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Abstract

Surface traffic congestion causes significant taxi delays and long queues for takeoffs
at busy airports, increasing operational and environmental costs. These impacts may
be mitigated by optimizing runway and taxiway schedules. In prior research, runway
scheduling algorithms and taxiway schedule optimization models have been developed
independently, but they are closely related in airport operations. This motivates the

development of a fast and efficient algorithm for solving both scheduling problems

simultaneously. While the current surface traffic optimization is mainly based on a

deterministic model, there exist lots of uncertainties in airport operations. These

uncertainty factors can affect airport performance, but their impacts have not been

adequately understood so far.
In this thesis, two different approaches for airport surface traffic optimization

are presented. The first is an integrated approach based on a mixed-integer linear
programming (MILP) model to optimize both taxiway and runway schedules simulta-

neously, while the second is a sequential approach that combines independent runway
and taxiway scheduling algorithms. The two optimization approaches are compared

using various flight schedule scenarios at Detroit airport (DTW).
The second part of the thesis compares two types of control concepts for surface

traffic management. The individual aircraft trajectory-based control uses the optimal

solution of the surface traffic optimization as control inputs, whereas the aggregate
queue-based control maintains the number of taxiing-out aircraft on the ground below

a given departure queue capacity control parameter. These two control concepts

are implemented in the SIMMOD environment with the same flight schedules and

evaluated in terms of various airport performance metrics.
The last part of the thesis deals with the impacts of uncertainties on airport

performance. Through stochastic simulations using SIMMOD, various sources of

uncertainty, such as pushback times, runway exit times, taxi speeds, and runway

separation times, are evaluated using flight schedules at DTW. The simulation results

show that ground delays increase with an increase in uncertainty levels for most

scenarios. However, the surface traffic optimization based on a deterministic model
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can still provide benefits even in the presence of certain types of uncertainties.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Flight delays are recognized as one of the main obstacles to the steady growth of the

air traffic demand. According to the report issued by the Joint Economic Committee

(JEC) of the U.S. Senate, the total cost of domestic air traffic delays to the U.S.

economy was estimated to be about $41 billion in 2007 alone. The JEC report also

stated that 58%, 20%, and 8% of flight delays occurred at the gates, taxiing out to the

runway, and taxiing into the gates upon landing, respectively, while only 15% of the

total delays were airborne delays [72]. Delays on the airport surface increase airline

operating costs and environmental impacts because the amount of fuel burned on the

surface is approximately proportional to the taxi times of aircraft [77,115]. Airport

congestion can also result in increased controller workload and safety concerns [76].

Airport congestion may be mitigated through one of the following approaches: (1)

reorganizing flight schedules to reduce traffic demand during peak periods (demand

management); (2) increasing the airport capacity by expanding airport resources such

as gates, runways, and taxiways; and (3) using available airport capacity more effi-

ciently by improving air traffic operations both on the surface and in the surrounding

terminal areas [123].

Rescheduling flights and expanding infrastructure are both difficult in practice,

and can be expensive. It is also believed that inefficient operations lead to airport

congestion and associated delays [17,109]. Therefore, this thesis focuses on techniques

to improve airport surface operations.
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1.1 Motivation

Airport surface operations include taxiway and runway operations. Traditionally, op-

timization models for taxiway scheduling (determining the optimal pushback times

of departures, gate-in times of arrivals, and passage times of individual taxiing air-

craft at control points on the ground to minimize taxi times) and for runway se-

quencing/scheduling (determining the optimal takeoff sequence and times over each

departure runway to improve the efficiency of runway use) have been independently

developed, and then linked as separate modules [16,59,92]. However, since the two

elements of surface operations are closely related at an airport, greater benefits may

be achievable if they are considered simultaneously [8].

Several optimization models have been developed to calculate optimal taxi sched-

ules, subject to operational and safety constraints. These optimization models have

shown the promise of taxi times savings when applied to busy airports. However, they

are currently not amenable to real-time implementation during peak times because

of their slow computational performance [85,104,107]. They also assume that either

a scheduled takeoff time or a target time for departure is given by another tool such

as a Runway Scheduler [16] or a Taxi-out Time Estimator [59].

The runway has been identified as the main bottleneck in airport operations [69].

Runway scheduling algorithms have been proposed for maximizing runway through-

put, considering wake vortex separations depending on aircraft weight classes [4,13,

19]. These approaches focus on the runway sequencing and separation between air-

craft only, but do not consider the interaction with taxiway conditions and the impact

of arrivals on the taxiway and ramp areas, when scheduling the optimal takeoff times

of departures. The optimal runway schedule without accounting for taxiway oper-

ations could potentially have an adverse effect on taxiway operations, such as long

waiting times in the departure queue [59].

The main objective of this thesis is to develop a fast and efficient algorithm for

both runway and taxiway scheduling by bridging the gap between the two scheduling

problems. The system-optimal solution from a unified model of airport operations
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may have more benefits, compared to the solution obtained by sequentially connect-

ing the separate optimization models. Similarly, when optimizing both runway and

taxiway schedules, the combined optimal solution from an integrated approach may

be better than the solution from a step-by-step approach, in which the runway sched-

ule is optimized first, and then the taxiway schedule is optimized with the target

takeoff times determined in runway scheduling, because the runway schedule can be

affected by taxiway conditions. To use a proposed scheduling algorithm in practice

as a decision support tool, its computational performance and tractability are also

important characteristics.

From a practical point of view, following the optimal runway and taxiway sched-

ules precisely is not realistic at the present level of technology because the time-based

control of individual aircraft trajectories using the schedule optimization algorithm

requires advanced equipment and procedure changes. This microscopic control ap-

proach is suitable for a long-term strategy to accommodate the increased air traffic

demand in the future. To mitigate the current surface congestion, we need a near-term

control approach. Some departure control methods like N-Control have been devel-

oped and tested at several busy airports with little procedure modification [95,116].

These macroscopic methods manage the traffic congestion level on the surface below

a threshold by holding some departures at gates.

While planning the efficient airport surface traffic movements, it is also necessary

to account for uncertainties. Due to the presence of considerable uncertainty in flight

readiness, taxi processes, and runway operations, the actual movement of taxiing

aircraft can be significantly different from the predictions of optimization models [26].

Consequently, the actual ground delay is usually greater than the estimated delay from

the models, because the optimization approaches typically deal with deterministic

settings. This tendency may also result in unnecessarily excessive gate holding when

the optimization models are applied [87].

Researchers studying airport system management and planning have recognized

the presence of uncertainty in airport operations and its importance, but detailed

investigations of the uncertainties at the microscopic level have not been conducted
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to date. It is only in recent years that the variability in the movement of taxiing

aircraft has been analyzed using flight data [10,28,29]. Moreover, it is difficult to

develop a stochastic optimization model because a large number of scenarios can

exist even for a small number of flights [26].

Over the past few decades, many simulation tools have been developed for model-

ing airport operations and analyzing the related statistics [39]. Among them, micro-

scopic simulation models like SIMMOD have been enhanced to simulate the movement

of individual aircraft [98]. These models can also simulate stochastic processes using

random variables, to reflect the uncertainty in airport operations. We therefore pro-

pose to use a simulation tool (SIMMOD) for generating various scenarios related to

the uncertainty, such as pushback time and taxi speed, and investigating the impacts

of these sources of uncertainty on delays.

1.2 Airport taxi processes

When a departing flight is ready to pushback and receives pushback clearance from

ramp control, the aircraft is pushed out of the gate area. After its engines are started

and the towbar is disconnected, a guide crew member confirms that the ramp area is

clear to taxi. The pilot then contacts ground control to get taxi clearance and routing

to the active runway. In case that there exist spots between gates and taxiways at

the airport, the pilot first contacts ramp control to get taxi clearance up to a spot

near the gate. On reaching the spot, the pilot contacts a ground controller and gets

clearance for taxi. Once taxi clearance is received, the pilot starts taxiing the aircraft

out with visual checks. In some cases (for example, long taxi routes), single engine

taxi procedures may be used for reducing fuel burn and emissions. Depending on the

airport layout, taxiing aircraft may have to wait before crossing active runways. On

reaching close to the departure runway, the pilot switches frequency to local controller

channel and follows instructions from local control regarding takeoff. An aircraft may

experience delays before its takeoff if there are many departures ahead of it in the

departure queue.
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Figure 1-1: Airport taxi processes

Arriving aircraft follow a similar process, with the order reversed. After touching

down on the runway, the aircraft decelerates to taxi speed and vacates the runway.

To reduce the runway occupancy time and maximize runway capacity and safety,

many airports operate high-speed runway exits. After exiting the runway, the pilot

contacts ground control for taxi-in instructions, completes the "after landing taxi"

checklist, and calls the local ramp control to confirm the arrival gate assignment and

occupancy status. If the arrival gate is occupied by another aircraft, the arrival may

have to wait at a remote location until the gate is clear. After receiving clearance to

the gate, the aircraft moves into the ramp area and stops at a designated point for

gate access [211. These taxi processes are illustrated in Figure 1-1. It is important to

note that while taxiing, departures and arrivals move on the surface simultaneously,

share airport resources such as terminals and runways, and interact with each other

at the airport.

Many researchers have been developing new operating concepts and procedures

to enhance the efficiency of the airport system in preparation for increasing air traffic

demand. It is expected that in the near future, taxi operations will experience a shift

from voice to data link. Instead of voice communications between controllers and

pilots, taxiing aircraft on the ground will be guided by time-based or speed-based

taxi clearances via data link at various traffic flow points throughout the taxi routes

to regulate the required precision of aircraft movements on the ground. This new

surface traffic management system and its operating concepts can be realized with

the support of advanced technologies such as surface maps, head-up and head-worn

displays, four-dimensional trajectory (4DT)-based guidance algorithms, and traffic

conflict detection and alerting systems [101]. These technologies will improve the
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accuracy of prediction of aircraft movements on the ground, and make it possible to

control the surface traffic more efficiently without loss of safety.

1.3 Literature review

Previous research about the aircraft movement scheduling in airport operations can

typically be divided into two categories: runway scheduling and taxiway scheduling.

Most of the optimization models reviewed in Section 1.3.1, 1.3.2 and 1.3.3 are based on

deterministic settings. Literature dealing with the uncertainty in airport operations is

reviewed in Section 1.3.4. These uncertainties can be modeled by simulation tools at

a microscopic level. Therefore, we also review the general characteristics of air traffic

simulation tools in Section 1.3.5, in order to investigate how airport and airspace

simulation tools such as SIMMOD can be used in our research.

