
A New 6.111 Laboratory Exercise: Mastermind

by

Nathan A. Mahn

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 21, 2003

Copyright 0 2003 Nathan A. Mahn. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis, in

whole or in part, and to grant others the right to do so.

Author
Nathan A. Mahn

Department of Electrical Engineering and Computer Science

May 21, 2003

Certified by_ _
Donald E. Trox P

Thesis Supervisor

Accepted by
'Arth ur _C. mi

Chairman, Department Committee on Graduate Theses

MASSACHUSETTSINSTITUTE
OF TECHNOLOGY

JUL 3 0 2003 BARKER

LIBRARIES

A New 6.111 Laboratory Exercise: Mastermind
by

Nathan A. Mahn

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2003

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer [Electrical] Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Mastermind is a new laboratory assignment which was developed to accelerate

students' learning of digital design for 6.111 Introductory Digital System Lab. This

project replaces a similar lab in an attempt to introduce students to the additional concept

of major and minor finite state machines as well as previously taught concepts. Students

learn these fundamental concepts by implementing the game of Mastermind. It requires

them to implement a system with programmable chips using VHDL.

This project presents the students with their first design project. They will gain

experience and understanding of digital design techniques over the course of several

weeks as they progress through the steps required to turn a state machine concept into a

realized digital system.

Thesis Supervisor: Donald Troxel
Title: Professor

2

Contents

ABSTRA CT ... 2

C H A PT E R 1: O V E R V IEW ... 6

C H A PT E R 2: B A C K G R O U N D .. 7
2.1 M otivation and Problem Statement .. 7
2.2 Design Goals .. 9

2.2.1 Introductory .. 9
2.2.2 Educational ... 10
2.2.3 Enjoyable .. 10

CHAPTER 3: DESIGN OF THE LAB ASSIGNMENT .. 12
3.1 The Gam e of M astermind .. 12
3.2 Organization of the Assignm ent ... 13

3.2.1 Design Review ... 14
3.2.2 Final Check-off .. 15
3.2.3 Lab Report .. 15

3 .3 D iscu ssio n .. 16
3.3.1 Fulfillm ent of Design Goals ... 16
3.3.2 Areas of Concern .. 17

C H A PT E R 4: LA B H A N D O U T .. 19

CHAPTER 5: SAMPLE SOLUTION .. 28
5.1 Storage FSM .. 29
5 .2 E n ter F S M .. 3 1
5.3 Check FSM .. 34
5.4 M ain FSM .. 36

C H A PT E R 6: C O N C LU S IO N ... 39

APPENDIX A: CODE USED IN SAMPLE SOLUTION 40
A. 1 Storage FSM .. 40
A .2 E n ter F S M ... 4 2
A .3 C h eck F S M .. 4 5
A .4 M a in F S M ... 5 0

APPENDIX B: STARTER CODE PROVIDED TO STUDENTS...................... 53
B .l F S M F ile T em p late .. 53
B .2 C ontrol File T em plate (C PLD)... 54

BIBLIOGRAPHY.. 55

4

List of Figures

Figure 1: Mastermind Board.. 21
Figure 2: Mastermind Block Diagram ... 22
Figure 3: Basic FSM Block Diagram..22
Figure 4: Storage FSM I/O Diagram... 24
Figure 5: Enter FSM I/O Diagram ... 24
Figure 6: Check FSM I/O Diagram..25
Figure 7: Main FSM I/O Diagram.. 25
Figure 8: Example Timing Diagram for SRAM 1/0 ... 27
Figure 5-1: Mastermind Block Diagram ... 29
Figure 5-2: Storage FSM Block Diagram ... 30
Figure 5-3: Storage FSM State Transition Diagram ... 30
Figure 5-4: Enter FSM Block Diagram... 32
Figure 5-5: Enter FSM State Transition Diagram... 33
Figure 5-6: Check FSM Block Diagram ... 35
Figure 5-7: Check FSM State Transition Diagram ... 35
Figure 5-8: Main FSM Block Diagram... 38
Figure 5-9: Main FSM State Transition Diagram ... 38

5

Chapter 1: Overview
Mastermind is a laboratory assignment intended to accelerate students' learning of

digital design techniques in the curriculum of 6.111 Introductory Digital System

Laboratory, the undergraduate-level course in digital design. The intended use of this

project is to replace the current introductory lab assignment. This project is more

complicated than its current counterpart, and its creation has been focused on keeping it

as simple as possible, as well as entertaining and rewarding. As the students' first project

dealing with system design, it presents requirements that are simple, independent, and

well-defined, which combine to create a complex digital system. These requirements

emphasize the most basic, fundamental concepts of digital design.

This laboratory project outlines the board game of Mastermind, which the

students must build. When the students are done, their lab kit will allow them to play

Mastermind with their friends (and the TAs for check-off purposes).

This document describes the game of Mastermind, the design and implementation

of a digital system to create the game, and the purpose of this new laboratory project.

The next chapter describes just that, the purpose of replacing the current introductory

project with this one, and what students should learn from it. Following that is an

explanation of how the project should progress for students and staff, along with the

handouts for the students and a sample solution.

'Mastermind is a registered trademark of Pressman Toy Corporation, by agreement with Invicta Toys and Games, Ltd., UK.

6

Chapter 2: Background
As with most things, understanding the purpose of this project is divided into two

pieces: why and how. First, why is this project necessary? What purpose will it serve in

the curriculum of 6.111? Second, what are the goals implied by the first question, and

how does it intend to achieve them?

2.1 Motivation and Problem Statement
For MIT students planning a career in the field of digital circuitry, one of the

staple courses is 6.111, Introductory Digital Systems Laboratory. This course takes

students through the basics of digital design, from the fundamentals of gate logic to the

creation of not-so-trivial circuitry.

As a laboratory class, it teaches its concepts through hands-on experience.

Students spend more and more hours in lab as the projects grow in size and complexity,

learning the concepts by doing, more than anything else. The laboratory projects, then,

are designed to mirror the concepts presented in lectures, and are intended to allow

students to develop personal experience and teach themselves in a way that provides

appreciable feedback.

The first project is an introduction to the tools in the laboratory, and has the

students use those tools to explore the basics of digital logic. It also introduces them to

the most basic aspects of programmable logic, requiring them to program a small chip

with a pre-compiled layout. The second project, then, is the first true design project.

Generally speaking, it presents the students with a digital system and has them implement

it in their own way. Functional requirements are given, as well as a suggested design

structure, but students are left to their own creativity in accomplishing the requirements.

7

The logical form of this project is some sort of simple control system, and recently has

been a traffic light controller. Similarly, the third project continues to push the students,

as a larger and more complicated system is laid out for students to create. Audio

processing is the topic with about the right level of complexity for this, and a simple

pitch-shifting lab involving a microcontroller unit has recently been replaced by a DSP

filtering lab which uses new FPGA boards, and accompanying software tools.

With the recent introduction of this new third laboratory project that requires

students to learn and employ additional tools and concepts from earlier curriculums,

either some course content must be dropped to create room, or that content must be

presented in a more concise, efficient way. The underpinning motivation for this

Mastermind laboratory project is to introduce the students to more of the concepts taught

in lecture than the previous project, thus accelerating their learning and making the third

laboratory project that much more tractable when it is presented.

In order to adhere to this motivation in a way that is tractable for beginning digital

designers, the lab project must be interesting and easy to conceptualize. If the students

already understand what they are creating on a conceptual level, it is that much easier for

them to focus on learning the intended lessons of digital design. As such, two types of

designs present themselves: a model of a system that students encounter in everyday life,

or a simple game. The first could be something like a traffic light controller as is already

in place in the class, or perhaps an elevator controller. The second is the more

entertaining option, but without any sort of video display (something that would add

unnecessary confusion to the topics being focused on) it is difficult to find a game that

can be implemented.

8

A game that is both intricate enough to meet the intended level of complexity and

yet has a simple enough interface is that of Mastermind. In this game, one person creates

a sequence of colors that his or her opponent must then guess in a limited number of

attempts. After each guess, the opponent is given information to narrow subsequent

guesses. This information is presented as the number of correct colors in the correct

positions, and also the number of correct colors in the incorrect positions.

2.2 Design Goals
As the first project that requires students to design a digital system, care must be

taken to balance the desired goals of the project. First and foremost, it must be

appropriate for students who have never designed such a system before. If it is too

complicated or too large an undertaking, nothing will be learned. Once a system is

chosen with the right level of difficulty, it must also demonstrate the appropriate lessons.

If a system meets both of these criteria, it should, if at all possible, be fun and engaging

for the students, and reward their hard work.

