to verify that the package can be properly

added to the system. If the report predicts that an error will occur, the installation

procedure simply returns a report with flagged errors without creating new files on

the system. Possible errors are that the package is already installed, the namespace is

already in use, or the expected location on the file system already exists and cannot

be overwritten. PackageInstallReport also detects dependency violations, such as

installing a package that conflicts with an existing package, or installing a package

while a required dependency is missing from the system.

Assuming that no errors are found, the installation operation proceeds by decom-

pressing the package file, compiling the sources of the package, executing the installa-

tion method implemented by the package (in the class definition of IPackage), then

finally appropriately updating the configuration in the database.

4.2.4 Upgrade

The upgrade procedure is similar to the installation procedure with the exception of

a few key differences. The upgrade process follows the principle of fully upgrading

a package or failing without any modifications to the system. However, to undo

49

Compile the source files of tha
package]

Successful
compilation?

Execute the package's implementation
of the ns tal m rnethod

Exception?
Removed the generated package

binary

Save package configuration in
database

Figure 4-9: Package Manager Installation Procedure

50

Extract the configuration specification
from the package file

Genewate the package Installation
report

Is repcwt valid? 11 Return the package installation report 4-

Decompress the package file

Throw exception describing error

Remove the decompressed package
source files

Instal lPlan{str path, :>apatch!eport report);

PackageDependency CurrentDepende-cy get; 3
PackaqeDependency Uyres vedepedecies get;
PackageProfi1 e Loca Packanes -Tet;
string[] LocalPackagePaths ret;

void Add {string path);
IDispatchReportl' Execute);
void Cancel () ;

Figure 4-10: InstallPlan Class Diagram

the operations of a failed upgrade, the package manager must backup the source and

binary files of the previous version to revert in case of errors. Other than the additional

backup of files, the upgrade procedure uses the same mechanism of verifying upgrades

with a PackageUpgradeReport predicting potential flaws.

A non-trivial complication in the final step of upgrading is when the database

must be modified to the new configuration of the package. This is accomplished

by updating new properties in the package properties table and replacing all the

relevant entries in the package-dependency and package-portlet tables. Finally to

maintain the upgrades for package contexts and configuration settings, the package

manager removes obsolete entries from the package-setting table, appropriately

updates any existing settings that are changed in the new version, and inserts new

entries while setting the context values in the package-context-setting table to the

default values.

4.2.5 Dependency Resolution

A complication with package installation and upgrades that should be discussed in

further detail is the case where the operation cannot be completed because of missing

required dependencies. If this is the only error with the install or upgrade, the package

manager is equipped with a mechanism to resolve the required dependencies through

the InstallPlan class shown in Figure 4-10.

51

Package Dependencies

Package A requires Package B
Package A requires Package C
Package 8 requires Package D

CurrentrplaepeSency

Inst-alIP1 tn instaillPlan z:new InatlIPanf
path-to-package-A,

pa;ckage-in~stall-report--for-A

U. Packag B
Package C EkFA

Unresolved Resolved

InstallPlan, (Ste-p3)

i n r ra id I Plan . And (pa th -to-packa ,ge-D) ;

I Package B

L acagQ Package A

Unresolved Resolved

In tailPlan (Step2)

nsr, tPlan. APilparh-to-package-B);

PackagePDkage

Package C Packag A

Unresolved Resolved

Ins tall plan (Step 4)

in'V-iI'1P lani .MAd(prath-to-pa ckage.-C):

Package C

jrrr nrt , r- en v enjI, acaeJD

Package B

Package A

Unresolved Resolved

Figure 4-11: Dependency Resolution for Multiple Package Installations

52

The InstallPlan class is constructed with a package file and the associated report

for installation or upgrade. The scenario described in section 2.1.5 was a basic example

of dependency resolution where the installation of a Photo Album Bookmarks package

required the Photo Album package in a two-step installation process. However, as the

resolution process illustrated in Figure 4-11 indicates, installations with multiple steps

can involve significantly more complication which InstallPlan must be equipped to

handle.

We expand our example by considering the case where package A is to be installed,

but it requires packages B and C which are not found in the system. By adding paths

to the required packages the InstallPlan will generate an ordering of packages to

install so that ultimately package A can be flawlessly installed. This idea is similar

to directed graph of procedure calls used in the design for the Tcl Content-Derived

Name (Tcdn) package system [11].

Continuing the example, the InstallPlan therefore has package A in the list of

local packages, and packages B and C are listed as unresolved dependencies. Package

B is the current dependency this InstallPlan is attempting to resolve. The easiest

thing to do is to repeatedly add a path to a package file satisfying the current depen-

dency, used to generate the order of package installations. However, what if package

B also cannot be installed because it requires yet another package D?

This is problem is solved by generating the installation plan with two stacks; one

stack for the package paths is used to resolve dependencies, and another stack is used

for unresolved dependencies. As packages are added to the system, the algorithm

is to push the package on to the resolved package stack and to pop the dependency

from the unresolved stack. Any new required dependencies are pushed on to the unre-

solved stack. The current dependency is a peek of the top element in the unresolved

dependency stack, so that a completely resolved InstallPlan will have an empty

unresolved stack.