1.3.1 Runway scheduling

Various approaches have been proposed for solving the aircraft sequencing and schedul-

ing problem for runways and terminal areas. The goal of runway scheduling is to find

the optimal takeoff or landing schedule that simultaneously achieves safety, efficiency,

and equity, which are often competing objectives [5,25,32]. In addition to optimizing

multiple objectives, modeling the runway scheduling problem to find the optimal so-

lution in a reasonable amount of time has remained a challenge. One reason for this

computational hurdle is that most runway scheduling models are, from a theoretical

perspective, inherently hard to solve [19]. As a result, most practical approaches rely

on heuristic or approximate algorithms to obtain "good" solutions within reasonable

computation times [4,25,38].

Considering limited flexibility in reordering and fairness to airlines, Dear proposed

the Constrained Position Shifting (CPS) method, in which deviations from the First-

Come, First-Served (FCFS) order are limited [40]. Based on the CPS approach, a

heuristic algorithm for single runway scheduling was presented. This algorithm con-

sidered separation requirements and the maximum position shift (MPS) parameter,
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enforcing the constraint that an aircraft cannot be shifted by more than this parame-

ter from the FCFS order [41]. Later, a variety of scheduling algorithms using the CPS

concept were evaluated and statistically analyzed under different scenarios [46,96].

Some researchers have modeled the aircraft sequencing problem as a job shop

scheduling problem by regarding runways and aircraft as machines and jobs, respec-

tively [19,23,24,102]. However, due to separation requirements between aircraft, the

processing time of a job on a machine depends on the previous job on the same ma-

chine. Therefore, the aircraft sequencing problem is a special case of the job shop

scheduling problem, with sequence-dependent processing times and time windows.

Psaraftis [102] incorporated the CPS concept within a dynamic programming recur-

sion for solving the aircraft arrival sequencing problem at a single runway as a special

case of the job shop scheduling problem. Although the problem could be solved in

polynomial time, time window restrictions for landing and precedence relationships

among flights were not taken into account. Venkatakrishnan et al. [124] modified

Psaraftis' formulation in a heuristic manner to consider the earliest and latest times

when they investigated the separation times observed between landings at Boston

Logan airport (BOS). Trivizas [122] proposed a dynamic programming approach to

compute the optimal CPS landing sequence, but time window restrictions and prece-

dence relations between aircraft were not considered.

There have also been several attempts to apply integer programming techniques

to the problem. Bianco et al. [23,24] adopted a job shop scheduling view for the

aircraft sequencing problem and solved the single runway landing problem using a

Mixed-Integer Linear Programming (MILP) model. Abela et al. [1] presented a binary

mixed integer formulation of the single runway aircraft landing problem, together with

a heuristic based on a genetic algorithm. Beasley et al. [19,20] extended this MILP

model to the case of both single and multiple runways. With the integer programming

method, they could reflect constraints such as time windows, precedence relations, and

limits on the maximum number of position shifts, but the solution times were often

too long to utilize the method as a real-time decision support tool. Ernst et al. [45]

developed a fast simplex-based lower-bounding method for the aircraft scheduling
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problem and used it for solving single and multiple runway problems with a heuristic,

as well as with an exact branch-and-bound method.

Bayen et al. [181 formulated the aircraft sequencing problem as a single machine

scheduling problem and presented approximation algorithms to alternatively mini-

mize the sum of delays and the landing time of the last aircraft in the sequence. The

approximation algorithm was slower than a heuristic algorithm, but provided guar-

antees on sub-optimality and performed more robustly for a range of sequences than

a greedy heuristic algorithm [108].

Recently, Balakrishnan et al. [13,14,15,33] posed the runway scheduling problem as

a modified shortest path problem on a network and solved it with a dynamic program-

ming algorithm under the CPS framework. They showed that their approach could

handle operational constraints that may arise in practice, and that its computation

time was sufficiently short to enable real-time implementation. This approach was

extended to the problem of runway scheduling with a variety of objectives [82,83,84].

While most of the algorithms mentioned above were basically developed for ar-

rivals, there has been less research focused on the departure runway scheduling prob-

lem. The dynamic programming-based approach to sequencing landing slots devel-

oped by Balakrishnan et al. could be applied to departure scheduling with little

modification [14,15,82]. MILP models to optimize the sequence and schedule of de-

partures were also proposed for Dallas/Fort Worth airport (DFW), considering its

local features such as multiple departure queues and runway crossings [60,61,89].

Anagnostakis et al. suggested a two-stage approach to solving the departure se-

quencing problem where the first stage determined a departure sequence based on

aircraft weight classes only and the second stage assigned individual flights to the se-

quence [3]. This approach was extended to the stochastic departure runway planning

problem to obtain more robust sequences in the presence of uncertainties [119].

1.3.2 Taxiway scheduling

There have been several efforts on improving the efficiency of airport surface opera-

tions, mitigating congestion level on the taxiway and ramp area, and reducing taxi
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times, fuel burn, gas emissions and noise level on the ground. As part of the de-

velopment of the Departure Planner, there were comprehensive discussions on air

traffic flow restrictions in the terminal area and potential control points for surface

operations [49]. Based on these discussions, runways were considered as the limiting

factor for airport capacity [69], and taxi-out times were estimated using a queuing

model [68,103].

Simaiakis and Balakrishnan developed a predictive queuing model to estimate the

taxi-out times from gates to the departure runways by including the effect of taxi-

way interactions [114]. They also used this model to evaluate the potential reduction

in taxi times, fuel burn and emissions from queue management strategies [115]. In

this control approach, the traffic flow on the surface was managed in an aggregate

manner. Field tests at BOS airport demonstrated that the departure control strategy

based on this queueing model could achieve significant benefits in the current opera-

tional environment with minimal procedural modifications and additional controller

workload [113,116].

As an alternative approach to managing the surface traffic on the basis of indi-

vidual aircraft, on the other hand, some researchers focused on the development of

the optimization algorithms to solve the Aircraft Taxi-scheduling Problem (ATP) [16,

85,104,117,125]. The objective of the ATP problem is to minimize the taxi times of

individual flights and mitigate traffic congestion on the surface, subject to operational

rules and safety concerns. The optimization model for this problem determines the

optimal times for each aircraft to leave its gate or runway exit and reach significant

control points along its taxi route, while considering the movements of the other

flights on the ground. For minimizing taxi times, either a gate-holding strategy or

alternative taxi routes are generally used. Solving this problem corresponds to a mi-

croscopic approach to surface traffic management, which controls individual aircraft

trajectories on the surface. Such an approach uses a node-link network model to

represent the airport layouts.

Some prior approaches for the airport surface traffic optimization include Dynamic

Programming-based taxi route optimization using Dijkstra's algorithm [34] and Time-
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Dependent Shortest Path techniques [121]. Visser and Roling [107,125] also proposed

a MILP model for a taxi movement planning tool. However, most examples demon-

strated in these efforts were limited to ideally modeled, small size network models,

and were not amenable to be used as a real-time decision support tool.

Several researchers have studied surface traffic optimization problems using ac-

tual airport models and flight schedule data. Smeltink et al. [117] developed a MILP

model to determine the movement of taxiing aircraft and meet basic safety and op-

erational constraints for simulations of the Amsterdam airport node-link model, us-

ing rolling horizon algorithms to accommodate uncertainties. The model, however,

had long solution times and did not consider some factors such as runway occu-

pancy times and safety constraints. Roling also tested his taxi planning system

based on the MILP model with realistic peak day flight schedules at Amsterdam

Airport Schiphol (AMS) [1051 and Hartsfield-Jackson Atlanta International Airport

(ATL) [106]. Rathinam et al. [104] improved Smeltink et al.'s MILP model and ap-

plied their approach to simulations at DFW airport. They tried to consider as many

operational constraints as possible, including the aircraft types for separations on

the taxiway, but the model, tested for the real-world scenarios with departures only,

showed long computation times for high-density traffic. Their model was recently

extended for solving a Multiple Route Aircraft Taxi Scheduling Problem (MRATSP)

by introducing routing decision variables [94].

Balakrishnan and Jung [16] proposed an Integer Programming (IP) formulation

for optimizing surface operations at DFW airport by adapting the Bertsimas-Stock

Patterson formulation for the Air Traffic Flow Management (ATFM) problem [22].

Through simulations with actual DFW airport data, they evaluated two strategies for

improving the taxi times: controlled pushback (gate-holding strategy) and taxiway

reroutes. This model improved the formulation for the surface traffic optimization and

its computational performance, but did not account for several operational restrictions

such as overtaking constraints and collision avoidance at intersections. This model

was further improved by taking these restrictions into account [85]. By dividing

long taxiway links into several pieces and limiting their capacity up to one aircraft,
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overtaking on the taxiway could be prevented. Moreover, safety constraints such as

head-to-head collision avoidance and head-to-tail collision avoidance on the ground

were added to the model. In order to make the model more practical, existing flights

that were already moving on the ground at the beginning moment of the optimization

were also included in the model as parameters. However, this model showed poor

computational performance at high density traffic because a number of variables

were generated by link segmentation for the overtaking restriction. Frankovich [51]

applied a similar IP model to historic data at DFW and BOS airports and showed

significant benefits with good computational tractability, although the optimization

model was based on simplified network graphs for the airport layouts and did not

consider overtaking constraints on the surface.

As an alternative approach, heuristic methods have been applied, exclusively by

using Genetic Algorithms (GAs). GAs do not guarantee the optimality of the solu-

tions, but show shorter solution times, which can sometimes compensate for the sub-

optimality. In the GA approaches, timings and routings of the aircraft ground traffic

are optimized to avoid conflicts using crossover and mutation operators [56,57,58,100].

A two-phase approach based on the genetic algorithms has also been investigated,

which considers the runway sequencing first and the ground movement in the second

stage [42,43].

Algorithms for taxiway scheduling should reflect the dynamic nature of the airport

system [8]. When the algorithms to solve the ATP problem are implemented in

the real situations at airports, they typically follow a rolling horizon procedure. In

other words, the prediction of aircraft taxi schedules is periodically updated by re-

optimization with new information about the next planning horizon. The use of a

rolling horizon method can not only accommodate the inherent dynamic nature of the

system, but can also reduce the computational complexity of the ATP problem [1171.

In addition, we may obtain more robust taxi schedules since some uncertainties in

the taxi process are removed as time goes on. However, we cannot ensure that the

solution from a series of local sub-problems is the global solution obtained by solving

the whole problem at once.
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In the rolling horizon problem, it is important that the time window for opti-

mization (the planning horizon) is set within a reasonable range, accounting for both

global optimality and computational performance. If the time window used for opti-

mization is too short, we may obtain myopic short-term solutions that do not consider

the taxiing aircraft in the next time window. The use of a too large time window

may need a significant computation time to find an optimal solution [36]. Practical

implementations use 15 minutes as a typical horizon, taking the average taxi time

and computational feasibility into account [86,113,117].

