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Abstract

Machine learning algorithms tend to improve in performance with larger training
sets, but obtaining a large amount of training data comes at a high cost. Several methods
of semi-supervised learning have been introduced recently to take advantage of a larger
training set without the burden of labeling many samples. We apply these semi-
supervised learning methods to a data set of cars and background images, attempting to
separate the two classes. Some of the algorithms obtain very high classification accuracy
and can be used towards a car-detection system.
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Chapter 1

Introduction

We run into machine learning tasks every day through all aspects of life.

Machine learning techniques are present when we use a credit card, play games, use

voice activated commands, and walk around in public.

Recognition tasks are designed to identify labels for previously unseen samples.

Some sample recognition tasks are:

" Who is the individual in this photograph?

" What is this news article about?

" What word did that person just say?

Slightly less complicated tasks involve determining whether a sample belongs in a

given class. Some examples of this are:

" Is this a picture of Andy?

* Is this article about sports?

" Did he say yes?

There are two stages of machine learning. The first is training, where samples of

known identity are fed to the classifier. This requires a human to select the training

samples, look through them, and determine the appropriate label. The second stage is

testing, where the new samples are labeled according to their similarities to the training

points.

A classifier should be able to achieve better performance if it has more training

samples. With lots of data, it can more accurately determine what features are most

important in determining the identity.

In supervised learning tasks, all of the training data is labeled ahead of time, and

the classifier uses this information to determine what distinguishes one class from

another. Unsupervised learning is slightly different, as it does not use labels for the
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training data. Instead it determines which samples are likely to have the same label based

on their similarities to each other.

In this thesis we explore a technique, semi- supervised learning, which has labels

for some training points but not others. A classifier uses all of the data to learn the

distribution of points. With some of these labeled, it is able to infer the labels of the rest

by assuming that nearby points are likely to be in the same class.

Semi-supervised, or partially labeled, methods can improve the classification by

giving a better idea of the distribution of data samples, as Figure 1-1 illustrates. A

classifier trained with only a few samples can do reasonably well, but is highly dependent

on which samples are chosen for training. With a large set of unlabeled data, the

classifier can better learn how to separate the classes. For the simple example shown, the

separating boundary is quite different depending on whether the unlabeled samples are

used. Using the wrong boundary can cause several of the points to be mislabeled.

In this thesis we discuss several of these semi-supervised methods and their

applications towards real classification tasks.

Without unlabeled points With labeled points

= / .
x x X

0 U0

x xx x .
x x * . / UX0 0 /. 0 s

0 0
0 m0

Figure 1-1: The left figure is an example classifier constructed based on the few labeled points
present. The right figure uses the same labeled points plus additional unlabeled points, and finds a
different separating boundary.

1.1 Motivation

In recent years, computational power has increased steadily to the point where

many problems have become feasible as machine learning tasks. Running on a high-
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speed computer, the best face recognition tasks took about a third of a second for a single

image several years ago [Turk and Pentland, 1991]. Newer applications have been

designed that can process thousands of images per second running on a handheld

computer [Weinstein et al., 2002]. With machine learning becoming more applicable to

real-world problems, there has been a big push for improvements in the algorithms to

attack the problems. Methods such as Support Vector Machines [Vapnik, 1998] have

been introduced over the last several years, and there is continuing work for

improvement.

The increased capability is due to the great increase in capability of computers

recently. Processor speeds in computers double approximately every eighteen months

according to Moore's Law, and the cost of disk space is dropping steadily. Over several

years, this allows the same program to be run in a fraction of the time. Furthermore,

larger training databases are feasible because of higher disk capacity. With faster

processing and larger training sets, machine learning tasks can run in less time and with a

higher degree of accuracy.

One aspect of machine learning that will never benefit from faster processors or

more disk space is the human interaction required. For any method to work well, it needs

to be given a sufficiently sized training set. Each training sample needs to be manually

processed by a human, and the amount of time depends on the task. For document

classification, it takes time for someone to read through the text and determine the

appropriate class. Some object recognition problems require someone to label various

components of the object or carefully sketch the outline. The labeling process can't be

automated, because if a system existed that could label the training data well enough, the

machine learning task would already be solved.

With the vast amount of information on the World Wide Web, finding unlabeled

samples may be very simple. Using a large amount of unlabeled data to assist in the

machine learning process without requiring more labeled data would be extremely

helpful. These semi-supervised methods will help remove the burden of a human to do

the labeling while still allowing for an accurate classifier.
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1.2 Previous work

1.2.1 Object detection

[Papageorgiou, 2000] has developed a system to detect cars and bodies primarily

from a collection of wavelet features. Using Haar wavelets [Mallat, 1989], he converts

each image into a feature vector. These feature vectors are then plugged into a classifier

to determine the identity of the object. He further extends the system to work on video

sequences with the ability to track objects as they move over time in the video. The work

in this thesis uses features similar to those constructed in [Papageorgiou, 2000].

[Viola and Jones, 2001] have implemented a system capable of face recognition

in real-time. They are able to attain such fast performance with several ideas that avoid

extraneous computations, and some of the ideas are applicable to other image recognition

domains. The main contribution is a method of selecting an appropriate set of features

for a classifier and quickly discarding sections of an image that don't match some of the

features. By avoiding redundant processing, the classifier works very quickly with a high

degree of accuracy.

Several systems have been based on models of the objects being recognized.

[Schneiderman and Kanade, 2000] use a statistical approach towards face and car

recognition. They construct 3D models for each of the objects in different poses. For

new images, they use a product of histograms to determine the likelihood that an image

was generated from one of the object models. [Selinger and Nelson, 2000] construct 3D

models of the objects from poses evenly spread across a viewing sphere.

Rather than detecting full objects, it is often useful to detect components. [Mohan

et al., 2001] detect bodies by components. They first use individually trained classifiers

to detect portions of the object, such as the legs, arms, and head in bodies. The location

and certainty score for all of the components are fed into another classifier which

determines whether the appropriate object is present. This approach allows a person to

be detected even when parts are occluded or absent in the image (such as a one-armed

man) or the person blends into the background. A system by [Heisele et al., 2001] takes a

similar approach towards detecting faces, using components such as the eyes, nose, and

mouth.
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1.2.2 Partially labeled data

Classifiers have previously been designed to be trained with entirely labeled data.

Some newer approaches have considered including some unlabeled data in the training

data.

[Joachims 1999B] has constructed Transductive Support Vector Machines, a way

of extending SVMs to take unlabeled data into account during training. He has applied

this method towards text classification, and it can be used for other domains as well.

Kernel expansio, by [Szummer and Jaakkola, 2000], applies a density-dependent

representation that focuses on high-density regions of data. The decision boundary is

made more flexible in these regions, and the influence of labeled points located in high-

density regions is increased.

Another method by [Szummer and Jaakkola, 2001] relies on the Markov random

walk representation. It measures similarity across samples by following the data

manifold, which may be a low-dimensional subspace of the embedding space. They have

used this method with good performance on problems that are difficult to separate using

other models such as SVMs.

Several variations of spectral clustering methods exist for unsupervised learning

[Ng et al., 1999]. These methods form a new set of features based on the similarity of

samples. These methods can be modified to work as semi-supervised algorithms

[Chapelle et al., 2002].

1.3 Contributions

Many researchers have applied supervised learning techniques towards real

classification tasks, but with semi-supervised techniques, much of the existing work has

been theoretical. We apply several of these methods towards an actual vision task and

find which algorithms are most suitable. We find that some algorithms do not work as

well because our data set does not have characteristics that are assumed to be true in

theoretical work.

Our findings provide the initial steps towards creating a useful car-detecting

system. We determine which learning algorithms are most useful and recommend some

modifications to our tests that will lead to a system that can be implemented.
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1.4 Outline

In Chapter 2, we describe the data set being used in our tests and introduce the

classification algorithms. Results from the tests and analysis of the algorithms are given

in Chapter 3. Some additional tests, using slightly different data and methods, are

described in Chapter 4. Chapter 5 summarizes the work and gives some ideas on how

these methods can be used in a real- life system.
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Chapter 2

Data and Methods

2.1 Data format

The primary objective of this thesis is to determine how well various learning

methods work with partially- labeled samples on a real set of data. The domain that is

used in this project is the task of recognizing frontal images of cars, although numerous

other domains could be used instead.

For the task of detecting images of cars, it will be important to have a well-chosen

set of features that can detect similarities and differences among images. Some prior

knowledge should be used in selecting the features, but not so much that the problem

can't be generalized. Humans can recognize cars by the shape and components such as

the windows, license plate, headlights, and wheels. Further knowledge can be extracted

from the background. Pictures of cars tend to have a road below and objects such as

buildings, trees, or the sky above and to the sides.

This tells us that a window slightly larger than the car should be viewed in order

to take advantage of the background scenery. Furthermore, based on the shape of cars, a

square viewing window should be sufficient rather than a wider or taller rectangle,

although this would change if we were attempting to detect side-views of cars. We use a

128x128 pixel image window, and attempt to detect cars that are 64 pixels across the

front bumper, centered horizontally and vertically. This is a reasonable size to extract

enough detail to discriminate all of the relevant features of the car, while not too large for

computational considerations. Sample images are given in Figure 2-1.

Images of nonacars are negative samples and can be anything besides cars in the

correct configuration. They are generated randomly from the imaws containing cars, so

they tend to contain roads, buildings, trees, and portions of cars. Some also contain cars

that are not correctly centered or scaled. This can give a classifier the ability to

distinguish cars from other objects in the images. An alternate approach would be to
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construct negative samples from images of completely different objects, such as

pedestrians or faces. This may have a disadvantage, because when the classifier is in its

testing phase, it would be distinguishing cars from background components which it may

never have seen in training.

The images are all in grey-scale, where each pixel's intensity is measured as an

integer between 0 and 255. A different method, used in a similar system by

[Papageorgiou, 2000], uses three color channels and records each pixel as the highest of

the three values. We use grey-scale to accommodate a larger variety of images as inputs.

Humans are perfectly capable of determining whether an image is a car or not from a

grey-scale image, so this task is certainly feasible.

Figure 2-1: Sample images from both the car class (top rows) and non-car class (bottom rows). The

non-car images frequently contain parts of cars, but are not placed in the car class because they are

not appropriately centered and scaled.

2.2 Features

It is important that the system works on a wide variety of cars, regardless of

model or color. The size and shape varies from one model to another, although all cars

have roughly the same ratios across dimensions. The color is far more variable, however.

Even in grey-scale, there is a large difference in the pixel intensity for dark and light cars.

This variation may make it difficult to train a system based on pixel intensities.

It is important to note that the color is not what helps us recognize cars, but rather

the change in colors at the edges. An image of the hood of the car shows very little
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change in color. The point where the side of the car meets the road, however, gives far

more information. This leads to the idea of using an edge detector to extract new features

from the image that can be useful in classification. Figure 2-2 shows a car image with

distorted colors. By observing the shape, it is still possible for a human to determine that

this is a car.

Haar wavelets are useful in constructing an edge detecting representation [Mallat,

1989]. To convert an image into features, a sub-window is moved horizontally and

vertically across the 128x128 pixel image. For each sub-window, three values are

extracted, corresponding to different angles of lines to detect:

* Horizontal edges: The average pixel intensity of the top half minus te average

pixel intensity of the bottom half.

* Vertical edges: The average pixel intensity of the left half minus the average pixel

intensity of the right half.

* Diagonal lines: The average pixel intensity of the upper- left corner and bottom-

right corner minus the average pixel intensity of the upper-right corner and

bottom -left corner.

Figure 2-2: A car image from the database and the same image with its colors distorted. In the
distorted image, it is still possible to tell that it is a car.

A) B) C)

+ + -+

-+
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Figure 2-3: Haar wavelet templates for (A) Horizontal edges, (B) Vertical edges, and (C) Diagonal
lines.

100 100 50 0

100 100 10 10 700 220

Bo 3o lo 10 8 8

70 70 70 60

30 40 40 40

40 60 60 6042 40

80 70 60 60 8 8

50 50 50 50

Figure 2-4: Vertical edge detection on parts of two images. The numbers listed are not the actual

values, but darker pixels correspond to higher numbers.

Figure 2-4 shows the process for vertical edge detection on two different images.

The image is converted into a numeric representation of the pixel intensities. From here,

the average intensity of the left half and the right half are computed. Finally, we compute

the wavelet value for the sub-window as the difference in average intensities of the two

halves. For the window with a vertical edge, the value is much higher than the window

without an edge. All 3030 features are computed in this way using the different

combinations of wavelet size, direction, and sub-windows within the image.

The feature vector itself can be viewed as an image, showing the edges at each

resolution for all three orientations. Lower values, displayed as darker shades,

correspond to regions with little change. Higher values, displayed in lighter shades, are

where edges or lines are present. Figure 2-5 shows a sample car image along with its

representation. Edges of the car can clearly be seen, as well as some of the lines on the

road and in the background.
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Figure 2-5: A sample car image with its features. The upper row of features detects horizontal edges
at 16x16 and 32x32 resolution, the middle row detects vertical edges, and the bottom row detects
diagonal edges.

2.3 Normalization

The values for each feature can range from -255 to 255. The extreme cases are

when one half of the image window is entirely black and the other is entirely white.

Symmetric cases essentially give us the same information content, so we use absolute

values of the features. This is not always the case, as with some other vision tasks, dark-

to-light changes must be distinguished from light-to-dark. For the algorithms that are

used, it is better to work with smaller values (i.e., where all features have a value below

1) for the features. There are several ways of normalizing the data to accomplish this.

The simplest method of normalization is to divide all features by 256, which will

force all values to be between 0 and 1. As long as parameters are scaled accordingly, this

18



does not affect the results with any of the algorithms. It is used for reasons of numerical

stability, as it is much easier to work with smaller numbers.

Other forms of normalization vary each feature by a different amount. These will

affect the results of the algorithms because the distance measures between any two

samples will have changed entirely. One such normalization divides each feature by the

average value for that type of feature within that image. For example, if the average

value for all horizontal 16 x 16 wavelets in an image is 16 , then each value h16i is

mapped to h16 t/h 16 . This normalization can take lighting conditions into account, because

the average values will be lower for images with less contrast. Dividing all of the values

by a smaller average will cause a further spread in the data.

Another type of normalization takes knowledge of the domain into account. In

our example, features towards the center of the image, where the car is located, are far

more important than features toward the edges. If two images are nearly identical except

for a small difference, that difference is more important if it is in the car rather than the

background. [Bateson, 1972] calls information "differences that make a difference."

Here the differences that help us distinguish one class of images from another are the

most important. Because the center of the image holds more information in this regard, a

normalization that weighs this part more heavily could improve performance for some of

the algorithms. We avoid using such a normalization in an attempt to keep this as a

generic machine learning problem. In other domains, such information may be

unavailable.

2.4 Distance metric

A necessary component of any learning algorithm is a way to evaluate how

similar two samples are. The distance metric should be minimized for two samples that

are identical, and increase as more differences appear.

For the car images, the representation allows for a simple way of computing the

distance between two samples, the Euclidean distance between their feature vectors. This

is measured as

D(x,, x2 ) (XI- x2 (i))2 Equation 2-1
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where xkdj) refers to the value of feature j of image k.

If xI(i) ~ x 2 (i) for most of the features, then the distance between the two points

will be small. This corresponds to when the two images have similar Haar wavelets. It is

possible, though unlikely, that two different images will have identical wavelets, and

hence a distance of 0.

Some useful properties of the distance metric can be observed from Equation 2-1.

First, any point has a distance of 0 from itself (Let x1 = X2, then D(x i, 2 ) = 0). Second, the

distance metric is symmetric (i.e., D(xi,x 2)= D(x2X)).

A desirable property is for the intra-class distances to be small compared to the

cross-class distances. If the features are well chosen, this condition should be met for

many pairs of samples, but not all. For some samples that are borderline cases (such as

an image that contains a car slightly off-center) it may be the case that a number of

samples from the opposite class are closer than some in the same class.

Figure 2-6 gives histograms for three samples. The histogram in (A) is for an

ordinary car, and as expected, the majority of other cars are closer than the non-cars. A

different car that is often misclassified is shown in histogram (B). The other cars are

fairly close, but there are a number of images from the other class that are closer, which

explains why the sample is so difficult to identify. The histogram for a non-car image is

shown in (C), which shows that non-cars tend to be closer.

Figure 2-7 shows some sample images from the database and their distances to

each other. This demonstrates that it is not always the case that intra-class distances are

smaller than cross-class ones. Two of the cars are closer to a non-car than they are to the

third car.

We ran some further tests on the data to see how reliable the distance metric is

overall. For a randomly chosen car sample within this data set, if one other car and non-

car are randomly chosen, the car is closer 68% of the time. For a random non-car, it is

closer to the other non-car 77% of the time. This means that more likely than not, any

random sample will be closer to a single sample from the same class than from the

opposite class, although there is still a high degree of error. By looking at 10 images of

each class, the closest point is within the same class 87% of the time for cars and 92% for

non-cars.
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The distance metric is used to find how likely it is that two samples came from the

same distribution. Each algorithm uses it in a slightly different fashion, which will be

described in the discussion of the individual algorithms.
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Figure 2-6: Histograms of inter-class and intra-class distances for images of (A) a normal car, (B) a
difficult to label car, and (C) a non-car.

Figure 2-7: Some images from the database and their distances. The inter-class distances are
generally larger than intra-class distances, but not in all cases.

21

(A) 800

600

CL

E 400

200

0

Distance measures across san

0.00 9.66 15.32 17.06 12.56

9.66 0.00 13.76 11.37 9.79

15.32 13.76 0.00 19.12 17.11

17.06 11.37 19.12 0.00 8.68

12.56 9.79 17.11 8.68 0.00



2.5 Similarities and differences across samples

As demonstrated, two images from the same class aren't always close together

according to the distance metric. Even two different images of a stationary object taken

at different times can have a large separation between them. Some factors that influence

this are:

" Lighting conditions: Depending on the illumination to various parts of the image, the

features can come out very differently. With less sunlight, there will be less contrast

between the objects in the image and the sky. Also, the shadows will be affected by

the lighting. Shadows cast from the object onto the ground will be picked up by the

wavelet features, so if shadows move or are absent entirely, the features will change.

