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Abstract

Information Extraction, the procedure where only relevant segments of text are ex-
tracted from a document, has been applied to several real world problems including
stock quote extraction and comparison shopping. This thesis presents a method of
Information Extraction where HTML pages are analyzed first at the structural level
and secondly at a semantic level. Furthermore, this thesis presents a software agent
that crawls the web in search of ongoing MIT lectures, seminars, and events. The
software agent individually parses events and provides users with a web interface to
a database of heterogeneous events.

Thesis Supervisor: Peter Szolovits
Title: Professor

3



4



Acknowledgments

I am grateful to Professor Peter Szolovits for offering me the opportunity to work on

such an interesting project, for his enthusiasm concerning the project, for his excellent

advice, and for his patience.

I would also like to extend my sincere gratitude to several members of the Clinical

Decision Making Group. I would like to thank Doctor Meghan Dierks for her advice,

for her effort in securing funding, and for her humor. I would like to thank Doctor

Mojdeh Mohtashemi for conceiving the project, for her many technical discussions,

and for her encouragement. Finally, I would like to thank both Lik Mui and Michael

McGeachie for bringing me into the group, for countless hours of help with technical

issues, and for many moments of laughter.

I would like to extend a special thank you to Anna Gallagher for her friendship,

support, and encouragement.

Finally and most importantly I would like to thank my family. I would have never

made it this far in life without the support, encouragement, and love of my three

favorite siblings Georges, Pierre, and Nadine. Nor would I have survived without the

love of my wonderful parents Raif and Hanane, who have always put their children

first. Mom and Dad your endless love is priceless.

5



6



Contents

1 Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Event Discovery System . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Thesis Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Related Work 17

2.1 Information Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Wrappers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Wrapper Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Information Extraction Applications . . . . . . . . . . . . . . . . . . 19

2.4.1 WIEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 STALKER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Commercial Systems . . . . . . . . . . . . . . . . . . . . . . . 20

3 System Design 23

3.1 Web Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Parse Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 HTML Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Repeated Unit Identifier . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Event Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Web User-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



4 Evaluation 33

4.1 Event Listing Identification . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 False Positives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Future Work 37

5.1 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 HTML Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.2 Repeated Unit Identifier . . . . . . . . . . . . . . . . . . . . . 38

5.2.3 Event Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion 41

8



List of Figures

2-1 M IT job listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2-2 An EC description of restaurant listing . . . . . . . . . . . . . . . . . 21

3-1 Generation of tree from HTML source code . . . . . . . . . . . . . . . 26

3-2 The search box presented to the user. . . . . . . . . . . . . . . . . . . 31

3-3 A snapshot of some events returned when the word "computer" was

entered in the search box. . . . . . . . . . . . . . . . . . . . . . . . . 32

9



10

.- - lmi .. ,- !!--i I|E li -f'1 I~e i - 1 -oW N



List of Tables

3.1 Example HTML source code . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Tags that generate new nodes in the parse tree . . . . . . . . . . . . . 27

3.3 One word from this list must appear on page in order for page to be

parsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Words that signal an institutional affiliation. . . . . . . . . . . . . . . 30

11

- k -MA a"



12

I - - l-- - . - -- - - I -- - I - .I i: =.



Chapter 1

Introduction

1.1 Motivation

Although searching the world wide web has become easier with the advent of search

engines such as Google, problems still remain unsolved. For instance, it is still not

possible for an individual to ask for all computer science job postings in California

and not have to wade through several pages of irrelevant search results. Ideally, the

individual would be presented with a list of all the computer science job postings in

California that are published on the Internet. No other irrelevant information should

appear on the returned page(s).

1.2 Information Extraction

The aforementioned system requires a software agent that is able to extract relevant

items of information from a heterogeneous collection of web pages. The notion of

Information Extraction [11], the procedure where only relevant segments of text are

extracted from a document, is well studied. Note that Information Extraction dif-

fers from the field of Information Retrieval, a procedure where relevant documents

are retrieved from a collection of documents. Information Extraction has been used

to solve real world problems including stock quote extraction, comparison shopping,

restaurant listing extraction, job listing extraction, removal of web page advertise-

13



ments etc. [2]. Information Extraction is discussed in more detail in the Related

Works chapter of this thesis (Chapter 2).