1.3.3 Integration of planning tools in airport operations

Runway and taxiway scheduling in airport operations cannot work in isolation because

they are closely linked with each other [9]. In general, however, the optimization

models embedded in these planning tools have been developed independently. If the

taxiway schedule is optimized through the integration of the sequence and schedule

of departures and arrivals over runways, more benefits would be expected. However,

research about this integration has not been done much so far due to its complexity [8].

Departure sequencing is sometimes included in the optimization models for taxi-

way scheduling [36,42,43,76]. In this integrated modeling approach, however, the

target times of departures are given, and the models just ensure that the depar-

tures satisfy wake vortex separation requirements. Furthermore, the proposed models

mainly focus on minimizing the overall taxi times, rather than optimizing the takeoff

times as well.

Instead of optimizing different types of operations simultaneously, coordinating

the separate planning modules has also been suggested [16,37,51,74,89,90,92]. In this

approach, the runway sequence and schedule is optimized first, and taxiway scheduling

is then performed using the optimal takeoff times. Such sequential planning makes

it possible to connect the independent optimization components in the integrated

system with common data.

Spot And Runway Departure Advisor (SARDA), which NASA has developed to

improve the efficiency of surface operations through Air Traffic Control Tower (ATCT)
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advisories, also follows the sequential approach [74]. The SARDA scheduler is based

on the Spot Release Planner (SRP) [89,90], a method to provide metering advisories.

SRP is a two-stage algorithm. The first stage is a Runway Scheduler (RS) [61,93]

which provides the optimal runway schedule including takeoff times for departures

and crossing times for arrivals. The second stage determines optimal release times

from assigned spots or gates to meet the optimal departure schedules. The tactical

gate hold method using SARDA were tested for the east side of DFW with various

traffic scenarios both in an automated simulation environment and human-in-the-

loop (HITL) experiments, and the results showed significant reduction in taxi delay

and fuel consumption without increasing controller workload [63,64,65]. Fast-time

simulations at different airports such as Philadelphia International Airport (PHL),

Charlotte-Douglas International Airport (CLT) and Los Angeles International Air-

port (LAX) also demonstrated that the SARDA concept could provide substantial

benefits at these airports as well [11].

1.3.4 Analysis of uncertainties in airport operations

In general, there is considerable uncertainty in airport operations. The uncertainty

arises from differences in flight readiness, pushback processes, taxi speeds, pilot-

controller communications, etc. Irregular events such as mechanical problems and

safety incidents also contribute to uncertainty. These factors can produce variability

in the earliest possible time of pushback, departure sequence, takeoff/landing times,

passage time at each intersection on a taxi route, crossing time at a departure/arrival

fix, and departure/arrival spacing [26].

Analysis of surveillance data using the Surface Operations Data Analysis and

Adaptation (SODAA) tool has shown the impacts of uncertainty on airport surface

operations [10,28,29]. This research demonstrated the variability observed in current

surface operations, specifically runway occupancy times, taxi times around corners,

time to reach runway crossings, runway crossing times, and taxi paths actually used.

The variability in the actual movements of taxiing aircraft may also make it hard to

follow planned four-dimensional trajectories (4DTs) in the future.
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Statistical approaches using queueing theory or regression techniques can be used

to better reflect uncertainty [73,114]. Particularly, in the prediction of taxi times,

the variability in the unimpeded taxi-out time can be taken into account using the

expected value and standard deviation [115]. When the pushback time is actively

controlled, the queue-based aggregate model shows a higher taxi-out time, quite close

to the actual value, compared to the individual flight trajectory-based optimization

model for taxiway scheduling. This difference arises because the optimization model

is not able to appropriately account for uncertainty [87].

Stochastic optimization models of airport operations are relatively few in number.

A probabilistic approach was introduced in [26], but required the enumeration of

a large number of scenarios for representing the variability. Gotteland et al. [58]

modeled the aircraft taxi speed uncertainty as a fixed percentage of the predefined

speed in their GA approach, but other factors such as pushback times were still

assumed as deterministic. Most recently, Anderson et al. [6] included uncertainty in

their formulation for taxiway scheduling, but their MILP model was tested only for

a simple taxiway topology because of its complexity. Their optimization program

considered the uncertainty in aircraft taxi speeds, gate pushback times, and stopping

times in the constraints in the form of Gaussian distributions, and determined the

optimal flight schedules to minimize the probability of constraint violation, as well as

the total taxi time.

Several researchers have focused on the departure runway scheduling in the pres-

ence of uncertainties because the perturbations accumulated from various uncertainty

factors in the airport taxi process manifest themselves at runways, which are the main

bottleneck to determine the airport capacity. Solveling et al. [118,119] developed a

stochastic runway planning model addressing the uncertainties from departure push-

back delay, taxiing delay, and arrival prediction error by extending the two-stage

deterministic algorithm for runway operations planning proposed by Anagnostakis et

al [3]. In addition, the Integer Programming (IP) model for the airport operations

optimization problem proposed by Frankovich was also extended to incorporate the

key uncertainties in runway availability and in the earliest possible runway times of
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flights [51].

Instead of developing the stochastic optimization model, Gupta et al. [62] eval-

uated the impacts of uncertainty on a deterministic model for runway scheduling.

They tested their MILP model with various traffic conditions and different levels of

uncertainty in earliest readiness for takeoff or arrival crossing, and showed that the

deterministic approach could achieve better performance than a FCFS policy, even

in the presence of uncertainty.

1.3.5 Airside simulation models

Many simulation tools have been developed for the analysis of airport airside oper-

ations. These models can be categorized as macroscopic or microscopic, depending

on the level of modeling detail. Macroscopic models are mainly analytical in nature

(e.g., FAA Airfield Capacity Model, DELAYS) and cover the operations at runways

and final approaches. They can be used to compute the airport capacity and the

cost of flight delays for policy analysis, cost-benefit studies, and approximate traffic

flow analysis. On the other hand, the microscopic simulation models reflect individ-

ual aircraft movements and conflicts with other aircraft, and deal with more tactical

issues in runway and taxiway operations, as well as in terminal area airspace. These

models are built based on a discrete-event simulation approach, where system states

change only at the moments when certain events occur. Examples of such tools are

SIMMOD, TAAM, The Airport Machine, RAMS, and HERMES. This type of sim-

ulation software can be used for the detailed traffic flow analysis, as well as for the

preliminary design of new airport layout and procedure. Most microscopic models

represent the airfield and airspace as a network of nodes and links, and aircraft in the

simulations follow prescribed paths on this network [39,97,98]. Time-based simulation

models like VTASIM have also been developed to represent dynamic movements of

aircraft, such as changes of aircraft speed [12,1211.

SIMMOD is the most well-known airspace and airfield simulation model, capable

of calculating airport capacity, flight travel time, delay and fuel consumption [2,7].

This tool can build airspaces and airports from input data, simulate detailed traffic
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flows, and generate reports of all outputs needed for the study. The input data

consisting of aircraft, airspace, airfield and event information address ATC policies

and procedures, physical layouts for airport and airspace, and flight schedules. For

the analysis of simulation results, SIMMOD provides detailed outputs for each flight,

and the related statistics. Output data include aircraft travel times, traffic flows at

specific points, capacity, delays and their reasons, and fuel consumption.

SIMMOD has been enhanced under the FAA's funding and validated using a

number of case studies for real airports and airspaces [44,52,53,91,1201. This tool can

be used to plan potential improvements by playing out alternatives in operations,

technologies, or facilities through fast-time simulations. It can help make decisions at

the tactical and strategic levels, and improve decision-making. Case studies include

changes in airport layouts, runway operations or airfield ground operations, terminal

traffic estimation, runway occupancy time estimation, and multi-airport systems like

the New York area [44,91,120].

SIMMOD also supports stochastic simulations through repeated runs with random

seeds. In order to generate realistic and statistically significant results from given in-

puts, it is necessary to run numerous iterations with randomized variables for a single

data set. The random variables available in airport and airspace simulations include

gate occupancy times, injection times of multiple arrivals and departures, takeoff and

landing roll distances, airspace separations, delays, pushback or power-back times,

runway crossing times, and slot window times. This function has been previously

used in several case studies, including the evaluation of optimization algorithms to

minimize air traffic delay costs [53,54,67,80,81].

SIMMOD can accept input parameters that are probabilistic quantities and cap-

ture the impacts of uncertainty on the chosen performance metrics. This capability

enables us to study the effects of uncertain factors in airport operations on ground

delay.

32



1.4 Contributions of this thesis

This thesis focuses on developing optimization models for airport surface traffic man-

agement, and analyzing the effects of different flight control approaches and sources

of uncertainty on airport performance. The main contributions of this thesis include:

1. The development of two potential architectures for optimizing runway and taxi-

way schedules: a unified optimization model and a sequential approach connect-

ing independent optimization modules.

2. The analysis of the impact of surface traffic optimization on airport performance

metrics using various traffic scenarios at a busy airport with multiple runways.

3. The development of a fast-time air traffic simulation model using SIMMOD for

observing how the proposed optimization models work in current operational

environment.

4. The comparison of two departure control approaches for surface management:

aggregate queue-based control and individual aircraft trajectory-based control.

5. The analysis of the effects of uncertainty sources in airport operations on airport

performance through stochastic simulations using SIMMOD.

6. The investigation of the robustness of deterministic surface traffic optimization

in the presence of uncertainty through stochastic simulations using SIMMOD.

These contributions are briefly described in the following sections.

1.4.1 Airport surface traffic optimization and simulation

This thesis proposes two airport operations optimization models for taxiway and run-

way scheduling. First, we propose a unified MILP model to optimize both runway

schedule and taxiway schedule simultaneously. This optimization model is designed

to minimize both runway delays and total taxi times by controlling pushback times at

assigned gates and passage times at intersections on taxiways, while keeping various
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operational constraints and safety concerns in surface traffic operations. The formu-

lation is built based on a node-link network model that represents the airport layout

including gates, taxiways, and runways. We also introduce a sequential approach that

coordinates a runway scheduling algorithm with a taxiway scheduling model harmo-

niously, similar to approaches suggested by prior researchers [16,37,51,74,89,90,92].

In this optimization method, we first estimate the taxi-out times of departures, then

determine the optimal takeoff sequence using a runway scheduling algorithm, and

finally optimize the detailed taxiway schedule of each aircraft using a separate MILP

model.

We compare these two approaches to optimizing airport surface traffic operations

using actual flight schedule data at Detroit airport (DTW), which has multiple run-

ways and requires careful control on the ramp areas around terminal buildings. We

evaluate the performance of the optimal solutions and their computational properties

in order to gauge which optimization approach is more suitable for real-time decision

support tools at current traffic levels.

