
Experimental Demonstration of Adaptive Distributed
Transmission Scheme for Indoor Wireless Networks

by

Cynthia M. Chow

Submitted to the Department of Electrical Engineering
and Computer Science in Partial Fulfillment of the

Requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science at the

Massachusetts Institute of Technology

August 22, 2002

Copyright 2002 Cynthia M. Chow. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant to others the right to do so.

Author
Department f Electrical Engineering and Computer Science

August 22, 2002

Certified by
Dr. Michael R. Andrews

Bell Labs Thlis Supervisor

Certified by________________IrfebProf. Gre y Wornell

M. he i S

Accepted by ___ _________________
A bProf. Arthur ith

Chairman, Department Committee on Graduate Thesis

USETTS INSTITUTE
of xNc,~*aOLOG Y

LIBRARIES

2

Experimental Demonstration of Adaptive Distributed
Transmission Scheme for Indoor Wireless Networks

by

Cynthia M. Chow

Submitted to the

Department of Electrical Engineering and Computer Science

August 22, 2002

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Adaptive Distributed Transmission (ADT) is a novel scheme for transmission of data in a
wireless network. ADT coordinates the transmissions of base stations in order to increase
the overall throughput of the network. This gain is achieved through exploiting the space
resource, by cooperatively compensating for the phase and amplitude effects of the
scattering environment. Initial estimates expect throughput gains of almost four times that
of traditional wireless networks. The dissertation describes in detail the first experimental
demonstration of ADT in a small wireless network that can send data from base stations
to mobile units in a changing environment, and establishes the feasibility of employing
ADT to increase the capacity over larger networks.

Bell Labs Thesis Supervisor: Dr. Michael R. Andrews

M.I.T. Thesis Supervisor: Professor Gregory Wornell

3

Acknowledgements

I am deeply indebted to several people who have made significant contributions to

my master's studies. I first would like to thank my parents, Alice and Bock Chow, for

their love and encouragement. Their unwavering faith in me has always been a source of

inspiration. Also, I am grateful to my sister, June, whose humor kept me sane.

I would also like to thank my Bell Labs mentor, Dr. Mike Andrews who provided

the foundation of my work, and supported me throughout the entire process with valuable

help and ideas. I feel very privileged for having had the opportunity to work with him. I

am also grateful to my M.I.T. thesis supervisor, Professor Gregory Wornell who, from

the start, has been extremely supportive of me. I would especially like to thank him for

making the completion of my work possible through his encouragement and insight.

Additionally, I wish to thank Brendan Kao for his encouragement and time. He

has always been there for me, and many insights arose from my discussions with him.

Many times, he gave me the energy and optimism to persevere. Finally, I would like to

thank Aref Chowdhury, who has been invaluable in making my progress as smooth as

possible.

4

Contents

Abstract 2

Acknowledgements 3

Introduction 6

1.1 Introduction 6
1.2 References 9

2 Adaptive Distributed Transmission: Theory 11

2.1 ADT 11
2.2 Estimated Performance for ADT 13
2.3 References 18

3 Prototype 2x2 ADT Network 19

3.1 Overview 19
3.2 Base Station 20
3.3 Mobiles 24
3.4 Hardware Components 25
3.5 References 38

4 Adaptive Distributed Transmission: Design and
Implementation 39

4.1 Wireless Message Protocol 39
4.2 Base Station 45
4.3 Mobiles 63
4.4 References 77

5 Experimental Results 78

5.1 Experimental Environment 78
5.2 Results 78
5.3 References 89

6 Future Research and Conclusions

6.1 Future Research
6.2 Conclusions
6.3 References

Appendix A - Slepian and Data Generation

Appendix B - Base Station Code

Appendix C - Mobile Code

5

90

90
92
93

94

97

131

6

Chapter 1

1.1 Introduction

Wireless networks have traditionally utilized multiplexing in time, frequency or

some combination of time and frequency (codes) to transmit data. These resources are

limited for a given system, and close spatial proximity limits the re-usability of the same

frequency or code due to co-channel interference [1-2]. In traditional frequency division

multiple access (FDMA) consisting of hexagonal cells, acceptable performance is

achieved if the interference power is at least 10 dB lower than the signal of the local

transmitting base station. This performance is achieved by assigning each cell a different

frequency from that of all adjacent cells. This frequency assignment scheme allows a

maximum re-use factor of 1/7 with no interference [3].

In order to improve this re-use factor, numerous ideas have been proposed to

intelligently manage interference. One way is to work around interference using a

technique such as Code Division Multiple Access (CDMA). CDMA transmits different

data on the same frequency, and manages interference by using pseudorandom codes.

However, this often means there is a lot of interference, leading to a degraded signal-to-

noise ratio (SNR) [2]. There have been several multi-antennae ideas proposed for beam-

forming and nulling co-channel interference [4-8]. These systems can operate without

any specific information of the channel and can provide increased capacity by creating

greater path diversity [5]. Other systems are adaptive, and utilize pilot signals to monitor

the channel [4,7,9]. All of the aforementioned ideas, however, associate all the antennae

7

with one base station. The Adaptive Distributed Transmission (ADT) scheme [3]

proposes a way to extend the multi-antennae concept to a network of transmitters.

Working in a flat-fading environment, the channel from each transmitting base station to

each mobile position, can be characterized by a certain amplitude and phase. Thus, the

entire network can be expressed as a matrix of complex numbers, with each element

characterizing a link between a base station and a mobile. One method of using this

information would be to tailor the interference received by each mobile [10]. The

Adaptive Distributed Transmission (ADT) scheme [3] proposes using the matrix

information to cooperatively transmit linear combinations of the messages destined for

each mobile. By doing this over the entire network, the co-channel interference in the

network will in fact cause the messages for each mobile to constructively interfere at that

mobile's position, but destructively interfere at all other mobile locations. By

periodically monitoring the channels through feedback from the mobiles, the bases can

adapt to changes occurring in the network.

There are several fundamental conditions that limit the types of environments

suitable for the application of ADT. The first is the time coherence of the channels. The

scattering environment is constantly changing, and as a result, the communication

channels are also constantly changing. If the rate of change is very fast, then the time

coherence r will be very small, and ADT will not be able to adapt quickly enough.

Additionally, the channels over which ADT operates must be flat-fading. A flat-fading

channel is one in which the signal bandwidth is much less than the channel's coherence

bandwidth [11]; at any given point in time, the flat-fading channel can be entirely

8

characterized by a complex number. Note that signal bandwidths larger than this flat-

fading bandwidth, Aco, can be handled by simply splitting them into flat-fading sub-

channels. Initial estimates based on recent measurements, as well as standard wireless

channel models predict that TAwo > 1000 is a conservative estimate for conditions in

which the ADT scheme should be applicable [3].

Theoretically, 100 % efficiency in the re-use factor can be achieved in ADT

systems. However, there are practical issues that prevent this theoretical limit from being

attained. There are errors in measuring the channel due to delays and errors in channel

measurement and estimation. Also, in a large network, it would be impractical to require

the entire network to cooperatively transmit to all mobiles, including those very far away.

In fact, one of the key ideas of ADT is that in a large or even infinite network, only local

cooperation is required. Given these errors, a re-use factor of 2/3 is expected, while

maintaining a 10 dB signal to noise ratio, which should be adequate for transmission of

data. This is a factor of approximately four times more efficient than the aforementioned

filling fraction of 1/7. Thus, it is expected that ADT can almost quadruple the current

capacity for wireless networks.

The objective of this research was to demonstrate the basis for the ADT method in

a real world wireless environment. Although the gains in network capacity from using

phase control are well understood, its effectiveness in a real-world environment that

constantly changes is less so. One goal of this research was to explore if it was indeed

possible to track changes of phase and amplitude, and compensate for them in a slowly

varying environment. Furthermore, for ADT to have commercial application, an ADT

9

network must be able to be built out of readily available, inexpensive hardware. Thus,

another equally important goal was to study the performance of a real ADT system

implemented using off-the-shelf components.

The outline of the thesis is as follows: Chapter 2 presents the background and

theory of ADT. Chapter 3 then proceeds to outline the design requirements and

hardware. Chapter 4 provides a detailed description of the prototype system, as well as

the challenges faced in implementation. Chapter 5 goes on to analyze the performance

results in a characteristic indoor environment. Finally, Chapter 6 concludes with a

summary of the research performed, as well as a discussion on areas for future work.

1.2 References

1. T. S. Rappaport, Wireless Communications: Principles and Practice (Prentice-Hall,
Englewood-Cliffs, NJ, 1996).

2. A. J. Viterbi, CDMA: Principles of Spread Spectrum Communication (Addison-
Wesley, Reading, MA, 1995).

3. B. Shraiman, M. Andrews, and A. Sengupta, Technical Report No. ITD-00-40485E,
Bell Labs, Lucent Technologies (unpublished).

4. J. H. Winters, "On the Capacity of Radio Communications Systems with Diversity in
a Rayleigh Fading Environment," IEEE Journal on Selected Areas in
Communications, SAC-5, 871 (1987).

5. J. H. Winters, J. Salz and R. D. Gitlin, "The impact of antenna diversity on the
capacity of wireless communication systems," IEEE Transactions on
Communications, 42, 1740 (1994).

6. J. S. Thompson, P. M. Grant and B. Mulgrew, "Smart antenna arrays for CDMA
systems," IEEE Personal Communications, 3, 16 (1996).

10

7. H. R. Karimi, M. Sandell and J. Salz in Comparison between transmitter and
receiver array processing to achieve interference nulling and diversity (IEEE,
Osaka, Japan 1999).

8. R. M. Buehrer, A. G. Kogiantis, S. Liu, J. Tsai, and D. Uptegrove, "Intelligent
Antennas for Wireless Communications Uplink," Bell Labs Technical Journal, 4, 73
(1999).

9. G. J. Foschini and M. J. Gans, "On Limits of Wireless Communications in a Fading
Environment when Using Multiple Antennas," Wireless Personal Communications,
6, 311 (1998).

10. S. Shamai, "On Information Theoretic Aspects of Multi-Cell Wireless Systems," Bell
Laboratories Research Seminar (April 25, 2002).

11. P. Hande, L. Tong and A. Swami, "Flat fading approximation error," IEEE
Communications Letter, 4, 310 (2000).

11

Chapter 2

Adaptive Distributed Transmission: Theory

2.1 ADT

Consider a wireless network consisting of M mobiles, at positions xi and N base

stations, in a triangular lattice, with vertices ra, transmitting in all directions as shown in

Figure 2.1. All communications from the base stations to the mobiles occurs over one

frequency (or code). Assuming that the network is operating within the flat-fading

bandwidth criteria, there is a transmission kernel between the a-th base station and the i-

th mobile:

K'" (t)= Ixi -ra 2 eik(- -ra ((1)

o 0 0 0 0

0 Xi0

ra rb
o 0 0 0 0

emobile

base

Figure 2.1. Base station at position r, and mobile xi

12

This transmission kernel captures the effect of multiple scattering with a random phase

(Pia and a Rayleigh fading exponent ,,. Thus, the matrix K characterizes the effects of

the network on the phase and amplitude of transmissions. Knowing K allows the base

stations to pre-compensate their transmissions in order to cancel the effects of the

network. Note that one can expect

(K" (t)Kj (0) *) s A tlr (2)
i b 1~xi -r1,|

where T determines the correlation time. In general, - depends on the distance between a

base and a mobile [1]. It is important that T is sufficiently long for the matrix K to be

measured.

Given the K matrix, pre-compensation involves all the base stations sending

different linear combinations of messages to the mobiles. If messages m,(t) are to be

transmitted to the mobiles, then every base station sends

s a L' m. (3)

Each element L' determines the phase and amplitude of each message m,. These

modified messages are then linearly combined, forming the transmission that base station

a sends. The mixing matrix L should be chosen to minimize the crosstalk in the network.

The crosstalk for each channel is determined by

13

21'

I K(tLm,

C = max 2 (4)

EK K," (t }L' mi
aJ

It is clear that if L(t) = K-(t) (or in the case where M < N, L(t) is the pseudo-inverse of

K(t)), then the off-diagonal terms would go to 0, yielding C= 0 [1].

2.2 Estimated Performance for ADT

2.2.1 Sensitivity to Error

In a real system, errors are unavoidable. Due to noise in the network, as well as

the changing channel, there will be measurement error in the channel estimation.

Furthermore, in the extended network, truncation also introduces error. It is important

that the effects of errors in the ADT method be bounded by a reasonable limit, if it is to

be used in a real environment. Assume that at best, we can only set L = T(K-'), where

k is an estimation of the network kernel K. The operation T() denotes the truncation of

the matrix, where elements below the bound y are set to zero. Then the expected ratio of

signal to noise is [1]

2

(C) = q, q K(t)L + K")L (5)
j i a

14

Expanding the error into its contributing components, it can be seen that there are two

main contributing factors: SAK7 (At), which is the prediction error, and error due to

truncation. Initial work has indicated that the effect of estimation and truncation errors is

bounded, while still allowing reasonable system performance [1].

Even with bounded error, it is important that the network kernel matrix be stable,

with small eigenvalues, since large eigenvalues would amplify estimation errors.

Simulations have shown that proper spatial distribution of mobiles should prevent

instability and large eigenvalues in the network [1]. The constraints on spatial

distribution are discussed in the following section.

2.2.2 Spatial Constraints For Stability

As mentioned above, it is key that the network kernel be non-singular, with small

eigenvalues, so as not to amplify errors in matrix estimation. Simulations have shown

that these conditions are satisfied if clustering of mobiles in space is avoided [1]. One

method investigated was to constrain the number of mobiles per hexagonal cell to one.

This does indeed prevent clusters of mobiles from forming, given that there is special

handling of the boundary conditions. However, in an unconstrained network, there is a

finite probability of clusters forming. Thus, to satisfy this constraint in the general case,

clusters of mobiles could be re-allocated to different channels such that they no longer

form spatial clusters.

15

2.2.3 Effects of Truncation

ADT is in theory applicable to very large, and even infinite networks (where the

number of base stations and mobiles is very large.) However, when the network grows

beyond a certain size, the mixing matrix L may contain very large elements. This is

because a large network matrix K may be sparse, and have elements with very small

amplitudes, if the distance between that mobile and base is quite far. However, the

inverse of K may not be sparse and can contain matrix elements with very large

amplitudes. This is likely to occur if mobiles far away from a base station are considered

in the cooperation. This results in a base station using a lot of power to transmit

messages to mobiles that are very far away. This is undesirable in a real system.

However, in ADT, local cooperation allows elements in the matrix K whose amplitude is

less than a truncation limit y to be set to zero. The effect is that for each base station,

only mobiles in a local area need to be considered. However, since truncation introduces

error, it will create some residual crosstalk. Initial findings concluded that truncation

error dominates when measurement error is less than -10 dB. Furthermore, it is found

that about 10 dB suppression of crosstalk can be achieved with y = 0.1 (where y is the

truncation factor), for frequency re-use factors of about 2/3 [1]. In simulation, this

truncation factor was equivalent to each mobile monitoring the bases in the nearest and

next nearest coordination shells.

16

2.2.4 Sensitivity to Measurement Error

Intrinsic error in the measurement of the network kernel elements is caused by

several factors. One contribution is the finite signal to noise ratio in the system. Signal

levels weaker than the background noise will not be measured accurately. A more

fundamental limit comes from the delay in measuring the channel. There is an

unavoidable delay due to the time for the mobiles to measure the channel and report back

to the base stations. From Equation (5), the component (SK"(At) is the intrinsic report

delay. It has a variance (SAK7 (At)SAK(A) *) = 5j,5-o-(At)KKj (At)l where

o-(At)= (lnKja(At)l (6)

is the variance in forecasting the phase and amplitude of the transmission kernel. The

contribution to crosstalk is bounded by pp(At) where

A := q7' [K" 1(L + q2 L)aa (7)

is the error sensitivity factor. In the simulations performed, A3 was always o(l), implying

modest error amplification [1].

17

2.2.5 Expected Environmental Conditions

As mentioned before, ADT is expected to work in indoor environments, or more

generally, in environments which have rAco >1000. This number can intuitively be

thought of as a measure of the suitability of the environment. r describes the time

coherence of the channels, and Aco is the total flat fading bandwidth available. Some of

this bandwidth will be sacrificed to pilots. It is easy to see that if the time coherence is

very large, meaning that the channels hardly change over time, then channel

measurements can be less frequent, requiring less bandwidth overhead. Conversely, if r

is small, then the channels are changing quickly, and a large amount of bandwidth will

need to be sacrificed to pilots. Thus, if the product of the two is large enough, meaning

that there is more than enough flat-fading bandwidth to send the necessary pilots, then

ADT can adapt.

There are two types of scattering environments that are expected to satisfy this

constraint. For simplicity, only the phase randomness model for channels in these

environments was considered. However, the same argument applies for the Rayleigh

fading component. The two types of regimes are the phase drift regime and the phase

order regime. In the phase drift regime, large changes in phase occur in a coherent

fashion. For the phase order regime, the phase is constant for long periods of time, and

fluctuates close to an average value whose variance behaves like the phase drift regime

[2-4]. Using this information, as well as well-known channel models, estimates for flat-

fading bandwidth and time coherence were derived. Reasonable estimates for Aa were

100 kHz, with r around 10 ms, in these scattering environments. These conditions

18

would allow adequate performance (10 dB SNR) with less than 10 % pilot overhead

[1]. Initial calculations based on recent scattering environment experiments suggest that

an indoor environment, such as that of Bell Labs, is likely to fall within this category [2-

4].

2.3 References

1. B. Shraiman, M. R. Andrews, and A. Sengupta, Technical Report No. ITD-00-
40485E, Bell Labs, Lucent Technologies (unpublished).

2. M. Stoytchev and H. Safar, Technical Report No. ITD-99-38447P, Bell Labs, Lucent
Technologies (unpublished).

3. M. Stoytchev and H. Safar, Technical Report No. ITD-99-38438E, Bell Labs, Lucent
Technologies (unpublished).

4. M. R. Andrews, P. P. Mitra and R. deCarvalho, "Tripling the capacity of wireless
communications using electromagnetic polarization" Nature, 409, 316 (2001).

19

Chapter 3

Prototype 2x2 ADT Network

3.1 Overview

The goal of this dissertation was to demonstrate a prototype ADT system in a real

wireless network. There were several challenges in creating a system that operates in a

real environment. One of these challenges was operating in real-time. Another was

maintaining acceptable performance with the limitations of off-the-shelf components. As

a result, a major part of this research focused on the design and implementation aspects of

such a system.

The prototype network consisted of four nodes as shown in Figure 3.1. Two

nodes were base stations and two were mobiles. The base stations transmitted data and

Base Station Mobile

-------- U plinkUniversal- Ntwr

Base Station Mobile

Figure 3.1 Prototype ADT Network.

20

channel estimation pilots to the mobiles over the wireless channel. The mobiles in turn

received the data and pilots, and periodically reported the channel measurements to the

base stations. The base stations then used these measurements to appropriately adapt

their next transmissions. In this prototype, the uplink was a wired network, simulating an

out-of-band link from the mobiles to the base stations. However, in a commercial

implementation, the uplink network would also be wireless.

The base stations and mobiles were all implemented on Texas Instruments DSP

evaluation boards, and personal computers (PCs). There were also two Radio Frequency

(RF) transmitters and two RF receivers, for the wireless downlink. A Local Area

Network (LAN) was used as the out-of-band uplink. A signal generator served as the

Universal Clock.

This chapter describes the general operation of the prototype network, including

the major functions that the base stations and mobiles perform, as well as any

requirements they impose. The chapter goes on to describe key elements of the hardware

resources, as well as the manner in which these resources were utilized.

3.2 Base Station

The two base stations were responsible for transmitting data messages to the

mobile units. In order to do so successfully, they coordinated their transmissions. In the

network with two base stations and two mobiles, there are two messages, one intended

for each mobile. Each base station simultaneously sent a linear combination of all

messages. Since the mixing matrix describes amplitude, as well as relative phase

differences between base transmissions, assuming that they began at the same time, it

21

was imperative that the base stations transmissions be simultaneous. This critical

synchronization of the base stations was accomplished by referencing a Universal Clock.

Specifically, synchronization can be characterized by three attributes: phase ((P),

frequency (c,), and time (t). The criteria for each are shown in Equations (1)-(3).

<< 1 (1)
dt r

A «tu << 1 (2)

At/ ,<<1 (3)

For Equation (1), d. is the rate of phase drift between the RF local oscillators, and r is
dt

the time coherence of the channel. This constraint means that the phase drift over the

channel should be much faster than any phase drift seen due to the RF local oscillators.

Generally, this can be accomplished through actively compensating for a known drift. In

the specialized case of the prototype system, this factor was removed by using the same

local oscillator for both base stations. Equations (2) and (3) deal with the variations in

codec sampling clocks. In Equation (2), Aco is the difference in sampling frequency

between any pair of base station codecs, and tu is the period of the Universal Clock.

Their product must be small enough that over the duration of a message, all base stations

will finish the transmission before the first sample of the next message begins. Equation

(3) relates a similar constraint: At is the difference between any two base stations in the

time it takes to transmit a message. Their difference should be much less than t,, the

22

time it takes to transmit one sample at the ideal sampling rate. The codecs used

satisfied these constraints.

Embedded in the messages sent to the mobiles, the base stations also sent pilots.

One pilot was used for the mobiles to recover timing with the base station. The other

pilots were used for estimating the network matrix. Periodically, the base stations

received reports about the channels among all the mobiles and all the base stations.

These reports formed the network matrix. All the base stations must know the current

network matrix so that they can calculate the inverse of the network matrix. Once the

inverse was known, a base station used the row concerning the channels between it and

the mobiles to mix its next outgoing transmissions. An example of how base station 1

transmitted its messages is shown below in Figure 3.2.

3.2.1 Messages

The messages that the base stations transmitted were arrays of n symbols. These

symbols were chosen at random from the data constellation. Interspersed with the data

mobile Base 1

D kI k k k221 22_ _ 2l k22_I

k k, " " =t ... 1
M2 1 M2n

Figure 3.2 Each base station uses the row in the inverse of the network matrix to mix the messages to
send to the mobiles.

23

were the three pilot signals described above.

In order to transmit each message, the base stations converted the messages into

analog waveforms. This was accomplished by modulating them onto pulse shaping

waveforms. The pulse shaping waveforms were designed to be time-limited, so that they

occupied a finite number of samples. They were also band-limited, which was essential

for several reasons: the hardware had a maximum sampling rate, and the channels had a

finite flat-fading bandwidth. The pulse-shaping waveforms needed to satisfy both

constraints. In the system, the hardware was the limiting factor on bandwidth due to the

limited sampling rate as well as clock synchronization issues; these aspects will be

discussed in more detail in section 4.3.2.1 Clock Drift. The bandwidth of the pulse

shaping waveforms in turn determined the realized bandwidth of the downlink.

3.2.2 Pilots

There were two types of pilots used in the system. The first was the channel

estimation pilots. These pilots essentially sent the identity matrix over the network, i.e.,

the estimation pilots transmitted from the base stations for the prototype network formed

the two-by-two identity matrix. Physically, transmitting this matrix occurs in the time

dimension: both base stations had two messages to send simultaneously, which formed a

2xn matrix, where n was the number of data symbols in each message, to be transmitted

over a time frame. At the front of this matrix lay the 2x2 identity matrix, which

constituted the pilot matrix. Upon transmission, each column of the identity matrix was

sent at the appropriate time slot. The pilot matrix was not mixed, like the rest of the data,

24

and simultaneous transmission of the messages ensured that the pilots were sent

simultaneously as well.

As a design note, the pilot matrix did not have to be the identity matrix. Any rank

2 matrix of known values could have been used. The best matrices, however, have

condition 1, and are unitary, so that no particular channel is favored. Even fancier, the

pilots could have been complex, so that the in-phase (I) and quadrature (Q) channels on

the RF hardware would put out even power. However, the identity matrix satisfied the

requirements, and was convenient, so it was used. As another design note, the columns

of the pilot matrix did not have to be placed in the front of the message, nor did they have

to be directly adjacent to one another. Putting the pilots at the front of the message was

arbitrary, and the columns were separated by blanking symbols to improve performance.

The performance aspect will be discussed in section 4.3.1 Pilots.

The second type of pilot used was a timing recovery pilot. The timing pilot

carried more power than the rest of the data symbols or matrix pilots to aid the mobiles in

recovering sampling timing with the base station transmissions. The timing recovery

pilot was included in each message, and was linearly combined between messages, just

like data.

3.3 Mobiles

The mobiles received data over the wireless channels from the base stations.

Receiving this signal first involved demodulating the RF signal down from the carrier.

This is generally accomplished using a local oscillator that is the same frequency as the

transmit carrier. However, there will be small frequency differences between transmit

25

and receive local oscillators that would appear as carrier phase drift. Thus, the

constraint on this follows the phase constraint in Equation (1). In the general case, the

phase drift would be removed through signal processing methods. However, to simplify

the prototype, and to ensure that observed phase drift was due to the channels, the

transmit and receive local oscillators were all the same clock. In order to receive the

message, the mobiles only needed to recover timing with the base stations, since the

coordinated transmissions from the base stations constructively interfered over the

network to arrive at each mobile with its intended message. To recover timing, a mobile

had to discover where the first sample of the transmission occurred in the received

waveform. This timing recovery had to be exact to the nearest sample, or else the

received data would not decode properly into constellation symbols.

After the mobile decoded the received data, it periodically reported the channel

measurements, which were demodulated along with the data. Since the channel

estimation pilots were sent without mixing over the channel, the received values directly

reflected the effect that the wireless channel had over any transmission within the same

flat-fading band as the pilot waveforms. These channel measurements were then sent

over the uplink to all the base stations.

3.4 Hardware Components

The prototype network was built entirely out of readily available hardware. This

included Texas Instruments 6701 DSP evaluation boards, Pentium-based PCs, RF

transmitters and receivers (with quadrature mixers), and a standard signal generator.

26

Greater details about the hardware architecture and capabilities can be found in the TI

Reference Manuals and User Guides [1-5].

3.4.1 TI 6701 DSP Evaluation Board

The major parts of the evaluation board used for this project were the 6701 Texas

Instruments DSP processor, external memory, a serial port, the Direct Memory Access

(DMA) module, an audio codec, an analog line in and line out interface, and a Host Port

Interface to the PCI bus as shown in Figure 3.3.