The completed plan is executed by popping and installing or upgrading the pack-

ages from the resolved stack. In our example, the order of installation is package C,

D, B, then A. Through this mechanism, each package is installed on the system at

53

a point where all of its required dependencies are present. Packages C and D are

installed first since they have no dependencies, and are required by other packages.

The installation of package B is successful because its dependency (package D) was

just installed. Finally, package A is successfully installed on the system since each of

its dependencies (packages B and C) are installed.

4.2.6 Uninstall

As with package installation and upgrade, removing a package also requires the use

of an IReport implementation. One difference with the PackageUninstallReport

is the use of warnings, which are flagged if a package to be uninstalled either has

existing contexts or mounted portlets. The uninstall procedure accepts an argument

to indicate if these warnings should be ignored, in which case portlets and context are

deleted. Errors caught by the PackageUninstallReport, which can not be ignored,

include a package not found error, and violated dependencies where the package to

be removed is required by another package.

Once these issues are handled, removing a package is a straight-forward process.

The package implementation of the removal method is invoked, the binary and source

files are removed from the system, and the relevant database entries are deleted.

4.2.7 Contexts and Settings

Once a package is installed on the system, the site administrator must create a pack-

age context and mount it at a viewable URL. This design allows the functionality of a

package to be replicated for several usage contexts so that multiple users can customize

their individual configuration settings. The procedure for creating a context inserts

the appropriate values in to the package-context and package-context-setting

tables by assigning default values for the context settings. Finally the package man-

ager registers the new package context with the package implementation. Removing

a package context simply does the reverse of the creation procedure.

The notion of package contexts is a powerful feature to benefit the site admin-

54

istrators as well as the developers. Imagine an educational web site where classes

have message boards for group discussions. In several architectures, the students of

each class are forced to participate on a shared message board context by starting

new discussion threads for relevant topics in their classes. This has the disadvantage

of grouping several unrelated contexts in to one system, making the usability more

difficult than it needs to be. Alternatively in the package management system, each

participating class of the framework can have an individual context of the message

board designed to carry out their discussions. No longer are the message board users

required to be overloaded with irrelevant posts in the case of having one large message

board shared by the entire community.

Furthermore, an added benefit is that configurations can be applied at the level of

classes for each of the contexts. Functional or user interface changes can be customized

through context settings and applied for individual classes so that the message boards

are uniquely tailored to the purposes of each class. This would allow for example, one

class to have a moderated message board with threaded views, while another class

uses a public message board with a flat view. More trivial customizations such as

colors and fonts can add an additional sense of user friendliness to a package context

as well.

4.2.8 Path Resolution

While it might seem burdensome for package developers to create the functionality to

allow package contexts and settings, the package management API supports this fea-

ture quite elegantly with help from functionality in the ILearn. Core .PathResolut ion

namespace written by Andrew Grumet. Because of the componentization of the pack-

age management system, the path resolution model in the system implements the

System.Web. IHttpModule interface so that the BeginRequest event can be appro-

priately handled to resolve requests for server objects.

Since mounted package contexts are registered by the site map, the path resolution

module is able to use the components of the URL to determine the requested object

and the intended context. The path resolution module then rewrites the path to the

55

requested object, and places the context identifier in to the current session. From the

package developer's perspective, each page load will have a context identifier stored

in the session which is used to construct a PackageContext object corresponding to

the requested context. As shown in the class diagram in Figure 4-7, PackageContext

supports a simple interface for retrieving configuration settings values. Demonstrating

the simplicity of using the available API is shown in Figure 4-12 which is the source

code of a page that would customize the colors on a calendar web control based on

the context settings.

4.2.9 Portlets

Portlets are custom controls providing a summarized view of a package context for

the purpose of placement on a portal or aggregation page. This feature is a general

improvement to the usability design since it allows the package management system

to be better suited for large portal web sites. A portlet is specified by a name,

description and control file that displays the contents. The usage model is that

portlets are registered with the system by insertion in to the package-portlet table

during installation. Users of the system are presented with a portal customization

interface to select which portlets they wish to display, or mount, on their portal pages.

A customized portal page is often the start page for a user, allowing him or her to view

summaries of any relevant portions of the entire site, and allowing quick navigation

to the items of interest.

To implement a standard portlet in the system, the package must supply a user

control that inherits from the PortletControl abstract class found in the iLearn

portals framework written by Tracy Adams. Inheritance from PortletControl re-

quires portlets to supply properties for the context identifier displayed in the portlet

and the site node where the portlet's package context is mounted. It is also required

for the portlet to have properties that allow customized header and footer controls to

be set. This gives the parent portal the ability to dynamically customize the look of

each portlet on a page, making it possible to conform the user interface of the portal.

