
A Real-time System for Processing, Sharing, and

Display of Physiology Data
by

Eric TszLeung Ho
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer Science

at the MASSACHUSETTS INSTITUTE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY OFTECHNOLOGY

June 2003 JUL 3 0 2003

© Eric TszLeung Ho, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and LIBRARIES

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

A uthor
Department of Electrical Engineering ardi Computer Science

May 8, 2Q03

C ertified by
Andrew W. Lo

Harris & Harris Group Professor
Thesis Supervisor

Certified by.
Dmitry V. Repin

Postdottoral Associate

The4 ~Qupervisor

Accepted by..........(.
Arthur U. imith

Chairman, Department Committee on Graduate Theses

BARKER

2

A Real-time System for Processing, Sharing, and Display of

Physiology Data

by

Eric TszLeung Ho

Submitted to the Department of Electrical Engineering and Computer Science
on May 8, 2003, in partial fulfillment of the

requirements for the degrees of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents RStudio, a software package that provides a critical aid for studies
of the psychophysiology of traders and financial decision-making processes. RStudio
provides the tools for physiology data acquisition and their display in real-time as
well as data sharing across multiple machines on the network. It also supports a
monitoring system with alert capabilities to aid risk-management processes based on
traders' physiology.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor

Thesis Supervisor: Dmitry V. Repin
Title: Postdoctoral Associate

3

4

Acknowledgments

This thesis would not have been possible without the support of several people. I

would like to thank:

" Prof. Andrew Lo, my thesis advisor, for providing this great opportunity for

my research project and agreeing to supervise my thesis.

" Dr. Dmitry Repin for his vision and esteemed guidance in this project. His

valuable comments helped to shape the design and implementation of the system

described in this thesis.

* Svetlana Sussman for providing crucial administrative support for this project.

Additional gratitude goes to my parents and friends whose encouragement and

support in this thesis is priceless.

5

6

Contents

1 Introduction 13

1.1 Goal 14

1.2 Challenge . 14

1.2.1 Time requirements . 14

1.2.2 Memory requirements . 15

1.2.3 Storage requirements . 15

1.2.4 Network requirements . 15

1.3 Solution . 16

1.4 Road map . 16

2 Background 19

2.1 Research design . 19

2.2 Physiology data collection . 19

2.3 Financial data collection . 21

2.4 Research findings . 22

3 Design Overview 25

3.1 RStudioClient . 26

3.2 RStudioServer . 29

3.3 RStudioMonitor . 30

4 Data Collection 33

4.1 Data channels . 33

7

4.2 Data-collection interface . 33

4.3 Data storage . 35

5 Data Visualization and User Interface 37

5.1 Real-time display of graphs . 37

5.2 Graph control and manipulation . 38

5.3 Experiment control interface . 38

5.4 Event and message logging . 38

6 Data Preprocessing 43

6.1 Data preprocessing routine . 43

6.2 Preprocessing algorithms . 44

6.3 Preprocessing variables . 45

7 Network Model 47

7.1 Network connection . 47

7.2 Network routing . 49

7.3 Network protocol . 49

7.4 Time synchronization . 51

8 Monitor System 53

8.1 Network retrieval of data . 53

8.2 User interface . 54

8.3 System monitoring . 56

8.4 Baseline measurement . 56

9 Conclusion and Future Work 59

8

List of Figures

2-1 Placement of sensors for measuring physiological responses

2-2 Typical experimental data-collection setup

2-3 Typical physiological response data

2-4 Typical real-time market data

3-1

3-2

3-3

3-4

3-5

4-1

4-2

4-3

Top-level modular decomposition of RStudio . .

Modular decomposition of RStudioClient

User interface in RStudioClient

Modular decomposition of RStudioServer

Modular decomposition of RStudioMonitor . . .

ProComp data-acquisition device

Data-collection interface between RStudioClient

Structure of memory buffer table

. 26

. 27

. 28

. 29

. 30

. 34

and ProComp 35

. 36

5-1 Sample data plot

5-2 View control system

5-3 System control toolbar

6-1 Data preprocessing overview . . .

6-2 Data preprocessing routine

7-1 Network routing overview

7-2 Administration table in RStudioSe

7-3 Basic packet format

. 3 9

. 3 9

. 4 1

. 44

. 45

. 48

. 48

. 50

9

20

21

22

23

7-4 Client connection packet structure . 50

7-5 Monitor connection packet structure 51

7-6 Data transfer packet structure . 52

8-1 Data table in RStudioMonitor . 54

8-2 User interface in RStudioMonitor . 55

10

List of Tables

3.1 Functional division of the RStudio system 25

4.1 List of different data channels . 34

5.1 System m arkers . 40

6.1 Preprocessing variables . 46

11

12

Chapter 1

Introduction

The rationality of investors in the modern financial marketplace has been a long stand-

ing debate among researchers. Advocates of the Efficient Market Hypothesis argue

that investors are rational and market prices fully reflect all available information.

On the other hand, behavioral economists argue that investors are often irrational

and exhibit predictable biases. These economists believe that psychological biases

are consistently exhibited by market participants; the end result is that the market

will be predictable to some extent. A commonly used example of such investor and

market irrationality is the rise and fall of the U.S. stock market in the past few years.

While the debate on rationality of decision making continues, current research

in cognitive sciences and financial economics suggests a link between rationality and

emotion. A systematic investigation of this link is currently underway by Andrew

Lo and Dmitry Repin at MIT Laboratory for Financial Engineering. The research

involves measuring the physiological signals of financial securities traders during live

trading sessions. Examples of these signals include heart rate, skin conductance,

forehead temperature, and respiration rate. By measuring these signals, the emotional

states of the traders in different market conditions can be analyzed. For example,

the investigation reported statistically significant changes in physiological variables

during periods of heightened market volatility relative to normal-volatility control

periods, as well as during a number of short-term market events.

