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Abstract

Organic semiconductors have been extensively studied ever since the successful

fabrication of organic light-emitting diodes (OLED).4 2-44 Due to their success, it is

becoming increasingly important to understand the theory behind the properties of

organic materials. In order to exploit all the advantages of implementing organic

materials to construct devices, a detailed understanding of charge-carrier transport in

these materials is necessary to obtain optimal efficiency for device operation. In the

interface-limited model,45 transport is heavily dependent on the characteristics of the

interface. One important property is the distribution of energy states at the interface. Thin

organic films grown from thermal vapor deposition seldom form a smooth interface but

rather diverse morphologies. In here, we analyze the effect of the rough metal/organic

interface on the density of states, aiding in the study of interface-limited charge transport.

We find that the energy distribution due to the electrostatic potential of the

metal/organic charge separation is broad in the interface and gets narrower further into

the bulk. Therefore, we have a broad distribution of states at the interface compared to

the bulk. Charges are trapped in the tail of the broad density of states and hopping from

these interface states into the bulk limits charge transport.

Thesis Supervisor: Marc Baldo
Title: Professor
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Chapter 1

Introduction

The research activity for organic semiconductors is increasing due to their

potential for many applications. For some devices, thin films of an organic material is

used as the active layer. Thin films grown from thermal vapor deposition seldom form a

smooth surface but rather assumes diverse morphologies. The roughness of the surface

varies depending on the deposition conditions. The structure of the rough surface, and

consequently, the physical properties of thin films varies according to the conditions

during growth.'- 6 Therefore, it is important for us to understand the possible effects of the

rough surface on the properties of the organic semiconductor, and provide a link between

the roughness of the surface, characterized by a set of parameters, to the properties of the

organic material. Our main interest is to understand how the rough surface may affect

charge transport. In order to help facilitate the understanding of charge transport in

amorphous organic semiconductors, it is necessary to analyze the physical properties and

effects of the structure. We would like to analyze the electrostatic effects of the rough

surface formed at the metal-semiconductor contact.
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Chapter 2

Rough Surfaces

A thorough explanation of amorphous and crystalline rough surfaces can be found

in Ref. 7. For the most part, this section will simply briefly paraphrase necessary

background information of rough surfaces from that source.

Most surfaces formed in nature are rough, whether it is the kilometer-scale

roughness o f 1 andscapes o n t he e arth o r t he n anometer-scale r oughness of a n array o f

atoms in a structure. The roughness of an interface between two materials is one of the

key features in thin film technologies because it directly affects many physical and

chemical properties of the films. Examples dependent on interface roughness include the

change in the demagnetizing fields and coercivity of thin magnetic films 8,9 and the

change in the electrical conductivity of thin metal films.10 Roughness also affects surface

plasmons," surface second-harmonic generation, 12' 13 chemical reaction rate, and

Brewster angle shifts,1 5 ,16 and etc... Sometimes, the main objective in the analysis of

rough surfaces is to help understand its formation in order to eliminate it. Reduction of

roughness may be desirable in many thin film applications in microelectronic devices and

optoelectronic devices. For example, the roughness of a silicon substrate may affect the

gate-oxide quality 7 and the ohmic contact between a metal and a semiconductor.1 8

Surface roughness may generate additional scattering losses in optical waveguides. 19 For

our purposes, we would like to analyze how the rough surface affects the electrical

properties (the potential) in an organic film.
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A random rough surface can be mathematically described as h = h(r), where h

is the surface height of a rough surface with respect to a smooth reference surface defined

to be the mean surface height and r is the position vector on this reference surface. We

assume there are no overhangs on the rough surface, hence, the height function h is a

single-valued function of the position vector r. The random rough surface h (r) is a

random field, a random (or stochastic) process with a parameter space that is

multidimensional. For a complete description of a random field, one needs to know the n-

dimensional joint distribution function p (hi,h 2 ,...,h,; ,r,...,r, where h,h 2,...,h, are

the random variables corresponding to the set r,,,...,r, different positions on the

surface. We assume the random height field is homogeneous (stationary for a one-

dimensional random process). That is, all the joint probability distribution functions are

invariant under translation of the locations ri, r2,..., r, in the parameter space. Hence, the

probabilities only depend on the relative locations of r, r,..., r . We also assume that the

random height field is isotropic. That is, the joint probability density functions are

invariant under rotation of the constellation of points ri, r2,...,r in parameter space.

Thirdly, we assume that the random height field is ergodic. That is, all the necessary

information about the joint distributions and statistics of the random process can be

obtained from a single statistical sample realization of the process; therefore, one can use

the field average instead of the ensemble average. The ergodic property refers to the

equality between the average of one sample waveform and the ensemble average over the

sample space of all waveforms comprising the random process. To summarize, our

random rough surface is assumed to be a homogeneous, isotropic, ergodic random field.