56

using System;

using System.Web;
using System.Drawing;

using ILearn.Core.Packages;

namespace ILearn.Packages.Calendar

{
public class _default : System.Web.UI.Page

{
// The calendar control displayed on the page
protected System.Web.UI.WebControls. Calendar calendar;

private void PageLoad(object sender, EventArgs e)

{
// Get the package context for this request

long contextID = Convert.ToInt64(
HttpContext.Current.Items["PackageContextID"]

PackageContext pkgContext = new PackageContext(contextID);

// Set the calendar colors based on context configurations

calendar.BackColor = Color.FromName(
pkgContext["Background Color"]

calendar.BorderColor = Color.FromName(
pkgContext["Border Color"]

calendar.ForeColor = Color.FromName(
pkgContext["Foreground Color"]

}
}

}

Figure 4-12: Sample Code-Behind Page Demonstrating Contexts

57

E uninst

Removes a packa

all.aspx view-packageaspx configure-context.aspx

ge from the system Displays a detailed view of a package Shows the settings of a context

Actions: Actions:
- Submit a comment to the repository - Configure a package context
- Create a new package context
- Delete an existing package context

defaultaspx mulpe-install -doneaspx

Displays a list of packages currently installed View the results of an executed install plan

Actions:
- View the properties of a package
- Install a new package from a file
-Upgrade a package from a file
- View the repository packages

- View new versions from the repository
Uninstalt a package

repositoryackagesaspx

Generate an install plan by resolving dependencies

Actions:
Execute a completed install plan

instaltaspx

Displays a full list of packages at the repository Installs a package in to the system

Actions: Actions:
Install a new package from the repository Complete installation

- Upgrade a package from the repository - Resolve missing dependencies

I upgrade.aspx
repos"y-upgrades.aspx Upgrades a package to a new version

Displays a new list of packages at the repository
Actions:

Actions: - Complete upgrade
- Upgrade a package from the repository - Resolve missing dependencies

Figure 4-13: Work Flow of the User Interface of the Package Manager

4.2.10 Web Based User Interface

Figure 4-13 illustrates the work flow of the web based user interface for managing

and organizing packages. Staring at the default page, the site administrator views a

list of package summaries installed on the system. Possible actions include viewing

the details of an installed package, installing or upgrading a package by uploading a

file, uninstalling a package, or viewing either a full list of repository packages or a

shortened list of packages that have newer versions. Actions involving the repository

are discussed in further detail in sections 5.2 and 5.3, describing the implementation

specifics behind the web service usage scenarios from section 2.1.

58

mulbple-install.aspx -

Chapter 5

Package Repository

The package repository is a central location for developers to submit new packages for

usage on other systems, or for site administrators to find and download new compo-

nents. Implementing a package repository as a central location for locating packages

is not a new idea and is commonly found in several existing package management

systems. What distinguishes the iLearn package repository from others is the layer

of web services built on top of the repository system to allow package management

systems to consume the public API.

This chapter begins by discussing the basic functionality of the repository as a

web site separate from the package management system. The web services API will

then be explored in depth, with an explanation to justify the specification of the

API. Finally, the chapter will end with a description of how the API is used with the

package manager functionality to improve the usability for web site administrators.

5.1 Functionality

The functionality of the package repository is two fold. The repository is designed to

act as an independent site separate from the package management system, much like

the FreshPorts [4] repository for the FreeBSD system. Users are thus given the option

of participating on the repository for either posting or obtaining packages without

actually maintaining a package management system of their own. This aspect of the

59

design gives the package repository a look and feel similar to that of a community

web site. The other aspect of the functionality is the web services allowing public

consumption of the core features found in the package repository.

5.1.1 Community Site

The web site for the package repository supports the obvious requirements of includ-

ing a basic user registration and authentication system (by e-mail and password),

forms for submitting new packages, and pages allowing users to view package details

and obtain the package file. To harvest the knowledge of experienced users, the repos-

itory site also allows registered users to submit comments and feedback concerning

packages to share information, usage experience, answer questions about a package,

and generally interact with other users.

While many existing package systems have message forums or mailing lists for user

discussions, the iLearn system purposely avoided creating several disjoint web com-

munities relating to the same topic. It is much more useful for users to consult a single

source for information, rather than searching through a variety of different places. For

example, FreshPorts, the previously mentioned FreeBSD ports repository, provides a

good interface for finding and obtaining ports, but users interested in downloading

ports receive no user feedback. Instead, users are left to do their own research on the

web or perhaps post a question in the sol.lists.freebsd.ports newsgroup. Rather than

splitting the information at two separate communities, the iLearn system allows the

package details page to include user feedback that may provide useful information

influencing a user to either download the package or find a better alternative.