1.3 Event Discovery System

This thesis describes a new method of Information Extraction, where HTML pages are

analyzed first at a structural level and secondly at a semantic level. Furthermore, this

new approach is used to tackle the problem of discovering ongoing lectures, seminars,

and events in the academic community.

Each day, an academic community such as MIT holds several lectures, seminars,

and events ranging in topics from "Rank Conditions in Multiple View Geometry"

to "Hydrodynamics of Aqueous Humor Outflow". These talks are advertised via

fliers posted on bulletin boards, department web pages, and email. In spite of this

advertising effort, many individuals are not informed of events that they may find

interesting.

One reason for this lack of awareness is that the event information is not located in

one place. Each department posts relevant events on its own department web page(s),

or in the case of fliers in the vicinity of their own department buildings. Therefore,

individuals in the computer science department are unlikely to be aware of events

in the biology or math departments. A second reason for the lack of awareness is

that there is too much information. Even if the individuals were directed to every

department's event listing pages, they may not have the time or patience to read

through all the events or sift through extraneous material.

One solution to this problem is to develop a software agent that crawls the web in

search of ongoing lectures, seminars, and events and presents the information to the

user through a web interface. This thesis describes an agent which crawls the entire

MIT domain, structurally and semantically analyzes each page, extracts individual

academic events from the heterogeneous pages, and presents the extracted information

to the user through an interface available on the world wide web.

14



1.4 Thesis Road Map

The remainder of this thesis is structured as follows. Chapter 2 provides a discussion

of related work. Section 3 provides an in depth discussion on the architecture of the

system. Section 4 is an evaluation of the system. Section 5 is a discussion of future

work. Finally, the thesis is concluded in Section 6.
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Chapter 2

Related Work

This section will discuss Information Extraction, Wrappers (a technique to perform

Information Extraction), Wrapper Induction (a technique of learning wrappers), and

a few Information Extraction systems that have been built in the past.

2.1 Information Extraction

Information Extraction is the process of extracting relevant segments of text from a

document. Although this thesis will focus on Information Extraction of semistruc-

tured text, it should be noted that a large amount of research has been done on

grammatical parsing and Information Extraction of free text.

In order to automate the process of Information Extraction researchers have built

software agents to carry out the extraction. Because the world wide web is so large,

and because it contains a vast amount of useful information, a lot of research has

been carried out on performing Information Extraction on HTML web pages. HTML

pages are examples of semistructured text, structure is found in the source code of

the HTML page. As mentioned earlier, researchers have built Information Extraction

systems to help collect useful information from the world wide web. They have

built systems to automate the retrieval of stock quotes, develop restaurant listings,

comparison shopping, job advertisements, seminar announcements etc. [2].

17



U -

Athletic Dep armnent 02-0000893

Athletic Dep artment 02-0091207 danger of dronin g and administe resuscil
e~aorce policies and procedures, msure deE
povide ...

TECUHCAL ASSISTANT, Center for C
CenterForCaner Resear to study cell cycle and cancer. N

Research - 3 in several rUfdrch project nn
sues ono tepinave estgator wil

-potantial to conduct ...

TECHNICAL ASSISTANT, Center fox C
Center F or Cncer Research, to assist m studies of Huntmgto
Res F arch 02-0000393t (HD) usilg a ran ge of aolec-ular genetic te,

imaryleb duties will be. genotyping of sin
n'ucleotide p oly-morphismas..

Figure 2-1: MIT job listings

2.2 Wrappers

One approach to extracting information from semistructured web pages is to use

wrappers. A wrapper is a procedure for extracting desired information from a docu-

ment [8, 1, 10]. In order to extract several pieces of information from a given resource

one would develop several wrappers and invoke these wrappers on the page. For ex-

ample given a semistructured page as shown in Figure 2-1 a user may want to extract

all the job titles on the page. As you might have noticed all the job titles appear in

bold font. Examination of the HTML source code shows that the job titles are all

surrounded by the <B> HTML tag on the left and the </B> HTML tag on the right.

Therefore, an appropriate wrapper for the job title might be to extract any phrase

surrounded by bold tags. To extract other fields in the document such as the date

or the department, similar wrappers would have to be developed. This approach is

sometimes known as the left-right (LR) approach (left tag right tag). The nice thing

about developing wrappers for Information Extraction is that once the wrappers are

developed a user can easily submit queries such as "Give me all job openings posted

after 1/23/2003 in the Department of Physics".

