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Abstract

Ultrashort optical pulses have a variety of applications, one of which is the develop-
ment of optical time-devision multiplexing (OTDM) networks. Data is encoded in
these short optical pulses (typically a few picoseconds in length) which are then inter-
leaved in time to provide very high data rates on a single wavelength. Wavelength-
division multiplexing (WDM) uses multiple channels by interleaving pulses in fre-
quency in order to achieve high data rates. Typical pulse lengths in WDM are on
the order of hundreds of picoseconds. OTDM networks have some advantages over
WDM networks, but in order to take advantage of these characteristics, a better
understanding of short optical pulse characterization needs to be reached. Such in-
vestigation requires accurate pulse characterization in the form of amplitude and
phase measurements. Traditional methods of measurement such as nonlinear opti-
cal autocorrelation and spectral analysis cannot accurately measure pulse shape and
phase. Two new methods of accurate characterization of amplitude and phase are
frequency-resolved optical gating (FROG) developed by Rick Trebino, and a spectral
interferometric method developed by Jean Debeau. The second-harmonic generation
FROG method is highly sensitive but works best for femtosecond pulse lengths, due
to the need for large spectrum. The spectral interferometric method is straightfor-
ward to implement using common fiber-coupled components, but suffers from a need
for high pulse-to-pulse coherency, which implies that it is less practical for actual
communication networks.
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Chapter 1

Introduction

Currently, there is a need, for a variety of applications, to create shorter and more

precisely characterized optical pulses. Such pulses have large bandwidths, and thus

are useful for material characterization via spectroscopy. Ultrashort pulses can be

useful in imaging extremely fast temporal effects such as molecular rotations via

"time strobing".' They are also useful in the field of medicine, whether in examining

structures or performing surgery 2 without invading the body. For spectroscopic ma-

terial characterization and temporal sampling, the optical pulsewidth is typically a

few femtoseconds or less. Finally, short pulses are also necessary for the development

of optical time-division multiplexing (OTDM) networks. In such networks, data is

encoded in short optical pulses (typically a few picoseconds in length) which are then

interleaved in time. This provides very high aggregate data rates in a single chan-

nel. Another method, wavelength-division multiplexing (WDM), interleaves pulse

trains in frequency to achieve high data rates using multiple channels. The optical

pulsewidths used in WDM systems today are typically hundreds of picoseconds long.
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Recently, both OTDM and WDM fiber transmission links have been demonstrated

at data rates exceeding one terabit/second.'-' Because such data rates are several or-

ders of magnitude greater than electronic processing speeds, architecture for such

systems must be carefully considered in order to implement extremely capable op-

tical networks in the future. Most networks in use today are WDM networks, due

to relative commercial component maturity, but OTDM networks have several po-

tential advantages.6 For instance, OTDM networks can simultaneously provide both

guarenteed bandwidth and truly flexible bandwidth on demand service if slotted or

packetized transmission is used. Network management and control are also easier to

understand and to implement due to the single channel nature of the data. Further-

more, such networks are ideally suited to statistical multiplexing of data and much

more scalable in the number of uses than WDM networks. However, in order to take

advantage of these characteristics, several difficulties related to short optical pulse

transmission need to be overcome. These difficulties include noise accumulation, the

presence of group velocity dispersion (GVD), polarization-mode dispersion, and ma-

terial nonlinearities. Investigation and ultimately control of these effects in ultrafast

optical communication systems requires an accurate way of measuring short pulses

that are a few picoseconds in length.

Traditional methods of measuring pulses include using the optical autocorrelation

and the spectrum of the pulse in order to estimate the pulse width and shape. Optical

autocorrelation is a technique in which the pulse under test is used to sample itself.

However, due to the symmetric response, the autocorrelation is incapable of providing

insight as to pulse envelope asymmetry or frequency chirping. Furthermore, the esti-

mation of the pulse width is based upon an assumed pulse envelope shape, which may

or may not be correct. Optical pulse characterization inferred from autocorrelation
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measurements is not only inaccurate due to errors between the measured and assumed

pulse shape, but incomplete because only temporal information is considered.

Complete characterization in the time or frequency domain requires both magni-

tude and phase (or temporal and spectral profile) of a pulse. With both temporal and

spectral information, it is possible to determine the pulse characteristics completely,

since spectral content is related to temporal content through the properties of the

Fourier transform. However, in any measurement, we can only obtain temporal or

spectral intensity of the signal. Pulse characterization is complicated further by the

existence of chirp. The instantaneous frequency of a chirped pulse varies across the

pulse, which means that the pulse is not transform-limited. Transform-limited pulses

allow us to make assumptions about the relations between the spectral and temporal

information of a pulse which can make characterization simpler.

There are several pulse characterization techniques which have been developed to

completely determine pulse phase and magnitude. Interferometric techniques, which

analyze the coherent interference between two copies of the pulse, are most effec-

tive in the nanosecond range. Another technique, called FROG (frequency-resolved

optical gating), is aimed at femtosecond pulses with large bandwidths. For our sys-

tems, however, we need to characterize pulses in the picosecond regime. Picosecond

pulses are particularly difficult to characterize, since they do not have the large band-

width of femtosecond pulses, nor do they have the accessible temporal information of

nanosecond pulses.

An interferometric method developed by Jean Debeau7 has been demonstrated

for picosecond pulse characterization. This method uses an electro-optic modulator

to modulate the pulse train of interest at half the frequency of the pulse train. As
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a result, the spectral lines of the pulse train of interest are mixed down and up into

new spectral lines. Since each new spectral line contains information from exactly

two adjacent original spectral lines, it is possible to extract the relative phases of the

original spectral lines from the new spectral lines. Using picosecond width pulses at

high repetition rates and a high-resolution spectrometer, it is possible to measure the

phase of the pulses in the pulse train. This method uses common fiber-coupled equip-

ment, making for a simple setup. Furthermore, it provides a method of measuring the

phase profile of a pulse directly, without resorting to iterative algorithms. However,

one large drawback which limits the generality of this method is the need for high

pulse-to-pulse coherency in the pulse train of interest. This limits the generality of

this method severely.

The frequency-resolved optical gating (FROG)8 -13 method relies upon simultane-

ously measuring the temporal and spectral pulse content, which is then displayed as a

spectrogram. Using an iterative algorithm to characterize the measured spectrogram,

we can then accurately determine the pulse amplitude, phase, and frequency chirp.

Currently, a variety of FROG methods have been developed, including polarization-

gate (PG) FROG, self-diffraction (SD) FROG, transient-grating (TG) FROG, second

harmonic generation (SHG) FROG, and third harmonic generation (THG) FROG.

Another method, the sonogram, involves finding the spectrogram in a way which is

essentially the reverse of the FROG method.

Chapter 2 presents the theory behind pulse propagation in fibers, including dis-

persion, the nonlinear index of refraction, and the nonlinear Schr6dinger equation. In

preparation for later chapters, pulse distortion and its causes will also be discussed.

Chapter 3 will present the theory of frequency-resolved optical gating (FROG) and
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its advantages and disadvantages for the picosecond regime. Simulations of FROG

traces using second harmonic generation (SHG) FROG will be presented. Finally, we

will close with a discussion on the algorithm for extracting the phase and amplitude

of a pulse.

Chapter 4 will present the theory of interferometric pulse characterization and

its advantages and disadvantages over the FROG method for the picosecond regime.

Simulations of pulse characterization experiments will be presented for comparison

with results shown in Chapter 5.

Chapter 5 will detail the experimental efforts in implementing a system which

can completely characterize picosecond pulses. Results of the experiments will be

analyzed and compared to simulations shown previously in Chapter 4.

Chapter 6 summarizes the conclusions of this thesis and provides suggestions for

future work in this area.
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Chapter 2

Pulse Propagation Theory

In fiber communication systems, short optical pulses are used to transmit data, with

a variety of encoding schemes including return-to-zero (for OTDM) and non-return-

to-zero (WDM). For simplicity, we consider an optical field as a superposition of

monochromatic plane waves traveling in the z direction1 4

3

E(z, t) = 6i I [Ei(wa)ei(kiz-wat) + c.c.1. (2.1)
Wa i=1

Here, the sum over Wa sums over all frequencies. The second sum, over i, includes all

three possible polarizations of the plane waves. We also define the intensity as the

magnitude of the time averaged Poynting vector:

I "') =ceE(t)|2 (2.2)
2

where we have dropped the spatial dependence for simplicity.

To generalize even further, we can assume quasi-monochromatic plane waves. For
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this case, we can assume our electric field at a particular frequency w can be written

as a combination of a slowly-varying envelope (A(r, t)) and a plane wave. This is a

common representation for optical pulses as used in communication systems.

E(w, z, t) = BA(r, t)e(kzwot).23)

We drop the spatial dependence for simplicity and add a phase term,

E(wo, t) = BA(t)e-i(Wot+e(t)). (2.4)

Instantaneous frequency is defined as

dqp(t)
Winst = Wo + dt. (2.5)

For optical pulses, a useful term is chirp, which is defined as the second derivative of

the phase of the pulse, or the first derivative of the instantaneous frequency.

chirp - dt dt) (2.6)
dt dt2

We can expand Equation (2.4)

E(w0, t) = 8A(t)e-(Wot+Co+C1t+C2t2 +C3t3 +...). (2.7)

Here, we have explicitly written out the possible forms of the time-dependent phase.

CO and C1 are coefficients for zero chirp. C 2 is the coefficient for constant chirp, C3

is the coefficient for linearly time-varying chirp, and so on.

Chirp describes the variation of pulse phase across the length of the pulse itself.
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When the pulse instantaneous frequency is constant, the pulse varies linearly with

time and the pulse is described as having zero chirp. Constant chirp occurs when

the pulse phase is quadratic and the pulse instantaneous frequency therefore varies

linearly with time. Linear chirp occurs when the pulse phase is cubic and the instan-

taneous frequency is quadratic. Higher order instantaneous frequency dependence

results in nonlinear chirp.

The presence of chirp in a pulse is typically induced both by dispersion and by non-

linearities in the medium through which the pulse propagates. nonlinearly induced

chirp in a pulse increases its temporal broadening rate when the pulse propagates

through a dispersive media. It can also cause a spectral broadening in the pulse with-

out changing its intensity profile, thus causing problems for communications systems

which rely on efficient use of bandwidth. Furthermore, without the ability to char-

acterize the chirp of a pulse, it is much more difficult to predict how a given pulse

will change envelope shape and width as it propagates. Figure 2.1 shows an example

of a Gaussian pulse with constant chirp (quadratic phase) compared to an unchirped

pulse. This comparison illustrates the effect of chirp on the bandwidth of a pulse.

Let us take a look at some common forms for the pulse envelopes (A(t)) as de-

scribed in Equation (2.4)). A Gaussian envelope is of the form

t
2

E(t) = Be-r , (2.8)

where B is a constant amplitude and T is the half-width at the 1/e intensity point

of the pulse. The more common measure of pulse width is the full-width at half-

maximum (FWHM). Both T and the FWHM are measured with regard to the intensity

15
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Figure 2.1: (a) and (b) show the intensity of the unchirped Gaussian and
the chirped Gaussian, respectively. Note that they are identical. (c) shows
the electric field of the unchirped Gaussian and the phase of the unchirped
Gaussian. (d) shows the electric field and phase for a Gaussian of the same
FWHM with constant chirp. (e) and (f) show the corresponding spectral
intensities for the two Gaussians. For these plots, the FWHM is 20 fs. The
quadratic chirp is 0.02 [rad/fs2]. (fig/exgausschirps2.eps)

of the Gaussian pulse, given by

1(t) = I 2e$, (2.9)

where I, = "B 2 . The FWHM is related to T by the following relation102

FWHM = 2T/n 2. (2.10)

Gaussian pulses are common solutions to many laser outputs, including mode-locked
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fiber lasers and diode lasers. A hyperbolic secant (sech) pulse envelope is the natural

solution to the soliton equations. For more information on solitons, please refer to

Chapter 5 of Agrawal.1 5 Sech pulses take the form

t
E(t) = Bsech , (2.11)

TO

where B is the amplitude of the pulse, and To is related to the full-width at half

maximum by

FWHM = 2TO ln (1 + v'2). (2.12)

The full-width at half maximum is measured from the intensity envelope of the pulse.

Figure 2.2 plots the intensities of a gaussian and a sech pulse, both with a full width

at half maximum of 2 ps.

2.1 Nonlinear Polarization

Thus far, we have only considered electric fields in free space. Let us next consider how

electromagnetic waves act within materials. We first consider a dielectric material.