5.1.2 Web Services

The features of the package repository as a community site are useful as web services

as well. The main purpose of the web services is to provide information for package

management systems that could facilitate site administration. Therefore, information

such as posted comments, package listings, newest packages, and possible dependency

60

b-o -P1 FstComme-nt (Gul in, strin 0-son trn ema-l string comment);
PackageComment (GetComients (Guid d, strn:7 versior)

Packa eSummary G3etPackaqe (Gd id, stin version)
Packa.geSummary } GetPackaqes (G-_'d uid, r versLoMatch);
PackaqeSu-n~mary[(GetAva i.ab.ePackageso j;
PackaqeSummary(j GetLat estPackaeVesi o-s(.Gidi tids);
string GetPackageName (G-Id uid);

Guid Uid; s-ring Crnent;
string Namespace; string Email;
string Name; string Giv enName;
string Descriptirn; saring FamilyName;
string Version; DateTime SubmitDate;
int Serial;
string VersionDescripticn;
string cnt ctame;
string ContactEmail;
string Conzact lrl;
bool IsSingleton;
DateTime ReleaseDate;
string WebPath;

Figure 5-1: Package Repository Web Services

resolutions would provide the greatest benefit for site administrators. Section 5.2

details the web services API supported by the package repository, and section 5.3

explains how the API is used to benefit the package management system.

5.2 Web Services API

To satisfy the goals of the web services for the package repository, Figure 5-1 shows the

API for public consumption. First the web services for package comments are rather

straight forward; the repository simply allows comments to be read or posted. Notice

that packages are identified by globally unique identifiers since the entire collection

of packages may potentially have overlapping names or namespaces. For any given

package, there may be multiple versions; therefore, the list of packages has a unique

constraint on the globally unique identifier and version pair. These parameters are

used to uniquely identify which package the consumer is attempting to retrieve or

61

post comments for, as shown in the method declarations for retrieving and posting

comments.

The same mechanism is used to identify a package to obtain a summary of the

package, but note that the version number is not required when getting the package

name because package names are consistent across each version. To support web

service consumers wishing to browse the entire list of packages, the repository exposes

a method to return a summary of every known package. Although sending every

summary in XML may be rather time consuming as the repository grows, future

work described in section 7.1.1 explains how this problem will be solved.

Because getting each package may consume too many resources, the repository

also exposes utility methods that return a subset of the available packages by filtering

unwanted results, instead of requiring the web service consumers to retrieve all the

packages before applying filters locally. One such method accepts a string indicating

the desired version or versions of a package to retrieve. Also, instead of returning every

package version of the specified globally unique identifiers, the repository exposes a

method that returns only the latest versions. The intended uses of these methods are

described in section 5.3.

5.3 Package Management Integration

Given the web services API at the package repository in section 5.2 and a descrip-

tion of the package manager user interface in section 4.2.10, we can now explore the

intended usage of the web methods exposed by the package repository with the pack-

age manager. This section describes the pages in the package manager web interface

which use the repository services, but first we mention two notes about performance

optimization.

As the number of packages grows, the amount of XML data returned by the

repository increases as well, potentially causing the latency of the web method to

reach intolerable levels. To solve this problem, the package manager will cache data

from the repository in the local database and simply ask for updates at periodic

62

intervals, rather than receiving fresh data at every page hit. This idea is explained

in further detail in section 7.1.1.

Another performance issue deals with a timed out request sent to the repository.

Since a page in the package manager cannot be rendered without the information

from the web services, an unreachable repository causing a time out would result in

several pages to have intolerable delays before rendering. This problem will be better

solved when the cached repository data can be used to render a page. However, before

the repository data caching mechanism is in place, we employ a simpler solution by

disabling the use of repository services when a time out occurs. Future calls to the

repository are then ignored to improve performance until the services are manually

re-enabled. This protects the system against repeatedly waiting for a web service

response on each page render when the repository is unreachable.

5.3.1 Feedback and Community

As part of the design goal to make use of information from knowledgeable users of the

package management system, the package manager renders the package details page

with the comments retrieved from the repository. Furthermore, to obtain information

from site administrators who have working experience with the packages, the interface

also allows site administrators to post comments through web services. This will

allow site administrators to use the functionality of the repository through their own

package manager interfaces, without visiting two different web locations.

5.3.2 Obtaining Packages

Packages are obtained from the repository through the package manager interface

can be done programmatically by invoking an installation or upgrade procedure, or

simply downloaded since the PackageSummary class contains a property specifying

the web path (see Figure 5-1), allowing the package manger to link the appropriate

file. Programmatic fetching of a package simply opens a request to the web path and

writes the file to a local stream, then invokes the install or upgrade procedure on the

63

local package file.

5.3.3 Dependency Resolution

Packages are also obtained during dependency resolution when multiple installations

are required. In this situation, a required dependency must be resolved for an instal-

lation to complete. The package manager uses the repository web method to specify

the required package and the version match string used to indicate which versions of

the package are required for installation. The package manager then displays a list

of possible packages to obtain for the purpose of resolving the required dependency,

or offers the option of uploading a new package file to satisfy the requirement.

64

Chapter 6

Comparison with Related Work

The idea of a package manager and the associated principles of modularity and code

reusability have been applied to many previous systems. Operating systems such as

Red Hat Linux [1, 21], FreeBSD [13, 14, 15] and Debian [3] offer their own imple-

mentations of package management systems for organizing installed components on

a computer. These principles have even been applied to EMACS [19], an extensi-

ble, customizable display-editor developed by Richard Stallman. This concept is less

explored in the realm of web site administration and development, with OpenACS

[16, 17] being the most successful implementation of a package management system

for web based applications.