These surface traffic optimization methods are also applied to high density traffic

scenarios expected to arise in the future. We compare the two optimization ap-

proaches with respect to various metrics representing airport performance, and assess

the benefits of the gate-holding strategy for departure planning. For the sequential

approach, we test various runway scheduling algorithms having different objectives

(e.g., maximizing runway throughput and minimizing runway delays) to analyze their

benefits compared to the current discipline on a FCFS basis and investigate their im-

pacts on the eventual airport performance after taxiway scheduling. The effects of

air traffic demand characteristics such as aircraft fleet mix ratio and demand fluctua-

tion are also analyzed through comparisons of the optimization results from different

traffic scenarios.

We also implement fast-time simulations using SIMMOD to evaluate the proposed

optimization models. From a control point of view, the SIMMOD simulations are

similar to current airport operations based on voice communications between air

traffic controllers and pilots, because flights can be controlled only at several entry
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points into the system like gates and arrival fixes, and not at every intersection point

on the route. Through the SIMMOD simulations, therefore, we can observe how

the optimization models work in current operational conditions. We first validate the

simulation model with the historic flight schedule data, and then extend the fast-time

simulations to evaluate various optimization cases for high demand scenarios.

1.4.2 Departure management strategies

There are two possible approaches to surface traffic management: individual aircraft

trajectory-based control and aggregate queue-based control. This thesis compares

these two different departure control approaches. These control approaches are im-

plemented with the same traffic scenarios for comparison and evaluated in terms of

various airport performance metrics. The simulation results tell us that at the high

traffic level, the trajectory-based control approach can provide significant taxi time

savings even in the current operational environment controlling pushback times at

gates only, although the workload of ramp controllers may increase due to aggressive

departure control. On the other hand, it seems that the amount of taxi time savings

from the aggregate queue-based control is dependent on the capacity limit in depar-

ture queues. For the same flight schedule data, therefore, we conduct the fast-time

simulations with a range of queue capacity control parameters and analyze the effects

of the control parameter.

The gate-holding strategy commonly used in these departure control methods can

cause gate conflicts between a gate-held departure and an arriving aircraft assigned to

the same gate. We analyze the frequency of gate conflicts in a given traffic scenario and

investigate its impacts on surface traffic. We also suggest several possible strategies

to minimize the gate conflicts when a departure control approach is applied.

1.4.3 Impact of uncertainty on surface operations

Finally, this thesis uses stochastic simulations to evaluate the impacts of uncertainty

on airport performance. We first identify various sources of uncertainty in airport
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operations that influence the airport system performance. These uncertainty fac-

tors, such as pushback times, runway exit times, taxi speeds, and runway separation

times, are embodied in the SIMMOD simulations using random seeds and probability

distributions. We investigate the impacts of these uncertainties on ground delay by

running fast-time simulations with peak-demand flight schedules at DTW. Through

Monte Carlo simulations for each uncertainty factor, we quantify how the ground

delay changes depending on the degree of uncertainty. We also repeat the identical

stochastic simulations in respect to each uncertainty factor with both scheduled and

optimized pushback times as inputs for comparison. The results confirm that surface

traffic optimization based on a deterministic model performs reasonably even in the

presence of certain types of uncertainties.

1.5 Organization of the thesis

The organization of this thesis is as follows. Chapter 2 proposes two optimization

approaches for taxiway and runway scheduling. The first method is a unified model

that simultaneously optimizes both runway and taxiway schedules. The alternative

approach is to first find an optimal runway schedule, and then optimize the taxiway

schedule. These two optimization architectures are evaluated with actual flight sched-

ules at DTW. Fast-time simulations using SIMMOD are also implemented to assess

the benefits of the gate-holding strategy used in both optimization approaches.

Case studies at DTW are described in Chapter 3 to analyze the effectiveness of

the proposed optimization approaches. For several high density traffic scenarios, we

optimize the initial flight schedules with respect to different optimization cases based

on the proposed approaches, measure various airport performance metrics from the

optimized flight schedule data, and compare them. Through comparisons between

the scenarios, we also investigate the effects of aircraft fleet mix ratio and demand

fluctuation in the flight schedule.

In Chapter 4, we compare two departure control approaches for efficient sur-

face traffic management: individual aircraft trajectory-based control and aggregate
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queue-based control. These control methods are implemented for high traffic demand

scenarios and evaluated with respect to various airport performance metrics. We also

consider gate conflicts between controlled departures and arrivals sharing the same

gates and discuss possible solutions to mitigate gate conflicts.

Chapter 5 deals with the impact of uncertainty on airport performance. We

develop a stochastic simulation model for uncertainty studies using SIMMOD. This

model is used to test the effects of uncertain elements in airport operations such as

pushback times, taxi speeds, and inter-departure times. We also investigate whether

surface traffic optimization based on a deterministic model can still provide benefits

in the presence of uncertainties. Chapter 6 concludes with a summary and extensions

for future research.
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Chapter 2

Optimization architectures for

taxiway and runway scheduling

In this chapter, two different approaches to optimizing taxiway and runway schedules

in airport operations are proposed and compared.

2.1 Modeling assumptions

A framework for modeling the real airport surface operations is generally constructed

based on some assumptions. These assumptions are needed to simplify the complex

situations in the real air traffic control environment with some level of reliability. Most

of the assumptions have been established in other research in a similar manner [8,741.

The following describes the conditions that the proposed optimization models

for airport runway and taxiway scheduling assume fundamentally. Note that the

optimization models developed in this chapter are deterministic, but the uncertainty

in airport operations will be considered in Chapter 5.

1. Airports have standard taxi routes in a given runway configuration. Therefore,

given runway and gate, the taxi route of each flight is pre-defined.

2. Nominal taxi speed in free flow condition is given. Therefore, given the length

of the taxiway, the minimum travel time on every taxiway link can be obtained.
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When calculating the travel time on each link, the taxi speed values are assumed

independent of aircraft types and weight classes.

3. The scheduled pushback times for departures and the estimated landing times

for arrivals are given.

4. The preparation time for taxi-out is fixed and same for all flights. There is

also no uncertainty in the pushback process. So, departures are pushed back as

scheduled by the optimization model.

5. Airlines accept constrained position shifting (up to 2) in takeoff sequencing from

the perspective of fairness.

6. Flights moving on the airport surface can meet the passage times at control

points determined by optimization along taxi routes.

2.2 Integrated approach

The best way to integrate taxiway scheduling and runway scheduling and optimize

them together is to put both objectives into a single optimization model. The single

mixed-integer linear programming (MILP) model for taxiway and runway scheduling

is proposed in this section. This model is basically obtained by modifying the MILP

model for taxiway scheduling proposed by Rathinam et al [104].

2.2.1 Decision variables

For the aircraft taxi-scheduling problem, several MILP models have been proposed

and improved by prior researchers, as described in the previous chapter [104,117,125].

These MILP models have two kinds of decision variables: 1) the continuous time

variables for the passage times at nodes along the taxi routes of flights, and 2) the

binary sequencing variables for determining the sequence of two flights at intersection

nodes and runway thresholds where these flights may reach at the same or close time.

40



2.2.2 Objectives

For efficient taxiway scheduling, the model is designed to minimize the sum of taxi

times of the flights moving on the ground within a given time window for optimization.

In this objective function, the taxi times can be categorized by taxi-out times for

departures and taxi-in times for arrivals. The model is also to minimize the runway

delay for runway schedule optimization. The runway delay can be defined as the

difference between the optimized takeoff time and the earliest possible takeoff time.

2.2.3 Constraints

The MILP model includes several important operational constraints which should

be taken into account in airport operations. First of all, flights need to meet their

schedules. Departing flights can leave their gates after the scheduled pushback times,

by which passengers complete to board and crews are ready to depart. To minimize

taxi-out time and save fuel burn, flights can be held at the gate for a while with

engines off, depending on the congestion level on the surface. This is called "gate-

holding strategy," which can be utilized for schedule optimization of departure flights.

However, the flights should leave the gate before the maximum gate-holding time

because another arriving flight may want to use the same gate for disembarkation

and unloading. Arrivals are assumed to land on the assigned runway at the estimated

landing times, expressed as a fixed time constraint in the model. Also, flights moving

on the taxiway need to obey taxi speed limitations under the airport operation rules.

More importantly, all the aircraft should keep the safety requirements. Taxiing

aircraft have to keep some separation distance from the leading aircraft on the taxiway

and ramp areas. Due to a similar reason, the following aircraft cannot overtake the

leading one on the same taxiway. Also, the flights moving on the airport surface must

not make any head-on conflicts at taxiway intersection points or on bi-directional taxi-

ways. In order to avoid wake turbulence generated by the leading aircraft just after

takeoff, the following aircraft on the departure runways should keep the separation

requirements, which are dependent upon the weight classes of the consecutive flights.
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2.2.4 Mathematical formulation

Incorporating the objective function and constraints described above, the mathemat-

ical formulation of the single MILP model for runway and taxiway scheduling can be

expressed as follows.

minimize E a7r(ti,. - EarliestOffTi,r)
iED,rER

+ d( ti, ti,g) + aT ti, ~ ti"r)
iED,rER iEV,9E9 iEA,gEg iEA,rER

subject to z' +z,"; = 1,Vi,jEDUA,i5juET (2.1)

ti,, > tiu + MinTaxiTuv, Vi E D U A, (u, v) E S (2.2)

z7 =z,Vi,j ED U A, i j,u,v EI, (u,v) ES (2.3)

z4, + z,; = 1,Vij E E UA,i 5 j,u,v (E 1, (u,v) c S (2.4)

Dsep..
tj'U - ti,u - (tiV - ti,U) 1U > - (1 - zij) M,

Vi, j E D u A, i 5 j, u E 1, (u, v) E E (2.5)

Dsep..
ti,, - ti,, - (tj,v - tj,U) 1 2- - zl)M,

Vi, j E D U A, i 4 j, v E I, (u, v) E E (2.6)

tjr - ti,, - Rsepij -(1 - z4.)M,Vi, j E D, i 4 j, r E R (2.7)

ti,, EarliestOffTi,, + MaxRunwayDelayi,, Vi E D, r E R (2.8)

ti,g Out Ti,g, Vi E D, g E 9 (2.9)

ti,g OutTi,g + MaxGateHoldi,,Vi E D, g E ! (2.10)

ti,r =OnTi,r,Vi E A, r E R (2.11)

ti, =FrozenTi,u, Vi E D'U A', u E A (2.12)

zi E {0, 1}, Vi, j E D U A, i / j, u E I (2.13)

ti, 0, Vi E V U A, u E A (2.14)

where D and A denotes departure set and arrival set, respectively. Similar deno-
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tations represent _7 for intersection node set, E for taxiway link set connecting two

nodes u and v, 1R for runway set, and G for gate set. M is a positive scalar with a

large value. ti is the primary decision variable for the passage time of flight i at

node u along its taxi route.

