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Abstract

Nonacoustic sensors such as the general electromagnetic motion sensor (GEMS),
the physiological microphone (P-Mic), and the electroglottograph (EGG) offer
multimodal approaches to speech processing and speaker and speech recognition. These
sensors provide measurements of functions of the glottal excitation and, more generally,
of the vocal tract articulator movements that are relatively immune to acoustic
disturbances and can supplement the acoustic speech waveform. This thesis describes an
approach to speech enhancement that exploits these nonacoustic sensors according to
their capability in representing specific speech characteristics in different frequency
bands. Frequency-domain sensor phase, as well as magnitude, is found to contribute to
signal enhancement. Testing involves the time-synchronous multi-sensor DARPA
Advanced Speech Encoding corpus collected in a variety of harsh acoustic noise
environments. The enhancement approach is illustrated with examples that indicate its
applicability as a pre-processor to low-rate vocoding and speaker authentication, and for
enhanced listening from degraded speech.
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Chatper 1: Introduction and Organization

Linear filtering-based algorithms for additive noise reduction include spectral
subtraction, Wiener filtering, and their adaptive renditions [NRC, 1989]. Nonlinear
techniques have also arisen, for example, wavelet-based noise reduction systems [Donaho
and Johnson, 1994] and suppression filters based on auditory models [Hanson and
Nandkumar, 1995]. Although promising, these methods suffer from a variety of
limitations such as requiring estimates of the speech spectrum and speech activity
detection from a noisy acoustic waveform, distortion of transient and modulation signal
components, and the lack of a phase estimation methodology.

In this thesis, we present an alternative approach to noise suppression that
capitalizes on recent developments in nonacoustic sensors that are relatively immune to
acoustic background noise, and thus provide the potential for robust measurement of
speech characteristics. Early work in this area involved the use of the general
electromagnetic motion sensor (GEMS) [Ng et al, 2000] [Burnett et al, 1999]. This thesis
effort focuses on the GEMS but also investigates the physiological microphone (P-Mic)
[Scanlon, 1998], and the electroglottograph (EGG) [Rothenberg, 1992]. These sensors
can directly measure functions of the speech glottal excitation and, to a lesser extent,
attributes of vocal tract articulator movements.

This thesis is divided into the five main chapters, chapters 2 - 6. Chapter 2 lays
the framework of this work. It formulates the enhancement problem of interest and
reviews a specific noise reduction algorithm based on an adaptive Wiener filter [Quatieri
and Dunn, 2002]. It also describes the GEMS, P-Mic and EGG nonacoustic sensors, as
well as the Lawrence Livermore Laboratory corpus and DARPA Advanced Speech
Encoding Pilot Speech Corpus recorded in a variety of harsh noise environments.
Chapter 3 presents an approach to speech activity detection based on different sensor
modalities. Chapter 4 explores the limitations of the baseline reduction algorithm
described in Chapter 2, and describes the affects of phase in segmented processing of
speech. Chapter 5 provides a multimodal frame-based speech spectral magnitude
enhancement scheme that utilizes the GEMS, P-Mic, and acoustic sensors in different
frequency bands. Chapter 6 develops a multimodal spectral phase estimate integrated
with the multi-band system of Chapter 5, and shows how it aids in speech enhancement
and applications such as speech encoding. Finally, in Chapter 7, we summarize and
discuss possible future research directions.
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Chapter 2: Background and Framework

This chapter provides background for the major topics to be covered in this thesis. It
begins with examining the characteristics of speech and discussing key differences
between different speech sounds. Next, it discusses properties of stationary or non-
stationary background noise and illustrates the detrimental effects of noise on speech and
intelligibility. This chapter then reviews algorithms that have been used for speech
enhancement, with an emphasis on a Wiener filter-based algorithm that had previously
been developed at Lincoln Laboratory. The chapter concludes by discussing the corpora
that were collected to conduct experiments that are discussed in subsequent chapters.

2.1 Speech

Speech is a very important part of everyday human life. It is essential for
communications, exchanging ideas, and interacting. In life threatening situations, being
able to understand speech can mean the difference between life and death. Much
research has been conducted on speech production and speech modeling which has led to
understanding of various speech sound classes. Two categories of speech that we shall
focus on throughout this work are voiced speech and unvoiced speech.

2.1.1 Voiced Speech

Voiced speech is speech that requires the use of the vocal folds. Typical
examples of voiced speech include vowels such as /a/, /A/ (as in "up"), /e/, /i/ (as in
"eve"), /I/ (as in "it"), /o/, /u/ (as in "boot"), and /U/ (as in "foot"), and voiced
consonants. Voiced consonants can further be divided into voiced fricatives such as /v/,
/z/, voiced affricates such as /d3/ (as in the "j" in "just"), voiced plosives such as a /d/,
/b/, Ig/, glides such as /w/ and /y/, liquids such as /r/ and /l/, and nasals such as /m/ and
/n/. Each of these subclasses of voiced speech are produced differently, yet they all share
some similarities. In all of these examples and all voiced speech in general, air passes
through the throat while the vocal folds vibrate, causing added excitation of the vocal
tract and resulting in a vibrant and harmonic sounding speech.

2.1.2 Unvoiced Speech

Unvoiced speech is speech that does not involve vocal fold vibration and
excitation. Typical examples of unvoiced speech include unvoiced fricatives such as /f/,
/s/, /f / (as in the "sh" in "shag"), and /0/ (as in the "th" in "thin"), whispers such as /h/,

unvoiced affricates such as /tf / (as in the "ch" in "choose"), and plosives such as /p/, /k/,
and /t/. In all these sounds, a constriction in the vocal tract causes a build up of air which,
when released, yields a "noisy" burst-like sound which is interpreted by humans as the
onset of the consonant. Although shorter in duration than many voiced vowels, these
unvoiced consonants are just as important, if not more, for speech intelligibility.
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2.2 Noise

Noise hinders speech intelligibility. This makes it difficult to for a human or a
machine to understand what is spoken and who spoke it. It is a very serious problem for
people who work in high-noise environments such as a jet, helicopter, factory, or
ambulance, and is also a factor in lower noise environments such as a crowded room with
interfering conversations. This section focuses on two main types of noise - stationary
noise and non-stationary noise.

2.2.1 Stationary Noises

The second order statistics of stationary noise does not change over time. Examples
of stationary noise that approximately meet this condition are fan and engine noise. Also
noise caused by a large number of conversations can often also be modeled as stationary
noise.

2.2.2 Non-stationary Noises

The second order statistics of non-stationary noise change over time, often quite
rapidly. Examples that meet this condition are very common and include gunfire, tank
tread sounds, car horns, and other sudden noises. In the tests we conducted non-
stationary noise was present in several of the environments - in particular the M2H tank
environment and the urban warfare environment which had severe of gunfire (see below
for further details of these environments). Often non-stationary and stationary noise is
present together. For example a person may be driving a car at a constant speed while
talking over a phone. In this case the car engine is a stationary noise source. If someone
honks a car horn or police car sounds its siren briefly, a non-stationary noise is briefly
introduced. Because of examples like this, often a challenge of real-world noise
suppression algorithms is to be able to suppress non-stationary and stationary noises that
are intermixed.

2.3 Noise Suppression

This section discusses suppression of noise and enhancement of speech. It begins
elaborating on the motivation for noise suppression. Then it continues by discussing
current methods employed to reduce noise, focusing on Wiener filtering. Then it
describes in detail a Wiener filter algorithm previously developed at Lincoln Laboratory.
It concludes by illuminating some of the issues that were focused on and resolved in
subsequent chapters of this thesis.

2.3.1 Motivation

Noise suppression is essential in speech processing tasks such as speech encoding
and speaker and speech recognition. Objectives of noise suppression algorithms include
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making speech or encoded speech more intelligible to humans and more recognizable by
machines. Traditionally, noise suppression of speech is accomplished in several stages.
First, the sound source of interest must be recorded. Usually this is done by means of
microphones that detect pressure of acoustic sounds. Consequently, when little acoustic
noise is present these microphones record primarily the speech signal of interest. When
background noise is present, however, both the desired speech and the background noise
are recorded, reducing the intelligibility of the speech signal. This addition of noise can
seriously affect tasks involving speech processing such as speaker identification and
speech encoding. Certain speech enhancement algorithms aim to mitigate the ill effects
of background noise and hopefully make speech more intelligible to both humans and
computers. Although these techniques show promise, no useful intelligibility gains have
been demonstrated on the degraded speech waveform itself, and limited intelligibility
gains have been seen on encoded speech. One possible reason for these limitations is the
inability of current suppression algorithms to capture fine temporal structure, either
because of temporal blurring of speech events or because no attempt is made to estimate
speech phase which contains important timing information, particularly in severe noise
conditions.

The objective of this thesis is to aid noise suppression algorithms based on an
acoustic signal by using non-air-acoustic measurements. A benefit of such an approach is
that non-air-acoustic sensors are, ideally, unaffected by acoustic background noise.

2.3.2 Current Noise Suppression Algorithms

Many current algorithms used for noise suppression involve linear filtering to
obtain a linear least squares estimate of the desired signal. Linear filtering algorithms for
additive noise reduction include spectral subtraction, Wiener filtering, and their adaptive
renditions [Ephraim and Malah, 1984] [Lim and Oppenhiem, 1979]. Because these
algorithms use averages of signal and noise spectra, they can distort transient and time-
varying speech components, such as plosive bursts, formant transitions, and vowel onsets
that are essential for maintaining or increasing intelligibility while suppressing noise.

More recently, many nonlinear techniques have arisen including wavelet-based
noise reduction systems that apply thresholding techniques to wavelet coefficients
[Donahue, 1994] [Pinter, 1996]. Other nonlinear filtering methods include Occam filters
based on data compression [Natarajan, 1995] and Teager and related quadratic energy-
based estimation algorithms [Fang and Atlas, 1995], [Jabloun and Cetin, 1999]. These
recent methods provide different approaches to preserving fine temporal structure of the
speech signal while suppressing additive noise. Although these nonlinear techniques
show promise, no useful intelligibility gains have been demonstrated.

Another approach to recovering the desired signal is to find a linear filter h[n]

such that the sequence £I[n]= y[n] * h[n] minimizes the expected value of (k[n] - x[n])2

(here .i[n] is an estimate of the clean speech signal, x[n] is the clean speech, and y[n] is
the noisy input speech). The solution to this optimization problem in the frequency
domain is given by
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W ()) = ()
Sw(0) + Sb(W)

which is referred to as the Wiener filter [NRC, 1989]. Another solution to this problem in
the time domain is referred to as a Kalman filter [Rhodes, 1971]. When the signals x[n]

and b[n] meet the conditions under which the Wiener filter is derived, i.e., uncorrelated
and stationary, then the Wiener filter can provide significant enhancement without severe
object or background distortion. Effectively, this estimate is a Linear Least-Squares
Estimate (LLSE) of the speech. To create a Wiener filter, the spectrum of the speech and
noise must be known, measured, or at least estimated. The required spectral densities can
be estimated by averaging over multiple frames when sample functions of x[n] and b[n]
are provided. Wiener filtering is optimal in the mean-square error sense if the speech and
noise are stationary. Typically, however, the signal components are nonstationary. When
the object, for example, is on order of a few milliseconds in duration, its spectrum is
difficult to measure, requiring an average to be essentially instantaneous.

A Kalman filter is very similar to a Wiener filter in that it also is designed to yield
a Linear Least-Squares Estimate of the spoken speech. The main difference between the
Wiener and Kalman filtering is that the Kalman filter relies on a measurement error
which is updated and used to obtain the desired signal estimate. Unlike a Wiener filter, it
does this estimation in the time domain.

2.3.3 Baseline Algorithm Description

As a starting point, an algorithm previously designed by the speech and
information technology group at Lincoln Laboratory was used as a baseline for work
involving this thesis [Quatieri and Dunn, 2002]. This algorithm implemented an
acoustic-based Wiener filter. It divided the acoustic speech input into overlapping
segments of 12 ms duration and conducted processing on each segment separately. Each
segment was windowed with a triangular window and offset by 2 ms from the previous
segment. The two main components of this processing are speech activity detection and
filtering.