18



2.3 Wrapper Induction

In the past wrappers were written by hand, individuals had to examine the source

code and pick out the relevant surrounding tags themselves. This work becomes

tedious especially since the layout of web pages change frequently. As a result there

has been extensive research on automating the process of producing wrappers. The

idea of learning or inducing an appropriate wrapper is named Wrapper Induction.

Many systems have been built to learn wrappers including WIEN and STALKER

[4, 7]. These systems are discussed in the following section.

Typically wrapper induction has been carried out on pre-selected web sites that

display large amounts of information on similarly structured pages. For instance

Wrapper Induction could be carried out on a web site such as Amazon.com, which

carries millions of books and displays the book information in a similar fashion. The

first step that is required when carrying out Wrapper Induction is acquiring a training

data set. To create a training set the user picks a few sample pages and identifies

the items he is interested in. For instance, a user may identify a certain region of the

page as the title/author of the book, and a different region of the page as the book

summary. Many systems have developed graphical user interfaces to ease the task of

identifying desired information [7, 6]. Once the training set is created, the system

uses the selected examples to create extraction rules or wrappers for each marked

field. The algorithm used to generate the wrapper varies from system to system; it

is what makes each system unique. These wrappers are then used to actually extract

the desired information.

2.4 Information Extraction Applications

2.4.1 WIEN

The Wrapper Induction ENvironment (WIEN) [4] was developed by Nicholas Kush-

merick, who is accredited as the first person to use the term wrapper induction.

WIEN uses the head-left-right-tail (HLRT) approach in order to construct its wrap-

19



pers. This approach is an enhancement of the LR approach discussed above in section

2.2. Instead of just looking at the preceding and succeeding HTML tags, HLRT also

identifies the HTML tags that delimit the head and tail of the desired information.

WIEN uses a set of labeled examples to learn an HLRT wrapper. The learning process

or wrapper induction continues until the probability of the wrapper failing is below

a specified threshold.

2.4.2 STALKER

STALKER [7] uses a supervised learning algorithm to induce its wrappers. The

system requires a user to label examples of the information desired. Once this is

done the system runs a sequential covering algorithm to learn the wrapper. In other

words, the algorithm does not return a wrapper solution until all positive examples are

accepted and all negative examples are rejected. Along with the highlighted examples

of the desired information, STALKER uses an embedded catalog (EC) description of

a document in order to generate extraction rules. The EC is a tree-like structure

where the leaves represent the information to be extracted [7]. Each internal node of

the EC denotes either a homogeneous list of items or a heterogeneous tuple of items.

For an example of an EC tree please refer to Figure 2-2. The advantage STALKER

has above a system such as WIEN is that STALKER is able to extract information

independent of its ordering, and even more it is still capable of extraction if there are

missing items.

2.4.3 Commercial Systems

There have also been a few commercial systems that use Information Extraction

Junglee, Jango, and MySimon to name a few. Junglee was founded in June 1996

by Stanford graduates and was bought by Amazon for approximately $ 180 million

dollars in August 1998 [2]. Junglee is a comparison-shopper which uses information

extraction techniques to collect product information from a variety of sites. A similar

20



LIST( LA-Weekly restaurants)

TUPLE( LA-Weekly restaurant)

name address phone review LIST(CreditCards)

creditcard

Figure 2-2: An EC description of restaurant listings

application Jango, previously named ShopBot, is a product of NetBot which was

acquired by Excite for $ 35 million in October 1997 [2]. Finally, MySimon co-founded

by Michael Yang and Yeogirl Yun allowed agents to be manually trained to shop at a

merchant site through a GUI environment. For a more complete survey of Information

Extraction please refer to [2].
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Chapter 3

System Design

The Event Finder system contains three main components: a web crawler, a parse

engine, and a web user-interface. The web crawler is a program that systematically

visits web sites and saves the HTML source code of the sites in a database. The

parse engine processes the crawled pages and extracts any event listings. Finally the

web user-interface provides a user with a mechanism to search through the extracted

event listings. The C# programming language and the Microsoft Visual Studio.NET

environment were used to develop these components.

3.1 Web Crawler

The web crawler processes a page, P, by saving P's HTML source code to a database,

and by recursively processing all the pages that P points to. The pages are visited us-

ing a breadth first search algorithm. The web crawler takes two variables as inputs, a

starting page and a domain specification. The domain specification is used to limit the

search space of the web crawler. For instance, if the domain specification is "mit.edu",

then the web crawler will only process pages of the form "http://*.mit.edu". The web

crawler adheres to the "Robot Exclusion Standard".