In the objective function, a, is the coefficient for the runway delay in case that

a flight takes off later than the earliest possible takeoff time. In addition, ad and a,

are the coefficients of the total taxi-out time for departures and the total taxi-in time

for arrivals, respectively.

Constraint (2.1) is the sequencing constraint to determine which flight goes first

when two flights reach the same intersection node. Constraint (2.2) enforces the

maximum taxi speed limit allowed at this airport and constrained by the aircraft

performance, in terms of the minimum travel time on the taxiway segment. Con-

straint (2.3) makes two flights exiting a taxiway link maintain the same sequence

as the order when entering the link. That is, this constraint prevents the following

flight from overtaking the leading flight on the same taxiway. Constraint (2.4) is

the sequencing constraint for bi-directional taxiway links, that avoids two flights en-

tering the same taxiway link simultaneously and determines which flight enters the

two-way taxiway link first. Constraints (2.5) and (2.6) describe the separation re-

quirements between two flights taxiing at different speeds on the ground. Another

constraint for safety is also included in (2.7) for runway operations. Since the required

separation distance and time are dependent on the weight classes of the successive

aircraft over the runway, "Rsepij" can be different depending on the types of air-

craft i and j. Time schedule constraints (2.8)-(2.11) define the latest takeoff time

(EarliestOffT+MaxRunwayDelay) based on the earliest possible takeoff time and the

maximum delay allowed for takeoff, the earliest gate-out time (OutT), the latest gate-

out time (OutT+MaxGateHold) for departures, and the estimated landing-on time

(OnT) for arrivals, respectively. Constraint (2.12) fixes the passage times of some

flights that were already pushed back and are taxiing on the surface at the moment

when optimizing the surface traffic. The passage times of these flights (FrozenT)

come from the optimization result in the previous time window and are assumed to
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be frozen so that cannot be updated at the current time window. Binary decision

variable zg for sequencing between aircraft i and j at intersection node u is defined

in (2.13). This variable is equal to one when aircraft i passes through the intersection

point earlier than aircraft j, and equals to zero otherwise.

2.2.5 Strengths and weaknesses of the integrated approach

This model is fundamentally constructed based on the taxi scheduling model pro-

posed by Rathinam et al. [1041, but has been improved in several aspects. First, the

single MILP model optimizes the runway schedule as well as the taxiway schedule

by introducing an additional term for runway delay in the objective function. With-

out this term, the optimization would focus on minimizing the taxi time so that the

takeoff time might be delayed further. That would also increase the gate-holding

time excessively, which might aggravate gate utilization. Second, the model provides

available takeoff time window having a reasonable range based on the earliest pos-

sible takeoff time, whereas Rathinam et al.'s model uses the scheduled takeoff time

constraint. In their model, the constraint may make the solution infeasible sometimes

if the scheduled time is too tight or inaccurate. Third, the model accounts for the

existent flights taxiing on the surface that can interact with new flights in the current

optimization period. This way, the model can be utilized for rolling horizon iterations

as time progresses. Last, the model considers other safety constraints like collision

avoidance in bi-directional taxiway.

The main strength of this single model is that we can implement runway scheduling

and taxiway scheduling together. Using the single MILP model, we can simultane-

ously determine optimal departure sequence and takeoff times on runways, pushback

times at gates for departures, and passage times of taxiing aircraft at control points

along taxi routes, as well as predicted gate-in times for arrivals.

However, it sometimes takes a long time to find an optimal solution, especially at

high traffic demand. Since the model is based on mixed-integer programming (MIP),

the solver searches a number of branch-and-bound nodes to find the optimal solution,

and needs to set up an appropriate MIP gap tolerance. Another problem is fairness
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in the takeoff sequence among departure flights. To achieve the more efficient runway

schedule and increase the runway throughput, the model allows excessive position

shifting from the First-Come, First-Served (FCFS) sequence based on the original

schedule. That would ruin the fairness of takeoff order between airlines, make the

surface traffic more congested, and increase controllers' workload.

So as to overcome these problems, the other approach can be proposed. That is,

instead of a single model, two separate optimization models for each purpose are used,

but they are closely linked by sharing the same schedule data and operational con-

ditions. In this approach, two optimization processes are sequentially implemented:

runway scheduling first, and then taxiway scheduling.

2.3 Three-step approach

2.3.1 Methodology

The sequential process aiming at optimizing runway and taxiway schedules follows

the three steps as described below.

Step 1 is to estimate the earliest possible takeoff times for departures. The earliest

possible takeoff time of a departure flight can be computed by adding the unimpeded

taxi-out time to the scheduled pushback time. The unimpeded taxi time is obtained

based on the distance from gate to runway along the given taxi route and on the

nominal taxi speed. The information about surface operations used in this step is

same as the data used in Step 3 for taxiway scheduling so that the consistency on

assumptions is maintained during the entire optimization process.

Next, Step 2 is to optimize the departure schedules at runways using a runway

scheduling algorithm. At this step, the runway scheduling algorithm determines de-

parture sequence and takeoff time schedule, considering the separation requirements

over runways and the other conditions like available time window. The initial takeoff

times used in optimizing runway schedules are assumed to be same as the earliest

possible takeoff time from Step 1. This assumption makes the takeoff time window
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Figure 2-1: Sequential process diagram for three-step approach

in the next step reasonable.

Then, Step 3 is to optimize taxiway schedules using a MILP model. The MILP

model determines optimal pushback times for departures, gate-in times for arrivals,

and passage times at intersections on taxiways. For minimizing taxi-out times, the

gate-holding strategy is applied. While optimizing aircraft taxi schedule and finalizing

takeoff times of departures, both takeoff times from Step 1 and Step 2 are used. That

is, the earliest possible takeoff time for a departure from Step 1 defines the lower

bound of the available departure time window, and the optimized takeoff time from

Step 2 is used as a guideline to determine the final takeoff time accounting for the

taxiway conditions (e.g., potential conflicts with other aircraft).

This sequential process is illustrated in Figure 2-1. While taking these three

steps, flight schedule information and airport operational rules are commonly shared.

Details of each step are described as follows.

2.3.2 Step 1: Taxi-out time estimation for departures

The purpose of this step is to estimate the earliest possible takeoff times of depar-

tures, which will be a reference for optimizing the takeoff schedule and calculating

the runway delay in the following steps. The estimated takeoff times are used in

determining the initial takeoff sequence on the FCFS basis in Step 2. These times

are also utilized to find the optimal takeoff times in Step 2 and Step 3, taking the

separation requirements between consecutive takeoffs into account.

In this step, the unimpeded taxi-out time of each flight is first calculated based on

the travel distance from its gate to the assigned runway along the given taxi route and

on the nominal taxi speed. Some operational rules such as holding for crossing active
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runways, taxiway and takeoff clearance procedures, and takeoff time from throttle-up

to wheels-off are also considered. Adding this unimpeded taxi time to the scheduled

pushback time provides the earliest possible takeoff time. However, the actual takeoff

time can often be different from the earliest takeoff time of the flight because of other

aircraft already arrived in departure queues. When a flight enters a departure queue,

the flight may have to wait for a while until it uses the runway mainly due to the

separation requirements.

2.3.3 Step 2: CPS algorithm for runway scheduling

For departure runway scheduling in Step 2, any algorithms introduced in Section 1.3.1

can be adopted. In this thesis, we will use the dynamic programming-based algorithm

proposed by Balakrishnan et al. [13,14,15] because of its good computational perfor-

mance and fairness in takeoff order.

Constrained Position Shifting (CPS)

This algorithm introduces Constrained Position Shifting (CPS), first proposed by

Dear [40], for the fairness of the runway usage sequence in runway scheduling. Un-

der the CPS method, the deviation from the FCFS takeoff sequence is limited while

finding the optimal takeoff order. The restricted deviation from the FCFS order is

denoted by the maximum number of position shifts, k, and the resultant scenario is

referred to as a k-CPS case. The CPS concept helps not only maintain equity among

aircraft operators, but also reduce the workload of controllers, by preventing a specific

flight from waiting relatively for a long time before using the runway.

Other constraints

Besides the limited flexibility afforded to air traffic controllers, runway schedules are

subject to several operational constraints. These constraints include the minimum

separation requirements, available departure time windows, and precedence condi-

tions between aircraft pairs.

The Federal Aviation Administration (FAA) regulates the minimum spacing be-

47



tween successive takeoffs to avoid the danger of wake turbulence. These separation

requirements depend on the weight classes of the leading and trailing aircraft based

on the maximum takeoff weight capacity [47]. The departure runway schedule also

has to satisfy downstream separation requirements such as Miles-in-Trail (MIT) con-

straints at departure fixes. These metering constraints are imposed on the departures

assigned to the same departure fix, which may not be consecutively operated at the

runway.

The possible takeoff times of aircraft are also considered as constraints in runway

scheduling. These constraints are basically in the form of time windows comprised of

an earliest and a latest time of departure for the aircraft. The earliest takeoff time

of a departing flight is obtained from the earliest possible takeoff time estimated in

Step 1, whereas the latest takeoff time is determined by accounting for the acceptable

levels of delay for the aircraft on the airport surface. These time windows can also

be restricted by additional constraints such as the Departure Sequencing Program

(DSP) and Expected Departure Clearance Times (EDCTs) used in Ground Delay

Program (GDPs), and Approval Request (APREQ) procedures [32].

Lastly, there could be precedence constraints imposed on the departure sequence.

These constraints state that aircraft i must take off before aircraft j in the algorithm.

They can arise due to overtaking constraints on the ground movement, airline pref-

erences from banking operations, or high priority flights.

Basic CPS framework

To solve the runway scheduling problem under CPS, a directed acyclic graph express-

ing every feasible takeoff sequence as a path in the network is first introduced. The

scheduling problem is then solved using dynamic programming on this CPS network.

The CPS network consists of n stages, in addition to a source and a sink. Each

stage corresponds to an aircraft position in the final sequence. A node in stage p of

the network corresponds to a subsequence of aircraft of length min{2k + 1, p}, where k

is the maximum position shift. For example, for n = 5 and k = 1, the nodes in stages

3, - - -, 5 represent all possible subsequences of length 2k +1 = 3 ending at that stage,
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n=5, k=1 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
Possible 1 1 2 3 4

last 2 2 3 4 5
aircraft 3 4 5

Table 2.1: Possible aircraft assignments for n=5, k=1.

while the stage 1 contains a node for every possible sequence of length 1 starting

at position 1 and the stage 2 contains a node for every possible sequence of length

2 ending at position 2. The network is generated by finding all possible sequence

combinations of aircraft assignments to each position in the sequence (Table 2.1).