Speech Activity Detection

Speech activity detection was used to improve adaptability and was used by the
filtering stage of the processing on each speech segment. The acoustic based speech
detector was a basic energy based detector. A block diagram of the detector is shown
below in figure 2.1. The detector operated by taking the input acoustic speech x(t) and
computing its short-time Fourier Transform (STFT), yielding a frequency domain
representation of the speech over each 12 ms window. Then it computed the energy of
each frequency component and summed over all frequencies, thus obtaining a measure
of the energy present in the acoustic signal for each 12 ms segment of speech. Finally,
this energy was compared to a threshold 3. If the energy of the segment is greater than
B, it is declared as containing speech. Otherwise, the segment is declared as containing
only noise.
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Figure 2.1: Block Diagram of the Speech Detector

In moderate noises this acoustic based speech activity detector was stable, not
erroneously flipping on and off in a contiguous speech or background region, and
accurate (when compared to the actual regions were speech was present). However,
when a large amount of noise is present (like that experienced in the cockpit of a jet
fighter, an Abrams tank, or even a very crowded room), the original Lincoln Laboratory
speech detector did not perform well: it was very unstable, flipping on and off constantly
in a contiguous speech or background region, and inaccurate (when compared side by
side to the actual speech waveform). These effects are important in themselves because
more accurate detection allows a greater flexibility to attenuate noise. For example, over
a large segment of no speech, the entire segment can be drastically attenuated thus
completely suppressing the noise -- or at least suppressing it much more than would be
able if speech detection were not possible. More generally however, the speech filtering
stage uses the detection results to attenuate speech spectral bands dominated by noise.
The baseline algorithm accomplished this by means of a Wiener filter.

Wiener Filtering

Wiener filtering is used to enhance speech segments and requires the use of the
detection described above. In this baseline algorithm, the noisy speech signal y[n] is
short-time processed at frame interval L samples and an estimate of the Wiener filter on
frame k - , is denoted by W(k - 1, w) . The background spectral density, S,(C), is

estimated by averaging spectra over a given background region. This averaging was one
aspect that required the use of speech detection (see above). Assuming that the clean
speech signal x[n] is nonstationary, one approach to obtaining an estimate of its time-

varying spectral density on the k 1h frame uses the Wiener filter W (k -1, W) to enhance
the current frame. This operation yields an enhanced clean speech spectral
estimate X(k,w)= W(k -1,co)Y(k,co) which can then be used to update the Wiener filter

for the next frame:

W (k, o) = IX(k,w)1
| X(k,w) 2 +aSb(w) (

where the parameter a has been added to control the degree of suppression.
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To slow down the rapid frame-to-frame movement of the object spectral density estimate,
temporal smoothing is applied to the spectrum in equation (1), thus modifying the Wiener
filter W(k, o)) (the final modified Wiener filter is given in equation 3 below). To avoid
blurring rapidly-varying and short-duration sounds with this temporal smoothing, the
time constant that controls the smoothing was made a time-varying parameter. In
particular, this time constant is selected to reflect the degree of stationarity of the
waveform whereby when the spectrum is changing rapidly, little temporal smoothing is
introduced because a near-instantaneous spectrum is required for the Wiener filter. On
the other hand, when the spectrum is stationary, as in regions without speech or in steady
object regions, an increased smoothing of the spectrum improves the spectral estimate
for the Wiener filter. Although this filter adaptation results in relatively more noise in
non-stationary regions, there is evidence that, perceptually, noise is masked by rapid
spectral changes and accentuated in otherwise stationary regions [Knagenhjelm and
Klein, 1995] [Moore, 1988].

The degree of stationarity is obtained through a spectral derivative defined for
each frame as the mean-squared difference between two consecutive short-time spectral
measurements of y[n]. This spectral derivative is used to control a time-varying time

constant that is denoted by r(k) . The resulting smooth object spectrum is given by

S (k, co) = r(k)S (k -1,w) +[1-r(k)] I X(k, 0w) 2 (2)

which is then used to make the final Wiener filter given by

S (k, w)
W(k,co)= X

S (k, w)+aS b(w))

The use of spectral change in the Wiener filter adaptation, as well as a number of
refinements to the adaptivity, including iterative re-filtering and background adaptation,
helps avoid blurring of temporal fine structure in rapidly-varying and short-duration
signals and improves performance with a changing background [Quatieri and Baxter,
1997]. The baseline noise-supression algorithm is illustrated in figure 2.2.

The inclusion of background adaptation requires that we perform speech activity
detection to determine which frames in a signal contain speech and background and
which frames contain background only. This was one reason that detection is so
important. Also, with the use of speech activity detection, we can further improve
adaptivity by providing distinct Wiener filters, one during background and one during
object. An object spectral estimate during background regions is derived, as well as a
distinct object spectral estimate during object regions, thus alleviating the need to re-
adapt across object/background boundaries. For each state, speech and background, we
have a distinct Wiener filter, given respectively by

13



s S(kw)

W,(k,s; a bk,)
S, + as b( k , w)

Wb(k,w)=
S,(k,W)

SX + aS b(k, w)

where S (k, o) and x, (k, w) are object estimates during the speech state and the

background state, and S,(k, w) is a continuously changing background spectral density

y(n)
-+STFT

Detection

Y(k co)

Detection

S11 (W)I

Spectral
Derivative

S,(k -1, co)

S,(k -1,c)+Sb (+w)

Sb (W)

Figure 2.2: Noise reduction algorithm based on spectral change

estimate. Time constants used in spectral smoothing to obtain object estimates are a
function of spectral change as in Equation (2). These refinements to the suppression
algorithm provide better control over the background level, and improved fidelity of the
object and background. Details of the refinements can be found in [Quatieri and Baxter,
1997] and [Quatieri and Dunn, 2002].
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2.4 Sensor descriptions

In this thesis, several sensors were examined for use in noise suppression and
detection. The goal of this was to find how they could be collectively used to aid speech
enhancement and speech coding. This section describes the several sensors used in
experiments and available in the collected corpora.

2.4.1 GEMS sensor

One of the non-air-acoustic sensors of interest in this thesis is the general
electromagnetic motion sensor. The general electromagnetic motion sensor (GEMS)
measures tissue movement during voiced speech, i.e., speech involving vocal chord
vibrations [Burnett et al, 1999]. An antenna is typically strapped or taped on the throat at
the laryngeral notch, but also can be attached at other facial locations. This sensor emits
an electromagnetic signal that penetrates the skin and reflects off the speech production
anatomy such as the tracheal wall, the vocal folds, or the vocal tract wall. Because
signals collected from a GEMS device depend on the tissue movement in the speech
production anatomy, it is relatively immune to degradation from external acoustic noise
sources.

During voiced speech, GEMS records quasi-periodic electromagnetic signals due
to vibration of the speech production anatomy. When placed at the larynx, quasi-periodic
measurements are found during vowels, nasals, and voiced consonants including prior to
the burst in voiced plosives, i.e., during voice bars. Single pulses have also been observed
very sporadically from the GEMS.

2.4.2 PMIC sensor

The physiological microphone (P-Mic) sensor was the second additional sensor
we examined and used. It is composed of a gel -filled chamber and a piezoelectric sensor
behind the chamber [Scanlon, 1998]. The liquid-filled chamber is put in contact with the
skin of a person and adapts to conform to the potentially very non-planar skin surface.
This allows the PMIC to be flush against the skin, in maximum contact. Like the GEMS
sensor, the P-Mic can be strapped or taped on various facial locations. The P-Mic at the
throat measures primarily vocal fold vibrations with quasi-periodic measurements similar
to that of GEMS. The P-Mic signal at the throat, however, contains some low-pass vocal
tract formants with bandwidths wider than normal. Other facial locations can provide
additional vocal tract characteristics. The P-mic located on the forehead, for example,
gives significant vocal tract information but is far less noise-immune than the P-Mic at
the throat in severe environments

The liquid filled chamber is designed to have poor coupling between ambient
background noise and the fluid-filled pad thus attenuating vibrations of unwanted
ambient background noise. Vibrations that permeate the liquid-filled chamber are
measured by the piezoelectric sensor that provides an output signal in response to applied

15



forces that are generated by movement, converting vibrations traveling through the
liquid-filled chamber into electrical signals. Since the liquid-filled chamber can be
designed to greatly attenuate acoustic noise, the piezoelectric accelerometer can produce
a signal that has much improved SNR over traditional acoustic based microphones such
as the B&K microphone (see below). In this case and in the rest of this thesis SNR is
defined as the ratio of the average energy of the speech waveform during speech divided
by the average energy of the background noisy during speech and non-speech.

2.4.3 EGG sensor

In the corpus collections, two electroglottograph (EGG) [Rothenberg, 1992]
sensor electrodes were taped on the left and right of the GEMS sensor. The EGG sensor
measures vocal fold vibrations by providing an electrical potential (of about one volt rms
and two-to-three megahertz) across the throat at the level of the larynx. With a pair of
gold-plated electrodes, the sensor measures the change of impedance over time. When
the vocal folds are closed, the impedance is decreased; when they are open, the
impedance is increased. Thus the opening and closing of the vocal folds, as present in
voiced speech is measured well by the EGG sensor. The EGG sensor, like the GEMS
sensor however cannot detect or measure unvoiced speech reliably.

2.4.4 Resident Microphones

There were several resident microphones that were used in the recordings that
were used by our algorithm. These microphones are the exact same ones that are used by
personal in the environments we simulated (see Corpus description below). For example,
one resident microphone was the stinger used by Blackhawk helicopter pilots. This was
used since one of the noise environments were experimented with was a Blackhawk
helicopter (see Corpus description below). All of the resident microphones were noise-
canceling microphones - ie they were designed to suppress some of the noise present in
the speech that they measured. Consequently, the noise level in the resident microphone
recording reduced and the speech sounded more intelligible. However, to accomplish
this noise reduction, several of the resident microphones destroyed some of the fine
temporal features that were of interest to us for speech processing and speaker
identification.

2.4.5 B&K microphone

The B&K microphone was a standard acoustic microphone that had no noise
suppression attributes. Thus it was very sensitive to acoustic noises. This made it fairly
worthless to use for speech processing in harsh environments. However, it was
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extensively used in testing since it provided a very poor and noisy signal that could be
used to test algorithm performance under extreme noise conditions.

2.5 Corpus and Environment Descriptions

There were two corpora used by tests in this thesis work. The first was one
collected by Lawrence Livermore National Laboratory. The second was collected by the
Arcon Corporation. This section describes both.

2.5.1 Lawrence Livermore National Laboratory Corpus

The Lawrence Livermore National Laboratory Corpus included 8 speakers
speaking several sentences. Every sentence was recorded using an acoustic microphone
and a GEMS sensor (both recorded simultaneously). Each sentence was spoken without
noise so noise had to be artificially added later for speech enhancement tests. The noise
added was made to mimic car engine noise. It was created from white noise that was
passed through a filter designed after the transfer function of a car engine. The Lawrence
Livermore National Laboratory corpus was the first corpus available to us. Consequently
many of our initial experiments used it.

2.5.2 Advanced Speech Encoding Corpus

The DARPA Advanced Speech Encoding (ASE) corpus was much more
extensive and realistic corpus than the Lawrence Livermore corpus. It was more realistic
than the Lawrence Livermore corpus because recordings were made of the speaker in a
sound room while noise from an real-life environment was being played. Consequently,
noise and the affects of noise were present in all the recordings just like they would be
when the sensors are used in a real-life situation and environment.

The ASE corpus was collected from ten male and ten female talkers. However,
initially only one male speaker was available. Consequently most of the tests performed
in this thesis use spoken phrases from this speaker. The rest of the speaker data became
available in the final month of this thesis, but due to time constraints experiments using
them were limited. Future work will focus on rerunning several experiments with these
other speakers. Scripted phonetic, word and sentence material along with conversational
material were generated by each talker. These materials were generated in nine different
acoustic noise environments. The corpus was collected in two sessions (on two different
days). Speakers were exposed to a variety of noise environments including both benign
and severe cases. Six of the environments represented three acoustic environments with
each presented at two intensity states. The presentation levels for these states differed by
40 dB SPL. Specific environments are quiet, office (56 dB), MCE (mobile command
enclosure, 79 dB), M2 Bradley Fighting Vehicle (74 dB and 114 dB), MOUT (military
operations in urban terrain, 73 dB and 113 dB), and a Blackhawk helicopter (70 dB and
110 dB). We call these environments (with L indicating low noise and H indicating
high noise) quiet, office, MCE, M2L, M2H, MOUTL, MOUTH, BHL and BHH,
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respectively. The M2H is the noisiest environment. Consequently, the M2H
environment was used in all experiments involving the ASE corpus in this thesis.

For each talker and environment, combination time-synchronous data was
collected from up to seven separate sensors. These sensors consisted of the previously
introduced GEMS, P-Mic and EGG. Data was also collected from two acoustic
microphones, a high quality B&K calibration microphone and an environment specific
"resident" microphone. The resident microphone was typically the first-order gradient
noise-cancellation microphone used for normal communications in that specific
environment.

One GEMS and one EGG were located near the talker's larynx. Careful attention
was given to tuning the GEMS sensor and in optimizing its placement. The GEMS was
considered the primary sensor during the corpus collection. A specific talker's neck and
shoulder geometry often required that tradeoffs be made in the placement of the
secondary sensors in order to optimize the GEMS signal. Two P-Mics were used, one
located in the vicinity of the talker's larynx and the other on the talker's forehead. Due to
the acoustic presentation levels of some of the noise environments, all talkers used the
acoustic protection systems typical of each specific noise environment. This normally
consisted of some type of communication headset that provided noise attenuation on the
order of 20 dB. Human subject procedures were followed carefully and noise exposure
was monitored.