P C ---- - ------ ------------ ------- ------ --- --- -- -- -- ----

Data Bus

5 G- 6701m i RAM
DSP

DMA
Line

in OAudio McBSP

Line o - Codec Serial Port

Figure 3.3 Block diagram of the major components on the TI C6701 DSP evaluation board.

27

3.4.2 C6701 DSP Processor

The C6701 is a fixed and floating point DSP processor that runs at 133 MHz. It

runs under the Texas Instrument's DSP/BIOS, which is a real-time operating system.

This operating system provides several useful features for programming applications that

must meet real-time deadlines. One of these is the hardware interrupt. Hardware

interrupts (IRQs) allow peripheral components to notify the DSP of some time-sensitive

task that must be performed. Usually, this task is associated with an Interrupt Service

Routine (ISR) that the DSP must run to service the peripheral. In operation, an IRQ is

handled by an assembly routine with a special prologue to save the appropriate registers,

and jump to the ISR. Upon program initialization, an ISR vector is created that tells the

DSP where each ISR is located. Implementation with DSP/BIOS wraps this task into a

configurable hardware interrupt manager (HWI manager). The HWI manager handles

low-level calls to ISRs, and allows ISRs to be written in C, rather than assembly.

Another real-time tool provided with DSP/BIOS are the prioritized software

threads that allow easy multi-threaded programming. DSP/BIOS contains a Software

Interrupt Manager (SWI manager) that provides a graphical interface for thread

configuration, and a C callable Application Programming Interface (API) for invoking

threads. The SWI model is based on the hardware interrupt concept, where software

interrupts can be posted. Posting a thread causes that thread to run when it is the highest

priority task waiting for execution. Thread priorities allow the most time-sensitive task to

preempt those which do not have such stringent real-time deadlines. SWIs have up to 13

levels of priorities, all of which are lower than that of HWIs.

28

The cycles needed to execute code present another limitation in meeting real-

time deadlines. TI provides C callable routines for performing popular DSP tasks, such as

FFTs and vector multiplications. These routines are optimized for the C6701 architecture

to execute in the minimal number of cycles. The C compiler for the C6701 DSP is

another powerful optimization tool. It has the ability to software pipeline code, as well as

provide compiler feedback for optimization. This allows for an otherwise unattainable

high rate of computation.

3.4.3 Fixed vs. Floating Point

The 6701 has both fixed- and floating-point capabilities. However, the prototype

system was limited to be intrinsically a fixed-point system due to the fact that the codec

operates in fixed-point mode. Furthermore, most of the specialized signal processing

algorithms operate on fixed-point data. Thus, the system is designed for signed 16-bit

integers. This means that extra care must be taken at all steps to avoid overflow of

mathematical computations. Furthermore, quantization error will be present throughout

the system. In this regard, when extra precision was needed for internal algorithms, the

floating-point hardware of the 6701 was used to speed computation without these

limitations.

3.4.4 Memory

The DSP itself has 128 KB of on-chip memory. However, this is not enough to

load and run the base station and mobile programs. Thus, the evaluation board also

provides an additional 8 MB of fast RAM and 256 KB of slow RAM, accessible through

256 KB
DSP -SBRAM

EMIF 4 MB
SDRAMO

64 KB 64 KB 4 MB
IPRAM IDRAM SDRAM1

Section Address

IPRAM Ox00000000

IDRAM 0x80000000

SBRAM 0x00400000

SDRAMO 0x02000000

SDRAM1 0x03000000

Figure 3.4 Internal and external RAM, listed with the address space of MAPI.

the External Memory Interface (EMIF) on the DSP. This memory has two possible

configurations - MAPO and MAP 1. For the prototype demonstration, MAP 1, illustrated

in Figure 3.4, was used. The different sections of memory have different uses. The on-

chip memory (IDRAM and IPRAM) is the fastest, so it is used to hold run-time variables

as well as executing code. The memory sections in the external RAM (SDRAM and

SBRAM) are slower, but can be loaded with large data sets. This was important since

much computation was saved in the various base station and mobile algorithms by storing

pre-computed look-up tables and waveforms in this section of memory.

3.4.5 McBSP Serial Port

The evaluation board provides several interfaces for exchanging data between

peripheral devices and the DSP. One of these interfaces is the McBSP serial port. This is

used to exchange data between the DSP's memory and the audio codec. The serial port is

fully programmable, and can generate an interrupt on receipt or transmission of a sample.

29

30

The serial port interfaces with the DSP through several registers. There are two

configuration registers, the Primary Control Register (PRICTL) and the Secondary

Control Register (SECCTL). There is a third status register. The interface for data

exchange also consists of two registers which are mapped to DSP memory: the Data

Receive Register (DRR) and the Data Transmit Register (DXR). These correspond to

addresses OxOl8C0000 and OxOl8C0004 in the DSP's memory. The DSP can thus

receive a sample by reading the DRR on an interrupt, and send a sample by writing to the

DXR after the prior transmission is completed.

The serial port reads data from the codec at the programmed sampling rate. It is

the responsibility of either the DMA channel servicing the serial port, or the DSP to read

the incoming data before the next sample arrives. If the data is not removed from the

register before the next data arrives, an error event is triggered. This error event can be

checked by looking at the condition bits in the status register. Code in Appendix B and

Appendix C describe the configuration of the PRICTL and SECCTL registers for the

base station and mobile.

3.4.6 Direct Memory Access

The Direct Memory Access (DMA) module manages DMA channels. A DMA

channel can transfer data between any addresses in memory. This means that for memory

mapped peripherals, such as the serial port, a DMA channel can service it. A DMA

channel is configured to read data from a source address and write it to a destination

address. Each channel has the ability to auto-increment the source and destination

addresses after each transfer. This means that a DMA channel can automatically copy

31

contiguous chunks of memory from one location to another, or it can repeatedly read

data from a register and place it into an array in memory. A DMA transfer is completed

once all elements have been transferred. The number of elements to transfer is set by the

count value in a register. Both the count value as well as source and destination

addresses can be set at initialization, as well as by global registers. If global registers are

used, then the DMA channel can reinitialize subsequent transfers without DSP

intervention. This is very important since auto-initialization occurs faster and it allows

the DSP to continue without interruption.

An additional feature of the DMA module is that each channel can synchronize

reads or writes to events. There are several pre-programmed synchronization events,

including a receive and transmit interrupt from the serial port. The DMA can also

generate its own synchronization events, such as interrupts to the DSP.

3.4.7 Crystal Semiconductor Audio Codec

The DSP board contains several peripherals, including an audio codec. The audio

codec communicates with the DSP through the serial port. This codec is very flexible,

with a programmable sampling rate, data format, input gain and output attenuation.

Signal input and output of the codec occurs over the Line In and Line Out

interfaces. Before the signal reaches the codec, it is passed through low pass filters that

remove frequency components above half the fastest sampling rate. The sampling rate,

provided by two crystal oscillators, can be set to discrete values ranging from 8 kHz to 48

kHz. The data format is similarly programmable. The codec provides different methods

for quantizing the signal. The linear companding format, in stereo mode was used in the

32

prototype. In this configuration, the codec converts each channel of a stereo analog

signal into two signed 16 bit integers, ranging from -32,767 to 32,767. The 16 bits for

the right channel occupy the top 16 bits of a 32-bit unsigned integer, and the left channel

occupies the bottom 16 bits. The availability of stereo is convenient for the prototype

network, since the data consists of real and imaginary components. The right channel is

used to carry the imaginary component of the signal, and the left channel is used to carry

the real component of the signal.

The codec is also capable of applying a gain to the input signal and attenuation on

the output signal. The gain and attenuation is programmable in 1.5 dB increments. This

is useful since the RF Receive Module provides an attenuated signal, and the Line In

interface to the codec applies a 6 dB attenuation. These attenuation factors can be

compensated for by boosting the input gain of the codec. At 0 dB gain, the average noise

was rated to be about 4 bits, with a maximum of about 6 bits.

3.4.8 Using the DMA to Service the McBSP Serial Port and Codec

One of the key building blocks in the implementation of the prototype system was

using the DMA to service the codec. This application involves most of the hardware

features described above, and was a major component used throughout the entire system.

The application uses two DMA channels to service the input and output of the audio

codec. One DMA channel receives samples from the codec and one writes samples to the

codec, both operating through the serial port as shown in Figure 3.5.

On the receive channel, when the codec generates a sample, the serial port

transmits that to its DRR and generates a Data Receive Event, which the input DMA

33

Output D/A DXR DMA OUT Tx Buffer

Codec Serial
Port

Input A/D DRR DMA IN Rx Buffer

Xtal
Osc

Figure 3.5 Using the DMA to service the Audio Codec through the Serial Port.

channel sees. The DMA channel then transfers this data to an array in DSP memory, and

increments the array pointer to the next available address. When a certain number of

samples have been received, the DMA channel generates an interrupt to the DSP, which

then services the interrupt, clearing the interrupt condition. Note that the condition must

be cleared, and the DMA restarted before the first sample of the next block can be

received. The DMA must be configured to auto-initialize itself in order to meet this

timing constraint. The clearing of the interrupt condition allows the DMA to re-initialize

itself before the arrival of the next sample. After the DSP clears the interrupt condition, it

is free to process data until the next DMA interrupt. The timing for this process of events

is shown in Figure 3.6.

Sending an array of samples is a very similar operation, except the direction of

data flow is in the other direction. On completion of a DMA transfer to the DXR, the

DMA interrupts the CPU, which passes it an array of new data to transmit. The DMA

writes a sample from this array to the DXR every time the serial port has signaled that it

34

Xtal Osc

Codec Data

DRR(DXR)
Event
DMA

transfer

DMA Done ISR reset

(IRQ) condition

Figure 3.6 Timing diagram of DMA servicing Audio Codec.

wrote the previous sample to the audio codec. In this way, the DMA can be used to

service the serial port, which allows larger periods of uninterrupted time for the DSP,

resulting in faster performance. The source code for configuring the DMA, serial port,

and audio codec for input and output are available as reference in Appendix B and

Appendix C.

3.4.9 PCI Data Bus

The PCI data bus connects the DSP board to the host PC. The PCI data bus was

used extensively to communicate between the board and host through the Host Port

Interface (HPI). The HPI allows the host PC to read and write the DSP's on-board

memory. On the DSP side, this is completely transparent. On the host PC side, TI

provides Windows drivers which take care of the low level details of communication

through the PCI bus, and wraps this functionality into C-callable functions. When the PC

wants to access DSP memory, the host application calls the appropriate function. This

function call accesses the Windows driver, which communicates with the HPI interface

35

on the DSP board. The HPI then accesses the appropriate portion of DSP memory, and

performs the requested function.

3.4.10 Host PC

The host PCs for the DSP boards are Celeron-based personal computers. Each

computer has a Celeron processor that ranges from 600 MHz to 800MHz. Three of the

computers have 128 MB of RAM, and one of them has 318 MB of RAM. Each of these

PCs have an Ethernet card, capable of transmitting data at up to 100 Mb/s. All the PCs

are running Windows NT 4.0.

3.4.11 Transmit/Receive RF Modules

The Transmit and Receive Modules are responsible for modulating the baseband

analog waveforms up to an RF frequency carrier, and transforming them to radio waves.

The Transmit Module (TM) consists of an RF transmitter, a quadrature mixer, and an

amplifier. The first stage of the TM is the quadrature mixer. When the base station unit

sends a stereo analog waveform to the TM, this signal is split into the two channels and

sent to the mixer. The mixer modulates the real channel onto the I carrier and the

imaginary channel onto the Q carrier. The carrier is provided by a local oscillator that

outputs a cosine wave with tunable frequency. The local oscillator's waveform is split

into two equal powered duplicates, and one is phase shifted by 900. After mixing, the

signals are combined and amplified, then sent out over the transmit antenna. The

transmit antenna was an omni-directional dual-band antenna designed for wall mounting.

It was capable of transmitting at 868 MHz to 890 MHz, and 1.7 GHz to 1.9 GHz. The

36

carrier occupied the lower band, and was usually set to about 880 MHz. The antenna

was rated for up to 50 W of power, however, the mixers and amplifiers used had a

maximum rating of 10 dBm, so the baseline transmit power used in the system was

approximately 2 dBm (1.58 mW). A schematic of the TM hardware is shown in Figure

3.7.

The Receive Module (RM) consists of hardware that is complementary to the

Transmit Module: a receive antenna, an amplifier, and a mixer. Some additional low

pass filters were also added. The receive antenna is a dual-band omni-directional wall-

mount antenna, designed to received frequencies in the system band of 868 MHz to 890

MHz, as well as in the 1.7 GHz to 1.9 GHz band. The signal received from the antenna is

first attenuated, then passed to an amplifier. The amplifier then passes the signal to the

cos(2;rft + A o)

Stereo Transmit
input Antenna

right

sin(21rfet + A eo)

Figure 3.7 Block diagram of RF Transmitter.

37

mixer, which splits the signal into two. The mixer, as in the TM, has a local oscillator,

which it uses to create an in-phase carrier and a quadrature carrier. The in-phase and

quadrature waveforms are used to demodulate the two copies of the incoming signal.

The result is first passed through 2 MHz low pass filters to remove extraneous

frequencies, then recombined into a stereo signal. This stereo signal is then passed to the

DSP board as shown in Figure 3.8. As mentioned in section 3.3 Mobiles, to satisfy the

constraint that the phase drift between the transmit and receive clocks be very small, the

same local oscillator was used for all transmit and receive hardware.

cos(27rfet + Aqe)

Left
LP Filter stereo

output

Receive _____ p
Antenna>

Right
LP Filter stereo

output

sin(2nrfet + Ap)

Figure 3.8 Block diagram of the RF Receiver.

38

3.4.12 Signal Generator

The signal generator is a standard waveform generator. It has three types of

waveforms: a sine wave, a square wave, and a triangle wave. The square waveform is

used as the global base station clock.

3.5 References

1. "TMS320C6000 Peripherals Reference Guide," Texas Instruments TMS320C6000
Code Composer Studio Manuals (2001).

2. "TMS320C6701 Evaluation Module Technical Reference," Texas Instruments
TMS320C6000 Code Composer Studio Manuals (2001).

3. "TMS320C62x Peripheral Support Library Programmer's Reference," Texas
Instruments TMS320C6000 Code Composer Studio Manuals (2001).

4. "TMS320C6000 DSP/BIOS Application Programming Interface (API) Reference
Guide," Texas Instruments TMS320C6000 Code Composer Studio Manuals (2001).

5. "TMS320C6000 Chip Support Library API Reference Guide," Texas Instruments
TMS320C6000 Code Composer Studio Manuals (2001).

39

Chapter 4

Adaptive Distributed Transmission: Design and Implementation

4.1 Wireless Message Protocol

This section discusses the design of the modulating waveforms, the data

constellation and message format for the messages sent to the mobiles over the wireless

downlink.

4.1.1 Pulse Shaping Waveforms

The design of the pulse shaping waveforms required considering several issues.

Their bandwidth was limited by the physical constraints of the hardware. However, since

this was a real system, the waveforms needed to be mostly time-limited so that truncation

would not cause adverse effects. One set of waveforms that satisfied this property of

time and band limitation was the discrete prolate spheroidal functions, also known as

slepians [1]. The slepians also had additional characteristics that make them the

waveforms of choice. One property was that a set of slepians can be chosen to satisfy a

certain time and band restriction [2], such that they are all orthogonal to each other. In

theory, this was ideal, since each orthogonal waveform can carry a symbol. However, in

practice, they were not completely orthogonal due to fractional timing issues. The issue

of fractional timing error in the system will be discussed in greater detail in the section

4.3.2.1 Clock Drift. Another advantage to using slepians was that they were not lapped,

40

so the current message did not need to concern itself with calculating any overlap from

the previous and next messages, making implementation much easier.

The slepians were designed using Matlab. The first step was to determine their

bandwidth, and waveform time span. In the prototype network, the channel bandwidth

was limited by the highest sampling rate of the codec, which is 48 kHz. At this sampling

rate, the bandwidth of the pulse shaping waveforms had to be below 24 kHz. However,

at higher bandwidths, the problems due to fractional sample offset increased. Thus, a

compromise of 4 kHz bandwidth was reached. A 4 kHz bandwidth gave a total of 8 kHz,

counting both positive and negative frequencies. This provided enough bandwidth to

send data and pilots, and reduce fractional timing errors. The time duration of the

waveform was determined next. This time duration corresponds to the length of a

transmission. The only hardware requirement for this parameter was that it be an integral

number of samples. However, for ADT to adapt to changes in a wireless channel existing

in an indoor environment, it was estimated that the channel needed to be measured on the

order of 10 ms [3]. Therefore, the time span for a waveform needed to be significantly

less than 10 ms. It was decided that each waveform would be 128 samples. Sampling at

48 kHz, the block of slepians spanned 2.67 ms.

The raw slepians generated in Matlab were processed to make them useable.

Only those slepians whose power concentrations in the specified band surpassed 99 %

were used. This gave a set of real-valued waveforms, occupying -2 kHz to 2 kHz,

centered around DC. The slepians were shifted up and down in frequency by 2.5 kHz

and this also resulted in a guard bandwidth of 1 kHz centered around DC that allowed

Frequency Profis of Sleplans
- r-15

-20

-25

-30

~-35,

-45

_50

-55

-601
-2 5 10 15 20

Figure 4.1 Magnitude plot of slepian frequency profile. The bandwidth of the slepians is 10 kHz with

a guard bandwidth of 1 kHz around DC.

us to avoid dealing with DC offsets in the RF hardware. The resulting frequency profile

is shown in Figure 4.1. All the low frequency components up to 0.5 kHz above and

below DC have been removed.

The slepians were orthogonal in time, but needed to be sorted. Each slepian peaks

at a time characterized by its eigenvalue. Thus, they could be sorted according to their

eigenvalues. At this point, the slepians, were complex-valued waveforms, since they had

been shifted in frequency. It was simpler to deal with real-valued waveforms, so the

slepians were rotated in the complex plane to lie on the real axis. This is illustrated in

41

i - I I I

-15 -10 - 0
Frequeny (KHz)

Slepsans M Oe COmPIx Plan.
-- , - r -

-

-

0MW 01 0.2 0.3 0.4 0.5

Figure 4.2 Plotting the slepians in the complex plane show
so they can be rotated to lie on the real axis.

that they are lines in the complex plane,

Pukie Sh-n Stpin

0.3

0.2

0.1

1 0

-0.1

-0.2

-0.3

2 40 So
s em mber

so 100 120

Figure 4.3 The fourth waveform from the set of slepians.

42

0.5[

0.4

0.3

0.2-

0.1

0
Ii

-0.1

-0.4

"
3

n A

-0.2

'1 -04 -03 -62 -O1l

43

Figure 4.2. The rotation was done by multiplying by e-", where 0 is the angle the

slepian formed with the real axis. The final set of pulse shaping waveforms contained a

total of 18 waveforms. Thus each message to a mobile had 18 symbols. Since each

message lasted for 2.67 ms, the total bandwidth was 6.75 kilosymbols/s, or 13.5 kb/s

(each symbol carries two bits since we are using quadrature phase shift keying). Figure

4.3 shows the fourth slepian in the final set of pulse shaping waveforms.

4.1.2 Data Constellation

The data constellation was a Quadrature Phase Shift Keying (QPSK)

constellation. Each symbol had a real and imaginary part. The four possible values were

[I+i, 1-i, -1+i, -1-i], normalized to have magnitude 1, as plotted in Figure 4.4. Thus, each

Mesag Fram

* data * data

channel pilots

+ data

-0.5 0

+ data

0.5 1 1.5 2
real

timing pilot

2.5 3 35 4 4.5

Figure 4.4 The data constellation and pilots plotted in the complex plane.

0.8

0.6

0.4-

0.2

I 0

-0.2 -

-0.4-

-0.6 -

-- 1

44

symbol represented two bits. A denser constellation was not used in order to reduce

the bit error rate (BER). It has been shown that, in general, QPSK, a 4-symbol

constellation, has a much lower BER than an n-ary constellation (such as n-QAM, n>4)

for a given SNR [4].

4.1.3 Pilots

As discussed in section 3.2.2 Pilots, the only requirements on the pilots were that

they be known values, and transmitted simultaneously. The channel estimation pilots, as

mentioned, were chosen to be the identity matrix, with row one embedded at positions 1

and 3 in message one, and row two embedded at the same locations in message 2. They

were given twice the magnitude as the data in order to increase their SNR, and thus their

measurement accuracy. This is also illustrated in Figure 4.4.

The timing recovery pilot needed to have more power than the data and channel

estimation pilots. Experimentation in Matlab determined that the power of the pilot

needed to have at least nine times the power of the other signals, or three times the

amplitude. A large power differential increased the security of acquiring timing. In the

prototype, the power of the timing pilot symbol was 16 times the power of the data, and 4

times the power of the channel pilots. The timing pilot was placed in position 5 in each

message. Figure 4.4 also shows the synchronization pilot.

The channel estimation pilots and timing pilot create some bandwidth overhead.

The channel estimation pilots were sent in every data frame, occupying three data slots.

Additionally, for better performance, the pilots were preceded and followed by blanking

symbols (O+Oi). Due to fractional timing offsets (discussed in 4.3.2.1 Clock Drift

45

section), the slepians were not entirely time orthogonal, so there was some power

leakage between symbols. Blanking symbols were used to buffer power leakage. The

blanking symbols were most necessary around the timing pilot since it was very high

power, and would influence its neighboring symbols the most. However, they were also

added around the measurement pilots as a simple way to improve performance. For a

proof-of-concept of ADT, optimizing bandwidth utilization was not a primary concern.

In summary, pilots alternated with banking symbols, sacrificing a total of seven symbols.

The total possible downlink bandwidth was 18 symbols/frame, or 6.75 ksymbols/s.

Thus, the pilots occupied a total bandwidth of 1.125 ksymbols/s, with the blanking

symbols occupying a total of 1.5 ksymbols/s. Ultimately, 4.125 ksymbols/s, or 61.1% of

the available bandwidth remained for data.

4.2 Base Station

The base station consists of a Transmit Module and a Kernel Module on the

downlink side, and a Receive Module on the uplink side. The Transmit Module

multiplexes the linear combination of messages onto the slepians, and sends this

transmission over the wireless channel to the mobiles. It interfaces with the Kernel

Module that provides the linear combination of messages. The Kernel Module also keeps

the latest network matrix measurements, and its inverse that it uses to mix outgoing

messages. The matrix measurements are received from the Receive Module, which

continually listens for any incoming reports from the mobiles, and passes them onto the

Kernel Module. Description will begin in the Kernel Module since this is where the

messages originate.

46

txSWI

Kernel Inverter
Reponses--
(from Receive KK-1
Module)

X Mixed Message
DataUn (out to Transmit

Module)

StartOver Counter
(from Transmit
Module)

Figure 4.5 Block diagram of Kernel Module.

4.2.1 Kernel Module

The Kernel Module takes the data messages to be sent, and performs the mixing.

The Kernel Module is implemented in a software thread (txSWI). The Kernel Module's

four parts operate within this thread: the Data Unit, the Kernel, the Inverter, and the

Mixer as shown in Figure 4.5. txSWI is invoked repeatedly to prepare new transmissions

by the ISR triggered by the end of a DMA block transmission. A timing diagram for

calling the Kernel Module (implemented in txSWI) is provided in Figure 4.6. txSWI

runs at the start of the current message's transmission from the codec.

2.67 ms
Transmit m1 m2

txSWI m2 \m3

Figure 4.6 Timing diagram for Kernel Module (txSWI).

47

In txSWI, the Inverter unit runs first to create the mixing matrix. The Inverter

checks the Kernel to see if new network matrix updates are available. If there are new

updates, it inverts the network matrix, and passes the result to the Mixer. The Mixer also

receives the messages to send from the Data Unit, and linearly combines the messages

with the inverted network matrix. This result is then passed to the Transmit Module.

Updating the Kernel occurs in a separate loop, discussed in section 4.2.3 Receive

Module. The next few sections describe in detail the units of the Kernel Module.

4.2.1.1 Data Unit

Messages are supplied by the Data Unit. The Data Unit has a store of pre-

computed messages to be sent to the mobiles. Each base station contains a copy of this

message store. The message store contains 1000 message blocks to send to each mobile.

The messages are composed of data symbols chosen at random from the constellation.

Each message also has the timing synchronization pilot in the fifth symbol position, and

all the surrounding blanking symbols. The stored messages are kept in quantized format.

Figure 4.7 illustrates a sample quantized message. The message store is placed in the

DSP's external memory bank, SDRAMO. The message store contains the messages to be

sent to all the mobiles, in the order to be sent. For example, with two mobiles, the

message store keeps the messages for each mobile interleaved with each other. The

current messages to be transmitted are pointed to by a message counter. However, there

is also a flag, StartOver, that redirects the message counter to the first message in the

message store. This flag is used to synchronize the messages sent over all the base

stations, and is set only on the first rising edge of the universal clock. Also, in order to

Quantized Message

4;

0 500 1000 1500 2000 2500 3000
real

Figure 4.7 Message to mobile, quantized to signed 11 bit integers.

synchronize the logged data files between mobiles (for purposes of performance

analysis), the data in the first fifty frames received by both mobiles is dynamically zeroed

out.

4.2.1.2 Kernel Unit

The Kernel Unit holds the most up-to-date values of the network matrix. It is

updated in a separate thread (updateSWI) which will be discussed in

4.2.3 Receive Module. In order to ensure that the Kernel Unit is not reading the memory

space when updateSWI attempts to write to it, the Kernel Unit raises a flag, busy, that

lets updateSWI know that it cannot write at that time.

500

400

300

200

100

48

?7

0

-100-

-200

-300-

-400 -

-50 F

49

4.2.1.3 Inverter Unit

The Inverter Unit receives the kernel from the Kernel Unit, and performs a two-

by-two matrix inverse. The matrix elements are all complex numbers, so all operations

must treat them as such. The inverse algorithm implements the procedures in Equations

(l)-(3).