23



3.2 Parse Engine

The parse engine contains three components: an HTML parser, a repeated unit

identifier, and an event identifier. The HTML parser takes HTML as input and

generates a tree structure. The repeated unit identifier scans the tree and identifies

repeated subtree structures in the tree. Finally, the event identifier determines if the

repeated units are event listings.

3.2.1 HTML Parser

The HTML parser generates a tree from the HTML source code of a web page. To

illustrate the HTML source code shown in Table 3.1 has the corresponding tree

structure displayed in Figure 3-1.

With the exception of the root node, the nodes of the tree contain a sequence of

HTML tags and the text encapsulated by those tags. For example, node D contains

the HTML sequence <tr><td></td><td><b></b></td><td></td></tr> and

the encapsulated text is "11/18/2002 Michael McGeachie MIT "RedBook Demo: an

Ontology-Driven WebPortal" CDM PhD Student". Similarly, node B contains the

HTML sequence <p></p> and the encapsulated text is "2002-2003 MEDG Seminar

Series takes place on Mondays at 4:00pm, refreshments are served at 3:45pm.".

On correctly formed HTML pages the parser works by following the simple rule

that a child node is added whenever an open tag is encountered. As an example

of this observe Nodes B and C, they are child nodes of the root node, Node A.

Node B was created when the open tag <p> was encountered, similarly Node C was

encountered when the open tag <table> was encountered. Until the corresponding

close tag </table> is encountered all new open tags will result in a child node of

Node C. Notice that Node C has Nodes D, E, and F as children, because open tags

<tr> were encountered before the close tag </table> was encountered.

Only a subset of all HTML tags are allowed to generate new nodes in the tree

structure. These tags are listed in Table 3.2. These tags define the structure of an

HTML page and are considered enclosing tags. Enclosing tags are used to generate

24



<html>
<body>

<p>
The 2002-2003 MEDG Seminar Series takes place on Mondays at 4:00pm,
refreshments are served at 3:45pm.

</P>
<table>

<tr>
<td>11/18/2002</td>
<td> Michael McGeachie (CDM PhD Student)

<b>MIT</b>
</td>
<td> "RedBook Demo: an Ontology-Driven WebPortal"
</td>

</tr>
<tr>

<td>11/25/2002</td>
<td> Ralph Harik (CDM Meng. Student)

<b>MIT</b>
</td>
<td>

"EventFinder:A software agent that crawls the web for events
and matches people to events of their interest."

</td>
</tr>
<tr>

<td>12/2/2002</td>
<td> Peter Szolovits (CDM Director, MIT Professor)

<b>MIT</b>
</td>
<td> "Topic to be determined.""
</td>

</tr>
</table>

</body>
</html>

Table 3.1: Example HTML source code
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Root Node

A

O<p></p> <table><tr><td></td><td><b></b></td><td></td></tr>

<tr><td></td><td><b></b></td><td></td></tr><tr>

<tr><td></td><td><b><b></td><td></td></tr></tabie>

The 2002-2003 MEDG Seminar Series takes place C
on Mondays at 4:00pm, refreshments are served 3:45pm.

OTj

CIO

<tr><td></td><td><b> <tr><td></td><td><b> <tr><td></td><td><b>
</b></td><td></td></tr> </b></td><td></td></tr> </b></td><td></td></tr>

(D

<td></td> <td><b></b></td> <td></td> <td></td> <td><b></b></td> <td></td> <td></td> <td><b></b></td> <td></td>

-] 11/18/2002 Michael McGeachie "RedBook Demo an Ontology- 11/25/2002 Ralph Harik "EventFinder:A software agent 12/2/2002 Peter Szolovits "Topic to be determined."
(CDM PhD Student) -Driven WebPortal" (CDM MEng Student) that crawls the web for events (CDM Director, MIT Professor)

and matches people to events
of their interest."

DD <b></b> <b></b> <b></b>

MIT MIT MIT



<TABLE>
<TR>
<HR>
<UL>
<LI>
<DL>
<DT>
<DIV>
<P>
<BLOCKQUOTE>
<SPAN>

Table 3.2: Tags that generate new nodes in the parse tree

Event
Seminar
Lecture
Colloquia
Colloquium

Table 3.3: One word from this list must appear on page in order for page to be parsed.

lists (<ul>, <ol>, <li>), tables (<table>, <tr>), and paragraphs (<p>). Tags that

don't have a structural effect such as <b> or <i>, tags that affect the font of the

text, are not included.