2.2.1 Introductory
While this lab is being created to aid students in learning digital design concepts

more quickly, it must remain simple and at an introductory level. Its intent is to prepare

the students to learn the concepts presented in the following lab project, not teach them

those concepts. The students will have a total of about three weeks to work on the lab

between its initial presentation and the kit check-off, which doesn't leave much time for

anything that isn't necessary.

As their first design project, the students will need clear instructions and a solid

structure for the system specifications. As is the tradition of 6.111 lab assignments, while

9

the problem statement and specifications are well-defined, the solution is not. Students

should be left to their own ingenuity to create the system however they see fit, assuming

the final product performs as it should. While these two sentiments may seem at odds,

this creates the unique experience that is 6.111.

2.2.2 Educational
The concepts that must be taught in this project, in preparation for the more

difficult projects later in the term, are well-defined. The previous lab of a traffic light

controller taught students how to design a digital system using the finite state machine

(FSM) concept, how to interface to a static random access memory (SRAM), as well as

other basic concepts of digital design such as how to program in VHDL, one of the most

popular digital design languages.

This lab, then must also teach everything that the previous lab taught, with the

added requirement of introducing them to the very powerful design concept known as

major and minor FSMs. In preparation for the following lab, which now contains

multiple complicated subsystems, this lab should introduce students to controlling

multiple subsystems (via the major/minor FSM method) while keeping those subsystems

simple.

2.2.3 Enjoyable
A project that isn't enjoyable is rarely approached with enthusiasm. In order to

motivate students for a project in a rather time-intensive course such as 6.111,

assignments should be engaging and as fun as possible. With no real drawbacks to a fun

project, there is all the more impetus to choose something fun, such as a game. Surely

having the students create a system that they could show their friends and play around

10

with together for a while would provide even more motivation for successfully

completing the assignment.

11

Chapter 3: Design of the Lab Assignment
A simple board game is a prime candidate for an assignment which is intended to

teach the basics of system design. For one, there are clear rules for how the game is

played, which ties well to system requirements for the project. Students who have played

the game before will already have a good understanding of many of the requirements

before even reading the specifications detailed in the assignment handout.

This chapter describes the rules for the game of Mastermind, and how the game

translates well into a digital system. It then goes on to create a progression of work for

the students to follow, setting milestones for them to reach. The end of the chapter

briefly discusses the appropriateness and usefulness of the game of Mastermind as a lab

assignment for beginning digital designers.

3.1 The Game of Mastermind
The game of Mastermind involves one player creating a "secret code" of a

sequence of four colors. Each color in the sequence is one of six possibilities.

Traditionally these colors are black, white, cyan, green, red, and yellow. [5] That secret

code is hidden from the second player, who attempts to guess the code by asserting 4-

color codes and adjusting future guesses based on feedback.

The feedback given for a guess is essentially two numbers: the number of correct

portions of the guess, and the number of misplaced portions of the guess. That is, the

first number is a count of how many of the guess' colors are the correct color in the

correct spot (e.g. guess color number 2 is red, and secret color number 2 is red), and the

12

second number is a count of how many of the guess' colors are the correct color in the

incorrect spot (e.g. guess color number 4 is red, and secret color number 2 is red).

The guesser is given ten attempts to match the secret code, building on the

feedback from previous guesses. If he or she fails to do so, the other player wins. As one

may suspect, algorithms have been created to always win in a certain number of guesses

or less, but that is not in the scope or interest of this document. What is in the interest of

this document, however, is the conversion of this game into a digital system.

The structure of this game coincides well with the design goals of an introductory

lab project outlined above. The order of the game, namely entering a sequence of colors,

comparing it to a secret sequence, and keeping track of past guesses, allows for

straightforward application of the newly desired concept of major and minor FSMs, while

the actual storage of past guesses retains a need for learning how to use SRAM

components, just as in this project's predecessor. All of this is within the context of

VHDL, as the students must create their FSMs within programmable chips interfaced to

their lab kits.

3.2 Organization of the Assignment
When the students are assigned this project, they will receive a document

detailing how the game of Mastermind is played, what is expected for a kit to be

considered "working," when various checkpoints are due, and some hints as to how to

organize their thoughts. The handout also includes a brief explanation of what is

expected in the lab report. This document is included in the following chapter.

Along with the lab document, students will be provided with bare-bones VHDL

code to build their FSMs from. This code includes an entity declaration with generic

13

inputs and outputs necessary for any FSM, but not any additional signals specific to this

assignment.

While students' solutions will not all end up exactly the same, solutions can be

expected to be fairly similar. Because one of the requirements is to gain familiarity with

major and minor FSM interaction, all students will likely produce two or three (or more)

minor FSMs to produce the game functionality, with a major FSM to control them.

Designs will diverge for things like what information is communicated between

subsystems, and what work will be assigned to which FSM. The lab document

encourages students to follow the general structure it describes, to allow them to spend

more time designing the subsystems and less time deciding what subsystems to create.

3.2.1 Design Review

When students first receive their lab handout and are introduced to the project,

their first task will be to come up with a plan for the various subsystems and how they

will work together. They should decide how many FSMs they will use, what each one

will do, and what signals each will use.

Before creating their FSMs in VHDL, students will be expected to have a

teaching assistant go over their design with them to make sure their thinking is correct

and that the system they have in mind will indeed function as it should. While this places

a heavy time commitment on the teaching staff for the day or two necessary to review the

students' designs, this stage of design is already used in the current lab project, and will

be even more important with the switch to a system with multiple FSMs in it.

Additionally, scheduling this milestone well before the final due day ensures that

students will start thinking about their design early, and give them enough time to debug

14

any unforeseen problems that crop up when they begin to implement their version of

Mastermind.

After the system design is reviewed, students should have a good idea about how

each of their subsystems will function, and how they will work together. This allows for

additional checkpoints before completing the assignment, in the form of verifying that

each individual subsystem operates as it should. While the open-ended nature of the

assignment cannot provision for another round of required reviews on the students'

designs, students will be encouraged to have the teaching staff verify their subsystem

implementations against their original design ideas.

3.2.2 Final Check-off
Once a student has all of their subsystems working properly and working

together, a teaching assistant or lab assistant will verify that the overall system plays the

game of Mastermind properly. This final version of their project may or may not match

their original design exactly, since bugs along the way may require modifications. This is

why the internal workings of the design are irrelevant to the final check-off, and only the

interface presented on the lab kit is important.

3.2.3 Lab Report
As with any digital system, a written document must accompany the completed

project. While the report is generally due about a week after the final check-off, students

are encouraged to start before their work is completed. The report should include

explanations of the design requirements and methodology for the solution, along with

diagrams and schematics of the various components. In this case, a circuit-level diagram

15

will be required but less relevant than the flowcharts for the various FSMs. The final

VHDL code students used is also expected.

3.3 Discussion
Unfortunately a late acquisition of this project as a thesis topic and the fast pace

of the 6.111 curriculum prevented it from being tested as an actual lab during its creation.

Extra care has been taken to make sure that the lab document is clear and helpful, and the

sample solution has been thoroughly tested to find where students may have difficulties.

3.3.1 Fulfillment of Design Goals
As previously alluded to, Mastermind was specifically designed to fulfill the

design goals presented earlier. Those goals include being simple enough for beginning

digital designers to accomplish, focusing on concepts used as the foundation of future

projects, and engaging students in an entertaining way.

As an introductory lab project, Mastermind is fairly appropriate. The choice of a

simple board game as the project topic appears to be very appropriate indeed. The rules

of Mastermind are very straightforward, and students should be able to concentrate on

designing the system more than understanding how it should work. While the algorithm

for checking a guess sequence against a secret sequence may be difficult for students

unfamiliar with digital design to reduce to an optimal form, that shouldn't be necessary.

Other than that, it provides an excellent motivation for learning SRAM access

techniques and development of a system using major and minor FSMs. Students will get

ample experience learning how to use VHDL for most aspects of digital design.

Together with the VHDL portions of problem sets, students should be well prepared for

the more complex design projects in 6.111. As a replacement, this lab exercise only adds

16

to the things students must learn in a three week period, but that was the desired result.

The introduction of the major/minor FSM concept in lab project 2 is important for

students so that lab project 3 is not as much of a shock for them, and its nature as a game

makes it a more enjoyable vehicle for learning the concept.

Without using a video display, most games are very difficult to represent.

Mastermind presented itself as one of the more appealing games with a simple enough

interface to allow students to create it using LEDs. The two-player nature of the game

allows students to play the game with their friends once they finish their kit, and

conveniently it is turn based so that they don't need to huddle over the kit at the same

time to play. This may even lead to an improved interface, based on suggestions by

playing partners.