When an electric field is applied, the dielectric material polarizes and a polarization

current is induced. This material polarization leads to a linear change in the index

of refraction of the material as well as higher order nonlinear terms which act as new

sources of electromagnetic radiation. The relation between the electric displacement

D, the electric field E and the electric polarization P is

D(r, t) = cOE(r, t) + P(r, t). (2.13)
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The electric polarization of a dielectric material is defined to be the sum of the

electric dipole moments per unit volume induced in the material by the presence of an

electric field.16 These electric dipole moments are induced over time scales defined by

molecular, ionic, and electronic processes in the material. In silica fiber, the electronic

effects dominate, which results in a nearly instantaneous response of approximately

10 fs.

The induced material polarization can be expanded into linear and nonlinear terms

(2.14)

18

P(r, t) = pL (r, t) + pNL (,t



where

pL (rt) P(1)(r, t) (2.15)

and

PNL(r t) p( 2 )(r, t) + p(3 )(r, t) + p(4)(r, t) + .... (2.16)

Using Fourier analysis, we can expand the polarization in an infinite sum of sepa-

rate frequency components, similar to our earlier treatment of the electric field in

Equation (2.1).

P(")(r, t) = 1 P(n)(rwb)ei(kbr-Wbt) + c.c.1. (2.17)
Wb i

Again, we first sum over frequencies and then sum over all possible polarizations.

An example of a polarization P ()(r, wn), for the case when only sum frequencies are

included, is

P(r, wm) = E (X (1) (Wm = wI) E(wi) + X(2)(Pm = wI + w2 ) E(wi)E(w2) (2.18)

+ X(3)(Wm = Wi + W 2 + w3 ) : E(wi)E(w 2 )E(w3 ) + ... )

- P(I) (r, Wm) + p( 2) (r, wi) + p(3) (r, WM) + .. ,

where the X's are the nonlinear susceptibilities. As a result of the vector nature of the

electric field and polarization, the susceptibility is a tensor quality. The susceptibility

of order n for nth order polarization and field is a tensor of order n + 1. To illustrate

the tensor nature of this term, we can explicity write out the third-order material
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polarization in terms of the electric field and susceptibility:

p3)[P3 (w)
p( 3)

(3)
x

()

(3)Lxxx

(3)
Xxxxy

(3)
Xyxxy

(3)
Xzxxy

S xzzz

.. Xyzzz

.. XZZZZj

E.(wi)

E.(wi)

E.(wi)

E.(wi)

Ez(wi)

Ez(wi)

It is clear that the x tensor is a fourth-order

summation form as follows:

tensor. We can also write this in a

Pf(W =Wo + Wn + Wm)=

o Xjkl ( = wo + wn + Wm : WoW n,W m)Ej (Wo)Ek (Wn)E(Wm). (2.20)
jkl (mno)

We include the second summation, over (mno) to illustrate that the material po-

larization at a frequency w only requires the frequency components of the relevant

electric fields to sum up to w. Thus, m,n,and o may take on any number as long as

their sum gives us the correct frequency component for the material polarization. In

general, the calculation of the material polarization is greatly simplified by the fact

that due to symmetry conditions in many materials, many of the quantities in the X

tensors are zero.

In fiber, the second order susceptibility is negligible due to the symmetries of silica

glass. As a result, fiber nonlinearities are mainly due to third order effects. Let us

20
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E2(w2)
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Ez(w 2)

Ez(w 2)

E.(W3 )
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Ez(w 3)

E. (W3 )

Ey(w 3)

E,(w3)_
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consider the third order polarization, for an incident electric field with three frequency

components. In a more general case when an optical pulse is considered, the incident

electric field often consists of many more frequency components. We assume that

each of the electric field components are polarized in the same direction and drop the

space dependence in the following equations for simplicity. From Equation (2.1), we

obtain

E(w) (E(wi)eiwl + E(w 2 )ew + E(w 3 )e ± c.c.). (2.21)

The frequencies present in the material polarization will be third-order combinations

of the frequencies present in the electric field. Thus, if we calculate E(t)3 , we can

observe which frequencies will be present in the material polarization.

E(a)3 ( E(wi)e-w't + E(w 2)e-iw2t + E(w3 )e-iw3t + c.c. (2.22)

= (E(wi)3e-3iwit + E(wi)2 E*(wi)e-iwl + 2E(wi)E(w2)E*( 3 )egw1±w me-a3)t +

From this, we see that all sum and difference combinations of its frequencies wi,omega2 ,

and w3 are possible. We can write the polarization in terms of its separate frequencies

by looking at the Fourier transform. Thus, each frequency of the polarization corre-

sponds to some combination of the incident E fields. There are 44 separate frequency

components, the Fourier transform sum of these 44 separate components results in

the total polarization. A few of the specific frequency components are written out
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below.

P(wi) = ±X(3) (3E(wi)E* (wi) + 6E(w2 )E*(w 2) + 6E(w 3)E*(w 3))E(wi) (2.23)
4

P(3wi) = (3)E3(W1) (2.24)

P(wi + w2 + w3) = X(3)E(wi)E(W2)E(W3) (2.25)

P(2w2 - w) = X(3)E(w 2 )2E*(wi) (2.26)
4

A more complete listing can be found in Boyd" (Boyd uses a slightly different nota-

tion).

The various contributions to the nonlinear polarizations are results of particular

nonlinear processes. For example, second harmonic generation and sum harmonic

generation are generated by second order X(2) nonlinearity, while self- and cross-phase

modulation, four-wave mixing, and Raman scattering are examples of third order X( 3)

nonlinearity. Observable electric fields are always real and thus have both positive

and negative frequencies associated with them. Mixtures of negative and positive

frequencies in the mathematics help explain nonlinear phenomena such as the optical

Kerr effect, optical rectification, and coherent anti-Stokes Raman scattering.

2.1.1 Intensity Dependent Index of Refraction

The material polarization as described above can cause nonlinear effects, especially in

isotropic materials such as silica glass, where third-order effects dominate. One such

effect is the intensity dependent index of refraction which can often cause distortions

in optical pulses as they propagate through fiber. The intensity dependent index

of refraction can be caused by either self-phase modulation (SPM) or cross-phase
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modulation(XPM). In self-phase modulation, a pulse propagating in fiber induces

an intensity-dependent nonlinear change in the index of refraction of the fiber. In

cross-phase modulation, a second field causes an intensity-dependent nonlinear index

of refraction experienced by the first field. These effects result from third order

processes which are dominant in fiber since silica glass is isotropic. Thus, for fiber,

we can write

D(w) = c (I + X)(w) )E(w) + P(3)(w), (2.27)

where p( 3) (w) can be expanded in the same way as in Equation 2.20. The index of

refraction in the absence of nonlinear polarization is defined to be

nor= 1+ X)(w). (2.28)

Let us first consider the case of self-phase modulation in fiber. We assume an incident

electric field at a single frequency w

1
2

As stated before, self-phase modulation will cause a change in the index of refraction

observed by the electric field. We define a new index of refraction as

n = no + An, (2.30)

where An is the change caused by SPM. To solve for An, we consider the nonlinear

polarization in Equation (2.27). For self-phase modulation, the relevant third-order

material polarization term is that which occurs at the same frequency as the incident
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field and with the same polarization.

P () _ 3) (u;:w, w, -w)E1(w)E1(w)E*(-w) (2.31)

+ 3 X$2(w : w, -w, w) El(w) E*(-w) El(w)

+ (3) : -w, w,w)E*(-w)E1(w)E1(w)}.

Due to intrinsic permutation symmetry, we can interchange the frequency arguments

at the same time we interchange the cartesian indices. In our case, the cartesian

indices are all the same. As a result, we can sum all three terms, which gives us

a coefficient of 3. Rewriting Equation (2.27) for self-phase modulation in fiber we

obtain

Dx(w) = co(1 + X9(w))E1(w) + 3o X ()x(w)IEl(w)1 2 El(w). (2.32)
4

We can rewrite Equation (2.32)

Dx(w) = co(1 + XM9(W) + ( (2.33)
4

Using Equations (2.28), (2.30) and (2.32), we can see that

n2 = (no + An)2 = (1 + X9(1) + ( x (w)IEl(w)12). (2.34)
4

We find that the change in the index of refraction is both nonlinear and proportional

to the intensity of the field. Let us define An to be n2', where n2 is a constant of

proportionality. Thus, Equation (2.30) becomes

n - no + n2 I, (2.35)

24



where I is defined (from Equation (2.2)) as

I noccl E1(w)12. (2.36)

We now solve for n 2. Substituting Equation (2.35) into Equation (2.34), we obtain

(n2 + 2non 2 I + n 2I 2 ) = 1 + XM(w) + Xxx (w)IE1 (w) 2. (2.37)
4

Since n 2 is typically very small, n I 2 is negligible and can be neglected. Further-

more, we can also cancel out several terms by substituting in Equation (2.28), finally

obtaining

3
2non 21 = -X$ 3 x (w)IEl(w)12. (2.38)

4

Substituting Equation (2.36) into Equation (2.38) and solving for n2 , we obtain

n 2 = C X2x(w). (2.39)

We see from Equation (2.39) that self-phase modulation causes a change in the index

of refraction proportional to the intensity of the field. This implies that an intensity-

dependent phase shift will be induced upon the field. In the case of propagating

pulses, the phase shift induced upon the pulse is dependent on the pulse intensity,

which varies across the pulse envelope. In other words, the pulse will acquire increased

bandwidth as well as chirp as it propagates.

The derivation of self-phase modulation derived here was for a linearly-polarized

field. For a circularly polarized field, the constant of proportionality n 2 is 2 that for

a linearly polarized field. To gain a better understanding of the intensity-dependent

25



index of refraction, let us briefly consider n2 for cross-phase modulation. In cross-

phase modulation, a strong field (pump) can affect the index of refraction seen by a

second, weaker field (probe) in much the same way as a field can affect itself in SPM.

In order to calculate n2 for a XPM effect, we must first realize that there are several

different types of cross-phase modulation.

1. The pump is of the same polarization as the probe, but of different frequency.

2. The pump is of different polarization than the probe, but is of the same fre-

quency.

3. The pump is of the same polarization and same frequency as the probe, but is

sent in at a different angle from the probe to distiguish the two fields from each

other.

4. The pump and probe are circularly polarized instead of linearly polarized.

Let us consider cross-phase modulation in the case where the pump and probe

have the same (linear) polarization but different frequencies. We assume a pump

field

1
El = -(E1e- + E*ew1t), (2.40)

2

and a probe field

1
E2 = -2(E 2e-w2t + E2*tW22). (2.41)

2

For simplicity, we shall drop the vector notations. Again, assuming intrinsic permuta-

tion symmetry, the relevant third-order polarization term for cross-phase modulation
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is

P 3 (W2) = 6co X(3)(U2 : wi, -W1 72)IEi 12E2 (2.42)
4

Note that the two distinct pump and probe frequencies result in twice as many degen-

erate terms for XPM as compared to SPM in Equation (2.31). Repeating the same

calculations as before, we find that n 2 for cross-phase modulation is twice that for

self-phase modulation

3 1 (3
n2 = - 2 X (3) 2 ). (2.43)

2 E0noc

Let us take a closer look at how self-phase and cross-phase modulation may affect

a pulse as it propagates through fiber. The propagation of a pulse in free space is

determined by the propagation constant, k, which is defined as

k = --n. (2.44)
C

This propagation constant is a vector. Within fiber, the propagating mode may still

be characterized by a single propagation constant

-ne, (2.45)

where neff is the effective index of refraction of the mode. However, the electric field

strength varies with the transverse position as shown in Figure 2.3.