" Season and weather: Weather factors such as rain, snow, and clouds that are visible in

the image will directly affect the features.

* Pose and distance from object: Taking a picture from further away and zooming in

can cause some loss of quality and cause parts of the zoomed-in images to appear

pixelated.

* Backgrounds: Even if the object is stationary, objects in the background often will

have changed position

* Specularity Shiny objects will cause reflections, which may vary in a similar way as

the backgrounds.

" Camera model: Different cameras will have slightly different functionality, leading to

different images. For example, the flash may have different intensity on different

cameras, and the results pictures will appear different.

" Occlusion: Portions of an object are often blocked by other items in the image.

Within the car class, there are several sources of variation.

* Car model and year: Even though the basic shape of most cars are the same, different

models will have significant variation amongst them. The size ratios of different

models are different, some cars are curvier than others, and headlights and other

components are in different places.
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" Color: The images are in grayscale, but dark cars will be significantly different from

light ones.

" Road: Images from city roads, country roads, and highways will have different types

of scenery.

Non-car images will also vary significantly. Because these images are generated

from random segments of car pictures, they contain portions of cars, buildings, roads,

street signs, pedestrians, trees, and sky. The difference between two such samples will

depend on the types of objects visible in the images. Additional variation will come from

the same sources described above.

Figure 2-8 gives an actual example of how significant these sources of variation

are on a stationary object The images shown are all the exact same building taken from

the same point of view, but are under very different conditions. The distances across the

images are quite large, and as Figure 2-9 shows, some of the pictures of the building have

smaller distances to some car images than they do to each other.

Distance measures across samples

0.00 17.2 26.4 24.1

17.2 0.00 23.5 20.6

26.4 23.5 0.00 26.5

24.1 20.6 26.5 0.00

Figure 2-8: Four pictures of an identical object taken at different times of year and under different
lighting conditions. Distances from each image to the others are displayed alongside.
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Figure 2-9: The distance from one of the dome images is closer to the picture of the car shown than it
is to any of the other pictures of the dome.

2.6 Cost of labeling

The task of labeling can be very tedious, particularly for some domains. For an

image classification problem, it is easy for a human to identify the label, but may be

difficult to get the samples in the appropriate format In the domain used here, preparing

a labeled sample requires looking through an image, rescaling to normalize the size of the

car, and selecting the appropriately sized bounding box. A much more tedious task is

finding which pixels in the image correspond to the desired object, called segmentation.

This requires carefully tracing the outline of the object and identifying which regions are

part of the car and which are not.

In a text classification domain, samples are very easy to collect but more difficult

to identify. Text can be automatically retrieved from online sources but it takes a human

time to read through and determine the appropriate label.

For any domain, a large training set can more accurately represent the true

distribution of samples. This allows for a more accurate classifier that can identify

previously unseen examples. Obtaining such a large labeled training set is often difficult.

Obtaining a larger training set without the high labeling costs would be desirable, and

partially labeled methods make this possible.

2.7 Clustering

In Section 2.4 we showed that samples from the same class are not always close

together as measured by the distance metric, but with a larger collection of samples, it

becomes more likely that a sample in the same class will be nearby. It is important that

this condition is met for partially labeled methods to work properly.

The distribution of feasible images will lead to clustered regions in the

transformed high-dimensional feature space. For example, images of light cars driving

during the day on country roads may occupy a region of the feature space. A different
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cluster will be formed from images containing portions of the road. Within any cluster,

all of the images will be similar in the high dimensional space, but there is not as much

similarity from one cluster to another. Most importantly, samples within the same cluster

should all have the same label.

If the features were randomly chosen, then all of the regions of the space would

have the same density. However, there is dependence among the features in an image,

allowing the clusters to form. The 16x16 and 32x32 features for nearby regions are often

very similar. Also, because the representation uses overlapping image windows, adjacent

features will be similar to one another, as they are based on similar calculations.

Partially labeled methods exploit the concept of clustering. The feature space is

filled with clusters like these. In general, points within the same cluster will have the

same label, and hopefully the same is true for nearby clusters. The distribution of the

data is analyzed to find the clusters, and using the assumptions, the unlabeled points can

be identified. Unfortunately, real life data sets don't always split into easily

distinguishable clusters, which is why it is very difficult to get a classifier with perfect

accuracy.

2.8 Measuring performance

In determining how accurate a classifier is, it is necessary to know how the

system will be used. If an application that sorts email into various categories makes a

mistake, the repercussions are perhaps that someone will need to manually re-sort some

of the messages. At worst, this will cause some lost productivity from wasted time. On

the opposite end of the spectrum, a mistake in a medical diagnosis system could lead to

death.

Frequently, there is a significant difference in social costs between mistakenly

labeling a negative sample as positive, or vice versa. The car detecting task demonstrates

this well, depending on how it is used. One potential use of the system is to indicate to a

truck driver whether a car is in his blind spot, which can help determine whether it is safe

to change lanes. If the system beeps when the driver turns on the turn signal and a car is

in the blind spot, then a false positive (i.e. saying there is a car nearby when there isn't)

would prevent the driver from changing lanes when he should be able to. This causes no
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harm, but a false negative, where a car goes undetected, could cause a collision, which is

clearly far worse. Another way the system can be used it to inform truck drivers any time

a car is in their blind spot. Frequently reporting false positives will become such a

nuisance that most drivers will probably want to get rid of the detector.

Further complications arise when seeking to find a numerical measure of the

performance. Measuring the percentage of samples classified correctly can be misleading

when the classes are unbalanced. Consider a classifier used by a weather station in a

desert that predicts every day whether it will rain. If it rains only once every thousand

days, then a classifier can have 99.9% accuracy by saying it will never rain. However, it

will never correctly guess when it will rain, which is far more relevant. In cases like this,

it is useful to observe a Receiver Operating Characteristic (ROC) curve. This measures

the portion of positive examples that the classifier correctly identifies along with the

number of negative samples that are labeled as positive. Some algorithms allow some

flexibility in how much to lean towards one class or the other, yielding a curve that

compares false positives to false negatives.

For a classifier that has false positive and false negative rates that are

approximately the same, it may be sufficient to simply report the total error rate. When

the errors are much more one sided, it will be interesting to look at why this is so.

2.9 Partially labeled learning methods

Training a machine learning algorithm with partially labeled methods and fully

labeled methods have similarities, but differ in the way the data is analyzed. The

common thread between the two is that some samples are given with a known label, and

there are additional samples where the label is desired.

With fully labeled data, an algorithm is trained on the labeled data only. Then the

unknown points are tested one by one to predict the labels. These points are not

incorporated in any way into the training set, so essentially the test points are classified

only using information about the training set, which can be small.

Partially labeled methods, however, take all points into consideration when

labeling the test points. They have all of the data available to begin with, and hence can

easily take advantage of the clustering structure.
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Each method has advantages over the other. Supervised learning methods are

practical for fast real-world applications. For example, a system designed to recognize

new images in real time does not have all of the data up front. The classifier can only

base its information on images it has already seen. Contrast this with a system that must

go through a collection of images and determine the labels. This has all the information

initially and can use this fact to improve performance.

Often, the labeled samples make up only a small fraction of the total data set.

Because partially labeled methods take all points into account as opposed to just the

training set, they can be much slower than a fully labeled method in labeling a single

point. This will typically be prohibitive for real-time use.

Inductive learning methods allow classification on test points that have not

previously been seen. Fully supervised methods fall in this category. Alternatively,

semi-supervised methods are transductive, which allows training and testing with unseen

points. Some methods are strictly transductive, which prevents testing on points that

were not available when training. Some methods are in both categories, making them

more applicable towards real-world applications.

A method that is both inductive and transductive will be very useful for our car

detector. It can be loaded with a number of labeled examples of cars and non-cars. Then,

an on-board camera can collect an arbitrary amount of unlabeled samples. Offline, the

system trains using this data, and finally can test on unseen points during future uses.

The training time will be slow, which is acceptable because training occurs offline, while

the car is not driving. What is more important is the real-time performance of labeling

new samples.

2.9.1 K-nearest neighbor

A simple approach to identifying an unlabeled set of samples is the k-nearest

neighbor algorithm. In this algorithm, each point finds the k closest labeled points

according to the distance metric (where k is a pre- selected parameter).

In the inductive variation, the label for a new point is what the majority of the

neighbors are labeled, considered a voting scheme. Alternatively, closer points can be

weighed more heavily. For example, each point can be given weight inversely
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proportional to the distance, or according to a Gaussian distribution. Our implementation

weighs the points equally.

A similar approach is followed in the transductive version of k-nearest neighbor.

All unlabeled points are given a proposed label based on the neighbors along with a

measure of how certain that label is. The certainty measure is based on how many

neighbors have each label and their distances. A point with all neighbors nearby and in

agreement on the labels is assigned a high certainty measure. At each iteration, the

unlabeled point with the highest certainty is labeled and added to the training set for later

iterations.

One flaw with the nearest neighbor approach is that if the classes are unbalanced,

it may tend to favor the larger class. One point may be mislabeled at an early iteration,

which will cause its neighbors to be mislabeled, and this process will cascade. This can

cause large skews in the test data and lead to poor results. Two ways to fix this are

ensuring that the initial data is roughly balanced, and alternating assigning labels to

positive and negative points at each iteration as long as that is possible.

An advantage of nearest neighbor is that any number of chsses can be

accommodated, but more data may be necessary for the classifier to work well. In order

to be able to compare nearest neighbor with the other algorithms, we leave it with just

two classes for the image detection, cars and non-cars.

2.9.2 Transductive Support Vector Machine

Support Vector Machines offer a way to train a classifier that maximizes the

separation between the classes. This works in high dimensional space without requiring a

large training set [Vapnik, 1998]. Some common applications of SVMs are text

classification [Joachims, 1998] and image detection [Papageorgiou, 2000].

SVMs attempt to form the widest possible linear separator between the classes.

This is done by maximizing

a, -- X x apy,y(x, -xj) Equation 2-2
S2, i
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subject to acxy, =0 and 0 = ai = C. This is essentially finding the widest separating

boundary between the classes, with some penalty for a point being on the wrong side of

the margin.

The a values are weights for each sample, C is a global parameter, and x and y are

the samples and their labels. Many classification problems will not have any way to

separate the data linearly, so the dot product (x, " xj) is replaced with a kernel function,

K(x, xj), which maps the points into a higher dimension space where the data can be

separated. The kernel functions will be discussed in further detail in the next chapter.

After the training phase is complete and the a values have been determined, test

points are labeled according to the function

f(x)= sign aiyiK(x,xi)+b Equation 2-3

over all of the training points i. Here, at is a non-negative weight for each point that is

determined during training, yi is the known label, K(x,xi) is the kernel mapping function

between the test point and training points, and b is a bias term that shifts the hyperplane

away from the origin.

Ordinary SVMs do not use the test examples in any way to improve classification.

The classification of a new point is based only on the / labeled points. An alternative

method is Transductive SVMs (TSVMs), which use all of the data samples available to

construct the initial classifier [Joachims, 1999B]. The summation in Equation 2-3 is over

all points, labeled and unlabeled. Because the y's are unknown for the unlabeled points,

the algorithm uses information about the distribution of the points to infer the labels. It

seeks to find a way of assigning labels to the unknown points such that Equation 2-2 is

maximized.

The algorithm works by initially assigning labels to the unlabeled points based on

a run of an ordinary SVM. Following the initial training, pairs of points have their labels

swapped to increase the objective function and the algorithm is retrained. The algorithm

is terminated when no pair exists that will increase the margin.
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Figure 2-10: In the left figure, all points have a known label except one. An SVM that treats it as an
X (right) has a wider margin than one that treats it as an 0 (middle), so the point gets labeled as such

by a TSVM.

2.9.3 Kernel Expansion

Kernel expansion is a method that tries to find the probability of each label for

any point in the feature space. It learns the distribution from all of the training points,

which does not need to be fully labeled. Taking all neighbors into consideration, the

label for a new point is estimated by the density of points of each class.

Specifically, the label is given to a test point by finding the label that maximizes

the formula

PPOSyI x3 ) = IP(y Ixi)P(xj I Xj)- Equation 2-4

In Equation 2-4, y is the label of the test point x, and has a value of +1 or -1. The

summation is over all training points xi. The probability that one point comes from the

same Gaussian distribution as another, P(x1 xj), is

-d(xP,x) )2 Equation 2-5
P(x,| xI )= -e .

Z i

z is a normalization factor such that the sum of all distances for a point is 1. Equation

2-5 has two different probability measures for a label y given a sample x. Pposg(ykx) is the

probability that the output of the classifier is label is the probability that the output of the

classifier is label y for sample j. The P(ykx) values are parameters for each point i as

computed by one of seweral methods [Jaakkola et al., 1999] [Szummer, 2001]:

* Maximum Entropy Discrimination (MED): This is a discriminative method that

estimates values of P(y = 11 x) - P(y = -1 Ix).

e EM estimation: We try to maximize the conditional log- likelihood,

NL AE NL+NU

log P( y |x) = slog iP(y* I xj)P(xj | xi), where NL is the number of
1=1 i=1 j=1
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labeled samples and NU is the number of unlabeled. We do so with EM

estimation, which alternates steps between re-computing values of

P(y* I xj)P(xj | x,) and updating P(yx,).

* Linear programming average margin: The margin on point k and class d, ykd, is

defined as Ppost(y = yk* I k) - Ppost(y = d I k), where yk* is the appropriate label for

sample k. This method tries to maximize the average margin over all points,

which will force as many points as possible to be correctly labeled. This offers a

closed- form linear program, which makes running time very fast.

* Linear programming minimum margin: This method is similar to average margin,

but seeks to maximize the smallest margin. There is very little noise-tolerance

because the point with the smallest margin could have an incorrect label or appear

to fall in the opposite class, which can cause very poor results.

* Consistent: This parameter estimation method seeks to keep the parameter

estimates consistent with the corresponding posterior probabilities.

As seen in Equation 2-5, kernel expansion has a Y parameter which controls how

much points influence one another based on their distance. Most algorithms use a single

value of T for all points. Kernel expansion has a feature called adaptive (T which allows

each point to have a unique a value. The values of T get smaller as the region around a

point gets more densely packed. This allows points in the sparse regions of the feature

space to receive a larger influence from points that are more distant.

One method, KNN, places a kernel around training points, with the kernel width

determined by a parameter kfrac. If there are N training points, the distance to the

(N*kfrac)th point is multiplied by another parameter, sigmamult, to establish the kernel

width. Another adaptive method is BMP, which works in a similar way, but places the

kernels around the points in space for testing.

2.9.4 Markov Random Walk

The fundamental idea of the Markov random walk algorithm is that points are

locally connected to nearby points, and can reach other points globally by a series of

steps through neighbors. After several steps, one point can be reached by another

through any number of paths, with higher likelihood assigned to a path with the points
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closer together. One can determine the probability that a path ending at a point originated

on a path from any other point. Considering this over all of the initially labeled points

gives a way of assigning a label.

Transition probabilities are assigned based on the distance metric. Each point i is

connected to a small number of neighborsj, with a weight of

-d(x,xj) Equation 2-6
Wij = e a ,

and the single step probability of a transition from point i to j is

w.
P(x,, x1 )= . Equation 2-7

k
For pairs of points that are not connected by a single step, W1 = P(xi, xj) = 0, and for a

point to itself, Wq = 1, which can be obtained from Equation 2-6 by noting that

d(x,, xi) = 0.

The multiple step transition probabilities are computed from the single step

probabilities. The probability of reaching pointj on a t-step path originating from point i,

P (x I x) , is found as entry (ij) of At, where A is the transition matrix constructed from

the values of P. From this, one can directly compute the probability that the path

originated at i given that it ended atj, P (xi I xj).

The equation used to determine the probability of the label is similar to that of

kernel expansion,

Ppost (Y I x) P(y I X)1q (Xi I x1 ) Equation 2-8

The values for the P(y I x1) parameters are assigned by the same methods as kernel

expansion, while the representation, P01, (X, xk), is computed as described above.

An. advantage of obtaining global distances by stepping through local neighbors is

that it gives the ability to classify data sets that are not easily separable by other methods.

This allows a different way of measuring the distance between two points than a

Euclidean measure.

One way that Markov random walk differs from other algorithms is that it can

only be used to evaluate points that were available at training time. Methods such as
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SVMs allow for inductive testing of new points, and kernel expansion can be estimated at

any point in space, but the nature of the Markov random walk does not allow this.

O ON

Figure 2-11: The unknown point (?) is much closer to the 0 than it is to the X by a Euclidean
measure. However, based on the location of the other points, it seems more likely that it is in the X
class. Using Markov random walk to step along paths to neighbors would be able to determine this.

2.9.5 Spectral Clustering

There are a number of methods that can be used to cluster the sample points and

find labels accordingly. The algorithm that is used here is a variation of spectral

clustering [Ng et al., 1999]. In spectral clustering, an affinity matrix is created based on

the distances between pairs of points. To separate the data into clusters, the eigenvectors

corresponding to the k largest eigenvalues of the Laplacian of the affinity matrix are

combined to form a new feature vector for every sample. These transformed points are

then separated into the appropriate clusters by any appropriate algorithm. Figure 2-12

gives a simple example of how clustering works.

The clustering does not take the labels into account, but simply attempts to

separate the clusters into linearly separable regions. The algorithm can be seen as

essentially mapping each data point to a new k-dimensional point. Once this is done, any

of the above methods can be used to attempt to separate the clusters. We use a linear

SVM in the tests.