3.3.2 Areas of Concern
My main area of concern for this project is that it is definitely at the upper limits

for what could be considered an introductory level project. While the various subsystems

are straightforward, they are not entirely trivial and will require much of the students'

time for the few weeks they are allotted to work on the project. However, I was recently

informed that this term students used FPGA chips to complete the current lab 2 project,

instead of the CPLD chips used in past terms. If this is the new standard for the course, it

will greatly reduce the burden placed on the students for completing Mastermind.

The sample solution presented later in this paper presents an ideal solution, but

also describes how the solution could be modified to fit in the smaller CPLD chips. The

vast amounts of space available in FPGA chips relative to the size required for this

project will allow students to concentrate on building their FSMs and not make them

17

worry about fitting things into small physical areas. While the project can indeed be

accomplished in a number of ways using CPLD chips, it does involve some extra

tinkering to keep the designs small enough to fit.

18

Chapter 4: Lab Handout
The following pages contain the Mastermind laboratory assignment. The

document was adapted from the current second lab from 6.111, which it is intended to

replace, to preserve a similar style of presentation. [4]

The Mastermind handout refers to starter code which students can use as a

template for creating their VHDL files. The starter code is included in Appendix B of

this document.

19

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science

6.111 - Introductory Digital Systems Laboratory

Laboratory 2 - Major and Minor Finite State Machines

Handout Date:
Design Due:

Checkoff Due:
Report Due:

Rev. Report due for Phase II:

INTRODUCTION
This laboratory exercise concerns the design and implementation of the board game Mastermind.

Your implementation of this system is to be by a combination of major and minor finite state machines
(FSMs).

This lab is intended to provide an introduction to the methodology for designing, building, and
debugging a digital system, and creating procedures for testing design completeness.

You are to create the game of Mastermind using your lab kit. In the game of Mastermind, one
person creates a secret code and another person tries to guess it based on feedback from his or her guesses.
The code is a sequence of four colors, and each color in the sequence has six possible values. Since we
only have 3 LED colors readily available, the most obvious way to simulate 6 different colors is by
grouping LEDs into sets of three. This description will be based on 3 LEDs per color. This scheme gives
us a code length of 12 bits total, 3 for each of the 4 sequence positions. The rest of this document will use
the term "color" to refer to the value of such a 3-LED grouping.

The feedback system for Mastermind tells the guesser which colors are correct, and which colors
are in the wrong positions. That is, if the first color of a guess matches the first color in the secret, the
guesser is told that they have one correct color, but not which one. If the first color of a guess matches the
third color in the secret, the guesser is told that one color is the same as one of the colors in the secret but in
the wrong position, and again not which one.

The guesser has 10 attempts to guess the correct sequence, narrowing down the possibilities at
each stage by carefully choosing color combinations based on the information of past guesses. If the
guesser cannot determine the secret in 10 attempts, he or she loses. Figure 1 shows a mock-up of the
Mastermind board.

You will somehow need to store past guesses to allow the guesser to review them. Whether you
choose to store the date in a RAM chip or in signal vectors is up to you, but the guesser should be able to
see which guess is currently displayed on the hex LEDs. We recommend storing the guesses in a RAM, if
for not other reason than to gain experience interfacing to one.

20

S 0 0 0 0 0 0 0 0 0 0 0

c Guesses
r o 0000000000
e 0 0000000000O O
t

8 Correct

8 8 Colors

S isplaced

Figure 1: Mastermind Board

OPERATION
The intended purpose of this lab is to familiarize you with the basics of digital programming, and

in creating major and minor FSMs. As such, you should design your system with discrete subsystems
controlled by an overarching control process.

Every round of guessing involves three steps. The guesser enters a sequence, that sequence is
checked against the secret, and that sequence is stored. The last two can happen in either order. The
startup phase of entering the secret is just a special case of these steps. This lends itself to three minor
FSMs controlled by a major FSM.

The order of operation of the system is as follows: the player choosing the secret enters a color
code and stores it while the other player is checking their email or just looking away. Once the secret is
stored, the LEDs blank out and the other player starts guessing. During each guess phase, the guesser has
the option to review the previous guesses. It's preferable to not lose the current guess while reviewing so
the guesser doesn't have to start over, but not necessary. After a guess is entered, it is checked against the
secret code and the guesser is given feedback in the form of LEDs indicating how many correct colors and
how many misplaced colors are in the current guess. Traditionally, four pegs were used to represent each
of these numbers. If you want to use binary representations, you'll only need 6 lights total, but the savings
in pins is probably not worthwhile. Finally, the guess is stored for later recall. After 10 iterations of
guesses, the game enters the fail state and indicates that the game is over. If, however, the guesser finds the
secret code, the game enters a won state and indicates success.

21

12
Reset / 1 Guess LEDs

Previous 4 Right LEDs

Next
4

Mastrmin / iClose LEDs
Cycle Msemn

4 Hex LEDs

Review 1 Success

(switch) 1 Failure

Figure 2: Mastermind Block Diagram

SPECIFICATIONS
A basic block diagram of the system is given in Figure 2. User inputs include the 4 pushbuttons

and one switch. You must implement the FSMs in VHDL. If you choose to store guesses in a RAM, you
will need to drive its data pins via a tristate buffer. Furthermore, the 6264 SRAM has only 8 data pins and
the data vector is 12 bits. This means that the RAM will have to be accessed in 2 cycles unless you use 2
chips. Since you are already designing the storage function as an FSM, spacing the RAM access over 2
states instead of 1 shouldn't present too much of a problem.

* Success
1 Failure

RAM

Storage
FSM

P

Main

Enter

FSM 0 1 LED Bus

Check
FSM

Right LEDs

Close LEDs

Figure 3: Basic FSM Block Diagram

22

Figure 3 is a general block diagram of the subsystems and their interconnections. Between the
NuBus and the 50-pin connector, you have approximately 55 pins at your disposal. As you can see from
Figure 3, you can't spare too many pins for replicating the data vectors. That is, all three subsystems need
access to the data vector. Instead of complicating things by duplicating the data, all three can share the
same 12 pins connected to the LEDs via tristate buffering. Refer to the handout "Gates, Symbols, and
Busses" to understand bussing. It's very important that you implement this tristate buffering properly, or
you could damage your kit and probably blow out some LEDs.

In order to ensure proper behavior, be sure to synchronize all user inputs. In chips, this involves D
type flip-flops, and in VHDL it requires a simple clocked process that assigns incoming signals to internal
signals every clock cycle. The only signal that should not be synchronized is reset.

Since different modules can share pins for inputs (and outputs as long as tristate buffers are used),
there is some room for creativity in where user inputs go. Our suggestion is to take user inputs directly into
the Enter FSM for creating a color sequence. Reviewing is slightly trickier to implement with entering
review mode and staying there, and since you want to show the guesser which guess is being displayed
anyway, we suggest sending user inputs into the Main FSM as well and keeping track of the number of
guesses and the current guesses there, and sending an index to the Storage FSM to use as an address.

Here's a more in depth explanation of how each of the FSMs could possibly work:
Enter: All colors start out blank. When the cycle button is pressed, change the currently active

color. If the sixth color is being displayed and the cycle button is pressed again, wrap to the first color, not
an empty color. In all positions but the first, pressing the "prev" button changes the active position to the
previous one. In the first position, it does nothing. In all positions but the last, the "next" button changes
the active position to the next one, but only after the current position has a valid color. In the last position,
pressing "next" sets the sequence and indicates "done" to the Main FSM, provided that the fourth color is
not empty. This module can drive the LED Bus. As such, it needs a tristate buffer between the user-
modifiable values and the actual output to the Bus. If at any time the "review" switch is activated, this
function will be exited by the Main FSM. As such, it should only continue operation while the "go" signal
is high, and likewise the Main FSM should hold this "go" signal high until it receives a "done" back or
until the user chooses to review previous guesses. You may want to design all minor FSMs this way for
consistency. If you want to be clever, design this module to retain the partial guess while the guesser is
reviewing.

Check: You will want to store the secret code in a signal vector in this FSM, not the Storage
FSM. This is because if the Storage FSM needs to send the secret across the LED Bus, the guesser could
see it if they're quick. Also, since both sequences can't be on the LED bus at the same time, it will have to
keep track of it somehow. This is the only minor FSM that does not drive the LED Bus. On receiving a
"go" signal from the Main FSM, this module simply compares the secret sequence to the current value on
the LED Bus, in groupings of 3 bits at a time, and updates the "Right" and "Close" LED sets before
indicating "done". It also sends a "correct" signal back to the Main FSM as well, to end the game should
the guesser choose wisely.