6.1 Operating Systems

The design of the iLearn package management system is based on the principles used

by the Red Hat Linux, FreeBSD and Debian package management systems. There

are few appreciable differences between the package systems in these designs so a

general comparison will suffice. The general principles shared by the all of these

systems are modularity, code reusability, and the desire to avoid monolithic designs.

In terms of feature sets, installation and removal were obvious necessities, and the

upgrade operation was included to accommodate the need for changing software while

preserving the data associated with each package. These ideas are present in the

65

iLearn system and the operating systems.

Several details involved in package organization for the operating systems were

intentionally not included since creating many intricate features would go against the

design goal to make the management process straight-forward for site administrators.

Considering the installation procedure, operating systems support multiple instal-

lation parameters allowing the user to specify a variety of options which would be

unnecessary for a web application. For example, the RPM allows forced installations

which will ignore conflicts, or can optionally skip dependency checking. Although

modifying the iLearn code to support this option is not difficult, it adds a complica-

tion to the system which may eventually result in an inconsistent state. Compiling a

package while dependencies are unmet would also potentially result in a variety of er-

rors including namespace and class redefinitions, missing references, and a corrupted

data model.

Another installation option the design opted to ignore is the ability to set the

installation target. Specifying the installation target is appropriate in an operating

system, but for a web application created to simplify the administrative tasks and fully

function without any knowledge of the underlying file system, allowing this detailed

parameter for installation would also be an unwanted complexity. The interface was

specifically designed in a way that the site administrator desiring a certain feature

would only have to find the appropriate package, upload the file through the web

page or retrieve it from the repository, and the installation would complete. These

arguments about installation are also applicable to the upgrade procedure which is

meant to be a simple process as well.

6.1.1 Debian Relationships

The Debian Package System supports additional weaker relationships such as sug-

gested or recommended relationships. While additional relationships were considered

in the system, the benefits did not outweigh the costs. Supporting optional depen-

dencies would create complications since the installation of a package would require

compilation with an optional reference to the suggested dependency. Should the sug-

66

gested dependency package be installed at a later date, the original package would also

require recompilation because the suggested reference would then become present.

However, the most important factor in not supporting suggested relationships is

the burden it would place on the developer. Consider installing a package with a

missing suggested relationship where package A suggests package B because of the

recommended use of a function call in package B. Compiling package A without

a reference to suggested package B (when package B is missing) would result in a

compile time error because the function would be an undefined symbol. For the

package developer to work around this and allow suggested packages to be missing,

the released code would have to include many pre-compiler directives indicating all

the possible arrangements of missing or present suggested relationships wherever any

suggested functionality is used. If and when package B is installed, the reference

would be present and package A would have to be recompiled but with a different

pre-compiler directive. While this recompilation does not seem burdensome in a

simple case, multiple suggested dependencies could cause an installation procedure

to require several compilations of packages.

6.2 EMACS

EMACS is a "real-time display editor which can be extended by the user while it is

running" [19]. EMACS is developed in a modular fashion so that users can add new

or modify existing editing commands while in the process of editing. Through the use

of collections of function names known as libraries, EMACS loads function definitions

in to a dispatch table allowing the command dispatcher to call functions by name or

by single key mappings. The iLearn package management system attempts to draw a

parallel to this design in the web application world by allowing packages to interact

through public methods. However, instead of maintaining a table of function calls, it is

more appropriate in the system to maintain a listing of namespace references because

of the differences in LISP and C#. While LISP is an interpreted language allowing

EMACS library functions to be dispatched by name, the package management system

67

must compile the C# source code with references to binary files for the public methods

to be used by other packages. This is also the reason binary files are named after

namespaces, to prevent an ambiguous binary file name to namespace correspondence.

This design is more appropriate for a web based application because of the in-

tended usage. In EMACS, a user attempting to modify an editing command but

attempts to dispatch a non-existent function will receive an error message when the

particular command is used. The analogous mistake in the package management sys-

tem would result in errors on publicly viewable web pages if a command dispatcher

mechanism was used. Therefore, it is more appropriate to prevent the improper

reference during the dependency checking phase of installation, and verify that the

function is valid during the compilation of the package's source files.

6.3 OpenACS Package Manager (APM)

The Open Architecture Community System Package Manager (APM), now Red Hat's

Content and Collaboration Management Community Platform [18], serves as the best

system for comparison with the iLearn package management system as they share sim-

ilar design goals. The major difference is that the iLearn package management system

added an emphasis on the design of a package repository to be integrated in to the

entire system through web services. OpenACS, like each of the previously mentioned

systems with dynamic organization of modular components, was developed before the

increased popularity of web services. This thesis not only designs and implements a

package system based on previous work in OpenACS, but introduces the beneficial

enhancements of applying web services to such a system. By allowing communication

between the package manager, repository and discussion forum through the use of

web services, the package management system no longer needs multiple disjoint lo-

cations for relevant information. This new improvement is not merely a convenience

for site administrators and developers, but offers a system capable of easily gather-

ing user feedback and comments and quickly distributing the knowledge to a variety

of audiences. This follows the open source movement's basic idea of allowing source

68

code to be easily read and redistributed, and evolving the software based on continual

improvement.

