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ABSTRACT

This thesis presents a novel approach to pose and illumination invariant face recog-
nition that combines two recent advances in the computer vision field: component-
based recognition and 3D morphable models. In a first step a 3D morphable model
is used to generate 3D face models from only two input images for each person in
the training database. A vast number of synthetic training images under varying
pose and illumination conditions are rendered using the 3D models. These synthetic
faces are used to to train a component-based face recognition system. The resulting
component-based face recognition system achieved 90% accuracy and significantly
outperformed a comparable global face recognition system. These results show the
potential of the component-based approach toward a fully pose and illumination in-
variant system.
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Chapter 1

Introduction

1.1 Background

Within computer vision, face recognition has become increasingly relevant in today's

society. The recent interest in face recognition can be attributed to the increase of

commercial interest and the development of feasible technologies to support the de-

velopment of face recognition. Major areas of commercial interest include biometrics,

law enforcement and surveillance, smart cards, and access control [25]. Unlike other

forms of identification such as fingerprint analysis and iris scans, face recognition is

user-friendly and non-intrusive. Possible scenarios of face recognition include: iden-

tification at front door for home security, recognition at ATM or in conjunction with

a smart card for authentication, video surveillance for security.

As real-world applications for face recognition systems continue to increase, the

need for an accurate, easily trainable recognition system becomes more pressing.

Early work on face recognition involved methods such as principal component analysis
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[10], elastic bunch graph matching [24], and optical flow based techniques [1]. Current

systems have advanced to be fairly accurate in recognition under constrained scenar-

ios, but extrinsic imaging parameters such as pose, illumination, and facial expression

still cause much difficulty in correct recognition. The problem of face recognition can

be divided into two major areas: detection of the face region and identification of

the detected region. Attempting recognition on an inaccurate detected face region is

hopeless.

Face recognition techniques can be classified as holistic or component based. Holis-

tic or global approaches treat the entire face as one unit and are characterized by the

lack of a priori decomposition of the image into semantically meaningful facial parts.

The component approach detects the facial parts first and then performs recognition.

The justification behind the component-based approach is that the face has a strong

configurational appearance that can be exploited and the combination of multiple

components will reduce the inaccuracy of an individual component detector. How-

ever, the complexity of the system increases with the multiple detection tasks which

need to be performed. Component-based methods are mainly characterized by the

use of a priori knowledge to represent the face in smaller parts and its constraints on

the spatial configuration of parts [16].

Recently, component-based approaches have shown promising results in various

object detection and recognition tasks such as face detection [17, 9], person detection

[11], and face recognition [4, 23, 12, 8]. The system in [9] was a SVM based recognition

system which decomposed the face into a set of components that were interconnected

by a flexible geometrical model. The premise behind the system was that changes in
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the head pose mainly lead to changes in the position of the facial components which

could be accounted for by the flexibility of the geometrical model. In other words,

the components themselves changed little compared to the change in position.

The system consisted of a component-based face detection unit and a face recogni-

tion unit. In the face detection unit, fourteen component classifiers and a geometrical

classifier were used to detect the face and extract the components from an image.

The component-based face recognition unit used the extracted components to per-

form recognition. Their experiments showed that the component-based system con-

sistently outperformed holistic recognition systems in which classification was based

on the whole face pattern.

1.2 Motivation and Goals

A major drawback of the system was the need of a large number of training images

taken from different viewpoints and under different lighting conditions. In many real

world applications, this data is not available. This drawback is eliminated with the

incorporation of 3D morphable models in this thesis. The addition of a morphable

model allows the computation of a 3D face model using an analysis by synthesis

method [3] with only two face images. The ability to generate an arbitrary number

of synthetic images under varying pose and illumination conditions through the use

3D morphable models eliminates the need for a large number of real training images.

Previous research has demonstrated both the advantages of component-based sys-

tems over global systems and the uses of 3D morphable models. The combination
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of the two ideas promises even greater potential for a face recognition system. The

implication of this combination of component-based recognition with 3D head models

is that any person can be added to the database with only two real images. In addi-

tion, the system can theoretically be extended to be completely pose and illumination

invariant by generating synthetic images with a full range of pose and illumination

conditions.

Given the limited time and processing power constraints, the goal of this thesis was

to train a face recognition system which dealt with a subset of poses and illumination

conditions. The system has six people in the database and handles rotations from

frontal to approximately half profile.