Storage: Perhaps the most complicated of the modules VHDL-wise, the Storage FSM has two
different data busses, and therefore needs two different tristate buffers. As far as signals go, besides "go"
and "done" it needs a mode indication to determine if it's writing the value on the LED Bus to the RAM, or
putting the value from the RAM on the LED Bus, and it needs a guess index to address the RAM. As
mentioned earlier, it takes 2 cycles to write a full data vector to a single RAM (or read one back). All this
requires is two states for reading or writing, and one additional bit beyond the index from the Main FSM to
determine the "high half' from the "low half' of data.

Main: Basically this subsystem just runs the other FSMs in the proper order and with the proper
settings. We recommend keeping the review counters and information here. Basically, that means a close
facsimile to the code in the Enter FSM, but instead of moving to previous and next color positions, it moves
to the previous or next past guess for review. Review mode basically involves reading from the Storage
FSM and then invoking the Check FSM so that the guesser can see the feedback for that particular guess.

Figures 4 through 7 describe a possible I/O scheme for the various subsystems. Keep in mind that
basic things like synchronization are handled independently within each one. The only two that actually

23

require synchronization are the Main FSM and the Enter FSM, since they are the only modules that users
directly input to.

LEDs

12

go --

To
Main
FSM

mode -- 0

round

driveleds

done

clk

n rst

4-

n_we

To SRAM

address

RAM bus

go

reset colors

driveleds

previous color
next color

cycle color

clk

n_rst

Figure 4: Storage FSM I/O Diagram

LEDs

12

Enter FSM

Figure 5: Enter FSM I/O Diagram

24

Storage FSM

- done

LEDs

12

Check FSM

Figure 6: Check FSM I/O Diagram

-- done

4 Right
LEDs

Close
LEDs

review previous 0
review next --

review (switch) -

check done --
store done -
enter done - *

correct guess - *

clk -+
n rst --

check go
- store go
- enter go

- enter drive
- store drive

- store mode
- reset colors

guesser failed
- guesser won

round

Figure 7: Main FSM I/O Diagram

WHERE TO START
A starter FSM is located in the 6.111 locker. Copy it to your locker by executing:

cp /mit/6.11 l/vhdl/lab2.X/fsm.vhd
chmod 600 fsm.vhd

The beauty of major and minor FSMs is the degree to which different systems are independent of
one another. Keep this in mind when designing them. Apart from the common LED bus, the minor FSMs
should only interface with the Main FSM if possible. Furthermore, the interaction between the Main FSM
and a minor FSM should be limited to a "go" signal from the Main FSM, a "done" signal back to it, and
certain operation flags and values. For example, when storing a guess to memory, the Main FSM should
assert a "go" signal along with an indication that the Storage FSM should write the value on the LED Bus
and an index to tell it which address to write it to.

First things first, design the FSM for each module and meet with your TA to make sure it follows
the guidelines. Only then should you start writing VHDL. The first module you may want to write is the

25

go -

clk -s

n_rst -

Main FSM

Storage FSM, since it may be the most subtle of the three and you should make sure you have plenty of
time and motivation for it.

DEBUGGING
Another benefit of completely separating the minor FSMs is the ease of testing each one. When

learning to design digital systems, it's vitally important to develop good testing habits right away. The
minor FSMs of this design are ideal for testing the system bit by bit, because a separate testbench can be
written for each one without worrying about overly-complicated or overly-grungy patchwork to emulate
the rest of the system. Even better, with well-defined interactions between the Main FSM and the minor
FSMs, it's easy to see where synergistic problems, if any, might occur. That is, it's hard for errors to creep
in as you build up your system when interactions are limited to "go" and "done" type signals.

Besides easy testing in simulation, it should be easy to create secondary control files to test each
FSM separately on your lab kit. You can program only, say, the Enter FSM with all of the inputs and
outputs sent to pins to make sure you can cycle through colors and change between the positions properly.
Repeat this for each module before putting them all in together.

PROCEDURES AND REQUIREMENTS
Your kit should stand alone as a playable Mastermind game. Your hardware check-off will

consist of playing a game with a TA or other staff member. Here are requirements for project check-off
and also for your lab report.

1. Before proceeding with creating your FSMs, be sure to understand the concepts of
synchronization and tri-state buffering, and also how to implement them correctly in VHDL.

2. Provide complete state transition diagrams for each of your FSMs, including control signals for
both input and output.

3. Provide a connectivity explanation, whether in one large diagram or several well-labeled
component diagrams.

4. Use VHDL to implement all FSM functionality within programmable devices. You must have
your design examined and approved by a member of the teaching staff before programming any
chips.

5. Demonstrate your entire system to a member of the teaching staff, showing all of its
functionality. Have your diagrams and VHDL on hand to answer questions.

Laboratory Report
You are to provide a laboratory report which meets the requirements specified in the "Report

Guide" handout. Your report should include the following: all FSMs, connectivity diagram(s), and VHDL
source files. You should also include some text describing your design and methods of implementing it.
The report should flow, be well organized, and, most importantly, be complete. Verbosity is not a
requirement.

Design Notes
Data sheets for the 6264 SRAM are attached. PLEASE read the data sheet carefully as this chip is

easily damaged by incorrect use (wiring). ASK QUESTIONS IF YOU ARE NOT SURE!

The 6264 has a tristate Input/Output (I/O) bus. Reread the handout "Gates, Symbols, and Busses"
which pertains to bussing. The I/O bus of the 6264 MUST be driven by a tristate buffer; contact a staff
member if you need help creating one in VHDL.

Tristate bus contention occurs when two (or more) drivers are active at the same time. The 6264
tristate output is enabled when the /OE output is asserted low, the /CS is asserted low, and the /WE line is
high. While it is true that many logic designers allow tristate bus contention to occur for short times (due to
chip delays), it is not a good idea. For this laboratory exercise, you are to ensure that NO tristate bus

26

contention can occur. The actual write pulse is the AND of both the /CS and the /WE asserted low. It is
essential that the address lines to the SRAM not change when the write pulse is active. Otherwise you may
write to multiple locations!

While the 6264 is advertised as a static RAM, a memory cycles is actually initiated whenever
ANY address line changes. Thus, the address lines may NOT be tristated whenever the /CE is asserted, as
the internal timing circuitry is actuated by noise on the HI-Z address lines.

One way to ensure both that tristate bus contention does not occur and that the address lines do not
change when the write pulse is active is to connect the system clock, /CLK, to the chip select pin; see
Figure 8. The Address Lines do not change until after the rising edge of /CLK. The /WE line can then be
provided by your Store FSM. As long as the /WE line is low prior to (or concurrent with) the chip select
being asserted, then the SRAM will not drive the I/O pins. The control line to the tristate gate connected to
the switches can also be an output of your FSM, but it should also be gated with the system clock.

During T1, data from the SRAM will appear on the I/O pins, and during T2 the data from the
Store FSM will appear at the [/0 pins for storage. The tristate code should coincide with the /WE pulse to
the SRAM.

/Cs

TI T2 TI

/WE

/OE

Figure 8: Example Timing Diagram for SRAM I/O

27

Chapter 5: Sample Solution
This chapter presents a solution to the lab project described in the previous

chapter. It is, of course, only one possible solution. It follows the suggestions of that

description, and also includes comments how the various FSMs could be modified to

account for fitting them into CPLD chips, which requires some changes to how the FSMs

are distributed. Figure 5-1 is a general block diagram for the system.

Because the traditional Mastermind colors are impossible to display with LEDs,

each color is represented by a set of three LEDs: one red, one yellow, and one green.

This means that the LED bus is a 12 bit vector, with each color represented by three bits.

There are a total of eight possible values for three bits, though, so only values one

through six are used. When the colors are reset, they are set to zero until a player chooses

one. When the active color has the value of six (110) and the cycle button is pressed, the

code entry FSM automatically wraps to the value of one (001) to prevent an invalid color.

28

Reset 12 Sequence
LEDs

Previous

Next 4 / - 1Right LEDs
Mastermind

Cycle 4 / 1
Close LEDs

4 Hex LEDs

Review O Success

(switch) 1 Failure

Figure 5-1: Mastermind Block Diagram

5.1 Storage FSM
Figures 5-2 and 5-3 refer to the block diagram and flowchart for the storage FSM,

respectively. This component can read and drive the LEDs used to display the color

sequences, and also interfaces to a single HM6264 SRAM storage chip. Both reading

from and writing to the SRAM involves two clock cycles, one for the upper half of the

LED vector values, and the other for the lower half. This is due to the SRAM chip only

having eight input/output (I/O) pins, while the complete LED vector is 12 bits long.

When the "go" signal from the main control FSM is asserted to this subsystem, it

checks whether it is supposed to read from the SRAM and place that value on the LEDs

or read the value of the LEDs and store that value in a location on the SRAM. The

address for reading and writing is generated in the Main FSM, though the Storage FSM

could also handle that duty.