Spectral clustering, like Markov random walk, can only be tested on points

available during training. Each sample is mapped to a new point by finding the

eigenvectors of a matrix. There is not a linear mapping between the original feature

space and the transformed one. Because computing the eigenvectors is a large portion of

the computation time of the algorithm, it is not easy to incrementally add points.
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Figure 2-12: Spectral clustering takes a set of points and maps them into a transformed feature space
that is easier to separate into classes. The original feature space typically has higher dimensionality
than the transformed space.
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Chapter 3

Experimental Results

As labeled samples are added to a training set, the performance of any algorithm

is expected to improve. If the partially labeled methods are working as they should,

adding unlabeled samples will also help out the performance. A large focus here is to

determine how the size of the data set affects each of the algorithms being examined.

To see how the amount of labeled data relates to performance, we take an

unlabeled set of fixed size and ary the mmber of labeled samples across a reasonable

interval. Once the classifier has been trained with the labeled and unlabeled data, it is run

on a test set to determine its accuracy. For consistency, the same test set of 400 samples

is used for all of the algorithms, with an equal mix of positive and negative samples. The

total error is measured rather than individual statistics for false positives and false

negatives. The test points can, and often do, overlap with the unlabeled points used in

training, but are never the same as a labeled training point.

It is very important to see how much help the algorithms receive from unlabeled

points. Most of the time, adding labeled samples will help the performance far more than

adding unlabeled samples. The point of the partially labeled methods, however, is to

remove some of the burden of labeling so many points. For example, it will be

interesting to observe whether an algorithm with 32 labeled points and a large amount of

unlabeled data can reach the performance levels of 64 labeled points.

The importance of unlabeled data is found in a similar way to the labeled samples.

The labeled set is fixed at a specified size and unlabeled samples are added. For

algorithms with an inductive counterpart, the accuracy is measured when zero unlabeled

samples are supplied, to treat as a baseline for comparison. The charts plot the error as a

function of the number of unlabeled points, with different curves corresponding to

different sizes of labeled sets.

Some algorithms have limitations that restrict the sizes used, and these will be

mentioned in the discussion. Markov Diffusion and Spectral Clustering can only be
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tested on points that are available at train time, so the accuracy of these algorithms is

determined based on the exact set it was trained with. This will be important to keep in

mind when comparing the different algorithms.

The performance depends highly on which particular samples are used in training,

not just the size of the data sets. For example, f there is not very much diversity in a

large set of labeled samples, the performance could be far worse than a smaller set. The

points selected are all randomized, but to dampen the effect of test variability the

statistics reported are averages over about 20 trials. When necessary, some tests will be

looked at more closely to understand the results.

3.1 Result format

The data results are plotted for each algorithm, with the appropriately chosen

parameters. Each set of results shows four graphs, with mre detailed graphs focusing in

on certain regions whenever necessary. The first such graph can be seen as Figure 3-5.

The graph in the upper-left corner is an average over 20 trials to show the effects

of adding labeled data. The Lest classification error is plotted against the number of

labeled samples used, sampled at all powers of 2 from 2 to 256. There is an equal

balance of positive and negative data in these labeled samples. In the lower-left corner,

the error is again plotted over the number of labeled training points, but this is for a single

trial with the sample size increasing at each step linearly, not geometrically. The scale

runs from 4 to 100, which does not fully cover the graph above. The rationale for this is

that above 100 samples is a large amount of labeled data and the purpose of this work is

to determine how well algorithms work without requiring so many points to be labeled.

We still use more than 100 labeled points in some tests to observe the patterns from

adding labeled data.

In both graphs that vary the number of labeled samples, there are four separate

curves, corresponding to 0, 256, 512, and 1024 unlabeled points. Over a trial, the

unlabeled set remains constant while the labeled points vary. These points are chosen as

the "region of interest." It is interesting to see the performance with 0 unlabeled points,

which are fully inductive methods. For example, a TSVM with no unlabeled samples

becomes an ordinary SVM, and Nearest Neighbor does not use any bootstrapping. Other
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interesting values to look at are not too small, because the algorithms really won't be

expected to benefit much unless enough unlabeled data is used. The size is limited above

by time restrictions and the amount of data available. Sample sizes from 256 to 1024

best match these criteria.

The upper-right graph plots the error over 20 trials against the number of

unlabeled samples. The number of unlabeled samples goes from 2 to 1024, doubling at

each step, as well as 0 to measure the baseline performance. The lower-right graph plots

error while varying unlabeled samples for a single trial, from 0 to 1200 samples,

increasing by 30 or 40 at each step. There are unlabeled data learning curves

corresponding to 16, 32, 64, and 128 hbeled samples, which are the region of interest

here. These values are chosen because they are not so small that they lead to poor

performance, but not so large that the labeling would become a burden in an actual

system.

There is overlap in the two charts (see Figure 3-1), although points may not

correspond exactly because they are taken as averages from separate trials. Because the

values are averages over 20 trials, they tend to be in agreement, but occasionally

sampling error causes a difference in the values. What is more important is getting an

idea of the general shape of the curves, so the sampling error does not hurt the analysis

significantly.

Because the lower graphs are based on a single trial, they are not always

generalizable, but will give some insight into the algorithms. For example, it will give an

idea whether the error drops sharply when a certain sample is added or whether there is a

more steady but gradual improvement.

In the ensuing discussion, the number of labeled samples will often be denoted by

NL, and the number of unlabeled samples by NU.

37



0.14 0.08

0.12
0.07

0 0.1 0

0.06 -0.08

0.06 0.05

0.04

2 0.04 0 2 4
10 10 10 10

# labeled # unlabeled

Figure 3-1: Sample charts plotting error rates over the number of labeled and unlabeled points.
Corresponding points between the two charts are represented by the same symbols (e.g. all points
marked with an X represent 128 labeled points and various numbers of unlabeled points).

3.2 Parameter selection

We attempt to find the parameter settings that give the lowest error for each test

by observing performance over several trials with randomly selected samples. To choose

which parameter setting is optimal, we pick a target size for the data set. Unless

otherwise specified, this is always 64 labeled points and 1024 unlabeled points, which is

a reasonable size for a real life data set.

To make a perfect comparison, the optimal parameters should be determined and

set for all sizes of training sets. However, once the parameters are set, they are used for

all tests on a particular algorithm, regardless of the size of the training set. A real- life

application that is striving for the best possible accuracy may take much more care in

setting the parameters for training sets of all sizes.

We run several trials on data sets of the selected size and measure the

performance with multiple parameter settings. To prevent any sampling error from the

particular points used in training and testing, the performance is always measured on

identical training sets for each parameter setting. Otherwise sampling error could have a

significant effect on a small data set.

After running the tests, we plot the error for each parameter setting over each trial,

and look at how often each parameter had the lowest error, second lowest, and so on

Sometimes, one choice of the parameter is clearly best, as it almost always attains the

lowest error (as in Figure 3-2A). More frequently, there will be several settings of the

parameter that alternate for the best classification. In cases like this, we select the

38



parameter choice that most frequently comes near the best. Some settings of the

parameter may do better in some cases, but very poorly in others (See Figure 3-2B). In

cases like this, we use a parameter that comes close to the best performance over all

trials.

The test set that is used to determine the parameter settings is separate from the

set that is used in the ordinary tests. This prevents the algorithms from overfitting to a

particular part of the data set.

(A) (B)

0.056

0.00 -0.14

0.075

xrA .1 I .

0.7 A%. ~ 0 .0 9I

0.50~ \ ~'.:A A ~o
0.055 0.06

0 t 0 5 20 25 0 015 02

TriW 
Trial

Figure 3-2: (A) Sample results shown for 25 trials using four different parameter settings. The
parameter setting indicated with the solid line generally has the best performance, so that parameter
setting will be used for further tests. (B) Sample results using two different parameter settings. The
results marked by the solid line do not generally do as well as the dashed line, but in some trials the
dashed line has very poor results. Because the solid line rarely has a trial that does this poorly, its
parameters will be used for further tests.

3.3 K-nearest neighbor

3.3.1 k parameter

An important parameter in nearest neighbor is k, the number of neighbors to

consider for each point. Different values of k will lead to different levels of performance.

In order to avoid ties in voting where exactly half of the neighbors belong to each class,

an odd number is generally used so that one class will always have a majority when

dealing with only two classes.

When k is not large enough, the classifier will be highly susceptible to noise. For

example, when k = 1, each point is labeled in accordance with its single closest neighbor.

Samples in regions near points of the opposite class are likely to be misclassified. These

borderline points are more difficult for any classifier to label, so a few errors of this type
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are acceptable. A more serious problem is when points are mislabeled. For an unlabeled

point that lies in a cluster of one class, if the nearest point is the opposite class and k = 1,
it will be labeled the same as the single point, not the rest of the cluster, as in Figure

3-3A.

Larger values of k will be more tolerant of noise so that a small number of

mislabeled points won't throw everything off. The computational requirements increase

only slightly with a larger k. However, if k is too large, then each point's label will be

based on a large number of points. For data sets without enough samples in each class,

something may get mislabeled simply because of the lack of data, as Figure 3-3B

demonstrates. We set up our tests such that this effect is minimized.

Experimentally, we find that k-3 or k-5 work well on this data set, so vxe run

further tests with these two values.

(A) x X X (B) 0
X X

x x

x X x 0
x

X
X X

X X

Figure 3-3: Scenarios where nearest neighbor does poorly. Labeled points are X and 0, and
unlabeled points are represented as . (A) Using k=1, the unlabeled point will be assigned to the 0
class, even though it lies in a large X cluster. (B) If k=5, the unlabeled point will be labeled as 0
because there are not enough X points in the figure, even though the two X points are much closer
than an 0.

3.3.2 a parameter

With an appropriate value of k chosen for this task, the next parameter to set is a.

This value is used for weighing a point's k neighbors, according to a multivariate normal

distribution This takes the distances and labels of each of the k neighbors into account,

and is maximized when all k points contain the same label and have a distance of 0.

At each step of the algorithm, all points with the highest portion of neighbors with

the same label are chosen, and the multivariate normal measure is used as the tiebreaker

to select which point will be added to the labeled set.
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If o is too small, then the confidence measure for a point will be small unless

there is a labeled neighbor very close by. The confidences will all be close to 0, and the

nearest point may outweigh all others. This removes most of the benefit of using a value

of k larger than 1. (See Figure 3-4)

If a is too large, all points will appear to be the same, making distant neighbors

weigh almost as much as closer ones. Clearly this is not ideal, because closer points are

more likely to be from the same distribution. This fact would essentially be ignored

when using a large a.

After trying out a reasonable range of values for a, a good value was determined

to be 1 for k = 3 and k = 5. Further experiments using the Nearest Neighbor algorithm

will use this value.

-G=1150

/ \

Figure 3-4: How the influence between neighbors varies by distance for different values of a.

3.3.3 Results (k = 3)

While it is desirable to watch the performance of all algorithms when as few as 2

points are initially labeled, the structure of nearest neighbor prevents that. For a 3-nearest

neighbor situation, having only 2 points initially labeled makes it impossible for a new

point to consider 3 neighbors. Even with 4 labeled points, 2 of each class, there is no

way for a point's 3 closest neighbors to be in agreement. The algorithm could still be

used under these conditions, but it would likely do very poorly. Thus, the smallest

training set used for nearest neighbor when varying the labeled size is 8. The upper

bound is not affected, so we run tests with up to NL=256.
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Figure 3-5: Error rates for tests using 3-nearest neighbor. k = 1.

Figure 3-5 displays the results for tests using k = 3, a = 1. As with all tests, the

results plotted are the average error ratio on the 400 test points over 20 trials for each of

the parameter settings.

The performance gets better as labeled points are added to the training set, as

expected. As labeled points fill up the feature space, it increases the chances that a new

sample will be near a point of the appropriate class. This holds true for any number of

unlabeled samples.

Unfortunately, this algorithm does not fully benefit from unlabeled data. A small

amount of unlabeled data tends to perform worse than using no unlabeled data at all. The

algorithm works by selecting the unlabeled point each iteration that it is most certain of

the label. With very few unlabeled points, it is likely that it will be wrong at guessing a

label, and subsequent iterations will be affected.

With around 128 to 512 unlabeled samples, the performance improves, because it

becomes more likely that the point it is most certain of will be correct. However, with
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these larger data sets, any noise will have a large effect, because the unlabeled data will

overwhelm the labeled data. We start to notice this with 1024 unlabeled points, as the

error rates begin to increase again.

3.3.4 Results (k = 5)
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Figure 3-6: Error rates for tests using 5-nearest neighbor. k = 1.

The results for the 5-nearest neighbor tests are shown in Figure 3-6. The trends

are the same for k = 3, so we will not discuss them in depth. Figure 3-7 displays some

curves from the two sets side-by-side. The results appear a little better when k = 3 most

of the time, although k = 5 works better when NL = 64 for most values of NU.

3.3.5 Nearest neighbor summary

With too few labeled samples, nearest neighbor does very poorly, often getting

nearly 50% error. It benefits significantly from more labeled samples. Unlabeled

samples affect the performance, but are not always beneficial. This is primarily because
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any errors in labeling a point early on in the bootstrapping method will propagate, and it

is difficult for the algorithm to recover from one of these errors. Small amounts of

unlabeled data often lead to poor results because the point with the highest certainty score

is less likely to be correct than when more samples are present.
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Figure 3-7: Comparison of 3-nearest neighbor and

3.4 Transductive SVM
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We use the SVMlight software package [Joachims 1999A] to run tests with a

TSVM classifier.

Recall that after training in a TSVM, a new point is labeled with equation:

f (x) = sign ajyK (x, x) +b . Equation 3-1

The various parameters will all be described shortly.

The performance of any SVM will depend on the kernel, K(xi, x2), which

establishes how the distances between two points are weighted. Typical choices for the

kernel are

44

cc

0

a)

0.3

0.

0.2

0.

0.1

0.

0.0

3NN
5NN ,



* Linear: xi * x2

" Polynomial: (x. x, + )d

-(xI -x' )

* Gaussian: e 22

In the polynomial kernel, choosing a larger value of d gives more ability to make

a separation in the data, although this can overfit to the training data (see Figure 3-8).

Using a smaller value of a in the Gaussian kernel also improves training accuracy but

may overfit, giving poor test results.

We run tests on the data using linear and Gaussian kernels. The discussion below

focuses on each of these individually.

d=1 x d=2 x d>>2 x
x x x

x x x
x x x

0 0 0 0 o
x 0 x 0 x 0

x 0 0 x 0 x 00 
0 

0
0 0 0

x 0 x 0 x 0
x x x x x x x x

Figure 3-8: Various values of d for a polynomial kernel SVM. As d is increased, it becomes more
possible to separate all of the training points perfectly, but may worsen the classification accuracy on
non-training points.

3.4.1 Linear kernel

The most basic model to use involves a linear kernel, where K(xi, xj) = xi - x1.

Once this is trained, to classify a test sample, you compare the point to the training

points. The label inferred for the test point is

f(x) = sign( ayZ , - + b)- Equation 3-2

Furthermore, when the absolute value of this summation is large, the point is far from the

separating hyperplane, and is more likely to be accurate.

3.4.1.1 Parameters

A parameter that must be set for any kernel is C, the tradeoff between small

training error and a large margin. The setting of C limits the possible range of values for
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the xi parameters. Setting C very large will then increase the set of values that are tried

and can cause longer training times. On the other hand, if C is too small, the a values

will be small and it will be difficult for the algorithm to correctly label points.

Theoretically, as more training samples are added, a smaller value of C will work

better, so the value of C should be changed as the training sizes change. A useful

formula is C = Gate/N, where Gate is a fixed parameter and N is the total number of

training samples for the current trial.

Through cross-validation, we find a good value for Gate to be 500. This works

well for training sets of certain sizes, but not all. There might be a more appropriate way

to set C, but we use this method.

3.4.1.2 Relevant features and samples

A number of interesting questions arise in the use of a linear TSVM. How many

of the initial training points, both labeled and unlabeled, are significant? Furthermore,

which features of the image are most relevant? These questions can be answered by

observations about Equation 3-2.

A training sample is significant when its corresponding value of a is greater than

0. In a fully labeled set you can train without all samples with a = 0 and still classify

everything the same in testing. Table 3-1 gives the number of Support Vectors (samples

with non-zero a values) for different sizes of labeled and unlabeled training sets. Table

3-2 shows the same results, but gives the portion of total points that are Support Vectors

rather than the absolute number. These values are determined from just one trial, but

there is not a large amount of variation across trials.
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Table 3-1: Number of support vectors

# labeled points
4

0 2 4 8 12 19 30 48 73

2 4 6 9 12 19 31 49 73
4 6 8 10 14 20 32 49 73
8 8 11 12 14 19 32 51 75

16 15 15 16 19 22 37 52 74
32 21 22 19 25 28 43 53 77

64 36 33 28 32 33 48 62 79
128 46 43 42 43 44 58 69 85
256 70 63 63 64 66 77 87 94

512 103 101 87 93 99 99 113 109

2

144 132 131 138 145 14110241 158 151

8 32 64 128

Table 3-2: Portion of

0.
0L

0E
M0
:ft

total points that are support vectors in a TSVM.

0 1.00 1.00 1.00 0.75 0.59 0.47 0.38 0.29
2 1.00 1.00 0.90 0.67 0.56 0.47 0.38 0.28
4 1.00 1.00 0.83 0.70 0.56 0.47 0.37 0.28
8 0.80 0.92 0.75 0.58 0.48 0.44 0.38 0.28

16 0.83 0.75 0.67 0.59 0.46 0.46 0.36 0.27
32 0.62 0.61 0.48 0.52 0.44 0.45 0.33 0.27
64 0.55 0.49 0.39 0.40 0.34 0.38 0.32 0.25
128 0.35 0.33 0.31 0.30 0.28 0.30 0.27 0.22

256 0.27 0.24 0.24 0.24 0.23 0.24 0.23 0.18
512 0.20 0.20 0.17 0.18 0.18 0.17 0.18 0.14

0.15 0.14 0.13 0.13 0.13 0.13 0.121024 0.12

2 32 128

While the absolute number of support vectors tends to increase as more samples

are added, the portion of total points falls. When the data set is smaller, adding a new

point is likely to be significant. However, with a larger data set, any new sample is more

likely to be similar to an existing point and add very little help to the classifier. In

general, a high proportion of samples being Support Vectors with large training sets is

evidence that the classifier may be overfit.

