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Abstract

Motion estimation algorithms are useful in a variety of applications. These ap-
plications include motion characterization of Micro Electrical Mechanical Systems
(MEMS) and cochlear mechanisms, video compression, and multi-frame image en-
hancement methods. One of the factors limiting accuracy in these measurements is
a systematic bias towards a zero shift caused by fixed pattern noise (FPN) in the
images. FPN is a spatial variation in the input/output relationship of each pixel that
can be modeled as signal dependent multiplicative noise. These variations can be
attributed to irregularities in pixel sizes and geometries, imperfections or impurities
on the sensor surface and in the optical path, and non-uniform illumination. In this
study the effect of FPN is examined by analyzing the correlation of the images. Tak-
ing the logarithm of the image transforms the noise into additive signal-independent
noise that is then removed using conventional linear methods. Standard optical-flow
algorithms are then used to measure the motions. These algorithms are performed
on a series of test images in simulations. Over a wide range of FPN intensities, the
measurements with the pre-processing produce more accurate results than those mea-
surements without, and in some cases the average error is reduced by a factor of six.
In addition to the simulations, the pre-filtering is also tested on real-world images of
a moving target over a wide range of displacements. In these experiments the new
method produces results with errors that were on average 12 dB smaller. The cost of
this improvement is a 54% increase in the computational costs.

Thesis Supervisor: Dennis M. Freeman
Title: Associate Professor
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Chapter 1

Introduction

Image-based motion estimation algorithms are useful in a variety of applications.

These applications include motion characterization of Micro Electrical Mechanical

Systems (MEMS), motion characterization of biological mechanics, video compres-

sion, and multi-frame image enhancement methods. One of the limiting factors in

motion estimation is the presence of noise in the images. Of these noises, fixed pat-

tern noise is particularly undesirable because it introduces a systematic bias (Cain &

Hayat 2001). The fixed pattern noise introduces an image component that remains

perfectly registered from image to image, biasing the answer toward zero. Typically,

the FPN has a variation of 1-6% across a CCD (Ilyin 2002). The greater the en-

ergy of the fixed pattern noise the greater the bias toward the zero shift (Davis &

Freeman 1998). "It is therefore very desirable to have a registration algorithm that

is tolerant to fixed-pattern noise. (Cain & Hayat 2001)"

In (Cain & Hayat 2001) it is argued that gradient-based algorithms are sensitive

to fixed pattern noise because of their local nature. The method that they propose

uses more global information, but can only provide estimates that are integer shifts.

An alternate approach is to pre-process images before the application of the gradient

algorithm to remove FPN, and thereby improve the accuracy of the measured shifts.

To remove the noise, a homomorphic filter that utilizes the logarithm operator in

conjunction with an adaptive Wiener filter is used (Jain 1989). This filter transforms

multiplicative noise into additive noise, adaptively filters it, then the filtered result is

13



exponentiated (Campisi, Yan & Hatzinakos 2000, Hadhoud 1999, Lim 1990, Oppen-

heim, Shafer & Stockham, Jr. 1968). Although the algorithm is designed to combat

fixed pattern noise, it also provides low pass filtering, which improves performance

even in the presence of little or no fixed pattern noise.

To examine the performance of the motion estimation algorithms in conjunction

with homomorphic filtering , both experimental tests and simulations were done. The

simulations test a collection of general images over a wide range of noise levels and

shifts. To verify the performance in practice, measurements of real motions were

made over a range from one nanometer to one micrometer.

14



Chapter 2

Fixed Pattern Noise (FPN)

2.1 Cause of FPN

FPN is the spatial variation in the input/output relationship of each pixel of an image

sensor. Some of the causes of FPN are irregularities in pixel size and geometry, imper-

fections or impurities on the sensor surface and in the optical path, and nonuniform

illumination (Janesick 2001, Healey & Kondepudy 2001, Janesick 2002, Ilyin 2002).