29

This subsystem actually requires two tri-state buffers: one for the LED bus which

it shares with the code-entry FSM, and one for the SRAM bus which it must read from

and write to. The first buffer is controlled by the Main FSM, while the second is

controlled internally based on which control loop it goes through.

LEDs

121

go -p

-->n_we
mode -- w

To
Main 4 To SRAM

FSM round Storage FSM address
drive leds -

done 6

I- 0* RAM bus

n rst

Figure 5-2: Storage FSM Block Diagram

S Idle

go=go=

mode =1 " md

Read I

-Write Read 2

Figure 5-3: Storage FSM State Transition Diagram

Note that some functions are absorbed into the idle state. Namely, when the

system receives a "go" signal and checks the read/write mode flag, it begins SRAM

30

access by driving the new address received from the control FSM and asserts the write

signal if appropriate.

Also, if this project is created within a set of four CPLD chips, as is available to

the students, this FSM must be absorbed into another of the FSMs. As will be discussed

later, the FSM that checks a guess sequence against the secret is by far the largest, and

will probably need to span two chips. The Storage FSM is the best candidate for

removal, since it is only a small number of states. The steps the author took to absorb the

storage FSM placed the function in the control FSM, and required two SRAM chips

instead of one. By controlling the output enable pins of the SRAM chips along with the

write enable pins, control of the LEDs can still be designated to either the guess entry

FSM or to reading back a past guess. Another possibility is placing this FSM in a CPLD

chip with the smaller portion of the Check FSM, which is the part that counts the number

of correct colors in the correct positions of the guess. This approach would probably be

preferable, as it would retain the separation of subsystem functionality.

5.2 Enter FSM
The Enter FSM is the other subsystem that can control the LED bus. It allows

players to enter both the secret sequence and the guess sequences into the LEDs. When

this subsystem receives a "go" signal from the major FSM, it allows the user to adjust the

colors of the four positions. The inputs chosen for this solution involve a "next" signal, a

"previous" signal, and a "cycle" signal. When the "cycle" button is pressed, the active

color position changes to the next possible color. When the "previous" button is pressed,

the active color position is moved to the previous spot, and stays the same if already on

the first color. Similarly, when the "next" button is pressed, the active color position is

31

moved to the next spot, but only if the current position holds a valid color. Figures 5-4

and 5-5 display the Enter FSM's block diagram and state transition diagram, respectively.

LEDs

go

reset colors

driveleds

previous color
next color

cycle color

clk

n rst

12

Enter FSM

-- done

Figure 5-4: Enter FSM Block Diagram

32

go go=0

SIdle

go=
go=0 ,mode=0

Enter 3

go= I go= I
color2_set = 1 color3_set = 1
prevcolor = 1 nextcolor = 1

Enter 2

go= I go= I
colorl _set= 1 color2_set = 1
prevcolor = 1 nextcolor = 1

Enter I

go= I go= I
colorOset= 1 colorl _set = 1
preycolor = 1 nextcolor = 1

FEnter

go=
colorOset = 1
next-color = I

Figure 5-5: Enter FSM State Transition Diagram

As a convenience, the Enter FSM only resets its color sequence when the Main

FSM asserts a "reset colors" signal. This allows the guesser to review past guesses

without requiring them to re-enter their current guess.

33

Also, the Enter FSM returns to an idle state whenever its "go" signal is not

asserted. This is necessary to allow players to review past guesses while entering the

next guess. In practice, all three minor FSMs function this way, but only this one

requires it.

5.3 Check FSM
Perhaps the most complicated of the minor FSMs is the one that checks a guess

against the secret code. It must check each color of one of the sequences against every

color of the other sequence, resulting in a total of 16 comparisons of three-bit numbers.

This solution stores each of these 16 comparisons in a flag signal, and combines this with

two "masks" to determine which color comparisons to check. These "masks" keep track

of which colors have already been matched up as either correct or close.

First, it checks for any exact matches. If any are found, it updates each mask to

prevent future use of that color. Next, when it checks for colors in incorrect positions, it

progresses through each secret color and looks for the first guess color that both matches

and is unused by checking the masks and the comparison flags.

Figures 5-6 and 5-7 describe the Check FSM's I/O scheme and state transitions,

respectively. This subsystem has very few input signals from the major FSM. Early

designs included a "store" signal because this subsystem is the best candidate for storing

the secret sequence, but this signal was removed and instead the FSM stores the sequence

on the LED bus in an internal vector the first time it is given a "go" signal.

34

LEDs

12

go

done

4 Right
Check FSM LEDs

4 Close
LEDs

clk

n rst

Figure 5-6: Check FSM Block Diagram

go = 0

go= I Idle

stored=0 go=1
stored=

Check Display
Right 3 Close

Check Spacer
Right 2 2

Check Check

Right 0 Close 1

Check Check
Right 0 Close I

Spacer Check
1 Close 2

Display _ Check
Right Close 3

Figure 5-7: Check FSM State Transition Diagram

35

The spacer states are necessary because space was saved by only creating one

adder for each of the feedback numbers. As a result, each state sets an "increment" flag

to add to one of the numbers. This creates a single clock delay in achieving the final

value, and since the states don't need to wait for anything, each takes only one clock

cycle.

If this subsystem needs to be split to fit into CPLD chips, the "down" path in the

above diagram can be separated from the "up" path. An additional four bits must be used

as 1/0 to communicate the state of the masks. In this case, the "Close FSM" uses the

mask sent from the "Right FSM" as its starting point for both the "secret mask" and the

"guess mask" in its checks. As can be seen in the accompanying VHDL code in

Appendix A, the Close FSM is substantially more complex than the Right FSM. The

smaller amount of space taken up by the simpler Right FSM then leaves space for the

storage room to share a CPLD chip with.

5.4 Main FSM
The Main FSM provides the "go" signals to the three minor FSMs in the proper

order to play the game of Mastermind. When the system is reset, it starts the Enter FSM

to allow the first player to enter the secret code. This code is then stored inside the Check

FSM and the LEDs are cleared for the first guess. After the first guess is entered, the

Main FSM first runs the Check FSM to provide feedback to the guesser, and then runs

the Storage FSM to hold the guess for later review. These two steps can be taken in

either order. After both finish, the colors are reset again and system returns to the Enter

FSM again.

36

During the guess entrance stage, if the review switch is set the "go" signal to the

Enter FSM is immediately dropped and control of the LEDs is given to the Storage FSM,

which retrieves the specified guess. The Check FSM is then run to re-check this previous

guess against the secret so the guesser can see the feedback for that particular guess.

Note that if the review switch it set during the first guess, nothing happens and the system

remains in the Enter FSM since there are no past guesses to review.

The guesser wins when the Check FSM asserts a "correct" signal along with its

"done" flag. When this occurs, the system enters an infinite loop in a win state and

asserts the "won" output to an LED. Similarly, if the Main FSM's guess counter hits ten

without receiving a "correct" signal, it enters a different infinite loop in a lose state and

asserts the "failed" output to a different LED.

Figures 5-8 and 5-9 respectively show the 1/0 diagram and system flow of the

Main FSM. As is evident in Figure 5-9, the flow of the "new guess" path and the "review

guess" path are very similar. The only real difference is where the value on the LED bus

is driven from.

review previous 1 -- check go
review next - --- store go

review (switch) - - - + enter go

check done - - - + enter drive
store done - store drive
enter done - Main FSM store mode

correct guess -- reset colors

- - guesser failed
guesser won

clk 4
n_rst round

37

Figure 5-8: Main FSM Block Diagram

reset

Enter
Secret

enter done = 1 Failed

Store guesses =10Store
Secret

,review = I

check done = 1 Enter guess flag 1 Review
Guess Guess

enter done = 1 store done 1

Check Review

correct 1 Guess Check

check done 1 check done = 1

Won Store Review
Guess Wait

store done = 1 next = I OR

prev=1I

review = 0

Figure 5-9: Main FSM State Transition Diagram

As discussed in the Storage FSM section, the Main FSM can be modified to

control the SRAM directly. In this case, the Main FSM's output "round" is used to

directly address the two SRAM chips needed. It also controls the write enable for the

chips, and drives their output enable pins to replace the "store drive" signal it would

otherwise send to the Storage FSM.

38

Chapter 6: Conclusion

Mastermind provides the desired lessons in VHDL and state machine design.

With a recent update to the third lab project for 6.111, this moderate increase in the

complexity to the second lab project should rebalance the learning curve for the course.