69

70

Chapter 7

Future Work

As with any first effort towards software development, there are still improvements

that can be made in the system left for future work. Here the focus of future develop-

ment is on the web services and package repository, but also discusses considerations

to improve the package manager that have been omitted of this current version in the

interest of time.

7.1 Web Services

The web services exposed by the package repository API in section 5.2 simply be-

gin to demonstrate the usefulness of web services in a package management system.

This section indicates the possible improvements to the package repository web ser-

vices API in terms of caching for better performance, and extension for other useful

information.

7.1.1 Caching Repository Data

The most important and imminent change to the package repository web services API

is the addition and modification of methods to support caching of repository data.

This will be accomplished by overloading the repository method that retrieves every

package summary to accept a DateTime argument indicating the earliest submission

71

date that should be returned in the set of packages. Through this new method, the

package manager can simply ask for the latest updates to the repository packages to

update the local cache.

Note that the other package retrieval methods that are version specific would

become less frequently used as packages start relying on their cached data instead of

constantly retrieving real-time data. Using cached data would improve performance

and protect against the possibility of an unreachable repository, but may be relying

on stale data. In this system, the package data is unlikely to change frequently and

daily updates should be more than sufficient for a reasonably current cache.

The strategy for generating the cache of repository data for packages is equally

applicable to package comments. In a future revision of the package manager and

repository, two changes will be made to the API in relation to the web methods

for comment retrieval. In addition to simply overloading the method for getting

comments by accepting an argument the earliest timestamp, it would make more sense

to also retrieve all the comments for every package posted after a certain timestamp.

Retrieving all the comments after a certain timestamp allows the package manager

to build a complete cache of the repository data for all the comments as well as the

package summaries.

Another difference from generating a cache of package information is that com-

ments will also be more frequently posted than the submission of new packages.

Therefore in this case, synchronizing the local cache with the repository data on

a daily basis will be insufficient for displaying recent posts about a package. The

method for getting comments must accept an argument for the earliest timestamp so

that the local package manager can retrieve any of the latest comments if the reposi-

tory is available, while still relying on the cached data for performance optimization.

This approach is advantageous to the current implementation which simply retrieves

all the comments since the amount of data sent as XML through the web service will

be minimized for packages containing several comments. This also allows at least a

partial listing of comments if and when the repository is unreachable.

72

7.1.2 Multiple Repositories

Currently the assumption in the package management system is that only one reposi-

tory exists at a known location. As the popularity of the package management system

grows, it is possible that multiple repositories may come in to existence. To scale the

local system to accommodate the possibility of multiple repositories, it becomes more

important to implement the caching mechanism so that the package manager can

periodically collect information from the multiple known repositories. This prevents

the system from limiting itself to data from a single repository, and also maintains ac-

ceptable performance by avoiding the invocation of a web service for each repository

when querying for a large list of packages.

The issue of synchronizing package comments becomes rather difficult now that

repositories must either maintain their own comments, or act as peer distributed sys-

tems sharing the same comments. While the simple implementation is a benefit of

having repositories managing their own comments, it violates the previously stated

principle of creating a united community by instead creating several disjoint locations

for related information. The distributed commenting system approach is rather diffi-

cult to implement and requires package repositories to have knowledge of each other.

Furthermore, merging a collection of package comments would be a difficult task

to accomplish programmatically and may require human intervention to be feasibly

implemented.

The recommendation here is to avoid attempting to distribute user submitted data

between multiple locations. If the need for multiple repositories arises, the additional

repositories should only maintain a collection of packages and retrieve or post user

submitted data to a single primary repository. The primary repository, in addition

to collecting package files, has the added responsibility of maintaining the package

comments submitted by users of the system. Thus the additional repositories use

the package comment caching mechanism described in section 7.1.1 the same way a

package manager would.

Site administrators consuming web services from multiple repositories for package

73

files will thus only need one repository for comments. The primary repository guar-

antees to have the latest information while the additional repositories may potentially

have outdated cached data. Therefore, the additional repositories are sufficient for

package managers updating local caches of package comments, but the primary repos-

itory is the best source for receiving the latest comments. Alternatively, depending

on experimental usage data, the additional repositories may guarantee sufficiently

current data by updating their caches frequently enough so that package managers

may receive current data from any known repository in a scheme to distribute the

demand amongst the repositories more evenly instead of potentially overloading the

primary repository.

7.1.3 Additional Functionality

In addition to improving performance, the web services may be modified to supply a

greater wealth of information useful for site administrators. One example would be

to introduce a ratings system as a metric for how useful or popular a package is. The

package repository may also record usage information, either from user navigation on

the site or based on information sent by the package manager through web services.