2.2 Correlation Shows Effect of FPN

A good way to view the effect of FPN on motion estimation algorithms is to examine

its effect on correlation, as follows. Let s(x) represent the continuous brightness

function of a scene. Similarly s(x - A) is that scene shifted by A. The corresponding

discrete space signals, with the sampling frequency f, above the Nyquist sampling

rate, are s[n] = s(nX) and s'[n] = s(nX - A) where X = 1/f,. The imaging system

introduces FPN, which is modeled as multiplicative noise. So the resulting images

are I [n] a [n] s [n] and I2[n] = a[n]s'[n] where a[n] represents the FPN, which is

unchanged between images. Let a[n] be a Gaussian random variable with mean ba

and standard deviation o-,. Each gain a[n] is uncorrelated with the other gains a[m]

for m / n. Motion estimation can be performed by finding the peak of the cross

15



correlation of the two images I [n] and I2[n],

R(Ii[n], 12 [n]) = Z Ii[k + n]I 2[k]. (2.1)
<k>

In the absence of FPN this peak occurs near the shift A. However FPN can affect

the peak. Since the images are stochastic, the expectation of correlation is taken,

Pa S s[k + n]s'[k] + u65[n] 5 s[k]s'[k]. (2.2)
<k> <k>

Letting p, = 1, yields

5 s[k + n]s'[k] + o6[n] - s[k]s'[k]. (2.3)
<k> <k>

The result is the sum of the correlation without FPN, E s[k+n]s'[k], and a component

due to the noise that contributes only at n = 0. This shows that the effect of the

random gain and offset of each pixel on the correlation of the images produces an

additional peak at n = 0. For motions less than A = 1, the superposition of this peak

with the peak of the correlation without FPN can pull the maximum correlation

toward zero for even low noise levels. For large FPN levels the peak at zero may

dominate the local maximum due to the motion.

16



Chapter 3

Methods

The effect of FPN is studied on both simulated and real world images with known

displacements. A technique is developed to counter the effects of FPN on motion

estimation. This technique and other image based motion estimation algorithms

were used on the images and compared to the known motions to characterize the

measurement errors.

3.1 Generation of Simulated Data

3.1.1 Test Images

The motion estimation algorithms were tested on simulated motions of four different

images (see figure 3-1) with a variety of frequency characteristics and signal energy

levels. The images that were chosen are the same as in (Davis & Freeman 1998).

The first image was a simulated dark bead on a bright background (Figure 3-1 a).

The bead was simulated as a radially symmetric Hanning window. The function

r = N(i - c,) 2 + (j - cy) 2 is the distance from the center (cz, cy) of the simulated

bead to pixel location [i, j]. Two sets of images (Figure 3-1 b, c) were chosen as

examples of applications of motion estimation characterizing the motion of micro-

electromechanical systems (MEMS) and of the mechanically sensitive bundles of the

inner ear. The final image (Figure 3-1 d) was taken from the space shuttle using

17



(a) (b)

I,,

(c) (d)

Figure 3-1: Test images: a) simulated bead, b) hair bundles, c) gyroscope, and d)
Galapagos SAR. The 32 x 32 region of interest shown in each image was used to make
the motion measurements. The scale bar for the gyroscope was 10 micrometers, for
the hair bundle image, 25 micrometers, and for the Galapagos image is 4 kilometers.
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Synthetic Aperture Radar (SAR) and is of the Galapagos islands.

3.1.2 Shifting Algorithm

Motions were simulated by generating a sequence of images that were each shifted

versions of one original image. The shifted images were produced by (1) taking the

Discrete Fourier Transform of the original that is 128 x 128 pixels; (2) multiplying by

a circular shift filter (eiA"+avY'v); (3) inverse transforming; (4) cropping the edges

so that the resultant image is 64 x 64 pixels. This frequency domain technique can

produce arbitrary shifts Ax, Ay with subpixel accuracy.