M= al, a 12 (1)
a2 1 a22

M =1 (a 2 2 -a12 (2)
det(M) -a2, a,

det(M) = alIa22 -al2 a, (3)

Notice that as the elements of M are complex, det(M) may also be complex. Thus, the

division by det(M) follows the algorithm for dividing by complex numbers shown in

Equation (4).

a+bi _(a+bi)(c-di)

c+di c2+d2

Aside from this relatively straightforward formula, some complications arise from

the fact that the system is a fixed-point system. That means the identity matrix
(0 1

1024 0
was represented as (0J. The inverse of the latter, without the quantized

50

10

interpretation would be: !024 when the correct inverse is actually
0

1024,

r1024 0
0 1024 . To normalize for this effect, the calculated inverse of the network kernel

is simply multiplied by 1024 2. For ease of implementation, the non-normalized inverse is

calculated using the DSP's floating-point capabilities to preserve precision before

converting back to the quantized format.

Another complication arising from fixed-point limitations as well as power limits

occurs when the matrix inverse requires too much power. Saturation of either the codec

or the RF hardware causes the mobiles to receive a corrupted transmission. To avoid

this, the average power of the inverse is checked. If the average power is more than 6.25

times the average power in the unity matrix, then the dynamic range of the codec will be

exhausted. If this is found to be the case, the inverse is first multiplied by a scale factor.

This scale factor is found using the following equation:

scale = (5)
(Lb)

where (IY) is the power, or mean square of the elements in the identity matrix, and

KL) is the power in the inverse of the measured network matrix. Since the scaling

affects amplitude, the square-root was taken to arrive at the scale factor. In order to

51

preserve precision, the scaling is done as a floating-point operation. Note that

changing the scale factor is essentially the same as a change in the channel, so the scale

factor must be universal over all the base stations. The power in the inverse kernel

matrix meets this requirement since the kernel is universal throughout the network. The

scale factor must also not change too quickly on average, or else the ADT update

frequency will not be able to adapt to the changes. Thus, a weighted average between the

previous and current scale factor is taken.

The dynamic range of the system could have been improved by sacrificing the

baseline SNR, however, this would have worsened the overall performance of the system.

Moreover, it was found that for the lab environment, the range without scaling was

sufficient for the average and good cases, although in the poor cases, scaling sacrificed

SNR. This is because the power limitation algorithm takes effect when a mobile's signal

reception is poor enough that it requires more transmit power than the system can give.

Thus, the algorithm ends up limiting the power when it needs to be increased. However,

the system still remains operational in this scenario, which is preferable to saturating the

system, and sending corrupt transmissions. Furthermore, the proper action in that

scenario would be for the end-user to simply move to a location of better reception.

4.2.1.4 Mixer

The Mixer takes the output of the Inverter Unit - the inverse of the network

matrix (which may or may not have been scaled), and the output of the Data Unit - the

two messages to be mixed. The Mixer then picks out the appropriate row in the inverse

kernel (row one for base station one and row two for base station two) and performs a

52

matrix multiplication on the row and the two messages. The Mixer operates in terms

of quantized values. Similar to the matrix inverse operation, the Mixer must account for

the fact that the value '1' is represented by the value '1024.' Thus, the matrix

multiplication divides the raw result by '1024.' The result is one message that is a linear

combination of the two messages. This result is sent out of the Kernel Module to the

Transmit Module.

4.2.2 The Transmit Module

The downlink side is completed at the Transmit Module. The Transmit Module is

responsible for generating the wireless signals to the base stations, and synchronizing that

transmission with other base stations. At the front end, it consists of an RF Transmitter, a

Synchronizer and a Modulator. The RF Transmitter is described in 3.4.11

Transmit/Receive RF Modules. The Modulator receives the mixed messages from the

txSWl

Local
Clock

To Mobiles RE u
Transmitter

N
- Modulator Mixed

0
Line Message
in (from Kemel

Universal Module)
Clock

Figure 4.8 Block diagram of Transmit Module.

53

Kernel Module. It then modulates this onto the pulse shaping slepians. The resulting

waveform is then passed through the Synchronizer, which synchronizes the transmission

with the Universal Clock. This synchronized version is then transmitted over the wireless

channel through the RF Transmitter as depicted in Figure 4.8.

4.2.2.1 Modulation Unit

Continuing the data path from the Kernel Module, the linear combination of

messages is passed to the Modulation Unit. The Modulation unit is implemented within

the same software thread as the Kernel Module (txSWI). This is because the Modulator

only needs to run every time it is passed a new message from the Kernel Module. The

Modulator takes this mixed message and modulates it onto the block of pulse shaping

slepians, described in section of 4.1.1 Pulse Shaping Waveforms.

The slepians are stored in memory on the DSP board in the SBRAM section. The

stored waveforms have all already been quantized as well. To modulate the messages

onto the waveforms, the Modulator simply performs a matrix multiply between the

message block and the slepians. The slepians are a 128 by 18 matrix, and the message is

a vector with 18 elements. Thus, the result of the matrix multiplication is another vector

that is 128 in length, as illustrated in Equation (6).

s . .. s m
.. *1 : =(6)

S128,1 ... S128,18
V 128

54

-200

~400

-' 00 .2i00i0 -1t00 41000 _W0 0 800 I=0 Iw00

Figure 4.9 Plot of an up-sampled message frame in the complex plane. The curves show how the

slepians are band-limited.

As with the Mixer, the Modulation Unit also works in quantized numbers. Figure 4.9

shows a quantized message in the complex plane after they have been up-sampled with

the slepians. Notice that the waveform curves through the approximate locations of

where the raw symbols lie. This is because the slepians are band-limited. If they were

not, then they could abruptly jump from symbol to symbol.

4.2.2.2 The Synchronizer

The Synchronizer is responsible for synchronizing the transmissions from the

base stations so that all the base stations begin transmitting the same messages at the

same time. This method for accomplishing this task is somewhat non-standard, given the

hardware limitations of the DSP evaluation boards. The evaluation boards provide

crystal oscillators with the audio codecs. The crystals on each board have slightly

different characteristics, which can change with temperature as well. Thus, if the codec

55

were programmed to sample at 48 kHz, the actual sampling rate might be slightly

faster or slower than this value. This means a transmission of 128 samples from one base

station would last a different length of time than the same 128 samples transmitted from

the other base station, even if they began at exactly the same time. Over time, this

difference would accumulate. For example, in a transmission block, the difference

between the start times for the next transmissions would most likely be only a small

fraction of a sample. After many blocks (several seconds) however, the difference

between the start times would diverge to multiple whole samples. (Figure 4.10)

It was physically impossible to tie the codec clocks together in hardware.

Furthermore, this would not have been a realistic situation. The more elegant solution,

and the one implemented, was to have each base station keep track of the offset between

their local sampling clock and a Universal Clock. This also took care of how to start the

base stations at the same time. The base stations do not have to be started at the same

time, but at the first Universal Clock edge, they start sending the same message number,

synchronized to the Universal Clock edge. Thereafter, the base stations adjust the start of

the transmissions by skipping or delaying a sample if their local clocks drift by a whole

sample relative to the edge of the Universal Clock. The signal generator, described in

section 3.4.12 Signal Generator, was the Universal Clock. The waveform was a 375 Hz

[

time

Figure 4.10 The difference in start times between the top blocks and the bottom blocks diverge over
time if the blocks are not the same length.

I I I t I I

56

square wave, with a peak-to-peak voltage of .5 V. The clock period was set to equal

the duration of a message sent at exactly 48 kHz.

The Synchronizer implements the base station synchronization algorithm. The

Synchronizer receives one block of transmission from the Modulator, and decides when

to begin the transmission by looking at the local offset from the Universal Clock. Then it

passes the transmission block to the RF Transmitter through the Line out interface. On

the first Universal Clock edge, the Synchronizer resets the message number by asserting

the StartOver flag to the Data Unit in the Kernel Module, described in. section 4.2.1.1

Data Unit. This takes care of the base station message synchronization.

In order to find the offset from the Universal Clock, the Synchronizer utilizes the

audio codec, the serial port, and two DMA channels as described in the sample

application in section 3.4.8 Using the DMA to Service the McBSP Serial Port and Codec.

Figure 3.5 shows a block diagram of the hardware connections. For the base station's

DSP
processing

DMA
writing 1 Rx Buffer 2 DSP 1 R

data processing

edge

x Buffer 2

DMA
writing
data

Figure 4.11 On each DMA input interrupt, the buffer the DMA was writing to becomes the buffer
the DSP looks at, and the buffer the DSP was looking at becomes the new input buffer. The buffer of
samples shows the rising clock edge, as sampled by the codec.

D P

57

application, there are two buffers, each the length of a message. The input stream is the

signal from the Universal Clock. This signal is sampled, and the DMA writes samples to

buffer 1, while the DSP processes buffer 2. When the DMA interrupt is triggered, the

buffers switch roles - the DMA writes samples to buffer 2, and the DSP processes buffer

1 as shown in Figure 4.11. When processing a buffer, the DSP simply looks for a very

quick change in value. This quick change spans three samples: a minimum value, a

middle value, and a maximum value. The 'edge' of the Universal Clock is the sample

number of the middle value. This number is the offset from the Universal Clock edge,

which is used to synchronize the output stream.

The output stream is also based on the DMA application, except that the DMA

transfer length is half the size of a message. This splits the transmission of a message

into two halves. During the transmission of the first half, the next message is placed into

the output buffers. Adjusting the beginning of the transmission to the Universal Clock,

may require starting the next transmission a few samples into the tail of the current

transmission block. The amount of intrusion should be no more than a few samples.

Since the DMA transfer is still on the first half of the block when the Synchronizer writes

the new block, the DSP is guaranteed to not write to the same piece of memory that the

DMA is reading.

As stated above, the offset from the Universal Clock edge dictates the number of

samples to overwrite or skip in the circular output buffer. When the Synchronizer takes

the modulated message from the Modulation Unit, it writes the samples into the circular

output buffer, starting at the position pointed to by a WritePointer. On start up, the

Local LIIII
Universal

Offset decreasing
Difference < 0 WritePointer

time

Offset increasing

Difference > 0

II
II

Figure 4.12 If the Local Clock is slower, the difference will be negative, so adding difference +
WritePointer will cause WritePointer to move left (back) in time. If the Local Clock is faster, the
difference is positive, so adding difference+WritePointer will cause WritePointer to move right
(forward) in time.

output DMA begins transmitting from sample 0 of the circular buffer, and sets

WritePointer to sample 128. Before the next block is written, the offset from the

Universal clock is added to WritePointer, and the samples are copied into the buffer,

starting from WritePointer. Then WritePointer is simply incremented by 128. The offset

value is recorded. On the subsequent rounds, the difference between the old offset and

the new offset (from the Universal clock) is added to WritePointer. If there is no

difference, then WritePointer is not modified, and writing begins where it left off. If the

difference is positive, WritePointer is incremented. A positive difference means that the

local clock is too fast, so the new message should start later. Conversely, if the

difference is negative, WritePointer is decremented. A negative difference means that the

local clock is too slow, so the new message should start earlier. Adding this difference in

offset to WritePointer neatly performs just that. Figure 4.12 illustrates this

synchronization algorithm. Since the output buffer is steadily played through by the

codec, this keeps the base station transmissions synchronized to the Universal Clock to

58

59

the nearest whole sample. This transmission is then passed to the RF Transmitter,

which completes the base station's output data path.

4.2.3 Receive Module

The Receive Module's job is to listen on the uplink for the channel measurement

replies from the mobiles, and to ensure that all the base stations have a unified copy of

the network matrix. The network medium used is a standard Ethernet LAN. Note that in

the prototype system, the uplink is a broadcast network, meaning that the mobiles

broadcast the replies to all the base stations.

The Receive module consists of a Host Application running on the PC, and the

Update Module. The Host Application runs a server to which the mobiles connect.

When messages are received, the Host Application communicates the data to the Update

Module through the HPI. The Update Module then updates the Kernel Module.

4.2.3.1 Host Application

The Host Application is a C++ Console Application running on the host PC. The

application consists of two parts. One part is the server that listens on the LAN for any

incoming connections. It continually listens for incoming connections on port 50, so

multiple mobiles can connect to it at any time. Mobiles send messages to the server in a

unique format containing a mobile ID number, and their channel measurements. The

channel measurements from one mobile correspond to one row in the network matrix.

Mobile ID numbers are unique to each mobile, and in a 2x2 network, the set of mobile

ID's is {0, 1}. The ID number tells the server which row the measurements are for. For

60

PC

LAN Host HPI Update
Application Module

Figure 4.13 Block Diagram of Receive Module.

example, data from mobile ID 0 updates matrix row one, and data from mobile ID 1

updates matrix row two.

The second part of the Host Application is the HPI agent that transmits the

responses to the DSP. The HPI port allows the HPI agent to have the capability of

directly writing to DSP memory. When it is able to, the HPI port copies the responses to

the response register in DSP memory. This response register is a dedicated portion of

DSP memory that is hard-coded on both the DSP side and Host Side.

These two parts communicate through a flag, pcDAV. pcDAV is set when the

server side receives responses from both mobiles. The server uses an internal counter to

keep track of who has sent messages. If it has only received messages from one mobile,

then the value of the counter is 1. When the counter reaches 2 (signaling that both

mobiles have replied) the counter is cleared and pcDAV is set. The HPI agent checks

pcDAV to see if there is a complete set of data to write. If there is, it writes it to the

Update Module and then resets pcDAV. If there is no data to write, it waits until the next

time around. The handshake between the HPI and the Update Module will be discussed

in 4.2.3.3 Host PC to DSP Handshaking.

61

4.2.3.2 Update Module

The update module runs inside the software thread updateSWI on base station's

DSP. The update module currently checks if there is an update to the matrix every time a

message is transmitted. The frequency of checking is adjustable through a flag, update.

A new update arrives from the Host Application approximately every 3-5 frames, or

every 8-13.3 ms. The timing is inexact due to the nature of TCP/IP traffic, but the

necessity for a stringent update cycle was found to be unnecessary. Before updating the

kernel, the Update module performs a few checks. First, it checks if the Kernel Module

is currently using the kernel. It does this by seeing if the variable, busy is set. If it is,

then it causes the program to exit with an error, since in normal operation, this condition

should never occur. If busy is not set, then the Update Module goes ahead and updates

the kernel. The update involves a weighted average between the previous network matrix

value and the current value. Experimentation showed that a weight of 80/20 between the

old and new value works well.

4.2.3.3 Host PC to DSP Handshaking

This section describes the data synchronization between the Host Application's

HPI Agent and the DSP's Update Module. Because the HPI agent is driven by the Host

Application, and can write DSP memory directly, handshaking is needed to ensure that

only valid data is used by the kernel module. The handshaking signal (DAV) is

communicated through a dedicated register in the DSP's memory. DAV is high (1) when

the Host Application has written new data to the response registers, and the Update

62

pcDAV=1 DAV=O

dspRdy
pcChk dspChk DAV=1

pcDAV=D

pcDAV=O
DAV=1

Figure 4.14 FSM for handshake between the DSP and Host on the Host side.

Module has not used it yet. The Update Module sets DAV low (0) after it copies the

response register to the kernel variable. Thus, if DAV is high when the Host Application

wants to write data, it must wait. If DAV is low when the Update Module wants to

update, this means that no new data has been written, so it need not update the Kernel

Module. The FSM (Finite State Machine) in Figure 4.14 illustrates the handshake

between the Host Application and Update Module on the Host side. The Host

Application continually checks its pcDAV flag. If it is set, then replies have been

received from both mobiles, so the host moves to the dspChk state. There, it looks to see

if DAV is set. If it is, then the Update Module is not ready, so the host goes back to

checking pcDAV. Otherwise, the host continues onto dspRdy, where it sends the update

to the Update Module, sets DAV, and clears pcDAV.

The FSM in Figure 4.15 illustrates the handshake between the Host Application

and the Update Module on the DSP side. The Update Module starts in UpdateChk, and

63

update=l DAV=1

Update dt hkUpdate
Ckd aChk update=0

DAV=0

update=0

DAV=0

Figure 4.15 FSM for handshake between the DSP and Host on the DSP side.

checks if it is time to update the kernel. If it is, it moves to dataChk, where it checks if

DAV is set. If it is not, then the Host has not sent data yet, so the Update Module returns

to UpdateChk. If DAV is set, then it moves to the Update state, where it performs the

handshake with the Kernel Module, and if permissible, updates the kernel. After this, the

Update Module clears DAV and update.

4.3 Mobiles

The Mobiles consist of a Receive Module, a Decode Module, and a Reply

Module. The Receive Module receives the wireless transmissions through the RF

Receive Module, which demodulates the message from the carrier. The Receive Module

then recovers timing with the base station transmissions. The recovered data

transmission is then passed to the Decode Module. The Decode Module demodulates the

data symbols from the pulse shaping slepians. The channel estimation pilots are then

64

read from the demodulated message by the Reply Module, and formatted into a

message to send to the base stations.

4.3.1 Receive Module

The Receive Module receives incoming transmissions from the base station over

the wireless network. The wireless transmission is demodulated down to baseband by the

RF Receiver, and passed into the mobile through the audio line in. Since there is a large

amount of attenuation between the receive antenna and the codec (this is done to avoid

saturating the hardware mixer), the audio codec is programmed to compensate for this

loss on the input. The receive module recovers timing between the base stations'

transmission and the mobile's local receive frames. Recall that the transmission from the

base stations arrive as an analog waveform (4.1 Wireless Message Protocol). The

mobiles receive this analog signal, resampled at the same' sampling rate as it is played

out by the base station. However, what appears to the mobile as the "first" sample in the

message may in fact be the Nth sample in the transmission frame, where N ranges from 0

to 128. In order to decode the message properly, the mobiles must find the true start of

the transmitted message. Knowing this, the Receive Module can construct a complete

message to pass to the Decode Module.

The Receive Module receives the samples from the codec in the manner described

in section 3.4.8 Using the DMA to Service the McBSP Serial Port and Codec. At a time,

128 samples (the length of a message) are received, and are stored in a triple buffer

Although the base stations and mobiles are configured to sample at the same frequency, there is deviation
from this frequency, which introduces additional error into the system.

65

system. While the DMA writes to one buffer, the DSP has access to the other two

buffers. The most recent of these two buffers is used to calculate the timing offset from

the base station, and the older of the two buffers is used to reconstruct one full message

frame, in conjunction with the recent frame. This ensures that there is at least one

message full message among the buffers. A fourth buffer of old received samples is also

kept, in case the mobile's receive clock is slower than the transmit clock. If the mobile's

receive clock is slow, then it will fall behind the transmission by a whole message. When

this happens, two messages are decoded in one round, instead of one.

When the DMA signals (via interrupt) that current receive buffer is full, the

buffers swap roles in a round robin fashion. The oldest buffer becomes the new receive

buffer, the former receive buffer is used for timing recovery, and the buffer that was used

last time for timing recovery is now used for message reconstruction. The last

reconstruction buffer now becomes the spare buffer.

4.3.1.1 Timing Recovery Algorithm

As stated above, the first sample of the mobile's receive buffer may not be the

first sample in the transmission. An example of this is illustrated in Figure 4.16. In this

example, the mobile is 30 samples later than the base station. This means that the full

message can be constructed by concatenating samples 0-97 of the buffer shown and

samples 98-127 of the older buffer. The timing recovery algorithm finds this offset

between the first sample of the mobile's receive buffer, and the start of the transmitted

message.

66

Tranmission Block from Bas Station
2

0

-1-

-2 A.-II ~
- 20 40 60 80 100 1

sanve number

Transmission as Seen by Mobile
2---

E
-1

2 40 60 80 100 120
snamle number

Figure 4.16 The top graph shows the I and Q channels of a full message, as sent by the base stations.
The bottom graph shows the I and Q channels of the incoming receive buffer of the mobile. Using
the large dip from the timing pilot, it is easy to see that the mobile's frame starts at sample number
30 in the base station's frame.

To find the offset, the mobile calculates a correlation between the latest received

sample buffer, and the pulse-shaping waveform that the timing recovery pilot is

modulated onto. The formula for the correlation is:

127

Sx[n~s * [n -N] (7)
N=0

where s*[n] is the complex conjugate of the slepian and x[n] is the received waveform.

When N equals the sample number in the mobile's frame where the transmission actually

begins, the magnitude of the correlation will be maximized. As mentioned in section

67

4.1.3 Pilots, the power in the timing pilot had to be much greater than that of the

random data modulated on the other slepians for the correlation to yield this offset. The

mobile finds the sample number of the maximum magnitude of the correlation to find N.

In the above example, N=97. This number is used to reconstruct the full message from

the buffers of stored samples. Reconstructing a buffer occurs by taking samples N+1 to

127 of the older buffer, and appending samples 0 to N of the current buffer.

As discussed in section 4.2.2.2 The Synchronizer, the sample rate depends on the

specific crystal that the audio codec utilizes. This means that the drift caused by a slight

difference in sampling rate (and thus block length) affects the location of the offset. If

the mobile samples faster than the base stations, then the offset will increase over time.

Conversely, if it samples slower, the offset will decrease. Thus, it is necessary to

recalculate the offset every transmission block. This drift in synchronization means it is

periodically necessary to decode two messages in one run, or to skip decoding. The

former case occurs when the mobile's receive clock is slower than the transmission

(offset decreases), and it is in this case that the mobile uses the fourth buffer. The latter

case occurs when the receive clock is faster.

4.3.1.2 Implementation

In practice, performing a correlation with the DSP is an expensive operation. It is

much more efficient to work in the frequency domain, where the correlation operation

turns into a simple vector multiplication. Thus, the implementation of the timing

recovery algorithm is as follows. First, the Receive Module transforms both the newest

receive buffer, and the timing pilot's slepian to the frequency domain, with a Fast Fourier

68

Transform (FFT). The complex conjugate of the FFT of the slepian is then multiplied

to the FFT of the received signal. This vector product is the FFT of the correlation. It is

transformed back into the time domain, and its absolute value is calculated. The sample

number of the maximum of this vector is found, and returned as the desired offset. The

equivalence between the algorithm and its implementation arise from the duality

properties between the time domain and the Fourier domain [5].

4.3.1.3 Performance Improvements

The accuracy of the calculated offset is very critical. There was some power

leakage between symbols caused by timing issues. This power leakage also caused noise

on the peak of the correlation. This noise was enough to create whole sample errors in

the synchronization offset calculation. If the offset is off by even one whole sample, the

message will not be recognizable. A weighted average over the correlation function was

employed to reduce the effect of the noise. Since the data is essentially random,

averaging would reduce the noise. Also, the offset will drift as the mobile's sampling

rate drifts in reference to that of the base station. The averaging should allow the offset

to track this drift. In practice, a 20 % weight on each new correlation function was most

effective at achieving these goals.

4.3.2 Decode Module

The Decode Module receives complete messages and demodulates them into data

symbols, and channel measurements. The Decode Module was implemented in a SWI,

decodeSWI. Inside this thread, the mobile simply takes the synchronized message and

69

multiples it with the transposed matrix of slepians. As in the base stations, the mobiles

store these waveforms as an array in memory.

4.3.2.1 Clock Drift

Some error arises from the conversion of the incoming analog waveform to

discrete samples. There is a certain amount of random noise from the codec itself. More

substantial than this, however, is error from fractional sample offset. If the mobiles

manage to sample at the same points in the waveform which the base stations used to

construct the analog waveform, then there will be no fractional sample error. However,

this condition is very unlikely. Even if initially the transmit and receive sampling clocks

are in phase, slight differences in crystal oscillators mean that the codecs most likely are

not sampling at exactly the same frequency. This causes a small phase difference over

each frame that, over many frames, accumulates to a whole sample shift. The timing

recovery algorithm tracks this drift over the whole sample increments, but cannot adjust

to the fractional sample offsets. This fractional sample error shows up as noise in the

decoded data. In order to alleviate the noise, the bandwidth of the pulse shaping

waveforms was chosen to be 4 kHz. Slepians of 4 kHz bandwidth are relatively slowly

varying in time, but still allow enough data to be sent per message. Figure 4.17 and

Figure 4.18 show the noise added purely by fractional sample offset when no blanking

-2 .1 0 1 2 3 4 1

Figure 4.17 Decoded data where there is no fractional sample offset

symbols are used. These plots, produced by Matlab simulation, mirror the results seen on

the real system2.

The plots with the fractional sample offsets show two distinct characteristics. The

first is the four lobe pattern centered around the actual symbol location. This four lobe

pattern is best explained by the linear nature of the drift causing a changing fractional

sample offset. Each symbol is represented by two bits, and each bit exhibits an

2 To see only the effects of fractional sample offset in the system, results were observed by replacing the

wireless network by an ideal network (wires), and the adaptation was turned off.

'I

70

0.st.

I 0

-05FI

.1

*

I I I ~L-4
-3

W --

71

Decoded Data with Fractional Sample Drift
1 5

05

E

-0-5

-3 -2 -I 0 1 2 3 4 5
real

Figure 4.18 Decoding data with clock drift, without blanking symbols.

independent linear drift. The other characteristic is the horizontal streak of points, which

appear to drift toward the right. These streaks are caused by a small amount of symbol

leakage from the high power of the timing pilot. Adding in blanking symbols to isolate

the timing pilot from the data successfully removed these horizontal streaks. Note that

power leakage indicates that the slepians are not entirely orthogonal in time, though they

are theoretically. This points to fractional offset between the sampled receive waveform

as a cause for the loss of this property.

4.3.3 Reply Module

The Reply Module is responsible for formulating the message with the channel

estimation pilots to send back to the base stations. It takes the demodulated message and

picks out the symbols that are the channel estimation pilots. In this implementation, the

72

pilots are symbols one and three in the message frame. These symbols are then passed

to the Host Application, which sends the message over the LAN to the Base Stations.

4.3.3.1 Message Unit

There are two basic parts to the Reply Module. The first is the Message Unit,

which creates the response with the channel estimation pilots. These responses have two

purposes. The primary purpose is to send the channel measurements to the base stations.

However, in the prototype, these messages were also used to send the entire decoded

message to a display server, which displayed the decoded messages in real time, and

logged them for analysis. The display server was kept separate from the system because

the base station and mobile PCs were already heavily loaded from running the uplink

code. The message created by the Message Unit thus contained the row of channel

measurements received by that mobile, the data, and a unique mobile ID, one for each

mobile.