Possible relevant information would be linking packages that are often used together,

or linking packages that are good substitutes.

7.2 Package Manager

Although the package manager will require modifications to make use of some of the

new web services considered in section 7.1, this section describes other changes that

would improve the local package management system.

7.2.1 Locking Packages

An important point neglected in the implementation of the package management

system is the locking of packages during operations such as installation, upgrade and

74

removal. Because of the dynamic nature of the system, and the design goal for the

mentioned operations to be simple and minimally intrusive on the site, a package

may be asked to handle a request while the package manger attempts to modify the

package. Currently the request will simply receive a 404 Not Found Error, where a

more user friendly solution is appropriate. By locking packages, the user making a

request could be redirected to a friendlier error message indicating that the particular

request for certain functionality is either under maintenance or is in the process of

being removed from the site.

This change can be implemented through the path resolution module explained

in section 4.2.8. In preparation for package modification or removal, the package

manager would register the package to be locked through the path resolution module.

Until the lock is removed, the path resolution would appropriately rewrite the path

to a standard page indicating the reason for the current request to be denied. Once

the package modification is complete, the package references will be removed in the

case of uninstalling the package, or the package operation will return to a working

and upgraded state.

7.2.2 Platform Independence

The design goals mentioned the desire to reach a broad audience through support for

multiple databases and platforms. While the current implementation handles support

for many database systems, the only supported operating system is the Microsoft

Windows platform since installation of the .NET Framework is required to compile

and run the package management system. Previously described in section 3.2.2,

support for various flavors of UNIX will be considered as the Rotor [20] and Mono

[22] projects mature and allow the .NET Runtime to function on other operating

systems.

75

76

Chapter 8

Conclusions

In conclusion, the package management system meets the design goals set forth to

create a framework benefiting web site administrators and developers. Modeled af-

ter package management systems in operating systems, EMACS and OpenACS, the

design described in this thesis has selectively implemented useful features for the

purpose of running a web based application.

The iLearn system introduces a package repository with a web service interface

creating several new possibilities for package management. Users of the package man-

agement system can not only obtain packages programmatically, but they can also

receive current information about the latest releases and dynamically resolve any

dependency issues during install and upgrade operations. This eliminates the need

for site administrators to constantly monitor repositories and message boards, tra-

ditionally at separate locations, for news about recently developed packages because

instead the desired information is included in the package management interface of

the administered site. The ability to resolve dependencies by dynamically querying

the repository to obtain package dependencies dramatically increases the usability of

the package system. Site administrators will no longer have to search for necessary

components and gather them for separate installations in order to add functionality

with multiple dependencies.

Furthermore, another advancement in package management introduced through

web services is the ability to participate in a community simply by using the system.

77

Package developers and site administrators have the added advantage of contributing

and exploring the knowledge of their peers through the use of comments and feedback

concerning packages. Future advances can expand the web services interface to expose

more useful information, such as creating a ratings system for packages and users. All

this useful information ultimately benefits the developers as they easily receive large

amounts of feedback about their work, which results in the release of better packages

for site administrators to incorporate to their sites.

The iLearn package system demonstrates the power and usefulness of web services

and effectively integrates them with an existing concept in to a new system to simplify

the world of web site administration and development.

8.1 Obtaining the Code

To obtain the code through CVS, execute the following commands:

cvs -d :pserver:anonymouseagrumet.mit.edu:/cvsroot login

(Hit ENTER when prompted for password.)