The height probability density function of the random rough surface is defined to

be p (h), where the probability the rough surface has a height between h and h + dh

above a point r on the mean surface plane is p(h)dh . The distribution function p (h) is

non-negative and normalized such that:

fp(h) dh = 1 (2.1)

9



To describe the properties of the random variable h (r , the height of the rough

surface above the point ro, we need to have some numerical statistics which are

determined by the distribution function p(h). The nth-order moment of the random

variable h is defined as:

mn = E[h" = h" p(h)dh (2.2)
-00

The nth-order central moment of a random variable is defined as:

v,= E[(h-h)]= J(h-h)p(h)dh (2.3)

The expected value operator E[...] is an average operator. It takes the ensemble

average of the expression inside the brackets. The first order moment m, = h is the

average height of the rough surface. For realistic rough surface, the average height, or

mean, h is equal to zero, which implies that mn = vn. The assumption that (h(r)) =0

ensures that the random field h(r) is homogeneous. The symbol (...) represents the

ensemble average. The second order moment of the random variable h is used to describe

the surface roughness:

W= m2 = fh2p(h)dh , (2.4)
-00

where w is called the root-mean-square (rms) roughness or the interface width. Since

h = 0, w is also the standard deviation and w2 the variance. The rms roughness

describes the fluctuations of surface heights around an average surface height, h. The

larger rms roughness, the rougher the surface, given that all other statistical parameters

are kept the same. The third order moment of the random variable h defines the skewness

of the surface heigh, y3, and the fourth order moment defines the kurtosis of the surface

height, y4 . Skewness is a measure of the symmetry of a distribution about a mean surface

level, where a positive or negative skewness means that the asymmetric tail extends out

above or below the mean surface level, respectively. Kurtosis is a measure of sharpness
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of the height distribution function. The kurtosis is less for a roughness configuration

where m ost o f t he s urface h eights a re concentrated c lose t o t he m ean s urface 1 evel a s

opposed to when most of it is concentrated farther away. Kurtosis describes the

randomness of the height profile relative to that of a perfectly random surface (Gaussian

distribution) with a kurtosis of 3.0. For y4 <3.0, the distribution is platykurtic (mild

peak). For y4 > 3.0, the distribution is leptokurtic (sharp peak).

The first order statistics related to the height distribution function only describe

the statistical properties of the individual random variables at each position of a random

field. It does not reflect the connection or correlation between random variables at

different positions of the random field. Two rough surfaces may have the same

distribution function p(h) and rms roughness w but look very different. The height

fluctuation frequencies may be different (the changes in heights occur in different length

scales along the surfaces). In order to characterize the spatial difference of a rough

surface, we need to discuss the second-order numerical statistics, such as the correlation

of a random field h(r) at two different positions ri and r2 . Let us define the joint

distribution probability density function p2 (hh2; rr) of the random variables set

{h(),h(r)}. The marginal distributions p(h,) and p(h2) of P h1,h2;r~,) are equal

for a homogeneous random field.

ph,h ;,r)dh =p(h2)= p(h)

Jp2 (h,h; ,dh 2 = p(h)= p(h) (2.5)

JP2 (Ih, ;)d, dh2 =1
-cc -cc

The joint probability distribution function is related to the correlation between the

heights h4 and h2 at the two different positions r and r2 . If the two random variables h1

and h2 are independent of each other, then p 2 (,h2;r,r)=p(4)p(h 2 ) and h and h2
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are said to be uncorrelated. Now, we define the second-order statistics related to the joint

distribution. The autocovariance function G (, ) is defined as:

G(rr 2 = Er2 h()h(r = f h2P 2 ( rhh ; ,r)dh4dh2  (2.6)
-00 -00

The autocorrelation function R (r-,) is related to the autocovariance function

G(rr2) by:

R (ri, r 
(2.7)

The autocorrelation and autocovariance functions give us some statistics on the

correlation of the heights at two positions r and r2 . Since we assume our rough random

field surface is homogeneous and isotropic, R r-,) and G(r,r2 )will only depend on

the relative positions of r, and r2

G(r,r )=G - =G(p)

(-, ) ( _ )(2.8)
R(rr =R( r- =R p)

The difference between the two positions r and r2 , p, is sometimes referred to

as the lag or slip. The autocovariance function at zero lag ( p = 0 ) is equal to the interface

width squared, or the variance.

G(0) =G( G- )=G(rr= E [h(r)h(r)] = h2p(h)dh = w2 (2.9)

Correlation length, or lateral correlation length, { is defined as the lag at which

1
the value of the autocorrelation function drops by a factor of - of its zero lag value

e

1
R (0) = 1,ie, R (f)=-. The correlation length represents the maximum distance between

e

two points r and r2 on a rough surface where the heights h (r ) and h (r2 ) are still
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considered to be correlated. Note, for p >> , the two heights at two points separated by a

distance p are not correlated and hence independent of each other, lim R (p) =0.