We have shown that a pulse propagating as a plane wave will undergo self-phase

modulation, such that the index of refraction it sees is really the linear index no plus
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Figure 2.3:
(fig/fiberbeta. eps)

Electric field distribution in the lowest order fiber mode.

some small intensity-dependent effect

n = n,, + n21. (2.46)

In a fiber, we find that the propagation constant is also altered by a small, intensity-

dependent amount:

= (ne + n2,ff Ip) = /o + AO,
C

(2.47)

where Ip is the peak intensity at the center of the guide and n2eff = f: n2 dx We

find that AO is therefore

W
4~-n 2 ,ffI

C ef
(2.48)
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2.2 Wave propagation in Fibers

Now that we have gained some understanding in how electromagnetic waves behave

in dielectric materials and how that might effect the propagation of these waves in a

fiber medium, let us take a look at electromagnetic waves propagation in fiber. We

begin with Maxwell's equations, which state

V x E = (2.49)
at

V x H = + J (2.50)at
V - D =p (2.51)

V* - B =0 (2.52)

With continuity equations

B = pH (2.53)

D =cE + P (2.54)

J = crE. (2.55)

We assume the material is nonmagnetic, so p becomes the constant pu. We also

assume that we are in a charge-free region, and thus p and J are both zero. Each of

these assumptions makes sense because we are examining pulse propagation in optical

fiber, which is a purely dielectric waveguide. To derive the wave equation, we take

the curl of Equation (2.49) , and substitute in Equation (2.50):

a2D
V x x E = -Pot 2 . (2.56)
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Substituting in Equation (2.54) gives us

02 E
V x V x E = Eoeo at 2

0 2p
- t2. (2.57)

If we then use the Fourier transform and analyze this equation in the frequency

domain, we can simplify Equation (2.57) using the the simple relation between E and

P

P = EO(X0)4)EE+ ...) = pL + pNL. (2.58)

pL - )E, (2.59)

we can define E = O(i + X(')). Using Equations (2.58) and (2.59) and assuming an

instantaneous material susceptibility X0), Equation (2.57) becomes:

02 E 12pNL
V x V x E + P6OE* - t2 = -O (2.60)

We can further simplify Equation (2.60) by using the following vector identity and

realizing

V x V x E = V(V - E) - V 2E ~-V 2 E. (2.61)
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Now, since the term V - E tends to be very small for slowly varying amplitudes and

plane waves, even in nonlinear systems, then the final equation is

2E22pNL (2.6
V 2E - poc - -t P o t2.(2.62)

(9t2  0t2

Equation (2.62) is called the nonlinear wave equation and has the form of an inho-

mogenous Helmholtz equation.

We proceed to simplify this equation assuming plane wave propagation with a

slowly-varying envelope at frequency w

E(z, w, t) = eE(z, t)e-i(wt-kz), (2.63)

where E(z, t) is a slowly-varying envelope and e-(wt-kz) is the monochromatic plane

wave. We also assume that the material polarization is of the same form

PNL(z W) t) pNL(Z t)-i(wt-kpz), (2.64)

where the wave number for the nonlinear polarization component kP is distinct from

the electric field wave number k in order to account for the phase mismatch between

each wave. To simplify Equation (2.62), we need to substitute in Equations (2.63)

and (2.64). We take some derivatives first in order to make the substitution process
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OE (z, w, t)
at

a2E(z, w, t)
at 2

aE(z, w, t)
az

a 2 E (z, w, t)
az2

= 4iw)E(z, t)e-i(wt-kz)

a2

at2
- 2iwa -W 2)E(z, t)e-i(wt-kz)

+ ik)E(z, t)e-i(ot-kz)

a2  - 2 t)a-i(_t-kz)
-( + 2ik- k )E(z, te~z\az2 a9Z

The derivatives for PNL(Z, w, t) are similar.

Using these derivatives to simplify Equation (2.62), we obtain

+ 2ika - k2az k)

a2
POE 0g2

a 2

- 2iw2a - w2 ) E(z, t)e-i(wt-kz)

- 2iw a - w2)PNL(Zt) -i(wt-kpz). (2.69)at

Using the definition k2 = yi0 w 2 and assuming the envelopes are slowly varying, the

higher order derivatives are much smaller than the lower order derivatives. We can

assume:

kaE(z, t) a2 E(z,
az az2

aE(z, t) a2E(z7
at at2

aPNL
w2PNL(Z7t) aP (Z t)

t)

t)

a2pNL(Z, t)
at2

Equation (2.69) then becomes

+ 2iupoE-} E(z, t)e-i(wt-kz) - -(6 - 3)i w2PNL (Z -t) i(wt-kpz)
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(2.65)

(2.66)

(2.67)

(2.68)

a 2

(az2

(2.70)

(2.71)

(2.72)

2ik a
{29ky (2.73)



We divide through by -2ik and obtain

+ pOE t)e-i(wt~kz)
OZ kt the p

We collect the phases and simplify to

( a+ pE )E(z, t)
19z kat

(8- PNL(Z -i(k-kp)z
2k

Recall y = ! and PoE ("-)2 2, and substitute these definitions into Equa-

tion (2.75) to obtain

OE
1OZ

n aE
C at)

i c PN Le-i(k-k)z

2n
(2.76)

If we consider the steady-state solutions (A = 0) and assume the field and nonlinear

polarization are copolarized, we obtain

U, P oCpNL,-i(k-kp)z

Oz 2n
(2.77)

This equation can actually be expanded into a set of coupled-wave equations which

describe the propagation of fields for particular processes. For example, for the third

order process of cross-phase modulation, we can write the polarization as

P(W 2 = w1 + W2 - W1) = CoX(3)(W2 : W1, 2 , -wi)E(w1)E(W2)E*(wi) (2.78)

We also need to write out equations for P(wi):

P(Wi = w2 - W2 + W1 ) = EoX(3)(wI : 02 , -W 2 , Wi)E(W2)E*(W 2)E(wi) (2.79)
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Substituting Equation (2.78) into Equation (2.77), we obtain the coupled-wave equa-

tion that describes cross-phase modulation.

(w) iwd E(w)E*(W2)E(W2) (2.80)az nic
E(W2 ) iW2dE(W2)E*(wi)E(wi) 

(2.81)
Oz n 2c

where d = !X and is a scalar coefficient that accounts for the tensor qualities of x and

Ak = k - kp = 0. The process is automatically phase-matched. It may be thought of

as JE(w1 )|2 changing the index of refraction seen by E(w2 ).

2.3 The Nonlinear Schrodinger Equation

The coupled-wave equations do not account for propagation of a pulse with non-

negligible bandwidth. In this section, we consider optical pulse propagation in fiber

again, but now we take into account the propagation of a pulse with non-negligible

bandwidth. In this example, the dominant nonlinear effect experienced by the pulse

will be SPM becasue that process is automatically phase-matched. Recall from Sec-

tion 2.1.1 the nonlinear polarization for self-phase modulation:

P 3)(w) - &,x(3) x(w : w, w, -w) E1(w)12 El(w). (2.82)

Substituting this relation into Equation (2.77) and noting that this process is phase-

matched, we obtain

a E(w) = 3 iW X ()E(w)| 2 E(w). (2.83)19z 8 nec
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Now, we consider a short pulse, which has a finite bandwidth. Each frequency com-

ponent propagates as eik(w)z, where k(w) is frequency dependent (since E is frequency

dependent). In fiber, as mentioned earlier, we approximate the wave number k(w) by

the propagation constant O(w). We expand O(w) in a Taylor series around w:

043(w) 102/3(w)
L 3((w)= ) (w)+ W O - WO) + 2  (- 0 )2 + .... (2.84)

The form of our electric field (Equation (2.63)) in fiber becomes

E(z, w, t) = E(z, t)e-i(Wt-3z), (2.85)

where we have dropped our vector notation for simplicity. The corresponding Fourier

Transform is

E(z, w, t) - E(z, w - wo)ei'3(wo)z. (2.86)

To discover how this pulse propagates in fiber, we consider an incrementally small

length Az. The change in the electric field over this small length is then

AE = [i(w) - i#(wo)]EAz, (2.87)

which becomes

OE
=z i[(w) - O(wo)]E. (2.88)az
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Substituting in Equation (2.84), Equation (2.88) becomes

OE ~0# 102(
z lO (w - wO) + 2 (w - wo) 2 + .. E. (2.89)

Now we transform this equation back to the time domain. Multiplication by -i(w -

wO) in frequency transforms to j in time.

OE _a3 0 1 2 02
-- = - -i- E +.... (2.90)

z 19 Wat 2 2w2  at2

We will ignore third order terms and higher from now on, since they are simple enough

to add later. We consider some definitions:

0 = 1 (2.91)
Ow ~0 Vg

2 3 2, (2.92)
Ow2 W 2

Wa

where v, is the group-velocity and #2 describes the group-velocity dispersion. Com-

bining our results from Equations (2.83) and (2.90)-(2.92), we obtain the nonlinear

Schr6dinger's equation:

OE 1 E 1 2E
-+ -Z-#2 + iyIE2E, (2.93)

0z v9 at 2 at 2

where -y is defined as ' (). The second term on the left side of Equation (2.93)

is the group velocity term, which tells us that the pulse is propagating at a certain

velocity (v,). The first term on the right hand side describes the group velocity dis-

persion. As a pulse propagates in fiber, group velocity dispersion causes the different

frequency components of the pulse to travel at different speeds. As a result of this

effect, the pulse broadens out in time. The second term on the right hand side of
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Equation (2.93) describes the nonlinear effects in the fiber due to self-phase modula-

tion. As described in Section 2.1.1, this nonlinearity induces an intensity-dependent

phase in the pulse. As a result, pulses end up chirped and the phase of the pulse

varies across the pulse itself. The nonlinear Schr6dinger equation is often taken to a

moving reference frame and normalized; for further details, please refer to chapter 3

in Agarwal's book."

Thus far, we have not considered the effect of loss on the propagation of pulses

through fiber. We model loss as an exponential term:

PO = Pie-az, (2.94)

where P is the power going into and Po is the power coming out of a length z of fiber.1 5

When a is positive, it describes loss. When it is negative, however, it describes a gain

in the medium. Power is related to the square of the electric field, so the loss in terms

of the electric field is

E = Fin ed. (2.95)

If we take the derivative of this, we obtain

F0  aE az

"=-En - 2 (2.96)
az 2

a
-- Eo.

2

Thus, we can include this in the nonlinear Schr6dinger equation (Equation (2.93)) to
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OE 1 OE
Oz V9 at

1 &2E a
- _22 2 - E + i'yfE 2 E.
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Chapter 3

FROG Pulse Characterization

Theory

Examination of the nonlinear Schrddinger equation (2.97) indicates that pulse prop-

agation through fiber is a complicated process. Mathematically, analytic solutions

to Equation (2.97) are dificult to find (with the exception of the well-known soliton

solution) and numerical techniques are generally required to estimate the effects of

the interplay between group velocity dispersion, fiber loss, and nonlinearity. In the

laboratory, characterization of optical pulses is absolutely required as channel rates

increase and pulse widths used in communication systems decrease. Our interest is

in the characterization of pulses in the picosecond regime which have proven to be

challenging due to their small bandwidth and small time duration.

Pulse characterization requires exact measurement of the pulse envelope and spec-

tral phase content. From these measurements, useful parameters can be calculated,

such as pulse width, pulse intensity, and chirp. Traditional measurement techniques
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rely on the use of optical autocorrelation to determine the temporal pulse width and

spectral analysis to determine the bandwidth of the pulse. These techniques, how-

ever, are fairly limited in their accuracy. In fact, this characterization technique is

only accurate when the measured pulse is transform-limited (has no chirp). Equa-

tion (2.97) indicates that unchirped pulse propagation is difficult to achieve in optical

fiber for short pulses due to the presence of intensity-dependent SPM nonlinearity. In

addition, the symmetric response of the autocorrelation also means that asymmetric

distortions in the pulse will not be identified correctly. As shown previously in Chap-

ter 2, pulse distortions can result from linear effects such as group velocity dispersion

and chirp induced by the nonlinearities of the medium, which generally results in

an increased number of errors in the communications network. Because this distor-

tion ultimately limits system performance, the ability to accurately and completely

characterize a short optical pulse is required if we hope to extend transmission dis-

tances in optical networks. A new method called Frequency-Resolved Optical Gating

(FROG),10 13 has been developed to provide accurate measurements of short pulses.

Specifically, it has been developed to provide simple characterization of ultrashort

pulses with T < 100fs.

3.1 Autocorrelation

The optical autocorrelation is given by:

A (T) = I(t)I(t - T)dt (3.1)
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where I(t) is the intensity of the pulse under test. Physically, we split the pulse

into two identical copies of itself, and then spatially overlap the two copies together

inside a noncentrosymmetric X( 2) crystal optimized for second harmonic generation

(SHG) (Figure 3.1). The crystal should be oriented to maximize the phase-matching

woofe

SHG Czysta

NJ MI2

Beam coZZin ata-

Figure 3.1: Experimental setup for the measurement of optical pulses using
optical autocorrelation. (fig/autocorrsetup.eps)

to obtain a strong sum harmonic signal. This requirement is met by orienting the

crystal such that the dispersion of the refractive index is compensated by the crystal

birefringence effect.