The complete corpus consists of from eight to nine channels of data from
approximately twenty minutes of speech material in each of nine acoustic noise
environments from each of the twenty talkers. All sensor data was sampled at 48kHz,
though the non-acoustic data was downsampled to 16kHz for space considerations. The
full corpus takes approximately 70 GB of storage.

2.6 Summary

In this chapter we described much of the framework that the rest of this thesis
uses as a starting point. We discussed various noises that are important to consider,
aspects of speech, the corpora we used to conduct experiments on, the sensors used in
these corpora, and current algorithms that have been used for speech enhancement.
Specifically, a baseline speech enhancement algorithm based on a Wiener filter was
introduced. This baseline system will be a focus of chapters 3-5 and part of 6. Chapter 3
will focus on the detection stage of this algorithm. Chapters 4 and 5 will focus on the
spectral enhancement portion of the algorithm.
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Chapter 3: Speech Activity Detection

Speech detection is used to identify which segments of an audio waveform
contain speech (with noise) and which contain only noise. It is useful because it allows
one to process the different segments differently. Speech detection allows us to make the
distinction between such regions and thus allows more intelligent processing. For
example, in the baseline system (see chapter 2), it contributes to further adaptivity by
making it possible to create distinct Wiener filters, one during background and one during
speech.

This chapter discusses the issues of detection relevant to this thesis. It begins
with discussing traditional implementations and limitations of detection. Then it
examines the use of multiple sensors and how they can aid in detection. Next, it
discusses the multi-sensor speech class detector used in this thesis for detection. It then
concludes with applications of this detection scheme.

3.1 Traditional Implementation and Problems

Traditionally speech detection is performed using the audio waveform that is to be
processed and enhanced via noise suppression. There are numerous speech detectors that
have been developed [Sohn, Kim, Sung, 1999] [Haigh and Mason, 1993]. A common
one is a speech activity detector that computes the signal energy over a segment, and
decides that speech is present if the energy is above some threshold. Another variation of
such a detector performs a frequency band-energy computation and then makes decisions
whether speech is present over each band. This later detector was the one used in the
baseline system described in section 2.

Traditionally such detectors perform adequately in moderate noise levels: the
detection decision is fairly stable (here stability refers to how regularly the detection
decision flips on and off in a contiguous speech or background region) and accurate
(when compared to the actual regions were speech is present). However, when a large
amount of noise is present (as with cockpit noise in an airplane or a very crowded room),
these detectors do not perform well: they are unstable and inaccurate. The reason for this
is that when the noise energy becomes large enough, it dominates the speech energy and
thus unfavorably dominates the energy calculations that are used to make speech activity
decisions. These effects are important because more accurate detection allows for more
effective enhancement of segments of noise and thus less speech distortion

3.2 Multi-Sensor Approach

Our approach to circumventing the speech detection problem caused by noise in
speech waveforms is to use the waveforms from other sensors that are more immune to
acoustic noise (see chapter 2 on sensors). In particular, the GEMS sensor was shown to
be reliable at detecting voiced speech; yet it was poor at detecting unvoiced speech (see
Appendix A). This finding was further supported by the theory of how the GEMS sensor
operates (see chapter 2): the EM waves reflecting off the vocal folds and/or tracheal wall
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reliably record voiced sounds and only sporadically detect unvoiced sounds. Despite the
poor unvoiced speech detection performance, the GEMS detector was shown to improve
the MSE and SSNR of the processed speech (see Appendix A). This improved
performance motivated further experiments in detection. The next sensor examined was
the PMIC sensor. It was also shown to improve MSE and SSNR of processed speech,
however it is less accurate at detecting voiced speech since it is not entirely immune to
acoustic noise. Unlike the GEMS sensor, the PMIC sensor is capable of also detecting
unvoiced speech (see chapter 2 and Appendix A). Consequently, one solution to the
detection problem was essentially to use the accurate voiced speech detection available
via the GEMS sensor and then, given this voiced speech detection decision, use the PMIC
sensor waveform to create a decision on where the unvoiced speech regions occurred.
This was done for one detection scheme described in Appendix A.

The final detection scheme used in this work however used non-acoustic sensors
in conjunction with the noise canceling resident microphones from the ASE corpus to
create a speech class detector. A speech class detector is more advantageous than the
other detection schemes described above because it allows further adaptability by
allowing the creation of multiple Wiener filters tailored to each speech class.

3.3 Speech Class Detection

3.3.1 Motivation

After conducting detection experiments with the PMIC decision fused with the
GEMS decision, the resident microphone in the harsh ASE corpus environments was
once again examined for use in fused detection. A closer examination of the resident
microphone data was inspired by several factors. Firstly, unlike the PMIC and the other
sensors that tend to roll off before 4kHz, the resident microphone contains much energy
above 4kHz. Thus phones such as /s/, /f /, /tf /, and /0/ that contain large amounts of

energy often centered at a high frequency above 4kHz might be better detected by using
the resident microphone. Consequently the resident microphone data sampled at 16kHz
was examined with the hope that the upper bands of the16kHz resident microphone
signal would be able to help detection when fused with previous GEMS-based detectors.
All the other sensors were sampled at 8kHz because the speech encoder used in other
work conducted at Lincoln optimally operates on 8kHz signals.

Another reason for examining the resident microphone is that it has very poor
SNR below 500 Hz and thus is not able to accurately detect very low frequency voice
bars (voicing which precedes a voiced consonant) and some nasals; however it is able to
detect most voiced speech and all unvoiced speech. An example is shown in figure 3.1.
In the spectrogram in this figure and all following spectrograms, an analysis window of
25-ms and a frame length of 10-ms is used. In figure 3.1, the GEMS signal clearly gives
the presence of the low-frequency nasal /n/ and voice bar in the voiced plosive /d/ in the
word "dint". The resident-mic, while not revealing the nasal and voice bar, more clearly
shows the high-frequency burst energy in the /d/ and in the unvoiced plosive /t/. Thus, it
was thought that some form of the resident microphone detection decision could be used
in conjunction with the GEMS and PMIC detection decisions to create some form of
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speech class detection. As the experiments below demonstrate, this was indeed what was

accomplished.
(a)

Figure 3.1: Waveforms
(from the M2H ASE corpus
environment) and
spectrograms of the (a)
resident-mic signal and (b)
GEMS signal for the word

."dint". The GEMS signal
(b) shows the presence of the

nasal /n/ and voice bar in

Freq the initial voiced plosive
(Hz) /d/, while the resident-mic

shows the high-frequency
burst energy in the /d/ and

ims ... in the unvoiced plosive /t/.
Time (9)

3.3.2 Classes of Speech

The class-based detection that was created and explained further below was able

to separate a recording into 4 classes of speech: voiced, unvoiced, low-band, and

background. The background class contains all segments of a recording that contain no

spoken speech. Thus they are only noise and can be attenuated.
The unvoiced class contains all speech sounds that have no vocal fold vibrations.

Such sounds include many consonants such as /ff, /t/, /p/, /k/, /s/, /tJ/, and /f / (see chapter

2). These sounds tend to be more high frequency in nature and not harmonic. An

example of an unvoiced sound is the /f / in the "sh" (centered at about 5kHz) at the

beginning of the word "shag" shown in figure 3.2 below.
The low-band class contains only low frequency sounds that have little high

frequency content. This includes low frequency nasals such as /n/ and /m/ and voice

bars, voicing which precedes a voiced consonant such as a /b/, /g/, /d/, /z/, or /v/. These

voice bars are low frequency in content and are one of several cues used for proper

identification of consonants by humans and thus are very important for intelligibility. An

example of a voice bar is the voicing preceding the /b/ in "boot" shown in figure 3.3.

The voiced class of speech contains all segments of speech that involve use of vocal fold

vibrations, except for voice bar regions. Thus the voiced class includes both voiced

vowels, voiced consonants (including voiced fricatives and voiced plosives) such as a /z/

or /v/ or /b/ (but not the voice bar preceding a /b/), and liquids and glides such as /w/, /y/,

/r/, and /I/. An example of a voiced segment of speech is the /z/, /e/, ord/ in the word

"zed" which is shown in figure 3.4. As one may note from the figure, the voiced class of

speech contains sounds that contain both high frequency and low frequency components.

21



Frequency
(Hz)

Figure 3.2: Spec

.T', Time (s)

trogram Example of Unvoiced Regions in the Word "Shag"

* 0

Frequency
(Hz)

* Time (s)

Figure 3.3: Spectrogram Example of Low-Band Region: "b" Voice Bar in "Boot"

Frequency
(Hz)

.me.........em..
e * e e
C * e e

Time (s)

Figure 3.4: Spectrogram Example of Voiced Regions in the Word "Zed"
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The differences in all four classes are summarized in figure 3.5. As one can see,
voice bar regions contain only very low frequency speech content, unvoiced regions
contain only high frequency speech content, voiced regions contain both high and low
frequency speech content, and background regions contain no speech content.

Speech Class Contains High Frequency Contains Low Frequency
Speech Content? Speech Content?

Low-Band No Yes
Unvoiced Yes No

Voiced Yes Yes
Background No No

Figure 3.5: Differences in 5 speech classes (high and low frequency speech content)

3.3.3 Detection of Classes

The detection and distinction of each of the 4 classes is accomplished by using two
detectors, one which uses the GEMS waveform and one which uses the resident
microphone waveform, and then fusing the detection decisions.

The resident microphone-based detector uses a high pass version of the 16kHz
resident microphone data. It is high passed at a cutoff frequency of 3kHz because the
noise present in the resident microphone waveform starts to roll off at about 3kHz while
the speech does not roll off. Since several of the formants of voiced speech are above
3kHz, this high-passed resident microphone-based detector is able to detect voiced
speech in addition to high frequency unvoiced speech yet is not able to detect voice bars.
The GEMS based detector is able to detect voiced speech and the low-band speech such
as voice bars and nasals. In order to reduce misdetections, the resident microphone
decision is used only 200-ms on either side of a region detected by the GEMS based
detector, much like the PMIC and GEMS fused detector decision (see Appendix A). The
high SNR of the resident microphones above 3kHz allowed the 200-ms increase (from
the 100-ms used in the detectors of Appendix A) because this high SNR makes the
decisions more accurate. This is also beneficial because some consonants are more than
100-ms away from voicing (for example the /t/ in the word "boost"). A summary of the
GEMS and high-passed resident microphone detectors is shown in figure 3.6.

Detects Voice Bars? Detects Voiced Detects Unvoiced
Speech? Speech'?

GEMS Based Yes Yes No
Detector

High Pass Resident No Yes Yes
Mic Based Detector

Figure 3.6: GEMS and HP Resident Microphone Detection Ability
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Based on the information presented in figure 3.6, class based decisions are made by
using the detector decisions of the GEMS and high pass resident microphone based
detectors. Regions that the GEMS detected as containing speech and the high pass
resident microphone did not are labeled as a voice bar region. Regions that both detected
as containing speech are labeled as a voiced speech region. Regions that the high pass
resident microphone detected as containing speech but the GEMS did not are labeled as
unvoiced speech regions. Regions that neither detector identified as containing speech
are labeled background noise regions.

3.3.4 Data

Since Segmental SNRs and MSE measurements were once again not possible to
compute with the ASE corpus (since no clean speech existed for comparison), we were
forced to examine individual detection decisions of the GEMS and high-pass resident
microphone detectors. A total of 61 different utterances were examined for accuracy. An
example is the word "dint" which is shown below in figure 3.7. As one can see from the
figure, the resulting detections are stable (not flipping on and off during contiguous
segments of speech or background) and accurate (not mislabeling speech as background
or background as speech) over the high band and low band of each sensor. The low
band of the GEMS detects the voice bar preceding the /d/ in "dint" while the resident
microphone does not at all. The resident microphone, on the other hand, detects the
unvoiced /t/ while the GEMS does not. These observations allowed the creation of the
class based detection described above.

3.4 Conclusion

In this chapter, we discussed the development of a speech class-based detector
based on the GEMS sensor and a high-pass representation of the resident microphone
sensor. This speech-class detector is able to distinguish voiced, unvoiced, low-band, and
background speech regions. Classification of these different speech regions allows
greater flexibility and adaptability in processing, and is essential to several of the
improvements made to the estimation of the speech signal discussed in chapters 5 and 6.
Detection of different speech classes may also have several other applications. It may
allow improved speech encoding and speaker identification. For instance, a speaker
identification system may perform better if it conducts speaker recognition over speech
classes and then fuses the results. If a speech encoder has knowledge of speech classes, it
may be able to allocate more bits for transmission of plosives and other consonants that
are essential for intelligibility while allocating fewer bits for longer vowels or silences
that are not as abrupt as the short plosives.
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Figure 3.7: Example of
two band detection (used
for class detection) on the

(b) word "dint": (a) full band
resident microphone
signal, (b) GEMS signal,
(c) GEMS-based
detection, (d) upper band
of resident microphone
signal, and (e) resident

Time (s) microphone-based
detection. The GEMS
signal shows the presence
of the nasal /n/ and voice

(c) bar in the initial voiced
plosive /d/ (as in the case
of figure 3.1), while the
resident microphone

Time (s) shows the high-frequency
burst energy in the /d/ and
in the unvoiced plosive
/t/. The GEMS detector
detects the voice bar (see

(d) dotted box) while the
resident microphone
detector does not. The
resident microphone
detector detects the /t/
(see solid black box)

Time (s) while the GEMS detector
does not. Note that the
GEMS also detects the
low-band energy in the
/n/ while the resident

(e) microphone does not.