1.3 Outline of Thesis

The outline of the thesis is as follows: Besides component-based recognition which was

already discussed in Chapter 1.1, the main ideas behind this thesis are Support Vector

Machine (SVM) classification and 3D morphable models. Chapter 2 gives a techni-

cal background of the thesis, explaining both SVM classification and 3D morphable

models. Since the face recognition system can be broken up into face detection and

face recognition, they will also be discussed in separate chapters. Chapter 3 describes

both the component-based and the global approach to face recognition. Similarly,

Chapter 4 outlines component-based and global face recognition and presents exper-

imental results. Finally, conclusions and suggestions for future work are presented in

Chapter 5.

9



Chapter 2

Technical Background

2.1 Support Vector Machine Classification

2.1.1 Machine Classification

Classifiers, including Support Vector Machines, are generally trained through super-

vised learning. In supervised learning, a machine chooses the best function relating

the inputs and outputs. This function is judged by its ability to generalize on new

inputs which were not in the training data. In this section, regularization theory is

used to derive SVMs [20], following the approach in [19].

2.1.2 Regularization Framework

Regularization gives solutions in the form of:

f (x) = aiK(x, xi)
i=1

(2.1)
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where the xi, = 1,. . . , f are the input, K is the kernel,and ac a set of parameters

dependent on the input. The solution f is found by minimizing functionals of the

type:

<f Z V(yi, f (xi)) + Afllf , (2.2)

where V is a loss function, Ilf12 is a smoothness, or regularizing, term, which is

the norm in the Reproducing Kernel Hilbert Space (RKHS) defined by the kernel

K, and A a positive parameter controlling the relative weight between the data and

the regularizing term. The loss function is a measure of goodness of the predicted

output f(xi) with respect to the given output yi. The choice of the loss function

determines different learning techniques, each leading to a different learning algorithm

for computation of coefficients a in (2.1).

SVM classification uses the following loss function V:

V(y, f (x)) = (1 - yf (x))+, (2.3)

where (t)+ = t if t > 0 and zero otherwise.

By solving the Quadratic Programming (QP) problem with linear constraints, the

coefficients ao in (1) can be found. The the loss function (2.3) remarkably yields

sparse solutions. A sparse solution refers to the fact that only a small fraction of the

coefficients ai in the expansion (2.1) are nonzero. These non-zero a, have correspond-

ing data points which are termed support vectors. Support vectors are unique in that

they are sufficient to determine the solution to a given training set. SVM's are also
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interesting in that the separating surface has the maximum distance to the support

vectors, which are the closest points in the training data. This graphical solution can

be seen in Figure 2.1.

+ +

++j d d

0f 0

C-

E E

X ft=+1 *

f=0

Dimension 1 Dimension 1

Figure 2.1: A simple linear SVM separation between two classes. On the left, the

figure shows all possible separations of the data without error. On the right, the figure
shows the maximum margin separation. Note the support vectors lie at distances d
from the hyperplane.

The benefit of the SVMs is that the function f(x) is independent of the dimen-

sionality of the feature space. Both the quadratic minimization and the recognition

depend only on the dot products of the unknown vector with the sample vectors.

More detailed explanations of Support Vector Machines can be found in [21] and [5].

2.1.3 Multi-class classification

A SVM can only separate two classes. A number of strategies to solve L-class problems

with binary SVM classifiers exist (see e.g. [15]). Two common solutions to the multi-

class classification problem are the one-vs-all and the pairwise approach. Figure 2.2
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diagrams the difference between the two methods.

i) A one-vs-all approach implies that a SVM classifer is trained for each class L

in the database, which separates that class from the rest[6, 18].

ii) A pairwise approach implies that L(L - 1)/2 machines are trained, each sep-

arating a pair of classes. These pairwise classifiers are arranged in trees, where each

tree node represents an SVM. The classification can be determined by traversing the

outputs of the tree. Some implementations of the pairwise approach include [14], [7],

and [13].

In this thesis, the one-vs-all approach is chosen for its simplicity and training

efficiency. Only L SVMs have to be trained compared to L(L - 1)/2 SVMs in the

pairwise approach. The two strategies are fairly comparable in run-time complexity

and performance.