The Message Unit was implemented inside replySWI. After the Decode Unit

finishes demodulating the symbols from the pulse shaping waveforms, replySWI is

posted, notifying the Message Unit of new channel measurements. At this point, the

Message Unit constructs the message, and attempts to send it to the Host Application. If

the attempt is unsuccessful, the Message Unit buffers the message. On the next

successful attempt, all buffered messages are sent. The Message Unit has the capability

of buffering up to 20 messages.

73

4.3.3.2 The Host Application

Like the base station, the mobiles have a Host Application simultaneously running

on the host PC. This application has two modules: the HPI Agent, that reads the

messages from the Message Unit, and the Client, that sends them out to the base stations

and display through the LAN. The HPI Agent communication with the Message Unit

using the HPI over the PCI bus. In order to do this properly, there is a handshake

performed between the HPI Agent and the Message Unit. This handshake is described in

more detail in section 4.3.3.3 DSP to Host PC Handshaking.

The HPI Agent and the Client also communicate internally via handshake as well.

The HPI Agent is continually reading the messages from the Message Unit, whenever

they are available. The HPI Agent notifies the Client that messages are available to send

using the flag newData. This flag is cleared by the Client when the messages have been

sent to all the servers. If the HPI Agent receives new data from the Message Unit before

the Client clears newData, the HPI Agent appends the message to the end of the buffer.

If newData is cleared, then the old messages are cleared and buffering begins anew. The

HPI Agent has the capability of buffering up to 100 messages. If this is not enough, the

Host Application exits, since this is indicative of a fatal error, such as a disconnected

socket.

The Client continually checks newData, as well as the state of the sockets. Each

Client of a mobile has three connections to monitor. One to each of the base stations, and

one to the corresponding display. When the flag newData is raised, the Client sends the

data on any socket that is available. If the socket is a base station socket, only the most

74

recent message is sent. However, if the socket written to is the Display server socket,

then all the buffered data is sent. After all the sockets have been serviced, the Client

clears newData.

One small complication that arises from using sockets for the uplink is the fact

that sockets are a high level abstraction over the lower level network protocol TCP. TCP

has provisions for efficient, reliable transportation of messages, which make it somewhat

tricky to work with for real-time control applications, such as ADT. Window's sockets

implementation of TCP streams have buffering. When the Host Application writes to an

outgoing socket, the data gets written to a transmit buffer. However, this data may not be

sent out on the network immediately. There are several checks that TCP does to see if it

can satisfactorily send data. If the window of unacknowledged packets is 0, then the data

cannot be sent. The window is not a problem for this particular application because the

LAN is a high-speed network, and the data rate generated by the mobile is low. Another

check that TCP does before sending a packet is known as Nagle's Algorithm. This is

simply an algorithm to buffer small sends into larger sends, or until 200 ms has passed,

alleviating the overhead of a TCP packet. For a real-time control application such as

ADT, the 200 ms delay is intolerable. Thus, the solution is to disable Nagle's

Algorithm. This means that if it is possible to send the updates, the Client will do so

immediately. This timing, though not exact due to the reasons described above, occurs

on average every 3 to 5 blocks (8-13.3 ms). This is within the range recommended by the

initial estimates of ADT. Furthermore, buffering on the DSP and Host Application

ensure that reasonable network delays do not cause lost data in the logs.

75

4.3.3.3 DSP to Host PC Handshaking

The Message Unit and the Host Application's HPI Agent have a handshaking

protocol to synchronize data transfer. On the DSP side, the handshake occurs each time

replySWI runs. The flag DAV is used to indicate the number of bytes the Message Unit

has in the reply buffer. Each time a new message is decoded, the Message Unit enters the

DAVchk state, and creates a reply. Then it checks DAV. If DAV is less than the

maximum reply buffer size (20 frames * 76 bytes/frame=1520 bytes), then the Message

Unit enters the buffer state, where it appends the message to the end of the reply buffer.

Then it increments DAV by the size of the reply (76 bytes). If DAV is already the

maximum size, the Message Unit exits with an error, since the DSP should be able to

send replies with enough frequency that a backlog this large should not occur. This

algorithm is illustrated in the FSM in Figure 4.19.

exit

DAV=max

replySWI davChk buffer
DAV+=size

DAV<max

Figure 4.19 FSM for the handshake on the DSP side.

76

On the side of the Host, the handshake works as illustrated in Figure 4.20. The

HPI Agent begins in davChk, where it constantly checks DAV. If DAV is greater than 0,

then it moves to bufChk, where it sees if it has room to copy the data to its buffer. The

location to copy to is determined by newData. If newData is not set, then the data

overwrites old data starting from the front. Otherwise, the host checks if there is enough

room to append the messages to the end of the buffer. If there is no space, the program

exits with an error since this is indicative of a problem such as a network error. If there is

enough room, which is the normal case, the Host copies the number of bytes specified by

DAV out of the shared reply buffer, sets DAV to 0, and newData to 1. Then, the HPI

Agent returns to its start state. Setting newData to 1 notifies the Client of new data to

send over the network. The HPI Agent will buffer all the messages from the DSP until

exit

bufSz=max

buffer
davChk bufChk newData=1

DAV=0

DAV=O
DAV>O bufSz<max

Figure 4.20 FSM for the handshake on the Host side.

77

the Client sends them. This was to ensure that the data logged by the display server

was complete. The base stations only need the most recent channel measurements.

4.4 References

1. D. Slepian and H.O. Pollak, "Prolate Spheroidal Wave Functions, Fourier Analysis
and Uncertainty - I," Bell System Technical Journal, Jan., 43 (1961).

2. D. Slepian, "On Bandwidth," Proc. IEEE, 64, 292 (1976).

3. B. Shraiman, M. R. Andrews, and A. Sengupta, Technical Report No. ITD-00-
40485E, Bell Labs, Lucent Technologies (unpublished).

4. M. S. Roden, Analog and Digital Communication Systems (3rd ed., Prentice Hall,
Englewood Cliffs, NJ 1991).

5. C. T. Chen, System and Signal Analysis (Holt, Rinehart and Winston, Inc., New
York, NY 1989).

78

Chapter 5

Experimental Results

5.1 Experimental Environment

The prototype system was tested in the indoor environment of a large laboratory

in Bell Labs. The room was approximately 30 feet by 20 feet in area, and 15 feet high,

and there was one door to enter the room. The room also had one wall of outside facing

windows, with tall trees in front. The room contained many items, including lab

equipment and office equipment. The noise power in the room itself was measured to be

about -35 dBm. Several runs were made, with various channel conditions. Several runs

were made with very little movement in the room, while others were made with lots of

movement varying the channels; the latter channel characteristic was created by moving a

metal plate quickly through the wireless network.

5.2 Results

Performance of the system was measured in terms of bit error rate (BER) versus

signal-to-noise ratio (SNR). The BER was measured by comparing the symbols sent to

the symbols received. Received symbols were parsed from the raw decoded data using

simple zero decision lines. Table 5.1 shows the decision algorithm for decoding the raw

symbols. Figure 5.1 shows raw decoded symbols plotted in the complex plane.

79

Table 5.1 The decision algorithm for parsing decoded data into data symbols.

Real Imaginary Result
0 0 l+i

0 <0 1-i
<0 0 -l+i
<0 <0 -1-i

The SNR was calculated by measuring the noise of the raw decoded data values,

compared to the signal power. The decoded data, when plotted in the complex plane,

formed a QPSK constellation, where each symbol region created a cloud, centered around

the expected symbol value (see Figure 5.1). The difference between each decoded

symbol and the expected symbol value formed a vector in the complex plane. The

Raw Decoded Data Symbols
1500

1000

-500

-00~

-150 10 -1000 -500 0
real

500 1000 1500

Figure 5.1 Raw decoded data symbols over 40,000 frames, plotted in the complex plane.

80

squared magnitude of this difference vector, averaged over many frames, compared to

the squared magnitude of the expected symbol thus gave the average SNR. Specifically,

the SNR was:

2

SNR (dB)=10*logw ((1)

where x was the expected value of the data point, y was the actual value of the data point,

and x and y are complex. (Ix- y12) was the mean squared error between the decoded

symbol and the expected symbol, averaged over all the data decoded in the run. The

square root of this ratio was taken, and the result gave the SNR ofsignal amplitude versus

noise amplitude, rather than the ratio of their powers. The calculated SNR values and

their corresponding BERs are shown in Table 5.2. They have also been plotted against a

theoretical graph for the expected performance of QPSK in similar conditions. The graph

in Figure 5.2 shows that the observed performance of the system is close to the

theoretical performance for QPSK. The theoretical QPSK curve was extracted from the

Table 5.2 Table of BER versus SNR for the mobiles in various run conditions.

Mobile No. Run No. Condition SNR (dB) BER
0 2 no move 5.89 2.40 x10 3

0 4 Move 6.16 8.22 x10-4

1 4 Move 7.23 4.16 x10-4

0 3 no move 7.25 4.59 x10-4

1 3 no move 7.46 3.26 x10-4

1 2 no move 7.57 2.09 x10-4

0 1 no move 7.61 1.45 x10-4

1 1 no move 7.88 1.35 x10~4

81

o Mobile 0
a Mobile 1

runl
run2

Lrun4
--- QPSK

10-\

e

10

10-5

-5 0 5 10 15 20

EINO (dB)

Figure 5.2 Plot of system BER versus SNR viewed alongside the theoretical performance of QPSK.

graph on p. 468 of Ref 1. The results for both mobiles are shown for each run.

Notice that in run 2, mobile 0 performed significantly worse than mobile 1. On

this run, the display showed that amplitude of the values for the decoded constellation

were reduced. This indicated that the scaling algorithm was reducing the power output of

the transmitters in response to a mobile requesting more power than the system could

output. From these results in Figure 5.2, it can be seen that this condition was caused by

mobile 0. Mobile 0 was receiving poor signal quality, as shown by its poor average SNR,

and resulting BER over the run. Its low pilot measurement caused elements in the

inverse of the network matrix to be large enough to cause the power limitation algorithm

82

to take effect. Since this scaling was done uniformly over the network, the amplitude

of the signal to mobile 1 also decreased by the scale factor.

However, since the signal quality to mobile 1 was good, the SNR remained high,

and the resulting BER low, resulting in the same performance observed in good

conditions. This is an important observation, namely that poor performance of one

mobile need not affect the performance of other mobiles.

For run 4, a large metal plate was moved quickly through the network, and the lab

door, which was situated near the transmit antennas, was opened and shut several times

during the run. Additionally, near the end of the run, the antenna for mobile 0 was

moved, then returned to its original position. Before moving the antenna, the

performance of the mobiles over this run was basically the same as the runs with no

movement, and very little activity in the room. The difference in SNR and BER between

run 4 and run 1 were the result of different base line environmental conditions, since the

runs occurred on separate days, and over different frequencies.' The conditions of run 3

were more similar to that of run 4 since the experiments were run in the same day,

without changing the wireless frequency. The difference was that in run 3, there was

very little movement in the room. As shown in Figure 5.2, the performance of ADT

when metal objects in the environment are changing quickly is largely unaffected. This

indicates that the frequency of feedback, which was on the order of every 10 ms, was

sufficient to handling slow changes, such as those caused by human movement.

Before an experimental run, the wireless network's frequency often needed to be changed because of
external noise on certain frequencies. The experiment was designed to run over frequencies in the range of
868 kHz-890 kHz.

83

Toward the end of run 4, an antenna was moved to see how this affected

performance. In the recorded data for both mobiles, this event is marked by a steep dip

in SNR, and a marked increase in the total number of errors over those frames. This is

shown in Figure 5.3-Figure 5.6. Results from run 2 demonstrated that one bad channel

did not affect the other channel. However, in run 4, both mobiles were affected. The

difference between the two cases can be seen by looking at the condition values of the

network matrix. The condition of the network matrix is simply the ratio of the largest

eigenvalue to the smallest eigenvalue. If the condition number is very large, then the

matrix is nearly singular. For run 2, the values for the condition of the network matrix

are plotted against the frame number in Figure 5.7. Its maximum condition value is

6.3007, and the mean condition value is 1.9086. In run 4, the condition of the network

Symbol Erros of Mobde 0 wdih Changing Channels

10-

E6

0
0 2 4 6 8 10 12 14

framne aunber

Figure 5.3 Number of Errors per frame for run 4 of mobile 0.

84

matrix is plotted in Figure 5.8. Here, the maximum value of the condition value was

408.1, and it occurs when the antenna was moved to the null position. Excluding this

instant in time, the average of the condition values was 1.49. This indicates that, as

expected, having a non-singular network matrix is key to the performance of ADT. Note

that as the number of base stations increase, the probability of a mobile. not being able to

receive signal from any base station decreases exponentially. This is roughly because

there is some probability, P < 1, that a mobile cannot receive signal from a base station.

This probability is independent for each base station2. Thus, the probability that the

mobile cannot hear any base station well is PN, where N is the number of base stations

[2].

10

10

10

10

10

10

10

10

SNR of Mobile 0 with Changing Channels

P , I-K

2 4 6 B4
frame number

10 12 14

X 10'

Figure 5.4 SNR per frame of run 4 for mobile 0.

2 The probabilities are independent in standard scattering environments, where the base stations are well
spaced and scattering occurs because of objects such as trees, buildings, and people.

Symbol Errors of Mobile 1 with Changing Channels

10'

Si

21

0'
0 2 4 6 S

frame number
10 12 14

x 10

Figure 5.5 Number of errors per frame for run 4 of mobile 1.

SNR of Mobile 1 with Changing Channels

tdil

-- --6 8
frme number

10 12 14

x 10

Figure 5.6 SNR per frame for run 4 of mobile 1.

1Z

85

ii
iii iIh~~

10 t

10

10

10~

10

10

0

10
0

I'll

r

Condition of Network Matrix

Ii,

1 .1 11 1-1 - I r t

1 2 3 4
frma* ner

IL

5 a 7 8
X 10'

Figure 5.7 Condition values of the network matrix for run 2.

10

10

10

Condition of Channel Matrix

10 - - ~010 2 4 6 8 10 12 1
frame number

Figure 5.8 Condition values of the network matrix for run 4.

7

6

5

86

U

0

X 10,
4

11ULALA'

-

4

10,

87

As discussed in section 4.3.2.1 Clock Drift, much of the noise in the data

constellations was attributed to fractional sample offset. The graphs in Figure 5.9 and

Figure 5.10 shows the SNR for mobile 0 and mobile 1 against frame number. There are a

few important characteristics to notice. The first is the cyclic nature of the noise. For

mobile 0, the period is about 650 frames, and mobile 1, the period is about 2200 frames.

These periodic cycles in the SNR coincide with the relative drift of each mobile to the

base station clocks. The codec crystal on mobile 0 is faster in relation to the universal

clock, requiring about 650 frames to drift one whole sample. Mobile 1, is also faster, but

has a much slower rate of drift. It takes about 2200 frames to drift a whole sample. The

relative drift rates can also be seen as a beat pattern on the constellations. The

constellation periodically drifts from a very tight clustering to a loose clustering. For

mobile 0, this beat has a period of about .5 Hz, and for mobile 1, it has a beat period of

about .2 Hz. These values correspond well with the period in the respective SNR

measurements. For both mobiles, the maximum penalty in SNR incurred from fractional

sample offset was - 6 dB. At minimal fractional sample offset, the SNR was around 11

dB. This suggests that without fractional sample offset, the average SNR achievable

would be on the order of 11 dB. It is important to note that the maximum possible SNR

(in terms of amplitude) for the system is about 17 dB. This can been seen by looking at

the difference between the signal power (- 2 dBm) and the environmental noise power (-

35 dBm). On top of this, additional noise in the system arises from the channel,

amplifiers, and codecs.

88

Fractional Sample SNR on Mobile 0
10'

10'

1d0
0 500 1000 1500 2000 2500 3000 3500

frame number

Figure 5.9 Effect of fractional sample offset on the SNR of Mobile 0 versus frame number.

Fracbonal Sample SNR on Mobde 1
10

0 1000 2000 3000 4000 5000 6000 7000 0O0 9000 10000
fFme n Rmber

Figure 5.10 Effect of fractional sample offset on the SNR of Mobile 1 versus frame number.

89

There are glitches that appear quasi-periodically in the SNR graphs in figures

Figure 5.9 and Figure 5.10 as well. These glitches are most likely the result of the base

station clocks readjusting with the Universal Clock.

5.3 References

1. M. S. Roden, Analog and Digital Communication Systems (3rd ed., Prentice Hall,
Englewood Cliffs, NJ 1991).

2. A. Sengupta, Bell Labs, Lucent Technologies, Murray Hill, NJ (private
communication, August, 2002).

90

Chapter 6

Future Research and Conclusions

The successful demonstration of ADT clearly establishes it as a novel method to

increase the capacity of a wireless network. The experimental results of this prototype

system show that ADT can work in an indoor environment. However, analysis also

indicates that there is still some additional work which could improve the performance of

the system.

6.1 Future Research

There are some modifications which may improve the performance of the next-

generation system. As discussed in the section 5.2 Results, fractional sample offset alone

decreases SNR by 6 dB. One major improvement would thus be to remove the fractional

sample offset from both the transmit and receive synchronization schemes. On the

transmit side, the fractional sample synchronization could be achieved by replacing the

Universal Clock with a sine wave of the same frequency. Synchronization would occur

on the positive peaks of the wave, rather than rising edges. Using a sine wave would

result in more exact timing information since the exact location of the maximum could be

located. If the location of this maximum happened to lie between samples, the output

transmission could be shifted by this fraction of a sample before copying it into the

output buffer.

91

On the receive side, a method for compensating for fractional sample offset

was derived from concepts in Orthogonal Frequency Division Multiplexing (OFDM). In

OFDM implementations, the modulation of the data symbols onto orthogonal frequencies

is usually done through taking an IFFT of the symbols, then modulating them onto a

carrier in the time domain. This means that fractional sample timing errors result in a

small frequency shift over the frame, or a linear phase component. Thus, when the

symbols are transformed back to the time domain, they have simply been rotated in the

complex plane. Analogously, a small time shift appears in the frequency domain as a

phase rotation in the complex plane. Specifically, in the frequency domain, the ratio of

the received symbols to the transmitted symbols should give the expression e'"5", where

wto is the angle by which the received symbols have been rotated in phase, and to is the

fractional sample shift. Knowing cot 0 , the received symbols can be rotated back by - coto ,

eliminating the fractional sample offset. Based on this relationship, the following method

is proposed for removing the fractional sample offset. Fractional sample offset results in

power leakage between symbols, leading to noise on the decoded data. In order to

accurately measure the phase rotation for each frame, the timing pilot should be expanded

to three adjacent symbols, with the middle slot as the actual timing pilot, and the adjacent

outer slots as blanks to capture the power leakage from fractional sample offset. After

decoding a frame in the normal manner, the received timing pilot symbols are used to

recreate a pseudo-message with no channel pilots or data. The Fourier transform of this

pseudo-frame is divided by the Fourier transform of an ideal pseudo-frame (one with an

ideal timing pilot). This operation gives the angle of phase rotation. The Fourier

92

transform of the actual received frame can then be rotated back by this amount. It

should be noted that this method increases the pilot overhead, dropping the overall

throughput from 61.1 % to 50 %. However, eliminating fractional sample offset would

allow the bandwidth of the slepians to be higher, potentially increasing the total possible

throughput, and decreasing pilot overhead.

Another area that deserves additional investigation is the network matrix

inversion algorithm. Currently, the true inverse of the matrix is calculated, and scaled, if

necessary, to meet the power constraints of the system. However, this algorithm breaks

down when the matrix is singular, or nearly singular. A regularized inverse could be

calculated instead, which would ameliorate this problem. The regularized inverse looks

at the Singular Value Decomposition (SVD) of the network matrix, and artificially adds

some power to the eigenvalues which are below a certain threshold, bringing the

condition of the matrix to a more favorable level. [1] However, calculating the SVD, and

thus the regularized inverse, is quite computationally intensive. If possible, a less

expensive algorithm for approximating the regularized inverse would be useful.

6.2 Conclusions

Adaptive Distributed Transmission was originally proposed as a novel way to

increase the capacity of a wireless network, by utilizing the network of base stations as a

coordinated multi-antennae. In addition to capacity gains, as a multi-antennae system,

ADT also offered more robust performance for users. Initial estimates indicated that

ADT should achieve good performance with about 10 dB SNR, in indoor environments.

The first experimental demonstration of ADT described in this thesis has demonstrated its

93

ability to increase network capacity. Using readily available off-the-shelf hardware,

the prototype system achieved 1 0 -4 BER at about 6-7 dB SNR in terms of amplitude,

which was near the theoretical performance of QPSK. Performance was decreased

mainly from the noise introduced by fractional sample offset, and methods have been

suggested in this dissertation, which would ameliorate this effect. In all, the experimental

demonstration of ADT is an important first step to exploring the gains and challenges of

this new paradigm for wireless networks.

6.3 References

1 P. Mitra, Bell Labs, Lucent Technologies, Murray Hill, NJ (private communication,
August, 2002).

94

Appendix A - Slepian and Data Generation

%% generates raw data for base station to send
n=128; % samples per block

S=48; % sampling rate
B=10; % total bandwidth

gB=l; % guard bandwidth around DC

nb=1000; % number of blocks

T=n/S; % block duration

tax=[0:1/S:T-1/S]'; % time axis
eB=(B-gB)/2; % base slepian bandwidth

fO=(B+gB)/4; % amt by which to freq. shift slepians

nw=eB*T/2; % time-bandwidth product

% slepsO: original slepians IGNORE

% slepsl: +/- frequency-shifted copies (2x) IGNORE

% tsleps: pulses (time-orthogonalized) USE THIS (END PRODUCT)

[slepsO,conc]=dpss(n,nw); % slepians

slepsO=slepsO(:,find(conc>.99)); % enforce band-limitation

% now shift slepians up and down in frequency
slepsl=zeros(size(slepsO,1),1*size(slepsO,2));

for ind=1:size(slepsO,2)

slepsi(:,2*ind-l)=slepsO(:,ind).*exp(2*pi*i*tax*fO);

slepsl(:,2*ind)=slepsO(:,ind).*exp(-2*pi*i*tax*fO);

end

% time-orthogonalize our basis

timemat=sparse([1:n], [1:n], [O:n-1)-(n-1)/2,n,n,n)*T/n;

top=slepsl'*timemat*slepsl;

[V,D]=eig(top);

% sort by eigenvalue (time)

[Y,I]=sort(real(diag(D)));

V=V(:,I);

tsleps=slepsl*V; % END PRODUCT

tslepsO=tsleps;

% now calculate tsleps which are purely real by rotating phases

% (we can do that since their spectrum is symmetric about d.c., as

% designed - just look at tsleps(:,k) in complex plane and you'll

% see a "line" meaning we can rotate to the real axis.)

k=size(tslepsO,2); % number of degrees of freedom per block

tsleps = zeros(size(tslepsO));

for ind=1:k

pulse = tslepsO(:,ind);

95
% find angle in complex plane

ang = mean(atan(imag(pulse)./real(pulse)));
% rotate back to real line

pulsel= exp(-i*ang)*pulse;

tsleps(:,ind) = real(pulsel);

end

% constellation

const=[l+i 1-i -1-i -1+i]';
nconst=length(const);

const=const-mean(const);

const=const/sqrt(const'*const/nconst);

msgs=ceil(nconst*rand(k,2*nb)); % digital data (i.e., random)

msgs(:,1:16)=ones(18,l6); % pattern to mark the beginning of data file

dat=const(msgs);

%pilots

dat(l,:)=0; % base 1 pilot

dat(2,:)=0; % null

dat(3,:)=0; % rest of pilot matrix

dat(4,:)=0; % null

dat(5,:)=4; % slepian 10 for sync

dat(6,:)=0; % null

dat(18,:)=0; % null

%quantization of raw data

maxdat=max(max(abs(dat)));

mindat=min(min(abs(dat)));

datarange=maxdat-1;

qdat=floor((2^11-1)*(dat/datarange));

%quantization of the time slepians

maxtsleps=(max(max(abs(tsleps))));

mintsleps=(min(min(abs(tsleps))));

tsrange=maxtsleps-mintsleps;

qtsleps=floor((2^11-1)*(tsleps/tsrange));

fid=fopen('sleps.asm','w');

fprintf(fid,'\t.sect\t".slepsvals"\n');

for m=l:size(qtsleps,2)

for ind=l:size(qtsleps,1)

fprintf(fid,'\t.short\t%d\n',real(qtsleps(ind,m)));

fprintf(fid,'\t.short\t%d\n',imag(qtsleps(ind,m)));

end

end
fclose (fid)

fid=fopen('data2.asm','w');

fprintf(fid,'\t.sect\t".datablk"\n');

for m=l:size(qdat,2)
for ind=l:size(qdat,l)

fprintf(fid,'\t.short\t%d\n',real(qdat(ind,m)));

96
fprintf(fid, '\t.short\t%d\n ',imag(qdat(ind,m)));

end

end

fclose (fid)

97

Appendix B - Base Station Code

Codec Configuration

<codec.h>

* Copyright 2001 by Texas Instruments Incorporated.

* All rights reserved. Property of Texas Instruments Incorporated.

* Restricted rights to use, duplicate or disclose this code are

* granted through contract.

* U.S. Patent Nos. 5,283,900 5,392,448

/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-ilO)" */
/ ***\

* Copyright (C) 2000 Texas Instruments Incorporated.

* All Rights Reserved
*--

* FILENAME...... codec.h

* DATE CREATED.. 01/05/2000
* LAST MODIFIED. 02/16/2000
* Cynthia M. Chow 07/31/2002

*** ***** *** ** **** ** *********************************** ******** ******* /

/*---*/
#define DSPCTRL (*(volatile Uint32*)0x1780000)

/*---*/
#define CODEC ADDR (*(volatile Uint8*)0x01720000)
#define CODECDATA (*(volatile Uint8*)0x01720004)
#define CODECSTATUS (*(volatile Uint8*)0x01720008)

#define CODEC_PIO (*(volatile Uint8*)0x0l72000C)

/*---*/
extern far void CODECInit(;

extern far void CODEC WriteReg(Uint8 Reg, Uint8 Val, int Mce);

extern far Uint8 CODECReadReg(Uint8 Reg);

/*---*/

/ *** ***** ** *** * *** ***** * * ************ ****** ************* ***** *****\

* End of codec.h
\ ***/

<codec.c>

* Copyright 2001 by Texas Instruments Incorporated.