3.1.3 Simulated Noise

Fixed pattern noise was simulated by multiplying each image by an array of "pixel

gains". The gain for each pixel was determined using a pseudo-random Gaussian

sequence with a mean of one and standard deviation of a-. The gain for each pixel

were chosen independently of the other pixels. The value of - controls the relative

noise level of the fixed-pattern noise. The standard deviation a- was assigned values

from 0.0001 to 10 evenly spaced on a log scale. Both the shifted and original images

were multiplied by the same array of "pixel gains".

3.2 Acquisition of Real-World Data

3.2.1 Apparatus

A system as detailed in (Davis 1997) and further developed in (Desai 2002, Aranyosi

2002) was used to capture images of a high contrast target moving with displacements

ranging from one nanometer to one micrometer. The images were acquired with a

Pulnix TM1010 CCD camera attached to a Zeiss Axioplan II microscope with a Zeiss

20x Epiplan LD 0.4 NA microscope objective. A green led was strobed at 8 different

phases of a base frequency of one kilohertz. The motions were generated by applying

a one kilohertz sinusoidal stimulus to a piezo device. The amplitude of the motion

19



Figure 3-2: Experimental Image: piece of silicon wafer with impurities on its surface.
Images of this target were taken of 8 different phases for motions ranging from one
nanometer to one micrometer. The 32 x 32 region of interest shown in the image
was used to make the motion measurements. The scale bar is 50 micrometers.

was controlled by varying the amplitude of the sinusoidal stimulus. A mirror was

attached to the end of the piezo device so that a laser Doppler vibrometer (Polytec

models OFV 3001 and OFV 511) could be used as a motion standard to compare to

the image based methods. The laser Doppler is accurate to about one picometer.

3.2.2 Test Structures

Figure 3-2 shows an image of the high contrast target that was moved and later

tracked with the motion estimation algorithms. The image is a magnified view of the

surface of a piece of silicon with impurities on its surface.

3.2.3 Image Acquisition

One hundred images were acquired at each of 8 phases using stroboscopic illumination

and the CCD camera. A hundred images of each phase were averaged to reduce the

effect of the variability in the number of photon arrivals over the exposure time, also

known as shot noise.

20



3.3 Motion Measurement from Image Data

3.3.1 Homomorphic Filter

Each motion measurement starts with a sequence of two images. Each image was

homomorphically filtered independently of the other. The filtering was done by (1)

taking the natural log of each pixel value; (2) performing Matlab's 2-D adaptive

Wiener filter of size four by four on the resultant log of each image; (3) exponentiating

the output of the filter. For large noise levels the simulations resulted in negative pixel

values. Images from CCD cameras are non-negative so the absolute value was taken

of each pixel value. A value of 2.2204 x 10-16, the smallest number in floating point

precision, was added to each pixel value to prevent taking the log of zero. The 2-

D adaptive Wiener filter estimates the spectrum of the FPN and the signal in a

region and then adjusts the values of the filter to remove the noise without removing

signal. The adaptive Wiener filter generates filter coefficients using estimates of the

local mean and variance along with a global estimate of the noise. There are several

different algorithms for this, one is described in (Lim 1990). A filter size of 4 was

chosen because it gave the best power of the signal to that of the error in the image

values over the noise levels tested.

3.3.2 Lowpass Filter

A lowpass equiripple filter with a transition band from 7r/50 to 7r/10 of length 35 was

used to filter the images. The rows were filtered first using this filter, the resulting

columns were then filtered. The cutoff was chosen, to preserve the spectral informa-

tion in the bead image. The bead image contained all of its energy below this cutoff

frequency. For low FPN levels this would act similarly to the Wiener filter on the

image of the bead.