We can also define the height difference correlation function, or sometimes called

the height-height correlation or structure function, H (p):

H (p) = E [h (r)-h(r + p = 2w2 - R (p)) (2.10)

For homogeneous and isotropic random surface, the height difference correlation

function only depends on the magnitude p .

As a consequence of the Wiener-Khintchine theorem,2 0 the power spectrum P (I)

is the fourier transform of the autocovariance function G (p):

P(I) = G(pjekdk, (2.11)

where k is the wave vector in fourier (reciprocal) space. For a homogeneous and

isotropic random field, the power spectrum only depends on the magnitude of the wave

vector k . Note that the average power is equal to the variance:

P7= P(I)dk =G(o)=w2 (2.12)

It can be shown that the random field representing the random rough surface is

continuous, differentiable, and has local integrals in the mean-square sense.7 2 1

So far, we have discussed how to represent random rough surface as a random

field and how to characterize it with some statistical parameters. These were merely

general mathematical tools for random processes. We have not yet presented a particular

model or function to depict the rough surface. In here, we will use a self-affine model to

represent the surface morphology of organic thin films.

A self-affine scaling model is very useful for describing a wide variety of rough

surfaces. 6 This model is based on fractals, which have the property of invariance under a

scale change. A self-similar fractal object is invariant under a similarity transformation.

That is, the object exhibits scale invariance and looks statistically the same even though

13



the scale is stretched uniformly by a factor of e. A self-affine fractal object looks the

same under an affine transformation. That is, the object looks statistically the same even

though the scale is stretched with different factors in different directions.

A rough surface that is described by a single-valued self-affine function has the

following property:

h(x I X21,--- IXn = 6 Cr C 2-Ct2... -,-""h (EI -r2X2,.I---,,nXn) (2.13)

where h is the surface height at a point in n-dimensions and a are the roughness or

Hurst exponents. For one characteristic roughness exponent, we obtain h (x)= "-ah (ex).

The self-affine surface is a fractal object that can be characterized by a roughness

exponent that is related to the fractal dimension of the surface Ds and the dimension of

the embedded space d by d +1- Ds. The roughness exponent (0 s a 1) is a parameter

that shows how jagged the rough surface is. A small or large value of a correspond to a

relatively jagged or smooth surface structure at a scale less than , respectively. The

height difference correlation function of a self-affine surface has the form: 22-25

H(r-r') = [h(r)-h(r')] ) =H(p)=2w2f - (2.14)

where f (x) is a scaling function having the asymptotic property,

x 2", for x << 1
f (x)= 1a for x«1 (2.15)

1, for x >1

Hence, the height difference correlation function has the following asymptotic form:7

W 2 (P)2a ,forp<<
H (p)= (2.16)

2w 2, for p >>

where is the correlation length and w is the interface width. The power spectrum of a

self-affine surface has the form:

P(k)= W2g (gk), (2.17)

where the function g (x) is a scaling function having the asymptotic property,

14



1, for x<l (2.18)
g x , for x >>1

where d is the dimension of the embedded space and a is the roughness exponent. The

power spectrum has the following asymptotic form:

P(k)f= (2.19)
W 2 ( k )-2a-d , for k >>I
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Chapter 3

Self-Affine Roughness Model

We will use the self-affine surface roughness model for our rough

surface/interface. Our random rough surface can be mathematically represented as a

single-valued random field height function h (r) with respect to a mean surface (h (r),

where r is the in-plane positional vector of this mean surface. We assume our random

rough surface h (r) is homogeneous, isotropic, and ergodic. We define P(k), the

roughness spectrum, to be the fourier transform of the height-height autocorrelation

function R (r) = (h(r)h(0)), where (h) is defined to be zero. Since our random surface

field is homogeneous and isotropic, P(k) will only be a function of the magnitude Ik

and the R (r) will only be a function of the position difference p. For self-affine

surfaces, P(k) scales as a power-law:

J w2, for {k «1
P(k)= -2-2 , (3.1)

w2 ( k)a , for k >> 1

where w is the interface width or rms roughness (second order moment of the height

function h, which is also equal to the standard deviation because (h) = 0), k is the

16



magnitude of the wave vector, a is the roughness exponent, and is the correlation

length defined as the lag length value at which the autocorrelation function G(r) drops

1
by a factor of - of its zero lag value G(0).

e

We need a uniform theoretical expression for the roughness spectrum function for

our self-affine fractal surface. The function we will use for the roughness spectrum that

satisfies the scaling behavior is given by the k -correlation model.26 This model has been

used for many rough surface studies.27-34 From the k -correlation model, the roughness

spectrum is:
2 2

P(k)=- W (3.2)
2; (I+ ak22 )

where a is a parameter determined by the normalization condition:

P= f P(k)dk=G(O)=w 2  (3.3)
O<k<k,

where kc =- is the upper cutoff frequency and a, is the lattice spacing of the atoms.
ao

We do not expect any fractal behavior at the atomic level, so the integration limit is at the

frequency cutoff kc. Therefore, a is given by:

S1- (I+ ak 2) y], 0 < a<
a = 2aa 1 (3.4)

In11+ ak 1 , a->

For a > 0 and ao <, we can approximate the parameter, a ~ which gives
2a'

the following expression for the roughness spectrum:

1 2__ __2 _

P(k)= I 242  (3.5)

1+
2a

17



Chapter 4

Poisson Equation

In order to solve for the potential field in the organic material, we need to

introduce Poisson's equation. We will follow the derivation of necessary and informative

background information from Ref. 35.

Poisson's equation is given by:

V2t(r) . (4.1)

In order to solve for the potential (r), where r is a positional vector in space,

we need to have some boundary conditions. However, it is necessary to know what kind

of boundary conditions are appropriate for Poisson's equation to ensure that the solution

will be unique and well-behaved inside this boundary region. The type of boundary

conditions we will be using for our analysis are the Dirichlet boundary conditions, ie, the

potential is specified at the boundaries of the closed region.

We want to show that if we find a solution for a Dirichlet problem, then that

solution is the only solution. We will prove uniqueness by contradiction. Suppose that

there exist two solutions (Di and 12 that satisfy Poisson's equation and the boundary

conditions at S surrounding the region R. Let U = (D - 0 2 , then V2 U = 0 in R and U=O

at S. From Green's first identity, we find:3 5

18



S(UVU+VU-VU)dx =J U an da <> f|VUI2 dx = 0 (4.2)

Therefore, VU = 0, which implies that U is constant in R. Since U = 0 on S, this

means that U = 0 in R ; in other words, the solution is unique, 01 = (2 -

Now that we have Poisson's equation, we would like to somehow utilize it to

formulate our problem. We want to solve Poisson's equation, but we will need to know

how the charges are distributed in the region of interest, i.e., find an expression

for p (r) in the space the organic material occupies. In our semiconductor, the charge

density is:

p r = q [ND n(r)], (4.3)

where q is the elementary charge, ND is the density of organic molecules independent of

position, and n is the concentration of electrons. We assume that the electrons in the

LUMO level of the organic molecules are capable of eventually moving in a way to

maintain equilibrium. The expression used for the charge density of the electrons

influenced by the potential present in the organic medium follows a Boltzmann

distribution:

qOb-r)

n(r)=NDe U (4.4)

where k is Boltzmann's constant, T is the temperature, and the potential (D(r) is chosen

to be equal to zero at infinity (far into the bulk of the organic semiconductor).

Substituting the charge density into Poisson's equation, we obtain the Poisson-Boltzmann

equation:

V 2
(D qN D kT (4.5)

For our boundaries, we will treat the metal side of the metal/organic junction as a

half plane boundary and the other boundary to be at infinity past the half plane. The

potential will be specified to be zero at infinity and V at the metal boundary, where we

19



assume that the metal is a perfect conductor so that the potential is constant throughout

the conductor. The potential V is the measured built-in voltage plus any applied external

voltage. The built-in potential arises because when the metal and organic are brought

together into contact, there will be a transfer of charges (electrons moving from the

organic to rest on the metal surface to form a surface charge density) to maintain

equilibrium of the Fermi level. This displacement of charges will create a built-in

potential V measured at the metal with respect to deep inside the organic semiconductor

(defined to be zero potential). A depletion region near the junction will be primarily

occupied by positively charged molecules due to uncompensated electrons displacing to

the metal side.

Equation 4.5 is non-linear, but it will be easier to solve if we make some

approximations. For large potential, the exponential term on the right hand side can be

assumed to be zero. This is true if we're near the junction and V is large enough. For a -

1 volt built-in potential and at room temperature, the exponential term is very small

~1.6 x 10-17 at the junction. We can approximate asymptotically near the junction, but we

will need to introduce another boundary condition since a zero potential at infinity will

not be able to be satisfied. Hence, we use the full depletion approximation, which

assumes that the organic semiconductor is fully depleted in the depletion region. This

assumes that all the organic molecules within this depletion region of width zd have

uncompensated electrons that displaced themselves towards the metal surface. This

method has been used in many textbooks, 36 and it gives a reasonable approximation for

the potential in the semiconductor.

In the full depletion approximation, the charge density is basically a step function.