* All rights reserved. Property of Texas Instruments Incorporated.

* Restricted rights to use, duplicate or disclose this code are

* granted through contract.

* U.S. Patent Nos. 5,283,900 5,392,448

/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-ilO)" */
/ ***\

98
* Copyright (C) 2000 Texas Instruments Incorporated.

* All Rights Reserved

* FILENAME...... codec.c

* DATE CREATED.. 01/05/2000
* LAST MODIFIED. 09/26/2000
* Cynthia M. Chow 07/31/2002

***************************** ***************************/

#include <csl.h>

#include "codec.h"

/*---*/

/*---*/

/*---*/

void CODECInit()

volatile int temp,i,x;

DSPCTRL = OxOO;
DSPCTRL = OxOG;
for (x=0; x<100000; x++);

DSPCTRL = Ox04;
DSPCTRL = Ox04;
for (x=0; x<100000; x++);

while (CODECADDR & 0x80);

/* do full calibration */

CODECADDR = Ox09 I Ox40;
CODEC DATA = OxD8;
CODEC ADDR = OxOB;
while (CODECDATA & 0x20);

/* set calibration mode to

CODEC ADDR = 0x09 I 0x40;
CODEC DATA = OxCO;
CODEC ADDR = OxOB;
while (CODECDATA & 0x20);

minimal */

/* Modified Cynthia M. Chow

CODECWriteReg(0, Ox06, FALSE);
//CODECWriteReg(0, OxOG, FALSE);

CODECWriteReg(1, OxO6, FALSE);

//CODECWriteReg(1, OxOO, FALSE);
unmuted, Odb, line input

CODEC WriteReg(2, Ox88, FALSE); //
CODECWriteReg(3, Ox88, FALSE); /
CODECWriteReg(4, Ox88, FALSE); //
CODECWriteReg(5, Ox88, FALSE); //
CODECWriteReg(6, OxOO, FALSE); /
CODECWriteReg(7, OxOG, FALSE); //
CODECWriteReg(8, Ox5C, TRUE); //

// left AD input: unmuted,

//Odb gain, line input

// right AD input:

left AUX1:muted, Odb gain
right AUXl:muted, Odb gain
left AUX2:muted, Odb gain
right AUX2:muted, Odb gain
left DAC:unmuted, Odb atten
right DAC:unmuted, Odb atten
Fs and Playback:48 KHz, stereo

99
//CODECWriteReg(8, Ox5E, TRUE); // 32 KHz
CODECWriteReg(9,
CODECWriteReg(10,

CODECWriteReg(ll,

CODECWriteReg(12,

CODECWriteReg(13,

CODEC WriteReg(14,
CODECWriteReg(15,

CODECWriteReg(16,

CODEC WriteReg(17,

CODEC WriteReg(18,
CODEC WriteReg(19,

CODEC WriteReg(20,

CODEC WriteReg(21,

CODECWriteReg (22,
CODEC WriteReg(23,
CODECWriteReg(24,

CODEC WriteReg(25,

CODECWriteReg(26,

CODEC WriteReg(27,
CODEC WriteReg(28,

CODECWriteReg (29,
CODECWriteReg(30,

CODECWriteReg(31,

OxC3, TRUE);

OxOO, FALSE);

Ox00,
Ox40,
Ox00,
OxOG,

OxOG,

Ox80,

OxOG,
Ox80,
Ox80,
OxOO,

Ox00,
OxOG,

OxCO,
OxOG,

OxOG,

OxOO,

OxCO,

Ox5C,
OxOO,

OxOO,

OxOG,

FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
TRUE);

FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
FALSE);
TRUE);
FALSE);
FALSE);
FALSE);

// interface config

// int disabled, no dither, XCTL

//TTL logic low

// status reg (read only)

// expanded features, codec ID

// loopback disabled, Odb atten
// playback upper reg

// playback lower reg

// Alt features: DAC zero, SPE

// disable, SF 64-bit enh, PMCE

// Alt features

// LLine In:12db gain, muted mixer

// RLine In:12db gain, mUted mixer

/

// Capture Data Format: stereo

/ *--
void CODECWriteReg(Uint8 Reg, Uint8 Val, int Mce) {

------ - - - -- - - ---- * /

if (Mce) {
CODECADDR = Reg I 0x40;
CODECDATA = Val;
while (CODECADDR & 0x80);
CODECADDR = CODECADDR & -0x40;
else

CODEC ADDR = Reg;
CODECDATA = Val;

while (CODECADDR & Ox80);

/*---
Uint8 CODECReadReg(Uint8 Reg)

Uint8 val;

CODECADDR = Reg;
val = CODECDATA;

return val;

/*---

}

}

100

/ ***\

* End of codec.c
\ ***/

Memory Configuration

<hpireserve.asm>

.sect "hpiflag"

.int 0

.sect "hpidata"

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

<mylink.cmd>
-1 transmitcfg.cmd

SECTIONS {
.wfftvals:
.wifftvals:

DSP Code
<transmit.h>
//header file for

#include <std.h>

// logging
#include <log.h>
#include <sts.h>

#include <trc.h>

// DSP/BIOS

#include <tsk.h>

#include <swi.h>
#include <hwi.h>

#include <idl.h>
//CSL

#include <csl.h>
#include <cslmcb

#include <csl irq
#include <csl dma

{} > IDRAM
{ > IDRAM

transmit

sp.h>
.h>
.h>

#include <stdlib.h>

#include "codec.h"

#include <mathf.h>

101

#define BLEN 128

#define LEN 256
#define DMA IN LEN 0x00000080
#define DMAOUTLEN 0x00000040
#define DRIFTDMALEN Ox0000O7F
#define PAD 256
#define NCX 256 // the number of complex elements in an array

#define NX 512 // the number of elements in a complex array

#define NSLEPS 18 // the number of different slepian waveforms

// hardware initialization functions

void McBSPinit(;

void DMAinitOUT(;

void DMAinitIN);

//codec functions

extern void CODECInit(;

extern void CODECWriteReg(Uint8 Reg, Uint8 Val, int Mce);

extern Uint8 CODECReadReg(Uint8 Reg);

// miscellaneous

void cplx-mmul(int * restrict myx, short rl, short cl,

int * restrict y,short r2, short c2,

int *r,

short int * restrict scale);

void avg(short int *vl, short int *v2, float w, int n);

void cplx_2x2inv(short int *k, short int *t);

int findOffset(int *vec, int len);

int updateOK(int *old_,int *new_,int eps_, int len_);

void vec div(int *vec, int len, int fact);

// DSP/BIOS objects

extern LOG Obj trace;

extern SWI Obj mainSWI;

extern SWIObj txSWI;

extern SWIObj rxSWI;

extern SWIObj updateSWI;

/********** CSL Objects ********************************/
MCBSPHandle mcbspO;

MCBSPConfig configO;

DMAHandle dmaO;

DMAHandle dmal;

//DMA functions

void configDmaGblRegs();

// SWI functions

void mainSWIfunc(;

102
void txSWIfunc(;
void rxSWIfunc(;

void updateSWIfunco;

// ISRs

void dmaOutISRO;
void dmaInISR(;

// globals

short int *g pout; //the transmit buffer

short int *g p_pout; // points to the start of where the output DMA is

looking

short int *gpoutFact; // holds the array of scale factors from matrix

multiplies

short int *g ptempdata; // holds the array of scale factors from

matrix multiplies

short int *g pinputl, *gpinput2, *g9pinput old; // input buffers to

receive synchronization clock

//short int *data;

short int *g psleps; // points to where slepians are stored

short int *g pmessages; // points to where the messages are stored

short int *g pmessfrm; // holds the message to be sent

/ **/

/*matrix format [a b c d] = Ia bi

/* Ic d*
/ **/
short int *g_pkernel; // holds the network matrix

short int *g_pinvkernel; // holds the network matrix inverse

int *gppcDav; // flag to indicate that the pc has updates

short int *gpmeasurement; // holds the update from the pc

int gready=O;

int g simChan=O; // determines if base station must simulate the

channel

int g feedback=1; // determines if base station feedback uplink is on

void configDmaGblRegs()

DMAsetGlobalReg(DMAGBLADDRRLDB, (Uint32)g pout);// start by

// reloading
// out2

DMAsetGlobalReg(DMAGBLADDRRLDC, (Uint32)g_pinputi);

DMAsetGlobalReg(DMAGBLCNTRLDA,DMAOUTLEN);

DMAsetGlobalReg(DMAGBLCNTRLDB,DMAIN_LEN);

/***/
/* McBSPinit() configures the serial port for operation with codec */
/ ***/

103

void McBSPinit()

mcbspO = MCBSPopen(MCBSPDEVO,MCBSPOPENRESET);
if (!mcbspO) {

LOG printf(&trace,"Error opening serial port.\n");

}

memset(configO,0,sizeof(MCBSPConfig));

config0.spcr = 0x00002000;
config0.rcr = OxOO0100AD;

config0.xcr = OxOO0100AD;

config0.pcr = OxOODOOGO;
config0.srgr = OxOOOOO;

config0.mcr = MCBSP MCR DEFAULT;
configO.rcer = MCBSP RCERDEFAULT;
config0.xcer = MCBSPXCERDEFAULT;

MCBSPconfig(mcbsp0,&config0);

MCBSP enableXmt(mcbsp0);

MCBSPenableRcv(mcbsp0);

/ ***/

/* DMAinitOUT() configures a DMA channel for output operation with */

/* the serial port */
/************************************~*********************************/

void DMAinitOUT()

dmaO = DMAopen(DMACHAO, DMAOPENRESET);
IRQenable(DMAgetEventId(dmaO));

DMA configArgs(dmaD,

DMA PRICTLRMK(DMAPRICTLDSTRLDNONE,

DMA PRICTL SRCRLD B,

DMAPRICTL EMODNOHALT,

DMAPRICTLFSDISABLE,

DMAPRICTLTCINTENABLE,

DMAPRICTL PRICPU,

DMAPRICTLWSYNCXEVTO,

DMAPRICTLRSYNCNONE,

DMA PRICTL INDEX NA,

DMAPRICTLCNTRLDA,

DMAPRICTLSPLITDISABLE,

DMAPRICTLESIZE_32BIT,

DMAPRICTLDSTDIRNONE,

DMAPRICTLSRCDIRINC,

DMAPRICTLSTARTAUTOINIT),

OxOO000088,
(Uint32)gpout,

MCBSPgetXmtAddr(mcbspD),

DMAXFRCNTRMK(DMAXFRCNTFRMCNTOF(D),
DMAXFRCNT ELECNTOF(DMA OUTLEN)));

104
//LOG printf(&trace,"dmaOUT started\n");

DMA autoStart(dmaO);

/ ***/

/* DMAinitOUT() configures a DMA channel for output operation with */

/* the serial port
/ ***/

void DMAinitIN()

dmal = DMA open(DMA CHAl, DMAOPENRESET);
IRQ enable(DMA getEventId(dmal));

DMA configArgs(dmal,

DMAPRICTLRMK(DMAPRICTLDSTRLDC,

DMAPRICTLSRCRLDNONE,

DMAPRICTLEMODNOHALT,

DMAPRICTLFSDISABLE,
DMAPRICTLTCINTENABLE,

DMA PRICTL PRI DMA,

DMAPRICTLWSYNCNONE,

DMAPRICTLRSYNCREVTO,

DMAPRICTLINDEXNA,

DMAPRICTLCNTRLDB,

DMAPRICTLSPLITDISABLE,

DMA PRICTLESIZE_32BIT,

DMA PRICTL DSTDIR INC,

DMAPRICTLSRCDIRNONE,

DMAPRICTLSTARTAUTOINIT),

0x00000188,
MCBSPgetRcvAddr(mcbspO),

(Uint32)g pinputl,

DMAXFRCNTRMK(DMAXFRCNTFRMCNTOF(O),

DMAXFRCNTELECNTOF(BLEN)));

//LOG printf(&trace,"dmaOUT started\n");

DMAautoStart(dmal);

/ ***/

/* dmaOutISR() restarts the DMA when a block transfer to the serial */

/* port is done
/ ***/

void dmaOutISR()

static int everyother=O;

// LOG printf(&trace,"out: Ox%x g p pout: Ox%x\n",g pout,g p pout);

g_p_pout+=BLEN;

if(g-p-pout > g-pout+3*LEN-1)

g p_pout=gpout;

DMAsetGlobalReg(DMAGBLADDRRLDB, (Uint32)g_p_pout);

if (DMA GET CONDITION(dmaO,DMASECCTLBLOCKCOND)) {

105
DMACLEARCONDITION(dmaODMASECCTLBLOCKCOND);

}
if (DMAGETCONDITION(dmaO,DMASECCTLFRAMECOND))

DMACLEARCONDITION(dmaO,DMASECCTLFRAMECOND);

//DMAclose(dmaO);

if (everyother==1) f

SWIpost(&txSWI);

every other=O;

else

every other=1;

//DMAinitOUT();

/ ***/

/* dmaInISR() restarts the DMA when a block transfer to the serial */

/* port is done
/ ***/

void dmaInISR()

// LOGprintf(&trace,"input: Ox%x\n",g-pinputl);

if (DMAGETCONDITION(dmal,DMASECCTLRDROPCOND)) {
LOG printf(&trace,"missing samples\n");

exit(-1);

if (DMAGETCONDITION(dmal,DMASECCTLBLOCKCOND)) (

DMACLEARCONDITION(dmal,DMASECCTLBLOCKCOND);

}
if (DMA GETCONDITION(dmal,DMASECCTLFRAMECOND))

DMACLEARCONDITION(dmal,DMASECCTLFRAMECOND);

SWIpost(&rxSWI);

<transmit.c>

#include "transmit.h"

//#define BASEID 1

#define BASEID 0

//#define PILOT 512

//#define PIL BITS 9

#define PILOT 1024

#define PILBITS 10

#define LOWHALF(x) ((x<<16)>>16) // grabs out the real half of an int

#define HIHALF(x) (x>>16) // grabs out the complex half of an int

//debug
float newScale=l;

106
// simulating a changing channel

short int *g pchannels;

short int *g ptemp;

int g random=O;

// used to look at offset stuff in function findOffs

int g prev=O;

int ghisum=O;

int glosum=O;

int gind=O; // g_offs for a buffer of short ints

int g-offs=O; // the index offset of the rising clock edge in the

// buffer (referenced as ints)

int goldOffs=-1; // holds the previous value of g offs
int g-buffInd=LEN; // holds the unadjusted pointer to where the dma

// output transfer begins

int g wraptx=O; // 0 is normal, 1 is txSWI should generate 2 blocks, 2

is txSWI should wait a block

short int *gptestreply; // holds the ideal reply (the identity matrix)

// from base stations

int g startover=0; // signals to restart from first message

int g blkCnt=0;

// flags used in updating the network kernel

int g-newMeasurements=0; // flag to indicate that the matrix

// has been updated

int g busy=O; // indicates that base stastion is using the kernel

int grunning=0; // indicates that txSWIfunc is still running

// from last time called

int g-flagData=0; // when 1, base stations set data in messages

// to 0 (indicates in data file which messages

// received at same time)

void main()

CSL inito;

SWIpost(&mainSWI);

void mainSWIfunc()

int gie;

int i,j;
Uint8 v;

short int *swap;
g ppcDav=(int *)0x03000000; // flag for signaling DSP can take

meausrement

g-pmeasurement=(short int *)0x03000004;

// the data block being sent is outl

g-pout=(short int *)malloc(3*LEN*sizeof(short int));

g p pout=gpout;

107
g_pinputl=(short int *)malloc(LEN*sizeof(short int));

g_pinput2=(short int *)malloc(LEN*sizeof(short int));

g_pinputold=(short int *)malloc(LEN*sizeof(short int));

g poutFact=(short int *)malloc(LEN*sizeof(short int));

g_ptempdata=(short int *)malloc(LEN*sizeof(short int));

g_pkernel=(short int *)malloc(8*sizeof(short int));

g_pinvkernel=(short int *)malloc(8*sizeof(short int));

//gpmeasurement=(short int *)malloc(8*sizeof(short int));

g pmessfrm=(short int *)malloc(NSLEPS<<1*sizeof(short int));

//debug

g pchannels=(short int *)malloc(8*sizeof(short int));

g_ptemp=(short int *)malloc(NSLEPS<<1*sizeof(short int));

g_ptestreply=(short int *)malloc(LEN*sizeof(short int));

for (i=0,j=0;i<LEN;i++,j+=2)
int k;
for (k=0;k<3;k++)

*g pout=0;
g_pout++;

g_poutFact[i]=0;

g ptempdata[i]=0;
//debug

if (j<64)
g_ptestreply[j]=PILOT;

g_ptestreply[j+1]=0;

else

g_ptestreply[j]=0;

g-ptestreply[j+11=0;

g_pout-=3*LEN;

*g-ppcDav=0;

for (i=0;i<8;i++)
g_pkernel[i]=0;

g_pmeasurement[i]=0;

// debug simulate the channel

g_pchannels[0]=300;
g_pchannels[1]=-lll;
g_pchannels[2]=212;

g_pchannels[3]=l11;
g_pchannels[4]=0;

g-pchannels[5]=0;

g-pchannels[6]=512;

g-pchannels[7]=0;

// cplx_2x2inv(gpchannels,gpinvkernel);

// debug commented out

108
//initialize g pkernel to the identity matrix;

g_pkernel[0]=PILOT;

g-pkernel[6]=PILOT;

g_pinvkernel[0]=PILOT;

g_pinvkernel[6]=PILOT;

g_pmeasurement[0]=PILOT;

g_pmeasurement[6]=PILOT;

// map gpsleps to the place in memory where the slepians are

g-psleps=(short int *)0x00400000;

// map g psleps to the place in memory where the data symbols are

g_pmessages=(short int *)0x02000000;

LOGprintf(&trace, "initializing hardware\n");

gie = IRQglobalDisableo;

CODECInit(;
v = CODECReadReg(Ox10);
CODEC WriteReg(0x10, v I 0x02, TRUE);

McBSPinit();

IRQglobalRestore(gie);

configDmaGblRegs();

// start the out and in DMA channels

DMAinitOUT(0;

DMAinitINO;

// g_p_pout+=BLEN;

// DMAsetGlobalReg(DMAGBLADDRRLDB, (Uint32)g_p pout);

// swap the input buffers

swap=gpinputi;

g-pinputl=g-pinputold;
g_pinputold=g-pinput2;
g_pinput2=swap;

DMAsetGlobalReg(DMAGBLADDRRLDC, (Uint32)gpinputi);

SWI post(&txSWI);

void txSWIfunc()

static int count=0;

int i,j,k=0;

int shiftInd;

if (grunning==1)

LOGprintf(&trace,"txSWI still running");

exit(-1);

109

g_running=l;
// invert transmission gpkernel

if (g-newMeasurements==l)

g_busy=l;

cplx_2x2inv(gpkernel,gpinvkernel);

g_busy=0;

g_newMeasurements=0;

if (g flagData==0) { // do the normal thing

// mix g pmessages

//2*BASEID accesses the appropriate row in matrix inverse

cplxmmmul((((int *)gpinvkernel)+(2*BASEID)),1,2,

(int *)gpmessages,2,NSLEPS,

(int *)gpmessfrm,
g poutFact);

for(i=0;i<NSLEPS<<l;i++) {
shiftInd =abs(*g poutFact-PILBITS); // 9 comes from

// 2^9 = PILOT
if (*gpoutFact<=PILBITS) {

*g-pmessfrm= *gpmessfrm >> shiftInd;

}
else

LOGprintf(&trace,"overflow!");

}
g_pmessfrm++;
g-poutFact++;

g-poutFact-=NSLEPS<<l;

g-pmessfrm-=NSLEPS<<l;

else

LOGprintf(&trace,"flagging");

for(i=0;i<NSLEPS<<l;i++)

g_pmessfrm[i]=0;

if (i==8) { // timing pilot is on 5th symbol (2*4)

g_pmessfrm[i]=2729; // timing sync pilot

// add pilots

if (BASE ID==0)

((int *)gpmessfrm) [0]=PILOT;

((int *)g pmessfrm) [2]=0;

else

((int *)g pmessfrm)[0]=0;

((int *)g pmessfrm) [2]=PILOT;

// test no compensating the sync pilot

//((int *)g-pmessfrm) [4]=2729;

110

7/ simulated channel

if (gsimChan==l) { // if gsimChan is set, then

// channel is simulated

cplx-mmul((int *)g-pchannels,1,1,

(int *)gpmessfrm,l,NSLEPS,

(int *)g ptemp,

g_poutFact);

for(i=O;i<NSLEPS<<l;i++)
shiftInd =abs(PILBITS-*gpoutFact); // 9 comes from

// 2A9 = PILOT

if (*g poutFact<=PIL BITS) {

*g pmessfrm= *g-ptemp >> shiftInd;

}
else

LOGprintf(&trace,"channel sim overflow\n");

}
g pmessfrm++;
g poutFact++;
g-ptemp++;

g_poutFact-=NSLEPS<<1;

g_pmessfrm-=NSLEPS<<l;

g_ptemp-=NSLEPS<<l;

// modulates gpmessages onto slepians

cplxmmul((int *)g pmessfrm,1,NSLEPS,

(int *)gpsleps,NSLEPS,BLEN,

(int *)g ptemp data,

g_poutFact);

//zero out skipped samples if goffs > g-oldOffs
if (g offs > g oldOffs) {

for(j=gbuffInd+g_oldOffs;j<g-buffInd+g_offs;j++)

g_pout[jl=O;

if (g wraptx!=2)

// this set means that we have generated an extra block

k=g buffInd+g offs;

if (k>=3*LEN) {
k-=3*LEN;

if (k<O)
k+=3*LEN;

//LOGprintf(&trace,"g-offs: %d k: %d",goffs,k);

for(j=O;j<LEN;j++) {
shiftInd=abs(9-*qpoutFact);
if (*gpoutFact<=9) {

*(gpout+k)= *g ptempdata >> shiftInd;

111

else
LOGprintf(&trace,"overflow\n");

g_poutFact++;
g_ptempdata++;
k++;
if (k==3*LEN) {

k=O;

g_buffInd+=LEN;
if (gbuffInd==3*LEN)

g_buffInd=O;
}
g poutFact-=LEN;
g_ptemp data-=LEN;

count++;
if (count>600)

count=1;

//DMA setGlobalReg(DMAGBLADDRRLDB, (Uint32)outl);

//debug commented out
if (gstartover==l) {

LOG printf(&trace,"starting\n");
g_pmessages=(short int *)0x02000000;
for(i=O;i<8;i++) {
// reinitialize the kernel to the identity

g_pkernel[i]=O;
g_pinvkernel[i]=O;
if ((i==O) 1| (i==6))

g_pkernel[i]=PILOT;
g_pinvkernel[i]=PILOT;

else
g pmessages+=NSLEPS<<2;
if (gpmessages > (short int *)0x0202327F)
g pmessages = (short int *)0x02000000;

//LOGprintf(&trace,"outl: Ox%x\n",outl);
if (gwraptx==l) {

g_running=O;
gwraptx=O;
txSWIfunc();

else

112
g_wraptx=O; // reset so that next time, will generate

waveform
g buffInd+=LEN;
if (gbuffInd==3*LEN)

g buffInd=O;

updateSWIfunco;

g_running=O;

void rxSWIfunc()

//static int ignore=O;

// operates on g pinput2

short int *temp;

int answer=O; // the calculated rising
static int wrap=O;

static int firstTime=O;

edge offset in the block

// determines if this is

// first time function has run

int i;

g_oldOffs=goffs;
g_ready=O;

// find sync sample num

answer=findOffset((int *)g-pinput2,BLEN);

if ((answer==-1000) 11 (firstTime==O)) {
// if findOffset found no edge or this is the first

// time function has run

g-offs=goldOffs;
g-startover=1;

g_blkCnt=O;
firstTime=1;

if (gstart over==1) // on the first time initialize

// the offset and old offset

if (answer<O) {
g_buffInd+=LEN;
if (gbuffInd==3*LEN)

g_buffInd=O;

g-offs=answer<<;
g_oldOffs=goffs;
g_startover=O; // start playing through data

//firstTime=l;

else

if ((answer<<1)-g oldOffs>128)

}
else{

{

}

{

113
// wrapping to the left

if (wrap==O) {
// need to generate two blocks

LOG printf(&trace,"generate two blocks");
wrap=l;

g_wraptx=l;

goffs=(answer-BLEN)<<l;

else

if ((answer<<l)-g oldOffs<-128)

// wrapping to the right

if (wrap==O) (
// need to not generate for a block

LOG printf(&trace,"skip a block");
wrap=1;

g_wraptx=2;

g_offs=answer<<l;

else

// normal drift

if (abs((answer<<l)-goldOffs)!=O)

// if there is a small drift, reset wrap

wrap=O;

g_offs=answer<<l;

}}

//swap the input buffers for the DMA's next

// round of auto-initialization

temp=g pinputl;

g-pinputl=g-pinput old;
g-pinput-old=g-pinput2;
g-pinput2=temp;

DMAsetGlobalReg(DMAGBLADDRRLDC, (Uint32)gpinputl);

g-ready=1;

void cplx-mmul(int * restrict myx, short rl, short cl,

int * restrict y, short r2, short c2,

int *r,

short int * restrict scale){
short i,j,k;
int templ, temp2;

int *yp;

114
short int signi, sign2;

if((cl==r2) && (cl>O) && (c2>0) && (rl>O))
/*verify parameters*/

yp=y;
for(i=O; i<rl; i++) /* top to bottom */

for(j=O; j<c2; j++) /* left to right */

yp=y+j;
templ=O;
temp2=0;
signl=O;
sign2=0;

for(k=O; k<cl; k++) /* multiply and add */

templ+={mpy(*myx,*yp) mpyh(*myx,*yp);

temp2+= mpylh(*myx,*yp)+_mpyhl(*myx,*yp);

myx++;

yp+=c2;

myx-=cl;
signl=16 - norm(templ);
sign2=_norm(temp2);

if (signl > 0) {
templ = (tempi >> signl) & OxOOOOFFFF;
*scale = signl;

scale++;

else

templ = templ & OxOOOOFFFF;
*scale = 0;
scale++;

if (sign2 >=16

temp2 = temp2 << 16;