13

1.1 Goal

The goal of this thesis is to design a tool that aids research in psychophysiology of

traders and financial decision-making.

In a typical experiment, this tool is used to record physiology data from traders

working in a live market. At the same time, prices of the securities being traded

by the traders are collected from data feed services. These physiological data and

financial data are analyzed together to uncover links between prices change in the

market and physiological changes in traders.

In addition, this tool can serve as a real-time monitor and alert application for

managers of traders on the trading floor. This application monitors the physiological

states of each trader; it can be configured to produce alerts when there are indications

of events or physiological states that require special attention.

1.2 Challenge

Developing software for this research project poses several technological challenges.

Firstly, the tool needs to collect physiology data in real-time. Secondly, the tool needs

to properly manage and display several real-time data feeds synchronously. Thirdly,

the tool needs to perform real-time data preprocessing on multiple data channels

without affecting performance. Lastly, the tool needs to communicate with remote

machines and share data in a real-time fashion.

1.2.1 Time requirements

The real-time nature of the application requires special attention to the time require-

ments of different components in the software. Different types of physiology data

require different minimal data sampling rate. However, these data sampling rate can-

not be higher than the rate of data preprocessing, which depends on the capabilities of

the underlying machine. In addition, extra precaution is needed to deal with synchro-

nization problems that occur when displaying real-time data from multiple sources

14

with different delays. To deal with these challenges, the tool must run smoothly in

all settings and provide resolution mechanisms for synchronization of multiple data

sources.

1.2.2 Memory requirements

A memory buffer is needed to temporarily store incoming real-time data for prepro-

cessing. After the data are preprocessed, the memory buffer can be recycled. Given

that data preprocessing occurs at a faster rate than data collection, a finite mem-

ory buffer is needed to store incoming data. However, there are occasions in which

data preprocessing requires the entire data set within a certain time frame. In this

case, the system needs to allocate enough memory to store data collected within the

specified time frame.

1.2.3 Storage requirements

Data collected from traders are saved onto the hard disk. A typical experiment

involved in this research project requires collecting data at a high rate (e.g. 256Hz)

for up to one hour. The amount of data collected can be as big as several hundred

megabytes. Since all of these data need to be stored at secondary storage locations

on the hard disk, this requires the computer to have enough disk space for storage of

physiology data.

1.2.4 Network requirements

An efficient network model is needed for sharing of physiology data over the Internet.

For example, a client-server model can be used to improve the efficiency of network

communication. In addition, data collected from multiple sources contain various

amounts of network delay; the tool must deal with these delays and provide proper

time synchronization of data.

15

1.3 Solution

Real-time Studio (RStudio) provides a solution to the above requirements and goals.

It contains the following features:

" Collection of physiology data from users.

" Visualization of real-time physiology data.

* Preprocessing of data.

" Data sharing over the network.

" Real-time monitor and alert system of physiological states.

Examples of physiological data collected include electrocardiogram signals, blood

volume pulses, forehead temperatures, and skin conductance levels. These data are

displayed as real-time line graphs on the graphic display. Next, the physiological data

are preprocessed in order to extract meaningful information from the raw data. The

preprocessed data are then transmitted over the Internet and shared among all users.

The shared physiological data are used in a monitor system where the physiological

states of each trader can be effectively monitored.

1.4 Road map

The rest of this thesis is broken down into three sections. The first section gives an

overview of current research, in Chapter 2. The second section provides a top-level

design of RStudio, in Chapter 3. The third section contains details about the design

and implementation of each component in the RStudio system, in Chapters 4 to 8.

Chapter 2 provides background information on current research in trader physi-

ology and financial decision-making. It describes the methodology being used in the

experiment and the nature of the data involved. Current findings of the research are

also presented.

16

Chapter 3 covers a top-level design of the RStudio system. It presents the mod-

ular design of the three main modules of RStudio - the client module, the server

module, and the monitor module. A top-level functional specification of each module

is presented.

Chapter 4 describes the data-collection process. Physiological data such as blood

volume pulse, skin conductance, and finger temperature are collected by RStudio.

The specifications of the data handling and storage procedures are depicted in this

chapter.

Chapter 5 presents the design of the visualization and user interface. Physiology

data collected from the user are visualized on the graphic display as real-time line

graphs. The user interface provides an easy and flexible way of graphs control and

manipulation. Addition features such as event recording and message logging give

users more control during experiments.

Chapter 6 covers the data preprocessing module. Physiology data are preprocessed

before being sent over the network. The various data preprocessing algorithms being

used are discussed in this chapter.

Chapter 7 describes the network model. This model provides a meaningful way

of sharing physiology data across the Internet. The server-client architecture of the

network model is presented. Using this model, multiple clients that connect to the

server can efficiently share physiology data collected from the same trader.

Chapter 8 depicts the design of an application that makes use of shared physi-

ology data across the network. The monitor system allows a supervisor to actively

monitor the physiological performance of individual traders. Visual alerts are given in

response to abnormal physiological states of each trader. Indicators of the aggregate

physiological state of the participating group of traders are also provided.

Chapter 9 presents the conclusions and lessons learned from the implemented

system. This chapter also provides directions of possible future work, including new

functionality and system optimizations.