Not all pages are processed by the HTML parser. The page must contain one of

the words shown in Table 3.3

3.2.2 Repeated Unit Identifier

The Repeated Unit Identifier, RUI, scans the parse tree generated by the HTML

parser and identifies repeated subtree structures in the tree. More specifically, for all

the nodes at a given depth of the parse tree the RUI groups nodes that share similar

HTML tag sequences.

It's important to note that only nodes at the same tree depth in the HTML parse

tree are grouped together. So for each level of the HTML parse tree the RUI iterates

over all the nodes and compares each node's HTML tag sequence to the HTML tag

27



sequences already observed at that level. If the HTML tag sequence of a Node X has

already been observed, meaning if a previous node had the exact same sequence as

Node X, then Node X will be added to the same group as that previous node. For

example two nodes that both have the HTML tag sequence <TD><B></B></TD>

will be grouped together. If the HTML tag sequence of Node X has never been

seen, then the RUI checks if the HTML tag sequence of Node X is an approximate

match with any of the HTML tag sequences that have already been observed. If an

approximate match does not exist, then a new group is created with Node X as a

member. If however an approximate match is made then Node X is added to the

group identified by the HTML tag sequence that was approximately matched.

Two HTML tag sequences X and Y are approximate matches if the following

equation holds:

LCS Length > (3.1)
Max Length (X,Y) -

The value of LCS Length is the length of the longest common subsequence of the

two sequences X and Y. MaxLength(X, Y) returns the length of the longest sequence

amongst X and Y. Finally, a is a value that was picked experimentally, currently the

value of a is .45. The rationale behind the equation is that for sequences that are not

similar the LCS Length divided by Max Length(X,Y) will be close to 0, and for those

that are similar it will be close to 1. The Max Length(X,Y) is in the denominator

to compensate for the case when X is a subsequence of Y and X is a much shorter

sequence than Y. In this case X and Y are not really similar and the equation will

return a value close to 0.

Before completing the RUI performs two more procedures. First the RUI merges

groups that have approximate matching HTML tag sequences together. Secondly it

filters the groups by removing any group that contains fewer than 3 nodes. Groups

containing fewer than 3 nodes are removed to ensure that the system only processes

lists. Some pages, pages that contain news articles for example, share the same

qualities as events (name, date, institutional affiliation). Therefore, by enforcing a

28



minimum of 3 nodes the system is less likely to mistaken a news article for an event.

3.2.3 Event Identifier

The Event Identifier (EI) uses the result of the RUI to determine if the repeated units

in the HTML parse tree represent events. The EI performs this task by analyzing

the text encapsulated by the nodes in the repeated unit group. More specifically,

the EI scans the text for qualities inherent in an event listing such as a date, an

institutional affiliation, and a person's first name. If the text encapsulated by a node

contains 2 of the 3 aforementioned qualities then that node is marked as an event

node. Furthermore, if within a repeated unit group more than 50% of the nodes are

marked as events then the group is marked as an event listing. The text under each

node is then extracted individually and stored into a database.

The following sections describe how the three attributes of an event are identified.

Date Identifier

The Date Identifier consists of two modules a tokenizer and a grammar. The tokenizer

iterates over every word in a text segment and identifies date related words. For

example the module identifies the months of the year, integers between 1 and 31,

and date delimiters such as '/' and '-' (12/6/1980, 12-6-1980). Once this is done,

the tokenized string is processed and the tokens are reduced to a sentence in the

grammar if possible. An example of a sentence in the grammar may be MONTH

FORWARDSLASH DAY FORWARDSLASH YEAR.

Many pages do not repeated list the year of the date with the month and day,

rather they list the year at the top of the page or at the top of the event list. In order

to take this into account, if a node is identified as an event and it is missing a value

for the year the event takes place, the event is given a year value equal to the most

recently seen year.

29



Professor
University

College
Department

Institute

Laboratory

Table 3.4: Words that signal an institutional affiliation.

Affiliation Identifier

The Affiliation Identifier is rather simple; it looks for an occurrence of any of the

words in the short list in Table 3.4 and their variations.