The crystal will produce a pulse at twice the frequency of the original pulse with

an intensity proportional to the product of the input intensities. This second order

process is the sum harmonic generation, and is given by

p(2)(WI + w2) = 2X(2)(wi + w2 )E 1 E 2 . (3.2)

In the case of an autocorrelation, Wi W2 . Integrating the output of the crystal will

then give us the autocorrelation of the pulse. We perform the integration by passing

the sum harmonic field into a photodetector, which integrates the results and passes it
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to an oscilloscope to be displayed. A rough estimate of the pulse length can be made

by observing the full width at half max (FWHM) of the autocorrelation output. This

estimate can be further refined by measuring the spectrum of the pulse and calculating

the time-bandwidth product, as explained in Section 3.2. The autocorrelation is also

useful in detecting the presence of distortions that would affect the intensity envelope

of the pulse.

The resolution of the autocorrelator is related to both the step size of the stage as

well as the bandwidth of the nonlinear crystal. The stage controls the overlap of the

two pulses and the step size determines how closely spaced our measurements are. In

the laboratory, our stages have step sizes of 10 p m, which corresponds to a step size

of approximately 0.8 fs. This is plenty of resolution for pulses on the order of a few

picoseconds. The bandwidth of the nonlinear crystal also needs to be large enough

to accommodate the pulse bandwidth. If not, the pulses will be distorted as they are

passed through the crystal, and an accurate autocorrelation will not be possible.

The shortcomings of the autocorrelation are readily apparent. It is clear that any

autocorrelation will result in a symmetric output regardless of the input pulse asym-

metries. Furthermore, the autocorrelation will always only give information about

the pulse intensity, omitting any information about pulse phase or chirp. However,

more information about a pulse can be obtained when the autocorrelation is used in

conjunction with spectral measurements of the pulse.
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3.2 Spectral Measurements

The spectrum of a pulse is easily obtained using a spectrometer. Spectrometers,

monochromators, and spectrum analyzers are all based on the concept of using a

grating to spatially separate the different frequency components of a pulse. A grating

is a reflective piece of material which is usually scored with thin lines. When light

hits these lines, it reflects off in a range of angles. At certain angles, light of a

specific wavelength will interfere constructively. Other wavelengths will constructively

interfere at other angles. This has the overall effect of separating the wavelengths in

the incoming light.18 The general equation for a diffraction grating is

mA = d(sin a - sin 0), (3.3)

where m is the diffraction order, A is the wavelength of interest, d is the grating

period, a is the angle of the incident light with respect to the grating normal, and

3 is the angle the diffracted light makes with the grating normal. Figure 3.2 is

a diagram which illustrates grating operation. The resolution of a spectrometer is

determined by the amount of dispersion given by the diffraction grating. The angular

dispersion measures how widely separated two different wavelengths are, and is given

by differentiating the grating equation and assuming the incident angle is fixed. We

obtain

d- =- m (3.4)
dA dcoso*

We are generally more interested in the measure of linear dispersion, which tells us how

widely spaced the different wavelengths are at the focal plane of detection. The more
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Figure 3.2: Cross-section diagram of grating and angles associated with it.
ca is the angle of incidence of the light, 0 is the blaze angle, fi is the angle of
diffraction, and d is the grating period. 19 (fig/gratingeq eps>

widely spaced adjacent wavelengths are, the more easily we can distiguish between

them. This gives us an idea as to the resolution of the spectrometer. To calculate

the linear dispersion, we multiply the angular dispersion with the focal length of the

spectrometer.

dx df3(5
dIA dA~

A spectrometer can be used in order to increase the accuracy of pulse characteri-

zation measurements over those made with an autocorrelator alone. A fairly accurate

estimate of the pulse length can be made by first assuming the pulse is transform lim-

ited. This statement means that the Fourier transform of the real portion of the E field

is the same as the Fourier transform of the complex E field of the pulse. Transform-

limited also implies that no chirp exists for the pulse. In order to determine when a

pulse is transform-limited, we consider the time-bandwidth product Aw/At. However,

44



this relation is different for different pulse shapes (gaussian, sech, etc.). The tradi-

tional method of determining if a pulse is transform limited is to make an estimate as

to the pulse shape (gassian, sech, etc), and then to find if the time-bandwidth product

is close to what it would be if it were transform-limited. If the time-bandwidth prod-

uct indicates that the pulse is near transform-limited, we can assume it is transform

limited. We can calculate the relation between the FWHM of an autocorrelation of a

pulse and the pulse length provided the pulse is transform-limited. This also requires

the assumption of a pulse shape. If the time-bandwidth product indicates that the

pulse is not transform-limited, we cannot calculate the relation between the FWHM

of its autocorrelation and the pulse length without knowing the extent of the chirp.

As a result, non-transform-limited pulse lengths are impossible to characterize us-

ing only an autocorrelator and a spectrometer. Table 3.1 shows the time-bandwidth

product and the relation between the pulse length and autocorrelation FWHM for a

few common pulse shapes.

Even if a spectrometer is added to the measurment, pulse characterization us-

ing autocorrelation obviously requires many assumptions, which may or may not be

correct. Furthermore, if the pulse is not transform-limited and has been severely

distorted, no reliable way of arriving at a measurement of pulse length using the

autocorrelation has been found. In order to solve all these problems, FROG was

developed to characterize ultrashort pulses in the femtosecond regime.

3.3 Frequency-Resolved Optical Gating

The idea of a spectrogram has been present in acoustics for a while before being

applied to the field of optical communications. 2 ' However, the significance was not yet
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Field Envelope Intensity Profile TFWHM Tac Spectral profile WFWHM TFWHMWFWHM

Gaussian e- TO 1 .7 77, 1. 4 147FWHM e 2 0.441
Sech sech (i) 1.763T, 1.5 4 3TFWHM sech (r 2T) 0.315

Table 3.1: Time Bandwidth product and autocorrelation FWHM for gaus-
sian and sech pulses.



clear until it was shown that the spectrogram of a pulse could be used to reconstruct its

intensity and phase." The spectrogram characterization technique was further refined

into the current FROG method as developed by Daniel Kane, Kenneth DeLong,

and Rick Trebino.8- 10 Since then, many different variations in FROG measurement

techniques have been developed.1 ' 12 22 2 3

The theory behind FROG is fairly simple. In order to completely characterize the

pulse under test, both time and spectral information must be measured simultane-

ously. A spectrogram of the pulse plots the pulse spectral content versus the pulse

temporal characteristics, as shown in Figure 3.3. To obtain a spectrogram, we first

gate the original pulse E(t) with some gating function g(t). This produces one slice in

time of the original pulse. We then take the spectrum of this slice in time. By varying

the delay of g(t) with respect to E(t), we can obtain the spectrum of each slice of

E(t). Plotting these slices in order, we obtain a plot of both the spectral content

and temporal content of the pulse. It is clear that the gating function will determine

the temporal and spatial resolution of the spectrogram, and thus the choice of g(t) is

very important. Different FROG techniques choose different gating functions. The

spectrogram is given by

00 2

S(w, T)= E(t)g(t - T)e-- t dt 2 (3.6)

With the spectrogram, we can completely determine the original pulse, save for an

absolute phase factor. This phase factor is not of much interest to us, though it is

useful in performing absolute frequency locking of ultrashort pulse lasers. In order

to determine the phase of the pulse from a FROG spectrogram, an iterative algorithm

is used. This process will be described in Section 3.3.3.
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3.3.1 Methods for Obtaining a Trace

Many different possible methods exist to acquire a spectrogram in the laboratory.

The easiest to implement is perhaps the second harmonic generation (SHG) FROG,

in which the spectrogram is obtained simply by observing the spectrum of the auto-

correlation of the pulse. In this case, the gating function is the pulse itself

oo 2

IFROG(W, T) f E(t)E(t - T)e-wdt . (3.7)

This results in a spectrogram that is very sensitive, but somewhat unintuitive because

the direction of time is unclear in the spectrograms from SHG FROG. This statement

means that it is impossible to tell (without other measurements) whether a pulse is

positively or negatively chirped due to the fact that the autocorrelation of the pulse is

used. Other FROG methods include PG (polarization gate) FROG, in which the gate

and pulse under test are polarized at 450 before being sent through a piece of fused

silica. SD (self-diffraction) FROG has a configuration in which the gate and original

pulses are sent through fused silica with the same polarization. TG (transient grating)

FROG splits the original pulse in three ways, using two of the signals to induce a

material grating through which the third pulse is diffracted. Finally, THG (third

harmonic generation) FROG uses a glass plate to induce a surface third harmonic

generation in response to the pulses. See Table 3.28 for a comparison of the different

types of FROG methods.

The challenge for any FROG method we choose to implement will be to adequately

resolve the pulses we are currently using in the laboratory. The system must be fairly

sensitive in order to observe low energy pulses with relatively small bandwidth. (For

example, if we consider a 2 ps pulse train at 10 mW with a repetition rate of 10 Gb/s,
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the average energy is lpJ and the pulse bandwidth is approximately 1.5nm.) These

requirements suggest that SHG FROG is worth investigating for picosecond pulse

characterization, since it is the most sensitive of the FROG pulse characterization

family.

3.3.2 Simulations of FROG Traces

In order to examine the output spectrogram from an SHG FROG pulse characteri-

zation setup, we can simulate several different cases based on unchirped and chirped

pulses with gaussian and sech envelope shapes. The results of these simulations are

shown in the following figures. As mentioned before, the SHG FROG pulse char-

acterization results in traces which are symmetric in time. Even so, we can easily

distinguish between a chirped pulse and a nonchirped pulse, as is clear from compar-

ing Figures 3.3 (an unchirped gaussian) and 3.4 (a gaussian with cubic phase). Both

figures show pulses with a FWHM of 2ps. We also show the FROG traces for an

unchirped hyperbolic secant pulse (Figure 3.5) and for a hyperbolic secant pulse with

cubic phase (Figure 3.6). Again, both traces are of pulses with a FWHM of 2ps.

Figure 3.3: Simulation of a SHG FROG trace taken of a gaussian pulse
with no chirp and a FWHM of 2ps. (fig/gaussnochirpfrog.eps)
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PG FROG SD FROG TG FROG THG FROG SHG FROG
Nonlinearity Sensitivity x (3) (3) x(3) x(3) x(3)

Singleshot sensitivity 1pJ 10pJ ~0.1pJ 0.03pJ 0.01pJ
Multishot sensitivity 100nJ ~100nJ 10nJ 3nJ 0.001nJ

Advantages Intuitive traces, Intuitive traces Intuitive traces, Very large bandwidth, Simple to build,
Automatic phase Sensitive, Sensitive Very sensitive

matching Background free
Disadvantages Requires polorizers Requires thin medium, Three beams Unintuitive traces Unintuitive traces

Not phase matched
Ambiguities - Relative phases of multiple Direction of time

pulses Relative phases of multiple
pulses

Trace f: E(t) IE(t - -) 12 e-iwtdt ff E 2 (t)E * (t - r)e-iidt Either PG or SD trace f E 2 (t)E(t - r)e-iwidt f: E(t)E(t - r)e-widt

Table 3.2: Summary of Different FROG Geometries 8



Figure 3.4: Simulation of a SHG FROG trace

with a cubic phase and a FWHM of 2ps.

2

1 -0 -08 --04 42 0 02 .41 8 0

Figure 3.5: Simulation of a SHG FROG trace t

no chirp and a FWHM of 2ps.

taken of a gaussian pulse
(fig/gausstripchirpfrog.eps)

aken of a sech pulse with a
(fig/sechnochirpfrog.eps)

3.3.3 Extracting Phase and Amplitude

As described previously, the measurement of pulse phase is impossible with traditional

measurement options such as the autocorrelation. With the FROG spectrogram,

however, an iterative pulse retrieval algorithm has been developed which is fairly

robust and general",13, 2 5,2 6 The FROG spectrogram problem is in fact identical to the

two-dimensional phase retrieval problem, which has been solved previously in image

processing applications .2-29 In only one dimension, it is impossible to retrieve the

phase of a signal from its magnitude. However, in two dimensions, enough information
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Figure 3.6: Simulation of a SHG FROG trace taken of a sech pulse with a

cubic phase and a FWHM of 2ps. (fig/sechtripchirpfrog.eps)

is provided that this is possible. The FROG algorithm is based on the method of

generalized projections, in which an initial guess is taken, and then constraints are

applied through an iterative process until the solution converges. In our case, we

are looking for the E(t) that would produce the FROG trace we have experimentally

measured, where

Esi,(t, T ) = E(t)g(t - T). (3.8)

And in the case of SHG FROG,

Esig(t, T) = E(t)E(t - T). (3.9)

The trial solution Esig must obey two constraints. First, Esig needs to match the

experimental data we have from the FROG trace. Second, Esig must be a physically

realizable product of some E(t) and E(t - T). One possible implementation of this

algorithm is as follows:

1. We choose a trial solution E(t).
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2. We form the trial solution Esig(t, T).