17

18

Chapter 2

Background

This section presents an overview of the research that is currently underway at MIT

Laboratory for Financial Engineering. Understanding the nature of this research is

crucial to understanding the functional and design requirements for RStudio.

2.1 Research design

The goal of this research is to provide some insight in the longstanding controversy in

economics and finance - whether financial markets are governed by rational forces or

by emotional responses. Previous studies have suggested an important link between

rationality in decision making and emotion [1]. This research project attempts to

verify this link by studying the importance of emotion in the decision-making process

of professional securities traders. During a live trading session, physiology data from

traders are collected together with real-time prices of the securities being traded. By

matching the different market events with the traders' physiological response, the

relationship between market condition and emotional states can be uncovered.

2.2 Physiology data collection

In the human brain, the autonomic nervous system (ANS) is responsible for the regu-

lation of internal states that are mediated by emotional and cognitive processes. Cer-

19

tain ANS responses can be detected as body physiology changes. The current research

focuses on the following physiological characteristics: electrocardiogram (EKG), brain

wave (EEG), skin conductance (SCR), blood volume pulse (BVP), electromyograph-

ical data (EMG), respiration rate, and body temperature. Figure 2-1 demonstrates

the placement of sensors for measuring these physiological responses.

F&cjaE EMO
Trode elecrcde nwmasurws

a&~t eI a th N~od. elctrode measuras
musle (deatecs spea) ee

I acfi * o the agwdodOR
P*Wt~m wrmusle 9mp Wdstemt finoGwRespiradon sensor imsl ou dMtc~ff~

Elasi Wstrameases0
o*t "panson

Control unit temsa
FAh app cwege to a

SsensraJ

Figure 2-1: Placement of sensors for measuring physiological responses

Figure 2-2 shows a typical setup for the measurements of the real-time physiolog-

ical responses of financial traders during live trading sessions. The physiology data

collected are compared synchronously with real-time market data used by the traders.

A ProComp data-acquisition device is used to measure physiological data for all

subjects. Each sensor is equipped with a built-in notch filter at 60 Hz for automatic

elimination of external power line noise, and standard AgCl triode and single elec-

trodes are used for SCR and EMG sensors, respectively. SCR electrodes are placed on

the palmar sites. The BVP photoplesymographic sensor is placed on the inside of the

ring or middle finger. The arm EMG triode electrode is placed on the inside surface

of the forearm, over the flexor digitorum muscle group. The temperature sensor is

inserted between the elastic band placed around the wrist and the skin surface. The

20

cMrk "Ommnmw .wate, Ww"19)

-rder =W 440,
LWcOiriAn stma

Tmcow~ spm~h.

%AM4 MR Uto- tt-

Figure 2-2: Typical experimental data-collection setup

facial EMG electrode is placed on a masseter muscle, which controls jaw movement.

The respiration signal is measured by chest expansion using a sensor attached to an

elastic band placed around the subject's chest. An example of the real-time physi-

ological data collected over a two-minute interval for one subject is given in Figure

2-3.

2.3 Financial data collection

The financial data being collected involve the prices of the securities being traded

by the traders whose physiological responses are being measured. Real-time financial

data are provided by data feed services such as Bloomberg, Reuters, or other feeds

supplied by the stock exchange where the experiment is being conducted. Commercial

off-the-shelf software such as Matlab and Excel are used to collect this data. The

financial data collected are time-stamped and stored in a file for subsequent analysis.

Figure 2-4 displays an example of the real-time financial data collected over a sixty-

21

ro

Figure 2-3: Typical physiological response data

minute interval.

2.4 Research findings

Research findings indicate that there are statistically significant differences in phys-

iological responses in different market conditions [1]. In addition, the structure of

response differs among different traders, which may partly be related to the trader's

experience. These findings suggest that emotional responses are a significant factor

in the real-time processing of financial risk. They also suggest that emotions are a

determinant in the evolutionary fitness of financial traders.

22

1V* 4 A <9

140) ~ j: '* 4

17 10 Tien a" S0

Figure 2-4: Typical real-time market data

23

is

24

Chapter 3

Design Overview

A top-down design of RStudio involves three independent software modules - RStu-

dioClient, RStudioServer, and RStudioMonitor. Each of the three modules is a stan-

dalone application. RStudioClient is responsible for collecting real-time physiology

and financial data, visualizing data on a graphic display, and performing data prepro-

cessing. RStudioServer is responsible for providing network connectivity for sharing

data between RStudioClient and RStudioMonitor. RStudioMonitor is responsible for

providing a monitor and alert system for physiology data from multiple traders. Table

3.1 summarizes the functional division of the three modules.

Figure 3-1 depicts the relationships between the three modules. In a typical

application of the RStudio system, there exists one copy of RStudioServer and multi-

ple copies of RStudioClient and RStudioMonitor. The single copy of RStudioServer

provides network sharing of physiology data among all other modules. Each copy of

RStudioClient provides data collection and preprocessing for one trader. Each copy of

RStudioMonitor receives physiology data from every RStudioClient module through

RStudioClient RStudioServer RStudioMonitor
Data collection Network connectivity Active monitor system
Data visualization Network sharing of data Alert system
Data preprocessing Group data visualization
Data storage

Table 3.1: Functional division of the RStudio system

25

the RStudioServer module; the physiological states of all traders can be monitored

using this module.

R-StudioMonitor

R-StudioClient > RSui~re

R-StudioMonitor

R-StudioClient

Figure 3-1: Top-level modular decomposition of RStudio

3.1 RStudioClient

RStudioClient provides data collection, preprocessing, visualization, and storage.