A) Pairwise bottom-up B) 1-vs.-All

A or B or C or D A

A or B C or B B

CC

A B C DD

Training: L (L-1) /2 Training: L
Run-time: L-1 Run-time: L

Figure 2.2: Diagram of pairwise and one-vs-all approach of multi-class classification
with binary classifiers
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2.2 3D Morphable Models

2.2.1 Description

Morphing between 3D objects is a well-known computer graphics technique. 3D

morphable face models apply the general concept into the vector space representation

of face models. The main idea behind the morphable face model approach is that given

a sufficiently large database of 3D face models any arbitrary face can be generated

by morphing between the ones in the database.

The 3D morphable model used in this thesis was developed by Volker Blanz and

Thomas Vetter [31, who extended the 2D approach in [22]. The generation of 3D

head models was done in collaboration with their lab. Their database of 3D mod-

els was built by recording the faces of 200 subjects with a 3D laser scanner. Then

3D correspondences between the head models were established in a semi-automatic

way using techniques derived from optical flow computation. Using these correspon-

dences, a new 3D face model can be generated by morphing the existing models in

the database.

To create a 3D face model from a set of 2D face images, an analysis by synthesis

loop is used to find the morphing parameters such that the rendered images of the 3D

model are as close as possible to the input images. These parameters include shape

and texture coefficients, illumination, orientation, and face position. The optimization

algorithm starts with manual alignment of the average face (of the 200 head models)

with the face in the image. Iteratively, the algorithm attempts to minimize the error

between the synthetic reconstruction at that point with the input image with respect
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to the the sum of square errors over all color channels and all pixels [3].

2.2.2 Training Images Generated from Face Models

Morphable models allow for the simplistic generation of 3D face models which are used

in the training of the face recognition system. First, high quality frontal and half-

profile pictures are taken of each subject under ambient lighting conditions. These

images are then used used as input to the analysis by synthesis loop which yields a face

model. This face model can be used to graphically render synthetic face images under

varying pose and illumination conditions. Examples of the pairs of input images and

corresponding synthetic images created by rendering the 3D face models are shown

in Figure 2.3.

Figure 2.3: Generation of the 3D model. The top images are the real images used to
generate a 3D model. The bottom images are synthetic images generated from the
model. Notice the similarity between the original and synthetic images.

Using the 3D models, synthetic images such as the ones in Figure 2.4 can easily
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Figure 2.4: Synthetic training images. Synthetic face images generated from the 3D

head models under different illuminations (top row) and different poses (bottom row).

be created by rendering the models. The 3D morphable model also provides the

full 3D correspondence information which allows for automatic extraction of facial

components and facial regions. This greatly simplifies the problem of obtaining the

large quantity of training images required to train a robust face recognition system.

The 3D face models were used in the creation of the positive training set. The

negative training set was built from randomly extracting 13655 patterns of size 58 x 58

from a database of non-face images. Synthetic faces were generated at a resolution of

58 x 58 for the 6 subjects under varying pose and illumination conditions. Specifically,

the faces were rotated in depth from -34' to 34' in 2' increments. Two illumination

models were used to simulate real lighting conditions. One model consisted of ambient

light alone, while the other model was composed of directed light in addition to

ambient light. The directed light was pointed at the center of the face and positioned

between -90' and +90' in azimuth and 0' and 75' in elevation. The angular position

of directed light was incremented by 15' in both directions. This training set was

used to train both the component-based and global detection units.

For face recognition, the training set used for detection was modified. Upon further
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examination, the images used for detection were unrealistic in their reflectance and

lighting schemes. Some adjustments were made to the lighting conditions and skin

reflectance parameters in order to introduce more realistic training images which

would better represent the real world images. This modified training set of 11526

images was used for both the component-based and global recognition units.
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Chapter 3

Face Detection

As previously mentioned, the task of face detection is crucial to a successful recogni-

tion. Two face detection units, component-based and global, are described in detail

in this Chapter. These outputs of these two units will be used as inputs to the face

recognition units described in the next Chapter.

3.1 Component-based Face Detection

The component-based detector performs two tasks: the detection of the face in a

given input image and the extraction of the facial components which are later needed

to recognize the face.

The architecture of a two-level component-based face detection system was taken

from [8] and shown schematically in Figure 3.1. The first level consists of fourteen

independent component support vector machine classifiers. The shape of the com-

ponents was learned by an algorithm described in [9] to achieve optimal detection

18



Eyebrows Eyes Nose Bridge Nose Nostrils Cheeks Mouth Lip Mouth Corners

Width 19 17 18 15 22 21 31 13 18
Height 15 17 16 20 12 20 15 16 11

Table 3.1: Size of the fourteen components of the component-based detector.

results. Figure 3.2 shows examples of the fourteen components and their sizes are

listed in Table 1. The components included the left and right eyebrows, left and right

eyes, bridge of the nose, nose, left and right nostrils, left and right cheeks, mouth,

lip, and left and right mouth corners.