For each node in stage p, we draw directed arcs to all the nodes in stage p - 1

that can follow it. Figure 2-2 shows the network for n = 5 and k = 1. For example,

the node (2 1 3) in stage 3 is a successor of node (2 1) in the previous stage (stage

2) and can precede the nodes (1 3 4) or (1 3 5) in the next stage (stage 4). The

path (2)-+(2 1)-4(2 1 3)-+(1 3 4)-+(3 4 5) represents the aircraft sequence (2 1

3 4 5).

Some nodes that cannot belong to any path from source to sink are removed from

the network. These nodes are shown in gray in Figure 2-2. By this process, we can

produce a "pruned" network, which is significantly smaller than the original network.

Precedence constraints may further reduce the size of the network.

Objective: Minimizing the sum of runway delays

The basic objective of the CPS algorithm used in the three-step approach is to mini-

mize the sum of runway delays for departures, where the runway delay of a departing

flight is the difference between the actual takeoff time and the earliest possible takeoff

time. The CPS algorithm with this objective can be achieved using a modification of

the algorithm to minimize the total landing cost of arrivals proposed in [831.

Given a set of departing aircraft, the makespan is defined as the takeoff time of

the last aircraft, or in other words, the completion time of the takeoff sequence. As a

first step, given a FCFS schedule, we determine a range of feasible makespan values.

A trivial lower bound on the makespan is the minimum value among the earliest
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Figure 2-2: CPS network example for n =5, k =1

takeoff times of all aircraft that could take off last in the sequence. Similarly, the

maximum value among the latest takeoff times of all aircraft that could take off last

in the sequence would provide an upper bound on the makespan.

For each feasible value of the makespan, we consider all possible k-CPS sequences,

and determine the optimal schedule that has the minimum total takeoff cost using a

dynamic programming recursion. We first define the following variables:

f(x): The last aircraft of node x

t'(x): The second-from-last aircraft of node x

P(x): Set of nodes that are predecessors of x

1(j): Set of times during which aircraft j could depart

cj(t): Takeoff cost of departing aircraft j at time t

t3 : Takeoff time of aircraft j

e,: Earliest possible takeoff time of aircraft j

S;,j: Minimum separation between aircraft i and j

Let Wx(t 3 ) be the minimum value of the sum of takeoff costs that is accumulated

until 1(x) takes off at time t. The objective of this algorithm is minimizing the total

takeoff cost, that is equivalent to minimizing the sum of takeoff delays of all aircraft,
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given the scheduled takeoff times.

For an arc (x, y) in the CPS network, the sum of takeoff costs from the first aircraft

of the sequence to the last aircraft f(x) of a node x, W (te(2),is used to calculate the

sum of takeoff costs from the first aircraft to the last aircraft f(y) of the next node

y, Wy(t(y)) using the following dynamic programming recursion:

Wy(tgy)) = min {W(te(.))} + ce(m(tet(m), (2.15)
XEP(Y)

V t(y) E I(F(y)) : 4(y) - tI(x) ' JE(x),(y)

For a node y in the first stage, since there are no previous takeoff costs, the takeoff

cost is given by Wy(ti) = ci(ti), where i is the last aircraft of the node. For example,

i can be 1, 2, or 3, when the maximum number of position shifts allowed is equal to

2 (k = 2).

The dynamic programming recursion determines the total takeoff cost W for all

nodes in stage n for all feasible time periods. The minimum cost schedule for a

given makespan t is the minimum over all nodes x in stage n of Wx(t(x)), such that

ti(x) = t. Comparing Wx(tg(x)) values for all nodes x in stage n, we can also determine

the sequence and takeoff times of aircraft that minimizes the total takeoff cost of the

schedule.

While minimizing the sum of takeoff delays, the takeoff cost of departing aircraft

j at time t, c3 (t), is equal to the takeoff delay from the earliest possible takeoff time

of the aircraft (cj(t) = tj - ej). However, this cost can be substituted by other values

such as fuel burn, additional operating cost due to the delay, and a cost function with

weighting factors incorporating airline preferences, according to the purpose of the

algorithm.

Objective: Maximizing runway throughput

Another important objective is maximizing the throughput of the runway, which is

equivalent to minimizing the makespan for a given set of aircraft (the static case).

This objective can be used for the departure runway scheduling, instead of minimizing
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the sum of takeoff delays. This can be obtained by using the same CPS framework

with a simpler dynamic programming recursion, which is described as follows.

Based on the same CPS network and variables, we want to find the earliest time

that the entire sequence can be completed, which is equal to the makespan. The

values of tl(.) can be computed by the following dynamic programming recursion.

This recursion is solved using the boundary condition tt(.) = ee(.) for all nodes in

stage 1 [13,141.

tV(y) = min ti(x); tt(y) = max {tti(y) + 6t'(y),(y), e(y)} (2.16)
xEP(y)

For a fixed set of departures, the schedule with the minimum takeoff delay can be

different from the schedule with the maximum runway throughput. For comparison,

the evaluation of the optimal schedules from these two objectives will be performed in

the next chapter with various traffic scenarios. The effects of the objective in runway

scheduling on the taxiway schedule will also be analyzed. As a reference, more details

about the CPS algorithm and its applications can be found in [13,14,15,82,83,84].

2.3.4 Step 3: MILP model for taxiway scheduling

The MILP model for taxiway scheduling used in Step 3 is similar to the single MILP

model proposed in Section 2.2. The model has the same decision variables, which are

the passage time of flight i at node u, ti,, and the binary sequencing variable between

flights i and j at intersection node u, zg.

The objective of this MILP model is to minimize taxi-out times, taxi-in times, and

the penalty for late takeoff. The penalty is applied by putting a large number into

the coefficient, a,, only if a flight departs later than the optimized takeoff time (De-

siredOffT) from Step 2. Otherwise, the penalty is zero. Note that this setting allows

earlier takeoff than the optimal takeoff time guided by Step 2 and gives flexibility in

taxiway scheduling, depending on the taxiway conditions.

Basically, constraints are same as the single MILP model. The constraints account

for the minimum travel time between nodes, the minimum separation on the surface
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and over runways, no overtaking allowed along taxiways, conflict avoidance at inter-

section nodes and on two-way taxiways, and time schedules for pushback, takeoff, and

landing. For the rolling horizon iterations, existing flights on the taxiway optimized

at the previous iteration are also considered.

The basic mathematical formulation of the MILP model for taxiway scheduling

in Step 3 is expressed as follows.

minimize ap( E max[ti,,. - DesiredOffTi,,, 01)
iED),rE7Z

±cad( Z:ti - I:tig) + a( ti,49  ti,r)
iED,reR iED,9gE iEA,gEg iEA,rER

subject to z +zj = 1,Vi,jEDUA,i/ j,uE1 (2.17)

tiv > ti,u + MinTaxiTuv, Vi E V U A, (u, v) E S (2.18)

z. = zVij ED UA,i j,u,v E I, (u,v) E C (2.19)

z, +zvj = 1,Vij E DU A, i /j,u,vE I, (u,v) EC (2.20)

ti', - ti,, - (tiv - tie) eUp -(1 - zg)M
luv

Vi, j C D U A, i 7 j, u E I, (u, v) C S (2.21)

Dsep..
tj,, - ti,, - (tjv - tjU) " > -(1 - zg)M,

Vi, j c D U A, i: j, v E I, (u, v) E E (2.22)

tj,, - ti,r - Rsepij -(1 - zr)M, Vi, j E D, i j, r E R (2.23)

ti,,. EarliestOflTi,r, Vi E D, r E R (2.24)

ti,g OutTi,g, Vi E D, g E 9 (2.25)

ti,g <OutTi,g + MaxGateHoldi,g, Vi E D, g E g (2.26)

ti,, =OnTi,,, Vi c A, r E R (2.27)

ti,= FrozenTi,u, Vi E D' u A', u E A (2.28)

zg- E (0, 1}, Vi, j E D U A, i 7
4 , u E I (2.29)

ti,u 0, Vi E D U A, uC c (2.30)
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The formulation above can be rewritten in a linear form by introducing a new

decision variable for the penalty on late takeoff yi,, and adding some relevant ancillary

constraints. The modified formulation is expressed as follows (See the change of the

objective function and the new constraints (2.39) and (2.40)).

minimize cep( 1 Yi,r) + Qd( E ti,,r - 1 ti,g) + Qa( :tg - ti,r)
iED,rER iED,rER iED,gEg iEA,gEg iEA,rER

subject to z! z ± 1,Vi,jEDUA,i4j,uEI (2.31)

, ti + MinTaxiTuv, Vi E V U A, (u, v) E S (2.32)

z. = z Vi, j E D U A, i 4 j, u, v E I, (u, v) E S (2.33)

z + zj 1, Vi, j E D U A, i L j, u, v E I, (u, v) E S (2.34)

tiU - tjU - (tiv - tiU) se> -(1 - zU)M,

Vij E D U A, i / j,u E I, (u, v) E S (2.35)

ti,v - t ,v - (tim - ti,U) 1U 2 ( -z)M,

Vi, j E D U A, i 4 j, v E I, (u, v) E E (2.36)

tj,r - ti,, - Rsepij : - (1 - zij)M, Vi, j E D, i =, j, r E R (2.37)

ti,> > EarliestOffTi,r, Vi E D, r E R (2.38)

Yi,r ti,r - DesiredOflTir,Vi E D, r E R (2.39)

Yi,r > 0, Vi E D, r E R (2.40)

ti,g OutTi,g, Vi E D, g E g (2.41)

ti,g <OutTi,g + MaxGateHoldi,g, Vi E D, g E G (2.42)

ti,r = OnTi,r, Vi E A, r E R (2.43)

ti,= FrozenTi,u, Vi E 7' U A', u E M (2.44)

zu E {0, 1}, Vi, j E D U A, i / j, u E (2.45)

t i ,, 0, Vi E D U A, u E J (2.46)
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2.3.5 Expected benefits of the three-step approach

There are several benefits expected by this three-step approach. First, we can mate-

rialize efficient runway operations with various objectives such as maximum runway

throughput, minimum takeoff delay, and minimum weighted sum of takeoff times.

Since Step 2 is dedicated to optimal runway scheduling, various algorithms having

different objectives can be applied for finding an optimal runway sequence and sched-

ule in a reasonable time.