This module runs on the machine which is connected to the ProComp data-acquisition

device. Physiology data are collected from the ProComp device, displayed as real-

time line graphs, preprocessed, and transmitted to the RStudioServer module across

the network. A modular design of RStudioClient is depicted in Figure 3-2.

The physiology data-collection unit records data from the trader. Real-time phys-

iology data are collected by the ProComp device through sensors attached to the

trader. Each ProComp device has eight data channels and can collect multiple phys-

iology signals (such as heart rate, skin conductance, etc.) simultaneously.

The core unit is the main operating module for RStudioClient. It maintains and

allocates resources for the process threads that form each of the separate modules in

26

-d Networkin~g
Physiology

data Core remote
Collection Imachines

traders -GahctradersData Processing /
Storaae

disk graphical
storage display

Figure 3-2: Modular decomposition of RStudioClient

RStudioClient.

The data processing and storage unit handles the preprocessing of physiology data

and the storage of preprocessed data. The type of data preprocessing depends on the

nature of data being used. After data preprocessing, processed data are flushed to

secondary storage location.

The networking unit communicates with RStudioServer and sends preprocessed

physiology data to the server. In particular, a data socket is established between the

client and the server. All physiology data are transported through the socket.

The graphics unit plots the physiology data on the display and provides a user

interface. The interface allows the user to control the data-collection process and

change the view settings of the graphic display. In addition, the user can enter

custom markers that put timestamps in the data. An example graphical interface is

shown in Figure 3-3.

27

..........

Channel

S00
I * I

A: EKG

7 * I

A I

0 5 10 1 20 25 30

Channl C: P4G I

25
20
is F
to
51

or * 3

0 5 10 15 20 25 30

Channel E* SCR

20*

0 5 10 15 20 25 30

4e
35 -.. ..
30E .. . I . . A. Pt

S 5 10 Is 20 24 w0
Seconds

Channel B EEG
1, * 0

s - ..-..
I

0 5 10 is 20 25 30

ChnO 0 4G 2

30 a *

25
20

0 5 10 15 20 25 30

Channd F TMP I

30 -

0 5 10 15 20 25 30

Channel H TTP 2

3530

25 .6 'A
ma 1 . I i i.

* 5 10 15 20 25 30
Seconds

-J

±

-

F~FTh~ ~

Figure 3-3: User interface in RStudioClient

28

I

is

I
I
I
*0
it

,t Expetimrdn -RMtudio

- - - -

"

3.2 RStudioServer

RStudioServer is responsible for providing network connectivity between multiple

RStudioClient and RStudioMonitor modules. Physiology data collected by each

RStudioClient module are sent to RStudioServer, which in return retransmits the

data to every RStudioMonitor module. This network routing mechanism allows phys-

iology data to be shared across the network. Figure 3-4 depicts a high level design of

the RStudioServer module.

remote
machines

-4

remote
machines

RStudioServer

Figure 3-4: Modular decomposition of RStudioServer

The networking unit provides network connectivity for both RStudioClient and

RStudioMonitor modules. This unit also maintains network socket ports for physical

transportation of data among client modules across the network.

The administration unit maintains a list of the RStudioClient and RStudioMonitor

modules that are currently connected to RStudioServer. The list contains information

such as the types of the connecting clients and their network addresses. This list is

29

Networking

Administration

updated as new connections are created.

When an RStudioClient module sends a new piece of data to RStudioServer, the

networking unit receives and acknowledges the data. This data are then retrans-

mitted to every RStudioMonitor module that is connected to the server. With this

mechanism, every RStudioMonitor module can effectively monitor physiology data of

every trader that is connected to the RStudioClient module.

3.3 RStudioMonitor

The RStudioMonitor module is responsible for providing a system for monitoring

physiology of several traders at the same time. This module receives physiology data

from multiple RStudioClient modules through RStudioServer. The physiology data

are then visualized on the graphical display. Users of the RStudioMonitor can actively

monitor the physiological states of all traders through the interactive display system.

Figure 3-5 depicts a high level design of the module.

-Networking

remote
Gahc

machine Monitor
graphical

display

Figure 3-5: Modular decomposition of RStudioMonitor

The networking unit maintains connectivity with RStudioServer. Physiology data

sent from the server arrive at this module in the form of network data packets. The

30

networking unit then processes and extracts physiology data from the data packet;

the extracted information is stored in the memory buffer provided by the monitor

module.

The monitor unit provides many useful system functions. Firstly, the monitor unit

maintains a storage table for the current physiology data for each trader. Information

in the table will be used for various system monitoring functions. For example, the

table uses a timestamp to record the previous time when a data packet arrives from

a particular RStudioClient. If the timestamp expires, the monitor system will be

able to notify the user. Secondly, the monitor unit processes incoming physiology

data and performs statistical calculations such as the aggregate physiological state

of every trader. Thirdly, the monitor unit allows the user to measure and update

the baseline measurement for each trader. Lastly, when the physiological state of the

trader reaches above abnormal levels, the monitor unit creates alert signals for the

user.

The graphics unit presents visual information about the physiological states of

traders. The visual information being conveyed includes the preprocessed physiology

data of every trader together with the summary statistics of all traders in the partici-

pating group. This unit also contains an interactive user interface system that allows

the user to control baseline measurement through the monitor module. In addition,

visual alerts are given by the graphics unit. These visual alerts provide warnings

of traders with abnormal physiological states; they are critical for monitoring the

physiological performance of traders.

31

32

Chapter 4

Data Collection

In the RStudio system, physiology data are collected using the ProComp data-

acquisition device manufactured by ThoughtTechnology Ltd. The data collected are

then stored on a temporary storage buffer. This storage buffer provides access for

other functional components of RStudioClient such as visualization and preprocessing.