First Name Identifier

In order to write a First Name Identifier, 500,000 first names were parsed from the web

site "http://www.kabalarians.com/gkh/yourbaby.html", a site that helps you select

a name for your baby. Because the web site allows anyone to submit a name, the

database is tainted with words such as "and", "the", "when" etc. Therefore 5,000 of

the most commonly used English words were downloaded from a separate site, and

they were subtracted from the 500,000 first names. A hash table of the remaining

names was created. Therefore the identification of a first name only required a lookup

in the hash table.

3.3 Web User-Interface

The graphical user interface (GUI) allows individuals to search the database of events

through keyword matching. Furthermore, the user is allowed to limit the search

results by specifying a start date and/or end date. Finally the GUI allows individuals

to create a profile, a list of words that describe one's interests. When the user logs

into to the system the profile is used to return any matching events. In the future

the profile will be used to email users events that match their interest. Snapshots of

the GUI are displayed in Figures 3-2 and 3-3.

30



Search Events Create Account My Events Update Profile Logout

Start Date: F/ F/ End Date: fl F F
Searc h

Figure 3-2: The search box presented to the user.
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pate: Wednesday, 9/11/1996
{pformation: Date: Wednesday, September 11, 1996 Title: The Policy Crisis in Cryptography

speaker: Dr. Herb Lin, NRC Abstract: Cryptography, the work of creating and deciphering coded

iformation using mathematical formulas, long has been the sphere of spies and the military. But in the

past 10 years private-se ctor use of cryptography has exploded as a result of advances in ele ctronic

communications and information technologies. Decisions about national cryptography policy now have

jioportant implic ations not only for national se curity, but also for U.S. e conomic competitiveness, law

enforcement interests, and the protection of the privacy and other rights of individuals. The Computer
science and Telecommunications Board of the National Research Council recently completed a
congressionally mandated study (Cryptography's Role In Securing the Information Society) to
examine the issues and conflicting interests involved in cryptography and made recommendations on

national policy in this highly controverial area.

tirl: http://theory.lcs. mit.edu/-cis/cis -talks.htrnl

Date: Friday, 3/1/2002
Information: Date : Friday, March 1, 2002 Time : 10:30 a.m. Place : NE43-308, 200 Tech Square

Title : Physical Security Protocols for Ubicomp Systems By : Tim Kindberg, Hewlett-Packard Labs,
Palo Alto (Open to the public) Abstract: Ubiquitous systems tend to have two predominant

characteristics: first, the integration of computing components and the physical world; second,
spontaneous (ad hoc) interoperation between components. Each of these characteristics has
ramifications for security. My talk will cover some of the implications of physical integration by
considering notions of "constrained channels" and "context authentication"; it will cover protocols for
authenticating a principal's location and consider the issues raised by other contextual parameters. If
there is time, the talk will go on to an overview of how physical relationships can be used for
validating spontaneous associations between devices. Bio: Tim Kindberg
(http://champignon.netiTinKindberg) is a senior researcher at HP Labs, Palo Alto, where he works

on nomadic computing systems as part of the Cooltown program. He was formerly a senior lecturer in
Computer Science at the University of London. He holds a PhD in Computer Science from the
University of Westminster and a BA in Mathematics from the University of Cambridge. His research

interests include ubiquitous computing systems, distributed systems and human factors. He is co-
author of the textbook 'Distributed Systems -- Concepts & Design'. NOTE: No Seminar Fri, Feb
22, 2002
Url: ht://theory.lcs.mit.e du-cis/cis-talks.html

Figure 3-3: A snapshot of some events returned when the word "computer" was
entered in the search box.
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Chapter 4

Evaluation

This section describes experiments that assess the performance of the system. There

also is a discussion of the system's strengths and weaknesses.

4.1 Event Listing Identification

In order to evaluate the performance of the system 100 pages that contained events

were hand selected from the mit.edu and stanford.edu domains. The pages were

selected from a variety of sources. An attempt was made to select pages that had

unique event listing layouts. The goal of the experiment was to determine which

types of pages the system performed well on, and which pages that system performed

poorly on. The pages contained several kinds of MIT and Stanford events including

social, academic, and art events.