From equity point of view in takeoff order, the final sequence position of departures

will not be largely deviated from the FCFS sequence based on the earliest possible

takeoff time by virtue of the CPS method, although the departure sequence can be

slightly adjusted in Step 3.

The taxiway schedule is also optimized while maintaining the separation require-

ments on runways. Using the gate-holding strategy, we can achieve less congested

taxiway, lower taxi time, fewer stop-and-go situations, and less fuel burn during taxi-

ing. We can expect that these benefits on the surface traffic may be almost same as

the optimization results of the single MILP model, which will be shown with opti-

mization results later.

Another merit is a fast solution time. It is expected to obtain an optimal solution

of the MILP model in Step 3 quickly because runway scheduling, which makes more

difficult to find an optimal solution of the single MILP model, is already almost done

in Step 2. We will also compare the computation times of these two optimization

approaches in order to verify this expectation.

2.4 Evaluation of two optimization approaches with

one-day traffic data

In this section, the proposed approaches for runway and taxiway scheduling are ap-

plied to the actual flight schedule for evaluating their effectiveness and performance.
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2.4.1 Optimization set-up

The two optimization methods are tested and compared each other using the actual

one-day flight schedule on 8/1/2007 at Detroit Metropolitan Wayne County airport

(DTW). This date was a typical day of a busy summer travel season and in Visual

Meteorological Conditions (VMC). On this date (except overnight hours between

midnight and 5:45AM), a total of 1,294 flights were operated at this airport, including

656 departures and 638 arrivals. The runway configuration during the whole day was

(22R, 27L I 21R, 22L), which is the most frequently used configuration. Figure 2-3

shows the airport layout at DTW.

Figure 2-4 illustrates the corresponding node-link network model that is used for

the optimization models. The node-link model consists of 715 nodes that represent
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Figure 2-4: Node-link network model for DTW

significant control points on the airport surface and 863 links that connect adjacent

nodes. The model contains 158 gates, including the parking areas for general aviation

and cargo flights, as well as the main terminals in both North and South ramp areas.

It is assumed that gates are enough to accommodate all the flights without duplicate

gate assignment during peak periods based on the current traffic level. In the flight

schedule, there are four aircraft types categorized by their maximum takeoff weights:

Heavy, B757, Large, and Small. Note that heavy aircraft can depart off runway 22L

only because the length of runway 21R is shorter than the minimum takeoff distance

requirement for heavy aircraft.

For runway scheduling under CPS, three cases for takeoff sequencing are consid-

ered, depending on the maximum number of position shifts allowed: FCFS (no po-

sition shifts applied), 1-CPS, and 2-CPS. The objective of the scheduling algorithm

used for this evaluation is to minimize runway delay (i.e., sum of takeoff times). The

time window of the scheduling algorithm is 45 minutes, which starts at 5:45AM and
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Leading Trailing Aircraft
Aircraft Heavy B757 Large Small

Heavy 120 120 120 120
B757 90 90 90 90
Large 60 60 60 60
Small 60 60 60 60

Table 2.2: Minimum separation (in seconds) between takeoffs

moves forward by 15 minutes for the next iteration. This time horizon is discretized

into small intervals of 5 seconds in length for fast computation. In the CPS algorithm,

we consider the separation time requirements between successive departures shown

in Table 2.2, depending on the weight classes of the leading and trailing aircraft.

The MILP models are coded in AMPL [50] and run by a CPLEX solver [701 on

a 2.66GHz Dual core PC with 4GB RAM. The tolerance of optimization is set to

'mipgap=0.0001' and 'integrality=le-07'. The time limit of the solver is restricted up

to one hour. The time window of the model is 30 minutes, moving by 15 minutes for

the next iteration. In this way, the model can account for the frozen flights, which

were already optimized in the previous iteration and are traveling on the taxiway

in the current iteration. The time discretization used in these models is 5 seconds,

which is small enough to control the flights moving on the surface.

In the objective function in the MILP models, the taxi time coefficients are com-

monly assumed as ad = 1 for departures and a, = 2 for arrivals because many

airlines have operational procedures in which they do not turn all their engines on

while taxiing out, thereby reducing fuel cost. In the integrated approach, the co-

efficient for runway delay a,. is set to 1. In the three-step approach, on the other

hand, the coefficient for late takeoff a, in the MILP model for taxiway scheduling

is set to 100 as penalization for the flight not meeting the planned takeoff schedule

and the following external cost to other flights. The minimum separation distance

between taxiing aircraft on the ground (Dsepij) is assumed to be 150 meters in this

evaluation, regardless of aircraft types, but can be varied, if needed. The minimum

separation requirements between takeoffs (Rsepi,) follow the same matrix in Table

2.2. In the optimization models, the maximum time that aircraft can be held at gate

58



Total time CPS MILP
(in minutes) Runway delay Gatehold time Runway delay Taxi-out time Taxi-in time

FCFS 378 380 423 5,876 6,192
1-CPS 371 367 410 5,876 6,192
2-CPS 365 375 417 5,876 6,191
FPS - 393 419 5,859 6,192

Table 2.3: Optimization result for 1-day flight schedule

for (MaxGateHoldi,g) and the maximum runway delay allowed (MaxRunwayDelay,,)

are set to 10 minutes and 15 minutes, respectively. Based on surface surveillance data

from DTW, the nominal, free flow taxi speed values are assigned to 3, 7, and 18 knots

on gate area, ramp area, and taxiways, respectively. The minimum taxi time on each

link (MinTaxiTm,) is calculated in advance using this taxi speed assumption and the

length of each link.

2.4.2 Optimization result for one-day flight schedule

Table 2.3 summarizes the optimization results from different optimization approaches.

In the first column, there are three cases from the three-step approach, depending on

the maximum position shift (MPS) value. The 'FPS' case in the last row shows the

optimization result of the single MILP model and represents Free Position Shifting,

in contrast with the other constrained position shifting (k-CPS) cases. The second

column shows the total amount of interim runway delay from the CPS algorithm

in Step 2 of the three-step approach. The remaining four columns show total gate-

holding time, sum of runway delays, total taxi-out time and total taxi-in time from

the MILP models.

When we look at the second column in Table 2.3, we can find that the runway

delay decreases as the k value (MPS) increases. After taxiway scheduling in Step 3,

however, we can see that the runway delay increases by 52 minutes at most. This

additional runway delay means that the takeoff sequence and the departure schedule

are both affected a lot by taxiway conditions. For instance, the takeoff sequence may

unintentionally change at intersection points while taxiing, and arrivals can have

impacts on the movement of departing aircraft while either taxiing or crossing active
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departure runways.

Also, excessive changes of the takeoff sequence in runway scheduling can lead to

frequent interactions between flights and high congestion on the surface. While the 2-

CPS case shows lower runway delay than the 1-CPS case after optimizing the takeoff

order in Step 2, its final runway delay after taxiway scheduling becomes higher than

the 1-CPS case. On the other hand, this expense of departures is compensated by

the taxi-in time savings of arrivals, although the saving amount is small.

In the three-step approach, the total taxi-out and taxi-in times achieved by op-

timization are almost same, regardless of the maximum position shift allowed in the

CPS algorithm, whereas the runway delay is dependent on the total gate-holding time

applied to each case.

We now compare the optimization results from the three-step approach with the

FPS case from the integrated approach. Compared to the 2-CPS case, it is shown

that the total taxi-out time in the FPS case is reduced by holding some flights at

gates longer, at the small expense of runway delay. When compared with the FCFS

case, furthermore, the FPS case shows better runway delay and taxi times. It seems

that these savings are mainly obtained by unlimited position shifting in the takeoff

order. The optimal flight schedule in the FPS case experiences more frequent and

further (up to 8) position shifting in the takeoff sequence over the FCFS order, which

raises equity issue in sequencing.

Table 2.4 shows the computational performance of each optimization case. The

sum of computation times in the table is for the whole day run having 73 iterations in

total. The CPS algorithm for runway scheduling in Step 2 shows fast runtime for both

FCFS and 1-CPS cases. However, the total runtime is dramatically increased when

at most 2 position shifting is allowed. In the 2-CPS case, the average runtime for

each iteration is about 29 seconds, which still shows good performance. The MILP

model for taxiway scheduling in Step 3 of the three-step approach shows about 1

minute for total runs in all cases. It takes less than 1 second per iteration on average

to optimize the flights within the given time window, that is amenable to practical

implementation in the real world. On the other hand, the single MILP model for the

60



Runtime CPS MILP
(in minutes) Sum Sum Max

FCFS 0.10 0.79 0.07
1-CPS 1.27 0.82 0.12
2-CPS 34.82 1 71.12 7 q35
FPS -- 166.03 64.08

Table 2.4: Total runtime for 1-day flight schedule

integrated approach has a runtime issue, as mentioned earlier. The FPS case takes 2

hours 46 minutes to run 73 iterations for the whole day flight schedule. Although most

iterations take less than 2 minutes to find the optimal solutions, this optimization

case includes 2 iterations resulting in sub-optimal feasible integer solutions with which

the solver stops the optimization process due to the given time limit of 1 hour.

2.5 Departure planning method evaluation through

fast-time simulation

In this section, we investigate how much benefits we can obtain from the surface

traffic optimization over the current operations through fast-time simulation. For

this evaluation, the whole day flight schedule at DTW used in the previous section is

simulated.

To simulate the air traffic flow on the airport surface in the current operational

conditions accurately, we use SIMMOD, which is a fast-time airport traffic simulation

tool. SIMMOD can imitate the traffic flow of taxiing aircraft at a microscopic level,

provide the travel time and delay on the surface for each flight, and visualize how

the flight moves and interacts with other flights at the airport through a traffic flow

animation.

For evaluating the benefits of the departure planning methods, the following pro-

cedure is performed. A baseline airfield model representing the Detroit airport layout

is created in SIMMOD. Using this simulation model, we first run the air traffic simu-

lation with the initial flight schedule in which departures are released at the scheduled

pushback times without gate holding. Then, the pushback times determined by the
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Figure 2-5: SIMMOD airfield model for DTW

proposed scheduling algorithms are entered as the simulation inputs, instead of the

initial schedule. For a reasonable comparison, the common framework except the

pushback times is used in the simulation. After implementing the simulations, the

taxi times extracted from the simulation results are compared as a typical perfor-

mance metric.

2.5.1 SIMMOD airfield model

The SIMMOD airfield model for DTW is based on the node-link network model in

Figure 2-4, which was used for the optimization. SIMMOD can import the same

coordinates of nodes and connectivity information of links in Google Earth KML

format. The airfield and airspace model constructed in SIMMOD represents local

airspace around the airport, airport ground surface, and gates in terminal buildings,

as shown in Figure 2-5.