The values in Table 3-1 are based on a single trial for each data set. Because of

this, we can't infer whether the number of support vectors depends on the total number of

points, or the number of the points that are labeled and unlabeled. To find this out, we

choose a random set of data and vary the portion of points that are labeled, measuring
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how many points are support vectors. If only the number of points matters, there

shouldn't be much variation in how many points are support vectors. If the labeled and

unlabeled points matter then the number of points that are support vectors will vary. We

take 1000 points with 50 initially labeled and at each step label 50 more until everything

is labeled. Figure 3-9 presents the results. As more of the points are labeled, more

become support vectors, implying that the ratio of labeled and unlabeled data affects how

many points are support vectors.

Number of support vectors varying portion of points labeled
160

£ 150

o 140

o 130

120

110
0 0.2 0.4 0.6 0.8 1

Portion of points labeled

Figure 3-9: Number of support vectors for a fixed data set when varying which points are labeled
and which are unlabeled

One may also wish to determine which features are important to the labeling of a

new point. To do so, you can rewrite the summation in Equation 3-2 as

(aiyx )-x +b =1w -x +b=w - b. Equation 3-3

w is a vector with the same dimensionality as a sample. Essentially, a template image is

created which each test image is matched against. For a feature with a positive value for

w, presence of that feature in a test image pusles it more towards the positive class. On

the contrary, a negative value of a feature in w means that presence of the feature pushes

it towards the negative class. It is possible to observe w as an image, and expect to see

positive values where an image of a car is likely to contain an edge (e.g. the outline of the

car or the horizon), and negative values where it is unlikely to see any edges (e.g. the

hood of the car, windshield, road). Figure 3-10 shows this for one run of the classifier.

As expected, regions corresponding to the outline of the car can be seen to be positive.
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Figure 3-10: Values of w found from a linear kernel run of TSVM, plotted as an image based on

wavelet features. Black is the most positive value, white is the most negative, and grey is

approximately zero.

3.4.1.3 Results

The results of the TSVM tests are plotted in Figure 3-111. Adding more labeled

samples helps almost all of the time. Looking at the average results, the error drops when

moving across the axis varying labeled points, and curves corresponding to more labeled

samples are further down in the plots varying unlabeled. However, looking at an

individual test run, adding labeled samples seems to have an oscillatory behavior, where

adding samples typically lowers the error but occasionally causes the error to rise. The

separating margin may get shifted slightly from one of the samples being added, which is

responsible for these changes. There is a fairly big rise in the error for all of the curves

around the 3 6 th labeled point, which implies that one of the points added changes the

margin in a way that hurts performance. As samples are added beyond this, the error

drops back down.

1 The scale differs from that in Figure 3-5, so be careful in comparing these charts directly. Figure 3-48 and

Figure 3-49 compare all algorithms on the same scale, which may be more useful in comparisons across

algorithms.
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Figure 3-11: Error rates for tests using linear kernel TSVM. Crate = 500.
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Figure 3-12: Error rates for tests using linear kernel TSVM. Cra,,= 500.

The individual curves for 512 and 1024 unlabeled drop very sharply in the first 20

or so labeled samples and then steady off. With 0 and 256 unlabeled, the drop is more

gradual. It is promising to observe that with enough unlabeled data, the classifier fares

well with only a few labeled samples.
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There is a clear decline in the error from adding unlabeled data, as seen in Table

3-3. It shows that running a TSVM with about 1024 unlabeled samples is roughly

equivalent to doubling the labeled set and not including any unlabeled data.

The average error curves continue to decline without saturating. To see if this

trend continues beyond 1024 samples, we run some tests with 32 labeled points and up to

2000 unlabeled points, with results shown in Figure 3-12. The downward trend suggests

that a linear kernel TSVM can continue to benefit from unlabeled data. The only reason

we do not run further tests is that our database is of limited size, but more data could

always be collected. When training with 32 labeled points and 2000 unlabeled points, the

average error rates are nearly as low as an SVM with 128 labeled points on this data.

Table 3-3: Average error for a TSVM with 0 and 1024 unlabeled points for different sizes of labeled
sets.

0 unlabeled 1024 unlabeled

16 labeled .077 .060
32 labeled .063 .050
64 labeled .049 .038
128 labeled .037 .033

In all of the curves varying NU, there are some points where adding more data

causes the average error to increase slightly. Figure 3-13 shows a boxplot 2 for NL = 32

to determine whether this is possibly caused by some individual results affecting the

averages. It shows us that the best results are about the same regardless of the size of the

unlabeled set, but the median and third quartile points decrease slightly as NU is

increased. Interestingly, there are still outliers at large values of NU, and if not for these

points, the averages could be even lower. Unfortunately this means that occasionally a

trial will have poor classification, even with a reasonably sized data set.

Even though adding unlabeled data tends to help performance, if only a small

number of unlabeled samples are added, it often does worse than if no unlabeled data is

used. This is particularly true with smaller NL. The unlabeled points are supposed to

2 The box-plots graph the 1" quartile and 3rd quartile points as the bounding points of the box. The line in
the center of the box is the median. Points within 1.5 * the inter-quartile range (the difference between the

Ist and 3 rd quartile) are within the bands extending out of the box, and anything outside of this range is an
outlier, represented by a + above or below.
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help get an idea of how the data is distributed, but if only a few point s are supplied, it

does little good.

Errors on linear TSVM varying unlabeled (32 labeled)
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Figure 3-13: Box-plot showing error rates using linear kernel TSVM varying NU, fixed at 512
unlabeled.

The errors when only 2 or 4 samples are labeled tend to be very high.

Occasionally an individual trial will label almost everything as cars or everything as non-

cars, and thus have nearly 50% error. This shows that more labeled training data is

necessary for a TSVM, as such large error makes the classifier useless. Ideally, a

partially labeled data method would require just one sample to be labeled from each class

and a large amount of unlabeled data to determine the distribution, but this does not work

on this data with TSVMs.

The design of the TSVM algorithm, with a modification we have made to it, can

help explain why this will not work. The first step of the TSVM algorithm is to run an

inductive SVM, trained with the labeled points, and evaluated on the unlabeled points

with continuous numbers as outputs. The algorithm chooses a priori how many points

will be in each class. If n samples are to receive positive labels, then it places the n

points with the largest outputs into this class. After this is done, one positive sample and

one negative sample are chosen and their labels are switched to increase the objective

function, until no more improvements can be made. Once the initial class proportions are

set, they will never change. If the original proportions are not the same as the true class

ratio in the unlabeled data, then some of the points will be mislabeled.

The TSVM code chooses the class proportions to be the same as the ratio of the

labeled samples. When running the algorithm in this way, we have found that it is

limiting in certain situations. In particular, when the class balance of the unlabeled data
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is very different from that of the labeled data, as is the case in many realworld situations,

the code does not work well. There is an option in SVMlight to manually set the ratio,

although, again, this is not a realistic situation. We changed the code to choose the ratio

based on the initial classification run. Rather than choosing the top n samples and putting

those in the positive class, all of the points that have a value above 0 go in the positive

class, as a normal SVM would classify them. After this, the labels are switched in the

same manner as described above.

This modification is more limiting in cases where there are very few labeled

points. With only two labeled points, a classifier assigns the label as whichever point it is

closer to in the feature space. This is very dependent on which points are chosen, as

Figure 3-14 demonstrates. Occasionally, the randomly selected points will be such that

almost everything lies on one side of the margin. Even with the label switches, there is

no way to recover from this and lead to accurate classification Choosing the ratio a

priori might do better in these situations, but not necessarily for larger training sets.

Another factor that limits performance on a TSVM is that there is not a global

search on the potential labels, which will often lead to a local maximization of the

objective function, rather than a global maximization. Performing a global search would

be exponential with respect to the number of unlabeled points, which is infeasible for a

large unlabeled set.

. X . I. E.. x " .
IN IN 0 M M IN M E X **
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Figure 3-14: A TSVM trained on a data set with only one point from each class labeled is highly
dependent on which point is chosen.

3.4.2 Gaussian kernel

3.4.2.1 Parameters

The a parameter for the Gaussian kernel TSVM is used to determine how much a

test point will be influenced by a training point depending on its distance. The value of Y
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establishes how quickly the Gaussian distribution falls out. Large values correspond to a

slower decay, which means that points further away will have a bigger influence.

Through cross-validation, we find that 3 is a good value for (, giving smaller errors than

other values for trials with NL=64 and NU= 1024.

3.4.2.2 Relevant features and samples

As with the linear kernel, it is interesting to see how many points become support

vectors for different values of NL and NU. Table 3-4 gives this information for one trial

and Table 3-5 gives the portion of total points that become support vectors. Far more

points are support vectors in comparison to the linear kernel, which is because the kernel

function allows the separation line to curve more to fit the data.

3.4.2.3 Results

The results for the Gaussian kernel TSVM are shown in Figure 3-15. All of the

curves tend to improve as more labeled points are added. Some of the curves actually

have a slight increase in error going from around 16 to 32 labeled, but this is a very minor

change and is due to sampling error. In the individual trial plots, the error tends to drop

when adding samples, but the curves for both 512 and 1024 points get worse with more

data, showing better results from 4 labeled points than 100. These results are not typical,

or otherwise the average curves would follow this trend as well. This does, however,

demonstrate what can happen on individual trials.

The performance of this algorithm is very good, and has among the lowest error

levels for smaller data sets. However, it does not perform well when many unlabeled

points are provided. With 1024 unlabeled points, error is much worse than if no

unlabeled data is used, regardless of how many points are labeled. It is unusual to see an

algorithm's performance degrade so much from additional unlabeled data, so we analyze

the results further to understand why.
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Table 3-4: Number of

Table 3-5: Portion of
a=3.

support vectors in a Gaussian kernel TSVM. Crate= 500, a = 3.

I # labeled points I
2 4 8 16 32 64 128 256

0 2 4 8 15 28 41 67 109
2 4 6 10 17 29 42 68 110
4 6 8 12 19 31 43 69 111

CL 8 10 10 13 22 34 46 69 112
16 18 15 19 27 38 51 72 114

3 32 27 23 30 34 44 58 81 120

9 64 38 40 45 47 58 67 87 124

128 56 77 72 72 81 90 116 149

256 98 131 118 96 114 122 141 177
512 159 272 204 172 179 190 200 233
1024 290 490 433 295 309 325 350 368

total points that are support vectors in a Gaussian kernel TSVM. Cr.t,,= 500,

# labeled points
2 4 8 16 32 64 128 256

0 1.00 1.00 1.00 0.94 0.88 0.64 0.52 0.43
2 1.00 1.00 1.00 0.94 0.85 0.64 0.52 0.43
4 1.00 1.00 1.00 0.95 0.86 0.63 0.52 0.43

aL 8 1.00 0.83 0.81 0.92 0.85 0.64 0.51 0.42
16 1.00 0.75 0.79 0.84 0.79 0.64 0.50 0.42

32 0.79 0.64 0.75 0.71 0.69 0.60 0.51 0.42

7E 64 0.58 0.59 0.63 0.59 0.60 0.52 0.45 0.39
128 0.43 0.58 0.53 0.50 0.51 0.47 0.45 0.39
256 0.38 0.50 0.45 0.35 0.40 0.38 0.37 0.35

512 0.31 0.53 0.39 0.33 0.33 0.33 0.31 0.30
1024 0.28 0.48 0.42 0.28 0.29 0.30 0.30 0.29
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Figure 3-15: Error rates for tests using Gaussian kernel TSVM. ( = 3, Crate = 500.

We choose a set of 1000 points and vary how many are labeled at each step,

measuring the objective function at each level. The TSVM is trying to find labels for the

unlabeled points in order to maximize this objective function. The results are given in

Figure 3-16. The accuracy and objective function are different measurements, so they

can't be compared to each other, but what is important is the general trend for the

objective function as the portion of labeled points increases. For the most part, this curve

is increasing, which implies that the TSVM is getting stuck in a local maximum for the

objective function. Each iteration, two labels are switched to raise the objective function,

but this may lead to the labeling that gives the global maximum. These local maxima

solutions give reasonably good results, but are not as good as when all points are labeled.

A modification of the algorithm that switches more than one pair of labels at a time could

improve the performance, but would also increase the complexity.

Unfortunately, this is not the full explanation because of what appears within the

first 100 labeled points. The objective function starts out around 88, then increases to 90
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with 50 points labeled, which is slightly above the value of the objective function when

all points are labeled. When there is a label assignment that gives a higher objective

measure than with fully labeled data, the objective function may not be an appropriate

measure. Some points in the data set appear different from the majority of points within

their class and may lie on the wrong side of the margin. We confirm the existence of

these outliers by training a classifier with a large fully labeled set, and noting that there is

sometimes up to 1% error on the training points. For outliers such as these, the TSVM

can obtain a higher objective function by assigning the label that the samples appear to

be, even though this is the wrong classification. With most classifiers, it is good to use

samples in training that are close to the margin, but here using these as unlabeled points

has an undesirable effect.

Figure 3-16: Plot of the test performance and objective function while varying
that are labeled. The test accuracy displayed is the percentage of the 400
labeled.

the number of points
test points correctly
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3.4.3 TSVM Summary

Error bars for TSVM varying NU (64 labeled)
0.065 1 - . . ..-..

-- Linear kernel

L.: Gaussian kerne

0.055

0.05

0.045

0.04-

0.035

0.03

0.025
10 10' 1 0 1 0
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Figure 3-17: Percent error for linear and Gaussian kernel TSVMs with 64 labeled points, varying the
number of unlabeled points. The linear kernel starts out with higher error rates but drops steadily,
while the Gaussian kernel starts low, drops slightly, then rises at 256 unlabeled points and above.
The figures show the mean values with error bars extending to the 1 and 3 rd quartile points.
Outliers are not shown.

Figure 3-17 directly compares the error rates for the different kernels with 64

labeled points and varying the amount of unlabeled data. For smaller values of NU, the

Gaussian kernel is better, while for larger NU, the linear kernel has much better accuracy.

Interestingly, the average performance using the linear kernel with 1024 unlabeled points

is as good as the Gaussian kernel with no unlabeled data. However, we found that the

linear kernel continues to improve with more unlabeled data, so with enough data it will

outperform the Gaussian kernel.

For any amount of unlabeled data, a TSVM classifier generally benefits from

adding labeled samples. Performance tends to be very poor when fewer than 8 labeled

samples are used, but improves beyond this without appearing to saturate.

A linear TSVM does very well as a large amount of unlabeled data is added. Its

performance is continually improving, and with enough labeled data, the classification

error is the same as if a much larger training set were used. While a Gaussian kernel

TSVM benefits from some unlabeled data, it does not do well on this data set with too

many unlabeled samples because of the problems with the objective function described

earlier. Even with this effect, the error rates on the Gaussian TSVM tend to be very low.
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Figure 3-18 shows the eight test points from each class that are most frequently

mislabeled by a TSVM. Several of the non-cars that were often labeled as cars have

edges where a car typically would, which could easily trick a TSVM if enough of these

edges are present.

Figure 3-18: The eight images in each class that are most difficult for a TSVM to classify.

3.5 Kernel Expansion

As mentioned in the previous chapter, there are a number of ways to estimate the

probability of the label for each point with kernel expansion We run tests and describe

the results separately for each estimation method. There are also different ways of setting

the a parameter, which shows to have a very important effect.

3.5.1 Average margin results

Using the awerage margin for estimating the P(yli) parameters offers a closed form

formula, which gives it a fast training time. Its only parameter is a, which can be set in

different ways. The first way is to specify one value of a for all points in space. The

other two methods, BMP and KNN, are adaptive and choose a unique value for each

point based on the density of points within the region and a multiplier. We give results

for each of these ways of choosing a for this parameter selection method and all

subsequent ones.

Constant Y
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Figure 3-19: Error rates for tests using kernel expansion average margin. a = 0.3.

When using a constant value of a for all samples, we find a good value to be 0.3.

This gives the best results over several trials of 64 labeled samples and 1024 unlabeled

samples. Results are plotted in Figure 3-19.

Adding more labeled samples steadily improves the classification accuracy. All

curves varying labeled samples slope downward, and haven't even fully leveled off after

256 samples are added. This implies that adding more labeled data could lead to further

improvement.

Unfortunately, very poor results are found from adding unlabeled data. First, it

can be seen that running kernel expansion with no unlabeled points does as well as

running with 512 or 1024 unlabeled points, and does better than 256. In fact, having

fewer than about 512 unlabeled samples seems to do worse than none, and beyond this,

the performance steadies off with very little change. When fewer samples are labeled,

this is particularly true.
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This is what is observed with some other methods, where having only a small

amount of unlabeled data does not help the algorithm very much. The poor performance

here suggests that using an adaptive Y may be more appropriate.

Adaptive a (BMP)
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Figure 3-20: Error rates for tests using kernel expansion average margin (BMP adaptive a). kfrac =

0.3. sigmamult = 0.2.

The BMP adaptive Y method requires two parameters. The first, kfrac, specifies

which neighbor's distance to use. The second parameter, sigmamult, is a multiplying

factor. The value of (Y for any point when there are N total points is sigmamult times the

distance to the (kfrac * N)th nearest neighbor. We find the optimal settings to be 0.3 for

kfrac, and 0.2 for sigmamult. For these parameter settings, the results are shown in

Figure 3-20. Adding more labeled samples gives a fairly steady improvement. The

curves for an individual trial varying labeled show that there is a quick period of

improvement from the first few labeled points, and then afterwards the error rate remains
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fairly steady. Much like with TSVMs, performance tends to be poor with only 2 labeled

samples, often with nearly everything being labeled as one class, yielding 50% error.