On the second level, the geometrical classifier takes the first level outputs of the

component classifiers and performs the face detection. The first level outputs con-

sisted of the maximum continuous outputs of the component classifiers within rect-

angular search regions around the expected positions of the components in a 58 by

58 window. The rectangular search regions were determined from statistical informa-

tion about the location of the components in the training images. In addition, the

geometrical classifier also used the maxima locations (x, y positions relative to the

the upper left corner of the 58 by 58 window).

On a novel image, a 58 times 58 resolution window slides across the image and

first detects the components and then feeds the information into the second level

classifier. The maximum result over the entire image is taken to be the location of

the face. Once the face is detected, the components are extracted for later use in the

face recognition unit.

The training set, as previously discussed in Chapter 2.2.2, was used in training

the component-based face detector. To train the first level classifiers, fourteen com-

ponents were automatically extracted from every synthetic face image based on the

19



1. Shift 58x58 window
over input image

Left Eye
-+ expert:

Linear SVM

2. Shift component
experts over
58x58 window

*Outputs of component
experts: bright intensities
indicate high confidence.

(01,,X,, Y)

(A Xk, Y)

0 ",14, X14, Y1)

3. For each component k,
determine its maximum
output within a search
region and its location:

(A,, Xk,Yk)

(0, X,Yl,..., 014, XJ4,Y 4 )

Combination
classifier:

Linear SVM

4. Final decision:
face / background

Figure 3.1: System overview of the component-based face detector using three com-

ponents.

rU"

r

PIrU

Figure 3.2: Examples of the fourteen components extracted from a frontal view and

half profile view of a face.
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correspondence information given by the morphable model. Similarly, negative com-

ponents, corresponding to the size of their respective positive component images, were

extracted from the negative training set. Each component classifier was trained on

the previously described set of extracted facial components and on a set of randomly

selected non-face patterns. These components are shown in Figure 3.2. Next, the

second level face detector was trained with the output of the first level classifiers on

face images and non-face images.

Various experiments were performed in the attempt to produce the best face de-

tection unit. On a kernel level, component and geometrical classifiers were trained

with both linear and polynomial kernels. The slight increase in accuracy obtained

by using polynomial classifiers was determined to be not worth the tradeoff in com-

puting time. Another problem was the slight shifting of detection when the position

information was included in the training of the face detector. This problem was mit-

igated by training the face detector without position information. Different types of

histogram equalization and feature types (gray value, gradients, Harr wavelets) were

also attempted. The resulting face detection used gray pixel value features and was

produced solely from the face models in the database.

Both the face detection unit previously described and the face detection unit used

in the [9] were used as inputs to the face recognition units. The face detection unit

from the previous system performed more accurately (approximately 10%). Since

the concentration of this thesis was on face recognition and not on face detection,

the face detector from the previous system was used as the final face detection unit.

The previous system developed their face detection unit more extensively, namely

21
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with more synthetic head models, more difficult training images, and bootstrapping

techniques.

3.2 Global Face Detection

Global face detection differs from component-based face detection in that the whole

face is treated as one unit. The same training set, as described in Chapter 2.2.2, was

used. Instead of extracting individual components, a region of the face was extracted

for the training of the face detector. Using the correspondence information given by

the morphable model, the extracted region was based on the position of the upper

corner of the eyebrows and the middle of the chin. Histogram equalization is then

performed on each extracted face image. Figure 3.3 shows a sample training images

and the histogram equalized results. Finally the gray pixel values of each image are

stored in a single feature vector. Similarly, the gray pixel values of the histogram

equalized negative training images are stored into a single feature vector.

Figure 3.3: Global face detection training images. The original images are on the

left, and the histogram equalized images are on the right.

A linear SVM is trained on the positive and negative feature vectors to yield the

global detector. On a novel image, a 58 x 58 resolution window slides across the

image. The maximum result of the global classifier is taken to be the location of the

face. The 58 x 58 region is extracted for later use in the global face recognition unit.
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Chapter 4

Face Recognition

4.1 Component-based Face Recognition

Face recognition can be attempted once the face is detected in the image. The face

recognition units described in this Chapter use the outputs of the face detection units

from the previous Chapter. Two types of face recognition, component-based and

global, are described and tested in this Chapter.