*scale = 0;
scale++;

else

temp2 = (temp2 << sign2) & 0xFFFF0000;
*scale = 16 - sign2;

scale++;

r=_add2(templ,temp2); / store sum

r++;

myx+=cl;

else

LOG printf(&trace,"matrix dimensions wrong\n");

115

}

void avg(short int *vl, short int *v2, float w, int n)
float temp=O;
int i;
for(i=O;i<n;i++)

temp=((float)*vl)*(l-w)+((float)*v2)*w;

*vl=_spint(temp);
vl++;
v2++;

vl-=n;
v2-=n;

void cplx_2x2inv(short int *k, short int *t)

/* returns -1 if the inverse would cause the system to overflow
* labI I d -bI
* k= Ic dl inv(k)= I-c aI*conj(det)/(det*conj(det))

float r=O, c=O;

float r det=O, c det=O, det mag=O, det rcp=O;

int i,j;
float tmp[81;

int testl=O,test2=0;
int avg pwr=O;

//float ret=-l; // -1 if error, otherwise returns scale factor
static float oldScale=-1;

static float norm= (PILOT*PILOT)/2; // the normalization

// for the identity

// calculate determinant

for (i=O,j=3;i<2;i++,j--)
r=(float) (_mpy(*(k+2*i),*(k+2*j))-

_mpy(*(k+2*i+l),*(k+2*j+l)));

c=(float) (_mpy(*(k+2*i),*(k+2*j+l))+_mpy(*(k+2*i+l),*(k+2*j)));
tmp[2*i]=(float)*(k+2*i);

tmp[2*i+l]=(float)*(k+2*i+l);

tmp[2*j)=(float)*(k+2*j);

tmp[2*j+l]=(float)*(k+2*j+l);
if (i==O) {

r_det+=r;

c_det+=c;

else

r_det-=r;

c det-=c;

detmag=(rdet*rdet)+(c det*c det);

// if determinant > 0, then matrix is invertable

116
if (detmag > 0) {

detrcp=(_rcpsp(detmag))*PILOT*PILOT;

//detrcp=_rsqrsp(det-mag)*PILOT;

for(i=0;i<4;i++) {
// this is rl+r2 because we want to multiply

// by the complex conj of the determinant

testl= spint((tmp[2*i]*r det+tmp[2*i+l1]*c det)*det rcp);

test2=_spint((-tmp[2*i]*c det+tmp[2*i+l1*r det)*detrcp);

/* if ((abs(testl)>2000) 11 (abs(test2)>2000)) {
// test to see if inverse is too big, overflow

ret=-l;

break;

} */
//else

tmp[2*i]=LOWHALF(testl);

tmp[2*i+l]=LOWHALF(test2);

// performing the element swapping
for(i=0,j=3;i<2;i++,j--)

if (i==0) {
// also scale by newScale

*(t+2*i)= spint(tmp[2*j]);

*(t+2*i+l)= spint(tmp[2*j+l1);

*(t+2*j)= spint(tmp[2*i]);

*(t+2*j+l)=_spint(tmp[2*i+l]);

else

*(t+2*i)= spint(-tmp[2*i]);

*(t+2*i+)= spint(-tmp[2*i+1);
*(t+2*j)= spint(-tmp[2*j]);
*(t+2*j+l)=_spint(-tmp[2*j+l]);

//find the scale factor

for(i=0;i<4;i++) {

avg pwr+=(LOWHALF(*(((int *)t)+i))*
LOWHALF(*(((int *)t)+i)))+

(HIHALF(*(((int *)t)+i))*

HIHALF(*(((int *)t)+i)));

avgpwr=avg-pwr>>2; // the average power in

// the transmission

//LOGprintf(&trace,"power: %d",avg-pwr);

if (oldScale==-1) I
// the first time, just take the scale factor as is

newScale=sqrtf((norm/((float)avg pwr)));

else

// all other times, average it

newScale=.8*oldScale+.2*sqrtf((norm/((float)avgpwr)));

}

117
oldScale=newScale;

if (newScale<.4) {
// this means that the new kernel has 4 times

// the amplitude of the old

for(i=O;i<8;i++) {
(t+i)= spint(((float) ((t+i)))*newScale);

// scale kernel inv by newScale

/*val=*((int *)t);

*((int *)t)=*(((int *)t)+3);

*(((int *)t)+)=-*(((int *)t)+2);
*(((int *)t)+2)=-*(((int *)t)+2);

*(((int *)t)+3)=val;*/

int maxi(int *pVec_, int len_)

* Given a vector pVec of atleast length len > 2

* returns the index with the largest value change

* from value right in front of it

int result=pVec_[l]-pVec_[0], resulti=l;

int i;

int temp;

for (i=2; i<len_; ++i)

temp = pVec [i]-pVec_[i-1];

if (temp > result)

result = temp; resulti =i;

return resulti;

int maxNum(int *pVec_, int len_)
/*

* Given a vector pVec_ of atleast length len_ > 2

* returns the index with the largest value change

* from value right in front of it
*/

int result=pVec_[0];
int i;

for (i=l; i<len_; ++i)

if (pVec_[i] > result)

result = pVec_[i];

118
return result;

}

int minNum(int *pVec_, int len_)

* Given a vector pVec of atleast length len > 2
* returns the index with the largest value change
* from value right in front of it

int result=pVec_[0];
int i;
for (i=l; i<len_; ++i)

if (pVec_[i] < result)

result = pVec_[i];

return result;

int sumNum(int *pVec_, int len_)
/*

* Given a vector pVec_ of atleast length len_ > 2
* returns the index with the largest value change
* from value right in front of it
*/

int result=pVec_[0];
int i;
for (i=l; i<len_; ++i)

{
result += pVec_[i];

}
return result;

void shift(int *pVec_, int len_, int value_)
/* Moves the values in the vector pVec_ down by one

* and inserts value_ into the last position.

int i;
for(i=1; i<len_; ++i)

{
pVec_[i-l]=pVec_[i];

}
pVec_[len_-l]=value_;

int findOffset(int *vec, int len)
/*

* Finds the rising edge in the buffer vec of length len.
* Returns:

119
* -1000 if no edge found

int i;

int result = -1000;
static int average[10];

int lowSum, hiSum;

// these are global for debug reasons
g prev=0; //value of sample right before rising edge sample

g_hisum=0; //average of the 4 high sample

g_losum=0; //average of the 4 low samples

for(i = 0; i < len; ++i)

shift(average,10,LOWHALF(vec[i]));

lowSum=sumNum(average, 5)-minNum(average,5)-

maxNum(average,5);

hiSum=sumNum(average+5, 5)-minNum(average+5,5)-
maxNum(average+5, 5);

if(hiSum - lowSum> 30000) //Found some quick large

// change in value

//Find the largest change

result = i + (maxi(average,10)-9);

g_prev=result;

g-hisum=average[9];

g losum=average[0];

return result; //Found no quick large change in value

void updateSWIfunc()

int i;

//static int blkCnt=0; // keeps track of how many updates, when

blkCnt=100, then blank out data for 50 blocks

static int feedCnt=0;

//debug simulating channel changing

g_random=(*g pmeasurement)&0x00000001;
for (i=0;i<4;i++) {

if (grandom == 0)
// g_pchannels[i]+=1;

else

// g-pchannels(i]-=1;

//check to see if pc has data to send (gppcDav==l)

if (*gppcDav==l) {
if (g busy==0)

120
if (g-feedback==l)

//if (updateOK((int*)g pkernel,

(int*)g-pmeasurement,5000,4)==O)

//LOG printf(&trace,"updating");

avg(gpkernel,g pmeasurement,.1,8);

// debug comment out

//avg(g pkernel,g pmeasurement,1,8);

// debug comment out

g_newMeasurements=1;

else

LOGprintf(&trace,"txSWI still using

variable: g-pkernel\n");

exit(-1);

*gppcDav=O; //lower g-ppcDav flag signals
// that DSP received data

if (gblkCnt<200)

g blkCnt++;

if (gblkCnt==100)

g-flagData=1;

}
if (gblkCnt==150)

g-flagData=O;

}}

int updateOK(int *old_,int *new_,int eps_, int len_)

/* assumes old_ and new_ are same length, eps > 0

* old_ and new_ are both natively shorts (used as ints for efficiency)

* checks if difference between old- and new- real and complex

* part is too large

* returns -1 if check fails, 0 if update OK

int i,ret=-l;

static int ncnt=0;
//short int test[8];

// tests difference between old and new elements

for (i=0;i<len ;i++) {
if ((abs(LOWHALF(old_ [i])-LOWHALF(new_[i]))>eps_

11 (abs(HIHALF(old [i])-HIHALF(new [i]))>eps))

LOGprintf(&trace,"difference between elements

too great");

break;

if ((i==len_) || (ncnt==0))

ret=0;

121
ncnt++;

return ret;

void vec div(int *vec, int len, int fact)
// divides real and imag parts of *vec by 2^fact
// fact > 0 means divide, fact < 0 means multiply

int i, r=0, c=0;
for (i=0;i<len;i++)

if (fact>0) {
r=(LOWHALF(*vec))>>fact;
c=(((HIHALF(*vec))>>fact)<<16);

else
r=(LOWHALF(*vec))<<(abs(fact));
c=(((HIHALF(*vec))<<(abs(fact)))<<16);

*vec= add2(r,c);

vec++;

vec-=len;

C++ Host PC Code
<HPIbaseStation.cpp>

// HPIbaseStation.cpp : Defines the entry point for the console
application.
//

/****************** change between baseG and basel *****************/
/* change BASEID*/

#include "stdafx.h"
#include <stdlib.h>
#include <windows.h>
#include <evm6xdll.h>
#include <iostream>
#include <winsock2.h>
#include <time.h> // debug

//#define BASEID 1
#define BASE ID 0
#define PCSNDFLAG 0x03000000 // location of flag to DSP
#define PCDATA 0x03000004 // location of buffer to write data to DSP
#define LEN 16 // number of bytes to write to DSP
//#define PACKETSIZE 12
#define PACKETSIZE 76 // number of bytes to receive from mobiles

HANDLE h board; // handle to DSP
LPVOID hhpi; // handle to HPI
ULONG ul temp;

122
ULONG *pcData; //buffer of data to send to DSP

ULONG dataLen; // length of pcData buffer

ULONG PCSNDFLAGRD()

/* reads a single value from DSP at PCSNDFLAG

* returns the value read

ULONG ulval;

if(!evm6xhpi-read-single(h-hpi,&ulval,4,PCSNDFLAG))

printf("evm6x read single failed\n");

}
return ul val;

void PC SNDFLAGSET(ULONG ulval) {
/* writes a single value to DSP at PCSNDFLAG
*/

if(!evm6x-hpiwrite single(h-hpi,ul-val,4,PCSNDFLAG))

printf("evm6xwritesingle failed\n");

void PCDATAWRITE(ULONG *buff, ULONG *len)

/* writes len bytes from buff to DSP at location PCDATA

if(!evm6x-hpiwrite(hhpi,buff,len,PCDATA))

printf("evm6xhpi write failed\n");

}
else

if (*len!=LEN)

printf("evm6xhpi write incomplete, wrote %d

bytes\n",*len);

int main(int argc, char* argv[])

//debug log file to see info about network error

FILE *fp;

timet t;

// open connectino to DSP

h_board=evm6xopen(O,FALSE);

if(h board==INVALID HANDLE VALUE)

printf("unable to open EVM board\n");

}
else

printf("board opened successfully\n");

// open connection to HPI

h-hpi=evm6x-hpi-open(hboard);

123
if(hhpi==NULL) {

printf("could not open HPI port on board\n");

evm6xclose(hboard);

pcData=(ULONG *)malloc(4*sizeof(ULONG));

int i;

for (i=0;i<4;i++)
if((i==0) 11 (i==3))

*(pcData+i)=512;

}
else

*(((int *)pcData)+i)=0;

WSADATA WsaDat;

if (WSAStartup(MAKEWORD(2,0),&WsaDat) !=0)
printf("WSA Initialization failed\n");

}

// this socket listens for incoming connections

SOCKET mySocket;

mySocket=socket(AFINET,SOCK STREAM,0);

if (mySocket == INVALIDSOCKET) {
printf("Socket creation failed\n");

}

SOCKADDRIN SockAddr;

SockAddr.sinport = 50; // server port is

SockAddr.sinfamily = AFINET;

SockAddr.sin addr.Sun.Sunb.sbl=135;

SockAddr.sin addr.S un.S un b.s b2=3;

if (BASE ID==0)

// base0

port 50

SockAddr.sinaddr.Sun.Sunb.sb3=85;

SockAddr.sinaddr.Sun.Sunb.sb4=85;

}
else

//basel
SockAddr.sinaddr.Sun.Sunb.sb3=87;

SockAddr.sin addr.S un.S un b.s b4=38;

}

if (bind(mySocket,

(SOCKADDR *)&SockAddr,sizeof(SockAddr))

printf("binding socket failed\n");
== SOCKETERROR) {

listen(mySocket,1);

124
fd set readSet;
FD ZERO(&readSet);

FDSET(mySocket, &readSet);

fd set cpyReadSet=readSet;

timeval delay;

delay.tvsec =0;
delay.tvusec = 0;

int DAVl=0, DAV2=0; // DAV1=1, data received from mobileG,

// DAV2=l, data received from mobilel

ULONG *DatRecv=(ULONG *)malloc(19*sizeof(ULONG));

// each reply message has [mobileid, pilotl, pilot2]

int RetVal=SOCKETERROR;

int *numRecv=(int *)malloc(2*sizeof(int));

// debug, keeps track of how many packets received from

// mobiles between DSP updates
numRecv [0] =0;
numRecv[1]=0;

int cnt=0, cnt2=0;
int selRes=0;

while(true) {

//cpyReadSet=readSet;

readSet=cpyReadSet; // check all the sockets for

// readability
while(selRes=select(0,&readSet,NULL,NULL,&delay) == 0)

if(((int)PCSNDFLAGRDo)==0) {
// the equality may want an int?

if ((DAVl==) && (DAV2==l))

// if received replies from both mobiles

dataLen=LEN;

PCDATAWRITE(pcData,&dataLen);

PCSNDFLAGSET(l);

DAVl=0;
DAV2=0;

cnt=0;
cnt2=0;

} }
readSet=cpyReadSet;

if (((int)
if
//

PCSNDFLAGRD()==0) (

((DAVl==l) && (DAV2==l))
if received replies from both mobiles

cnt=0;
cnt2=0;
dataLen=LEN;

PC DATA WRITE(pcData,&dataLen);

PC SNDFLAG SET(l);

DAVl=0;

125
DAV2=0;

else
//printf("waiting for mobilel:%d
mobile2:%d\n",DAVi,DAV2);

//printf("select found something\n");

//if (select(O,&readSet,NULL,NULL,&delay)==-l) {
if (selRes==-l) {

switch(WSAGetLastError()

{
case WSANOTINITIALISED:

printf("WSANOTINITIALIZED\n");

break;

case WSAEFAULT:

printf("WSAEFAULT\n");
break;

case WSAENETDOWN:

printf("WSAENETDOWN\n");

break;

case WSAEINVAL:

printf("WSAEINVAL\n");

break;

case WSAEINTR:

printf("WSAEINTR\n");

break;

case WSAEINPROGRESS:

printf("WSAEINPROGRESS\n");

break;
case WSAENOTSOCK:

printf("WSAENOTSOCK\n");

break;

else

if (FD ISSET(mySocket,&readSet)!=O)

// found a new connection

SOCKET TempSock=SOCKETERROR;

SOCKADDR_IN incoming;

int size=sizeof(SOCKADDRIN);

TempSock = accept(mySocket,
(SOCKADDR *) (&incoming),&size);

printf("socket port: %u\n",incoming.sin port);

FD_SET(TempSock, &cpyReadSet);

// add it to the cpyReadSet so it will be

// checked for data next time around

printf("select found a new connection, total:

%d\n", (int)cpyReadSet.fdcount);

// readSet=cpyReadSet;

else I

// old socket has data to read

for (i=O;i<(int) (readSet.fd count);i++)

126
int loop=l; // indicates data read OK

int datRecvLen=PACKETSIZE;

int offs=0;
while(
((RetVal=

recv(readSet.fd array[i],(((c

har *)DatRecv)+offs),
datRecvLen,0))!=datRecvLen)

&& (datRecvLen>0)){
// keep trying to receive until all the

// bytes have been read

if (RetVal == 0) {

printf("socket closed
gracefully\n");

FD_CLR(readSet.fd-array[i],

&cpyReadSet);

closesocket(
readSet.fd array[i]);

loop=O; // data not read OK

break; // break out of while

// loop

}
else

if (RetVal==SOCKETERROR)

switch(WSAGetLastError(){

case WSANOTINITIALISED:

printf("socket not initialized\n");

break;

case WSAENETDOWN:

printf("network failure\n");

break;

case WSAEFAULT:

printf("receive buffer not in valid

address space\n");

break;

case WSAENOTCONN:
printf("socket not connected\n");

break;

case WSAENETRESET:
printf("failure in keep alive\n");

break;

case WSAENOTSOCK:

printf("descriptor is not a

socket\n");

break;

case WSAESHUTDOWN:

printf("socket has been

shutdown\n");

break;
case WSAEMSGSIZE:

printf("message truncated

buffer\n");

break;
case WSAEINVAL:

to fit

127
printf("socket not bound\n");
break;

case WSAECONNABORTED:

printf("connection aborted\n");

FD_CLR(readSet.fdarray[i],

&cpyReadSet);

closesocket(readSet.fdarray[i]);

break;

case WSAETIMEDOUT:

printf("connection timed out\n");

break;

case WSAECONNRESET:

printf("connection aborted\n");

FD_CLR(readSet.fdarray[i],

&cpyReadSet);

closesocket(readSet.fdarray[i]);

break;

loop=O; // data not read ok
break; // break out of while loop

else
datRecvLen-=RetVal;
offs+=RetVal;

if (loop==l)

// all 76 bytes were received

int ind=((int) (*DatRecv));

if ((ind>1) 11 (ind<O)) { // don't know why this
// happens, for now ignore

// check if bad index so program
// will exit gracefully and inform

SOCKADDRIN badSocket;

int len=sizeof(SOCKADDRIN);

getsockname(readSet.fdarray[i],

(SOCKADDR *) (&badSocket),&len);

fp=fopen("LOG.txt","a"); // log when things go

// wrong
time(&t);

printf("time: %s",ctime((long *) (&t)));

// prints the time

fprintf(fp,"time: %s\n",ctime((long *) (&t)));

// prints the time

fprintf(fp,"bad index: %d from connection:

%u\n",ind,badSocket.sinport);

// prints the port

for(i=O;i<19;i++)

fprintf(fp,"%d ", (int)DatRecv[i]);

// prints all the data received

fclose(fp);

//exit(-1);

128

else{
//* (pcData+2*ind)=*(DatRecv+l);
// pilot matrix is on symbol 1 and symbol 3
//*(pcData+(2*ind)+1)=*(DatRecv+3);
(pcData+ind)=(DatRecv+l);

* (pcData+2+ind)=*(DatRecv+3);
* (numRecv+i)+=l;

if (ind==O) {
DAVl=1; // received reply from mobileC
cnt++;

else {
DAV2=1; // received reply

cnt2++;

from mobilel

else
// if things are working properly, this should never occur

printf("only received %d of %d

bytes\n",RetVal,PACKETSIZE);

/*RetVal = recv(readSet.fdarray[i],
(char *)DatRecv,PACKETSIZE,O);

if (RetVal == 0) {
printf("socket closed gracefully\n");

FDCLR(readSet.fdarray[i],&cpyReadSet);

closesocket(readSet.fd array[i]);

else

if (RetVal==SOCKETERROR) {
switch(WSAGetLastError()

case WSANOTINITIALISED:

printf("socket not initialized\n");
break;

case WSAENETDOWN:
printf("network failure\n");

break;

case WSAEFAULT:

printf("receive buffer not in valid

address space\n");

break;
case WSAENOTCONN:

printf("socket not

break;

case WSAENETRESET:

printf("failure in

break;

case WSAENOTSOCK:

printf("descriptor

socket\n");

break;

case WSAESHUTDOWN:

connected\n");

keep alive\n");

is not a

129
printf ("socket has been

shutdown\n");

break;
case WSAEMSGSIZE:

printf("message truncated to fit

buffer\n");

break;

case WSAEINVAL:

printf("socket not bound\n");

break;

case WSAECONNABORTED:

printf("connection aborted\n");

FDCLR(readSet.fd array[i],

&cpyReadSet);

closesocket(

readSet.fdarray[il);

break;

case WSAETIMEDOUT:
printf("connection timed out\n");
break;

case WSAECONNRESET:

printf("connection aborted\n");

FDCLR(readSet.fdarray[i],

&cpyReadSet);
closesocket(

readSet.fd array[i]);

break;

else

if (RetVal==PACKETSIZE)

// check if received whole message

int ind=((int) (*DatRecv));

if ((ind>l) 11 (ind<O)) {
// don't know why this happens,
// for now ignore

// check if bad index so program

// will exit gracefully and inform

SOCKADDRIN badSocket;

int len=sizeof(SOCKADDRIN);

getsockname(readSet.fdarray[i],

(SOCKADDR *) (&badSocket),&len);

fp=fopen ("LOG.txt", "a") ;
// log when things go wrong

time(&t);

printf("time: %s",ctime(

(long *) (&t)));

// prints the time
fprintf(fp,"time: %s\n",ctime(

(long *) (&t)));

// prints the time

fprintf(fp,"bad index: %d from
connection: %u\n",ind,
badSocket.sinport);

// prints the port

for(i=O;i<19;i++) {
fprintf(fp,"%d ",

(int)DatRecv[i]);
// prints all the data

// received

fclose(fp);

//exit(-1);

else

printf("msg: %d %d %d %d
%d\n", ((int) (*DatRecv)),
(short) ((*(DatRecv+)<<16)>>16),
(short) ((*(DatRecv+l))>>16),
(short) ((*(DatRecv+3)<<16)>>l6),

(short) ((*(DatRecv+3))>>16));

// pilot mat
* (pcData+2*ind)=*

rix is on symbol
*(pcData+(2*ind)+

* (numRecv+i)+=1;

if (ind==O) {
DAVl=1;

// received reply
cnt++;

else {
DAV2=1;

// received reply
cnt2++;

130

(DatRecv+l);
1 and symbol 3
1)=*(DatRecv+3);

from mobileO

from mobilel

else
printf("only received %d bytes of %d\n",

RetVal,PACKETSIZE);

}

}

//readSet=cpyReadSet;

return 0;

}

}

131

Appendix C - Mobile Code

Codec Configuration
<codec.h>

* Copyright 2001 by Texas Instruments Incorporated.

* All rights reserved. Property of Texas Instruments Incorporated.

* Restricted rights to use, duplicate or disclose this code are

* granted through contract.

* U.S. Patent Nos. 5,283,900 5,392,448

/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-ilO)" */
/ ***\

* Copyright (C) 2000 Texas Instruments Incorporated.

* All Rights Reserved
--

* FILENAME...... codec.h
* DATE CREATED.. 01/05/2000

* LAST MODIFIED. 02/16/2000
*

**************** ** ****** ***** ** ***** * **** *** ***** * ****** **** ***** ****

/*---*/
#define DSPCTRL (*(volatile Uint32*)0x1780000)

/*--*
#define CODECADDR (*(volatile Uint8*)0x01720000)

#define CODECDATA (*(volatile Uint8*)0x01720004)

#define CODECSTATUS (*(volatile Uint8*)0x01720008)

#define CODEC_PIO (*(volatile Uint8*)0x0l72000C)

/*---*/
extern far void CODECInito;

extern far void CODECWriteReg(Uint8 Reg, Uint8 Val, int Mce);

extern far Uint8 CODECReadReg(Uint8 Reg);

/*---*/

/ **

* End of codec.h
***/

<codec.c>

* Copyright 2001 by Texas Instruments Incorporated.

* All rights reserved. Property of Texas Instruments Incorporated.

* Restricted rights to use, duplicate or disclose this code are

* granted through contract.

* U.S. Patent Nos. 5,283,900 5,392,448

/* "@(#) DSP/BIOS 4.51.0 05-23-01 (barracuda-ilO)" */

/ ***\
* Copyright (C) 2000 Texas Instruments Incorporated.