As with the constant setting of T for this method, there does not appear to be

much benefit from adding many unlabeled samples. With 128 labeled points, the

algorithm tends to perform its best without any unlabeled data. Without as many labeled

points, there is some benefit to having unlabeled data, but not as expected. The

performance tends to peak between 8 and 128 unlabeled points, and levels off or gets

worse beyond this.

Adaptive a (KNN)
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Figure 3-21: Error rates for tests using kernel expansion average margin (KNN adaptive (Y). kfrac
=0.3. sigmamult = 0.2.

We find the optimal parameter settings as kfrac = 0.3, sigmamult =0.2, with

results shown in Figure 3-21. These results appear slightly better than the other sigma

estimation methods.
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Error drops for all curves when adding more labeled samples. The initial error

even starts out fairly low compared to some other methods. With at least 256 unlabeled

samples, the average initial error is around 20% with only 2 labeled samples. This is

certainly not a good classifier in general, but there were some trial runs which achieved

as little as 8% error with only 2 labeled samples, which is impressive for a small labeled

set. Looking at individual trials, the error drops fairly quickly until about 20 to 40

labeled samples are added, then steadies off with some oscillation as more samples are

added.

Having unlabeled data always seems better than having none, but what is

interesting is that with fewer labeled samples, too much unlabeled data can hurt. This

can be seen by observing that the error rates in the NU = 256 curve lie below the NU =

512 and NU = 1024 curves when NL is 32 or smaller. The curves corresponding to 16

and 32 labeled points further show that average error drops up until 64 unlabeled samples

are added, but beyond this the error increases with more unlabeled data. With 64 or 128

labeled points, the opposite effect is observed. There is very little improvement at all up

to around 128 unlabeled points, and beyond this the average error drops a few percent

while increasing to 1024 samples. This effect is found through most of the samples and

is not caused by a small number of outliers.

The parameters may not be optimal for training sets of all sizes, which may cause

some of the increases when adding data. In particular, when the unlabeled data

overwhelms the labeled data, a much smaller of Y may be more appropriate. Because we

optimize the parameters only once for each algorithm, not for each size data set, this can

not be avoided.

3.5.2 Minimum margin results

Constant a

A good value of T for minimum margin is 4, which seems fairly large compared

to values of 7 computed for other methods. Minimum margin is not very tolerant to

noise, and the larger value of T here helps for smoothing. Figure 3-22 plots the results.
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Figure 3-22: Error rates for tests using kernel expansion minimum margin. a = 4.

For the most part, adding labeled samples helps classification, except in some

cases with large amounts of unlabeled data. For example, with 0 or 256 unlabeled points,

going from 128 to 256 samples causes the average error to rise. In Figure 3-23 we look

at further tests with up to 500 labeled samples, fixed at 1024 unlabeled samples. In the

figure at the right, which represents averages over all trials, there are several points where

the error goes up as NL is increased, which is not what we expect. This is because there

are a few outliers which are affecting the averages. We remove the outliers (cases where

all points are classified as positive) and show the averages in the right part of Figure

3-23. This tells us that the error levels can be fairly low, although there is some chance

that any trial will give around 50% error.

64

V.4+ r I - - - - - - -

0.3

.8a
0

a
0.2

0.11

0 0
10

r% 1)

a

KE Min Margin (0=4) varying labeled samples
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Figure 3-23: Error rates for tests using kernel expansion minimum margin, varying labeled, fixed at

1024 unlabeled. a = 4. In the left figure, all trials are shown, while in the right figure, four outlier
points are removed.

Individual trial curves varying labeled show that as the initial samples are added,

the error can drop fairly quickly. Beyond this, there is not much change from

incrementally adding additional samples.

Adding unlabeled points is fairly helpful for this algorithm. The NL = 16, 32, and

64 curves see a drop in error from the labeled data. With a few hundred labeled points,

their performance almost matches that from doubling the amount of labeled data. With

128 labeled points, the performance is very good but doesn't change much as unlabeled

points are added.

Looking at curves for individual trials shows some change as the first few

hundred unlabeled points are added, then periods where the error remains fairly constant.

The curves with fewer labeled points improve more rapidly, as is typically seen.

Adaptive a (BMP)

The best parameter settings found for this method are kfrac = 0.05 and sigmamult

= 0.15. Figure 3-24 displays the results from these trials. Note that the optimal value

found for kfrac is smaller than used in other methods, although the constant sigma value

used with minimum margin is larger than usual. These settings yield the best

performance in the test trials, but they perhaps explain the erratic behavior seen in the

charts.

Adding labeled points often leads to higher average error rates. For curves with

any unlabeled data, the average error goes up when going beyond 64 labeled points. It is

not a good sign for any algorithm to experience a rise in error from adding labeled data.
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Figure 3-24: Error rates for tests using kernel expansion minimum margin (BMP adaptive a). kfrac

=0.05. sigmamult=0.15.
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However, looking at the box-plots in Figure 3-25 shows that the higher averages

are caused by some outliers. The outliers become more common as there is more

unlabeled data, which means that the algorithm is less reliable in these situations.

Adding unlabeled data helps slightly when there are only a few labeled points.

The curves for 16 and 32 labeled see an overall drop in error, although portions of the

graph do cause an increase. The NL = 64 curve has very little dependence on the number

of unlabeled points and has a fairly steady average error of about 10%. The individual

curve also shows very little change. With 128 points, the average error gets uniformly

worse when increasing the unlabeled size.

The results demonstrated here show that this particular parameter selection

method is not suitable for our data set. Even though the error rates can occasionally be

very low, the higher rates occur too frequently.

Adaptive a (KNN)

KE Min Margin KNN (frac=.4) varying labeled samples
0 A

0.3

0.21

0.1

10 10 102

.8

Cl)

3
10

# labeled

KE Min Margin KNN (frac=.4) varying labeled samples

0 -G- NU=0 
0.2 . -A-NU=256

-- NU=512
--- NU=1024 1

0.1 t

.05 

0 20 40 60 80 100
# labeled

KE Min Margin KNN (frac=.4) varying unlabeled samples
----------- - --

I -. NL=16 I
0.24 ,6- NL=32

-E- NL=64 I
0.2 ~NL=128 I0.2LJ

0.151

0.4

n . - --5 - -- -- - - --

10 102 104
# unlabeled

KE Min Margin KNN (frac=.4) varying unlabeled samples
0.5-- -- -------------

I - -NL=16 I
.4, NL=32
1 -,- NL=64  I

I k -x-NL=128II

~0.3L -~lIj

( 0. 2

0.

-.-- -- -- - -- -A -- - - 1
0 500 1000

# unlabeled
1500

Figure 3-26: Error rates for tests using kernel expansion minimum margin (KNN adaptive a). kfrac
= 0.4. sigmamult = 0.15.
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Figure 3-26 shows the results using the KNN adaptive 7 with minimum margin,

with kfrac = 0.4 and sigmamult = 0.15. The results for this method are among the worst

we have seen Adding more labeled samples only helps when there is a very small

amount of unlabeled data. With more than 64 unlabeled points, adding labeled data

appears to have the opposite effect it should. The labeled data learning curves rise in

error as data is added, and unlabeled data learning curves have lower error in curves with

smaller values of NL.

Adding unlabeled points also causes performance to degrade. The average errors

increase until 512 points are added, then begin to decrease. Tests that go beyond this

number of unlabeled points (Figure 3-27) show that after this sharp decrease, the error

levels off without much change.

3.5.3 Maximum entropy discrimination (MED) results

Constant a

A good setting of parameters for maximum entropy discrimination is a = 0.3,

margin = 0.1, Crate = 1000, with results using these settings shown in Figure 3-28. This

algorithm shows a quick and steady drop in the error level as labeled points are added to

the classifier. Even going from 128 to 256 points causes the average error to drop from

5.6% to 4.3% for each of the curves, meaning it hasn't leveled off from labeled data by

that point. Despite very low error rates, this method does not seem to improve with

unlabeled data in any way. The flatness of the individual trial curves verifies that this is

not caused by some samples affecting the average. Outside of the region of interest, with

NL = 2 or NL = 4, having many unlabeled points is actually slightly worse.

It is very odd to see results that are almost entirely independent of the number of

unlabeled points, so we run some tests with different parameter settings. We only focus

on the averages over 20 trials when varying the number of unlabeled points, and show the

results in Figure 3-29. These curves do vary as NU changes, but actually get worse with

more samples.
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KE Min Margin KNN (frac=.4) varying unlabeled samples (NL=128)
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Figure 3-27: Error rates for tests using kernel expansion minimum margin (KNN adaptive a)
varying NU, with NL fixed at 128. kfrac = 0.4. sigmamult = 0.15.
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Figure 3-28: Error rates for tests using kernel expansion MED. a = 0.3, margin=0.1, Crate = 1000.

Adaptive a (BMP)

The results of MED parameter estimation using BMP are shown in Figure 3-30,

with parameters set as kfrac = 0.3, sigmamult = 0.2, Crate = 1000, and margin = 0.1.

These charts show that an adaptive sigma helps out quite a bit. Without any unlabeled

samples, the error is slightly worse than with a constant (, but there is a big improvement
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as unlabeled points are added. Using about 256 unlabeled points with a fixed size labeled

set is roughly equivalent in some cases to doubling NL. At 512 unlabeled, there is even

more improvement, but beyond that the performance levels off.
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Figure 3-29: Error rates for tests using kernel expansion MED with non-optimal parameter settings.
The curves tend to get worse with more unlabeled data and better with more labeled data.
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Figure 3-30: Error rates for tests using kernel expansion MED (BMP adaptive a). kfrac = 0.05,
sigmamult = 0.2, margin=0.1, Crate = 1000.

Adaptive a (KNN)

In Figure 3-31 we show the results using the KNN method, with kfrac = 0.05,

sigmamult = 0.2, margin=0.1, and Crale = 1000 as the parameter settings. These charts

show the same trends as using BMP, but with lower errors.

The individual curves reveal some important information. The first few labeled

points are very important, as they cause a sharp dop in the error. Around the 3 6th

sample, there is a big jump in the error for the NU=0 curve. This is likely due to a single

bad sample which causes parts of the test set to be mislabeled. At this point, there is still

a small rise in the error for the NU=256 curve, but it is much less extreme, and the

NU=512 and NU=1024 curves barely budge. Here, a large unlabeled set has helped

dampen the effects of a poorly labeled point. This is a very nice property, as one cannot

always expect the labeled data to be perfect.
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Figure 3-31: Error rates for tests using kernel expansion MED (KNN adaptive a-). kfrac = 0.05,
sigmamult = 0.2, margin=0.1, Crat = 1000.

The results for all three methods of computing sigma are compared together. in

Figure 3-32, with the optimal parameters used for each method. When varying the

labeled data, fixed at NU = 1024, all three methods have a downward trend, but KNN is

generally has between 1% and 2% lower error than BMP, which is below the constant T

by the same amount. When varying the amount of unlabeled data and training with 32

labeled points, KNN always has the best performance. For small amounts of unlabeled

data, BMP does the worst of all three methods, but improves and surpasses the constant

T with about 128 or more unlabeled points.
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Figure 3-32: Comparison of constant and adaptive a for kernel expansion MED. In the left chart,
NU=1024, and in the right chart, NL=32. Optimal parameters found in the previous section are set
for each method.

3.5.4 EM estimation results
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Figure 3-33: Error rates for tests using kernel expansion EM. a = 0.3.
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The final parameter estimation method we explore for kernel expansion is EM.

For a constant value of a, we find 0.3 as a good value. The results from the trials are

shown in Figure 3-33.

Adding labeled points is very helpful for this algorithm. The average error drops

very steadily and is just beginning to level off around the 2 5 6 th labeled point. Looking at

individual curves shows that very rarely the error increases when adding additional

labeled points, but for the most part remains steady or drops. Beyond a certain point, the

error tends to level off for long periods and drop occasionally.

Unfortunately, adding mlabeled points does almost no good. In the region of

interest, the 0 unlabeled curve performs nearly identically to 512 or 1024, and better than

256 unlabeled. The learning curves for unlabeled data support this. As the first 64 to 128

samples are added, the error rises slightly, particularly for smaller NL. Beyond this, the

error drops, but does not get below its initial level. Because of this, this algorithm is not

very useful on our data set.

Adaptive a (BMP)

We try adaptive (Y methods with EM parameter estimation, hoping that they will

help improve the results. For tests using the BMP method, with kfrac = 0.05 and

sigmamult = 0.2, we show the results in Figure 3-34.

The performance of this algorithm improves slightly as NL increases. The

individual curves show that there is a sharp drop in the error, usually in the first 10 to 20

samples, and then a fairly steady error rate beyond that.

Adding unlabeled points has a very important effect when there is not much

labeled data. With 16 labeled points, the average error drops significantly, even with just

a few extra samples. With 32 labeled points, there is some improvement, but less

extreme. With 64 or more labeled, the unlabeled points lead to hardly any improvement.

Regardless of the number of labeled points, having large NU seems cause degrade the

performance, as the average errors increase slightly beyond the 2 5 6 th point. The

individual curves demonstrate this pattern very clearly. Around NU=300, the curves all

start going towards higher error levels, and eventually level off.
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Figure 3-34: Error rates for tests using kernel expansion EM (BMP adaptive a). kfrac = 0.05,
sigmamult = 0.2.

Adaptive a (KNN)

We show the results for kernel expansion with EM, using KNN adaptive

a method in Figure 3-35, with kfrac = 0.2 and sigmamult = 0.2. This estimation method

benefits from more labeled data but does not seem to gain much from unlabeled points,

except in a few cases. For curves with small NL, a small amount of unlabeled data can

improve the classifier. Beyond this, the error starts to go up, well beyond the initial rates

at NU=O. If more points are labeled, the classifier is able to handle more unlabeled points

before reaching its peak performance. This can be seen more clearly with the individual

trial curves, where the performance peaks around the 9 0 th sample for the NL=16 curve,

and closer to the 360th sample for the curves with higher NL.

This pattern is not good for the intended purpose of these algorithms, because the

desired use is with a few labeled samples and a large amount of unlabeled points. Even

though other methods have a U-shaped curve like this when varying NU, this one is much
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worse. This is because of how quickly the peak performance is reached, and the fact that

beyond this the performance is much worse than if no unlabeled data is used.
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Figure 3-35: Error rates for tests using kernel expansion EM (KNN adaptive a). kfrac = 0.2,
sigmamult = 0.2.

3.5.5 Kernel expansion summary

Of the several methods we explore with kernel expansion, we find that some work

reasonably well, while others work very poorly. Of the three methods of computing (,

none is superior to others in all cases, but instead it depends on which parameter

estimation method it is used alongside.

For average margin parameter estimation, only KNN works well, and only when

it has enough labeled data. Minimum margin yields reasonable results with a constant c7

or BMP, with the exception of occasional outliers. Without these outliers the average

error rates are good, but the fact that an occasional trial can have such high error means

that the method should be used with caution. Using KNN or BMP with MED parameter

76

- NU=0 I
NU=256

28

a

'O'

1024-- |--'''~NU_=



estimation gives low errors that improve further with the addition of labeled and

unlabeled data. Finally, EM with BMP 7 estimation works well, although the

performance doesn't seem to improve once a certain amount of data is supplied. The

remainder of the methods give high error rates or get worse with larger data sets, so they

should not be used in practice for a data set similar to ours.

3.6 Markov Random Walk

The concept of connected components is important when dealing with Markov

random walk. This value tells us how many disjoint units the data is split into. If there is

only one connected component, then any point can reach any other print along some

path, by single step transitions to one of the point's k neighbors. If there is more than one

component, then some points can not reach others along any path regardless of how

many time steps there are. This will typically occur when there are several data clusters

that are isolated from each other, as in Figure 3-36. The number of components depends

on k, and as is non -increasing as k gets larger.

For Markov random walk to work as it should, the data will be best if there is only

one connected component for our choice of k. Otherwise the labels on unknown points

will only be influenced by part of the data set, not all of it. We find that for our data set,

as long as k is 4 or larger, there is one connected component, and thus we will only run

tests with this algorithm when k is above 4.

As with kernel expansion, we run Markov random walk tests with each of the

parameter estimation methods and analyze the results individually.

xxx D
Xx xXX

000

0

Figure 3-36: When there are isolated clusters of points, there will typically be more than one

connected component. This chart has three connected components, each represented by a different
symbol, for values of k less than about 10.
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Figure 3-37: Error rates for tests using Markov random walk average margin. t = 8, k =5, C = 3.

The results for average margin estimation of the parameters are shown in Figure

3-37, with t=8, k=6, and cy=3. Looking at the charts shows how erratic this method is,

both from adding labeled and unlabeled samples. The average errors oscillate, so it will

be useful to look at errors on individual trials. Figure 3-38 looks at the box plots for

some of the curves.

Looking at results for when NU=512, it seems that adding labeled samples tends

to help in the worst case. The highest error for any trial is much lower for 8 or more

labeled samples than it is for 2 or 4. However, beyond this, there is not a significant

amount of change from adding more labeled data. The error tends to fall between about

3% and 4.5% without any appearance of converging. This implies that the variation in

error is mostly due to sampling error. These averages are based on 20 trials, and with a

much larger sample the results will smooth out more.
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Figure 3-38: Box-plot showing error rates using Markov random walk average margin varying NL,
fixed at 512 and 1024 unlabeled (top) and varying NU, fixed at 32 or 64 labeled (Bottom).

The average results varying unlabeled data seems to oscillate as well. From the

box-plots here, more unlabeled samples reduce the largest error found in any trial, but

also increases the lowest error rates. In some cases with fewer unlabeled samples, the

error rate is 0, but this never happens in trials with more than 64 unlabeled points. This is

just due to random chance, and does not imply that the performance on smaller unlabeled

sets is better. As mentioned earlier, the Markov random walk algorithm does not allow

testing on non-training points. For smaller amounts of unlabeled data, the test set is

smaller. Consider a set of tests run on a random set of data where there is a 3% chance of

error for any trial, regardless of the amount of labeled points. The same basic pattern

emerges here as in the bottom of Figure 3-38. As the test set increases, the extreme

values converge on the average error rate, which is 3% in this case. This tells us that we

should not be concerned that some trials occasionally have lower error rates than trials

with larger training sets. What is more important is the average error, which will

converge given enough trials.
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Figure 3-39: Box-plot for randomly generated trials, where the test set is equal to the number of
unlabeled points. Any individual trial has a 3% chance of being an error.