This chapter discusses the nature of the data channels, the communication interface

with ProComp, and the temporary storage system.

4.1 Data channels

The ProComp data-acquisition device provides eight channels of sensor data. Each

of the eight channels represents data collected from different types of sensors. Table

4.1 lists the channels in detail.

4.2 Data-collection interface

A photo of the ProComp device is shown in Figure 4-1. The ProComp device is a

data-collection hardware that contains eight channels; each of the channels can be

connected to a sensor. This device collects physiology data from the sensors and

retransmits the data via an optical link to the serial port of a computer.

On the computer, the ProComp device provides a dynamic link library (DLL)

33

Table 4.1: List of different data channels

Figure 4-1: ProComp data-acquisition device

which serves as an application programming interface (API) for RStudioClient to

collect physiology data. By using the interface specified by the API, RStudio can

control the data-collection process in ProComp.

At each fifty millisecond intervals, raw physiology data collected by ProComp

are sent to the data-collection component in RStudioClient. RStudioClient then

processes and stores the data. Figure 4-2 depicts the relationship between ProComp

and RStudioClient.

34

Channel Symbol Description Data rate
A EEG Electroencephalogram (Brain Waves) 256Hz
B EKG Electrocardiogram 256Hz
C EMG1 Electromyography 32Hz
D EMG2 Electromyography 32Hz
E SCR Skin Conductance 32Hz
F TMP1 Finger temperature 32Hz
G BVP Blood volume pulse 32Hz
H TMP2 Forehead temperature 32Hz

Isensor sensor

ProComp

COM port
Computer

Dynamic Link Library

RStudioClient

Figure 4-2: Data-collection interface between RStudioClient and ProComp

4.3 Data storage

New data collected from ProComp are stored in a temporary memory buffer for up

to sixty seconds. Other components of RStudioClient, such as data visualization and

preprocessing, can access and use the data in this memory buffer. At the end of each

sixty second interval, data in the memory buffer are flushed to secondary storage in

the hard disk and the memory buffer is recycled.

The structure of the memory buffer table is shown in Figure 4-3. Each of the eight

data channels has separate memory allocations in the buffer table. Each memory

allocation contains a head pointer are that stores the location of the unused portion

of the memory table. New data are stored at the location specified by the head

pointer, and the head pointer is updated afterwards.

As new data arrive from each channel, the head pointers move towards the end

of the buffer table. When the pointers reach the end of the table, a memory flush

operation occurs. In this operation, all data on the buffer table are saved to secondary

storage location on the hard disk. The head pointers for each channel are then reset

to the beginning locations of the memory buffer table. The memory buffer table is

then recycled and ready to accept new data.

35

Channels Memory buffer table

A

B
C-> flow direction

D head pointer

E used
F
G unused

H

Figure 4-3: Structure of memory buffer table

36

Chapter 5

Data Visualization and User

Interface

The data visualization component of RStudioClient creates an efficient way of dis-

playing real-time physiology data gathered from the trader. The use of real-time

data plots in RStudioClient provides a way to inform the user about the most current

physiological conditions of the trader.

In addition, RStudioClient provides a flexible user interface. Through the user

interface, users can control and manipulate graph settings. Users can also create

timestamps to record special events that occur during the experiment.

5.1 Real-time display of graphs

The display system contains eight separate data plots; each of the plots is responsible

for displaying data collected from a data channel. The data plots are constantly up-

dated with new data that arrive from the data-collection component in RStudioClient.

Each data plot displays data collected within the previous thirty-second interval; after

every thirty seconds the plots are refreshed. Figure 5-1 shows a sample data plot.

37

5.2 Graph control and manipulation

Each data plot has default settings for the viewing window. The user interface pro-

vides a flexible way of changing these settings in real-time. By using the graph control

buttons located next to the data plots, users can change the dimensions of the viewing

window. Changes in the viewing window scale have an equivalent effect of zooming,

whereas changes in the offset are related to vertical shifts in the data plots. These

graph control functions allow the user to easily manipulate the viewing window dur-

ing live experiment. Figure 5-2 shows an example screen of RStudioClient together

with the view control system.

5.3 Experiment control interface

RStudioClient provides a graphical user interface for users to control the experiment

process. The system toolbar window contains control buttons which perform different

system control duties. Figure 5-3 provides an example of the system control toolbar.

The file save button allows the user to specify the file location for secondary storage

of physiology data. The start and end experiment buttons enable the user to begin or

terminate the data-collection process. The server connection button provides network

connectivity to RStudioServer. The configuration file button enables the user to

configure system configuration settings. The event log button allows the user to view

the content of the event log.

5.4 Event and message logging

During the experiment, physiology data collected from the trader might be polluted

by artifacts. For example, one of the sensors attached to the trader might fall off

accidentally. The user must record the time and type of the artifacts so that the

integrity of the collected physiology data can be preserved.

RStudioClient provides an efficient event logging system to record the time and

type of these artifacts. When an artifact has occurred, the user can create a marker

38

Channel A: EKG Data

10 15
Seconds

20

Figure 5-1: Sample data plot

ExPMenht -FtSudi*

Sa 9 N Yla

El

a
-0

1000
a soo .