8 Time (s)
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Chapter 4: Performance Bounds of Wiener Filtering

4.1 Background

This chapter explores the performance limitations of Wiener filtering under ideal
spectral measurement conditions. The main objective is to test the limitations of Wiener
filtering in order to (1) find a performance bound that can not be improved upon using
any form of Wiener filtering, and (2) explore the distance of this bound from the baseline
system, thus revealing how much potential there is for improvement. This chapter begins
by reviewing the baseline enhancement algorithm and its performance. Then the chapter
explores the performance of an "ideal" Wiener filter formed from the spectrum of clean
speech. Finally the affects of phase in filtering for speech enhancement are described.

This chapter uses the Lawrence Livermore corpus because it allows control of the
noise present in a signal with noise added manually, and because the Lawerence
Livermore corpus has the clean speech signal available in it for comparisons. Testing
involved the use of 12 sentences spoken by 2 male speakers. All the examples in this
chapter are from the same male speaker speaking the sentence "Young people participate
in athletic activities."

4.2 Baseline System

As described in chapter 2, the baseline system uses a Wiener filter based on the
statistics of the noisy speech waveform. Specifically the Wiener filter transfer function is
obtained by the equation:

W (k , ) = S , ( k (o )
S,~ (k 9wc) + as,(w)

Here, Sb(w) is the average of the noise, which is estimated by using the statistics of the

regions of a recording that are identified by the speech activity detector as containing

only background noise and no speech (see chapter 3). §, (k, w) is the estimate of the

speech spectrum of the clean speech that is determined by:

S,(k, w) = r(k)S (k -1, co)+[1 -r(k)] I X (kg) 12

and X(k, 0)= W(k -1, w)Y(kw)
where W(k -1, w) is the Wiener filter from the previous segment of speech. Y(k, CO) is
the STFT of the acoustic input for the current segment of speech.

The output of the baseline system is obtained by breaking the output waveform
into two parts, the magnitude and phase of its frequency domain representation. The
magnitude estimate of the speech was obtained from the Wiener filter as:

X (k, w) = W(k, c)Y(k, c)
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where Y(k, w) is the spectrum of the speech input. The phase of the output used is

simply that of the input-waveform:

dX (0) = Y(kjoW)

The phase of the input signal was originally used because of the folklore that phase is
unimportant for perception, a folklore reinforced by Wang and Lim's work [Wang and
Lim, 1982] which found that the spectral phase of speech is not important for quality at
high SNRs, "quality" being distinctly different than "intelligibility." Consequently,
traditional suppression algorithm development has not paid much attention to the difficult
problem of creating a phase estimate based on acoustic noisy speech signals. Wiener
filtering, for example, does not modify the phase of the original input. This thesis,
however, focuses on fairly severe SNRs, and shows that the spectral phase actually plays
an important role in speech enhancement. This finding is consistent with observations by
Vary that phase has importance in noise reduction for signal-to-noise ratios less than 3 db
[Vary, 1985].

The baseline algorithm takes severely noisy signals (for example, the negative 20
db SNR signals shown in figure 4.1) as input and produces enhanced signals shown in
figure 4.2. These signals contain high noise residuals when the input has a low SNR and
still do not quite resemble the clean speech shown in figure 4.3. They have a large
amount of noise that completely masks the speech below 1000 Hz, much of the harmonic
structure of the speech has been smeared, and when listening to the estimated speech, it is
very hard to make out what is being said. However, one can see that the enhanced
signals in figure 4.2 more closely resemble those of the clean speech of figure 4.3 than
the original inputs in figure 4.1.

Frequency
(Hz)

Time (s)

Amplitude (a)

Time (s)
(b)

Figure 4.1: Noisy -20 db Input Waveform (a) Spectrogram, and (b) Time Domain
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(Hz)

Amplitude

Frequency
(Hz) .

(a)

(b)
Figure 4.2: Result of Baseline Algorithm Processing (a) Spectrogram and (b) Time

Domain

(a)
Amplitude

(b)
Figure 4.3: Clean Speech (a) Spectrogram and (b) Time Domain

Although the baseline system provides some enhancement to the noisy input
signals, it was not known how much this enhancement could be improved upon by using
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the new non-acoustic sensors at our disposal. Consequently, several tests were
conducted.

4.3 Wiener Filter Magnitude Performance

In order to explore the performance bounds of Wiener filtering and gain insight
into how non-acoustic sensors could be used, two tests were conducted. The first test
focused on the performance of the "ideal" Wiener filter, a filter based on the actual clean
speech statistics. The second test examined what the filtering should produce if it was
able to perfectly reconstruct the magnitude of the signal. This was done using the "ideal"
magnitude of the speech.

4.3.1 Ideal Wiener Filter

The "ideal" Wiener filter was created from the clean speech from the ILawrence
Livermore corpus. Instead of using an estimate of the clean speech STFT based on the
speech input and the previous frames Wiener filter, the actual clean speech was used in
the transfer function of the Wiener filter:

W (k,w) =
SXd a(k, c) I +Sb (O)

Thus, this Wiener filter represents the "best" Wiener filter in the sense that the estimate
of the speech STFT in the filter's transfer function can be no closer to the actual clean
STFT. After this "ideal" Wiener filter was created, the magnitude estimate of the speech
was computed in the same manner as that of the baseline algorithm:

I X(k,o) 1=1 Y(k,wo) I x I W(kco) I

The phase of the output was also computed in the same way as in the baseline algorithm:

dX(k, c) = 4Y(k, co)

When using this system, the resulting outputs (see figure 4.4) were much different
than those of the baseline system that used the same Lawrence Livermore corpus
sentences (see figure 4.2). In figure 4.4, the spectrogram of the output is less noisy.
More of the low-band noise has been eliminated, more of the formant information is
visible, and the speech stands out from the background. The time domain output
waveform is also less noisy than that of the baseline algorithm output shown in figure
4.2: the speech segments clearly stand out in the waveform in figure 4.4 whereas the
speech segments in figure 4.2 do not.
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Frequency
(Hz)

Time (s)
(a)

Amplitude

* Time (s)
(b)

Figure 4.4: Result of Processing with "Ideal" Wiener Filter (a) Spectrogram and (b)
Time Domain

All of these observations indicate that there is much room for improvement of the
baseline system. However, they also indicate that a Wiener filter can only yield limited
improvement. Thus the natural question becomes, what is the best magnitude
enhancement. To answer this question, experiments using the actual speech magnitude
were conducted.

4.3.2 Ideal Magnitude Test

For any magnitude enhancement routine, the best it can do is recover the actual
clean speech magnitude as its output. Since our algorithm processes the noisy inputs in
segments and then recombines these overlapping segments, this recombination may
affect the system performance. To explore these affects, the clean speech STFT
magnitude was used for each segment thus replacing the estimated magnitude in the
baseline system:

I X (kIo) 1=1 Xcean (kco) I

At the same time, the phase of each segment was kept the same as in the baseline system:

4X(k,cv)= 4Y(k,co)

A spectrogram showing the result of using such processing is shown in figure 4.5 (see
below). As one can see from the figure, much of the noise in the speech has been
eliminated when compared with the input in figure 4.1. However when compared with
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the clean speech shown in figure 4.3, one notices that little of the harmonic structure has
been restored. This indicates that the phase of the STFT of the speech segment is also
important for proper recombination and enhancement. Since harmonics are necessary for
pitch estimation, which is used for various applications such as vocoding (for example
using the MELP vocoding standard), this issue of phase is very important.

Frequency
(Hz)

(a) P Time (s)

Amplitude

STime (s)
(b)

Figure 4.5: Clean Magnitude and Noisy Phase Combined (a) Spectrogram and (b) Time
Domain

4.4 Phase Performance

Because the Wiener filter did not restore the harmonic nature of the speech which
is important for intelligibility and vocoding, we next examined phase. The motivation for
examining phase is that Wiener filtering does not change the phase of a speech segment.
Thus this could be why the harmonic structure of the final reconstructed speech was
destroyed.

Since no phase estimator exists, we focus on tests using the clean STFT phase.
First we explore the effects of using the noisy input STFT magnitude with the clean
STFT phase of a segment. Then we explore the effects of using the estimated magnitude
with the clean speech STFT phase.
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4.4.1 Original Magnitude and Clean Phase

To begin, the orginal noisy STFT magnitude of each segment was used in order to
explore the affects of using the clean phase without any other enhancement. Specifically
the magnitude and phase used was:

I X(k,W) 1=1 Y(k,w) I and 4X(kw)= 4Xciea(k, )

The result of this experiment is shown in figure 4.6. This result was then compared to
tests using the noisy phase (thus compared to the original noisy speech input). The
spectrogram of the same sentence is shown in figure 4.7 below. As one can see by
examining both, the clean phase once again restores much of the harmonic structure of
the speech. It also seemed to reduce a great deal of noise on its own. When conducting
informal listening, it was found that the clean phase made very unintelligible speech
somewhat understandable.
Observe from figures 4.3, 4.5, 4.6, and 4.7 an apparent paradox: Modifying the short-time
phase modifies the short-time magnitude. This paradox is resolved by recalling that the
enhanced signal is synthesized by an overlap-add scheme. Therefore, cleaning the phase
of the noisy short-time Fourier transform may reduce noise in the magnitude of the short-
time Fourier transform of the enhanced synthesized signal by virtue of overlapping and
adding. In addition, the spectrogram views the synthesized waveform through a window
and frame (in this example, 25 ms and 10 ms, respectively) different from that of the
enhancement analysis/synthesis (12 ms and 2 ms, respectively).

Frequency
(Hz)

0 Time (s)
Amplitude (a)

01 Time (s)
(b)

Figure 4.6: Noisy Magnitude and Clean Phase (a) Spectrogram and (b) Time Domain
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Frequency
(Hz)

Time (s)

Amplitude (a)

* Time (s)
(b)

Figure 4.7: Noisy Input (a) Spectrogram and (b) Time Domain

4.4.2 Estimated Magnitude and Clean Phase

Since the clean phase alone yielded large improvements for harmonics, we next
explored the affects of using the clean phase with the magnitude estimate. This is similar

to the "ideal" magnitude tests in that they show what can be accomplished with the best
phase achievable. It also illustrates how replacing the phase aids the baseline algorithm.

The result of this processing is shown below in figure 4.8. When compared to
figure 4.7, one notes that much of the harmonics are once again restored. When
compared to figure 11, one notices that much of the speech has been enhanced. Although
the input was very noisy (-20 db SNR) the result yields an output whose spectrogram has

speech structure that stands out more than the original input spectrogram (see figure 4.7).
The result also sounds "crisper" and "clearer" than the original input.

4.5 Conclusion:

In this chapter we explored the performance limitations of Wiener filtering by
examining the baseline system performance and the performance of an "ideal" Wiener
filter based on the actual clean speech statistics. We showed that there was much room
for improving speech magnitude estimation using Wiener filtering. We also explored
several other ideal situations which are summarized in the following table 1 and
compared with the original inputs and clean signals:
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Frequency
(Hz) A

Amplitude (a)

(b)
Figure 4.8: Estimated Magnitude and Clean Phase (a) Spectrogram and (b) Time Domain

Magnitude / Phase Harmonics Degraded Background Noise Figure
or Enhanced? High or Low? Illustration

Original / Original Degraded High 4.1
Clean / Clean Enhanced Low 4.3

Estimate / Original Degraded High 4.2
Clean / Original Degraded Low 4.5

Ideal Wiener Est / Degraded Low 4.4
Original

Original / Clean Enhanced High 4.6
Estimate / Clean Enhanced High 4.7

Table 1: Summary of Situations and Findings: Based on 12 Sentences from 2 Male
Speakers in the Lawrence Livermore Corpus

Based on these findings, it was found that there is much room for improvement using
Wiener filtering if one can get at these ideal situations. Thus the focus of the rest of this
thesis is on how to better reach these ideal situations using non-acoustic sensors. Chapter
5 focuses on the magnitude estimate using non-acoustic sensors. Chapter 6 focuses on
the phase estimate using the non-acoustic sensors.
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Chapter 5: Magnitude Estimation of Speech Spectra

This chapter discusses improvements in magnitude estimation by Wiener filtering
that were made possible using several non-acoustic sensors. It begins with reviewing the
baseline Wiener filtering algorithm and its performance. We then discuss Wiener
filtering based on the identification of the 4 different speech classes of chapter 3. Next,
we explore the uses of alternative non-acoustic sensors for use in magnitude estimation of
speech. This chapter concludes by combining both ideas - filtering based on the
identification of 4 different speech classes using alternative sensor data in addition to
acoustic data. In this chapter the ASE corpus was used to conduct experiments since
many of the alternative sensors such as the PMIC and the EGG were not present in the
Lawrence Livermore corpus. Also, the ASE corpus was used in order to examine real-
life noises that were not artificially added. 61 utterances spoken by a male speaker were
examined in all of the following experiments.