132
* All Rights Reserved
*--

* FILENAME...... codec.c
* DATE CREATED.. 01/05/2000
* LAST MODIFIED. 09/26/2000
* Cynthia M. Chow modifications 07/31/2002
\ ***/

#include <csl.h>
#include "codec.h"

/*---*/

/*---*/

/*---
void CODECInit()

volatile int temp,i,x;

DSPCTRL = OxOO;
DSP CTRL = OxOG;
for (x=0; x<100000; x++);
DSPCTRL = Ox04;
DSPCTRL = 0x04;
for (x=0; x<100000; x++);

while (CODECADDR & 0x80);

/* do full calibration */
CODECADDR = Ox09 I Ox40;
CODECDATA = OxD8;
CODECADDR = OxOB;
while (CODECDATA & 0x20);

/* set calibration mode to minimal */
CODECADDR = 0x09 I 0x40;
CODECDATA = OxCO;
CODECADDR = OxOB;
while (CODECDATA & 0x20);

/* Cynthia M. Chow modifications to code */
//CODECWriteReg(0, OxOO, FALSE);
CODECWriteReg(0, Ox09, FALSE);
//CODECWriteReg(1, OxOC, FALSE);
CODECWriteReg(1, Ox09, FALSE);
CODECWriteReg(2, Ox88, FALSE);
CODECWriteReg(3, Ox88, FALSE);
CODECWriteReg(4, Ox88, FALSE);
CODEC WriteReg(5, Ox88, FALSE);
CODECWriteReg(6, OxOO, FALSE);
CODECWriteReg(7, OxOO, FALSE);
CODECWriteReg(8, Ox5C, TRUE); // sampling frequency at 48kHz
//CODECWriteReg(8, Ox50, TRUE);// sampling frequency at 8KHz
CODECWriteReg(9, OxC3, TRUE);
CODECWriteReg(10, OxOG, FALSE);

133
CODECWriteReg(ll, OxOG, FALSE);

CODECWriteReg(12, Ox40, FALSE);

CODECWriteReg(13, OxOG, FALSE);

CODEC WriteReg(14, OxOG, FALSE);

CODECWriteReg(15, OxOG, FALSE);

CODEC WriteReg(16, Ox80, TRUE);

CODECWriteReg(17, OxOO, FALSE);

CODECWriteReg(18, Ox80, FALSE);

CODECWriteReg(19, Ox80, FALSE);

CODECWriteReg(20, OxOG, FALSE);

CODECWriteReg(21, OxCO, FALSE);

CODECWriteReg(22, OxOG, FALSE);

CODECWriteReg(23, OxOO, FALSE);

CODEC WriteReg(24, OxOO, FALSE);

CODECWriteReg(25, OxOO, FALSE);

CODEC WriteReg(26, OxOG, FALSE);

CODECWriteReg(27, OxOO, FALSE);

CODECWriteReg(28, Ox5C, TRUE);

CODECWriteReg(29, OxOO, FALSE);

CODECWriteReg(30, OxOO, FALSE);

CODECWriteReg(31, OxOG, FALSE);

/* end Cynthia M. Chow modifications */

/*---*/
void CODECWriteReg(Uint8 Reg, Uint8 Val, int Mce)

if (Mce) {
CODEC ADDR = Reg I 0x40;
CODECDATA = Val;
while (CODECADDR & Ox80);
CODECADDR = CODECADDR & -0x40;

else

CODECADDR = Reg;
CODECDATA = Val;

while (CODECADDR & 0x80);

/*---*/
Uint8 CODECReadReg(Uint8 Reg)

Uint8 val;

CODEC ADDR = Reg;
val = CODECDATA;

return val;

}

/* ---*

/ **\
* End of codec.c

\ ***/

134
Memory Configuration
<hpisect.asm>

.sect "hpisectl" ; place for pcdav

.int 0

.sect "hpisect2" ; place for

.int 0

.sect "hpisect3"

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

.short 0

... (repeats for total of 720 lines)

<mylink.cmd>

-1 adt2cfg.cmd

SECTIONS {
.wfftvals: {} > IDRAM

.wifftvals: {} > IDRAM

}

<recData.asm>

.sect "receivedVals"

.short 0

.short 0

.short 0

... (repeats for total of 18000 lines)

DSP Code

<r4_fft.sa>

; code from "Autoscaling Radix-4 FFT for TMS320C6000" (spra654.pdf)
; Yao-Ting Cheng, Texas Instruments Application Report, March 2000

.title "r4 fft.sa"

.def _r4_fft

.text

_r4_fft .cproc n, p x, p w

.reg n1, n2, ie, ial, ia2, ia3, iG, il, i2, i3, j, k;

.reg tO, tl, t2, w, x0, xl, x2, x3;

.reg tmp, mskh, xtmph, xtmpl;

.reg exp, scale;

add n, 0, n2
mvk 1, ie
zero mskh
mvkh OxffffO00O, mskh
zero scale

stage-loop:

group-loop:

135
add n, 0, k

add n2, 0, nl
shr n2, 2, n2
zero ial

zero j

add ial, ial, ia2
add ia2, ial, ia3
add j, 0, iG

butterflyloop:

add iO, n2, il
add il, n2, i2
add i2, n2, i3
ldw *+px[iO], xO
ldw *+p_x[il], x1
ldw *+p_x[i2], x2
ldw *+px[i3], x3
add2 x1, x3, tO
add2 x0, x2, ti
sub2 xO, x2, t2

add2 tO, tl, xO ; xO
sub2 tl, tO, tl
ldw *+pw[ia2], w ; load twiddle factor w2
smpyh tl, w, tmp

smpy tl, w, xtmph

sub tmp, xtmph, xtmph

and xtmph, mskh, xtmph

smpylh t1, w, tmp
smpyhl tl, w, xtmpl

add tmp, xtmpl, xtmpl

shru xtmpl, 16, xtmpl

or xtmph, xtmpl, x2 ; x2

sub2 xl,x3, tO

shl tO, 16, tl
neg tl, tl
extu to, 0 ,16, to
or ti, tO, tO
add2 t2, tO, tl

sub2 t2, tO, t2
ldw *+pw[ial], w ; load twiddle factor wl

smpyh tl, w, tmp

smpy tl, w, xtmph

sub tmp, xtmph, xtmph

and xtmph, mskh, xtmph

smpylh tl, w, tmp

smpyhl tl, w, xtmpl
add tmp, xtmpl, xtmpl

shru xtmpl, 16, xtmpl

or xtmph, xtmpl, xl ; xl

ldw *+pw[ia3], w ; load twiddle factor w2

smpyh t2, w, tmp

smpy t2, w, xtmph

sub tmp, xtmph, xtmph

and xtmph, mskh, xtmph

136
smpylh t2, w, tmp

smpyhl t2, w, xtmpl

add tmp, xtmpl, xtmpl

shru xtmpl, 16, xtmpl

or xtmph, xtmpl, x3 ; x3

stw xO, *+p x[iO]

stw x1, *+p_x[il]

stw x2, *+px[i2]

stw x3, *+p x[i3]

add iO, ni, 0
cmplt iO, n, tmp

[tmp]b butterflyloop branch to butterfly loop
add ial, ie, ial
add j, 1, j
cmplt j, n2, tmp

[tmp]b group loop ; branch to group loop

cmpeq k, 4, tmp ; test if last stage

[tmp]b end if true, branch to end

mvk 2, exp ; initialize exponent

zero j ; initialize index

mvkl OxOOOOffff, t2 ; mask for masking xtmpl

mvkh OxOOOOffff, t2
testbitgrowth: .trip 16

ldw *+p_x[j], tmp

norm tmp, xtmph ; test for redundant sign bit of HI half

shl tmp, 16, xtmpl

norm xtmpl, xtmpl ; test for redundant sign bit of LO half

cmplt xtmph, exp, tmp ; test if bit grow

[tmpladd xtmph, 0, exp

cmplt xtmpl, exp, tmp ; test if bit grow

[tmpladd xtmpl, 0, exp

cmpgt exp, 2, tmp ; if exp>2 than no scaling

[tmp]b no-scale

cmpeq exp, 0, tmp ; compare if bit grow 3 bits

[tmp]sub 3, exp, tO ; calculate shift

[tmplmvk 0x0213, tl ; csta & cstb to ext xtmpl

[tmpladd scale, to, scale ; accumulate scale

[tmp]b scaling

cmpeq exp, 1, tmp ; compare if bit grow 2 bit

[tmplsub 3, exp, tO

[tmp]mvk 0x0212, tl ; csta & cstb to ext xtmpl
[tmp]add scale, tO, scale ; accumulate scale

[tmp]b scaling
sub 3, exp, tO ; grows 1 bit
mvk OxO211, tl ; csta & cstb to ext xtmpl
add scale, tO, scale ; accumulate scale

b scaling

no-scale:

add j, 1, j
cmplt j, n, tmp ; compare if test all output

[tmp]b testbit growth ; if not, test next output

b nextstage ; else go to next stage

scaling:
zero j

scaling loop: .trip 16

[tmp] b
next-stage:

end:

ldw *+p_x[jl, tmp
shr tmp, tO, xtmph ; scaling HI half

and xtmph, mskh, xtmph ; mask HI half

ext tmp, tl, xtmpl ; scaling LO half

and xtmpl, t2, xtmpl ; mask LO half by OxOOOOffff
or xtmph, xtmpl, tmp ; x[j]=[xtmph I xtmpl]

stw tmp, *+px[j]

add j, 1, j
cmplt j, n, tmp

scalingloop

shl ie, 2, ie

shr k, 2, k

b stage loop ; end of stage loop

.return scale

.endproc

<adt2.h>

//Header file for adt2

// DSP/BIOS

#include <std.h>

#include <tsk.h>

#include <swi.h>

#include <hwi.h>
#include <idl.h>
#include <lck.h>
// logging functions

#include <log.h>
#include <sts.h>

#include <trc.h>

// CSL

#include <csl.h>

#include <cslmcbsp.h>

#include <csl irq.h>
#include <csl dma.h>

#include <stdlib.h>

#include "codec.h"

//#include <mathf.h>

//Fast RTS Library

#include <fastrts67x.h>

// DSPLIB functions

#include <blk move.h>
#include <maxidx.h>
// RTDX functions

#include <rtdx.h>
#include <target.h>

#define MOBILEID 0

137

138
#define DMALEN 0x00000080
#define BLEN 128 // number of samples in a block

#define LEN 256

//#define PAD 256
#define NCX 256 // the number of complex elements in an array

#define NX 512 // the number of elements in a complex array

#define NSLEPS 18 // the number of different slepian waveforms

/********** FFT functions ******************************/
extern int r4_fft(int, short*, short*);

void digitrev(int * restrict x, short int *index, int * restrict y, int

n);
void digitrevpwr(int * restrict x, short int *index, int * restrict y,

int n);

void digitrevindex(short int *index, int n, int radix);

/********** hardware initialization functions **********/

void McBSPinito;

void DMAinitIN(;

void DMAinitOUT(;

void configDMAGblRegs();

extern void CODECInito;

extern void CODECWriteReg(Uint8 Reg, Uint8 Val, int Mce);

extern Uint8 CODECReadReg(Uint8 Reg);

/********** software interrupt routines ****************/

void mainSWIfunc();
void syncSWIfunc(;
void decodeSWIfunc(;

void dataioSWIfunc(;

/********** hardware interrupt routines ***************/

void dmaOutISR(;
void dmaInISR(;

/********** block processing ****************

void get symbol(int * restrict bl, int * restrict b2, int * restrict
out, int s);
void reply(int *pilots, int *bl, int n);
void createreply(; // NOT BEING USED

/********** math stuff ******************************/
void cplx-mmul(int * restrict myx, short rl, short ci,

int * restrict y,short r2, short c2,
int *r,
short int * restrict scale);

int weighAvg(float * vi, short int * v2, float a, int n);

139
int findMax(float *x, int j, int k);
void vec div(int *vec, int len, int fact);

void vec smooth(int *pVec_, int len_);

int fround(float f);

//void glitchCorrect(int *vec_, int len_);

/********** DSP/BIOS Objects ***************************/
extern LOGObj trace;
extern SWIObj mainSWI;

extern SWIObj syncSWI;

extern SWIObj dataioSWI;

extern SWIObj sendSWI;

/********** CSL Objects ********************************/
MCBSPHandle mcbspO;
MCBSPConfig configO;

DMAHandle dmaO;

DMAConfig dmaconfigO;

DMAHandle dmal;

DMAConfig dmaconfigl;

/********** Globals ************************************/
/* arrays of complex numbers with format:

/* even-->real odd-->imag */
/ ***/

// need to decide what rep for matrix

short int *gpcurrp; // pointer to non-bit-reversed FFT of correlation

//debug

//short int *g pslepsp; // pointer to non-bit-reversed FFT of timing

slepian buffer

//end debug

short int *g pinput, *g pcurr, *g poutl, *g pout2, *g pout3; // input

waveform buffers, and frame buffer

short int *gpresp, *gpresp-p, *g-pmesg; // NOT USED (output

// buffers in DMA out)
short int *gpcurrfft, *g_psleps-fft; // holds the FFT of timing

// sync block and slepian

short int *g presultnew; // holds the autocorrelation result

float *g presult old; // holds the weighted average of

// autocorrelation result

short int *g-ptmp-data,*gpmydata, *g-pfactors; // holds the scaling

// factors and result

// from matrix

// multiplies

//int g-mydataind; // index of where to put data in gpmydata

// (referenced in ints)

short int grevindex[NCXI; // length of index array is PADLEN, the
index for digit reversal

140
static short int *gpzeros; // holds zeros for easy zeroing out

short int *gpwfft; //holds the coefficients for the FFT

short int *gpsleps; // the slepian waveforms

// slepians are in PADLEN x #wvfrms format
// slepians are in 2*BUFLEN x #wvfrms format

short int *gptransleps; // the complex conjugated slepians

int g count=O; // count for how many times syncSWI has run;

int gstatus=O; // equals 1 when syncSWI is running

int gstart=O; // the sample synchronization number

int gdav=O; // data available line equals 1 when a new

// pilot measurement has arrived

int *g psdav; // indicates that DSP can send data to PC

int *g pdspstart; // indicates to PC that DSP has data for it

short int *gpdat; // holds the decoded data to send to the PC

int *g-pinfo; // sends the sample number offset of mobile

<adt2.c>

#include "adt2.h"

//extern SWI Obj reportSWI;

//void reportSWIfunco;

//#define DRIFTDIR 1 // mobile is faster than transmission

//#define DRIFTDIR -1 // mobile is slower than transmission

#define ENDOFDATA OxO3O57E3F

#define BEGINOFDATA 0x03000000
#define DMA IN LEN 128

#define DMAOUTLEN 64

#define LOWHALF(x) ((x<<16)>>16) //grabs the lower 2 bytes (real part)

#define HIHALF(x) (x>>16) //grabs the upper 2 bytes (complex part) &

// makes it lower 2 bytes

//debug
//int comp=O;

//int maximum=O;

//short int *gpmydata;

static int blknum=l;
int sampnum=O;

//debug
int off=O;
int outstart=O;

int g driftAdj=O; // O=do normal thing 1=decode 2 blocks 2=skip a block
int driftIgnore=O;

int *g-ptmpCorr; // holds the unscaled result of FFT(sig)*FFT(slep)

141
void sendToHost();

void main() {

CSL init(;

SWIpost(&mainSWI);

/ *** **** ** * **** ** ** *********** ******* ***** ***** *** *** * *** * */

/* mainSWIfunc() initializes hardware and globals
/ *******************************/

void mainSWIfunc()

int gie, i;
Uint8 v;

short int *temp;

LOG printf(&trace, "initializing MCBSP, codec\n");

gie = IRQglobalDisable(;

g_psdav=(int *)0x02000000;
g-pdspstart=(int *)0x02000004;

g_pdat=(short int *)0x02000008;
g_pinfo=(int *)OxO20005A8;

// initialze the buffers

// g_pinput and decoding buffers

g_pinput = (short int *)malloc(LEN*sizeof(short int));

g_pcurr = (short int *)malloc(LEN*sizeof(short int));

g_poutl = (short int *)malloc(LEN*sizeof(short int));

g_pout2 = (short int *)malloc(LEN*sizeof(short int));

g-pout3 = (short int *)malloc(LEN*sizeof(short int));

g_pcurrp = (short int *)malloc(NX*sizeof(short int));

g_ptmpdata = (short int *)malloc(2*NSLEPS*sizeof(short int));

// g_pmydata = (short int *)malloc(2*NSLEPS*sizeof(short int));

g_pfactors = (short int *)malloc(2*NSLEPS*sizeof(short int));

g_ptmpCorr = (int *)malloc(NX*sizeof(int));

g_pmydata=(short int *)0x03000000;
//gmydata-ind=O;

// output buffers, uncomment it using codec to reply

g_presp = (short int *)malloc(3*LEN*sizeof(short int));

g-prespp=g-presp;

g_pmesg = (short int *)malloc(LEN*sizeof(short int));

for(i=O;i<3*LEN;i++)

g_presp[i]=O;

//HPI sync registers and data exchange register

*g-psdav=o;
*g-pdspstart=o;

142
*rdy=0;
for (i=0;i<8;i++)

g-pdat [i]=0;

for(i=0;i<LEN;i++)

g-pinput[i]=0;

g pcurr[i]=0;

g_pcurrp[2*i]=O;

g-pcurrp[2*i+1]=0;

g-poutl [i]=0;
g_pout2[i =0;
g_pout3[i]=0;
g_pmesg[i]=0;

//g-revindex[i]=0;

g_pzeros=(short int *)malloc(LEN*sizeof(short int));

for(i=0;i<LEN;i++) {
g_pzeros[i]=0;

//g-pzeros[i]=ZERO;

for(i=0;i<2*NSLEPS;i++)

g_ptmpdata[i]=0;

g-pmydata[i]=0;

digitrevindex(grevindex, NCX, 4);

g_pcurrfft = (short int *) malloc(NX*sizeof(short int));

g_pslepsfft = (short int *) malloc(NX*sizeof(short int));

g presult old = (float *) malloc((NX+1)*sizeof(float));

g_presultnew = (short int *) malloc((NX+1)*sizeof(short int));

for(i=0;i<NX;i++) {
g_pcurr fft[i] = 0;
g_pslepsfft(i] = 0;
g_presultold[i] = 0;
g_presultnew[i] = 0;

g presult old[NX]=0;

g_presultnew[NX]=0;

//initialzing the w coeffs and the slepian matrix

g_pwfft = (short int *) 0x8000E400; //this address should be

// where the wfft array is
// stored in memory

// this is where the slepians are stored. The slepians have been

// multiplied by 2047 (2A11) to preserve precision

g psleps = (short int *) 0x00400000;
// matrix is NSLEPS x BLEN (32 x 128)

g_ptransleps = (short int *) Ox0040 2 4 0 0 ;
//g ptransleps = (short int *) OxOO 4 04 0 0 0 ;

143
// debug testing vec div

//vecdiv((int *)g-psleps,BLEN,4);

CODEC Init(;

v = CODECReadReg(OxlO);
CODECWriteReg(OxlO, v I Ox02, TRUE);

IRQglobalRestore(gie);

McBSPinit();

configDMAGblRegs();

dmaO = DMAopen(DMACHAO, DMAOPENRESET);
// dmal = DMAopen(DMACHAl, DMAOPENRESET);// uncomment for

// using codec uplink

IRQenable(DMAgetEventId(dmaO));
// IRQenable(DMAgetEventId(dmal)); // uncomment for using codec

// uplink

// DMAinitOUT(; // for use with codec uplink

DMAinitIN();

temp = gpinput;

g_pinput = g_poutl;
g poutl = g pcurr;

g_pcurr = temp;

DMAsetGlobalReg(DMAGBLADDRRLDB, (Uint32)gpinput);

/ ***/

/* McBSPinit() configures the serial port for operation with the

/* codec */
/ ***/

void McBSPinit()

mcbspO = MCBSP open(MCBSPDEVO,MCBSPOPEN RESET);
if (!mcbspO) {

LOGprintf(&trace,"Error opening serial port.\n");

}

memset(configO,0,sizeof(MCBSPConfig));

config0.spcr = 0x00002000;
config0.rcr = OxOO0100AO;
config0.xcr = OxOO0100AO;
config0.pcr = OxOOCOGO0O;
config0.srgr = OxOOOOOOOO;
config0.mcr = MCBSP MCR DEFAULT;

config0.rcer = MCBSPRCERDEFAULT;
config0.xcer = MCBSP XCER DEFAULT;

144
MCBSPconfig(mcbspO,&configO);

MCBSPenableXmt(mcbspO);

MCBSPenableRcv(mcbspO);

void configDMAGblRegs()

DMAsetGlobalReg(DMA GBLADDRRLDB, (Uint32)g pinput); // dest for

// dmaIN
DMA setGlobalReg(DMAGBLADDRRLDC, (Uint32)gpresp);

DMA setGlobalReg(DMAGBLCNTRLDA,DMAINLEN);
DMAsetGlobalReg(DMAGBLCNTRLDB,DMAOUTLEN);

/ ***/

/* DMAinitOUT() configures a DMA channel for output operation with */

/* the serial port
/ ***/

void DMAinitOUT()

DMA configArgs(dmal,

DMAPRICTLRMK(DMAPRICTLDSTRLDNONE,

DMAPRICTLSRCRLDC,

DMAPRICTLEMODNOHALT,

DMAPRICTL_FS_DISABLE,

DMAPRICTLTCINTENABLE,

DMAPRICTLPRIDMA,

DMAPRICTLWSYNCXEVTO,

DMAPRICTLRSYNCNONE,

DMAPRICTLINDEXNA,

DMAPRICTLCNTRLDB,

DMAPRICTLSPLITDISABLE,

DMAPRICTLESIZE_32BIT,

DMAPRICTLDSTDIRNONE,

DMAPRICTLSRCDIRINC,

DMAPRICTLSTARTAUTOINIT),

Ox00000088,
(Uint32)g_presp,

MCBSP getXmtAddr(mcbspO),

DMAXFRCNTRMK(DMAXFRCNTFRMCNTOF(O),

DMAXFRCNTELECNTOF(DMA OUTLEN)));

LOG printf (&trace, "dmaOUT started\n");
DMA autoStart (dmal);

void DMAinitIN()

DMA configArgs(dmaO,

DMAPRICTLRMK(DMAPRICTLDSTRLDB,

DMA PRICTLSRCRLDNONE,

DMA PRICTL EMOD NOHALT,

DMAPRICTL_FS_DISABLE,

DMA PRICTL TCINT ENABLE,

145
DMA PRICTLPRI DMA,
DMAPRICTLWSYNCNONE,
DMAPRICTLRSYNCREVTO,

DMAPRICTLINDEXNA,

DMAPRICTLCNTRLDA,

DMA PRICTL SPLIT DISABLE,

DMAPRICTLESIZE_32BIT,

DMAPRICTLDSTDIRINC,

DMAPRICTLSRCDIRNONE,

DMAPRICTLSTART AUTOINIT),

//0x00000080, // block int enable
//0x00000040, // frame int enable
Ox00000188,
MCBSPgetRcvAddr(mcbspO),
(Uint32)g pinput,
DMAXFRCNT_RMK(DMAXFRCNT_FRMCNTOF(O),

DMAXFRCNTELECNTOF(DMAINLEN)));

LOG printf(&trace,"dmaIN started\n");

DMA autoStart(dmaO);
//}
// else {
// LOG printf(&trace,"dmaIN didn't stop before trying
// to restart: %d\n",dmaCount);

//exit(-1);
//}
// dmaCount++;

/ ***/

/* dmaOutISR() restarts the DMA when a block transfer to the serial */
/* port is done
/ ***/

void dmaOutISR()
// short int *temp;

static int everyother=O;

g presp-p+=BLEN;
if (g_presp_p == g presp+3*LEN)

g_prespp=gpresp;

}
DMA setGlobalReg(DMAGBLADDRRLDC, (Uint32)gpresp p);
if (DMAGETCONDITION(dmal,DMASECCTLFRAMECOND)) {

DMACLEARCONDITION(dmal,DMASECCTLFRAMECOND);

}
if (DMAGETCONDITION(dmal,DMASECCTLBLOCKCOND)) {

DMACLEARCONDITION(dmal,DMASECCTLBLOCKCOND);
I
if (everyother==O)
// LOG printf(&trace,"calling createreply\n");

createreplyo;
everyother=l;

else

146
everyother=O;

/ ***/

/* dmaInISR() restarts the DMA when a block transfer from the serial */

/* port is done */
/ ***/

void dmaInISR()

// static unsigned int g count = 0;

// short int *temp;

//Bool g status=FALSE;

//++gcount;

//LOG printf(&trace,"block received\n");

sampnum=0;
if (DMAGETCONDITION(dma0,DMASECCTLRDROPCOND))

LOGprintf(&trace,"still missing samples\n");

exit(-1);

if (DMAGETCONDITION(dma0,DMASECCTLFRAMECOND))

DMACLEARCONDITION(dma0,DMASECCTLFRAMECOND);

if (DMAGETCONDITION(dma0,DMASECCTLBLOCKCOND)) {

DMACLEARCONDITION(dma0,DMASECCTLBLOCKCOND);

if (gstatus!=0) {
LOG printf(&trace,"ERROR: syncSWI still running\n");

DMA stop(dmal);

DMA stop(dma0);

exit(-1);

else

SWIpost(&syncSWI); // debug commented out

//LOGprintf(&trace,"finished dmaInISR\n");

/ ***/

/* syncSWIfunc() --

/* takes care of picking out whole symbol blocks from the incoming */

/* sample stream
/ ***/

void syncSWIfunc()

static int pk = 4; // slepian 5 is always used for

// synchronization

147
// static float smooth=O;

static int wrap=O; // 1 is wrapping left 2 is wrapping right
static int wrap echo=O; //1 is instability drift left

// 2 is instability drift right

static int prev start=O; // old start value

static int now=O;

short int *temp;

//int tmpl=O,tmp2=0; // used in finding product of
// FFT(sig)*FFT(slep)

int div=O; // the default division factor

int maximum; // the index of the maximum of the autocorrelation

static int comp; // the value of the previous index offset

int i,k,diff;
int scalel,scale2,scale3;

int c,s;

// int edge=O;

static int printcntl=O; // print state only once, not once per

// execution

//static int gcount=O;

// LOGprintf(&trace,"processing buffer.. .start: %d\n",g start);

g-status=1;

// vec div((int *)g-pcurr,BLEN,4); // to avoid FFT overflow

vecdiv((int *)g pcurr,BLEN,1);

vecsmooth((int *)g-pcurr,BLEN);

if (g-count==O) {
get symbol((int *)gpoutl, (int *)g-pcurr, (int *)gpout3,

BLEN);

}
else

get symbol((int *)g poutl, (int *)g pcurr, (int *)g pout3,
now);

//get symbol((int *)g poutl, (int *)g pcurr, (int *)g pout3,
g_start);

// take the gpinput buffer and zero pad so length is power of 4

//blk move(g pcurr, g pcurr fft,LEN);

// oldin probe point
blkmove(gpout3, gpcurrfft,LEN);

blkmove (g-pzeros,g-pcurrfft+LEN, LEN);

// take the slepian and zero pad so length is power of 4

blkmove(gpsleps+(pk*LEN), g pslepsfft, LEN);

blk move(g pzeros,g psleps fft+LEN, LEN);

if (gdriftAdj==O) {
if (wrap echo==2) { // wrap left, when normal is to right

148
if (print cntl==0)

LOG printf(&trace,"wrap back left, opposite

norm");

printcntl=1;

get symbol((int *)gpout2, (int *)g poutl,
(int *)gpout3, gstart);

else

if (wrapecho==1) { //wrap right when normal is

// to left

if (print cntl==0) {
LOG printf(&trace,"wrap back right

opposite norm");

printcntl=l;

getsymbol((int *)g-poutl, (int *)g-pcurr,
(int *)g-pout3, g start+BLEN);

else { // do normal
print cntl=0;
getsymbol((int *)g poutl, (int *)gpcurr,

(int *)g-pout3, g start); // normal

decodeSWIfunc);

else

if (g driftAdj==1) { // decode two blocks from left drift
LOG printf(&trace,"decoding two blocks");

get symbol((int *)g pout2, (int *)gpoutl,
(int *)g-pout3, gstart);

decodeSWIfunco;

get symbol((int *)g poutl, (int *)gpcurr,
(int *)g-pout3, gstart);

decodeSWIfunco;

g driftAdj=0;

else { // skip a block from right drift
LOG printf(&trace,"skipping a block");