Let us define z = 0 to be the metal/semiconductor junction and z = zd to be the edge of

the depletion region. We can neglect the exponential term and our charge density

becomes:

(- r qND, for O Z < Zd (4.6)
0, for zd Z

Assuming first that our metal/semiconductor junction is flat, the Poisson-

Boltzmann equation with boundary conditions is now:

20



V 2 v - -qND

< (x, y, 0)= V (4.7)

't(x, y,zd) = 0

Equations 4.7 is for the potential in the region 0 ! z Zd . The potential for z > Zd

is zero. We've split up the region into two parts. The first region is the depletion region,

where the potential is solved from equations 4.7, and the second region is to the right of

the depletion region, where the potential is zero. Solving the second-order linear constant

coefficients ordinary differential equation, we get a general solution, which is the sum of

the homogenous and particular solutions:

D = ciz+ c2 - qN z2  (4.8)
2e

Applying our boundary conditions, we can solve for the constants:

(D = 49)d _ Z2 4.9)
[2c ) Zd 2c

Since the electric field is equal to the negative gradient of the potential, we find:

[(qNDZ_ d (4.10)
E ( 2E ) Zd I

From Gauss' law, we know that the electric field at z = zd is zero and the field at

z = 0 is equal to the total charge in the semiconductor (with the full depletion

approximation, the total charge in the depletion region). Using one of these boundary

conditions for the electric field gives us the expression for the depletion width:

-2d (4.11)
Zd F; qND

Note t hat V i s n egative r elative t o t he bulk p otential, s o Zd is a real number.

Substituting the expression for the depletion width into the equation for the potential:

(D=- _qND Zd -Z2 (.2
2E

This solution for the potential obtained from the full depletion method

approximates the numerical solution well near the junction and in the depletion region.
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However, if we want to know the potential very near the depletion layer edge or far away

deep into the semiconductor, then we will need to do another approximation. In the

region past the depletion layer, we have small potential and therefore, we can replace the

exponential term in the Poisson equation with:

q(* q(DekT l+-U (4.13)
kT

Poisson-Boltzmann equation is now:

2_q 2NDI V2  kT (4.14)

t'(x,y,z - 00) = 0

Solving the differential equation and matching to the other asymptotic

approximation for large potential:

-~ 'N z

D=Voe2 (4.15)

We've s olved for t he p otential n ear a nd far a way from t he j unction (large a nd

small potential, respectively) for a flat surface. In the next section, we will solve for the

potential for a rough surface junction/interface.
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Chapter 5

Electrostatic Analysis of Rough Metal/Organic
Junction

We want to study the effect of the rough interface at the metal/organic junction on

the field and hence, the energy, in the organic. Let us choose the coordinate system to

have the z -axis to point towards the bulk of the organic semiconductor and the z = 0

plane equal to the mean surface of the rough interface. Representing the rough

metal/organic interface as a random height field h (x, y) with (h (x, y)) = 0, our

boundary value problem is:

V2  qN kT

<) (x, y, z = h(x, y))= V (5.1)

D(x,y,z -+ 00) = 0

Let us first find the potential near the junction. Using the full-depletion

approximation, we have to solve the Poisson-Boltzmann equation with the following

boundary conditions:

23



V2( = -qND
CI e(x, y, z =h(x, y))= V , (5.2)

D(x,=y, z d(x,y))= 0

where from Gauss' Law, d(x,y) =Zd +h(x,y) is the rough depletion edge with

Zd = (d (x, y)) as the mean depletion width and A is a factor that relates the depletion

edge to the rough interface. The mean depletion width zd for the rough interface case is

equal to the depletion width for the flat interface case. Expanding the boundary

conditions:

t(x,y,z=h(x,y))= h"
n. !(5.3)

(D(x,y,z= d(x,y))= Z(Ah)" n D
n= n!

If we assume that our interface is not very rough (the rms roughness is small

enough), we will be able to expand our solution (D using perturbation methods.2837 We

pick the variance of the rough surface w2 to be our perturbation parameter and expand the

solution in powers of e= W2

D(r)= (Do (r)+ c D, (r) (5.4)

The equations for order e':

V( 20 = - qND

(io (x, Y,0)= V (5.5)

D, (X, Y, Z) = 0

The equations for order E':

24



V2q1 =0

dz

W dz Z=Zd

(5.6)

The solution for (Do is simply the solution for a flat surface metal/semiconductor

junction from equation 4.12:

-2e_ V
,where Zd =qND (57

To begin solving equations 5.6, we transform the Cartesian (x,y) space to the

Fourier domain (k,,k,):

d2 -K 0

k (k) dz _O- wh(I)[qND

D (Icz "=- h Ik)
#5 d=- w2 dzZ=Zd

Zd ] (5.8)

=0

where I = (kx, k,) is the wave vector in the lateral direction of z and K 2

the magnitude squared of the wave vector. Solving the differential equation:

(D, (k, z) = A (k)eKz +B(k)e-Kz

Applying the boundary conditions, we find:

S 1 qN Zd
Q~kz w h 9I) dDLsinh(K(z--zd

sinh(Kzd)