21



3.3.3 Gradient Algorithm

The motion estimation algorithm in this study is based on optical flow and utilizes

local spatial and temporal gradients as developed in (Horn 1986, Horn & Schunck

1981, Horn & Schunck 1993, Horn & Weldon, Jr. 1988). The algorithm uses linear

bias correction (LBC) to decrease biases in the gradient algorithms; this is further

described in (Davis & Freeman 1998).

3.3.4 Correlation

The correlation plots of the two images were generated by (1) upsampling and in-

terpolating each image by a factor of ten; (2) subtracting the mean from each of

the images; (3) flipping the shifted upsampled image along each axis; (4) and tak-

ing the FFT of both the flipped image and upsampled original; (5) multiplying the

transformed results; (6) taking the magnitude of the IFFT of that result.

3.3.5 Two Point Correction

Two point correction is a method for the attenuation of FPN (Healey & Kondepudy

2001, Agard, Hiraoka, Shaw & Sedat 1989). It is performed by first generating a set

of two images, a bright and a dark image, then using those images to adjust the pixel

values of the image to be corrected. The bright image is generated by taking the

average of 100 images of the out of focus target or of the illumination source in the

absence of a target. The dark image is generated by taking the averages of 100 images

with the illumination off. The corrected image C[i, j] M[ij]D[ij] where M[i,j] isB[ij]-D[ij] I

the measured pixel value, B[i, j] the bright pixel value, and D[i, j] the dark pixel

value all at location [i, j]. The idea behind two-point correction is that B [i, A] should

result from constant illumination intensity at each pixel, so variations in B[i, j] are

proportional to FPN.
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Chapter 4

Results

The performance of the sub-pixel motion estimation used in conjunction with ho-

momorphic filtering was tested between pairs of computer-generated images with

simulated motions and fixed pattern noise. Each pair of images consisted of an origi-

nal and a computer-generated shift of that image. In addition to the simulations, the

algorithms were tested on images of real targets captured experimentally.

4.1 Simulation Results

Figure 4-1 shows the correlation between the original gyro image and the shifted gyro

image, both containing FPN. It contains a peak near the zero shift which dominates

the local maximum near the location of the simulated shift. Figure 4-2 shows the

resulting correlation following the application of the homomorphic filter to both im-

ages. The peak located at the zero shift, seen in Figure 4-1, is greatly attenuated and

no longer visible, while the peak near the imposed shift now contains the maximum

correlation.

Each simulated shift in x and y is represented by a pair of displacements (dx, dy).

Displacements were simulated for 21 x 21 shifts of (dx, dy) from (-1, -1) to (1, 1) on

each of the images. Figure 4-3 shows the estimates of the shift in x for each imposed

dx. The estimates of dx were averaged over the estimates from the 21 different dy. The

results show that over each dx the measurements on the images that were filtered with
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of the simulated shift. Observe that the peak corresponding to the (0,0) shift in figure
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Figure 4-4: Bias in estimates of y displacements without (a) and with (b) homo-
morphic pre-filtering for the SAR image of Galapagos Islands. The measured bias
is the difference between the measured shift in y and the imposed displacement dy.
Displacements were simulated for 21 x 21 values of (dr, dy) from (-1, -1) to (1, 1) of
the Galapagos image. The standard deviation of the fixed pattern noise was 3.2. 10-2.

homomorphic filtering were closer to the actual value than were those measurements

without the filtering. The magnitudes of the estimates of both algorithms are smaller

than the imposed displacements d, indicating a systematic bias towards zero shift.

Figures 4-4 a and b show the measured bias of the measurement of y as a function

of (dr, dy). For constant y values and any x value the magnitude of the bias does not

vary significantly compared to the variation as dy is varied for a fixed dX, i.e, the bias

in y was mostly independent of dx. The bias in the filtered images is on average 2.4

times smaller than that of the unfiltered images.

The vector fields in figure 4-5 provide a way to see both the direction and mag-

nitude of errors of each imposed shift simultaneously. Each arrow points from the

applied shift to the measured shift. The length of the arrow is indicative of the

magnitude of the bias.