5.1 Baseline Algorithm

5.1.1 Algorithm Details

The baseline algorithm used as a reference for comparisons was based on 2 Wiener
filters. The first was used for regions of a recording that were identified as background
noise and the second for regions of a recording that were identified as speech (see chapter
2). The background noise regions were greatly attenuated since the speech spectrum in
the numerator of the Wiener filter transfer function was very small:

W(kc)= SX (k,) 0
S +aS b(kc) 0+aS b(k,w)

The speech estimate of the previous background frame is very small because the Wiener
filter of the previous background frame is -0 and the speech spectrum of the current
background frame is estimated from the previous background frame's Wiener filter
transfer function:

S,(k, )=r(k)Sx(k -1, w)+[1 - r(k)] I X (k, ) 12

~r(k)O+ [I - r(k)]O

since X(k, w) = W(k -1, w)Y(k, o)) ~O x Y(k, w)

In contrast to background regions, regions identified as containing speech are not
drastically attenuated since the transfer function of the Wiener filter during speech is:
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S (k,wm)
W(kco)= X > 0 for several CO since

S (kCO)+caSb(O)

~3O st S (k, co)= r(k)S (k -1, co)+[1-r(k)] I X (k, CO)1 2 >0

and X(kCO) =W(k -1,CO)Y(k, CO) >0

Essentially, the baseline Wiener filter algorithm divides a recording into local, short
regions, each having a different desired clean speech spectrum. These different spectra
are estimated by using local statistics to create a Wiener filter more tailored to that
regions behavior. Thus the speech regions are processed with a distinct speech Wiener
filter and the background noise regions are processed with a distinct background noise
Wiener filter. This concept of dividing up a recording into regions that correspond to
different speech classes and then processing each class region with different Wiener
filters was further expanded upon in this thesis work (see section 5.2).

5.1.2 Baseline Algorithm Performance Examples

To determine the performance of the baseline magnitude estimation algorithm,
several experiments were conducted on 61 words available in the ASE corpus using the
M2H environments. In doing these experiments, speech activity detection was
accomplished using the multi-detector that employed the high-pass resident microphone
fused with the GEMS. Spectrograms of the outputs were made to gain insight and to
compare with later experiments. Examples of 6 post-filtered utterances are shown below
in figure 5.1 which are spectrograms of the words "zed", "bank', "dint', "box", "got", and
"net." As one can see from the examples, the baseline magnitude estimation did a poor
job of correctly estimating the magnitude on several instances. The /k/ /s/ in "box" and
the /d/ in "zed" are virtually non-existent in the output waveforms. Also the voicing
(from voice bars) preceding all the voiced consonants is not seen on any of the 6
spectrograms because of the very low SNR in the low band range. Also much high band
noise seems to be present during these voice bars, particularly for the /z/ in "zed," /b/ in
"bank," /d/ in "dint," and /g/ in "got." Elimination of this high band noise was the first
objective of our research involving improvement of the magnitude estimate of speech.
We sought to do this by using Wiener filtering based on the identification of different
speech classes.
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5.2 Processing Based on Different Speech Classes Using One Sensor

It was hoped that dividing the speech waveform into different identified classes
would improve magnitude estimation because the spectrums of different speech phones
can be drastically different. Yet at the same time, some phones have similar spectral
characteristics and can be grouped into the same phone-class. For example unvoiced
phones tend to be more dominated by high-frequency energy whereas voice bar regions
are dominated by low-frequency energy and contain no high band energy at all. The
baseline algorithm treated all speech the same. Thus the speech segment's Wiener filter

c (k, co)
W(k,w)= X

S (kg)+aSb(0)

determined by:

S (k, w) = r(k) (k -l, co)+[1- r(k)] I X (k, co) 2

X(k,co) =W(k -1, w)Y(k, cv)

may be very far from the "ideal" Wiener filter described in chapter 4. For example, if a
voice bar was captured in the last Wiener filter segment, much of the Wiener filter's

energy will be concentrated in the low band, below 500 Hz. Thus W(k, 0)) will be low
pass in nature. This could negatively degrade some of the high band energy of the

estimate SX (k, 0)) as it transitions from a voice bar region into a more high energy region

such as the burst in a plosive like /b/ or a fricative like /v/.

5.2.1 Division of Speech Classes

In order to improve magnitude estimation, this work separated a recording into 4
different classes of speech: (1) background noise, (2) voiced speech, (3) unvoiced speech,
and (4) low-band regions. Each region was then processed with a different Wiener filter
that was more attuned to the statistics of a particular class. These regions were identified
using the class type multi-detector that was based on the GEMS and the high pass
resident microphone detectors (see class based detection in chapter 3).

Background noise regions are regions of a recording that the detection algorithm
had identified as containing no noise (see chapter 3). Consequently, the initial Wiener
filter for them was designed to attenuate the region drastically.

Voiced speech regions are parts of speech that use vocal fold vibration to provide
an excitation of the vocal tract. The sounds produced in such speech include all vowels,
voiced fricatives and other voiced plosives and voiced fricatives such as a /zI,Iv/, /b/, /d/,
or /g/, and liquids and glides such as /w/, /y/, /r/, and /l/. These regions of speech contain
both high frequency and low frequency sounds that can be very harmonic. An example
of such voiced regions are the /z/ and /e/ in the word "zed" shown in figure 5.2.
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(Hz)

I _....., Time (s)

Figure 5.2: Spectrogram Example of Voiced Regions in the Word "Zed" using Quiet
Environment (Not Processed)

Unvoiced speech regions are composed of unvoiced consonants such as /f/, /t/, /p/,
/k/, /s/, /tj/ , and /f /. These sounds tend to be more high frequency in nature and not
harmonic. Consequently the Wiener filter employed on this class of sounds was high
pass in nature (see description of Wiener filters below). An example of such an unvoiced
region is the /f /in the word "shag" shown in figure 5.3 (centered around 4500 Hz).

A

Frequency
(Hz)

Figure 5.3: Spectrogram

k

Time (s)

Example of Unvoiced Regions in the Word "Shag" using Quiet
Environment (Not Processed)

Low-band regions are regions of speech that contain only very low frequency
sounds such as a /m/ and /n/ or a voice bar that precedes a voiced consonant such as /b/,
/g/, /d/, and some /zs, and /v/s. Voice bars are one of numerous cues that are used by
humans for proper identification of phones. Thus they are important for intelligibility
and are one focus of this thesis. Because these low-band regions have only low
frequency content, they are processed by a Wiener filter that is low pass in nature. An
example of such a voice bar region is the voicing preceding the /b/ in the word "boot"
shown in figure 5.4.
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Figure 5.4: Spectrogram Example of Voice Bar Region in the Word "Boot"

5.2.2 Filtering of Each Speech Class

The Wiener filters for each of the four speech classes were divided into two parts:
one part for the high-frequency bands and one for the low-frequency bands. Each band
uses a separate Wiener filter as shown in figure 5.5 below. The Wiener filters are divided
to process the different classes in a manner more appropriate for each class. For
example, the low-band class containing voice bars and some low-band nasals would be
attenuated in the high band and not in the low band.

High Band Detection Decision

Acoustic HP t+ Wiener FilterI nput L I -
Enhanced Signal

Acoustic LP -+ Wiener FilterInput [~~t ~~

Low Band Detection Decision

Figure 5.5: Overview of Two-Band Filtering

Both the high-frequency and low-frequency components are formed by using the
statistics of the noise-canceling resident microphone to create the speech estimate used in
the creation of a Wiener filter:
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W (k, S.,jk, co)
,(k,+as)

W~k~m1 (k,)+aS(o)

where S, (k, w) is the speech spectrum estimate and S, (w) is the noise spectra. Each
of the four classes of speech uses the high-pass Wiener filter and the low-pass Wiener
filter in different ways. If a region of speech is identified as a low-band class sound, the
low-pass Wiener filter is set to pass the speech and the high-pass Wiener filter is set to
greatly attenuate the high frequencies, much like the original Wiener filter for
background noise. This process still happens adaptively as in the original Wiener filter
used in the baseline system. If a region is identified as a voiced speech region, the low-
pass Wiener filter and the high-pass Wiener filter are set to pass the speech and keep
most of the input waveform's energy. If the region is identified as an unvoiced region,
the low-pass Wiener filter is set to attenuate the low frequencies and the high-pass
Wiener filter is set to sharpen the high frequencies and keep most of the input waveform's
high frequency energy. If a region is identified as a background region, then both Wiener
filters are set to attenuate both regions since they contain only noise. A summary of this
class based processing is shown in figure 5.6. In the figure, regions that are attenuated to
reduce noise are marked "Attenuated" and regions that are passed and that maintain most
of the energy of the band are marked "Passed."

High Band (> 500 Hz) Low Band (< 500 Hz)
Low-Band Regions Attenuated Passed

Voiced Regions Passed Passed
Unvoiced Regions Passed Attenuated

Background Noise Regions Attenuated Attenuated

Figure 5.6: Wiener filtering of the high and low bands for each speech class region

In order to determine the performance of this system, the same 61 utterances
appearing in the ASE corpus and used for the baseline algorithm experiments were
examined. Spectrograms of the same 6 words explored in figure 5.1 above are shown
below in figure 5.7.

When compared to figure 5.1, one can see that much of the higher band noise has
been eliminated in regions such as that preceding the /z/ in "zed," the /d/ in "dint," and
the /gI in "got." Also much of the lower-band noise has been removed, and the /k/ /s/ in
box and the /d/ in "zed" are now visible in the spectrogram. Although this is a major
improvement, it was noticed that much of the lower-band harmonics are missing in the
magnitude estimates, most noticeably the voice bars and nasals. This is because the
resident microphone of the noisy ASE environment acts like a high-pass filter and thus
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Figure 5.7: Examples of enhancement based on 4 speech classes using the
resident microphone as input for the words (a) "zed", (b) "bank", (c) "dint", (d)
"box", (e) "got", and (f) "net"
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eliminates the energy in this region. Because of this property and because the resident
microphone has greater SNR at higher frequencies (above 3000Hz the noise rolls oft), it
was decided to explore other sensors to use in conjunction with the high band of the
resident microphone for magnitude estimation.

5.3 Magnitude Estimation with Two Sensors

5.3.1 Two-Sensor Processing with Two Speech Class

In order to make comparisons with the other early systems, processing was first
conducted with two speech class, as in the baseline algorithm. The purpose of this was to
test the idea of using two sensors alone, and then to later combine this with the concept of
processing speech based on the identification of different speech classes. In this set of
experiments, the speech was once again divided into two bands: a high band above 500
Hz and a low band below 500 Hz. The high band used the resident microphone as its
input. Consequently the high band Wiener filter was created using the resident
microphone in the speech object:

W(k,w) = S, (kw)
S, (k, o)+aSb(w)

S,(k, co) =r(k)Sx(k -1, co)+[1 - r(k)] I X (k, co) 12

X(kw) = Y(k, o)x W(k, w)

In contrast, the low band Wiener filter was created using the PMIC in the speech object:

X(k,w) = XpmIc (k, )xW(kw)

The rationale for using the PMIC in the low band is that it has high SNR in the
low band and seemed to contain a fair amount of vocal tract information. When
listening to the PMIC waveform, one could often determine what was being said, even
though the waveform more sounded low-passed and muffed than normal speech. Also,
when examining a Spectrogram of the PMIC waveform, one notices that it has much of
the same harmonic structure as that of normal speech.

The rationale for using the resident microphone in the high band is that it has high
SNR in the high band even though it has low SNR in the low band. The noise in the
resident microphone seemed to roll off at around 1500 Hz. Because of this, it was hoped
that using it in the high-band Wiener filter (and the PMIC in the low-band Wiener filter)
would improve the result of the magnitude estimation.