cvs -d :pserver:anonymous@agrumet.mit.edu:/cvsroot co ilearn

78

Appendix A

Package Configuration File

<?xml encoding=''US-ASCII''?>

<!ELEMENT Package (Properties, Files, Portlets, Dependencies,

Settings, References)>

<!ELEMENT Properties (Name, Description, Version, Contact, Singleton,

PackageClassName, Comment, ReleaseDate)>

<!ELEMENT Name EMPTY #REQUIRED>

<!ATTLIST Name Value (string) #REQUIRED>

<!ELEMENT Description (#PCDATA)>

<!ELEMENT Version (Value, Serial, #PCDATA) #REQUIRED>

<!ATTLIST Version Value (#PCDATA) #REQUIRED>

<!ATTLIST Version Serial (#PCDATA) #REQUIRED>

<!ELEMENT Contact (Name, Email, Url)>

<!ATTLIST Contact Name (#PCDATA)>

<!ATTLIST Contact Email (#PCDATA)>

<!ATTLIST Contact Url (#PCDATA)>

<!ELEMENT Singleton (Value)>

<!ATTLIST Singleton Value (true I false)>

<!ELEMENT PackageClassName (Value) #REQUIRED>

79

<!ATTLIST PackageClassName Value (#PCDATA)>

<!ELEMENT ReleaseDate (Value)>

<!ATTLIST ReleaseDate Value (#PCDATA)>

<!ELEMENT Files (File*)>

<!ELEMENT File (type, name)>

<!ATTLIST File Type (source I standalone I database I devenv I nant)>

<!ATTLIST File Name (#PCDATA) #REQUIRED>

<!ELEMENT Portlets (Portlet*)>

<!ELEMENT Portlet (Name, File, #PCDATA)>

<!ATTLIST Portlet Name (#PCDATA) #REQUIRED>

<!ATTLIST Portlet File (#PCDATA) #REQUIRED>

<!ELEMENT Dependencies (Dependency*)>

<!ELEMENT Dependency (Package, Version, Type)>

<!ATTLIST Dependency Package (#PCDATA) #REQUIRED>

<!ATTLIST Dependency Version (#PCDATA)>

<!ATTLIST Dependency Type (required I conflicts) #REQUIRED>

<!ELEMENT Settings (Setting*)>

<!ELEMENT Setting (Name, Default-Value, Global, #PCDATA)>

<!ATTLIST Setting Name (#PCDATA) #REQUIRED>

<!ATTLIST Setting Default-Value (#PCDATA) #REQUIRED>

<!ATTLIST Setting Global (true I false)>

<!ELEMENT References (Reference*)>

<!ELEMENT Reference (Name)>

<!ELEMENT Reference Name (#PCDATA) #REQUIRED>

80

Bibliography

[1] Edward C. Bailey. Maximum RPM. Red Hat Software, Inc., Triange Park, NC,

1997.

[2] Jonathan E. Cook and Jeffrey A. Dage. Highly Reliable Upgrading of Compo-

nents. Technical report, New Mexico State University, Department of Computer

Science, 1998.

[3] The Debian GNU/LINUX FAQ. http://www.debian.org/doc/FAQ.

[4] FreshPorts - the place for ports. http://www.freshports.org/.

[5] Richard S. Hall, Dennis Heimbigner, Andre van der Hoek, and Alexander L. Wolf.

The Software Dock: A Distributed, Agent-based Software Deployment System.

In The Proceedings of the 1997 International Conference on Distributed Comput-

ing Systems. University of Colorado at Boulder, Computer Science Department,

1997.

[6] Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. A Cooperative

Approach to Support Software Deployment Using the Software Dock. Technical

report, University of Colorado at Boulder, Computer Science Department, 1999.

[7] Richard S. Hall, Dennis Heimbigner, and Alexander L. Wolf. Specifying the

Deployable Software Description Format in XML. Technical report, University

of Colorado at Boulder Computer Science Department, 1999.

81

[8] Scott Henninger. An Evolutionary Approach to Constructing Effective Software

Reuse Repositories. Technical report, University of Nebraska-Lincoln, Depart-

ment of Computer Science and Engineering, 1999.

[9] iCampus Home. http://icampus.lcs.mit.edu/.

[10] Microsoft .NET Framework Software Development Kit.

http://msdn.microsoft.com/downloads/list/netdevframework.asp.

[11] Ethan L. Miller, Kennedy Akala, and Jeffrey K. Hollingsworth. Using Content-

Derived Names for Package Management in Tcl. In 6th Annual Tcl/Tk Confer-

ence, pages 171-179. University of Maryland Baltimore County and University

of Maryland, Computer Science Departments, 1998.

[12] NAnt: A .NET Build Tool. http://nant.sourceforge.net.

[13] Steve Price. FreeBSD Release Engineering for Third Party Software Packages.

Technical report, The FreeBSD Documentation Project, 2002.

[14] The FreeBSD Documentation Project. The FreeBSD Handbook. The FreeBSD

Documentation Project, 1999.

[15] The FreeBSD Documentation Project. FreeBSD Porter's Handbook. The

FreeBSD Documentation Project, 1999.

[16] Bryan Quinn. OpenACS 4.5 Package Manager Design. Technical report, Ope-

nACS Community, 2000. http://openacs.org/doc/openacs-4/apm-design.html.

[17] Bryan Quinn and Todd Nightingale. OpenACS 4.5 Package Man-

ager Requirements. Technical report, OpenACS Community, 2000.

http://openacs.org/doc/openacs-4/apm-requirements.html.

[18] Red Hat's Content and Collaboration Management Community Platform.

http://www.redhat.com/software/ccm/community/.

82

[19] Richard M. Stallman. EMACS: The Extensible, Customizable Self-Documenting

Display Editor. Technical report, Massachusetts Institute of Technology, Artifi-

cial Intelligence Lab, 1984.

[20] David Stutz. The Microsoft Shared Source CLI Implementation. Technical

report, Microsoft Corporation, 2002. http://msdn.microsoft.com/library/en-

us/dndotnet/html/mssharsourcecli.asp.

[21] The Red Hat Development Team. The Official Red Hat Linux 4.2. User's Guide.

Red Hat Software, Inc., Triange Park, NC, 1997.

[22] Ximian Mono Project. http://www.go-mono.com/.

[23] Yunwen Ye and Fischer Gerhard. Promoting Reuse with Active Reuse Repository

Systems. In Proceedings of the 6th International Conference on Software Reuse.

University of Colorado at Boulder, Computer Science Department, 2000.

83