As a simple board game, Mastermind is easily understandable in concept, and

thus leaves students to spend their time understanding design concepts, learning VHDL,

and debugging their designs. Whether students have played the game before or not, all

should be able to dive right into the course concepts. Those concepts, along with the

other goals set out for this project, are satisfied in the system described in this document.

Hopefully students will find the assignment enjoyable on many levels, not only the

satisfaction of learning new things, but also creating a game they can play with their

friends.

Though this project is significantly more in-depth than its predecessor, such a

change is important to keep up with the changing goals of the class, and its move towards

more VHDL-oriented design. If students stay in contact with the staff and work

diligently in the time they are allotted, they should not have any problem finishing.

39

Appendix A: Code Used in Sample Solution

A.1 Storage FSM

library ieee;
use ieee.std-logic_1164.all;
use work.std-arith.all;

entity storage-fsm is
port (clk in std-logic;

n-rst in std-logic;
-- initiate process
go : in std-logic;
-- mode
-- = read
-- 1 = write
mode : in std-logic;
-- which round are we reading/writing (0 through 8)
round : in std-logic-vector(3 downto 0);
-- full data vector to/from the led data bus
leds inout std-logic-vector(11 downto 0);
drive-leds in std-logic;

-- indication that process is done or response is valid
done : out std-logic;
-- write enable to RAM
n-we : out std-logic;
-- address sent to RAM (0 through 8 plus high/low half)
addr : out std-logic-vector(4 downto 0);
-- 6 bit I/o bus between CPLD and RAM (high or low half of data)
rambus inout std-logic-vector(5 downto 0)

end storage-fsm;

architecture behavioral of storage-fsm is
type StateType is (idle, write, readi, read2);

signal state StateType;
signal n-we-sig std-logic;
signal to-ram std-logicyvector(5 downto 0);
signal to-leds std-logic-vector(11 downto 0);

constant read-mode std-logic '0';
constant write-mode std-logic '1';

begin -- behavioral

n-we <= n-we-sig;

-- tristate logic to send/receive data from the RAM
rambus <= to-ram when n-we-sig = '0' else (others => 'Z');
-- tristate logic to share the leds with the enter fsm
leds <= to-leds when drive-leds = '1' else (others => 'Z');

state-clocked: process(clk, n-rst)
begin

if (n-rst = '0') then
-- reset everything here
n-we-sig <= '1';

40

state <= idle;
done <= '0';
addr <= (others => '0');
to-ram <= (others => '0');
to-leds <= (others => '0');

elsif rising-edge(clk) then
-- default signals to be innocuous
n-we-sig <= 'i';
addr <= (others => '0');
to-ram <= (others => '0');
done <= '0';
case state is
when idle =>

-- default to remaining in idle state
state <= idle;
-- action requested
if go = '1' then

-- for either mode, we can start the RAM access now
if mode = write-mode then

state <= write;
addr <= round & '0';
n-we-sig <= '0';
to-ram <= leds(5 downto 0);

else
state <= readi;
addr <= round & '0';

end if;
end if;

when write =>
nwe-sig <= '0';
addr <= round & '1';
to-ram <= leds(11 downto 6);
done <= '1';
state <= idle;

when readi =>
addr <= round & '1';
to-leds(5 downto 0) <= rambus;
state <= read2;

when read2 =>
to-leds(11 downto 6) <= rambus;
done <= '1';
state <= idle;

when others =>
state <= idle;

end case;
if go = '0' then

n-we-sig <= '1';
addr <= (others => '0');
to-ram <= (others => '0');
done <= '0';
state <= idle;

end if;
end if;

end process state-clocked;

end architecture behavioral;

41

A.2 Enter FSM

library ieee;
use ieee.std-logic_1164.all;
use work.std-arith.all;

entity enter-fsm is
port (clk

n-rst
-- initiate process
go
reset-colors
drive-leds
-- user controls
next-color
prev-color
cycle-color

done
-- full data vector
leds

in
in

in
in
in

in
in
in

std-logic;
std-logic;

std-logic;
std-logic;
std-logic;

std-logic;
std-logic;
std-l ogic;

out std-logic;
to the led data bus
out std-logic-vector(11 downto 0)

end enter-fsm;

architecture behavioral of enter-fsm is
type StateType is (idle, enter3, enter2, enteri, enterO);

signal state

color3
color2
color
colorO
s-next-color
s-prev-color
s-cycle-color
s-next-color-d
s-prev-col or d
s-cycle-color-d
color3_set
color2_set
colorlset
color0-set

StateType;

std-logic-vector(2 downto 0);
std-logic-vector(2 downto 0);
std-logic-vector(2 downto 0);
std -ogic-vector(2 downto 0);
std logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;

begin -- behavioral

-- sync input signals to the clock
sync-signals: process(clk)
begin

if rising-edge(clk) then
-- sync from user
s-next-color <= nextcolor;
s-prev-color <= prev-color;
s-cycle-color <= cycle-color;
-- make delay pipe for edge trigger
s-next-color-d <= s-next-color;
s-prev-colord <= s-prev-color;
s-cycle-color-d <= s-cycle-color;

end if;
end process sync-signals;

-- tristate logic to share leds with the storage fsm
leds <= (color3 & color2 & color & colorO) when drive-leds = '1' else

(others => 'Z');

color3set <= (color3(2) or color3(1) or color3(0));
color2_set <= (color2(2) or color2(1) or color2(0));

42

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

colorlset <= (colorl(2) or colorl(1) or colorl(0));
colorOset <= (colorO(2) or color0(1) or colorO(0));

state-clocked: process(clk, n-rst)
begin

if (n-rst = '0') then
-- reset everything here
state <= idle;
done <= '0';
color3 <= (others => '0');
color2 <= (others => '0');
color <= (others => '0');
colorO <= (others => '0');

elsif rising-edge(clk) then
-- default signals to be innocuous
done <= '0';
case state is
when idle =>

-- default to remaining in idle state
state <= idle;
-- action requested
if go = '1' then

state <= enter3;
end if;

when enter3 =>
state <= enter3;
if (s-next-color-d = '0' and s-next-color = '1'

and color3-set = '1') then
state <= enter2;

elsif (s-prev-color-d = '0' and s-prev-color = '1'
and color3_set = '1') then

-- stay in 3 because there's no previous color
elsif (s-cycle-color-d = '0' and s-cycle-color = '1') then

if color3 = "110" then
-- if color3 is all on, wrap to one on
color3 <= "001";

else
-- otherwise increment to next color
color3 <= color3 + "001";

end if;
end if;

when enter2 =>
state <= enter2;
if (s-next-color-d = '0' and s-next-color = '1'

and color2_set = '1') then
state <= enteri;

elsif (s-prev-color-d = '0' and s-prev-color = '1'
and color2_set = '1') then

state <= enter3;
elsif (s-cycle-color-d = '0' and s-cycle-color = '1') then

if color2 = "110" then
-- if color2 is all on, wrap to one on
color2 <= "001";

else
-- otherwise increment to next color
color2 <= color2 + "001";

end if;
end if;

when enteri =>
state <= enteri;
if (s-next-color-d = '0' and s-next-color = '1'

and colorlset = '1') then
state <= enterO;

elsif (s-prev-color-d = '0' and s-prev-color = '1'
and colorlset = '1') then

state <= enter2;
elsif (s-cycle-color-d = '0' and s-cycle-color = '1') then

if color = "110" then
-- if color is all on, wrap to one on
colorl <= "001";

else
-- otherwise increment to next color

43

color <= color + "001";
end if;

end if;
when enterO =>

state <= enterO;
if (s-next-color-d = '0' and s-next-color = '1'

and colorOset = '1') then
-- this signal is "set this code now"
state <= idle;
done <= '1';

elsif (s-prev-color-d = '0' and s-prevwcolor = '1'
and color0_set = '1') then

state <= enteri;
elsif (s-cycle-color-d = '0' and s-cycle-color = '1') then

if colorO = "110" then
-- if color3 is all on, wrap to one on
colorO <= "001";

else
-- otherwise increment to next color
colorO <= colorO + "001";

end if;
end if;

when others =>
state <= idle;

end case;
if go = '0' then

state <= idle;
done <= '0';

end if;
if reset-colors = '1' then

-- set things up to enter a color code
color3 <= (others => '0');
color2 <= (others => '0');
color <= (others => '0');
colorO <= (others => '0');

end if;
end if;

end process state-clocked;

end architecture behavioral;

44

A.3 Check FSM

library ieee;
use ieee.std-logic_1164.all;
use work.std-arith.all;

entity check-fsm is
port (clk in std-logic;

n-rst in std-logic;
-- initiate process
go in stdlogic;
-- full data vector to/from the led data bus
leds : in std-logic-vector(11 downto 0);