To make comparisons, the same 61 utterances were once again processed and
then examined. Examples of the words in figure 5.1 are shown below in figure 5.8. As
one can see, using the two sensors in conjunction adds much more low-frequency
information. Voice bars, which are important for intelligibility of voiced consonants such
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as a /b/, /z/, /d/, /v/, etc, are very visible and present. Also the first few harmonics and
formants are now more present and much of the overall noise was eliminated. When
conducting informal listening tests, we found that the resulting sounds were "fuller" and
"clearer."
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(d)
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(b)
L
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(c)

Time (s)

(f)

Figure 5.8: Examples of enhancement based on 1 speech classes using the
resident microphone as input in the high-band and the PMIC in the low-band
for the words (a) "zed", (b) "bank", (c) "dint", (d) "box", (e) "got", and (f)
"net"
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5.3.2 Two Sensor Processing with Multiple Speech Classes

Due to the success of the previous experiments, we sought to merge the separate
ideas (class based processing and separate high-band and low-band processing based on
different sensor inputs) into one system. This system thus conducted speech class
identification and processed the four different speech regions in the same manner as in
section 5.2. The difference now, is that for the high-band Wiener filter, the resident
microphone is used as input, and for the low-band system, the PMIC located at the throat
above the glottis is used as input, as in section 5.3.1. Experiments using this setup were
conducted on the same 61 utterances and compared to the other tests. Examples are
shown in figure 5.9 below. When compared to figure 5.8, one sees that this system helps
reduce much of the noise above voice bar regions and also helped to make some of the
consonants further stand out (for example the /d/ in "zed"). When compared to the
baseline system (figure 5.1) one sees an improvement: the noise has been further reduced,
many of the consonants are more clearly visible, the voice bars are now visible, and the
low-band harmonics have been restored. Informal listening of these utterances and
comparing them to those processed by the previous systems also sounded superior in
terms of "fullness" and noise suppression. However, the sounds seemed to have an
abnormal amount of bass in them. This abnormal bass-like sound was reduced in the
final system developed by using formant sharpening in the form of pre-emphasizing the
PMIC signal to reduce the low-band harmonic energy.

5.4 Conclusion

In this chapter we presented modifications to traditional Wiener filtering based on
information present in non-air-acoustic sensor waveforms. Specifically, the noise
canceling resident microphone (which has been shown to reduce noise in the high bands
while preserving high frequency speech) was used to create a high-band Wiener filter and
the PMIC (which has been shown to reduce noise in the low bands while approximately
preserving low-frequency speech) was used to create a low-band Wiener filter. Each
Wiener filter then used speech class-based detection, which was only made possible by
the use of the GEMS and resident microphone used in conjunction with each other. This
class-based detection allowed the high-band and low-band Wiener filters to more
selectively attenuate and reduce noise in their band during background noise and during
speech as well. The result of these modifications yielded Wiener filtering that produced
sharper, more defined spectrograms containing more speech structure, and speech that
sounded, through informal listening, much more "natural", "full", and perhaps
understandable. In each experiment in this chapter, 61 words spoken by a male were
examined since only one male speaker was initially available. Future work will involve
more vigorous tests involving more speakers, both male and female, which have become
available during the final weeks before this thesis work.
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Figure 5.9: Examples of enhancement based on 4 speech classes using the
resident microphone as input in the high-band and the PMIC in the low-band
for the words (a) "zed", (b) "bank", (c) "dint", (d) "box", (e) "got", and (f)
"net"
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Chapter 6: Phase Estimation

Unlike magnitude estimation, phase estimation has not been a major focus of
research in signal processing. Research has focused on creating a synthetic phase
estimate based on a magnitude estimate [Oppenhiem and Schafer, 1999]. Observations
by Vary have shown that phase has importance in noise reduction for signal-to-noise
ratios less than 3 db [Vary, 1985]. Since some of the noise environments in this thesis
are less than this threshold, phase estimation was a major focus of this thesis.

This chapter focuses on obtaining a phase estimate that produces similar affects
such as that of the clean phase explored in chapter 4. Namely, a phase estimate is sought
that restores harmonics and improves the quality and perhaps intelligibility of speech.
This chapter begins by examining the ability of non-acoustic sensors to provide a phase
estimate. It then examines the performance of a synthetic phase based on a combination
of a vocal-tract phase estimate added with a glottal phase estimate. It then concludes by
examining band-dependent phase replacement.

6.1 GEMS Phase

The GEMS sensor was first examined for use in phase replacement using the
Lawrence Livermore corpus. For each 12-ms segment of speech, the phase of the GEMS
over the windowed frame was computed. Then it was combined with the estimated
magnitude. This resulted in a segment with an estimated magnitude based on the
acoustic microphone and a phase from the GEMS. The segments were then combined to
synthesize the speech estimate, as done in chapter 5 and the baseline system. A
spectrogram of the result is shown below in figure 6.1. This result was then compared to
processing using the original and clean phases of chapter 4 (which are again shown here
in figures 6.2 and 6.3).

As one can see from the figures, the GEMS restored the harmonics of the speech,
similar to the effect of the clean phase. However, the examples using the GEMS resulted
in estimated speech that sounded " buzzy". One reason for this could be that the GEMS
measures glottal vibrations of the vocal folds and the tracheal wall around the vocal folds,
not the true response of the entire vocal track. This could result in a " buzzier" signal for
phase estimation than desired because the resulting phase is excessively coherent across
frequency. To restore the entire phase of the speech, one needs the missing phase of the
vocal tract. Thus one possible way to obtain a better phase estimate may be to combine
the glottal phase estimate (obtained by using the GEMS phase) with a phase estimate of
the vocal tract.
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Figure 6.1: GEMS Phase with Estimated Magnitude
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Figure 6.3: Clean Phase with Estimated Magnitude
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6.2 Other Sensor Phases

In an attempt to obtain a better total phase estimate, the PMIC phase was
examined and compared to the GEMS and original phase. Tests involving these
experiments used 61 utterances from a male speaker in the ASE corpus since the PMIC
was only available in it (future work will focus on other speakers). Consequently, the
clean signal was not available for testing purposes. An example of the processing with
the PMIC phase on the word "weed" is shown in figure 6.4a. This result was compared
to the processing using the original phase in figure 6.4b and using the GEMS phase in
figure 6.4c.

Both the GEMS and the PMIC phase produce similar results. The high-band
harmonics around 3500 Hz in both examples are degraded compared to the original phase
example in figure 6.4b. This is likely due to the severely low SNR of the GEMS and
PMIC in this band since both of the signals roll off before 3000 Hz. In contrast the
resident microphone has high SNR in this upper band and does not roll off.
Consequently, the resident microphone used in this high band yields a more accurate
phase function than either the GEMS or the PMIC. Below approximately 2000 Hz, both
the PMIC and the GEMS phase accentuate the harmonics of the speech. This effect is
most noticeable between about 1200 Hz and 500 Hz in figures 6.4a-c. This is likely due
to the fact that the 500 Hz - 1200 Hz band of the estimated magnitude has the lowest
SNR. Thus, as one would expect, an estimated phase used in this band has the largest
effect.

When listening to signals with the PMIC phase and comparing them to signals
with the GEMS phase, both sound very similar. This seems to suggest that the PMIC
phase also does not contain all the necessary vocal tract information to create an estimate
of the clean speech phase. This motivates obtaining an improved speech phase estimate
by combining a glottal phase estimate (obtained by using the GEMS phase) with a phase
estimate of the vocal tract.

6.3 Synthetic Phase

One way to derive the phase estimate of the vocal tract is from the estimate of the
magnitude of the speech. If we assume that this magnitude contains only vocal tract
information (which may be approximately valid) and that the vocal tract is a minimum
phase system, then we can use the Hilbert transform of the magnitude to find a phase
estimate [Oppenhiem and Schafer, 1999].

Since the mid-band region between 500 Hz and 1200 Hz was shown to be the only
region with an estimated magnitude with severe enough SNR to benefit from phase
replacement (see section 6.2 above), we conducted phase replacement tests in the mid-
band only. First, we created a synthetic phase based on the glottal phase estimate from
the GEMS and the vocal tract estimate based on the Hilbert transform of an estimated
magnitude. A diagram illustrating this is shown in figure 6.5. Specifically the synthetic
phase was obtained by:

osynthetic (k, w) = 0 GEMS (k, H)+ Hilbert (k
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Speech Phase Estimate
Under Minimum-Phase

Figure 6.5: Phase Assumption
construction by addition of
the GEMS phase and a Lstmate om P-Mic
synthetic phase derived
from the PMIC signal under
a minimum-phase
assumption. The Hilbert Appro imate Vocal tract phase
transform/filtering module speech phase estimate
implements homomorphic
filtering of the enhanced t
PMIC signal Excitation phase

from GEMS

Where OGEMS (k, w) is the GEMS phase and oHilbert (k, W) is the Hilbert phase of an

estimated magnitude for the kth speech frame.
The first test (see figures 6.6b and 6.7b) used the Hilbert phase obtained from the

magnitude estimate of the processed speech. The second test (see figures 6.6c and 6.7c)

used the Hilbert phase obtained from the magnitude of an enhanced PMIC signal. The

third test used just the GEMS phase and was used to compare with the two previous

synthetic phase tests (see figures 6.6d and 6.7d). The final fourth test used the original

phase and was also used as a baseline with which to compare. It is shown in figures 6a

and 7a.
When examining figures 6.6 and 6.7, one can note that the cleanest, sharpest, and

fullest harmonics for the 500 Hz - 1200 Hz mid-band are created by using the synthetic

phase based on the enhanced PMIC magnitude. This is to be expected since the PMIC

has higher SNR in this band than the resident microphone and since the GEMS signal

does not contain all the vocal-tract information required to make a speech phase estimate.

In informal listening, the synthetic phase based on the PMIC also sounds slightly cleaner

and somewhat more natural than the other phase replacement strategies.
This aural difference is much more noticeable after encoding a speech signal

using MELPe [Wang, Koishida, Cuperman, Gersho and Colhura, 2002].This is likely due

to the dependence of the MELPe encoder on speech harmonics to create a pitch estimate

which is used in encoding. Since one of the main applications of this thesis was for

speech encoding using vocoding standards, such as MELP [McCree et al, 1996] and

MELPe, this phase scheme is used in the final system of this thesis. Examples that use

the MELPe encoding are shown in figures 6.8 and 6.9. One notices that the example with

the synthetic phase estimate in the mid-band produces coded speech containing more

harmonic structure. This improved harmonic structure likely causes an increased
naturalness and perhaps understandability of the encoded speech that was perceived in

informal listening. Future work will determine if this improves intelligibility by using

Diagnostic Rhyme Tests.
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Figure 6.6: Phase construction results for the word "nil"
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Figure 6.7: Phase construction results for the word "boast"
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Figure 6.8: Example spectrograms of enhancement using (a) Original noisy
resident-mic in baseline system; (b) Inclusion of low-passed P-Mic with 4 speech
class processing; (c) Addition of of synthetic phase into system in b. The utterance
consists of the word stream "choose-keep-bank-got" in the M2H environment.

Time(s)

Figure 6.9: Example spectrograms of enhancement using the suppression
schemes of figure 6.8 after MELP encoding of signals: (a) Original noisy phase
from 6.8b; (b) Introduction of synthetic speech phase in band [500, 1200] Hz
as in 6.8c.
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6.4 Conclusion

In this chapter, we explored the use of several sensors for phase estimation. We
began by examining the affect of using the phase of the GEMS sensor and found that the
GEMS phase helped restore the harmonic structure lost in noisy speech. Then a synthetic
phase was created from the estimate of the vocal tract and the glottal phase of the vocal
folds. Two synthetic phases were developed - one based on an enhanced PMIC
magnitude and one based on an enhanced resident microphone magnitude. For this
environment (the M2H environment), each phase was used in phase replacement in the
500Hz - 1200Hz band since this band had the lowest SNR after magnitude estimation.
For other environments with different conditions, the bands with very low SNR may be
different. The PMIC-based synthetic phase was used in the final system developed
because, for the signals under study, it seemed to best restore the harmonics in this mid-
band while preserving the natural sound of the speech. Informal listening by staff at
Lincoln Labs concluded that this PMIC-based synthetic phase produced enhanced speech
that was slightly more natural sounding and cleaner than any of the other phase
replacement methods. When encoded with a MELPe vocoder, the result using the PMIC-
based synthetic phase produced encoded speech that sounded much cleaner than that of
any other phase replacement method. Consequently this PMIC-based synthetic phase is
used in the final system of this thesis.

The final system developed used the work from all the previous chapters and
modified the baseline system in the ways discussed in this chapter and chapters 3 and 5.
It was tested on and tailored to the M2H environment since this environment contained
the largest amount of real-world noise in the ASE corpus. It also focused on sentences
spoken by one male speaker, since this was the only speaker initially available.
However, a few tests in this chapter were also run on a few female speaker utterances as
well to confirm results. Future work will run tests on other male and female speakers as
they become available. As a consequence, the specific frequency band-based adaptations
may need to be adjusted for use with other conditions. Future work will involve the
generalizations for use in other environments with a larger set of speakers. Specifically,
we will focus on generalizations made according to spectral band-based quality
measurements.