The arrows for the errors of motion estimation using both the unfiltered and the

homomorphic filtered images point toward the center, indicating that both algorithms

are biased toward zero. Although the vectors in both graphs are pointing in similar
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Figure 4-5: Vector field representation of the errors without (a) and with (b) homo-
morphic filtering for each 21 x 21 shifts (d,, dy) . The tail of each arrow lies on the
location of the simulated shift (d,, dy). The head of that arrow points to the measured
displacement (dX, dy).

directions the length of each vector (amount of bias) of each measurement is smaller in

figure 4-5 b than in figure 4-5 a. This shows that the application of the homomorphic

filter reduces bias.

Figure 4-6 shows the average of the magnitude of the error over all of the simulated

displacements for each of the test images. In each of the plots the measurements of

the homomorphic filtered images perform either better than or the same as those of

the unfiltered images. Each of these plots has the same characteristic shape with

three different regions: a low noise region in which the behavior of both algorithms

does not vary as a function of the FPN, an intermediate range in which the error of

both algorithms increases with the level of the FPN, and a high noise level in which

the errors in both algorithms perform do not vary as a function of the FPN. The

ratios of the errors of the two algorithms in both the low and middle noise ranges are

shown in Table 4.1. In the high noise range, the measurements on the images with

homomorphic filtering perform a small amount better (less than a dB) than without.

In addition to the results in Figure 4-6, Figure 4-7 contains the results of mea-

surements using a simple lowpass filter with a transition band from 7r/50 to 7r/10.

28



10-3 10-2 10~

fixed pattern a

(a)

103 10-2 10
fixed pattern a

(c)

10

10

Z 10

10-

+ no filtering
x homomorphic filtering

x+ x
X

+

X

+
+ + ++ + x

10

10 10

2 10

W 10
-1-2

1 -3
10 10

10-3 10-2 10
fixed pattern a

(b)

10~4 10-3 10-2 10
fixed pattern a

(d)

Figure 4-6: Average of the absolute value of errors in the measured values of x for each
of the test images - a) simulated bead, b) Hair Bundles, c) Gyro, and d) Galapagos
SAR - as a function of the standard deviation of the fixed pattern noise. Errors were
determined for the algorithms with and without homomorphic filtering. Each point
shows the average error of each of the 41 x 41 imposed displacements from (-2, -2)
to (2, 2) of (dx, dv).

low intermediate
Image range in a ratio (dB) range in a ratio (dB)

simulated bead 10-4-10-3 3.2 2. 10-3-10-1 11.9
gyroscope 10--2. 0- 9.6 3 -T 0-1 - 10.2

hair bundle 104-10-2 14.0 2. 10-2 - 10-1 8.5
SAR Galapagos 104-6. 10-3 16.6 10-2-3 -10-1 7.8

Table 4.1: Average ratio between the errors in motion estimates of unprocessed images
and processed images. Low and intermediate noise ranges for each test image are
shown. The measurement errors come from Figure 4-6.
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The results show that low pass filtering of the images yields more accurate motion

estimates than no filtering at all over the entire range of FPN levels. The homo-

morphic filtering produces more accurate estimates in all intermediate and high noise

levels than do the low pass filtered and un-filtered images. In the low noise ranges

the homomorphic filter yields the best estimates on all but the Galapagos image,

where the motion estimates of the low pass filtered images have 1.3 dB smaller error

than do the homomorphic filtered images. In the low noise ranges the homomorphic

filtered images bested the low pass filtered images by 3.2 dB, 2.7 dB, and 7.3 dB

for the bead, gyro,and hair bundle images, respectively. The improvements over the

standard algorithm for the low pass filtered images over the unfiltered images in that

range were 3.2 dB, 6.9 dB, 6.3 dB and 17.9 dB, respectively.