= k2 +k,2 is

(5.9)

(5.10)

The solution for D, is the first order correction term to reflect how a rough

surface potential solution deviates from a flat surface solution.
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We have a solution for the potential near the junction. Let us now find the

potential near the depletion layer edge and deeper into the semiconductor. Therefore, our

boundary-value problem becomes:

V2 = 2N a
EkT

< @(x, y, z = h(x, y))= V , (5.11)

S(x, y, z -+ co) = 0

We've added a boundary condition at the metal surface even though the potential

at the surface is too large to agree with the small potential approximation. Adding a

boundary condition at the metal boundary will give us the same solution as equation 4.15

for a flat surface. The solution we obtain will only be valid for the region past the

depletion layer. Expanding the boundary conditions:

00 D") (0)D(x,y,z=h(xy))= h"
nO ! (5.12)

D(x, y, z -> 00) = 0

Similarly t o t he n ear j unction p otential s olution, w e e xpand t he s mall p otential

solution in powers of e= W2

(r)= (Do (r)+ E , (r) (5.13)

The equations for order e:

V20 = -q 2ND
ekT 0

< o (x, y,0) = VO (5.14)

(O (x, y, z -+) = 0

The equations for order e=-:

V 2
1 = 0

I (x, y,0)=_ h(5.15)
W2 dz z

(x,y,z -+ o) = 0
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The solution for (o is simply the solution for a flat surface metal/semiconductor

junction from equation 4.15:

- T
0 = Voe EkT (5.16)

To begin solving equation 5.15, we transform the Cartesian (x,y) space to the

Fourier domain (kx, k,):

d 2 K2_ q 2ND
dz2 ckT

,(I,0)=_ 1 hI =kh(I)K Vq 2 ND 1 (5.17)
W2  dZ z- L ekT

(I , z-+ 00=0

where Ic (kx,k,) is the wave vector in the lateral direction of z and K 2 = kX2 +k 2 is

the magnitude squared of the wave vector. Solving the differential equation:

2+ND - K+q
2N

0Kk z A(Ice -kT +B(k)e K kT (5.18)

Applying the boundary conditions, we find:

2N -2+q 2ND

I (k,z) = h(k) J0 D ek7T (5.19)

The solution for (DI is the first order correction term reflecting how a rough

surface potential solution deviates from a flat surface solution.

We have found expressions for the potential in the organic near the junction and

far away from the depletion edge. The built-in potential in the semiconductor, created by

the displacement of electrons from the organic to the metal, is related to energy by a

factor of q. Therefore, the mean energy of the electrostatic potential is:

(E) = q- E[(Do+ e ,]= q -(E[DO ]+ E [c= (]} (5.20)
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The first term on the right hand side of equation 5.20 is equal to (Do because it is

not a function of a random process. However, the second term has the random process

field h(-) in the expression for (D1.

A random process x(.) is wide-sense stationary if its mean is a constant and its

autocorrelation function is a function of the time difference only (it depends only on the

relative position of the constellation points, not the absolute positions).41 Note that a

wide-sense stationary random process input x(t) to a system with a transfer function

h (t) will have an output y (t) that is also wide-sense stationary. The mean of the output

y(t) is equal to:41

E[y(t)] = E[X(f)H(f)] = pxH(0), (5.21)

where p, is the mean of the random process x(t) and H (f) is the frequency response

of the system. Let Rx (p) be the autocorrelation ofx (t). It is only a function of the time

difference p because that is one of the properties of a wide sense stationary process. The

autocorrelation of the output of the system with input x(t) will be:41

Ry (p) = Rx (p) * h(p) * h(-p) (5.22)

<: Sy (f) = S, (f)IH (f)12  (5.23)

where Sx(f) and Sy(f) are the power spectral densities of x(t) and y(t),

respectively.

Since our random height field h (x,y) is wide-sense stationary and following

equation 5.21, the mean of (D, will be zero. Therefore, the mean energy near the junction

as a function of z is:

(E)= q -ZE[Go+ E[E D,]}=q - - Z)2 (5.24)

We want to calculate the variance in energy in a plane z = z0 , a layer positioned

at zo in t he o rganic. T he flat-surface p otential (Do w ill n ot c ontribute t o t he variance
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because it's not a function of a random process. Therefore, the variance in the tangential

plane as a function of z near the junction will be:

Var[E]=q-Var[eQ 1 ]=q-G,,(0)=q- P (k)d (5.25)
O<\I+<kC

From equation 5.23, the power spectrum of D, is:

ND sinh(K(z-zD) 2

C smrh (KzD)

The power spectrum of h(.), P) I), is from equation 3.5.