3. We find the Fourier transform, producing Eig(w, T).

4. We then apply the first constraint by replacing the magnitude of the trial solu-

tion with the magnitude of the experimental data:

E'ig (W, T) = [,w )IFROG (W, T) 2.IEsig (w, T)I
(3-10)

5. Next, we take the inverse Fourier transform of this, ending up with Ei(t, T).

6. We then take the projection of that onto E'(t)E'(t - T) by minimizing:

Z = I 1 IE', (t, T) - E'(t)E'(t - 2. (3.11)

This gives us a new trial solution E(t).

7. We repeat this process until our solution converges to a satisfactory degree,

where we define the convergence criteria as:

G =
N2 _1 [IFROG(W, T) - IEsig(W T)12] (3.12)

In this case, both IFROG and Eig are normalized to unity before G is computed.

In previous experiments on this subject, it was found that a value of G less than

0.0001 results in a retrieved field which is visually indistinguishable from the originally

measured field.2
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Chapter 4

Interferometric Pulse

Characterization Theory

Characterization of picosecond pulses is challenging due to small bandwidth and low

power. The challenge for the SHG FROG is to achieve enough resolution in the fre-

quency domain with such low power. Another method, using spectral interferometry,

may to overcome these difficulties.

This interferometric method, developed by Jean Debeau et. al.,7 extracts the

optical pulse phase using only an RF phase delay and an electro-optic modulator.

The sinusoidal drive signal to the modulator is at exactly half the frequency of the

pulse train. A variable time delay is included in the modulation signal path. A

diagram of the experimental setup of this method is shown in Figure 4.1. The result

is that each of the frequency components spaced by the repetition rate in the original

pulse train spectrum will mix up and down by half of the pulse train repetition rate

to new frequency components. By adjusting the variable time delay and measuring
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the new frequency components on an optical spectrum analyzer, we can extract the

spectral phase of the original frequency components. From the spectral phase, it is a

simple Fourier transform to obtain the temporal phase. As mentioned in Chapter 2,

EO
Optial 19- H odihtor

HF Geto 0

Or/2

Figure 4.1: Experimental setup for the measurement of optical pulses in the
picosecond regime using the spectral interferometric method as introduced
by Debeau. 7  (fig/specintsetup.eps)

a pulse can be represented as

E(z, w, t) = 8E(z, t)e-if"w--kz) (4.1

where E(z, t) is a slowly varying envelope. For analysis of this method, we assume

gaussian pulses in a pulse train with a repetition rate of T, = 1 = r We drop the

spatial dependence for simplicity and represent the pulse train as

_t2
E(t) = Ai-e2-2 * Z 6(t - kT,). (4.2)

k

To find the spectrum of this pulse train, we note that a convolution in time is equiv-

elent to a multiplication in frequency. Thus, we can take the Fourier transform of an

individual pulse and multiply that with the Fourier transform of the impulse train.
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The Fourier transform of the individual gaussian pulse is also a gaussian

r _t2 2 .2
FT Aine2r = Ain e 2 ,

and the Fourier transform of an impuse train is another impulse train

6(t - nT,)
n=-o

27r

Tr
(4.4)27rk6(u -- o)T

k=-o T

If we multiply the two Fourier transforms, we obtain the spectrum of the gaussian

pulse train, which is a series of spectral lines overlaid by a gaussian envelope.

2r -F-2r2
Ein (w) = Ai Tne T2r 6(W

k=-oo

27rk
Tr- (4.5)

A simulation of a pulse train of 15ps gaussian pulses at a repetition rate of 10GHz and

its corresponding spectrum is shown in Figure 4.2. We can simplify Equation (4.5)

by writing the amplitude and phase associated with each spectral line by Ek. We

also add a carrier frequency w0, since our pulse train is centered around a particular

frequency.

27rk
Ein(w) = Ek[w - (wo + )I.

k

(4.6)

More specifically, we write

Ek =-Ake-ilk (4.7)

where Ak is the amplitude and (Dk is the phase of the kth spectral line.

Let us now consider the setup of this pulse characterization method as described
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Figure 4.2: Example of a pulse train (top) and its spectrum (bottom). The
pulse train has a repetition rate of 10GHz, and the pulses have a FWHM of
15ps. (fig/puIsetrainandspectrum.eps)

in Figure 4.1. To analyze the result of this setup, we must take the pulse train created

by the optical pulse generator and pass it through the electro-optic modulator. We

then look at the spectral intensity at the output of the electro-optic modulator. Thus,

we are interested in the transfer function of an electro-optic modulator sinusoidally

driven at half the frequency of the input optical pulse train. A diagram of the electro-

optic modulator is shown in Figure 4.3. The modulator is simply an interferometor

with a phase delay on one arm. When the light enters the modulator, its power is

split into two halves. One half incurs only the phase shift due to propagation down

the length of that arm of the modulator. The other half experiences an additional

electro-optically induced phase shift which results in a differential phase delay of

e-i(t), where 0(t) is the modulation drive signal. The two halves are recombined at

the output of the modulator. From this, we see that the transfer function for the
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optical field in the electro-optic modulator takes the form

= T(t) = 1 + e-io(t) (4.8)

We will now calculate the output of the EO modulator in the spectral domain given

Figure 4.3: Diagram of an electro-optic modulator. Incoming light is split
into two arms; one arm allows the light to pass through without change while
the other arm induces a phase shift. The light is recombined at the output.
(fig/eomod.eps)

our setup. In our case, the modulation drive signal is

(t)= {Vmcos [ (t - )] + V} (4.9)

where V, is a function of the physics of the electro-optic modulator and indicates the

constant voltage at which the second arm incurs a 7r phase shift. In other words,

V, indicates the voltage at which the output of the modulator is at a null. Vm is

simply the amplitude of the modulation drive signal. Finally, V is a constant DC

bias voltage. Substituting this drive signal in Equation (4.8), we obtain

j-{Vm COS [wr (t-r)]+Vb

T(t) = 1 + e (4.10)

Let us assume that we bias the modulator at the null, which implies V = V,. Equa-

59



tion (4.10) then becomes

-V m.Cos

T(t) = 1 +e

= 1 Cos
IVP

[wr (t-T)]+7

2' tr]
(4.11)

(4.12)

For convenience, let us define

0'(t) = cos [Wi(t - T)].

We then factor out e- 2 and Equation (4.11) then becomes

T(t) = e-2 e -
.

(4.13)

Simplifying, we get

T(t) e-' 2i sin( 2 (4.14)

2 (0'(t)+ 7r) si ( )
2

If we assume the amplitude of #'(t) is small (Vm is less than 30% of V,), we can

approximate sin(1#'(t)) as simply -1'(t). Equation (4.14) then becomes

T(t) = e-s 2('t+)'t (4.15)

- e i (0'(t)+) 7VmCOS [ (t )

IrVm ro= cos [(t-T)l,
V. L2 J
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where m is a time-dependent phase. However, we have assumed that the amplitude

of the time-dependence of this phase 0'(t) is small compared to pi. If this is true, then

we can ignore the time-dependence of this phase. The intensity transfer function is

then

T(t) 12 = ('Vm ) Cos2 [ (t (4.16)

Note that in observing the intensity spectrum, the phase term m disappears. The

intensity transfer function is simply a raised cosine and is plotted in Figure 4.4, where

we have assumed T = 0, VM = 1, and Wr = 2pi * 10GHz.YP i

Figure 4.4: Plot of intensity transfer function of an electro-optic modulator

sinusoidally driven at 0. 5wr, where wr corresponds to a linear frequency of

10GHz, r is zero, and the amplitude 'V- is one. (fig/raisedcosine.eps)

The output electric field of the EO modulator in the spectral domain can be

written as

E0 o(w) = Em(w) * T(w), (4.17)
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where T(w) is the Fourier transform of Equation (4.15). Since T(t) is a sinusoidal

signal, T(w) is simply two delta functions. The convolution of the input spectrum

with delta functions simply means that the input spectral lines are shifted up by Q

and down by the same amount, and then the two shifted results are summed together.

Analytically, the Fourier transform of our field transfer function is

T(w) = V 6( - wr) + 6(w + wr) e 2. (4.18)

Substituting Equations (4.18) and (4.6) into Equation (4.17), we obtain

27rk __ [r,, 1 1
Et (w) = Ek6[w - (w + T] 2 -7m 2) + 6(w + W] e 2

(4.19)

2 m 7Frm E[ e 6[w - w, - (k - 0.5)w,] + 1j Eke- 'F'6[w - wo - (k + 0.5)w,]l.
k k

We can expand the summations in Equation (4.19)

M 7rVM i -r-Eut (w) = m Vm T... + Ek-le 26[w - wo - (k - 1.5)wr] (4.20)

+ Ekle T6[,w - wo - (k - 0.5)Wr]

+ Eke 2'6[w - wo - (k - 0.5)Wr]

+ Ekei 6[w -wo - (k + 0.5)Wrl

+ E e 6[W - w, - (k + 0.5)Wrl

+ Ek+ 6 6[w - w, - (k + 1.5)Wrl + ...
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It is clear that we can reorganize Equation (4.20) into a single summation

E0 .t (w) - L B(k, T) 6 [W - W,,- (k - 0.5)w,],2 V,

where

B(k, T) Eke-"r + Ek+le .

Recalling Equation (4.7), we can rewrite B(k, T) as

B(k, T) = AkZe-'k+2rT) + Ak+1e-i(*+1-T).

We next wish to calculate the intensity and phase of East. The intensity is

u C(k, T)6[W - Wo - (k - 0.5)wr],
k

where

C(k, T) = B(k,T|2 = |Ake-i+r) + Ak+1e 2.) 2

Since m was only a phase term, it does not show up in the intensity equation. We

proceed to simplify Equation (4.25) further.

JB(k, T) 2 = IAk cos(Iv4 + Wr - iAk sin(4Ik + Wr)2 2

+ Ak+1 cos(Ck+1 - rT) - iAk+1 sin(@1 k+1 - -T) 2
2 2

= (Ak cOs(Dk + T) + Ak+1 cos( 4 k+1 -- T)) 2
+ (2

+ (Ak Sin((Dk + WrT) ± Ak±1 Sinl(4bk± -r T))

(4.26)
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Multiplying out, we obtain

A O'Dk+Wr 7)+'+ O(D Wr )+AWr W)CS, r
Ak cos2 (k + )+AZ+ 1 cos(-k1- +2AkAk+1 COs(Ik + -T) cos(k+1 - -T)2 2 22

+A2 sin2 ('Dh+ rT)+A2+ 1 sin(k+_1 T) +2AkAk+1 sin( T+ r) sin(4k+1 rT).
2 2 5'l~±2 2

(4.27)

If we regroup and simplify using trigonometric identities, we finally obtain

A 2 2 r ((D~l U)
Ak + Ak+ 1 + 2AkAk+1 COs((Dk +-T - ( -T))

A + 2k+ Ak~1 ± 2AkAk±1 C05(WrT ± (Dk - (4.28)-

We add a constant phase term wrTo to provide a reference for our measurements:

C(k, T) = Ak + AZ+1 + 2AkAk+1 cos(wr(T - To) + (k - (k+l). (4.29)

Finally, we can factor out a negative sign from within the argument of the cosine

function since cosine is a symmetric function.

C(kk, ) A + A + 2AkAk+l cos(wr(T, - T) + (k+1 - k) (4.30)

The phase may also be calculated to be

(4.31)bout (k, T) = Wr (To - T) + (k+1 - k.