//sendToHost();
g-driftAdj=0;

scalel=r4_f ft(NCX,g pcurr fft,g-pwfft);

//slepsin probe point

// digitrev((int *)gpcurrfft,g rev index, (int *)g-pcurrp,NCX);

scale2=r4_fft(NCX,g psleps fft,gpwfft);

//digitrev(gpsleps fft,grev index,sleps-p,NCX,4);

149
// doing a complex number multiply, taking the conj of the

// slepians here

// dividing by N (PADLEN) for the ifft (do it here so don't have

// to create another loop)

for(i=O;i<NCX;i++) {

// should do overflow checking here. it works now probably

// because of the >> 8

k=i*2;

c = ((int *)gpcurr_fft)[i];

s = ((int *)g psleps fft) [i];

g-ptmpCorr[k]=(_mpy(c,s) + _mpyh(c,s)) >> 8;

g ptmpCorr[k+l]=(mpylh(c,-s) + _mpyhl(c,s)) >> 8;

if ((abs(g ptmpCorr[k])>=32767) 11

(abs(g ptmpCorr[k+1])>=32767))

div++;

}

//gpresult new[k] = (_mpy(c,s) + _mpyh(c,s)) >> 8;
//g-presult new[k+l] =(_mpylh(c,-s) + _mpyhl(c,s)) >> 8;

// now scale g ptmpCorr to shorts in g presult new

for(i=O;i<NX;i++) {

g_presultnew[i] = LOWHALF((g ptmpCorr[i])>>div);

// take the FFT which results in x[-n+1]

digitrev((int *)g-presultnew,grevindex, (int *)gpcurr p,NCX);

scale3=r4 fft(NCX,g pcurr p,g pwfft);

// take the magnitude of the correlation squared

digitrevpwr((int *)g-pcurr-p,grevindex,

(int *)gpresultnew,NCX);

if (g-count > 1) {
maximum=weighAvg(g-presultold, gpresultnew, .2, NX)>>l;

//maximum=weighAvg(g presult old, g presult new, 1, NX)>>l;

}
else

maximum=weighAvg(g-presultold, gpresultnew, 1, NX)>>l;

}

comp=now;

if (maximum!=O)

if (maximum > BLEN)
if (g count==O)

now=LEN-maximum;

//smooth=(float)now;

else

now+=LEN-maximum;

else

if (g count==O)

150
now=BLEN - maximum;

//smooth=(float)now;

else
now-=maximum;

if (now>=BLEN)

now-=BLEN;
//smooth=(float)now;

else

if (now<O)

now+=BLEN;

//smooth=(float)now;

if (abs(now-comp)<BLEN)

smooth=.9*smooth+.l*((float)now);

now=_spint(smooth);

prevstart=g_start;

out start=g start+40;

if (outstart>BLEN-1)

outstart-=BLEN;

diff=comp-now; //old sync number-new sync number

if ((diff!=O) && (g count > 0))

if (diff>120) {
if (wrap==0) {// wrapping over to the right for the

// first time

g driftAdj=2; //skip a block

wrap=2; // right

else

//if ((wrap==1) && (wrapecho==0))

if (wrap==1) {
// normally drifting left

wrapecho=1;

else
//second (or more) time drifting right

wrapecho=0;

else

if (diff<-120)
if (wrap==0) {// drifting to the left for the

// first time
g driftAdj=1; // decode two blocks
wrap=1; // left

//if ((wrap==2) && (wrapecho==O))
if (wrap==2) {
// normally drifting to the right

wrap echo=2;

else
//second (or more)

// left

wrap echo=O;

else
//if
//

if(

time drifting

(abs(diff)>3)

now=comp;

(now>2) && (now<125))

wrap=O;

wrap echo=O; // for

// safe to unset
// wrap

good measure

g_start=now;

if (gstart!=prev start) {
LOGprintf(&trace,"drift!

}

%d %d ",g start,prev start);

if (g-start < 0) {
LOGprintf(&trace,"ERROR: negative index\n");

exit(-1);

}

temp = gpinput; // debug commented out
g_pinput = g_pout2;
gpout2 = g poutl;
g_poutl = g_pcurr;
g_pcurr = temp;

blkmove(gpzeros,gpinput,LEN); // zero out the new input buffer

DMAsetGlobalReg(DMAGBLADDRRLDB, (Uint32)gpinput);

//LOG printf(&trace,"finish syncSWI\n");

// SWIpost(&syncSWI); // debug statement

// if (gcount<5) I

g_count++;

g status=0;
blknum++;

}
else

151

}
}

152

/ ***/

/* decodeSWIfunc()

/* takes a buffer of one complete symbol and decodes with the */
/* proper slepian

/ ***/

void decodeSWIfunc()

int i,shift;

short int *p g-pmydata;

//LOG printf(&trace,"decoding symbol\n");

// multiply block (block is in g pout2) with

cplx mmul((int *)g ptransleps,NSLEPS,BLEN,

(int *)g pout3,BLEN,l,

(int *)g ptmp data,

g_pfactors);

// shift up by factor and shift down by 2047

// original data

p_g_pmydata=gpmydata;

for(i=0;i<NSLEPS<<l;i++)

transposed slepians

to get back the

shift = 11 - gpfactors[i]; // multiplies by two as well

//shift = 8 - g_pfactors[i]; // multiplies by 8 to

// counteract divide down to

//protect against FFT overflow

if (shift >=0)

*gpmydata++= gptmp-data[i] >> shift;

else

LOG printf(&trace,"overflow");

if (g-pmydata==(short int *)ENDOFDATA) {
g-pmydata=(short int *)BEGINOF DATA;

g-pmydata=p-g_pmydata;

g_dav=l;

SWI post(&sendSWI);

/ ***/

/* digitrev index(...)

/* generates the index to bit reverse an array of complex numbers */

/* length 256

/* for use with the r4_fft function
/ ***/

void digitrev index(short int *index, int n, int radix)

short int i;

}

153
short int lobits, hibits, lomidbits, himidbits, result;

lobits = 0;
lomidbits = 0;
himidbits = 0;
hibits = 0;
for(i=0;i<n;i++)

result = 0;
lobits = i & 0x00000003;
lomidbits = i & OxOOOCOC;
himidbits = i & 0x0000030;
hibits i & 0x000000C0;
result 1= lobits << 6;

result 1= lomidbits << 2;

result 1= himidbits >> 2;

result J= hibits >> 6;

index[i] = result;

/ ***/

/* digitrev(...

/* my function to bit reverse an array of complex numbers length 256 */

/ ***/

void digitrev(int * restrict x, short int *index, int * restrict y,

int n)

int i;

for(i=0;i<n;i++)

y[i] = x[index[i]];

/ ***/

/* digitrev pwr(...)

/* my function to bit reverse an array of complex numbers length 256 */

/* and return the magnitude squared of the result
/ ***/

void digitrevpwr(int * restrict x, short int *index, int * restrict y,

int n)

int i,tmp;

for(i=0;i<n;i++)

tmp=x[index[i]];

y[i]=(short int) ((_mpy(tmp,tmp) + _mpyh(tmp,tmp)) >> 16);

/ ***/

/* getsymbol(...)

/* gets the symbol from two buffers, must be in the order of

/* bl = old buffer
/* b2 = new buffer, complex vector format
/ ***/

154

void getsymbol (int * restrict bl, int * restrict b2, int *

restrict out, int s)

/* assumes bl, b2, out of length BLEN*/

int i;

if (s < 0)
LOGprintf(&trace,"negative start: %d\n",s);

exit(-1);

I

bl+=s;
for(i=s;i<BLEN;i++) {

*out++=*bl++;

}
for(i=0;i<s;i++) {

*out++=*b2++;

out=out-BLEN;
bl=bl-BLEN;

b2=b2-s;

/ ***/

/* reply(..) */
/* packs 2 pilot measurements into block

/* *r is the block
/* vall is pilot 1, val2 is pilot 2

/* n is the length of the block */
/ ***/

// I------29 pl-----I-----29 p 2 ----- I-----29 p 3 ----- I-----29 p4-----I
// 0 32 64
// 96 128

void reply(int *pilots, int *bl, int n) {
int i,j;
for (i=0,j=32;i<n>>2;i++,j++)

* (bl+i)=*(pilots+2*MOBILE ID);

(bl+j)=(pilots+2*MOBILEID+1);

void createreply()

static int p=LEN, old start=0;

// int off=0;
int i;

//check gdav

if (gdav == 1)

reply((int *)gpmydata, (int *)g pmesg,BLEN);
if (g count<2) {

if (out start<BLEN>>l)

off=out start<<l;
}
else{

155
off=(outstart-BLEN)<<1;

else

off=(out start-oldstart)<<1;

if (off !=0) {
LOG printf(&trace,"adjusting, off: %d\n",off);

if (off > 240) {
off=(outstart-BLEN)<<1;

//off=(BLEN-out start)<<1;

if (off < -240)

off+=LEN+l;

//off=-(out start<<1);

oldstart=out start;

LOG printf(&trace,"off: %d p: %d\

p+=off;
if (p>=3*LEN)

p-=3*LEN;

LOGprintf (&trace, "wrapping

if (p<0) {
p+=3*LEN;
LOG printf (&trace, "wrapping

LOGprintf(&trace,"p: %d\n",p);

for (i=0;i<LEN;i++) {

*(g presp+p)=*g pmesg;
p++;

g_pmesg++;

if(p==3*LEN)

p=0;

g-pmesg-=LEN;

I",off,p);

over\n") ;

under\n");

}
else

LOG printf(&trace,"no pilot to measure\n");

/*if (g-count > 1) {
DMAstop(dma0);

DMAstop(dmal);

exit (-1);

g_dav=0;

/ ***/

/* cplx mmul(...
/* complex matrix multiply

//

//

}

{

}

}

156
/ ***

void cplx mmul(int * restrict myx, short rl, short cl,

int * restrict y, short r2, short c2,

int *r,

short int * restrict scale){

short i,j,k;

int templ, temp2;

int *yp;

short int signi, sign2;

if((cl==r2) && (cl>0) && (c2>0) && (rl>0))

yp=y;
//myx=(int *)twobytwo;

//r=(int *)answer;

for(i=0; i<rl; i++) /* top to bottom

{

j //verify parameters

for(j=0; j<c2; j++) /* left to right */

yp=y+j;
//temp=0;

temp1=0;
temp2=0;

signl=0;
sign2=0;
for(k=0; k<cl; k++) /* multiply and add */

//temp+= (*x) * (*yp);
templ+=_mpy(*myx,*yp)-_mpyh(*myx,*yp);

temp2+= mpylh(*myx,*yp)+_mpyhl(*myx,*yp);
myx++;

yp+=c2;

myx-=cl;

signl=16 - _norm(templ);
sign2=_norm(temp2);

//LOGprintf(&trace,"signl: %d\n",signl);

//LOGprintf(&trace,"sign2: %d\n",sign2);

if (signl > 0) {
temp= (templ >> signi) & OxOOOOFFFF;
*scale = signi;

scale++;

else

templ templ
*scale = 0;
scale++;

if (sign2 >=16
temp2 temp2

*scale = 0;
scale++;

else

& Ox0000FFFF;

<< 16;

temp2 = (temp2 << sign2) & OxFFFFOOOO;

157
16 - sign2;

*r=_add2(templ,
r++;

myx+=cl;

/************weighAvg(**************/

int weighAvg(float * v1, short int * v

/* vi is where the result is put

float temp=O;
float prev=O;
int
int
for

temp2); /* store sum */

2, float a, int n)
back into */

i;
res;
(i=O;i<n;i+=2)
temp= *vl*(1-a)+((float)*v2)*a;
*vl=temp;
// find the maximum
if (prev < temp)

prev=temp;
res=i;

}
vl+=2;
v2+=2;

vl-=n;
v2-=n;
return res;

/************findMax()**************/
int findMax(float *x, int j, int k) I

int i;

int res=O;

float temp=O;
for (i=j;i<k;i++)

if (temp < *x)

temp = *x;
res=i;

}
x++;

}
x-=k-j;

return res;

void sendToHost()
int i;

*scale =
scale++;

}

}
}

}

{

}

{

158
static int num=l; // the number of blocks to be sent

static int *p_g_pinfo=(int *)0x020005A8;

*gpdspstart=l;

// LOG printf(&trace,"copying decoded data: %d",num);

for(i=O;i<NSLEPS;i++) { // copy the decoded data into the

// HPI exchange buffer

*((int *)gpdat)=*((int *)gpmydata);

g_pdat+=2; // these are shorts, so should increase them

// by 2
g_pmydata+=2;

if(g-pmydata>=(short int *)ENDOFDATA)

g pmydata=(short int *)BEGIN OF DATA;

*gpinfo=g_start;

g_pinfo++;

if (*gpsdav!=O) { // the PC has not dealt with the previous data

// in HPI buffer

if (g pdat>(short int *)0x020005A7) { // allow for num=20,

// if this is not

// enough, exit with

// an error

LOG printf(&trace,"PC too slow: %d",num);

exit(-1);

else

num++;

else

// PC has read the last data, so restart HPI buffer from

// the beginning

// restart the num count

g-psdav=num(NSLEPS<<2); // number of blocks*number of

// symbols*bytes/symbol

g_pdat=(short int *)0x02000008;
g pinfo=p_g_pinfo; // restart the offset log

//if (*gpsdav>72)
// LOGprintf(&trace,"sending multiple frames: %d",num);

num=l;

int fround(float f)

int res=O;

// int tmp=O;

// tmp=(int) (f*2);

res=((int) (f*2))-(int)f;

return res;

159

void vec div(int *vec, int len, int fact)

// divides the vector vec of length len by 2^fact, fact > 0

int i, r=0, c=0;
for (i=0;i<len;i++)

//r=(((*vec)&0xOOOOFFFF)<<16)>>(16+fact);

//c=(((*vec)>>(16+fact))<<16);

r=LOWHALF(*vec)>>fact;

c=(HIHALF(*vec)>>fact)<<16;

*vec=_add2(r,c);

vec++;

vec-=len;

void vec smooth(int *pVec_, int len)
//Assumes that len_ is atleast 2.

int i, templ, temp2;

for (i=0;i<len_;i++)

if((abs(HIHALF(pVec_[i]))>1000) 11
(abs(LOWHALF(pVec_[ii)) >1000))

LOG printf(&trace,"smoothing glitch");

templ=pVec_ [(i+1) >= len ? i-1:i+1];

temp2=pVec [(i-1) < 0 ? i+1:i-1];
pVec_[i]=_add2(templ,temp2);

pVec [i]= add2(LOWHALF(pVec [i])>>l, ((HIHALF(pVec [i]))>>1)<<16);

C++ Host PC Code
<HPIreceive.cpp>

// HPIreceive.cpp : Defines the entry point for the console

application.

//
/****** this needs to be changed between mobile 1 and 0 *************/

/* change MOBILEID*/

#include "stdafx.h"

#include <stdlib.h>
#include <windows.h>

#include <evm6xdll.h>
#include <iostream>

#include <winsock2.h>

#define DSPSNDFLAG 0x02000000 // address of data ready flag

#define DSPSTARTFLAG 0x02000004 // address of DSP started flag

#define DSPDATA 0x02000008 // address of DSPDATA buffer

160
#define DSP OFFSET OxO20005A8
#define LEN 72 // length in bytes of a data frame from DSP

#define PACKETSIZE 76 // length in bytes of one data frame + MOBILE ID

//#define MOBILEID 0 // mobile ID number
#define MOBILEID 1 // mobile ID number

HANDLE h board; // handle to the DSP board

LPVOID h hpi; // handle to the HPI interface

ULONG ul temp;

ULONG *respPacket; // buffer holding the data to be sent to the base
stations and display
ULONG packetLen; // length in bytes of the received response plus
mobile ID

ULONG *dspResp; // buffer holding the contents of data read from DSP
ULONG respLen=0; // length in bytes of response received from the DSP

ULONG DSPFLAGRD(ULONG addr) I

/* reads a single int from the location addr */

ULONG ulval;

if(!evm6x-hpireadsingle(hhpi,&ul val,4,addr))

printf("evm6x read single() failed\n");

return ulval;

}

void DSPFLAGSET(ULONG addr,ULONG ulval)

/* writes the value ulval to addr */
if(!evm6x-hpiwritesingle(hhpi,ul val,4,addr))

printf("evm6x write single () failed\n");

void DSPDATARD(ULONG *buff, ULONG *len)

/* reads len bytes from DSPDATA to buff */

ULONG temp=*len;

if(!evm6x hpi read(h hpi,buff,len,DSPDATA))

printf("evm6xhpiread() failed\n");

else

if (*len != temp)

printf("evm6xread incomplete, read %d bytes of
%d\n",*len,temp)

}

// printf("%d %d %d %d\n", (int) ((*buff)<<16)>>16, (int) (*buff)>>16,
(int) ((*(buff+l))<<16)<<16, (int) (*(buff+l))>>16);

int main(int argc, char* argv[])

int i,j;
// holds data from DSP, max size is 20 frames
dspResp=(ULONG *)malloc(20*18*sizeof(ULONG));
//holds data to send, max size is 60 response packets;
respPacket=(ULONG *)malloc(80*19*sizeof(ULONG));
// the index at where to start writing the data to respPacket
int respInd=0;
// holds the address of respPacket
ULONG *p respPacket=respPacket;
ULONG *pdspResp=dspResp; // holds the address of dspResp
for (i=0;i<80;i++) {

*respPacket=MOBILEID; // create a default reponse packet
respPacket++;
for(j=0;j<18;j++)

*respPacket=0;
respPacket++;

respPacket=prespPacket;

// HPI initialization
h_board=evm6xopen(0,FALSE);
if(h board==INVALIDHANDLEVALUE)

printf("unable to open Evm board\n");

}
else

printf("board opened successfully\n");

}

h_hpi=evm6x hpiopen(hboard);
if(hhpi==NULL) {

printf("could not open HPI port on board\n");
evm6xclose(hboard);

}

// open a socket connection to base stations
WSADATA WsaData;
if (WSAStartup(MAKEWORD(2,0),&WsaData)!=0)

printf("WSA Initialization failed\n");

}

// base 0
SOCKET mySocket;
mySocket = socket(AFINET,SOCKSTREAM,0);
if (mySocket == INVALIDSOCKET) {

printf("could not create socket to base 0\n");

}
SOCKADDRIN SockAddr;
SockAddr.sinport=50;
SockAddr.sin family=AFINET;

SockAddr.sin addr.S un.S un b.s bl=135;
SockAddr.sin addr.Sun.S unb.s b2=3;
SockAddr.sin addr.S un.S un b.s b3=85;

161

162
SockAddr.sin addr.Sun.Sun b.s b4=85;

// base 1

SOCKET mySocket2;

mySocket2 = socket(AF INET,SOCK STREAM,O);
if (mySocket2 == INVALID SOCKET) {

printf("could not create socket to base 1\n");

SOCKADDRIN SockAddr2;

SockAddr2.sin port=50;

SockAddr2.sinfamily=AFINET;

SockAddr2.sin addr.S un.S un b.s bl=135;

SockAddr2.sinaddr.Sun.Sunb.sb2=3;

SockAddr2.sinaddr.Sun.Sun b.sb3=87;

SockAddr2.sin addr.Sun.Sunb.sb4=38;

// display server
SOCKET mySocket3;

mySocket3 = socket(AF INET,SOCK STREAM,O);

if (mySocket3 == INVALIDSOCKET) {
printf("could not create socket to display\n");

}
SOCKADDRIN SockAddr3;

if (MOBILEID==O) {
// mobileO

SockAddr3.sin port=51;

else {
//mobilel

SockAddr3.sin port=50;

}
SockAddr3.sinfamily=AFINET;

SockAddr3.sin addr.S un.S un b.s bl=135;

SockAddr3.sinaddr.Sun.Sunb.sb2=3;

if (MOBILEID==1) {
SockAddr3.sinaddr.Sun.Sunb.sb3=85;

SockAddr3.sinaddr.Sun.Sunb.s b4=95;

}
else {

SockAddr3.sin addr.S un.S un b.s b3=83;
SockAddr3.sinaddr.Sun.Sunb.s b4=209;

if (connect(mySocket,

(SOCKADDR *)&SockAddr,sizeof(SockAddr)) 0) {
printf("connecting to baseG failed, error:

%d\n",WSAGetLastError());

if (connect(mySocket2,

(SOCKADDR *)&SockAddr2,sizeof(SockAddr2)) != 0)
printf("connecting to basel failed, error:

%d\n",WSAGetLastError());

163

if (connect (mySocket3,
(SOCKADDR *)&SockAddr3,sizeof(SockAddr3)) 0)

printf("connecting to display failed, error:

%d\n",WSAGetLastError());

// else

fd set writeSet;

fdset oldwriteSet;
FDZERO(&writeSet);

FDSET(mySocket,&writeSet);

FD_SET(mySocket2,&writeSet);

FD_SET(mySocket3,&writeSet);

oldwriteSet=writeSet;

timeval delay;

delay.tvsec=0;

delay.tvusec=0;

// disable Nagle's algorithm so won't buffer small sends

bool type=true;

int len=4;

setsockopt(mySocket,IPPROTO _TCP,TCP NODELAY,
(const char *)&type,len);

getsockopt(mySocket,IPPROTOTCP,TCP_NODELAY,

(char *)&type, &len);
if(type) {

printf("Nagle algorithm disabled\n");

}
else

printf("Nagle algorithm enabled\n");

}

type=true;

setsockopt(mySocket2,IPPROTO_TCP,TCP_NODELAY,
(const char *)&type,len);

getsockopt(mySocket2,IPPROTOTCP,TCP_NODELAY,

(char *)&type,&len);

if(type) {
printf("Nagle algorithm disabled\n");

}
else

printf("Nagle algorithm enabled\n");

type=true;

setsockopt(mySocket3,IPPROTO_TCP,TCP_NODELAY,

(const char *)&type,len);

getsockopt(mySocket3,IPPROTOTCP,TCP_NODELAY,

(char *)&type,&len);

if(type) {
printf("Nagle algorithm disabled\n");

else
printf("Nagle algorithm enabled\n");

164

while(DSPFLAGRD((ULONG)DSPSTARTFLAG)==O){}

printf("DSP started\n");

int newData=O;

while(true) {
respLen=DSPFLAG RD((ULONG)DSPSNDFLAG);

if((((int)respLen)!=O) && (respInd<=1501)){

packetLen+=respLen;
DSPDATARD(dspResp,&respLen);

it (respLen!=O)

printf("buffering %d\n",packetLen);

}
for (j=O;j<(((int)respLen)/72);j++)

// for number of blocks from DSP

*(respPacket+respInd)=(ULONG)MOBILE ID;

// set first element to be MOBILEID;
//respPacket++;

respInd++;
packetLen+=4;
for(i=O;i<18;i++)
// set the rest of block to data

*(respPacket+respInd)=*dspResp++;

respInd++;

//respPacket=prespPacket;

dspResp=p_dspResp;

newData=3;

// let sockets know have new data to send
DSPFLAGSET((ULONG)DSPSNDFLAG,O);

// let DSP know received data OK

else

// if ((int)respLen>O)

// printf("respLen: %d respInd: %d

packetLen:d\n", (int)respLen,

respInd, (int)packetLen);

// }

// initialize the writeSet to check all the sockets

// each time

writeSet=oldwriteSet;

while(select(O,NULL,&writeSet,NULL,&delay)==O)

respLen=DSPFLAGRD((ULONG)DSPSNDFLAG);

if((((int)respLen)!=O) && (respInd<=1501)){

//if((((int)respLen)!=O) && (newData==O)) {
// don't do it again if did it the first time

packetLen+=respLen;

DSPDATARD(dspResp,&respLen);

if (respLen!=0) {
printf("buffering %d\n",packetLen);

165

for (j=O;j<(((int)respLen)/72);j++)
// for number of blocks from DSP
*(respPacket+respInd)=(ULONG)MOBILEID;

// set first element to be MOBILEID;

respInd++;
//respPacket++;

packetLen+=4;
<-for(i=0;i<18;i++) { // set the rest of block to data

*(respPacket+respInd)=*dspResp++;

respInd++;

//respPacket=prespPacket;
dspResp=p dspResp;
newData=3; // let sockets know have new data to send
// let DSP know received data OK
DSPFLAGSET((ULONG)DSP SNDFLAG,O);

else
// if ((int)respInd>O)
// printf("respLen: %d respInd: %d packetLen:

%d\n", (int)respLen,respInd, (int)packetLen);
//}

//printf("waiting for socket to be free\n");
writeSet=oldwriteSet;

int RetVal=O;

if (newData!=O)

// update needs to be sent, or display data needs to be sent, or both

int len=O;

for (i=O;i<(int) (writeSet.fd count);i++)

//RetVal=SOCKETERROR;

if ((writeSet.fdarray[i]==mySocket) ||

(writeSet.fdarray[i]==mySocket2)) {
// send only one frame to the base stations

if (newData<=2) {
len=PACKETSIZE;

while(len>O) {
RetVal = send(writeSet.fd array[i],

(char *)respPacket,len,O);

if (RetVal == SOCKETERROR)
printf("BASE error code:

%d\n",WSAGetLastError());

break;

else
len-=RetVal;

printf("sending to base %d

bytes\n",PACKET SIZE);

166

//if (RetVal!=PACKETSIZE)

// printf("sent %d bytes to base

station\n",RetVal);

//printf("sent to base\n");
// means the update has already occured

newData--;

else {
// send all the buffered frames to the display

//printf("send to display %d

bytes\n", (int)packetLen);

len=(int)packetLen;

while(len>O) {
RetVal = send(writeSet.fdarray[i],
(char *)respPacket,len,0);
if (RetVal == SOCKET ERROR)

printf("DISPLAY error code:

%d\n",WSAGetLastError(0);

break;

//if (RetVal!=(int)packetLen)

// printf("sent %d bytes to

display\n",RetVal);

else

len-=RetVal;

printf("sent to display %d bytes\n", (int)packetLen);

packetLen=0;

respInd=0;

newData=0; // there is nothing new to try and send

//newData=0;

return 0;

}