Following the same idea for the near junction potential solution, we obtain the

mean energy far away from the junction as a function of z:

(E)=q-{E[o]+E[ei]= q- Ve eNT (5.27)

The variance in the tangential plane as a function of z far away from the junction is:

Var [E] = q -Var [e D, ]=q -GE, (0) = q -f Pc d (k) dk, (5.28)
O<|kI<kc

where the power spectrum of (D is:

2N K+ 2

PI)=P(I)jv q ND e kT (5.29)
0 kT

In Figures 1-4, we plot the standard deviation in the tangential plane as a function

of distance away from the metal/organic interface normalized to the depletion width.

Figures 1 and 3 are plots of the standard deviation near the junction where the potential is

relatively large. F igures 2 and 4 are plots of the standard deviation far away from the

junction where the potential is relatively small. The difference between Figures 1 and 3

and Figures 2 and 4 is only in the value we use for the charge density ND . As we lower

the charge density, the depletion width zd increases but the standard deviation o

decreases.
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Standard Deviation Near Metal-Organic Junction
---...................................... I I

0.2 F

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Distance Away From Junction, Normalized to Depletion Width (z/zd)

0.9 1

Figure 1: Standard deviation near the metal/organic junction calculated from the large

potential approximation (equation 5.25). The values used were: ND = 1026 M 3 ,wlnm

4=0.1 nm, and a = 0.78. Depletion width z~ 2 nm.

Standard Deviation Far From Metal-Organic Junction

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Distance Away From Junction, Normalized to Depletion Width (z/zd)

Figure 2: Standard deviation far away from the metal/organic junction calculated from

the small potential approximation (equation 5.28). The values used were: ND = 1026 M-3,

w =l nm, = 0.1 nm, a = 0.78, and T = 300'K. Depletion width zd -2nm.
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0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Distance Away From Junction, Normalized to Depletion Width (z/zd)

0.9

Figure 3: Standard deviation near the metal/organic junction calculated from the large

potential approximation (equation 5.25). The values used were: ND = 1025 - , w=lnm,

= 0.1 nm , and a = 0.78. Depletion widthz~ 6 nm .

x 10, Standard Deviation Far From Metal-Organic Junction

2.5 F

0.5

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Distance Away From Junction, Normalized to Depletion Width (z/zd)

Figure 4: Standard deviation far away from the metal/organic junction calculated from

the small potential approximation (equation 5.28). The values used were: ND = 102 m-3

w=lnm, f =0.1nm, a =0.78, and T=300*K. Depletionwidth zd ~6 nm.
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Chapter 6

Conclusions

In conclusion, we find that the electrostatic potential formed in the bulk will have

a variance due to the roughness of the interface between the metal and organic

semiconductor. This study on the broadening of energy, or density of states, near the

interface is crucial in understanding interface-limited charge transport.45 The calculation

of charges hopping out of the broad density of states at the interface into the bulk using

Marcus rates is shown in the appendix. The charges hop out of a broad Gaussian

distribution of energy states at the interface to a much narrower Gaussian distribution in

the bulk.45

A problem that we may improve on is the use of equations 4.3 and 4.4 for the

expression of the charge density in the organic. This expression is valid for a non-

degenerate inorganic semiconductor that has all its donors ionized with a position

independent concentration ND . A solution to this problem that may be more applicable to

our case of organic semiconductors is to first assume that the depletion width is of length

a, (average distance between organic molecules). Therefore, the depletion region is fixed

to be only in the first organic layer. The amount of charge that moves out from the

interface layer to the metal is determined by the applied voltage and measured built-in

voltage. To find an expression relating the charge density in the interfacial layer and the

voltage in the organic, we start out with the expression for capacitance:
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=Q e A = qN = EV qc
V d V d

where C is the capacitance, Q is total charge, V is voltage, E is permittivity, A is area,

d is the distance where the voltage is across, q is the elementary charge, N is the total

charge, - and is the charge per unit surface area. The charge density in the depletion

region is given by:

ek, eV,
nl= '+

qa0
2  qa0dr

where n is the charge density, Vbj is the built-in voltage across the depletion region, VA

is the applied voltage across the whole device, a, is the thickness of the depletion region

(one layer in the organic), and dT is the thickness of the device. Note that the second

term will not contribute much for applied voltages around 10 to 20 V and for a device

thickness of about 1000 A with ao ~10 A.