A diagram of the final system used with the M2H environment is shown below in
figure 6.10. This system uses the acoustic resident microphone for processing the high
band (above 500 Hz), and the PMIC for the low band (below 500 Hz). As stated
previously, phase construction occurs only for the high band between 500 Hz and 1200
Hz since this is the band with severe enough SNR to be improved by phase estimation.
During the final stages of design, spectral sharpening, i.e. reducing formant bandwidth,
was added to sharpen the PMIC low band since this helped reduce perceived artificial
baseness.
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Chatper 7: Concluding Thoughts

This thesis showed how non-acoustic sensors, such as the GEMS and PMIC,
could be used with acoustic noise canceling microphones, such as resident microphones,
to improve speech enhancement. Specifically, we used these sensors synergistically to
improve detection and spectral magnitude estimation. Also, because of these non-
acoustic sensors, we were able to create a phase estimate of the speech segments. When
the speech segments were recombined, this phase estimate helped restore the harmonic
components of frequency bands with poor SNR. Although this change resulted in a
minor perceptual difference when listened to, it yielded a large gain in waveform coding
using MELP since the improved harmonic structure resulted in an improved pitch
estimate which is essential in the MELP vocoder.

Now that the groundwork has been developed for processing using non-acoustic
sensors, there are numerous opportunities for further research. Of immediate interest is
Diagnostic Rhyme Testing (DRT) [Voiers, 1977] using several speakers. A DRT is used
to measure the ability of humans to distinguish different spoken phones. Consequently it
can be used as a measure of intelligibility. This thesis was unable to perform DRT tests
due to time and resource constraints. Currently, DRT tests are being planned for use with
the final system shown in figure 6.10 and testing should commence within the next few
months.

In addition to further system performance tests, there are several ideas that could
be explored relating to detection, magnitude estimation, and phase estimation. Also, the
general result of the importance of phase brings up several questions. It would be
interesting to focus on understanding and modeling phase and its affect on speech. For
instance, when processing speech over segments, phase could be very important for
maintaining and restoring short temporal events such as plosives, voice onset times
between consonants and vowels, or other cues that are used by humans to understand
speech.

Current phase estimation could be improved upon using the current sensors as
well. For instance, the class-based detection of chapter 3 could be extended to aide in
phase replacement. During unvoiced consonants that have no harmonic structure, the
original phase could be used to preserve the noise-like shape of the spectrum. During
vowels, the entire spectral phase could be replaced with a phase estimate to restore the
harmonic structure. In voiced consonants, the phase could be replaced with an estimate
in the low band where harmonic voicing is present while the high band with frication or
aspiration is left alone.

Another idea involves phase replacement according to band-dependent SNR.
Under this scheme, a spectral quality measure would be used to measure the relative SNR
and energy of the speech signal in each band. For bands with low SNR or poor speech
energy, the phase of the speech could be replaced by some phase estimate. For example,
in this work, the resident microphones used in the high noise environments of the ASE
corpus have very poor speech energy below 500 Hz. In the mid-bands, the resident
microphones had poor SNR. In the high-bands, the resident microphones have high SNR
and signal energy. Under this quality-based phase-replacement idea, the low-band and
mid-band phase would be replaced with the estimate while the high band is untouched.
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This would be similar to the final system of chapter 6; the main difference is that this
process would be automated, thus improving robustness since different speakers in
different conditions will produce speech with differing characteristics. For example a
female will have harmonics that are more largely spaced than a male. Females also have
formants that are higher in frequency. Thus an automated phase replacement scheme is
very desirable.

Another idea that would be interesting to examine is the affect of using Kalman
filtering in speech enhancement. It would be interesting to compare with the Wiener
filtering since the Kalman filtering takes place in the time domain and would yield
different trade-offs. It could potentially solve many issues with phase estimation, but
could perhaps introduce other problems.

Speech activity detection could be improved by a few new schemes as well. For
example, detection could be done using several sensors over all bands. Then a quality
measure could determine the SNR over a segment of time and band of frequency. This
quality measure could then be used to make a weighted spectral detection decision over
each band to more robustly conduct detection of speech.

Band detection could also perhaps help spectral magnitude estimation. By
dividing the magnitude into bands and creating a separate Wiener filter for each band,
more selective processing could be done on the speech signal. This could help reduce
noise in bands containing no speech. For example some /m/'s and /n/'s, in the ASE
corpus under certain conditions, contain a large amount of low-frequency energy around
400Hz and mid-frequency energy around 2000 Hz, but little in the other bands. Under
the system developed in this thesis, such a region would cause a problem for the
processor and would likely result in severe loss of speech energy. A finer band-based
detector and magnitude estimate would increase robustness and preserve more of the
energy in the /m/ and /n/.
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Appendix A: Detector Development

This appendix covers previous work that led up to the speech class detector
discussed in chapter 3. For more details on the original energy detector, one should
consult Dunn and Quatieri [Dunn and Quatieri, 20021.

Work on detection began with a series of experiments that were run to explore the
viability of using the GEMS and PMIC sensors in detection. The first set of experiments
focused on testing the GEMS sensor by using a corpus provided by Lawrence Livermore
National Laboratory. This corpus was used since, at the time, it was all that was
available, and since it facilitated the use of Mean-Square-Error (MSE) and Segmental
Signal to Noise Ratio (SSNR) measurements. These MSE and SSNR measurements
were used as a metric to determine the potential of using the GEMS sensor in detection.
The second set of experiments focus on using the GEMS and PMIC sensors in tandem
and use the ASE corpus collected by the Arcon Corporation (see chapter 2). This corpus
was used since it contains PMIC data as well as GEMS data (and the Lawrence
Livermore National Laboratory corpus did not contain PMIC data).

A. 1 Metrics Used

This section discusses the quantitative metrics for comparing detectors under
different SNR conditions. The two metrics used were Mean-Square-Error (MSE) and
Segmental Signal to Noise Ratio (SSNR) measurements. Both of these require the use of
the clean speech. The MSE measurement requires the clean speech as a reference to
compute the error. The SSNR measurement requires the clean speech to compute the
energy of the clean signal in order to find the SNR ratio of clean signal power-to-noise.
Since clean speech was only available in the Lawrence Livermore corpus, both of these
metrics were only used for tests using this corpus. Experiments involving the ASE
corpus required use of comparisons of spectrograms and closer examination of detection
outputs.

A.1.1 Mean-Square-Error (MSE)

MSE performance was used as a metric because it is commonly used in signal
processing and estimation theory to determine a quantitative measure of the error
between an estimate of a signal and the actual signal. The formula we used in computing
the MSE of the speech sentences is:

[x,(n) - x,,(n)

Here x, (n) is the normalized clean speech, x,,t (n) is the normalized estimate of the
clean speech (obtained by processing the noisy speech). The disadvantage of using MSE
as a metric is it may not be a good indicator of speech quality or intelligibility.
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A. 1.2 Segmental-Signal-to-Noise Ratio (SSNR)

Since MSE measurements may not be a good indicator of improved speech
intelligibility or quality, further evaluations were conducted. These tests focused on
using Segmental SNR values to compare the relative increase in signal-to-noise power
after being enhanced. The motivation behind this was that this measure has been shown
to be more closely related to speech quality [Quackenbush, 1988]. Segmental SNR
values were computed according to the following equation:

n=Nm +N-1

1] x (n)M-1 C

1/ M {n=N}
o10 n=NM+N-1

m/=0d tn=O I [x(n)-xd (n)1]

n=N,,

Here M is the number of speech segments of size N, m is the m th speech segment,
N,, is the start index of the m th speech frame x, (n) is the uncorrupted speech, and

xd (n) is the processed distorted speech (i.e. speech with noise after it is processed).
Intuitively, the Segmental SNR is equal to the average SNR of each segment of speech.

A.2 GEMS Dection

This section focuses on the use of the GEMS sensor in detection and compares it
with the acoustic detection used in the baseline algorithm. It examines the performance
of the GEMS alone and in tandem with the acoustic speech by using the MSE and SSNR
measurements described above in section A. 1.

A.2.1 Inputs Used

To conduct initial tests, the Lawrence Livermore corpus was used. This corpus
consists of two parts: speech data and GEMS data recorded simultaneously. For these
tests, 6 sentences were used. All 6 sentences were noise-free. Consequently noise had to
be added for testing purposes. Colored noise was added to the acoustic recordings by
using an algorithm that modeled the noise after car engine noise (see chapter 2). After
noise was added, experiments were conducted on the 6 spoken sentences for two
speakers, yielding a total of 12 spoken sentences.
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A.2.2 Experiments

MSE Measurements:

The first MSE experiments conducted involved a baseline with which to make
comparisons. As a reference case, the baseline Lincoln speech enhancement was used.
In that enhancement routine, a detector decision based on acoustically-recorded speech is
used. We refer to this detector as LLdetectorA. Then we sought to show an increased
speech enhancement performance by using the GEMS waveform as input to a speech
detector that is better tailored to use the information present in the GEMS signal. This
detector is referred to as LLDetectorB.

LLDetectorB processes a waveform in an auditory-like manner by sending the
waveform through a filter bank of bandpass filters with logarithmic increasing
bandwidth. The energy of the outputs of the lower-frequency bandpass filters is then
computed and summed to create a metric that is used to determine if speech is present.
Only the lower 8 bandpass filters were used in this energy computation for several
reasons, one being that most of the energy of the GEMS waveform is concentrated in
these lower frequencies.

Tests were run to compare LLDetectorB's ability to detect speech using the
GEMS data against the LLDetectorA's ability to detect speech using acoustic input. The
purpose was to show the overall improvement of using the GEMS data as input to a
detector tailored to the GEMS input waveform versus using acoustic speech data and a
detector that was tailored to the speech data. The resulting computed average MSE for
the 12 sentences in the corpus are shown below in figure A. 1. As one can see, for most
SNR values, the LLDetectorB with the GEMS input performed better in the mean-
squared-error sense than the LLDetectorA with the speech input - the exception being -
10db. Also of importance, the output of the detector was more stable (i.e. more
contiguous within speech and background regions) using the GEMS-based detector and
GEMS input (LLDetectorB) than that using the acoustic based detector with speech input
(LLDetectorA). The -10db sentences were atypical in that the processed versions seemed
to have a bit more distortion than the other processed sentences of different SNR. This
distortion is likely caused by the experimental noise reduction algorithm and likely
explains the MSE result at -10db. At the very negative SNRs (-15db and -20 db), the
percent MSE performance gain dwindled. This could be due to the fact that the input
signal is significantly corrupted by noise at extremely negative SNRs. Consequently, the
noisy input could become completely uncorrelated with the actual speech input if the
noise is large enough. If this is the case, improved speech detection would yield very
little to no improvement in speech enhancement. (In fact it could be worse in the MSE
sense). Indeed, at -10db, one can barely hear the spoken sentence and at -15db and -20
db there is so much noise that the spoken sentence is completely masked by noise.
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MSE of LLDetectorA (speech detector) vs LLDetectorB (GEMS detector)
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Figure A.1: MSE of LLDetectorB using GEMS data as input vs LLDetectorA using
speech

Since it is unclear as to whether or not the GEMS detector can detect unvoiced
speech and since a fair amount of the intelligibility of speech is due to unvoiced speech, it
was decided to design a detector based on both speech and GEMS data. This detector
shall be called the Multidetector. It is depicted below, in figure 2, and is composed of
four parts: LLDetectorA, LLDetectorB, Part Selector of A, and an OR gate.
LLDetectorA is used to make speech detection decisions based on recorded speech data
(just as in previous experiments). LLDetectorB is used to make speech detection
decisions based on GEMS data (just as in previous experiments). The output of
LLDetectorB consequently denotes the detected voiced regions of speech. When this
output is a 1, the corresponding speech segment is marked as containing speech. When it
is 0, it is not. Part Selector of A is used to detect unvoiced regions of speech based on the
outputs of LLDetectorA and LLDetectorB. It does this by looking 100 ms on both sides
of the regions that are identified as voiced regions by LLDetectorB and using
LLDetectorA to detect the unvoiced speech in these neighboring regions. More
specifically, it convolves the output of LLDetectorB with a filter h(n) that is 100 seconds
in length on both sides of the time origin. Then it takes the output of this convolution and
"AND"s it with the inverse of the output of LLDetectorB, thus obtaining the
neighborhood regions where unvoiced speech may be present. It then takes this result
and "AND"s it with the output of LLDetectorA, thus obtaining the detected unvoiced
regions of speech lOOms on either side of a region of detected voiced speech. The final
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detected unvoiced speech regions result is then "OR"ed with the detected voiced speech
regions to yield the output detected speech regions of the Multidetector (see figure A.2
below).

Detected Unvoiced Regions

Speech

Multidetector

GEMS -f-

Detected Voiced Regions

Figure A.2: Multidetector

The rationale behind this approach is due to the fact that unvoiced speech is
usually contiguous to voiced speech. The window of 100 ms on both sides of the
detected region is somewhat arbitrary and was chosen since it yielded the best MSE
results of all windows that were explored. In reality, some regions of unvoiced speech
last longer than 100 ms. This was apparent in some of the sentences that contained long
unvoiced phonemes such as some /s/'s. However, this way of selecting the window was
the best we could hope for since the GEMS data does not seem to be able to distinguish
between unvoiced and non-speech speech regions. To explore the reliability of the
Multidetector, tests using the Multidetector on all 12 corpus sentences were conducted
and the resulting MSEs were computed and then compared to both the LLDetectorB
using GEMS input and the LLDetectorA using acoustic speech input. The results are
shown below in figures A.3 and A.4.