Figure 4-8 shows the results for the adaptive Wiener filter without using the log

operator along with the homomorphic filter and the unfiltered case. The results show

that the performance on the simulated bead and hair bundles is the same, while the

homomorphic filtering yields more accurate measurements on the gyro image and the

Galapagos image. The greatest differences are in the low to mid FPN ranges.

4.2 Experimental Results

In addition to the simulations, the motion estimation algorithms were tested on im-

ages obtained experimentally. The measured displacements of the image based algo-

rithms are plotted against measurements of motion of the same target made using the

laser Doppler in figure 4-9. For each displacement ranging from about one nanome-

ter to one micrometer, the measurement made by using the homomorphic filtering is

closer to the reference measurement indicated by the straight line.

Figure 4-10 shows the magnitude of the errors for the experiment as a function of

the displacements measured with the laser Doppler. The error for the measurements

on the pre-processed images are smaller than those for the unprocessed images for

the two point corrected images for all displacements. The two point corrected images
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Figure 4-7: The same plot as in figure 4-6, except that the results from the algorithm
using a simple lowpass filter with a transition band from 7r/50 to 7r/10 are included.
The images used are a) simulated bead b) hair bundles c) gyro and d) Galapagos
SAR.

31

-4

-10*0

-- 1
o 10

10-

CD
> -2a 10

101
10

10

10

> 
-2

+ no filtering
x homomorphic filtering
O lowpass filtering

+

x
0

+ X0

0

XXXXXXX0XX

X X X XX X

+ no filtering
x homomorphic filtering
O lowpass filtering

0

+~~~~ + ++++ + x

9
e 66 66 650

10 1 101

0

) I

I

4

10-3 4
10~*

-4



+ no filtering
x homomorphic filtering
o adaptive wiener filtering

+ +

+ 0

;+0 ;&*

10-3 10 2 10
fixed pattern a

(a)

10~4 10 10-2 10
fixed pattern a

(c)

10 10

100

0)