4.1.1 Results

Of the 100 pages in the test suite, the system failed to parse a single event on 36

pages. Of the remaining 64 pages the system correctly parsed 54 pages. A page was

deemed to be correctly parsed if a mistake was made on 2 events or less. The system

partially parsed 10 pages. A page was deemed to be partially parsed if it made a

mistake on more than 2 events.
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4.1.2 Discussion

The following is a list of pages that the system performed poorly on:

* Errors in HTML Tree Constructor The most common reason for the sys-

tem's failure, is its inability to compensate for poorly structured HTML pages.

Because HTML is very flexible in its syntactical rules, writing software that

creates an accurate tree is not trivial.

* Month Listed Once: The system is unable to extract events where the month

is listed at the top of the page, and each event is then delimited only by the

day of the month. The reason is that the date identifier requires the month and

day of month be adjacent. Furthermore, the event identifier requires that each

event have a date explicitly associated with it.

9 Flat HTML Pages: Pages that don't have hierarchical HTML structure can't

be parsed by the system. For example, pages that separate events with <BR>

tags can't be parsed. Recognizing <BR> as enclosing tags is a possible solution.

However, since <BR> tags are very prevalent in HTML source code, recognizing

them as enclosing tags would increase the number of incorrectly identified event

pages.

e Event Contains Other Dates in Text: One of the attributes the Event

Identifier searches for is a single date within the text. However, as it turns

out some events have references to other dates. For example, some events have

RSVP dates. This problem can be solved by writing more detailed recognizers

so that RSVP dates could be distinguished from other dates.

e Date and Text Not Under Same Hierarchical Node A few of the pages,

which did have heirarchical structure, did not have the date and the event

information enclosed by an HTML tag. It may be possible to recognize the

repeated date and event information and group the two together (more work is

required).
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" Missing Event Attribute The system failed to extract certain events because

the event lacked both a first name and an institutional affiliation. An example

of such events is a list of social outings for a department lab "January 19, Movie

outing to see Lord of the Rings".

" Errors in Date Recognizer The date recognizer failed to identify some for-

mats.

The system tends to work best on pages whose HTML source code is hierarchically

structured (events listed in an HTML table for example) and events which are uniform

in presentation. Note that the since an attempt was made to select a variety of layouts,

the composition of the test suite doesn't necessarily represent the true percentages of

the types of pages found on the Internet. Therefore, the experiment does not give an

accurate estimation of the system's success rate.

4.2 False Positives

In addition to the above experiment, a second experiment was carried out where 1000

pages were selected from a variety of sources on the the mit.edu domain. None of

these pages contained event listings. These pages were then processed by the system

in order to determine how many false positives existed (how many pages the system

incorrectly labeled as events).

4.2.1 Results

Surprisingly the system did not incorrectly classify any of the 1000 pages.

4.2.2 Discussion

Although the experimental results were positive, working with the system has shown

that there are certain pages which the system falsely identifies as event pages. Below

is a listing of the type of pages that sometimes are incorrectly identified as event

listings:
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* Bulletin Boards Bulletin boards cause problems because each posting has a

single date as well as the name of the person who posted the message. Fur-

thermore, the messages are posted in a uniform and structured manner. To

mitigate this problem the system recognizes the bulletin boards listings that

include the email "From:", "To:", and "CC:" headers. In this case the system

does not incorrectly identify the page.

" Bibliographies Often on university pages researchers publish long lists of their

academics papers. These listings contain a date, a name, and many times an

institutional affiliation.

" Job Listings Job listings are usually posted in a structured manner. Further-

more, each posting often contains the date the job was posted, and the name

of the individual to contact.

* News Listings News articles also sometimes cause problems, as they are listed

in a structured manner, contain a date of publication, and the name of the

author.

The main reason that the system performed well on the second experiment is that

the system does not process a page unless it contains one of the words listed in the

table 3.3. Furthermore, the page also needs to have a structured list that contains

the event attributes described in section 3.2.3.
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Chapter 5

Future Work

This section will discuss possible improvements to the Event Finder System.

5.1 Crawler

A faster crawler is necessary for the system to efficiently crawl all university domains.

Furthermore it is desirable that the crawler is run more frequently so that the most

recent HTML pages are found in the database. A faster crawler can be attained by

executing the steps listed below:

" Implement crawler in C++: Because the .NET environment is relatively

new, it contains a few bugs. Specifically a memory leak was found in the net-

working library of the .NET environment. Therefore, implementing the crawler

in C++ would lead to a more robust crawler.