4.1.1 Architecture

The component-based face recognition system consists of six people classifiers, one

for each person in the database. Each classifier was trained in a one vs. all approach.

In other words, a SVM was trained from each subject in the database to separate

her/him from all the other subjects.

To determine the identity of a person at runtime, the component-based face de-

tection and component-based recognition units are used. Figure 4.1 shows the pro-
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gression from a novel image to recognition. First, the component-based face detector

detects the face portion of the image and extracts the components. These components

are used by the component-based face recognizer to determine the identity of the per-

son. The outputs of the different SVM face classifiers are compared. The identity

associated with the face classifier with the highest normalized output is taken to be

the identity of the face.

Component-based Face Detector

SVM SVM SVM 1 SVM
A B C D

Max Operation

Recognition Result

Figure 4.1: Component-based face recognition overview. The face and components
are extracted by the face detection unit. The highest output of the recognition clas-
sifiers is used as the recognition result.

4.1.2 Training

From the fourteen components extracted by the face detector, only nine compo-

nents were used for face recognition. Four components were eliminated because they

strongly overlapped with other components or contained few gray value structure

(e.g. cheeks). The lip component was also eliminated because of its inaccuracy. Fig-
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ure 4.2 shows the composite of the nine extracted components used for face recognition

for some example images. An extra histogram-equalized face region component was

added to improve recognition. I Some examples of this face component are shown in

Figure 4.3.

Figure 4.2: Composite of the nine components retained for face recognition.

Figure 4.3: Extra histogram equalized face component added for face recognition

The component-based face detection unit was applied to each synthetic face image

in the modified training set, described in Chapter 2.2.2, to detect the components

and thereby the facial region. Histogram equalization was then preformed on the

bounding box around the components. The gray pixel values of each component were

then taken from the histogram equalized image and combined into a single feature

vector. Feature vectors were constructed for each person, and corresponding classifiers

'The location of the extra component was computed by taking the bounding box around the other
nine detected components and then subtracting from the larger edge to form a square component.
This square was then normalized to 40 x 40, histogram-equalized, and then stored.
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were trained.

4.2 Global Face Recognition

The global face recognition system also consists of six people classifiers, one for each

person in the database. Each classifier was also trained in a one vs. all approach. To

determine the identity of a person at runtime, the global face detection and global

recognition units are used. Figure 4.4 shows the progression from a novel image to

recognition. First, the global face detector detects and extracts the face region. This

region is then used by the global face recognizer to determine the identity of the

person. The outputs of the global SVM face classifiers are compared. The identity

associated with the face classifier with the highest normalized output is taken to be

the identity of the face.

The same modified training images which were used for component-based recog-

nition were also used for global face recognition. The global face detection unit was

applied to each synthetic face image in the training set to detect the facial region.

Similar to the global face detection unit, these extracted face regions were histogram-

equalized and stored in feature vectors. Feature vectors were constructed for each

person, and corresponding classifiers were also trained for each person.
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A B C D

Max Operation

Recognition Result

Figure 4.4: Global face recognition overview. The face is extracted by the face de-
tection unit and fed to the global face recognition unit. The highest output of the
recognition classifiers is used as a recognition result.

4.3 Results

4.3.1 Test Set

A test set was created by taking images of the six people in the database. The subjects

were asked to rotate their faces in depth and the lighting conditions were changed

by moving a light source around the subject. The test set consisted of 200 images

of each person, under various pose and illumination conditions. Figure 4.5 contains

examples of the images in the test set. Although subjects were asked to rotate only

in depth, some faces were slightly rotated in the image plane was well.
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Figure 4.5: Examples of the
conditions.

4.3.2 Experiments

real test set. Note the variety of poses and illumination

Issues with Face Detection

As previously mentioned, a correct detection is extremely crucial to the subsequent

face recognition. No exact numbers can be given on false face detections. The exact

effect of a small shift is also not clearly defined. By sight, the number of clearly

incorrect detections for global detection, examples of which are shown in Figure 4.7,

is 1.8%. The number of clearly incorrect detections for component-based detection,

examples of which are shown in Figure 4.6, is 3.8%.