3.6.2 Minimum margin results
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Figure 3-40: Error rates for tests using Markov random walk minimum margin. t =8, k =5, 7 = 3.

We plot the results in Figure 3-40 using minimum margin with Markov random

walk, with parameter settings t = 8, k = 5, and a = 3. The individual trials show a lot of

oscillation, as well as the average curves. The average curves demonstrate that the error
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does not always drop as more labeled points are added, and in particular, 256 labeled

points has very poor results. This is due to noise, which minimum margin does not

handle well, but it makes the algorithm very unreliable.

Even though labeled samples do not always help, this algorithm benefits from

unlabeled data. Each of the curves varying unlabeled samples has a general downward

trend, although only 16 unlabeled points tends to do well.

Overall, this algorithm does not seem very useful because of its unpredictability.

Adding unlabeled points helps, as is typically true with Markov random walk, but some

trials have error rates that make this algorithm unacceptable for actual use.

3.6.3 Consistent results

MRW
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Figure 3-41: Error rates for tests using Markov random walk consistent. t = 8, k = 5, a = 1.

Using the consistent estimation method with Markov Random Walk, the optimal

value of T is found to be 1, with t = 8 and k = 5. Results are shown in Figure 3-41.
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With a very small NL, this method has very poor performance. With just 2 or 4

labeled samples, the error rate is almost invariably 50%, with all samples being labeled in

the positive class. This is more likely to be true with larger NU. As more points are

labeled, the average error drops, as the classifier less frequently labels nearly everything

as positive. In these trials, the error is generally below 10%, and it is very rare that an

intermediate error rate is seen.

The individual trial curves show this in more detail. Initially, there is around a

50% error regardless of the amount of unlabeled data. As a few labeled samples are

added, the error does not change. At some threshold the error quickly drops, and

although the threshold varies from trial to trial, it takes more labeled samples to reach the

threshold when NU is larger. In other words, with a lot of unlabeled data, more labeled

samples are needed before the classifier can get a reasonable performance. This is

because with more data overall, it takes more labeled points to be able to reach all points

in just t=8 steps by stepping to neighbors. Another important thing to note is that beyond

the threshold, it only takes a few more labeled points before approaching its peak

performance. From the trials run, it is typically between 10 and 20 additional samples

required. As samples are continually added, there is rarely a change in the error rate.

This method doesn't benefit very much from unlabeled data. The error rates tend

to be minimized when NU = 64. The NL = 16 curve has a very sharp rise in the error at

1024 labeled points, which seems to be the opposite of most of the algorithms we have

seen so far. However, it is consistent with the other graphs for this method, which simply

will not work if there is too much unlabeled data. The NL=16 curve is the only one that

spikes upward like this in the region shown, but all of the others will if the NU axis is

continued out further.

One possible way to improve the performance is to raise t as NU gets larger in

comparison to NL. With more time steps, the labeled points will have more opportunities

to reach the rest of the data set. However, for the trials that we calibrated the parameters

on, t = 8 gave the best results, and for a fair comparison with the rest of the algorithms,

we do not vary the parameters as the size of the training set changes.
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3.6.4 Maximum entropy discrimination (MED) results
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Figure 3-42: Error rates for tests using Markov random walk MED. t = 6, k = 5, a = 2, Crate= 1000,
margin = 0.2.

Using maximum entropy discrimination to determine the label probabilities with

Markov random walk has very good classification rates. The results of the trials are

shown in Figure 3-42, with parameter settings of t=6, k = 5, Crate = 1000, margin = 0.2,

and Y =2.

The average error rates drop quite a bit as the first few labeled samples are added,

and the improvement slows down but has not completely leveled off when NL=256. At

this point, the average errors are around 3% to 4%, depending on how many unlabeled

samples are used. This general trend is observed in the NU=512 and NU=1024

individual trial curves, but NU=256 is different. It starts out around 1.6% error with only

4 labeled points, rises to 2%, and eventually drops to 1.2% error with just less than 100

labeled points. This is absolutely phenomenal performance, incorrectly labeling 3 to 5 of
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the 256 test points! The 256 test points are also present in the 512 and 1024 trials, and

those do not do as well, especially with fewer labeled points. This implies that the 256

points used are placed in such a way that they are easy to classify, whereas the additional

points in the other curves make the task slightly more difficult. This seems odd, but with

a Markov random walk, adding or removing even a single point will change the

neighborhood structure and can change the performance.

Adding more unlabeled samples almost always seems to help as well. Except for

when there are 2 or 4 labeled samples, the average error for the NU=1024 curve is better

than NU=512, which is better than NU=256. In the curves varying unlabeled samples,

there is also a general downward trend, although there are some points where the error

rate increases from adding data. While many algorithms tend to improve more as the first

initially and then level off, this benefits a lot from a large amount of unlabeled data. The

curves are steeper for large values of NU than for small values. The axis of the graph is

logarithmic, so the incremental benefit from a single labeled sample is still dropping, but

not nearly as much as with other methods.

Because the error continues to decline even around 1024 samples, we run tests

with more unlabeled data, and display the results in Figure 3-43. There is a small jump in

error from 500 to 1000, which contradicts what we find in Figure 3-42, but the errors are

subject to some sampling error. What we find useful is that the error is still declining at

2000 unlabeled points, even if it is a fairly small change. This means that MED

parameter estimation in use with Markov random walk can potentially benefit from a

very large set of unlabeled data, although parameters such as t may have to be changed.

MRW MED (t=6,k=5, a =2) varying unlabeled samples
0.04

-v!& NL=32

0.038

0.036

0.034

0.032
500 1000 1500 2000

# unlabeled

Figure 3-43: Error rates for tests using Markov random walk MED, varying NU, with NL fixed at
32. t = 6, k = 5, a = 2, Crw,,= 1000, margin = 0.2.
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3.6.5 EM estimation results
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Figure 3-44: Error rates for tests using Markov random walk EM. t = 6, k =5, a = 3.

We show the results using EM estimation in Figure 3-44, with t = 6, k = 5, and T

= 3. We can see that this method has excellent performance and benefits from both

labeled and unlabeled data.

When adding labeled samples, the error drops fairly steadily from 2 to 8 samples.

Beyond this, the error doesn't change significantly as more labeled data is added, but it

does occasionally rise, which is not as expected.

Performance with only one labeled sample from each class is fairly good, with

average error rates between 6% and 10% depending on how large NU is. With 8 labeled

samples total, the performance nears its peak, with average errors between 2.5% and 4%.

Some individual trials achieve close to 2% error. These error rates are excellent

compared to other algorithms, and are consistent across trials.
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Figure 3-45 shows box-plots for one curve varying labeled and one varying

unlabeled. The plots point out an interesting trend when varying NL. For a fixed number

of unlabeled points, the median and minimum error rates are almost identical for any

amount of labeled points. However, the maximum error tends to drop from adding more

samples. This shows that this algorithm can have very good performance with even two

labeled points, but not consistently. With more labeled data, the high performance levels

become more consistent.

From Figure 3-44, we know that the average increases when going from 512 to

1024 unlabeled points. From the box-plot, it appears that with 1024 unlabeled points, the

error rates are converging on a very narrow range, while for 512 there is slightly more

variation.

The individual curves varying NU tend to oscillate together. When one curve

rises or falls, the others follow in the same direction. Figure 3-46 focuses on a small

region of the lower-right curve from Figure 3-44 to demonstrate this. This reinforces the

fact that once enough labeled samples are present, adding more does not improve the

performance significantly.

(A) Errors on MRW EM varying labeled (1024 unlabeled) (B) Errors on MRW EM varying unlabeled (64 labeled)

0.3 + 0.25 +
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Figure 3-45: (A) Box-plot showing error rates using Markov random walk EM varying NL, fixed at
1024 unlabeled. (B) Box-plot showing error rates using Markov random walk EM varying NU, fixed
at 64 labeled.

3.6.6 Markov random walk summary

The results on Markov random walk are somewhat more sporadic than those we

have already seen, due to the fact that the test set changes on each trial. However, we are

still able to get a sense of which algorithms are most useful.
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Figure 3-46: Error rates for an individual trial using Markov random walk EM. t = 6, k = 5, a = 3.

Maximum entropy discrimination provides excellent results, with steady

improvement from adding labeled or unlabeled data. Unfortunately, this parameter

estimation method is not as strong as others when the labeled set is very small. EM

estimation gives some lower error rates than MED, but steadies off eventually, so it will

not improve with increasingly large unlabeled sets, whereas MED will. Average margin

does okay, but varies significantly from trial to trial. Consistent estimation does fairly

well under most conditions, but does not work at all when only a small portion of the

points are labeled. This is still a potentially useful method for our purposes, but the

labeling requirements may be difficult to meet. Due to its unpredictable nature,

minimum margin is not useful. Even though some trials have low error rates, other trials

do very poorly, so it is never certain to do well on any data set.

3.7 Spectral Clustering

In spectral clustering, we map each sample into a new feature vector based on its

distance to other points. The dimensions in the new feature space only tell which clusters

a point belongs to. There is no correspondence to the original feature space.

3.7.1 Parameters

Spectral clustering has several important parameters that control its performance.

The first parameter, nclust, establishes how many clusters the data gets separated into.

Using too many clusters will create clusters with very few points. If there are as many
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clusters as there are data points, each point will be put into its own cluster and virtually

no information is gained, even though the dimensionality has decreased. If the number of

clusters in the algorithm is less than the number of clusters actually in the data set, then

not enough information is being used. Ideally only 2 clusters would be needed, one for

each class, but the images and their corresponding feature vectors are very complex and it

is unlikely that the data would cluster this perfectly. It is important to find a number of

clusters in between the extremes that will work well.

The second parameter is Y. As usual, cY establishes how points influence each

other as their distance varies. This is used for the affinity matrix, which eventually helps

determine where the clusters are formed.

3.7.2 Clusters

To see whether the clustering method is likely to work at all on our data set, we

run some preliminary tests. We take 1000 points, map to the new feature vectors using

the parameter settings, and then use k-means to assign each point to a cluster. When

using spectral clustering as a classifier, we use a linear SVM rather than k-means to

separate the clusters, but this will give an idea of what points are nearby using the

converted features.

If clustering works perfectly, then each cluster will contain all samples from the

same class. Table 3-6 shows how many positive and negative points are contained within

each cluster, and unfortunately it does not work as well as expected. Clusters 3, 5, 6, 7,

and 9 contain points from only one class, but they are very small, which reduces the

likelihood that one of those points will be labeled. What is most troublesome is Cluster

2, which contains a large number of points, but there is about a 3-to- 1 split of positive

and negative samples. If all points within the cluster are labeled identically, then over

100 of these samples could be mislabeled, which gives over 10% error on the set.
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Table 3-6: For a sample clustering task of 1000 points, how many went into each class for each
cluster. nclust = 10, a = 1.

Cluster # Pos # Neg
1 8 203
2 344 111
3 6 0
4 88 0
5 1 0
6 1 0
7 6 0
8 32 2
9 1 0

10 0 197

3.7.3 Results
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Figure 3-47: Error rates for tests using spectral clustering. nclust = 10, a = 1.

Note that all test points need to be available at training time for this clustering

method. Therefore, it cannot be used for testing on new points, so performance can only

be measured on the training points. This also means that the algorithm can't be mn with
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0 unlabeled points, as there are no new points to test the performance. A minimum of 8

unlabeled points are used in the tests, because measuring on a smaller set would be too

prone to sampling error and would be a useless measure. The results are plotted in Figure

3-47. It is optimized for performance on 64 labeled points and 1024 unlabeled points and

the parameter setting are nclust=10 and Y =1.

With only 256 unlabeled points, the performance is initially very poor, but

improves steadily when adding more labeled points. Once enough samples have been

added, the error levels off. With 512 or 1024 unlabeled points, the performance is better

than 256 with very few samples, but they don't improve as much when more points are

added. With about 32 or more labeled points, the performance is better on the 256 point

set than it is on the others. Looking at the curves varying unlabeled points, the curves

with more labeled points are always better, but there is much less of a difference for

larger unlabeled sets.

Varying the number of unlabeled points improves performance somewhat, but it

seems to break down for very large amounts of unlabeled data. All of the curves see

large drops in average error until around 128 unlabeled points. Beyond this, the 32, 64,

and 128 labeled point curves get slightly worse from more data, while the 16 labeled

point curve improves a little. Despite the rise in error above 128 points, all of the curves

except the 128 labeled are still better at 1024 than they are at 8 unlabeled points. This

seems natural, as the larger total samples give a good idea of the overall distribution of

points, and clustering should be more possible.

The individual trial curves give some interesting insight into this algorithm.

When adding unlabeled points, performance tends to steady off for long periods. At

certain points, there are large increases or decreases in the error rate for all curves. As

can be seen with the jump around 800 samples, more labeled samples dampens the

amount of change. Because all of the curves change at the same point, it implies that

certain samples being added to the training set can make a huge difference. The error in

one case goes from 10% to 30%, which is quite shocking.

For most algorithms, the classification on the labeled training samples is nearly

100%, as the classifiers strive to reach the best classification on these points. Spectral

clustering does not always do this well, often reaching error rates above 10% on the
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labeled points. In fact, the labeled and unlabeled training samples have similar

performance measures, which is quite surprising.

While this algorithm does improve from both labeled and unlabeled data to an

extent, the best error rates are still far worse than other algorithms.

3.7.4 Spectral clustering summary

The performance of the spectral clustering algorithms gets much better as NL is

increased, particularly when NU is relatively small. This is because smaller data sets will

be less likely to give a true indication of the structure of the clusters. Adding unlabeled

points also helps up to a point, but beyond this the error rises.

Despite improvements by raising the size of the data set, the errors for spectral

clustering are far too high in comparison with other algorithms on our data set. The

classifier used after the clustering step is simply an SVM, and comparing to our earlier

results, an ordinary SVM easily out-performs clustering. Most likely, clustering is just

not a good option on this data set because of the structure of the data. We show that

using k-means clustering on labeled points typically leads to large clusters that contain

significant amounts of samples from both classes. If performance is this poor on fully

labeled data, there is no chance for it to do well on partially labeled data.

3.8 Comparison of algorithms

We have looked at each classifier's performance individually, but to get an

understanding of which are most useful on our data set, we will compare the algorithms

with each other. In comparing the algorithms, we consider both the time and accuracy, as

both are important factors in any practical application.

Table 3-7 compares a few useful measures for each of the algorithms described in

this chapter, while Figure 3-48 and Figure 3-49 display the curves for the different

learning methods together. In the chart, we list the average performance rates with 2

labeled and 1024 unlabeled to see how well an algorithm does with only one sample

labeled from each class. We also list the time and error rates for 32 labeled and 1024

unlabeled, which is a reasonable sized data set for an application of our sort.
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Table 3-7: Comparison of each of the classifiers discussed in this section. Columns state whether the
classifier can be used to separate data with more than two classes, whether it can classify a sample
that was not used in training, average error rate when training with 2 labeled and 1024 unlabeled
points, average error rate when training with 32 labeled and 1024 unlabeled points, and the average
time to train and test on 32 labeled and 1024 unlabeled points.

Can test Error rate3 for Error rate for Time for

Algorithm non- NL=2, NL=32, NL=32,
training NU=1024 NU=1024 NU=1024
points (seconds)

3-NN Y N/A 4  8.8 [7.5 10] 160

5-NN Y N/A 8 [6.8 8.8] 177

Lin. TSVM Y 37 [19.5 42.5] 4.2 [3.5 5.5] 367"

Gaussian TSVM Y 30.5 [7.8 47.8] 7.2 [5.0 9.0] 270

KE Avg (const. a) Y 32 [19.2 42.8] 8.5 [6.2 10.5] 2.0

KE Avg (BMP) Y 24 [20.2 38] 8.8 [6.8 10] 3.3

KE Avg (KNN) Y 20.2 [17.5 25.5] 7.5 [6 8.8] 2.7

KE Min (const. a) Y 14 [10.8 14.8] 5.2 [4.5 7] 3.6

KE Min (BMP) Y 22.5 [12.5 34.5] 10 [8.2 14] 8.3

KE Min (KNN) Y 14.5 [13.8 16] 14 [12.2 16.8] 8.6

KE EM (const. a) Y 31.8 [21.8 40] 9.5 [7.8 11] 3.2

KE EM (BMP) Y 32.8 [29.2 39.2] 7.2 [6.5 8.8] 11.3

KE EM (KNN) Y 24.2 [20.5 28] 10 [7.2 15.5] 7.6

KE MED (const. a) Y 22.2 [13.8 30] 8 [6.5 9.5] 3.3

KE MED (BMP) Y 15.5 [13.8 20.5] 5.5 [4.8 6] 5.3

KE MED (KNN) Y 17.2 [13.2 20.2] 5.8 [4.5 6.2] 5.4

MRW Avg N 3.8 [3.7 4.1] 3.6 [3.5 3.8] 15.7

MRW Min N 3.7 [3.6 5.5] 5.6 [4.3 9.7] 16.3

MRW Consist N 50.7 [49.7 50.7] 5.7 [4.7 7.4] 27.3

MRW EM N 4 [3.6 9.2] 3.5 [3.3 3.9] 24.9

MRW MED N 9.3 [5.5 20.9] 3.6 [3.4 4.1] 19.1

Spect. Clust. N 15.7 [12.1 16.9] 11.7 [11.3 12] 7.6

3 To give a sense of the range, the median error level is reported, with I" and 3 rd quartiles in brackets.
4 Because k-NN needs several neighbors to be labeled in order to work properly, we do not run tests with
fewer than 8 labeled samples.
5 The TSVM code is written in C and called fromMatlab, while all other algorithms are written and called
from Matlab. This accounts for some of the difference in times.