We see then that lout is the output spectral intensity, C(k, T) is the intensity of the

kth output spectral line, and o0,t(k, T) is the spectral phase of the kth output spectral

line. We also recall that (k+1 and (k are the spectral phases of the k + 1 and the kth
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input spectral lines, respectively. Finally, Ak and Ak+1 are the spectral intensities

of the k + 1 and the kth input spectral lines, respectively. The final equations are

gathered together below for clarity:

27k
Ei, () = E [w - (w,, + Tr )], where (4.32)

k

Ek = Ake-i)k (4.33)

Iout = 1EOutI 2 = C(k, T)6[w - WO - (k - 0.5)wr], where (4.34)

C(k, T) = A + AZ+1 + 2AkAk+1 cos(w(To - T) + @k+1 - 'k) (4.35)

)out (k, T) = Wr(To - T) + (k+1 - k (4.36)

An intuitive explanation of what is happening is that the spectral lines of the initial

field Ei(w) are mixed up and down to form the spectral lines of the output field

E0 ut(w). Each of the new spectral lines are formed from two adjacent initial spectral

lines, and thus contain information about the relative phases between those the two

initial spectral lines. By using a time-delay T which adjusts how much of the power

from a spectral line will mix up and how much will mix down, we can extract this

phase difference between the initial spectral lines. Let us examine this process in

more detail.

In order to completely characterize a pulse, we must measure the amplitude and

phase of the original pulse train, Ein(t). Using the spectral interferometric technique,

we can obtain the amplitude and phase of the spectrum of the original pulse train

Ei,(w). Complete characterization of the pulse's temporal amplitude and phase is

obtained by performing a Fourier transform. From Equations (4.32)- (4.36), we see

that in order to obtain the spectral intensity and phase of the original pulse, we
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must extract Ak and (Dk for all values of k. To do this, we first use the optical

spectrum analyzer shown in Figure 4.1 to measure the output spectral intensity. An

example of an output spectral intensity is shown in Figure 4.5, where the dotted

lines represent the spectral lines arising from the modulation solid lines represent the

original pulse train spectral lines. This gives us the ability to measure C(k, T), which

is the intensities for the kth modulation spectral lines (dotted lines).

.k=O

k=1

k=- k=0

I I
I I

I I I kI

. I II.

(I)

Figure 4.5: Diagram of an example output spectrum from the setup in
Figure 4.1. The solid lines indicate the original pulse spectrum E" (W) and
the dashed lines indicate the modulated pulse spectrum. (fig/outputdiagram.eps)

We first consider the definition of the reference phase wrTo. The definition of

T, will correspond to a 4Dw, which we have chosen as our reference. If we assume

a symmetric input pulse spectrum, one way of defining <D% is as the average of 1)

and 4b_ 1 . The time delay T, that corresponds to this is the T measured when the

modulated spectral lines C(O, T) and C(-1, T) are equal. Let us write the equations

66



for C(0, r) and C(-1, r) from Equation (4.35).

C(k= 0, T) =A2 + A2 + 2A2A2 cos (w,(ro - T) + 41 - 15o)

C(k = -1, T) =A 2
1 + A2 + 2A 2

1A2 COS (W,(To - T) + 4o - 4_1)

(4.37)

(4.38)

If we assume we have adjusted r to To and C(0, T) is therefore equal to C(-1, T), we

can write

C(k = 0, To) = C(k = -1, TO) (4.39)

and

A + AAi COS ((D - 4)=

A2 1 + AA + 2A 1A cos ( - _) (4.40)

Since we have assumed a symmetric input spectrum, A1 = A_1 , and Equation (4.40)

becomes

(4.41)

Solving for 4bo, we see that

(4.42)
2

However, we can also assume any reference phase we wish. We can also choose not

to explicity choose a reference phase and simply obtain the phase within a constant

unknown phase factor by disregarding wrTo in our equations.
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Next, we proceed to extract the spectral phase of another spectral line of our

original pulse train. Let us find the phase #44k=1. To do this, we first adjust T until we

see the k = 0 dotted line (representing the output spectral lines) in Figure 4.5 reach

a maximum. At this point, we know that Equation (4.35) is

C(k = 0, r) = A2 + A2 + 2AOA 1, (4.43)

with

cos(w,(To - T) + (D1 - (O) = 1 (4.44)

We know the value of T, from measuring it earlier, and we also know the value of T

from having adjusted it to reach this point. Since u), is also known, we can solve for

0, 27, 47r,. o = W,(T - T) + 41 - 4O (4.45)

(1 - (O = 0 - Wr(To - T). (4.46)

Since we also know 1o from having set that as our reference, we have therefore

extracted the spectral phase of our initial field for k = 1. By repeating this process

for all values of k, we can extract the spectral phase for every spectral line of Ei,(w).

Finally, having obtained (Jk for all k, we can use the Fourier Transform to calculate

the temporal phase of our pulse.

There are several advantages to the use of spectral interferometry for the mea-

surement of picosecond pulses. First of all, the resolution needed for measuring the
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separate spectral lines is on the order of 0.01nm, which is achievable at the wave-

lengths being used (1550nm) more easily than at the second harmonic wavelengths

(775nm). This resolution is based on the pulse width under investigation. Our inter-

est lies in picosecond pulses, which have a bandwidth of roughly 1.5nm. As a result,

we need a resolution of 0.01nm to give us a respectable 150 points for our measure-

ment. Secondly, our high repetition rates (10GHz) and picosecond pulse lengths give

us a reasonable number of spectral lines under the envelope (about 40 lines). This

statement means that we will have a fairly accurate measurement of the chirp ac-

cross a pulse. Finally, this interferometric method is non-iterative, and thus requires

less processing than the previously discussed FROG method. However, one major

challenge with this method is that the pulse-to-pulse coherency of the pulse train

must be high. If the phase shifts from pulse to pulse, the resulting spectral lines

are not stable enough for measurement. This limits us severely in the optical pulse

sources we are able to use. Harmonically mode-locked fiber lasers do not have a high

pulse-to-pulse coherency between adjacent pulses due to their construction. Instead,

we must rely on injection controlled gain-switched DFB (distributed feedback) laser

diodes or pulse-carving and compression.
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Chapter 5

Pulse Characterization Experiment

and Analysis

Both SHG FROG and the spectral interferometric method were investigated, though

due to time and equipment constraints, the spectral interferometric method was the

focus of this thesis. The setup for the spectral inteferometric method is shown again

in Figure 5.1. We use an optical pulse source to generate a pulse train at a repetition

Optafr 2il EO

Sy Gmerato rd 
2tor 4

4,44',' 4

Figure 5.1: Setup for the spectral interferometric method of pulse charac-
terization. (fig/specintsetup.eps)
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rate w,. We then use an electro-optic modulator to modulate this pulse train with

a sinusoidal modulation at half wr and include an adjustable RF time delay T. As

shown in the previous chapter, this time delay allows us to vary the power split in the

modulated frequency lines due to spectral interference between the carrier frequency

lines.

Let us first discuss the experimental setup for the characterization part of this

experiment. We will discuss pulse sources in later sections of this chapter. The

characterization experiment shown in Figure 5.1 relies on using an electro-optic mod-

ulator to modulate the pulse train of interest. We have developed the theory in

Chapter 4 based on the use of a single-drive EO modulator. In this analysis, we

assumed the modulation is applied only to a single arm of the modulator. In this

configuration, the optical test signal experiences both phase-modulation as well as

amplitude modulation. If our modulation is small, we can neglect this phase mod-

ulation. In Chapter 4, we assumed we can ignore this phase modulation based on

our assumption that the RF drive voltage Vmr will be less than 0.3V,. For operating

conditions under which this assumption is not valid, a dual-drive modulator may be

used. Dual-drive modulators apply only amplitude modulation to the input signal.

With dual-drive modulators, both arms of the modulator are modulated an equal but

opposite amount (Figure 5.2). For dual drive modulators, it is easy to see that only

amplitude modulation will occur.

Tdual (t) e I(t) + e-i((t)+Vb), (5.1)
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where V is a constant bias voltage. If we bias at the null, we obtain

Tdua (t) = eio(t) - ei(5.2)

= 2e6 sin(<p(t)). (5.3)

Thus, using a dual-drive modulator should increase the accuracy of our results, since

pure amplitude modulation can be achieved without any undesired phase modulation.

Figure 5.2: Diagram of a dual-drive modulator. Both arms are modulated
an equal but opposite amount. (fig/emoddual.eps)

To calibrate a dual drive modulator such that the arms of the modulator are

modulated exactly 180 degrees out of phase, we use a single synthesizer to generate

the same modulation signal for both arms. Then, we put a phase delay on one arm of

the modulator. With the modulation on, we can adjust the phase delay such that the

modulation is balanced (symmetric). This corresponds to the arms of the dual-drive

modulator being modulated exactly out of phase.

We also require a fairly accurate RF time-delay in order to adjust how the power

in the carrier frequency lines are split into the modulated frequency lines. We use

a phase delay to which we attach an accurate micrometer in order to read off the
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length changes. The lengths we read off this micrometer can be directly converted to

a corresponding phase shift. In order to calibrate this RF time delay, we can build a

simple interferometer with one arm containing the RF time delay and the other arm

simply containing a length of RF cable (Figure 5.3a). We then pass the two arms

into a mixer and measure the voltage. By adjusting the time delay until we read

the minimum voltage and then adjusting the time delay until we read the maximum

voltage, we can find how the phase shift of the time delay corresponds to the length

reading of the micrometer. Another method is to use the signal into the RF time

delay to trigger a fast sampling oscilloscope, and observing the signal out of the RF

time delay on the oscilloscope (Figure 5.3b). Using both methods, we verified that

each mil of the time delay corresponds to one radian of phase shift at 10GHz with an

error of +/ - 0.02 radians.

-3dB

-3dB 
V_ ~

synthesizer

trigger
3dS

- ds OsciLZosC pe

synthesizer sgnal

(b)

Figure 5.3: Experimental setup for interferometric characterization of the
RF time delay. Diagram (a) shows the voltage amplitude technique and
diagram (b) shows the phase measurement method. (fig/rfinter.eps)
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The final piece of equipment shown in Figure (5.1) is a high-resolution optical

spectrum analyzer. The resolution needed for the spectrum analyzer depends mainly

on the repetition rate of the pulse train of interest. A repetition rate of 20GHz corre-

sponds to spectral line spacings of 20GHz, or 0.16nm. If the resolution of our optical

spectrum analyzer is 0.01nm, we obtain 16 points for each spectral line. The band-

width of our pulse train divided by the repetition rate of the pulse train determines

the number of spectral lines we see. A pulse train of 2ps FWHM pulses corresponds

to a bandwidth of 221GHz, or 1.77nm. For a 20GHz repetition rate, this means we

will see approximately 10 spectral lines. If we decrease our repetition rate to 10GHz,

we will see approximately 20 spectral lines.

5.1 Measurement Methodology

We have developed two methods to gather data for this characterization technique.

The first was described at the end of Chapter 4. Using this method, we first minimize

the output spectral line of interest (C(k, T)) and measure the time delay corresponding

to that point. We then maximize the line of interest and measure the time delay

corresponding to that point. Each of these points should give us a measurement of

<IDk+1 - Dk. We can repeat this for each of the k lines in the output spectral intensity.

The second method involves adjusting T to a known location and then saving the

output spectrum at that particular T. We repeat this for several measurements of T

(in this particular case, we used 13 measurements). Then, we use a fitting program to

fit each of the k spectral lines to the expected behavior. This technique should result

in a more accurate measurement and give us a much clearer estimation of the error

in the measurement. Furthermore, as the spectral lines increase or as we analyze
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shorter and shorter pulses, it becomes more and more difficult and time-consuming

to measure each spectral line by hand. A fitting program allows us to quickly arrive

at a measurement of the phase.

5.2 Verification and Calibration

We first wish to examine this pulse characterization method using the simplest pulse

source available, in order to verify that the method works and to calibrate our setup.

When we have verified that the method works as we expect, we can then move

on to examine other optical pulse sources which are more applicable to real-world

communication networks.

5.2.1 Simple Optical Pulse Source

We choose to use a continuous wave (CW) source amplitude modulated at 20GHz to

obtain a sinusoid on top of the carrier freuqency. We then use the spectral interfero-

metric method to measure the phase of this sinusoid (within a constant phase factor).

Then, we insert a length of fiber after our pulse source. The group velocity dispersion

effects from this length of fiber should cause a phase shift between the different modes

of the sinusoid which should be observable with our method. Figure 5.4 shows the

experimental setup for generating the sinusoid.

Let us examine our amplitude modulated input test signal. We have CW light at

1552nm passing through an EO modulator which is modulated at 20GHz while biased

at quadrature. At quadrature, the small signal response of the amplitude modulator

is linear. Thus, in the time domain, we have a carrier at frequency w, on top of a
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Figure 5.4: Setup for the generation of a sinusoid modulated wave on top
of a carrier. HPTL is an HP tunable laser, OSA is the optical spectrum
analyzer, BPF is a bandpass filter, and EOM is the electro-optic modulator.
(fig/sinesource.eps)

sinusoid at the modulation frequency w,:

Ein(t) e-iWo"t( + COS(Wrt)) (5.4)

-iwot(1 + eiwrt + 6 iwrt)

- iwot + e-i(wowrW)t + e-i(Wo,+wr)t.