Figure 4.6: Incorrect component-based face detections.
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Figure 4.7: Incorrect global face detections

Linear vs. Polynomial Kernels

For both component-based and global face recognition, linear and 2nd degree polyno-

mial SVMs were trained. For the whole face system the accuracy of the polynomial

classifier exceeds that of its linear counterpart while for the component-based system

the polynomial and linear classifiers are roughly equal. In the component-based case,

the polynomial kernels only performed 1.7% more accurately for maximum recogni-

tion; in the global case, the polynomial kernels performed 10% more accurately for

maximum recognition. The resulting ROC curves can be seen in Figure 4.8.

Component-based vs. Global Classification

Trained on the same data, the component-based recognition system significantly out-

performed the global recognition system. The resulting ROC curves for the 2nd

degree polynomial versions of global and component-based recognition on the test

set can be seen in Figure 4.9. Component-based recognition was approximately 50%

more accurate than the global recognition.

This large discrepancy in results can be attributed to two main factors: difference

in robustness and preprocessing between the two models. Figure 4.10 compares the

performance of a simple global and component template on sample rotations in pose.

The component template can adjust to the slight variations in pose, while the fixed

global template is less robust against changes in the depth and in the image plane.
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Figure 4.8: ROC curves for linear and polynomial kernels. The top diagram shows the
performance of linear and polynomial component-based recognition and the bottom
diagram shows the performance of linear and polynomial global recognition.
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Figure 4.9: ROC curves for component-based and global classifiers. This diagram
compares the performance of global and component-based polynomial recognition
systems trained on the same data.
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This can be explained by the flexibility in the geometry of the components in the

component-based approach.

In addition the the inherent sensitivity to rotation, the real test set also had non-

uniform backgrounds since the images were taken under real conditions. Component-

based recognition had the benefit of performing histogram equalization on just the

bounding box around the components. This eliminated any effect of a non-uniform

background. However, global recognition performed histogram equalization on the ex-

tracted face region which occasionally contained significantly distracting backgrounds.

This background problem most likely contributed to the further decrease in perfor-

mance. Thus, the combination of the greater robustness of component-based face

recognition and superior histogram processing capabilities most likely resulted in the

discrepancy in performance.

al))

a2)

Figure 4.10: Sensitivity of global classification to changes of pose. al) and a2) are the

global and component-based schematic component templates, respectively. bi) and

b2) show the template performances on rotations in the image plane, while ci) and

c2) show the performances on rotations in depth. The component-based template has

a flexibility geometry which compensates more robustly for changes in pose.
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Chapter 5

Conclusions and Suggestions for

Future Work

This thesis involved a new development face recognition with the incorporation of 3D

morphable models and component-based face recognition. This combination allowed

the training of a face recognition system which required only two face images of each

person. From these two images, 3D face models were computed and then used to

render a large number of synthetic images under varying poses and lighting conditions.

These synthetic images were then used to train a component-based face detection and

recognition system. A global face detection and recognition system was also trained

for comparison.

Results on real test images show that the component-based recognition system

clearly outperforms a comparable whole face recognition system. Component-based

techniques yielded a recognition rate of 90% for faces rotated to approximately to ±45'

in depth under varying illumination conditions. In comparison, global techniques only
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performed at a recognition rate of 40% on the same test set. These results point to

the overall robustness of component-based face recognition in comparison with global

recognition.

The success of this thesis also proves the feasibility of using 3D morphable models

in training face recognition systems. Future work includes the expansion of the system

to include a wider range of rotations and illumination conditions. Extension of of

pose and illumination invariance would involve training on synthetic images over a

larger range of views and conditions. However, when expanding near the profile

view, other complications may arise. For example, the components needed for profile

recognition might be different than those used for mostly frontal recognition. In that

case, components must be relearned.

Another area of improvement is the accuracy in face detection, which was not

explored in depth in this thesis. In [2], face detection accuracy was improved by

using a more sophisticated geometrical model for the positions of the components

along with more carefully selected negative training data.

Finally, the number of faces currently in the database is not large and could be

increased. However, increasing the number of people causes additional issues. First,

the speed of the system will decrease significantly with additional users. The number

of classifiers in a one vs. all approach grows linearly with the number of classes

(people). Another issue is separability between people in the database. Second degree

polynomial SVMs are able to separate six people, but will not necessarily be able to

separate a hundred. New kernels (e.g. higher degree polynomials and gaussians)

might have to be considered as the system grows. The importance of choosing the
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right components/features to separate the people also becomes increasingly important

with additional people.
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