According to these results, the Multidetector out-performed the LLDetectorA
using acoustic speech as input in all 6 different SNRs that were tested -- except the
perhaps unreliable -10db case (see discussion above). At the highest 5db SNR, the
Multidetector performed a little better, but at all other SNRs, the Multidetector performed
a little worse in the MSE sense. It was thought that the better performance at high SNRs
could be attributed to the fact that the Multidetector detects voiced speech reliably well at
high SNRs (with low levels of noise) where as the LLDetectorB (GEMS decision) does
not. The worse performance at the more negative SNRs (with higher levels of noise) of
the Multidetector could be attributed to the fact that there is so much noise present that
the Multidetector miss-detects unvoiced speech very frequently. If this is the case, the
Multidetector would be expected to perform slightly worse than the LLDetectorB.
However, another possibility is that the GEMS data does actually contain some of the
unvoiced information of speech. If this were the case, it would not be at all surprising to
have the GEMS-based detector perform better at lower SNRs. Because of this, the results
of the MSE tests are a bit inconclusive. The only certain conclusion that can be made is
that the GEMS-based detector yielded improved performance over the more traditional
acoustic-based detector in a MSE sense.
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Figure A.4: Average MSE of LLDetectorB (red) vs Multidetector (blue)
(5db to -20db left to right)
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SSNR Measurements:

The SSNR experiments were conducted on the same waveform files as the MSE
experiments. Segmental SNR values were computed for LLDetectorA using speech as
input, LLDetectorB using GEMS data as input, and the Multidetector. A comparison of
the results is depicted in figures A.5, A.6, and A.7 below. As was the case with the MSE
tests, the Multidetector and LLDetectorB with the GEMS input showed an improvement
in performance over the more traditional LLDetectorA using

12
Segmental SNR of LLDetectorA vs LLDetectorB
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Figure A.5: Average Segmental SNR of LLDetectorA (red) vs LLDetectorB (blue)
(5db to -20db left to right)

speech for detection - once again the exception was the -10db case (see discussion
above). The difference between the Multidetector and LLDetectorB was small; the
Multidetector performed a bit better than LLDetectorB at the high 5db SNR value but a
bit worse at the other lower SNRs. This seemed to mimic the results of the MSE tests,
and is likely due to the same causes (see above for discussion).
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Figure A.6: Average Segmental SNR of LLDetectorA (red) vs Multidetector (blue)
(5db to -20db left to right)
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(5db to -20db left to right)
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A.2.3 Conclusion of GEMS Detection

According to the MSE and Segmental SNR data, a GEMS based algorithm is an
improvement over previous more conventional acoustical speech detection systems such
as that used in the baseline system described in chapter 2. That is to say, it seems to be
better identifying regions of speech than the solely acoustic-based detector used in the
baseline Lincoln enhancement algorithm. According to the MSE tests and Segmental
SNR tests, the Multidetector performs a little better than the LLDetectorB at 5db and a
little worse at all other lower SNRs. The better performance at high SNRs could be
attributed to the Multidetector detecting all speech well at high SNRs where as the
LLDetectorB does not; or it could mean that the GEMS data actually contains unvoiced
information. The worse performance at very low SNRs of the Multidetector could be
attributed to the fact that there is so much noise present that the Multidetector miss-
detects unvoiced speech very frequently. If this is the case, the Multidetector would be
expected to perform slightly worse than the LLDetectorB at these severe SNRs.

In addition to quantitative MSE and Segmental SNR measurements described
above, the overall improvement observed using the GEMS data is further supported by
more subjective tests. These subjective tests involved Lincoln Laboratory personnel
listening to the original noisy speech and then comparing it to both the enhanced speech
that used the old acoustic speech detector and the enhanced speech that used the new
Multidetector. In general, both agreed that the enhanced speech that used the
Multidetector sounded a bit less "static-like" than the enhanced speech using the original
acoustic-based detector. Also, it appeared that the enhanced speech with the greatest
MSE improvement (the ones produced by the Multidetector) had the most noticeable
static and popping sound reduction.

A.3 PMIC and GEMS Detection

Because the Multidetector (used above) showed some promise, experiments were
conducted using other sensors to form a decision of where the voiced regions of speech
are present. Specifically, data from a PMIC detector placed in position at the throat was
used since it seemed to be partly immune to acoustic noise while still containing
unvoiced speech information for certain speakers and locations. To conduct experiments
with the PMIC and GEMS, a different corpus was used since PMIC data was not part of
the Lawrence Livermore corpus. The corpus we used was the ASE corpsu.

A.3.1 Inputs Used

For tests involving the GEMS and PMIC in detection, experiments focused on full
spoken sentences that were used in the collection of the TIMIT database (see chapter 2
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for further details). Since this corpus contained no "clean", it was impossible to compute
MSE and SSNR values. Consequently other methods of comparison were employed.

A.3.2 Experiments

Since it was not possible to calculate MSE and SSNR values to judge the
performance of the PMIC, we were forced to examine the actual detection decisions more
carefully and compare them to the recorded waveforms. Thus this was a much more
subjective measure of performance, however it was quite insightful. To test the PMIC in
severe noise environments, we conducted our experiments using the M2H tank
recordings since these had the largest noise level (114 db Sound Pressure Level) and thus
were the most relevant to our research.

To begin, detector decisions were obtained using the Lincoln Laboratory
algorithm (as used in the Lawrence Livermore corpus experiments above). However, a
different detector developed by Licoln Laboratory was used. This detector provided
more efficient and accurate energy computation and speech activity decisions. Thus it
was used to compute detection decisions based upon the GEMS, PMIC, and acoustic
noisy speech recordings.

The first experiment compared the GEMS-based and noisy acoustic speech-based
detection decisions. Figure A.8 contains an example output for the recording "Ten pins
were set in order. The bill was paid every third week." As expected, at such a severe
noise level as the M2H tank environment, the noisy acoustic speech recording produced a
detection decision that was wildly inaccurate: it mislabeled large amounts of background
noise with no speech, failed to detect many segments of speech, and was very unstable
(i.e., the detection decision flipped rapidly from 1, 1 meaning speech detected, to 0, 0
meaning no speech detected, in contiguous regions). Thus it was clear the noisy acoustic
recording was of little use for detection. The GEMS-based detector decision, was very
stable (did not rapidly flip from I to 0), and typically did not mislabel background noise
as speech. However, the GEMS-based detector was unable to correctly identify all the
regions of speech. Specifically, in figure A.8, it was unable to identify the longer-
duration unvoiced regions of speech highlighted by the red box. The first such region
corresponds to the /t/ in "ten"; the second such region, to the /p/ in "paid." Indeed, if one
examines figure 8, one will note that these unvoiced speech regions do not or barely
appear in the time-domain GEMS waveform. Thus it was concluded that the GEMS
recordings can be used to yield detection of voiced speech, however can not be used to
provide accurate detection of unvoiced speech.

The second experiment compared the PMIC-based and noisy acoustic speech-
based detection decisions. Figure A.8 also contains an example of these decisions on the
same recording ("Ten pins were set in order. The bill was paid every third week"). From
the figure, one can see that the PMIC based detector was able to detect the /t/ and /p/
unvoiced sounds that the GEMS based detector was unable to detect. Also one can easily
see that the PMIC detection decision is more stable than the noisy acoustic speech-based
detection decision. When listening to the actual sentence or comparing the PMIC
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detection decision to the GEMS decision, one can also see that the PMIC decision is
much more accurate than the noisy acoustic speech based decision. However, if one
examines the PMIC decision more closely, one will find that it also misdetects some
background noise regions containing no speech. The green boxes in figure 8 are good
examples of this. In this figure, both green boxes coincide with higher level noise caused
by a tank tread clinking sound in the M2H environment. The PMIC detector and B&K
acoustic detector both are affected by these tread sounds and consequently these sounds
are present in the data recordings of both sensors. The GEMS sensor however, is
immune to such a noise since it operates by measuring electromagnetic wave propagation
instead of measuring vibrational motions like the PMIC and B&K acoustic mic sensors.
Here the B&K directly is affected by the loud tread noise since it measures vibrations
through air. The PMIC is affected by the loud tread noise, because it is not completely
immune to all vibrations that travel through the air.

Because the GEMS detector was shown to be an excellent detector of voiced
speech and an unreliable detector of unvoiced speech and because the PMIC was shown
to be fairly reliable in detecting unvoiced speech, we sought to fuse the detection
decisions of the two detectors in a way that would synergistically improve the overall
detection decision. To do this we used the same concepts and layout as used in the
Multidetector used in the GEMS experiments. A diagram of the components of the
speech detection system is shown below (see figure 9). The speech detection system
consists of 3 parts: the PMIC Detector, the GEMS Detector, and the Detection Fuser.
The PMIC Detector takes sampled noisy speech or a PMIC waveform as an input and
produces a 1kHz sampled output that is 1 if speech is detected over a speech frame (that
was 10 samples in duration) and is 0 if speech is not detected. The GEMS Detector takes
in a sampled GEMS signal as input and produces a 1 kHz sampled output that is 1 if
speech is detected over a speech frame and 0 otherwise. The Detection Fuser fuses the
decisions of the two detectors in a way that takes advantage of the more accurate GEMS
voiced decision to determine the unvoiced regions that were flagged by the PMIC speech
detector (see below).

GEMS -+

+-Detecton Decison

PMIC -+ -+

Figure A.9: Detector with GEMS and PMIC decision Fusion

The Detection Fuser creates a final speech detection decision based on the PMIC
Detector and GEMS Detector decisions. Since the GEMS Detector uses the GEMS
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signal as input, it is only able to accurately detect voiced speech. The PMIC Detector
however is able to detect both voiced and unvoiced speech, though it detects voiced
speech less reliably since the PMIC sensor is not as immune to acoustic noise as the
GEMS sensor. Consequently, the Detection I'user uses the GEMS Detector to identify
voiced speech segments and then uses the PMIC Detector to identify unvoiced segments
of speech IOOms on either side of the identified voiced regions (100 ms was chosen since
most unvoiced speech sounds are less than 100ms in duration). Since unvoiced speech is
only present before or after voiced speech, this scheme reduces detection errors in long
periods of "silence" when speech is not present over many segments. The other
advantage of this scheme is that it utilizes the more robust GEMS signal and the less
selective PMIC signal synergistically, thus achieving what neither could alone.

The output of this detector on the recorded sentences "There are more than two
factors here", "The hat brim was wide and too goofy", and "The lawyer tried to loose his
case" is shown in figure A.9. Unlike the GEMS based decision, the fused decision
properly detects the unvoiced /t/ in "two" (see first red box if figure A.9 below) and
trailing /s/ in "factors"(see second red box in figure A.9). The GEMS-based detector
found more of the tails of some of the words and also some of the residual voicing of
vowels. Also of interest to note, the GEMS based detector failed on two instances to
detect some voiced and unvoiced speech when the PMIC and resident microphone based
detectors were able to do so (see green boxes in figure A.9 below). When examining the
sections of speech, it was found that both of these regions corresponded to very loud
tread noise spikes. Consequently this suggests that the GEMS sensor is not entirely
immune to very loud and sudden noises. This could possibly be because the large sound
level during a spike creates such a large sound pressure wave that this wave moves the
GEMS device significantly enough to affect the sensor measurements. Although the
GEMS sensor and detection decision was detrimentally affected by this tread spike, when
combined with the PMIC based detection decision, the fused detector properly detected
most of the two regions of speech following the tread spike onsets. Consequently, it was
determined that the fused PMIC and GEMS detection scheme was superior to previous
schemes explored.

A.3.3 PMIC and GEMS Detection Conclusion

The experiments with the ASE corpus for the M2H environment showed that the
PMIC sensor could be valuable in detection when the PMIC provided unvoiced
information. Furthermore, when combined with the GEMS sensor, the two sensors were
shown to be capable of accurate and robust fused detection. Consequently this fused
detection scheme was used until class based detection of chapter 3 was developed.
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A.4 Detection Conclusion

In this Appendix we discussed all of the work preceding the development of the
multi-sensor speech class detector that is illustrated in chapter 3. In this work, we
showed that GEMS-based detection can yield an improvement for voiced speech
detection in severe noise environments. We also showed that fusing the GEMS detector
decision with the acoustic detector decision yielded improved detection of unvoiced
consonants. Finally, we also explored the use of the PMIC and found that when fused
with the GEMS, the PMIC can create robust detection of voiced and unvoiced speech that
is reliable and stable, provided the PMIC is located to give unvoiced speech information.
Since not all speakers had PMICs located to give unvoiced speech information, this
requirement led to the further detector development discussed in chapter 3.
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