92



Error for good algorithms varying labeled (1024 unlabeled)
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Figure 3-48: Charts displaying error rates for all algorithms varying NL while NU is fixed at 1024.
The top figure shows algorithms that tend to improve from adding unlabeled data, and the bottom
figure shows those that do not.
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Error for good algorithms varying unlabeled (32 labeled)
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Figure 3-49: Charts displaying error rates for all algorithms varying NU while NL is fixed at 32. The
top figure shows algorithms that tend to improve from adding unlabeled data, and the bottom figure
shows those that do not.
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Something important to consider is that we had a database of limited size. Many

car images in this set were difficult to classify simply because nothing else in the

database looked similar enough. In a real system, this problem can be avoided by

collecting more data. Because all of the classifiers are at this same disadvantage, it

should not affect the comparison across various algorithms.

What does affect the comparison, however, is that some algorithms are tested only

on points that were used for training, and some were tested on separate points. Results

for Markov random walk and spectral clustering are based on classification accuracy on

the unlabeled training points, while all of the others are tested on a fixed test set of 400

samples.

3.8.1 Training and testing time

The training of our classifiers can take place while the car is not in use, which will

not require it to be optimized for speed. Our tests use at most around 1000 samples,

while the amount of data in an actual system may vary by orders of magnitude. The

algorithms take more time with substantially more data, so even though we are not trying

to optimize for speed, we want the classifiers to be relatively fast.

The times listed in Table 3-7 are the total time to train the classifier and then test

on the test set. Pre-processing that is not included in this time is converting images from

pixels into feature vectors and calculating distances between samples by a Euclidean

measure. [Viola and Jones, 2001] describe ways to optimize the time to convert an image

into the feature vector, and it is fast enough to occur as the samples are collected.

Computing the distances between samples, can be rather slow. On a 2 GHz machine,

computing all distances for 2500 points takes 67 seconds and scales with the square of

the size of the data set. Some of these computations can occur as the samples are

generated, but once the database gets too large, this will take too long to occur in rea

time. The TSVM classifiers call the SVMlight program, which is written in C, while the

remainder of the code uses Matlab. Part of the time for TSVM is writing a file of the data

samples that is read in as input to SVMlight, which is extraneous work. Additional time

is required to re-compute the distances between samples. This is partially accountable for

why TSVM appears to take longer than the other algorithms.
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The kernel expansion classifiers tend to have the fastest training time, with the

constant 7 method significantly faster than adaptive T. Average margin is the fastest

because it uses a closed form solution. Spectral clustering is also fairly fast, with most of

the time required for computing the eigenvalues of the affinity matrix. Markov random

walk is slightly slower because of the more complicated matrix multiplications that take

place. Nearest neighbor is very slow compared to the other classifiers, with larger values

of k requiring slightly more time. Most of the computations with this classifier involve

calculating the multivariate norm for several points to break ties. This algorithm can

potentially be sped up by making modifications, such as adding more than one point to

the labeled set during every step.

What is important in addition to training time is how long it takes to classify a

single new point, which is not given explicitly in the chart. Each algorithm requires

different computations to classify a new sample.

" Nearest neighbor: The distance is calculated from the new sample to each of the

training samples, and the label is assigned as the majority of the k nearest points.

This is reasonably fast and scales linearly with the number of training samples.

" TSVM: The label for the new points is sign( ayK(x, x) + b), summed over

only the training samples that are Support Vectors. Because not all points are

support vectors, this scales roughly linearly with respect to the number of training

points.

* Kernel expansion: The label y for a new point is assigned as the value that

maximizes Ps,(xy xj) = XP(y Ixi)P(x, Ix). The parameters are all computed

in training, so classifying a new point is fairly fast, and scales linearly with the

number of training points.

" Markov random walk: In order to label a point, it has to be used in training so a

new point could potentially require re-training the entire algorithm, which can be

a fairly expensive operation.

* Spectral clustering: This classifier also requires that it was used in training in

order to classify. A method of assigning labels to rower points by extrapolating
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previously seen samples is given in [Chapelle et al., 2002], although in our

experiments we do not do this.

3.8.2 Test accuracy

It is important that the classifiers we use have low error rates. None of our

methods consistently show below about 4% error, while anything useful probably needs

to have error rates well below 1%. However, we do not make extensive attempts to select

the features or modify the distance metric in a way that will push down the error rates.

We are more interested in the relative performance of the algorithms and their trends as

data is added.

One interesting statistic to look at is how well an algorithm does with only one

labeled point from each class. If the data is appropriately separated into classes and

clustered, then this can potentially work with a large corpus of unlabeled points. Most of

the Markov random walk methods do very well, with the exception of the consistent

parameter estimation, which almost always got 50% error. Spectral clustering also does

fairly well, which is rather surprising, because it has problems when clusters exist with no

labeled points at all. Kernel expansion and TSVM are not very reliable under these

conditions; while some trials give good classification rates, they both occasionally have

nearly 50% error, which is as bad as randomly guessing a label.

A more likely situation in the real-world is that we have closer to 32 or 64

samples that are labeled, and a lot of unlabeled data. The algorithms which have the best

classification rates in this situation are Markov random walk with average margin, EM,

or MED parameter estimation, and a linear kernel TSVM. With 32 labeled and about 128

or fewer unlabeled points, a Gaussian kernel TSVM has extraordinary performance, but it

is unable to maintain these rates with additional unlabeled points. Under these

conditions, spectral clustering and nearest neighbor do poorly compared to the other

methods.

3.8.3 Same a value

As mentioned earlier, we always optimize the parameters individually for each

m-d (xo ) 2a

method. For example, the term e 2,72 appears in the equations for nearest neighbor,
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Gaussian kernel TSVM, and kernel expansion, yet the values of a found vary by up to a

factor of 10 in some cases. In an application where selecting the optimal parameters is

difficult, it may only be possible to choose one value of a to use. We run experiments

and track performance where several methods have a set to the same value and run on

identical data sets. In these tests, NL = 64, and the number of unlabeled points varies

from 0 to 1024. In Figure 3-50 we show the results from these experiments, as well as

the results for the same data sizes when the optimal values for a are used.

Note that in some cases, the results for an algorithm improve from using a value

of a other than what was found earlier to be optimal. This does not necessarily mean that

the values we previously found were not optimal, because the data sets used to set

parameters were of a different size.

When a is small (0.5), all of the algorithms shown have similar performance. As

a is increased to 1.5, kernel expansion with average margin estimation gets significantly

worse, while the other algorithms are still performing within about 1% of each other.

Increasing a even more is when there starts to be more of a discrepancy in the

performance of the different algorithms. The Gaussian kernel TSVM improves while the

others get worse.

The performance each of the four types of classifiers shown is best for values of a

near its optimal value. It is also interesting that the trends are similar for different values

of a. For example, with 3-nearest neighbor, adding unlabeled data always causes a slow

increase followed by a sharp decrease, then a rise again at the end of the chart. The error

levels are shifted slightly and the amounts of change vary, but the pattern is clearly

visible for all values of a. This helps support some of the conclusions we have made

throughout the chapter regarding the outcome of different amounts of data, as the results

are repeatable for different parameter settings.
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Chapter 4

Additional Tasks

The tests we run in Chapter 3 explore the various algorithms, but as we present

them they can't be used towards a real application. There are several properties of a real

data set which are not met in the previous experiments. In this chapter we discuss some

of these issues and how we can modify what we have done so that it will be more useful

in a true application.

4.1 Unbalanced classes

Typically, real-world problems do not have equally balanced classes. This can

occur when part of the feature space is less dense or when samples from one class occupy

only a small piece of the feature space. For example, in text classification domains,

certain types of documents are more readily available. Image recognition domains will

also tend to focus more on certain classes. In the case of cars and non-cars, there will be

a much higher proportion of non-cars, simply because randomly selected images are very

unlikely to contain a car. One can usually set the ratio of the labeled data in any way

desired, as those samples are manually chosen If the unlabeled points are automatically

retrieved, they will be closer to the actual ratio of the data.

The tests run in Chapter 3 assume that classes are evenly balanced. Here we run

tests that are closer to the true situation. A randomly selected image that is 640x480

pixels can be broken down into thousands of sub-windows, shifted and scaled to different

sizes. Of these thousands of image windows, only a handful will contain a car scaled and

centered appropriately to be placed in the car class. Assuming unlabeled data will be

constructed from random images in this way, around 99.9% of the data will be non-cars.

We don't use this true balance, but we set about 90% of the unlabeled data to be non-

cars. This will help show some trends of the algorithms in the presence of unbalanced

data. Some algorithms may be more resistant to unbalanced classes than others, as we

will see.
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We run one set of tests fixing the unlabeled set at 1024 samples, 90% of which

are in the negative class, while varying NL from 2 to 256. Another set of tests fixes the

amount of labeled data at 64 samples, equally balanced, and varies NU from 16 to 1024

samples, with 90% of the data in the negative class. In all tests, the labeled data has an

equal number of positive and negative training samples.

Instead of measuring the total error ratio, as in the previous tests, here we measure

recall. Recall is defined as the number of positive samples in the test data that are found

by the classifier. This is equal to TP where TP is true positives (the number of
TP+ FN

positive samples that the classifier identifies as positive) and FN is false negatives (the

number of positive samples that the classifier mistakenly calls negative.) This measure

ignores false positives, which are negative samples that are identified as positive. While

it is important to keep all errors low, in this domain we are more concerned with the

classifier detecting as many images of cars as possible. We do not make an attempt to

improve classification on the algorithms when there is unbalanced data. These

experiments are merely to see how the performance differs when the classes are not

equally represented.

Figure 4-2 displays the results of several algorithms, with recall measured as a

function of the number of labeled or unlabeled samples. When comparing across chatts,

note that the scale on the recall measure varies for each algorithm to best view the

performance over the range.

o U a , 0 M M u a
- e e siU s

g s e U s

igauch arger colecto uof unlabeled points U s i a

left, the X points are found in a less dense region of the feature space, while in the figure at right, the
X points occupy only a small portion of the feature space.
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4.1.1 Results

K-nearest neighbor

With a lot of unlabeled data, nearest neighbor does not do as well with

unbalanced classes. Because there are so many more negative points, the data will

typically be skewed towards the negative class. Therefore, more points tend to be labeled

as negative samples. This means that the precision is fairly high, i.e. if a point is

identified as positive, it is fairly likely that it actually is. However, the recall, which is

more of a concern for us, is very low.

Transductive SVM

For TSVMs with enough labeled data, having unbalanced data isn't too

detrimental. With 64 samples and any amount of unlabeled data, the recall is usually

within 2% of the rate when the classes are equal. With 1024 unlabeled and fewer than 8

labeled points, a linear kernel does very well, but a Gaussian kernel has a very low recall

rate.

Earlier in the paper, we discussed the C parameter for a TSVM, which sets the

penalty for points lying near the margin or on the wrong side. Rather than using one

value, separate parameters can be set for the positive and negative class, C+ and C.

[Morik et al., 1999]. For example, we can set C+ to be much larger than C. to try to limit

the false negatives.

Kernel expansion

Using most estimation techniques for kernel expansion, the performance with

unbalanced classes follows the same trends as balanced classes. The recall rate is

generally about 5% lower with unbalanced data for average margin and MED. For

minimum margin, the recall is up to 2% higher than when the data is balanced. EM also

does slightly better with unbalanced data when there are about 256 or more unlabeled

points.

Markov random walk
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For Markov random walk and spectral clustering, the results are based on a

slightly different measure. For the other algorithms, a fixed test set of 200 points from

each class is used. With these two algorithms, the performance can only be tested on the

training points. For small values of NU, there will be only a few positive samples in the

test set. Recall measures the percentage of positive samples that are detected, and

because there are so few positives, these results will mt be as reliable as some of the

others.

Using MED parameter estimation, Markov random walk does fairly well with

unbalanced data. The recall rate with two labeled samples is just below 95%, but this rate

does not increase significantly from adding more data. Varying NU, the performance is

erratic, but stays within a few percent of the balanced curve. EM parameter estimation

does not work as well under unbalanced classes, as the recall rates tend to be 4% to 8%

lower than balanced training data.

Spectral clustering

When very few samples are labeled, spectral clustering does not do very well in

the presence of unbalanced data. However, as more samples are labeled, the recall rate

increases steadily. When there is a larger proportion of negative samples, more clusters

will form in those areas of the feature space. If more points have labels, it is more likely

that the clusters will all be represented with at least one labeled sample.
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Figure 4-2: Results on tests with unbalanced data, compared to tests with equally balanced data for
the same algorithms under identical conditions. Experiments in the left column vary labeled data
with 1024 unlabeled samples, and experiments in the right column vary unlabeled data with 64
labeled samples.
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4.2 Pre-selecting labeled points

So far, all labeled and unlabeled samples have always been randomly selected for

each trial. In reality, it is more likely that a human will select the labeled samples. Some

knowledge of the classification task will go into selecting the appropriate samples to

label. In the domain used here, it will be wise to use a very diverse set of images which

covers as wide of a spectrum of the images that are likely to be seen. A well-chosen set

would include images of cars on different types of road, in different poses, and under

different lighting conditions, and the non-car images would cover a wide variety of

background objects.

There are a number of different ways to select the samples to label for the

algorithm. These may work better than if a randomly chosen labeled set of the same size

is selected. Using the following methods, a labeled set is incrementally built, a few

samples at a time.

* Active learning: We run an SVM on the labeled points and test on all others.

The points from each class which lie closest to the margin are added to the

labeled set. [Schohn and Cohn, 2000]

* Maximum average distance: Points which have a large average distance

measure to the labeled points are added to ensure variety in the labeled set.

* Maximum classification error: Using any classifier, a point may be difficult to

identify because there is no labeled point similar to it. Constructing the

labeled set as points which are frequently mis-classified by any algorithm can

help to label other points.

We run some classifiers on the original data set when selecting the labeled points

in these ways. All tests are run with 512 randomly chosen unlabeled points and between

4 and 64 labeled points. Every trial adds four labeled points in addition to those used in

the previous trial. The class balance stays around 50% throughout the tests, but

sometimes there are more samples from one class.

Because the labeled set does not vary from one iteration to another, as it does in

earlier tests, there should not be as much sampling error. The average error over 10

iterations is reported, and compared to the tests of randomly selecting labeled points. The
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results are all run on the same test set, so it is a fair comparison across the different

methods.

The methods of selecting points to label are described in more detail in the

following sections. The selection methods all leave out the final test set to avoid

overfitting to these points.

4.2.1 Active learning

When running an SVM, or any comparable algorithm that gives continuous

outputs, certain samples will be difficult to classify. These samples will have outputs that

are small in magnitude, lying close to the margin. By taking these samples and adding

them to the labeled set, the classifier will get better at distinguishing points near the

margin.

Initially, four randomly selected samples are selected to be the initial labeled set.

An SVM is trained on these points and tested on all others. Two test points from each

class that lie closest to the margin are given labels and added to the classifier. The

process is repeated until 64 points have been labeled.

4.2.2 Maximum average distance

If two points in the labeled training set are very similar to each other, then the

classifier is not likely to do much better than if only one of the points is used. To avoid

this, new samples can be added that differ the most from those that are already labeled.

This should ensure that the labeled samples will be diverse and span the entire sample

space. The positive and negative points are selected separately, considering only the

distances to labeled points within their own class.

The same four points from section 4.3.1 are used as the starting labeled set. For

all remaining points, the average distance to the labeled points within the same class are

computed. The point with the largest distance is put into the labeled set and the process

is repeated, until 32 points have been labeled from each class. The points are kept in the

order they were added, e.g., when running a classifier with 16 labeled points, the samples

used are the first 8 to be added from each class.
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4.2.3 Largest classification error

Some points will be difficult to classify because they are not like other points in

the training set. By finding which points are hard to classify and assigning them labels, it

may become easier to label other points. This is done by randomly selecting 16 points to

label, then training a classifier and testing on all the remaining data. Fifty trials are run

on an SVM, and 100 trials with kernel expansion. The number of times each sample is

assigned the wrong label is recorded. Samples are ranked by the number of times they

are mislabeled, and added to the labeled set in this order. No class balance is taken into

account here, but the classes are fairly evenly represented.

4.2.4 Results
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Figure 4-3: Errors plotted for five different classifiers, choosing the samples to label by random
selection, active learning margin, and maximum average distance.

Tests with manually selected labeled points are run using the following

classifiers:

* 3-nearest neighbor

* Linear kernel TSVM

* Kernel expansion with MED parameter estimation and KNN adaptive Y
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" Markov random walk with MED parameter estimation

" Spectral clustering

Each algorithm is run with the parameters determined in Chapter 3. Figure 4-3

displays all of the results, with curves plotting performance when using randomly chosen

points (Random), points closest to the margin with active learning (Margin), and

maximum average distance (Dist). The results are not displayed for trials where points

that are most difficult to classify are assigned labels, as this method did not work at all.

Nearest neighbor

For the nearest neighbor classifier, the maximum average distance measure is the

only point selection method that works. This gives better results than random until 32

samples are labeled, and then receives very little improvement beyond this. This method

is essentially spreading out the points in space as much as possible. As the first few

points are added to the training set, more of the feature space is covered by a labeled

point, which is important for nearest neighbor. Once enough points have been added,

most unlabeled points will be near a labeled point, and the average distance to a labeled

point will no longer be a useful measure.

Both the active learning and hardest to classify metrics led to about 50% error,

with almost all samples being placed in the positive class. Neither of these methods does

anything to ensure that points are spread out across the space, which is essential for

nearest neighbor to work.

TSVM

Selecting the points to label lelps a TSVM, but not as much as expected. The

average distance method works well when there are very few labeled points, but starts to

get worse beyond this. Once enough points are added through this method, any more

points are likely to lie far away from the center of the labeled cluster. These points are

spread out from the rest of the data and will either not affect the margin, or will push it in

the wrong direction.