The solution for the potential will be similar to the full-depletion approximation

except that we fix the depletion region to be one layer thick and our depletion region is

not fully-depleted.
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Chapter 7

Appendix

We calculate the current from the rate of charges hopping out of the interfacial

layer into the bulk. The density of states in the interfacial layer will have a Gaussian

distribution with standard deviation o-I and a total capacity of NI. The expression for the

rate of charges hopping into the bulk out of the interfacial layer is:

JJ 0 2 _ B(E-E'-A-2

2ro- e E -EF e 4AkT dEjdEB
l B_ -0 -0 +e kT

where E, and EB are the energies of the transport sites in the interfacial layer and bulk

layer, respectively, c-B is the standard deviation of the bulk Gaussian distribution of

states, EF is the Fermi level, k is Boltzmann's constant, T is temperature, a, is the

average distance between organic layers, q is the elementary charge, 2 is the

reorganization energy between two organic molecules, and A = acqF is the energy shift

of the bulk density of states due to an applied field F . Note that the last exponential

expression in the integrand is the Marcus hopping rate. Using the Fermi distribution, we

know the probability of which energy states are occupied in the interfacial layer given a

Fermi level EF . We multiply this by the rate of it hopping into an assumed-to-be

completely empty bulk layer. Integrating this will give us the current density of interface-

limited charge transport. We start solving the expression:
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~- EB_ EB
2  

2EIEB 2EB(2+A)

jaqN, EI-E e- 4AkT e 2 -B e 4AkTe 4AkT e 4,kT dEBdEj
21 l- -B _T --

note: e-ax2 +bxdx = E e4a
f a

.. 4- 1 2 (EI-(A+A)) 2
,7B

a o q N r r 0 7B 2 00 2 (E l - A - A ) 2 k T a 2 4 k i da=1 T 4BAk)- e e 4AkT e(22kT+uB 2)(42T) dE
2;TU (3B ( 2A B2 +e

2 (E,-A-A)2 I
L2z~~~B (2kT+ )~o~ - kT)

aOqN, f(407B2 1 2 (2AkT+aB 2) dE

2I-,T-BB2 E -EF

L 21raB r(+OBT + ~le kT

We've reduced the double integral to a single integral. This single integral can be

split up into two regions, -oo < EI i EF and EF s E, <oo . Note that the second region

represents the charges above the Fermi level hopping into the bulk. We note that for high

enough temperatures, this second region will dominate, and we can approximate the

integral as being contributed mainly from this region. For low enough temperatures, this

is no longer the case. The contribution of the second region approaches zero (as the Fermi

distribution approaches a step function), and our integral will be mainly contributed from

the first region, or the low temperature region. Let's first solve the expression in the

second region, or the high temperature region:

HIGH T:

(E -A-A) 2 (E 2

T aIqN, ,(4-B27 e - e2(2AkT+ae2 adEJ
2 )7-I-B (22kT+B2) j Ee

Note: -ax 2 +bx=-a x-- +-b
2a 4a

=> -b (AX- A)kT +-2 2B

2a 2 AkT + -B2U
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For EF << - (A -'6

2 -f ( A+A)2 -a0qN, r (4o-B 2 T 2(2AkT+a- 2)
2- o-I-e eL21frajaB 22kT +o ) j

a,2 
((A-A)kT+C-2 )2

2;zo-" (2 kT . e 2k 2T 2 (2AkT+aB2+I2 )(2AkT+a2)

(2kT+20B 2

We simplify the expression and make the approximation that -B is much smaller

than a-, i.e., the Gaussian distribution in the bulk is much narrower than in the interface:

(A-A)aB
2  aB4

0- I 2k)(2AkT+-2 )2k 2T 2 AkT+c-20 U

Notice that the contribution from the high temperature region will go to zero as

E0 goes to negative infinity (T -> 0). When the contribution from the high temperature

region becomes negligible to the contribution from the region -00 < E, < EF, we enter the

low temperature regime:

LOW T: (use when high T approx goes to zero, i.e., EF is no longer smaller than E0 )

aOqN 7r ( 4o.B2Akj E

2if-IuB B(22kT +

(E-A-A)2 2

2(2 AkT+U" - 2 a

2 (A+A)2

a0qN, r (4oB2 2 2(AkT+B2)

2oo-B (B2)

( 2
2AkT+aB

2 +l2 E_- a1
2 (+A)

e 2a 2(2AkT+ af2i ) 2AkT+OaB2+a-

22AkT + B2 +2 E -

(', 2 .Bk +U2 )( F

0Ak2 (AB+ A)
2k+ yB 2 + ,2
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(7. 2(A+A)2

2(2AkT+a2 )(2AkT+-B2 +a 1 2)

2

+ CTB E0,
U



(+A) 2 AkT+2B 2 EF 2 4E 2(2A+)__I_ FI I 221

a(qN 1 B2 2 2 AkT+7'2 2o (2AkT+"B2 2 kT+ og2+ 02

2 rTI B (2AkT +B 2  
±OB2+ 2AT + o7B2(t2 E -+

2 (2AkT+ +B 2 
)F 2AkT+0B 2 

±0 2

Again, simplifying the expression, we obtain:

aOqN AkT

[3-, 7r (2AkT+o-B2)

1 2 2 A kT + a ) E 
2

22) ( E F -2 AkT + oB2
±A))

In conclusion, we have a critical energy that determines the

separation between the high and low temperature regimes.
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