Propagation through fiber is determined by the propagation constant /3, which is

frequency dependent. From Chapter 2, we recall that we can expand # in a Taylor

series

O(w) = 00 + 01(u - wo) + 10 2 (w - wo)2 + (5.5)
2

As a wave is propagated through fiber of length L, each frequency w is multiplied by

ei')L. For our input pulse train, we have three frequency components: one at w0 ,
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one at w, + wr and one at wo - w, (Figure 5.5). Thus, as this wave propagates down

a length of fiber L, it becomes

E (t) = ei(!oL-wot) + eoL1wrL+ 2 L)-Zo-Wr)t oL+I3iwrL+ -0 2 WL)-i(wo+Wr)t

(5.6)

We can pull out the common term ei(foL):

E,(t) ei(3 L) (eiwot + ei(-1WrL+ f#2wL)-i(wo-wr)t i(f1WrL+±32wL)-i(Wo+wr)t

(5.7)

Let us take a look at the phases of the separate frequency lines. The frequency line

at w,, + wr is our k = 1 line, and the frequency line at wo - wr is our k = -1 line.

Thus, the phase of our k = 1 line should be

k = 0

k = 1 k = 1

O-wr()Wo %o+Wr (0

Figure 5.5: Spectrum of our sinusoidally modulated wave. The modulator
is biased at quadrature.
frequency is w,.

The modulation frequency is wr and the carrier
(fig/sinespec.eps)

<Dk=1 = #oL + f1wrL + 1 22L
2 L
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and the phase of our k = -1 line should be

_ oL - fIWrL + 02W2 L, (5.9)

and the phase of our k = 0 line should be

bk=O = 300L. (5.10)

Figure 5.6 shows the measured optical spectrum of the amplitude modulated input

wave. Note that more than three spectral lines are present. The unexpected presence

of seven spectral lines is due to the fact that we are driving the amplitude modulator

into the nonlinear regime with a 23dBm large amplitude RF input power. In this

experiment, we will ignore these extra spectral lines, since they will not impact the

measurement and we wish to consider the simplest situation possible in order to verify

the correct operation of the spectral interferometric measurement method.

5.2.2 Pulse Characterization Experiment

Let us now consider what occurs when this optical wave passes through the spectral

interferometry electro optic modulator (EOM2 as shown in Figure 5.1. The full setup

of the sinusoidal characterization mesurement is shown in Figure 5.7. According to

Chapter 4, we should obtain a modulated pulse spectrum with intensities correspond-

ing to

C(k, T) = A + A 11 + 2 A Ak+1cos(T1 - 'k +Wro - WrT) (5.11)

= + Ak+ 1 + 2 AkAk+lcos(d&k+1,k + WrTo - WrET).
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Figure 5.6: Optical
length.

pulse spectrum taken immediately before the fiber
(fig/sineinputspec.eps)

where Tr is simply a reference time delay setting. Thus, the phase difference between

C(k = 0, T) and C(k -1, T) is given by

d@1 - dc o = (4i - "o) - ('o - 4_1)

(/ 1wL + 1 2W L) - (31wL - I 2w L)
2 ~ 2 rL (2~ir r

(5.12)

Let us now consider the length of fiber necessary to add a -F

difference between the two modulated lines C(k = 0, T) and

that for single-mode fiber, #2 is approximately 20ps2 /km.

modulation frequency Wr is 27r x 20GHz. This corresponds

phase shift to the phase

C(k = -1,T). We know

We also know that our

to .126rad/ps. We wish
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Figure 5.7: Setup for the characterization of a sinusoidally modulated wave

on top of a carrier. We will characterize this source both with and without

the length of fiber. (fi/sinesetup.eps>

to solve Equation (5.12) for L.

r=#2 L (5.13)

L =9.9472km.

Thus, we need about 9.9472km of fiber to add a -F phase shift to the k = 0 and k = -I

modulated intensity lines. It is interesting to note that the phase shift between the

two modulated intensity lines depends only on the group velocity dispersion and is

independent of the dispersion.

We first observe the output modulated spectrum without the long SMF spool

shown in Figure 5.7. As expected, when we vary T, the amplitudes of the two modu-

lated spectral lines C(k = 0, T) and C(k = -1, r) vary together. This measurement
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implies that in the absence of a long fiber span in the system, there is zero phase

shift between the k = -1 and k = 0 frequency lines. This result is expected since

without a significant amount of fiber, the group velocity dispersion-length product

(/32L) termin Equation (5.13) is quite small. The intensities of the spectral lines

shown in Figure 5.5 also seem to be fairly stable. Figure 5.8 shows a plot of the spec-

trally interfered frequency components present at the output of EOM2 in Figure 5.7

without additional fiber in the setup. Note that the amplutude modulated spectral

components present at the input of EOM2 have been nulled out fairly well, and that

significant insertion loss is suffered through this modulator as a result of biasing at

the null. We take data both by hand and also using the fitting program we developed

-35 - - - -- - - -- - -

-40 - - - - -- - -- - . --- -

Z - 4 5 - - -- --- - - -- - - -. . . . . .- -. . . . . .-. .. .--. -.-. .-. .-- - -.- - - -

- 6 0 ..- - .--. .- -. .. . .- - --- -.-.-.-.-.-.-.- -t -55 -
0

-60-

-65.. . . .

1551.7 1551.8 1551.9 1552 1552.1 1552.2 1552.3
wavelength [nm]

Figure 5.8: Power spectral intensity plot of the output spectrum, with no
additional spool of fiber. WrT corresponds to approximately 2 radians for
this plot. (fig/outnofiber.eps)

in Section 5.1. Taking the data by hand, we find that for our k = -1 line, the mini-

mum spectral intensity occured when the RF time delay was set at 2.97mils and the
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maximum occured at when the RF time delay was set at 4.65mils. These micrometer

readings correspond to 5.94 radians and 9.3 radians at 20GHz, respectively. We solve

for 4o - 4)_. and find that it is about -6.05 radians. For our k = 0 line, we find

that the minimum spectral intensity occured when the RF time delay was set at 2.94

mils and the maximum occured at 4.63 mils. These measurements correspond to a

(D - 4o of -6.00 radians. We note that as expected, the k = 0 line and the k = -1

line are in phase when the long 2.26km SMF span is not included in the experimental

measurement system shown in Figure 5.7.

Taking the data using the fitting program described in Section 5.1, we find the

difference between the phase of our k = 0 line and our k = -1 line to be 0.155 radians.

To obtain this value, we first took 12 traces of the spectral intensity. Each trace

corresponded to a certain RF time delay measurement T and were taken at intervals

of T = 0.5mils from 0.00mils to 6.00mils. From each trace, we then extracted the

intensity of both the k = -1 line and the k = 0 line. We fit these data points to the

cosine function as given in Equation (5.11). This measurement differs from our hand

measurements of 0.05 radians by only 0.1 radians. This is within the error of finding

the minimum or maximum by hand. Figures 5.9 shows the fits for the k = -1 line

and the k = 0 line.

We next observe the output spectrum with 2.26km of fiber in the system. If a

7r phase shift between the k = -1 and k = 0 spectral components of our output

corresponds to 9.95km of fiber as shown in Equation (5.13), then 2.26km of fiber

should give us a 7r/4.4 phase shift. Figure 5.10 shows a plot of the modulated spectrum

with 2.26km of fiber in the system at WrT = 2rad. Taking the data by hand, we find

that for our k = -1 line, the minimum intensity occured at 3.04mils and the maximum

occured at 4.76mils. The minimum and the maximum time delay readings correspond
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Figure 5.9: Plot of (a) C(k = -1, r) and (b) C(k = 0, r) taken of the setup

with no additional fiber. The solid line is the fit and the crosses are the data

points. (fig/nofiberfit.eps)

to 6.08 radians and 9.52 radians at 20GHz, respectively. We solve for (o - 'IL 1 using

the experimentally measured parameters in Equation (5.11) and find that it is about

-6.23 radians. For our k = 0 line, we find that the intensity minimum occured at 2.39

mils and the maximum occured at 3.92 mils. This result corresponds to a 41 - (o

of -4.74 radians at 20GHz. This indicates that the phase difference between the two

modulated spectral lines is about 1.49 radians. The phase difference between the

k = -1 and k = 0 components measured by hand for the experimental setup without

the 2.26km of SMF fiber was about 0.05. We expect the phase difference between

the setup with fiber and the setup without fiber to be near 7r/4.4. The difference

we measured by hand is 1.44 radians, which is about twice what we expected. Such

an error is most likely due to the bias drift in the spectral interferometry modulator.

Hand measurements are affected more by this drift than measurements taken with the

fitting program, since the length of time needed to take the measurements accurately

by hand is much longer than that needed to take the measurements using the program.
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Figure 5.10: Power spectral intensity plot of the output spectrum, with

2.26km of fiber in the system. WrT corresponds to approximately 2 radians

for this plot. (fig/outfiber eps)

Taking the data using the fitting program as described in Section 5.1, we find

the difference between the phase of our k = 0 line and our k = -1 line to be about

0.789 radians. This differs from our hand calculation by about .701 radians, which

corresponds to about 0.35 mils. This is within the error of our hand calculation since a

small drift in the bias of the spectral interferometry modulator can affect the location

of the maximum and minimum of our spectral lines. We also expect the difference

between the phase calculated for the setup with the fiber and the setup without the

fiber to differ by roughly 7r/4.4. We obtain a difference of 0.633, which differs from

the expected value of 0.714 by 0.08 radians. This difference corresponds to 0.04 mils,

which is within the error of our measurement. Our experiment, when measured using

our data fitting program, coincides well with theory. Figures 5.11 shows the fits for

the k -1 line and the k = 0 line.
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Figure 5.11: Plot of (a) C(k = -1,r) and (b) C(k = 0,r) taken of the

setup with 2.6km additional fiber. The solid line is the fit and the crosses

are the data points. (fig/fiberfiteps)

We also observed a 10km fiber spool in the system. It was fairly clear that the

modulated lines were about a 7r phase shift from each other. This 7r phase shift

remained relatively constant throughout the experiment. However, the spectral in-

tensity of both modes was varying significantly over short periods of time, making

it impossible to take useful data using either hand measurements or our data fitting

program. This variation affected the intensity of both modes equally. Thus, the 7r

phase shift remained constant. This suggests the fast variation of the spectral inten-

sity was due to variation in Wr1 L with time. We know that the index of fiber varies

at about 1.1 x 10- per degree Celcius. If our length is 1km, this corresponds to a

phase variation of about 4.6 radians. If our length is 10km, a variation of even a

tenth of a degree Celcius will give us a phase variation of about 4.6 radians - almost

a 27r phase shift. The temperature variations in the 10km spool do account for the

significant variation in the phase across both modes of our input pulse.
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5.3 Practical Optical Pulse Sources

Let us now consider the application of this spectral interferometric pulse character-

ization method to practical optical pulse sources as may be used in communication

networks. We observed the behavior of several optical pulse sources. First, a har-

monically mode-locked fiber laser was used as a short pulse source (Figure 5.12). The

laser produced 2ps pulses with a 12.5GHz repetition rate at a center wavelength of

1550nm. When observed with a high-resolution optical spectrum analyzer, however,

it was found that the spectrum of this harmonically mode-locked laser was not sta-

ble in intensity over even short periods of time. We believe this instability in the

optical spectrum is due to a lack of pulse-to-pulse coherency. In the harmonically

mode-locked laser we used, there are 34,060 pulses in the fiber ring at any one time.

Each pulse in the cavity experiences a slightly different phase and amplitude mod-

ulation due to the active harmonic mode-locking process in the fiber. As a result,

every 34, 060th pulse may be fairly similar, but the adjacent pulses at the output

of the fiber laser are not. The optical spectrum analyzer averages the pulse train

and this averaged pulse train spectrum we observe exhibits significant intensity vari-

ations due to the phase differences between adjacent pulses in the pulse train. For

our measurements to work, we need a source with a stable spectrum, such that when

we amplitude modulate the spectrum, we can make accurate measurements of the

intensities of the spectral lines.