The active learning method, which uses an SVM to determine the points lying

near the margin, does not work well. Once 36 or so points have been labeled, it surpasses
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the performance of the maximum distance method, but it performs no better than random

selection beyond this.

Using labeled points that are difficult to classify seems like it could help, but here

it works very poorly. With 4 labeled points, the error is slightly above 50%, and gets

worse as more data is added. This means that a classifier would do better by assigning

the opposite label of what this method says. The original idea behind this way of

selecting points was that some points are hard to label because there isn't any training

data like it. The points used are selected by running several iterations of SVM and kernel

expansion, and using the points that are most frequently mislabeled. For an SVM,

something is mislabeled if it lies on the wrong side of the margin determined from

training. Many of the points will be difficult to label because they are very similar to

points from the opposite class. Constructing a classifier with these as the labeled points

flips the margin, assigning the opposite label more frequently (see Figure 4-4).

x x
x \ x kX L0I 0

Figure 4-4: A TSVM is trained and run on test points, and some points lie on the wrong side of the
margin. A new TSVM that is trained with these points that are on the wrong side of the margin may
assign the opposite labels for test points.

Kernel expansion

Results for kernel expansion are similar to those from the TSVM when selecting

labeled points. The maximum average distance method gives very similar results, with

performance improving quickly, then peaking off around 20 labeled samples. Adding

labeled data beyond this causes the error to rise, but eventually it levels off. This is

slightly better than the data set on the TSVM, where the error continues to rise from

adding more points.

Using the active learning method to label samples does not give better

performance than random, but it does continue to improve as data is added. The labeled
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samples to use are found from an SVM, so it does not focus as heavily on points that are

difficult to classify by kernel expansion.

When using the most difficult points to label, the average error rate starts at

around 70% with 4 labeled points. Beyond this, it goes down slightly, and eventually

levels off slightly below 50% error, as most of the points are being classified in the

positive class.

Markov random walk

For Markov random walk, choosing points by the maximum average distance

metric performs almost identically to random selection. With a small amount of data, the

margin method does not work as well, but with about 32 or more samples, it is on par

with random and maximum average distance. The maximum error method starts at

around 50% error with 4 labeled samples, rises slightly as more data is added, then

eventually levels off at around 50% error.

Markov random walk is already capable of branching out to samples in the feature

space over several time steps. It is not as important for the labeled samples to be diverse

as long as there is a large amount of unlabeled data, which is why we see very little

improvement here.

Spectral clustering

We have found that clustering often does not work well if the labeled samples in

the data do not fully cover the clusters. When points are randomly selected, this can

certainly be a problem, which leads to the relatively high error rates. Because of this, the

clustering method can potentially benefit from manually selecting the points to label.

The best method is using maximum average distance, for the same reason it works

with nearest neighbor. This is the best method to ensure that points will be well spread

around the feature space, which is likely to span as many of the clusters as possible. This

method consistently gets error rates several percent lower than randomly selecting points.

The margin method does slightly worse than random selection, but still improves

performance as more data as added. Using difficult to classify samples is the worst,

consistently getting between 70% and 80% classification error.
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4.2.5 Conclusions

Surprisingly, selecting points to label does not help classification much, or makes

it worse in many cases. The method that seems 10 give the most benefit is choosing

labeled points that are the maximum average distance to the others. However, even this

method often does worse than randomly selecting labeled data.

Using active learning does not generally do as well as expected. Typically this

technique is used to label samples as the algorithm is progressing, choosing samples that

lie near the margin of the data set at hand. However, here we have pre- selected points to

label from one fixed set of data. The margin on that set of samples may be different from

the margin on another set.

Labeling points that are difficult to classify does not work at all. At best, it places

most samples into one class, yielding around 50% error, but in some cases it does even

worse. The original intuition behind this algorithm is clearly wrong, as points are often

difficult to classify because they are more similar to the opposite class. As a result,

labeling these samples can be detrimental, as it often trains the classifier to assign the

opposite labels than what it should.

Spectral clustering and nearest neighbor benefit more than other algorithms from

selecting the points to label. Both depend on the labeled points being spread out across

the feature space, which the maximum average distance measure is able to accomplish.

4.3 Different classification tasks

The results from chapter 3 are important for gaining insight on the algorithms.

Nevertheless, it is important to see whether the results can be generalized, or if they only

hold true for the particular data set we used. To help answer this, we run similar tests on

a new set of data. For the positive data set, there are 1000 images of cars similar to those

used in the earlier tests. However, the negative samples are 997 trucks rather than parts

of background images. All of these images are resized to 128x128 and converted into a

feature vector just as before. Figure 4-5 displays some selected images from each class.

Note that images in the truck class display only the bottom portion, with the bottom of

the truck roughly aligned with the bottom of cars.
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There will be many similarities between the different classes, as both cars and

trucks will have edges in common, as well as some similar backgrounds. This will force

the classifier to focus on different features than before to distinguish among the classes.

With the original data set, there will not be as much similarity between the two classes,

which will change the focus of the classifiers.

For some points, histograms showing inter-class and intra-class distances are

given in Figure 4-6. The car in the bottom left frame is more difficult to classify, as

trucks images are just as similar as many of the cars. Most of the histograms for trucks

appear similar to those in Figure 4-6. The nearest trucks tend to be closer than the

majority of the cars, but many other trucks have a large distance measure.

Results for tests varying labeled and unlabeled are displayed in Figure 4-7.

Figure (A) gives the error measures on the Cars/Trucks database with NU = 1024,

varying the number of labeled samples. Separate curves are given for TSVM, kernel

expansion MED (KNN adaptive Y), Markov random walk MED, and spectral clustering.

Each of these algorithms has its parameters tuned to the new data set. Figure (B) gives

the results for these same algorithms on the original data set for comparison. Results on

tests with NL = 64, varying uilabeled are shown in Figure (C) for the Cars/Trucks data,

and Figure (D) for the Cars/Non-cars data. The new parameter settings are given in the

following sections for each algorithm.

Figure 4-5: Sample images of cars (top row) and trucks (bottom row) from the database.
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4.3.1 K-nearest neighbor

As seen in the histograms from Figure 4-6, the truck images are very spread out in

the feature space. This leads to a fairly high probability of error with nearest neighbor, as

a truck may mistakenly be labeled as a car. Using bootstrapping leads to more errors, as

any mistakes made during early iterations "ill be compounded. This causes a high

number of false positives and very few false negatives. If the main objective is

identifying as many car images as possible, this is okay, but for anything that is labeled a

car, there is around 50% chance that it is in fact a car.

Nearest neighbor only works on this data set when the bootstrapping method is

not used, i.e. when NU = 0. The best value of k is 1, and error rates tend to be around 6%

to 10% with 64 labeled samples. Because this does not fit into the semi-supervised

learning scenario, we do not explore this any further.

4.3.2 Linear TSVM

For a linear kernel TSVM on the new data set, we use Crate = 500, which is the

same setting as the original data. The results here follow the same patterns as observed

earlier, with the error decreasing as more unlabeled or labeled samples are added. The

error rates tend to be somewhat higher in the new data set, though. The error rate with

NU = 1024 and NL = 64 is about 4.5%, whereas the original data averages 3.7% error for

the same size data sets.

This data is more difficult to classify because of the many similarities between the

two classes. Figure 4-8 displays some of the test points that were most commonly

mislabeled in these trials. Three of the images from each class are vans, which appear

similar to both cars and trucks. The final car image that is difficult to classify is an

ordinary car with a truck behind it. The classifier can easily be tricked by the edges of

the truck, which it most likely uses to help distinguish the classes. In the truck set, the

final image displayed is in fact a car, which means it was mistakenly placed in the wrong

class.
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Figure 4-8: Commonly mislabeled samples from the TSVM trials on the Cars/Trucks database. The
upper row is false negatives (cars labeled as trucks) and the bottom row is false positives (trucks
labeled as cars.)

4.3.3 Kernel expansion MED (KNN)

The parameter settings used on this data set are kfrac = 0.1, sigmamult = 0.4,

Crate = 1000, and margin = 0.1. Kernel expansion does not work as well on this data set

when very few labeled samples are provided. The average error rate with only 2 labeled

points and 1024 unlabeled is 21.4%, as opposed to 17.4% with the other data set. For

intermediate amounts of labeled data, it approaches the performance of the original data

(4.8% error with 64 labeled and 1024 unlabeled, while the other data set has 4.2% error).

However, if too many points are labeled, the error begins to rise, which is undesirable for

any classifier.

A situation where the performance is slightly better on the Cars/Trucks database

than the Cars/Non-cars database is when NL=64 and NU is between 32 and 256. The

difference is never more than .5%, which is not very large.

Many of the samples that are most difficult to identify overlap with those found

with the TSVM. The same reasons apply here, as these images visually appear to be in

between the two classes.

4.3.4 Markov random walk MED

For Markov random walk on the Cars/Trucks database, we set parameters to k =

6, t = 8, Crate = 1000, margin = 0.1, and a = 3. We find interesting results with this

classifier that demonstrates an important characteristic of Markov random walks. This

data set is primarily made up of sequences of images in both classes, while the other data

set contained mostly isolated images. This means that most images have one or more
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neighbors that are fairly close, as they come from the same sequence. Markov random

walk exploits similarities across low-dimensional curves in the feature space, which is

just what these sequences are doing. Points will tend to connect to members of their own

sequence within a few steps, and connect to neighboring sequences through several steps.

This holds particularly true on this data set, where the results are very good with a

large amount of unlabeled data, but poor otherwise. With 2 labeled and 1024 unlabeled

points, the average error is about 10.8%, which is lower than the 13% level on the

Cars/Non-cars database. For points further along the curve, the results are generally the

same or slightly better on the Cars/Trucks database.

Looking at the curve where the unlabeled points are varied shows much higher

error rates. For the curve fixed at 64 labeled points, Markov random walk has higher

error rates than any of the other methods until it has 512 or 1024 points. When there are

this many data points, most of the sequences will be adequately represented, and the

lower dimension paths can be traversed.

4.3.5 Spectral Clustering

In spectral clustering, we use 10 clusters and set Y to 2. This classifier has the

largest improvement over the original data set, except when there are very few labeled

points. This most likely is true because of the presence of sequences, as with Markov

random walk. The sequences correspond well with the concept of clusters; most images

from a sequence will tend to be in the same cluster, and a cluster may contain several

sequences. As long as most of the clusters contain a labeled point, the classifier can do

fairly well.

Mislabeled points tend to be grouped along with other members of their sequence.

Similar images are mapped to nearly identical feature vectors and generally receive the

same label from the classifier.

4.3.6 Conclusions

Different image databases force the classifiers to discover different ways of

separating the classes. Certain data sets may have properties that make them more

suitable for various algorithms.
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The inter-class distances in the Cars/Trucks database are not very large because

the images themselves are fairly similar between classes. This makes k-nearest neighbor

virtually useless on the data because the closest points are not always from the

appropriate class. It makes TSVM and kernel expansion less effective because points

frequently fall closer to the separating boundary, leading to high likelihood of being

mislabeled.

The presence of sequences in the Cars/Trucks data is a crucial difference from the

Cars/Non-cars. Markov random walk and spectral clustering benefit from the similarities

among images in the same sequence, and thus have improved performance. TSVM and

kernel expansion benefit somewhat from the sequences, because it will be easier to

classify samples when training with anything that is similar. They do not gain enough

from this, however, to offset the drop in performance from the borderline samples. The

following section describes how we use the presence of sequences to try to improve a

classifier.

4.4 Sequences

Images will often be collected as individual frames of video sequences. From

frame to frame, there are some changes in the images, but many features will be similar.

For example, consider the sequence of images shown in Figure 4-9. Going through the

sequence, the position of the car on the road moves slightly, the cars in the background

move, and the lighting conditions change, but fBr the most part, the images look alike.

As a result, their feature vectors are very close to each other. The chart from Figure 4-9

shows the average distance of a selected image to images within the same sequence, other

cars not in the sequence, and trucks. It reiterates the fact that images within the sequence

are much closer. It is also much closer on average to cars than to trucks, which seems

logical.
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Average distance from one car image to:
a car within a car outside A truck

the sequence the sequence
9.2 15.6 23.1

Figure 4-9: Several consecutive frames of a video sequence. The position and size of the car are kept

fixed but the road and background change slightly from frame to frame. For one of these images, we

give the average distance to another frame within the sequence, cars outside the sequence, and
trucks.

Because samples from a sequence tend to have small distance measures, a

classifier will likely do well on a sample if it is trained on other images from that

sequence. Earlier tests never used images from the same sequence in the labeled and test

data to prevent the classifiers from focusing too much on images from certain sequences.

However, in many cases it will be good to have test images from the same sequences as

labeled points. There may be dozens of frames available for a given sequence, and

training the classifier with a car from one frame can help label all other frames.

We run some tests to see how much of a difference there is on performance when

an image from the same sequence was used in training. In the car class of the cars and

trucks database, we identify 27 sequences of various sizes, with about 250 images

distributed across these sequences. We choose a subset of these sequences and label one

image from each of them. The sequences not represented with a labeled point can be

among the unlabeled data. The performance is measured separately for images from

sequences that did or did not have a labeled point, tabulated over five trials.

Table 4-1 shows the error rates on these trials. Other than Trial 2, there is always

a lower error rate on the points that had a member of their sequence labeled, and overall

these are mislabeled less than half as frequently.

An example of the benefits from the sequences is shown in Figure 4-10. Image A

is mislabeled in trials where there is not an image from its sequence among the labeled

data. In a trial that is trained with image B, the other sample is correctly labeled.

For the semi-supervised data scenario, this improvement in recognition using

sequences is very helpful. The system can collect a large group of video sequences and a
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human can then label a fraction of the frames from each sequence. One of the classifiers

can then be used to label the remainder of the data with reasonable accuracy.

Training with image sequences this way is a way to obtain labels for a large

training set while labeling just a portion of the images, which is helpful for testing on

unseen samples. By gaining many new labeled images, it increases the chances that a

new sample is very similar to a training point. Previously, we have found that the

accuracy on some tests is limited by the fact that certain points are not like anything that

has been seen before.

Table 4-1: Error rates on images from sequence when there is not a labeled point from that sequence

in the training data, and when there is. Errors are shown over 5 trials and the total error rate.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Total

Unlabeled 8/154 1/167 6/139 7/139 9/160 31/759 =.0408

Labeled 0/83 4/71 1/99 2/99 1/77 8/429 =.0186

(A) (B)

Figure 4-10: (A) An image that is mislabeled when no other samples from the same sequence are in

the labeled data. (B) When this image is labeled, image A is classified correctly.
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Chapter 5

Summary

5.1 Future work

Our experiments help gain insight into which algorithms are more useful than

others on our car images. By themselves, none of the experiments we run accurately

model a real situation where this system would be used. Furthermore, the error rates are

too high to use for the intended purpose. In this section we describe some ways to

address these issues.

5.1.1 True data sets

Our original set of tests runs various semi- supervised techniques on a data set that

contains real images of cars and non-cars, but this data set is missing many of the

important characteristics found in a rea life data set:

" The unlabeled samples would most likely be heavily unbalanced

* The data would probably contain many image sequences, not just isolated images

* The labeled points would be selected manually to attempt to maximize

performance, not randomly chosen

While we address these issues individually, we do not address them all at once.

To truly test how well these algorithms will work in a navigation system of the type we

have described, the data set should be constructed from several sequences, with the

unlabeled points generated by scaling and sliding a window across each image.

5.1.2 Unbalanced data

As we have mentioned, the negative samples will heavily outweigh the positive

samples when the data is collected randomly. Even though the classifiers still work

under these conditions, it will be helpful to remove many of the unlabeled samples for

computational considerations. The classifiers will generally not lose accuracy from

121



removing a large part of the negative data if it is highly redundant, but it will cut the

training time down significantly. To do this, it will be important to have a way of

determining which negative samples to remove from the training set.

It will be useful to have a quick reject feature that can quickly determine when an

isolated image is definitely not a car without running the actual classifier. Of course, it is

very important that this never mistakenly eliminates a car image. This can be

accomplished by using properties that all car images have in common. For example, all

car images have horizontal and vertical edges in certain positions. Images that do not

pass a minimum threshold for these edges can be eliminated from the training set. A

system that could analyze points of each class and determine some of these

characteristics would work well with our task.

5.1.3 Automatically setting parameters

For each classifier, we manually set the parameters by running the classifier on a

portion of the data set and observing which values do well. This requires the labels of the

points to be known, because otherwise we can't measure the performance. We are trying

to explore algorithms that work without labeling everything, so clearly this is not a

realistic situation.

The algorithms do not have the same optimal parameters when the data set

changes, as we experienced between the Cars/Non-cars and Cars/Trucks databases.

Finding a way to automatically determine some of the parameters from the samples will

be very helpful.

5.1.4 Improved distance metric

The distance metric we use in our tests is adequate, but in some cases may not

accurately represent the relative distances between samples. The classifiers depend on

this distance metric being correct. If the distances are wrong, even the best classification

algorithms will not work.

From Figure 3-10, which displays values of w for the linear kernel TSVM, we

found that some features are far more useful than others in distinguishing the classes. A

distance measure that focuses more heavily on these features could improve performance.
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It may also help to change the feature vector representation and keep a Euclidean

distance measure. In section 3.4.1.2, we show how to find relevant features from a linear

TSVM. Adding weight to the features that are most instrumental in separating the classes

could prove useful.

5.2 Conclusions

We have found some promising algorithms that can accurately distinguish cars

from trucks or other scenery. A linear kernel TSVM and Markov random walk with

MED parameter estimation seem very promising because of their continuing

improvement from both labeled and unlabeled data. More importantly, they both are

robust and work on additional data sets, and also maintain high accuracy when the

training data is unbalanced. Algorithms such as Gaussian kernel TSVM have lower error

rates in some cases, but frequently get worse as more unlabeled data is added.

Our results demonstrate that a system such as the one we have described

throughout the thesis is certainly feasible. While it requires modifications and

optimizations from some of the experiments we have run, we show which algorithms are

useful under various conditions.
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