-- indication that process is done or response is valid
done : out std-logic;
-- feedback LEDs to tell guesser how they did
right-leds out std-logic-vector(3 downto 0);
close-leds out std-logic-vector(3 downto 0)

end checkfsm;

architecture behavioral of check-fsm is
type StateType is (idle, check-right3, check-right2, check-rightl,

check-righto, dispri ght, check-close3, check-close2,
check-closel, check_c ose0, disp-close, spaceri, spacer2);

state
secret
close-count
right-count
cl ear-counts
inc-right
inc-close
secret-mask
led-mask
stored
match_3-3
match_3_2
match_3_1
match_3_0
match_2_3
match_2_2
match_2_1
match_2_0
match_1_3
matchL1_2
match_1-1
match_1-0
match_0-3
match_0_2
match_0_1
match_0_0

constant four
constant three
constant two
constant one
constant zero

StateType;
std -ogic-vector(11 downto 0);
std-logic-vector(2 downto 0);
std-logic-vector(2 downto 0);
std-logic;
std-logic;
std-logic;
std-logic-vector(3 downto 0);
std-logic-vector(3 downto 0);
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std logic;
std logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;
std-logic;

std-logi cvector(3
std-logi cvector(3
std-logic-vector(3
std-logic-vector(3
std-logi cvector(3

downto 0)
downto 0)
downto 0)
downto 0)
downto 0)

begin -- behavioral

-- always have current flags of matches between secret and guess
match_3-3 <= ((secret(11) xnor leds(11)) and (secret(10) xnor leds(10))

and (secret(9) xnor leds(9)));
match_3_2 <= ((secret(11) xnor leds(8)) and (secret(10) xnor leds(7))

and (secret(9) xnor leds(6)));

45

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

:="1111";
"0111";
"0011";
"0001";
"0000";

match_3-1 <= ((secret(11) xnor leds(5)) and (secret(10) xnor leds(4))
and (secret(9) xnor leds(3)));

match_3_0 <= ((secret(11) xnor leds(2)) and (secret(10) xnor leds(1))
and (secret(9) xnor leds(O)));

match_2_3 <= ((secret(8) xnor leds(11)) and (secret(7) xnor leds(10))
and (secret(6) xnor leds(9)));

match_2-2 <= ((secret(8) xnor leds(8)) and (secret(7) xnor leds(7))
and (secret(6) xnor leds(6)));

match_2_1 <= ((secret(8) xnor leds(5)) and (secret(7) xnor leds(4))
and (secret(6) xnor leds(3)));

match_2_0 <= ((secret(8) xnor leds(2)) and (secret(7) xnor leds(1))
and (secret(6) xnor leds(O)));

match_1_3 <= ((secret(5) xnor leds(11)) and (secret(4) xnor leds(10))
and (secret(3) xnor leds(9)));

match_1_2 <= ((secret(5) xnor leds(8)) and (secret(4) xnor leds(7))
and (secret(3) xnor leds(6)));

match_1_1 <= ((secret(5) xnor leds(5)) and (secret(4) xnor leds(4))
and (secret(3) xnor leds(3)));

match_1_0 <= ((secret(5) xnor leds(2)) and (secret(4) xnor leds(1))
and (secret(3) xnor leds(O)));

match_0_3 <= ((secret(2) xnor leds(11)) and (secret(1) xnor leds(10))
and (secret(O) xnor leds(9)));

match_02 <= ((secret(2) xnor leds(8)) and (secret(1) xnor leds(7))
and (secret(O) xnor leds(6)));

match_0_1 <= ((secret(2) xnor leds(5)) and (secret(1) xnor leds(4))
and (secret(O) xnor leds(3)));

match_0_0 <= ((secret(2) xnor leds(2)) and (secret(1) xnor leds(1))
and (secret(O) xnor leds(O)));

increment: process(n-rst, clk)
begin

if n-rst = '0' then
close-count <= (others => '0');
right-count <= (others => '0');

elsif rising-edge(clk) then
if inc-close = '1' then

close-count <= close-count + 1;
end if;
if inc-right = '1' then

right-count <= right-count + 1;
end if;
if clear-counts = '1' then

close-count <= (others => '0');
right-count <= (others => '0');

end if;
end if;

end process increment;

state-clocked: process(clk, n-rst)
begin

if (n-rst = '0') then
-- reset everything here
state <= idle;
done <= '0';
secret <= (others => '0');
stored <= '0';
inc-right <= '0';
inc-close <= '0';
close-leds <= (others => '0');
right-leds <= (others => '0');

elsif rising-edge(clk) then
-- default signals to be innocuous
done <= '0';
inc-right <= '0';
inc-close <= '0';
clear-counts <= '0';
case state is
when idle =>

-- default to remaining in idle state
state <= idle;
-- action requested
if go = '1' then

46

if stored = '1' then
-- reset masks for new comparisons

secret-mask <= (others => '1');
led-mask <= (others => '1');
clear-counts <= '1';
state <= check-right3;

else
secret <= leds;
state <= idle;
stored <= '1';
done <= '1';

end if;
end if;

when check-right3 =>
if match_3_3 = '1' then

inc-right <= '1';
secret-mask(3) <= '0'
led-mask(3) <= '0';

end if;
state <= check-right2;

when check-right2 =>
if match_2_2 = '1' then

inc-right <= '1';
secret-mask(2) <= '0';
led-mask(2) <= '0';

end if;
state <= check-rightl;

when check-rightl =>
if match_1_1 = '1' then

inc-right <= '1';
secret-mask(1) <= '0';
led-mask(1) <= '0';

end if;
state <= check-rightO;

when check-rightO =>
if match_0_0 = '1' then

inc-right <= '1';
secret-mask(O) <= '0';
led-mask(O) <= '0';

end if;
state <= spaceri;

when spaceri =>
state <= disp-right;

when disp-right =>
case right-count is
when 100" =>

right-leds <= four;
when 011" =>

ripht-leds <= three;
when '010" =>

right-leds <= two;
when 001" =>

right-leds <= one;
when others =>

right-leds <= zero;
end case;
state <= checkclose3;

when check-close3 =>
-- check secret color 3 against...
if secret-mask(3) = '1' then

-- this secret color has not been used
if (led-mask(2) = '1' and match_3_2 = '1') then

-- guess color 2 matches secret color 3
inc-close <= '1';
secret-mask(3) <= '0';
led-mask(2) <= '0';

elsif (led-mask(1) = '1' and match_3-1 = '1') then
-- guess color 1
inc-close <= '1';
secret-mask(3) <= '0';
led-mask(1) <= '0';

47

elsif (led-mask(O) = '1' and match30 = '1') then
-- guess color 0
inc-close <= '1';
secret-mask(3) <= '0';
led-mask(O) <= '0';

end if;
else

-- do nothing since no off-matches were found
end if;
state <= check-close2;

when check-close2 =>
-- check secret color 2 against...
if secret-mask(2) = '1' then

-- this secret color has not been used
if (led-mask(3) = '1' and match-2_3 = '1') then

-- guess color 3
inc-close <= '1';
secret-mask(2) <= '0'
led-mask(3) <= '0';

elsif (led-mask(1) = '1' and match2-1 = '1') then
-- guess color 1
inc-close <= '1';
secret-mask(2) <= '0';
led-mask(1) <= '0';

elsif (led-mask(O) = '1' and match_2_0 = '1') then
-- guess color 0
inc-close <= '1';
secret-mask(2) <= '0';
led-mask(O) <= '0';

end if;
else

-- do nothing
end if;
state <= check-closel;

when check-closel =>
-- check secret color 1 against...
if secret-mask(1) = '1' then

-- this secret color has not been used
if (led-mask(3) = '1' and match_1_3 = '1') then

-- guess color 3
inc-close <= '1';
secret-mask(1) <= '0'
led-mask(3) <= '0';

elsif (led-mask(2) = '1' and match_1_2 = '1') then
-- guess color 2
inc-close <= '1';
secret-mask(1) <= o'
led-mask(2) <= '0';

elsif (led-mask(O) = '1' and matchj1_0 = '1') then
-- guess color 0
inc-close <= '1';
secret-mask(1) <= '0';
led-mask(O) <= '0';

end if;
else

-- do nothing
end if;
state <= check-closeO;

when check-close0 =>
-- check secret color 0 against...
if secret-mask(0) = '1' then

-- this secret color has not been used
if (led-mask(3) = '1' and match_0_3 = '1') then

-- guess color 3
inc-close <= '1'
secret-mask(0) <= '0';
led-mask(3) <= '0';

elsif (led-mask(2) '1' and match_0_2 = '1') then
-- guess color 2
inc-close <= '1'
secret-mask(0) <= '0';
led-mask(2) <= '0';