-SO - ----- --

0 5 10 is 20 25 30

Chprm4 C: 134G I

2 0 - -- -- - - - -

20 -

0 5 10 15 20 25 30

Figure 5-2: View control system

39

1

0.5

0

-0.5

0 5 25 30

Expand

Contract

Shift up

Shift down

Chafwe3 A: EKG

........ i i
------------ - - - - - -- -

...-....-

. -

Marker name Hotkey Description
Artifact A An artifact has occurred
Start S Experiment has started
End E Experiment has ended
Fault F Certain problem has occurred
Message M Record user defined message
Synchronization Q For synchronization with other systems

Table 5.1: System markers

by pressing a special hotkey on the keyboard. The marker event is time-stamped

and recorded into an event file. By comparing timestamps in the event file and the

physiology data file, one can locate the portion of the physiology data that corresponds

to the time period when the artifact has occurred. The different types of markers are

shown in Table 5.1.

Markers A, S, E, and F are used to timestamp specific events that occur during the

experiment. Marker M is a special marker which enables the user to type a message

and record the message to the event file. This message logging capability can be used

as a supplement to the other markers. Marker Q is used for time synchronization

between RStudioClient and other external systems; more details in this topic are

provided in Section 7.4.

40

File save

Start
experiment

Stop
experiment

Connect to
RStudioServer

Open configur ition file
~jIIti I P X I

View event log

Figure 5-3: System control toolbar

41

I

42

Chapter 6

Data Preprocessing

Raw physiology data collected from traders are preprocessed in real-time. The pre-

processed data are then sent to RStudioServer for network sharing. There are several

advantages in performing data preprocessing. Firstly, the data can be compressed

and reduced in size before being sent over the network. This results in more efficient

network sharing of data. Secondly, various algorithms can be applied to extract use-

ful information from the raw data. The result reveals useful information about the

current physiological condition of the trader.

6.1 Data preprocessing routine

The data preprocessing process runs independently and in parallel with the data-

collection process. The two processes communicate through the use of memory stor-

age table in Section 4.3. The data-collection component stores collected data into

the memory buffer, whereas the data preprocessing component performs calculations

based on these values stored in the memory buffer. Figure 6-1 depicts the relationship

between the data preprocessing component and other components in RStudioClient.

A conceptual picture of the data processing routine is shown in Figure 6-2. At

each period of one second, the data preprocessing component accesses the memory

storage table and retrieves raw data collected from the previous five-minute interval.

The component then applies appropriate data preprocessing algorithms on the raw

43

Data collection

Memory table

Data preprocessing

Network

Figure 6-1: Data preprocessing overview

data. The results of the preprocessing processes are put together in a data packet

and sent to RStudioServer.

The preprocessing period and the sampling interval can be adjusted. Smaller pre-

processing periods increase the accuracy of the preprocessed information. However,

this will also increase the network load as more data are being sent over the network.

Longer preprocessing periods, on the other hand, reduce network load while giving

up some accuracy in the preprocessed information.

The use of smaller sampling intervals can capture sharp changes in the traders

physiological states. However, this method is not resistant to temporary fluctuations

in the sensor readings. Larger sampling intervals, on the other hand, are more resis-

tant to sharp changes in the data. This resistance to fluctuations provides a good

estimate of the average physiological state of the trader.

6.2 Preprocessing algorithms

The preprocessing algorithms extract meaningful information from the raw physiology

data collected from the trader. Various algorithms can be used to extract different

types of information from the raw data. For example, the moving average algorithm

calculates the mathematical mean of all raw physiology data in the sampling period;

44

Retrieve data from
memory table

Apply preprocessing
algorithms

I/\
Send results to
RStudioServer

Wait for next period

Figure 6-2: Data preprocessing routine

the result provides an average estimate of the physiological performance over the

period. The Fast Fourier Transform (FFT) algorithm, on the other hand, operates

on data channels with periodic signals; the result uncovers the dominant frequencies

in the signal.

6.3 Preprocessing variables

The results of the preprocessing algorithms are stored in preprocessing variables.

The values of the preprocessing variables reveal useful information about the current

physiological state of the trader. At the end of each preprocessing period, the updated

values of the preprocessing variables are sent to RStudioServer for network sharing.

A list of preprocessing variables and the corresponding preprocessing algorithms is

shown in Table 6.1.

45

Table 6.1: Preprocessing variables

46

Name Channel Algorithm
EEG relative alpha power A FFT
EKG heart rate B Custom
EKG heart rate variability B Custom
BVP heart rate G FFT
BVP heart rate amplitude G FFT
SCR number of responses E Custom
SCR level E Moving average
Finger temperature F Moving average
Forehead temperature H Moving average
EMG back D Moving average

Chapter 7

Network Model

The RStudioServer module provides a robust network model for efficient sharing of

physiology data. By applying the client-server architecture, different RStudioClient

modules can be linked together. This mechanism allows physiology data collected

from multiple traders to be redistributed over the Internet. It also makes possible a

variety of applications such as the monitor system described in Chapter 8.

The RStudio network model consists of one central server and multiple clients.

RStudioServer acts as the server whereas RStudioClient and RStudioMonitor act as

the clients. This relationship is depicted in Figure 7-1. Each RStudioClient module

collects physiology data from the trader, preprocesses them, and sends the result to

RStudioServer. The RStudioServer module then retransmits the information to every

module of RStudioMonitor over the network.

7.1 Network connection

The network connections between server and the client modules are maintained by

sockets [3]. When a new client module attempts to join the RStudio network, it first

creates a socket connection with the server. After the socket connection is established,

the client and server exchange administration information with each other. Once the

exchange of information is completed, routing of physiology data can proceed.

The administration component of RStudioServer is responsible for maintaining a

47

-+4 RStudioMonitor

RStudioCien RStudioServer RStudioMonitor

Figure 7-1: Network routing overview

list of client modules that are connected to the server. Such information is stored in

the administration table. Figure 7-2 shows an example of such table.