a 10-2

03

010

1

10 1

10

10
a

-2

10 10

+ no filtering
x homomorphic filtering
O adaptive wiener filtering

- ~~~+ + eOOOOOi

+0

+ D

+041

+ 0

00

0~4 10-3 10-2 10 160 10
fixed pattern a

(b)

10-3 10-2 10~
fixed pattern a

(d)
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algorithm using an adaptive wiener filter (of size 4) are included. The images used
are a) simulated bead b) hair bundles c) gyro and d) Galapagos SAR.
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Figure 4-9: The measured displacements from the image based algorithms compared
to the motion measurements from the laser Doppler. A straight line is shown as a
reference. Each measurement is made from the average of 100 images to reduce the
effect of shot noise.
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error for the method using homomorphic filtering is the smallest over all imposed
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give approximately the same result as for the uncorrected images except at the largest

two displacements. The average differences in the size of the measured error is 12dB.

The differences range from the worst case of 1.75 dB to the best case of 24.2 dB.

4.2.1 Computational Costs

The relative computational costs of the optical flow algorithms and the homomorphic

filter were estimated by timing a thousand runs of each the 64 x 64 original and

shifted images of the Galapagos islands. The tests were run on a Dell Dimension

8250 computer with a 2.8 GHz Pentium 4 Processor and one gigabyte of RAM. It

took 2.3 seconds to read a thousand pairs of images from disk. The iterations of the

optical flow took 3.55 seconds and the iterations of the filter took 7.68 seconds. The

LBC algorithm makes a minimum of four optical flow measurements which took 14.19

seconds to perform the thousand iterations. Both images were loaded into memory

before the algorithms were tested. Performing the homomorphic filtering in addition

to the LBC algorithm takes 54% more computation time.
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Chapter 5

Discussion

5.1 The Effect of FPN on Motion Estimation

The effect of FPN on the accuracy of the gradient algorithms is consistent with what

is shown in the correlation plots. As FPN increases the measurements are biased

more and more towards zero. By applying the pre-filtering to the images the peak

located at the zero-shift is attenuated in the correlation plots and the error in the

measurements is diminished. This shows that as the energy of the correlation due to

the FPN is reduced, more accurate motion estimations are possible.

5.2 Frequency Content of the Images Matters in

Motion Estimation

Table 4.1 is arranged by the portion of energy in the images at frequencies less than

7r/10. The simulated bead, which contains only low frequency energy, appears first in

the table, while the Galapagos image containing significant energy at all frequencies

appears last. The table shows two major trends: (1) the improvement in accuracy

gained by homomorphic filtering in the low FPN region increases with the amount

energy at higher frequencies in the images and (2) this improvement decreases in the

intermediate FPN region.
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In the low FPN region the magnitude of the errors is independent of the FPN.

This suggests that the reduction in the error is not governed by the removal of fixed

pattern noise. For these noise levels the homomorphic filter acts as a homomorphic

low pass filter. In (Davis & Freeman 1998) it is shown that as the frequency content

of an image increases so does the bias. This result suggests that removing the high

frequency content from an image will decrease the bias in the measured displacement.

Since the bead image consists of only low frequency energy not much improvement

in motion estimation is gained by filtering, whereas a large improvement is seen with

the Galapagos image.

Since the errors in the intermediate range depend on FPN, it is clear that by

removing FPN, more accurate measurements of motion can be made. Because the

bead image contains only low frequency information, the FPN - which is white in

the Cepstral domain - can be isolated and removed by the adaptive Wiener filter.

In the Galapagos image it is more difficult for the adaptive Wiener filter to remove

the noise because the signal contains energy over a larger portion of the spectrum.

This analysis is further supported by the measurements made on images using

low pass filtered images. In the low FPN range, for the image with the least amount

of information over r/10, the low pass filtering had the smallest performance gains

over the unfiltered images. The smallest gains were obtained on the bead image,

which consisted of only low frequency information. By reducing information at higher

frequencies, the errors in the measurements were reduced. The deviation between the

two different filtering schemes in this low FPN region is due to their different low pass

filter character.

The images of the gyro and of the Galapagos have a larger portion of their energy

over -r/2 than do the other two images. This makes it more difficult for the Wiener

filter to separate signal from the noise. As seen in Figure 4-8, by taking the log of

the image values the adaptive Wiener filter can then better separate the signal from

the noise.
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5.3 Homomorphic Pre-filtering Improves Motion

Estimation

Using a low pass filter, improvements were gained over the unfiltered images for all

FPN noise ranges. In regions where FPN affects the accuracy of the measurements,

the homomorphic filtered images yield better motion estimates than the low pass

filtered images in all cases. In the low noise ranges, the low pass filter has good

performance, but the homomorphic filter still works best in three of the four test

images. On the image that it performs worse on, the difference is only 1.3 dB, while

on the other three images it performed better by 3.2 dB, 2.7 dB, and 7.3 dB.

A simple adaptive Wiener filter provides improvements in motion estimation over

the un-filtered case. However, by taking the log of the image values before Wiener

filtering, better accuracy in motion estimation is achieved.

The amount of variation in gain across the image sensor can be seen as a floor

on the level of the FPN since there is typically additional noise in the optical setup.

This places the FPN level of a typical camera setup, usually between 1-6% across a

CCD (Ilyin 2002), in a range where the homomorphic filtering is the best choice for

removing the FPN and producing the most accurate measurements.

In both the simulations and the experiments, the proposed pre-filtering produced

more accurate results than did the algorithms without the filtering. The algorithms

produced improvements in accuracy of 7.8 dB to 11.9 dB in the simulations, and an

average of 11 dB in the experiments. This improvement results from two factors:

reducing the FPN in the images and in low-pass filtering of the images. Under

no condition was the accuracy of the motion estimation algorithm reduced by the

filtering. This technique has a relatively small computation cost and therefore should

be applied whenever gradient-based motion estimation is used.
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