To solve this spectral instability problem, we used a DFB (distributed feedback)

laser diode which emitts continuous wave (CW) light and an electro-optic modulator

pulse carver. Since we are applying amplitude modulation to a CW laser, the pulse-

to-pulse coherency should be high, and the spectrum should be fairly stable. Typical
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Figure 5.12: Setup for the spectral interferometric method of pulse
characterization using harmonically mode-locked fiber laser at 1550nm.
(fig/specintsetup .eps)

DFB linewidths are on the order of 10 - 100MHz." This corresponds to a coherence

lengths of 31ns to 3.1ns, where we have arrived at a rough estimate of coherence

length by dividing 2/Aw. Figure 5.13 shows the setup for this experiment. We drive

the modulator with a 20GHz sinusoidal RF input such that we obtain 30ps pulses at

a repetition rate of 20GHz. Since this pulse source will only give us a few spectral

lines (due to the sinusoidal nature of the modulation), we wish to compress the pulses

and thus generate more spectral lines to further evaluate spectral interferometry as a

pulse characterization technique. This compression is done through the interaction of

self-phase modulation (SPM) and group-velocity dispersion as the pulse propagates

through a length of fiber with a given optical power. In our case, this pulse compressor

first amplifies our signal and then passes it through approximately one kilometer of

dispersion decreasing fiber to compress the pulses. Such compression is referred to

as soliton compression. For more details on soliton effect compression, please refer

to Agrawal, Section 6.4.15 After compression, this pulse train provides additional

spectral lines with which to perform the spectral interferometric measurement.
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Figure 5.13: Setup using pulse carving to obtain high pulse-to-pulse co-

herency. LD is the laser diode that outputs CW at 1552nm, EOM stands for

electro-optic modulator, and the bias control feedback is used to maintain

the EOM bias at the null. The EDFA is an erbium-doped fiber amplifier

and is necessary to saturate the pulse compressor. (fig/specintsetup2.eps)

We first perform this experiment with the pulse carving modulator biased at the

null. The output of the pulse carver modulator will still be approximately 30ps

FWHM pulses at a repetition rate of 20GHz, but there will be an amplitude modu-

lation on top of the pulses corresponding to 40GHz from our bias at the null. The

amplitude modulation should be small, since we are unable to increase the modula-

tion depth more than about 5dB because we are biasing the modulator at the null.

At the input to our pulse carver, the RF modulation power is only OdBm. The bias

of the pulse carver modulator walks off fairly quickly, so we use a bias control circuit

to maintain the bias. This bias control circuit adds a low frequency (1kHz) and low

amplitude (1OmVp.p) dither to our modulation signal. Using the modulator bias con-

trol circuit, we see that the performance of the pulse carver modulator is improved

because the amplitude variation of the spectral lines at the output of the pulse carver

is reduced to 2% - 5% of the spectral line amplitude.

This signal is next amplified by an erbium-doped fiber amplifier (EDFA) in or-
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der to saturate the amplifier within the pulse compressor. We include a bandpass

filter between the amplifier and pulse compressor to reduce the ASE (amplified spon-

taneous emission) from the amplifier. Observing the output of the EDFA, we find

that variation in the spectral lines has increased to 10% - 15% of the spectral line

amplitude. This variation is most likely due to the interaction of the dither on the

bias circuit with the EDFA. The next stage is the pulse compressor, which amplifies

our signal and then passes it through 1km of dispersion decreasing fiber to compress

the pulse. We did not model the effect of this pulse compressor on our signal. We

observe the output of our pulse compressor to include roughly twice the number of

lines at the input. We see 7 spectral lines at the output of this pulse compressor.

Next, we proceed to use this spectral interferometric method to analyze this pulse

train. The setup for this characterization is similar to that shown in Figure 5.7. We

bias the spectral interferometry modulator EOM2 at a null and modulate it at 10GHz

with an adjustable RF phase delay. We use the same modulator as we used with the

calibration experiment, but we drive only one arm. Thus, this data is for the single

arm modulation case. We do not use a bias circuit for this second modulator since

the dither on the modulation may affect the measurement. Figure 5.14 shows the

setup for this experiment.

Observing the output of the second modulator, we see that the undesired variation

of the spectral intensities is still about 10% - 15%. The bias of the second modulator

also has a tendency to drift in about a 5 minute time period. Furthermore, it seems

that certain carriers seem to have a greater variation in intensity than other carriers.

We take twelve traces of the optical spectrum analyzer, at T set at 0.5 mil intervals.

When we attempt to fit this data, however, it is clear that the fit is not very accurate.

A plot of the output spectral intensity is shown in Figure 5.15. The data and fits for
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Figure 5.14: Setup for the characterization using spectral interferometry

for the pulse carved and compressed pulse source. (fig/nullsinglesetup.eps)

the k = -2 line and the k = 0 line are shown in Figure 5.16.

Several significant sources of error exist in this measurement. First of all, the bias

for our spectral interferometry modulator EOM2 in Figure 5.14 modulation varies

over the course of our measurement. This detriment can be seen in the variation of

the carrier frequency intensities over the set of spectral intensity plots we collected.

However, in examining the behavior of the carrier spectral lines, it is clear that some

of the spectral lines are varying more than others. This suggests something more

than a simple bias control issue is occuring.

Another possibility is that the temperature fluctuation from the fiber in our sys-

tem is producing a fluctuating phase shift. Recall from the previous section our

calculation of the effect of temperature variation on the phase of a pulse propagating

through fiber. We calculated that a temperature change of one degree Celcius can
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Figure 5.15: Plot of output spectral intensity after passing through the

second modulator, for when r is set at about imil or 2radians. (fig/nullsingleout.eps)

lead to as much as a 1.5-r phase shift on a pulse train passing through a kilometer of

fiber. The pulse compressor we use in this setup contains roughly 1km of fiber and

is not temperature controlled. The process of compression through this dispersion

decreasing fiber is probably causing temperature changes which will alter the phase

of our pulse train of interest. If the temperature of this fiber fluctuates, the phase of

our pulse train will also fluctuate, which can account for some of the effects we see in

the modulated spectrum.

A third possible cause of error is that we are also driving the pulse characterization

modulator on only one arm, and we may be causing a significant phase modulation as

well as an amplitude modulation. However, we found that switching to a dual-drive

modulator did not improve the performance of the system. This corresponds well
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Figure 5.16: (a) shows the fit (solid line) and the data (crosses) for the
k = 0 line of the output spectrum C(k, r). (b) shows the fit (solid line) and
the data (crosses) for the k = -2 line of the output spectrum. (fig/fitnulldata.eps)

to theory, since we were only driving the modulator at about 3.6dBm, which is well

below the V, of this modulator. (The modulator V, is about 5V.)

From this analysis, it seems most likely that the temperature fluctuations in the

kilometer length of fiber was causing phase fluctuations in our pulse of interest and

making it impossible to measure the phase of our pulse train. It seems clear from

these experiments that this pulse characterization method has several disadvantages

which may make it rather impractical for use in actual communication networks.
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Chapter 6

Conclusions and Future Work

The development of shorter and shorter optical pulses for a variety of practical appli-

cations indicates a need for a robust method of optical pulse characterization. One

such application is that of optical communication networks. Most communication net-

works in use today are wavelength division multiplexing (WDM) networks. However,

optical time-division multiplexing (OTDM) networks have a variety of advantages

over WDM networks if several difficulties related to short optical pulse transmission

can be overcome. These difficulties include noise accumulation, group velocity disper-

sion, polarization dispersion, and material nonlinearities. Investigation and control of

such effects requires a robust and accurate method of measuring short pulses. Typ-

ical pulse length in OTDM systems is a few picoseconds in length, and thus we are

interested in methods for accurately characterizing picosecond pulses.

We have investigated several methods of optical pulse characterization in this the-

sis. We have shown that using only the optical autocorrelation and spectrum of a

pulse is insufficient to derive complete information about the phase or chirp of a pulse.
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We next investigated the various frequency-resolved optical gating (FROG) methods,

which were originally developed for femtosecond optical pulses. The challenges of

adapting the FROG technique to characterize picosecond pulses lies in the fact that

picosecond pulses have a much smaller bandwidth than femtosecond pulses, thus mak-

ing it difficult to acquire the resolution necessary for the FROG technique. Finally,

we investigated the spectral interferometric technique as presented by Debeau. 7 This

technique is designed for characterization of picosecond pulse lengths and uses com-

mon fiber-coupled equipment, making it simple to build and test. Furthermore, it

provides for a direct calculation of the phase, while the FROG method requires an

iterative algorithm. We have focused mainly on testing and characterizing this third

method due to time and equipment constraints.

Careful investigation of this third technique has revealed several disadvantages.

First of all, this method only works for a pulse source which has a high pulse-to-pulse

coherency. If the phase of the pulses in the pulse train varies from one pulse to the

next, we are unable to make any measurements. This is due to the fact that we are

interfering the spectral lines with each other. Significant phase variations over short

periods of time will show up as significant variations in the spectral intensities of the

interference spectrum, thus making it impossible to measure consistent data from one

moment to the next. Secondly, the method is sensitive to temperature changes. If

we propagate a pulse train with high pulse-to-pulse coherency through a significant

amount of fiber, temperature fluctuations of the fiber can also cause a significant

phase variation in our interfered spectrum. Both of these effects arise from the fact

that we are interfering the spectral lines of our pulse train with each other. This

interference will increase the sensitivity of our measurement to fluctuations in the

phase of our pulse train. For this measurement to work, we will need a pulse source
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with a high pulse-to-pulse coherency. Furthermore, we cannot propagate this pulse

through significant lengths of fiber without temperature control of the fiber lengths,

as that will cause fluctuations in the phase of the input spectral pulses. As a result,

it does not seem likely that this method will be useful for practical measurements of

pulses in optical communication networks.

However, there are several advantages to this method that can prove useful should

we need to characterize a well-behaved pulse source. First of all, the phase of a pulse

train can be determined in a direct manner without resorting to iterative algorithms.

Secondly, the setup is simple and consists of common fiber-coupled equipment, making

it easy to use. These advantages indicate that for characterizing well-behaved pulse

sources, the spectral interferometric pulse characterization method is superior to the

FROG method.

Future work should include continuing the investigation of pulse characterization

methods, in particular, the investigation of applying the FROG method to picosecond

pulses.
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Appendix A

Matlab Code for Fitting Spectral
Interferometric Data

function [Alin,C1,C2,dPhi, fvals] = phasecalc(PO, wO,
wpulse,specpulse, wall, pulseall, mils)
% This should derive the phase of the frequency components

% Inputs: PO is the power vector (column) for nonmodulated line

% wall is the matrix of w vectors. Each row corresponds

% to a tau measurement. should be wall(tau,spectrum)

% pulseall is the matrix of spectrum measurements. Each row

% corresponds to a a tau measurement

% mils is the tau measurmeent in mils

% First, we want to find the amplitudes of each of the k lines
N = 3; % N is the # of spectral lines; this should be odd.
[A,fi,f] = findA(wpulse,wO,specpulse,PO,N,20);

Alin = 10.^(A/10); % For dB

% We next want to find the peaks of the modulated spectral lines

Nmod = 7;

[ma, na] = size(wall);

Ck = zeros(ma,Nmod);

fk = zeros(ma,Nmod);
freq = zeros(ma, na);

for ii = 1:ma

[Ck(ii,:),fk(ii,:),freq(ii,:)1 =
findA(wall(ii,:)',wO,pulseall(ii,:)',PO,Nmod,10);

end;
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Cklin = 10.^(Ck./10);

% We also manually record the micrometer settings for each plot,

% and transform that to a phase tau

tau = 2*mils;

modlines = (Nmod+1)/2 -2;
center = (Nmod+1)/2;

Cknorm = Cklin;
C1 = zeros(1,modlines);
C2 = zeros(1,modlines);
dPhi = zeros(1,modlines);
fvals = zeros(1,modlines);

for ii = 1:(modlines)

xguess = [0 1 0];
k = ii*2+1;

[x, fval] =
fminsearch('cktau3',xguess,optimset('MaxFunEval',30000,...

'MaxIter',10000,'TolFun', 10^-12,'TolX',10^-12,...

'Display','iter'),tau,Cknorm(:,k)');

fvals(ii) = fval;
C1(ii) = x(1);
C2(ii) = x(2);

dPhi(ii) = x(3);

figure;

plot(tau, Cknorm(:,k)','x')

hold on;

t = linspace(0,12);

plot(t, C1(ii) + C2(ii)*cos(dPhi(ii)-t));
end;
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