Figure 7-2: Administration table in RStudioServer

In the administration table, the type field is used to distinguish between different

types of clients; the client type can either be RStudioClient or RStudioMonitor. The

unique identifier (UID) and trader name fields are used to identify the trader. The

socket address field contains network routing information about the client.

When a new RStudioClient module connects to RStudioServer, the client module

first generates a random number as the UID. This client module then sends both the

48

Type UID Trader name Socket address

RStudioClient 1234 Eric OxA17433

RStudioClient 6276 Wally Ox1 2BFE2

RStudioMonitor N/A N/A Ox6A85B4

RStudioMonitor N/A N/A OxF1 E354

UID and the name of the trader to the server. After the connection is established,

the client proceeds to send preprocessed physiology data collected from the trader.

On the other hand, when a new RStudioMonitor module connects to RStu-

dioServer, this monitor module receives information about the UID and trader name

of every RStudioClient module that is connected to the server. After the connec-

tion is established, this monitor module will receive physiology data from the server.

In addition, the monitor module receives notification when additional RStudioClient

modules connect to the server.

7.2 Network routing

RStudioServer serves as a router of physiology data. Whenever a new piece of physiol-

ogy data arrives from an RStudioClient module, the server checks the administration

table and locates the socket addresses of every RStudioMonitor module in the net-

work. The server then retransmits the physiology data to the machines located at

the socket addresses. With this mechanism, every RStudioMonitor module is able to

receive physiology data sent from every RStudioClient module.

Each trader is identified by the unique identifier (UID). When a new RStudioClient

connects to RStudioServer, the client module generates a random number as the UID

and uses this number as the identifier for the trader. This unique identifier exists on

all subsequent data packets sent from the client module. When data packets arrive at

the RStudioMonitor module, the monitor can use the UID field on the data packets

to identify the sender.

7.3 Network protocol

Each of the RStudioClient, RStudioServer, and RStudioMonitor modules uses mes-

sage packets to communicate with each other over the network. This section describes

the structures of the different types of network packets in detail.

Figure 7-3 indicates the basic packet format for all network messages. Each packet

49

contains a type field and a data field. The type field is one byte in size and is used

to identify the packet type. The data field stores the content of the message; the size

of this field can be inferred from the size of the packet received.

TYPE DATA

Figure 7-3: Basic packet format

The client connection packet is used by the RStudioClient module to establish

connection with RStudioServer. Figure 7-4 depicts the structure for this packet. The

type field of the connection request packet has value OxO1. The UID field stores a

randomly generated number. The name field stores the actual name of the trader.

Note that the name and UID fields together form a useful mapping pair. With this

mapping, one can use the UID to identify the trader.

Type UID Name

Ox0 1

Figure 7-4: Client connection packet structure

Another use of the client connection packet is for RStudioServer to notify the

RStudioMonitor modules of new RStudioClient connections. When a new connection

between RStudioClient and RStudioServer is established, RStudioServer sends a client

50

connection packet to every RStudioMonitor module. In this way, the monitor modules

are informed about every new RStudioClient connection.

The monitor connection packet is used by an RStudioMonitor module to establish

connection with RStudioServer. Figure 7-5 describes the structure of the packet. This

packet only has a type field, which has value 0x02.

Type

Ox02

Figure 7-5: Monitor connection packet structure

The data transfer packet is used to transfer physiology data among the client,

server, and monitor modules. Figure 7-6 shows the structure of this packet in detail.

The type field of this packet has value 0x03. The UID field uses a unique identifier to

identify the trader. The preprocessing variable field stores physiology data for each

of the preprocessing variables. When an RStudioClient module collects and prepro-

cesses physiology data, it sends a data packet to RStudioServer. RStudioServer then

retransmits the data packet to every RStudioMonitor module. With this mechanism,

every RStudioMonitor module can receive preprocessed physiology data from every

RStudioClient module.

7.4 Time synchronization

Data collected from different machines contain time discrepancies. These discrep-

ancies are contributed by the slight differences in the system clock readings in the

machines. In order to account for these discrepancies, RStudio provides a simple

51

UID Preprocessing variables

0x03

Figure 7-6: Data transfer packet structure

and easy way to perform time synchronization using the event and message logging

system.

The event and message logging component provides a special synchronization

marker that uses network signals to synchronize between two machines. When the

user places a synchronization marker on one machine, the machine records the local

system time and then send a network message to the other machine. The second

machine receives the network message and records the current system time. By

comparing between the times recorded from the two machines, one can adjust for the

time discrepancies in the data collected from these machines.

52

Type

Chapter 8

Monitor System

RStudioMonitor is an application for monitoring the physiological states of traders.

This system collects preprocessed physiology data from the RStudio network and

presents them to the user. The system also monitors the physiological condition of

each trader; visual alerts are given for traders with abnormal levels of physiological

signals. In addition, RStudioMonitor calculates the aggregate physiological state of

the participating group of traders based on their physiological conditions.

8.1 Network retrieval of data

RStudioMonitor collects preprocessed physiology data from RStudioServer. By main-

taining a network connection with RStudioServer, the monitor module receives the

physiology data that are collected from every RStudioClient module.

RStudioMonitor maintains a data table that contains the most recent prepro-

cessed physiology data for each trader. As new data transfer packets arrive from

RStudioServer, the data table is updated with new information. Figure 8-1 shows

the structure of the data table.

From the data table, the UID and trader name fields uniquely identify the trader.

The preprocessing variable field stores the values of each preprocessing variable de-

fined in Table 6.1. These values are used later by the user interface and the system-

monitoring processes.