" Identification of mirror sites Some sites are replicated in their entirety un-

der different URLs. The only difference between the replicated pages and the

original pages are the URLs. This causes a problem since the hash table of al-

ready seen pages is indexed by the URLs. Since the content of the pages is the

same, it is inefficient to crawl both the replicated pages and the original pages.

A possible solution is to take a fingerprint of the content on a page and to only

crawl pages that do not match any of the existing fingerprints. Because there
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may be slight variations in the HTML source code, link references for example,

producing a fingerprint is not as trivial as hashing the content of the page.

e Use of more computers The system already makes simultaneous web re-

quests. However, to further improve on the crawler's efficiency the crawl could

be distributed over several computers.

5.2 Parser

The parser, the crux of the system, has several possibilities for improvement as well.

5.2.1 HTML Tree

Poorly written HTML source code was the main reason many of the event pages were

parsed incorrectly in the experiment described in section 4.1. The consequence of

missing closing HTML tags was an incorrect parse tree and a failure of the repeated

event identifier module. In order to remedy this mistake the HTML tree generator

needs to be more intelligent. It needs to correct sloppily written HTML code. Al-

though the module that builds a tree out of the source code compensates for some

mistakes, it is far from robust. Additionally, if more university sites are going to be

crawled the HTML tree module needs to be much faster. One possible solution is

to use software from the public domain implementation of Mozilla. This software is

likely to be very robust.

5.2.2 Repeated Unit Identifier

The Repeated Unit Identifier can also be enhanced. A more sophisticated algorithm

can be used to cluster the repeated HTML strings on the page. Many algorithms

have been developed in the field of bioinformatics that look for repeated nucleotide

sequences in a DNA strand [5, 3, 9]. Several of these algorithms use probabilistic

models for identifying approximate tandem repeats in a string. It would be interesting

38



-m

to implement some of these algorithms and compare them to the technique developed

in this thesis.

5.2.3 Event Identifier

Certainly a missing aspect of the Event Identifier module is that it does not learn.

As the system identifies pages that contain lists of events, it could run a learning al-

gorithm that learned commonalities among all the events. Furthermore, a confidence

score of which lists are indeed event listings could be developed. One problem is that

since the system searches for repeated units, pages that contain only a single event

are missed. This could perhaps be remedied with the learning module that identifies

commonalities among the events.

Another improvement along the lines of learning is that the events could be classi-

fied into their most relevant fields. For instance events discussing recombinant DNA

could be classified under molecular biology, and events discussing the politics of the

Middle East could be classified under international affairs. This would allow a user to

subscribe to all molecular biology seminars, or all international affairs seminars etc.

Currently the system only seeks repeated listings which are lectures, seminars,

or events. However, it is certainly possible to customize the system to search for

any other items that are contained in repeated lists. The system currently identifies

repeated lists that contain a first name, date, and institutional affiliation. Although

the system does allow you to substitute your own recognizers, it is not as simple

as saying "find me repeated lists that contain email addresses, first names, street

location, state, and price" (if you wanted to search for housing). Instead you would

have to write your own recognizers in C#. Ideally a large set of recognizers would

already exist and the system would allow you to simply indicate which types of

recognizers you would like to use. Perhaps this could be done through a simple

check-box list.
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5.3 User Interface

The user interface to the system is the least developed of all the modules. Currently

the only available user interface is the web interface described in section 3.3. However,

many improvements can be made in order to make the system more usable. The

system should be ported onto a variety of handhelds. This would allow individuals

to check for new seminars and events while on the run. Furthermore, with a reliable

location recognizer GPS functionality could be built into the system. With GPS a

user could choose to only be notified of events that are close geographically. Another

improvement is a rating system that would allow users to rate the events they attend.

This would be useful for users who are deciding whether or not to attend a talk. The

ratings would be useful for instance if there are repeated talks by the same person, or

if a talk is part of an ongoing colloquium series. Furthermore, a module that matched

people to events of their interests is also necessary.
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Chapter 6

Conclusion

This thesis has presented a new method of Information Extraction where HTML pages

are analyzed first at a structural level and secondly at a semantic level. Specifically,

the method looks for repeated units of structured elements as an indication of a list of

similar entities. It has also presented a software agent that crawls the web in search

of ongoing MIT lectures, seminars, and events. Furthermore, the performance of this

software agent was evaluated on a subset of the MIT and Stanford domains. The

software agent was most affective on pages that had well structured HTML source

code and uniform event listings. Finally, several system improvements were suggested.
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