48

elsif (led-mask(1) = '1' and match01 = '1') then
-- guess color 1
inc-close <= '1';
secret-mask(O) <= '0'
led-mask(1) <= '0';

end if;
else

-- do nothing
end if;
state <= spacer2;

when spacer2 =>
state <= disp-close;

when dispyclose =>
case cl ose-count is
when "100" =>

close-leds <= four;
when "011" =>

close-leds <= three;
when "010" =>

close-leds <= two;
when "001" =>

close-leds <= one;
when others =>

close-leds <= zero;
end case;
-- signal that the check is finished
done <= '1';
state <= idle;

when others =>
state <= idle;

end case;
if go <= '0' then

done <= '0';
state <= idle;
inc-close <= '0';
inc-right <= '0';
clear-counts <= '1';
end if;

end if;
end process state-clocked;

end architecture behavioral;

49

A.4 Main FSM

library ieee;
use ieee.std-logic1164.all;
use work.std-arith.all;

entity main-fsm is
port (clk

n-rst

review-prev
review-next
review

check-done
store-done
enter-done

correctguess

check-go
store-go
enter-go

enter-drive
store-drive

store-mode

reset-colors

guesser-failed
guesser-won

round

in std-logic;
in stdlogic;

in std-logic;
in std-logic;
in stdlogic;

in stdlogic;
in stdlogic;
in stdlogic;

in std-logic;

out std-logic;
out std-logic;
out std-logic;

out std-logic;
out std-logic;

out std-logic;

out std-logic;

out std-logic;
out std-logic;

out std-logic-vector(3 downto 0)

end main-fsm;

architecture behavioral of mainjfsm is
type StateType is (enter-secret, store-secret,

enter-guess, check-guess, store-guess,
review-guess, review-check, review-wait,
won, failed);

signal
signal
signal
signal
signal
signal
signal

state
max-guess
next-guess
current-guess
first-guess-flag
s-revi ewp rev
s-review-next

StateType;
std-logic-vector(3 downto 0);
std-logic-vector(3 downto 0);
std-logic-vector(3 downto 0);
std-logic;
std-logic;
std-logic;

begin -- behavioral

-- sync input signals to the clock
sync-signals: process(clk)
begin

if rising-edge(clk) then
s-review-prev <= review-prev;
s-review-next <= review-next;

end if;
end process sync-signals;

max-guess <= next-guess + "1111";

50

state-clocked: process(clk, n-rst)
begin

if (n-rst = '0') then
-- reset everything here
state <= enter-secret;
enter-go <= '0';
store-go <= '0';
check-go <= '0';
enter-drive <='0';
store-drive <= '0';
guesser-failed <= '0';
guesser-won <= '0';
store-mode <= '0';
reset-colors <= '1';
first-guess-flag <= '0';
round <= (others => '0');
max-guess <= (others => '0');
current-guess <= (others => '0');

elsif rising-edge(clk) then
-- default signals to be innocuous
enter-go <= '0';
store-go <= '0';
check-go <= '0';
enter-drive <= '0';
store-drive <= '0';
guesser-failed <= '0';
guesser-won <= '0';
store-mode <= '0';
reset-colors <= '0';
round <= current-guess;
case state is
when enter-secret =>

state <= enter-secret;
enter-drive <= '1';
enter-go <= '1';
if (enter-done = '1') then

state <= store-secret;
enter-go <= '0';

end if;
when store-secret =>

check-go <= '1';
enter-drive <= '1';
state <= store-secret;
if (check-done = '1') then

check-go <= '0';
state <= enter-guess;
reset-colors <= '1';

end if;
when enter-guess =>

enter-go <= '1';
enter-drive <= '1';
state <= enter-guess;
if next-guess = "1010" then

state <= failed;
elsif (review = '1' and first-guess-flag = '1') then

state <= review-guess;
enter-go <= '0';

elsif (enter-done = '1') then
enter-go <= '0';
state <= check-guess;

end if;
when check-guess =>

check-go <= '1';
enter-drive <= '1';
state <= check-guess;
if (check-done = '1') then

check-go <= '0';
if correct-guess = '1' then

state <= won;
else

state <= store-guess;
end if;

51

end if;
when store-guess =>

store-go <= '1';
enter-drive <= '1';
store-mode <= '1';
round <= next-guess;
state <= store-guess;
if (store-done = '1') then

next-guess <= next-guess + "0001";
first-guessflag <= '1';
current-guess <= next-guess;
store-go <= '0';
state <= enter-guess;
reset-colors <= '1';

end if;
when review-guess =>

round <= current-guess;
store-go <= '1';
store-drive <= '1';
store-mode <= '0';
state <= review-guess;
if (store-done = '1') then
state <= review-check;
store-go <= '0';

end if;
when review-check =>

check-go <= '1';
store-drive <= '1';
state <= review-check;
if (check-done = '1') then

state <= review-wait;
check-go <= '0';

end if;
when review-wait =>

state <= review-wait;
store-drive <= '1';
if review = '0' then

state <= enter-guess;
elsif (s-review-next = '0' and review-next = '1') then

if current-guess = max-guess then
current-guess <= current-guess;

else
current-guess <= current-guess + "0001";

end if;
state <= review-guess;

elsif (s-review-prev = '0' and review-prev = '1') then
if current-guess = "0000" then
current-guess <= current-guess;

else
current-guess <= current-guess + "1111";

end if;
state <= review-guess;

end if;
when won =>

state <= won;
enter-drive <= '1';
guesser-won <= '1';

when failed =>
state <= failed;
enter-drive <= '1';
guesser-failed <= '1';

when others =>
state <= failed;

end case;
end if;

end process state-clocked;

end architecture behavioral;

52

Appendix B: Starter Code Provided to Students

B.1 FSM File Template

library ieee;
use ieee.std-logicl1164.all;
use work.std-arith.all;

entity fsm is
port (clk : in std-logic;

rst-n : in std-logic;
-- initiate process
go : in std-logic;

-- indication that process is done or response is valid
done out std-logic;

end fsm;

architecture behavioral of fsm is
type StateType is (idle, statel);

signal state StateType;

begin -- behavioral

state-clocked: process(clk, n-rst)
begin

if (rst-n = '0') then
-- reset everything here

elsif rising-edge(clk) then
-- default signals to be innocuous
case state is

when idle =>
-- default to remaining in idle state
state <= idle;
-- action requested
if go = '1' then

-- start process
end if;

when statel =>
-- first state in process

when others =>
state <= idle;

end case;
end if;

end process state-clocked;

end architecture behavioral;

53

B.2 Control File Template (CPLD)
-- NuBus
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute
Attribute

PIN-NUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PIN-NUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS
PINNUMBERS

-- Connector
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PIN-NUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PIN-NUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS
Attribute PINNUMBERS

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of
of

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is
is

"24";
"25";
"26";
"27";
"28";
"29";
"30";
"31";
"33";
"34";
"36";
"37";
"38";
"39";
"40";
"45";
"46";
"47";
"48";
"49";
"50";
"52";
"54";
"55";
"56";
"57";
"58";
"59";
"60";
"61";
"66";

"3";
"4";
"5";
"6";
"7";.
"8";
"9";

"10";
"15";
"16";
17";
18";

"67";
"68";
"69"
"70";
"71";

"75";
"76";
"77";
"78";
"79";
"80";
"81";
"82";

AO
Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
All
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
A24
A25
A26
A27
A28
A29
A30

Ll-00 L2-08
Ll-01 L2-09
L1-02 L2-10
L1-03 L2-11
L1-04 L2-12
Li-05 L2-13
L1-06 L2-14
L1-07 L2-15
Ll-08 gnd
Ll-09 L3-00
Li-10 L3-01
Li-11 L3-02
Ll-12 L3-03
Ll-13 L3-04
Ll-14 L3-05
Li-15 L3-06

gnd L3-07
L2-00 L3-08
L2-01 L3-09
L2-02 L3-10
L2-03 L3-11
L2-04 L3-12
L2-05 L3-13
L2-06 L3-14
L2-07 L3-15

54

Bibliography

[1] Marc D. Tanner. Helium Breath: An Updated 6.111 Curriculum.
Master's thesis, Massachusetts Institute of Technology, May 1998.

[2] Kevin Skahill. VHDL for Programmable Logic.
Addison-Wesley, Menlo Park, 1996

[3] Donald Troxel and James Kirtley. 6.111 course notes.
Massachusetts Institute of Technology

[4] Donald E. Troxel. 6.111 Laboratory 2: Finite State Machines.
Massachusetts Institute of Technology

[5] Toby Nelson. Investigations into the Master Mind Board Game.
February 5, 1999
URL: http://www.tnelson.demon.co.uk/mastermind/index.html

55