53

UID Trader name Preprocessing variables

1234 Eric 21.4 54.2 23.6 76.4

8813 Wally 22.3 54.1 20.8 80.2

Figure 8-1: Data table in RStudioMonitor

8.2 User interface

Figure 8-2 demonstrates the user interface of the RStudioMonitor module. The left

side of the screen shows a list of the traders being monitored. The face indicators pro-

vide general information about the physiological performance of the trader. A green

happy face icon represents good physiological performance relative to baseline values.

A yellow face icon indicates normal physiological state relative to baseline. A red

or purple face icon, on the other hand, represents abnormal physiological conditions

which may require attention from the user; these icons act as visual alerts.

The right half of the screen displays detailed information about a selected trader.

The values of the preprocessing variables for this trader are shown in this screen in

both bar graph form and numeric form. The user can switch between displaying

different traders by clicking on the corresponding face icons on the trader list. In

addition, the user can use the baseline control toolbar to measure baseline values for

the selected trader.

The bottom portion of the screen displays the aggregate physiological state of all

traders in the RStudio network. The bar graphs show the mathematical average of

the physiological states of all traders in the group. The rightmost graph displays the

aggregate physiological state in intervals of three seconds. The center graph displays

the same information in intervals of thirty seconds. The leftmost graph displays this

information in five-minute intervals. The three graphs together cover a time frame of

54

Figure 8-2: User interface in RStudioMonitor

55

more than fifty minutes.

8.3 System monitoring

RStudioMonitor performs routine system monitoring of the physiological states of all

traders. This is achieved by checking the values stored in the data table.

As data transfer packets arrive at the monitor module, the data table entry for

the corresponding trader is updated. The system-monitoring process then updates

the information being displayed on the user interface. This includes changing the

values of the preprocessing variables being displayed, updating the bar graphs, and

changing the face icon to reflect the most current physiological condition.

The system-monitoring process also maintains a timestamp for each entry in the

data table. Each timestamp is updated when new data packets arrive from the

corresponding trader. If no data arrives from that trader for an extended period

of time, the corresponding timestamp will expire. The system-monitoring process

then generates a visual alert by changing the face icon of the trader to a question

mark symbol. With this mechanism, users are notified of potential problems with the

data-collection process.

In addition, the system-monitoring process calculates the aggregate physiological

state from the physiological performance of all traders. At fixed time intervals, the

monitoring process accesses the data table and uses the current information in the

table to recalculate the aggregate physiological state of all traders in the group. The

corresponding data plots in the user interface are then updated.

8.4 Baseline measurement

The physiological performance of a trader is calculated by comparing the values of the

preprocessing variable for the trader against baseline values. Although RStudioMon-

itor provides default baseline values for each preprocessing variables, the actual base-

line values for each trader may differ.

56

RStudioMonitor provides an efficient way to measure baseline values. The baseline

control buttons on the user interface enable the user to perform baseline measure-

ments for the selected trader. During baseline measurement, new data collected from

the trader are used to update the baseline values for the trader. After baseline mea-

surement has stopped, the new baseline values for the trader can be saved to a file.

At later experiments, the user can load these baseline values from the baseline file.

The baseline file for each trader contains the baseline values of each preprocessing

variable from an accumulation of previous baseline measurements. As more baseline

measurements are performed on a trader, the corresponding baseline values for the

trader will be more accurate and robust.

57

58

Chapter 9

Conclusion and Future Work

RStudio provides the technology to aid research in the link between physiology of

traders and their decision-making processes. The modular design of this software is

presented. RStudioClient collects, preprocesses, and displays physiology data. RStu-

dioServer enables network sharing of data across multiple computers. RStudioMon-

itor provides a monitor and alert system for trader physiology. The three modules

together form the core of the RStudio system.

This project points to many directions for future work. Firstly, the data-collection

component in RStudioClient can be further optimized by being integrated with the

next version of the ProComp data-collection equipment. The second version of Pro-

Comp provides many new features such as an adjustable data collection rate for each

data channel.

Secondly, the RStudio system can be integrated with other existing research

projects at the Laboratory for Financial Engineering. For example, one of the current

research projects involves inducing emotions through manipulating stock prices in a

financial market simulation. RStudio can provide a real-time system for measuring

these emotions and visualizing them.

Thirdly, the RStudio system may be further developed into an application for

managers on the trading floor. The managers can use the RStudio system to mon-

itor the physiological states of their traders. In addition, RStudio can be used as a

screening tool for job applicants as well as a training tool for new traders.

59

60

Bibliography

[1] Andrew Lo and Dmitry Repin. The Psychophysiology of Real-Time Financial Risk

processing. Journal of Cognitive Neuroscience, 14:3, pp. 323-339, 2002.

[2] Karen Quigley, William Ray, and Robert Stern. Psychophysiological Recording,

second edition. Oxford Press, 2001.

[3] Lewis Napper. WinSock 2.0. IDG Books Worldwide, December 1997.

[4] Bob Quinn and Dave Shute. Windows Sockets Network Programming. Addison-

Wesley Publishing Company, November 1995.

[5] Feng Yuan. Windows Graphics Programming. Pearson Education, 2000.

[6] Steve McConnell. Rapid Development. Microsoft Press, 1996.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns. Addison-Wesley, 1994.

[8] Larry Wood. User Interface Design. CRC Press, 1997.

[9] Aaron Cohen, Ronald Petrusha, and Mike Woodring. Win32 Multithreaded Pro-

gramming. O'Reilly and Associates, 1997.

61