While constructing the SIMMOD airfield model, the information about airport
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operations is shared with the optimization models. The same inputs with respect to

airspace, airfield, and flight schedule are put into SIMMOD. The airspace information

includes airport characteristics, details of airspace structures, and runway operational

procedures such as separation distance, time interval, approach speed and runway oc-

cupancy time. The airfield input requires more detailed data on the surface such as

runways, taxiways, gates, and departure queue area. Those data include taxiway op-

eration conditions (link capacity, overtake rules, taxi speed, and directionality), gate

operation rules (gate capacity, blocking state, and user airline list), and pre-defined

taxi paths. The flight schedule data including airlines, flight number, aircraft type,

origin/destination airport, airway route, runway, gate, and taxi path are recorded

into the event file in SIMMOD. In the event file, pushback times for departures and

landing times for arrivals come from the optimization results for the whole day flight

schedule in Section 2.4.

2.5.2 Fast-time simulation result analysis

Figure 2-6 illustrates the total taxi times of departures from various cases. The first

bar marked 'NoGH Simulation' represents the total taxi-out time in minutes from

the SIMMOD simulation when the scheduled pushback times are applied. Since the

gate-holding strategy is not used in this case, its taxi-out time is used as a reference

to see the amount of taxi time savings in other optimization cases that control the

pushback times of departures. The following bar pairs colored in green and purple

show the total taxi-out times obtained from optimization and simulation, respectively.

The dark bar over each taxi time bar represents the total gate-holding time for each

case, so that the top indicates the relative total runway delay of departures.

In the bar graph, it can be easily seen that total taxi-out times (the sum of taxi-

out times of all departures, excluding holding times at their gates) are significantly

reduced by the gate-holding strategy. By focusing on the purple bars, we can directly

compare the taxi times from different departure control methods in the same environ-

ment in SIMMOD. Compared to the 'No Gate Holding (NoGH)' case, it is observed

that by holding departures at gates, the taxi time can be saved by 312 minutes in
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total, which is about 5% of the total taxi-out time that departures of the day spent

to travel on the ground. When the gate-holding strategy is applied, however, the

total taxi-out times from simulation results have no significant difference, as in the

optimization results.

We now draw a comparison between optimization and simulation in Figure 2-6.

Compared to the optimization result, the corresponding simulation result shows a

little higher taxi-out time, although the unimpeded taxi-out times are same. The gap

between optimization and simulation mainly results from the feature of SIMMOD

in which flights move on the taxiway link at a constant taxi speed unless possible

conflicts are predicted. This is similar to the current surface operations, in the way

that controllers cannot manage the speed of taxiing aircraft in details, whereas the

optimization model actively interferes in it to achieve the optimal takeoff sequence.

This characteristic in the simulation may dislocate the optimal departure schedule

planned by the optimization, resulting in longer waiting times in the departure queues.

More detailed analysis about this issue will be discussed later with various traffic

scenarios in Chapter 3.

In Figure 2-6, the last two bars show the total taxi times from the optimization

result of the single MILP model (FPS case) and from the corresponding simulation

result, respectively. Compared to the three-step approach cases, the taxi-out time

is slightly improved, but its total runway delay in the simulation is higher than the

other cases because of the greater gap between optimization and simulation. This

can be explained by the fact that excessive position changes in the takeoff order are

made in the FPS case, resulting in more congestion on the surface.

For arrivals, the SIMMOD simulation results report the reduction of total taxi-in

times by 0.8% in all cases, as shown in 2-7. The reason comes from the functional

limitations of SIMMOD, which are no taxi speed control and no taxiway separation.

The taxi-in time difference between optimization and simulation mostly happens in

the ramp area near the terminal buildings, where arrivals interact with departures

frequently. According to the SIMMOD outputs, the amount of the delay that arrivals

experience is very small, which is about 0.1% over the total taxi-in time. It is also
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Figure 2-7: Total taxi-in time for arrivals

found that the most delay comes from runway crossings.

2.6 Conclusions

In this chapter, we proposed two approaches to optimizing runway and taxiway sched-

ules. The first was the integrated approach based on the single MILP model. Another

method was the three-step approach that sequentially combined two independent al-

gorithms for runway scheduling and taxiway scheduling.

For evaluating their effectiveness, these approaches were applied to the actual
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flight schedule at DTW with some assumptions involved in airport operations. The

optimization results showed that both approaches provided significant taxi-out time

savings, but the computational performance of the three-step approach was much

better at the current level of traffic demand.

We also studied how much the taxi times could be reduced by the departure

planning based on the surface traffic optimization, through fast-time simulations using

SIMMOD. Compared to the simulation result based on the initial pushback schedule,

the simulation results of the optimization cases using the gate-holding strategy showed

significant taxi-out time savings.
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Chapter 3

Case study at Detroit airport

3.1 Set-up for optimization and evaluation

The two optimization approaches proposed in the previous chapter will be investigated

in more details with various traffic scenarios at Detroit airport (DTW) in this chapter.

First, we set up eight different optimization cases from the two optimization ap-

proaches, depending on the conditions in the scheduling algorithm. We also define

the airport performance metrics that will be used to evaluate the optimization cases

and compare them against each other. We then create high traffic demand scenarios

at DTW for evaluation. In this chapter, three different traffic scenarios depending on

fleet mix ratio and on demand patterns will be tested.

" Scenario 1. Constant high traffic demand with a fixed fleet mix ratio,

Heavy:B757:Large = 5%:10%:85%

" Scenario 2. Constant high traffic demand with a fixed fleet mix ratio,

Heavy:B757:Large = 10%:20%:70%

" Scenario 3. Cyclic high traffic demand with two peak times

For each scenario, the eight optimization cases are compared each other with

respect to the various airport performance metrics. These optimization cases are

also simulated in SIMMOD using their optimized flight schedules as inputs. The

comparison between optimization and simulation results will show whether controlling
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Case Optimization Objective in departure Position Gate-holding Objective
name approach runway scheduling change strategy for in taxiway

limit in departures scheduling
takeoff
sequencing

FCFS' Not applied 0
1-CPSd Three-step Minimize sum ±1
2-CPSd approach of runway delays t2 Minimize

1-CPSm Minimize the last flight's ±1 Applied total
2-CPSm takeoff time (makespan) ±2 taxi-out
FPSr Integrated Minimize runway delays /in times
FPSt approach No objective for No limit
NoGH Not applied runway scheduling Not applied

Table 3.1: Optimization cases for comparison

the pushback times only can achieve the same level of benefits as controlling the 4D

trajectory of taxiing aircraft. The effects of the demand traffic characteristics such

as fleet mix ratio and peak period are also analyzed through the result comparison

between scenarios.

3.1.1 Optimization cases for comparison

For the case study at DTW, eight different optimization cases are defined. Table 3.1

summarizes those optimization cases that will be used in this chapter for evaluation.

There are five cases derived from the three-step approach, depending on the runway

scheduling objective and on the maximum position shift value. For the integrated

approach, two cases are implemented. The first case named 'FPSr' is the original op-

timization model minimizing both taxi time and runway delay simultaneously, where

the case name 'FPS' represents Free Position Shifting, in contrast with the other

constrained position shifting (k-CPS) cases from the three-step approach. The FPSt

case is a control group that minimizes the taxi time only by putting a, = 0 in the

objective function. This case was added to see the impact of the runway delay term in

the MILP model. Finally, the NoGH case presents the optimal taxiway and runway

schedule from the same framework when no gate-holding is applied and departures

leave their gates at their scheduled times. This case is used as a baseline to evaluate

the benefits of gate-holding.
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Category Metrics
Gate Average gate-holding time

Average taxi-out time
Taxiway Average taxi-in time

Number of taxiing aircraft
Number of stops

Average takeoff delay
Runway Largest takeoff delay

Runway throughput
Takeoff sequence changes

Interaction between taxiway and runway Takeoff rate as a function of departure demand
Computational performance Total runtime

Table 3.2: Airport performance metrics

These optimization cases will be implemented for three traffic scenarios in this

chapter and compared each other using various airport performance metrics for each

traffic scenario.

3.1.2 Airport performance metrics

Table 3.2 shows the various metrics that can be used for measuring airport perfor-

mance in the case studies at DTW. These metrics can be categorized according to

the resource in airport operations such as gate, taxiway, and runway.

At gates, the average gate-holding time per departure is measured. The gate-

holding time is a difference between the initial pushback time given by a flight schedule

and the controlled pushback time by optimization. If spots 2 are used as start points

in the optimization model instead of gates, the waiting time at a spot becomes the

gate-holding time. This duration can be calculated by subtracting the estimated spot

arrival time of a departure from the time to enter the taxiway from the spot [741. By

definition, the gate-holding time is always zero in the NoGH case. As described in the

formulation in Chapter 2, the maximum gate-holding time is limited as a constraint

in the MILP model.

1FCFS: First-Come, First-Served, CPS: Constrained Position Shifting, FPS: Free Position Shift-
ing, NoGH: No Gate-Holding for departures (runway and taxiway schedule optimization to resolve
conflicts only)

2 "5Spot" is the hand-off point between the airline ramp control and Tower control, marked on the
pavement with a number.
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On taxiway areas, typical performance metrics are the average taxi-out time for

departures and the average taxi-in time for arrivals. The taxi-out time of a departure

is defined as the difference between actual gate-out time and actual wheels-off time.

Similarly, the taxi-in time of an arrival is actual gate-in time minus actual wheels-

on time. In addition to the taxi times, the number of aircraft taxiing out can be

counted to measure the level of taxiway congestion. The number of stops is also a

good indicator to show how often the taxiing aircraft interact with other vehicles at

significant locations on the ground such as taxiway intersections, runway crossings

and departure queues. This metric can be used to better estimate the fuel burn and

gas emissions on the ground [77].

For runways, runway throughput and the average takeoff delay are major per-

formance metrics. The largest takeoff delay can be observed for fairness among de-

partures. Takeoff sequence changes between initial estimates and final optimization

results are also counted since this metric may be related to the workload of local con-

trollers. In most prior researches, departure runway throughput (or takeoff rate) is

expressed as a function of the number of aircraft taxiing out in order to see the inter-

action between runway and taxiway [113,115,116]. This relationship will be plotted

in Section 3.4.2 for Scenario 3 which has variations in runway throughput.

To analyze the computational performance of the scheduling algorithms, total

runtime taken to find the optimal solutions is measured. This metric is important

because the scheduling algorithm should be able to support the controller's decision

making in real time. If a time limit is set in finding a solution, the time limit frequency

representing how often the solver reaches the time limit during successive iterations

can be of interest.

In this chapter, the eight different optimization cases will be compared using the

basic airport performance metrics among the items listed in Table 3.2, including taxi-

out times, taxi-in times, takeoff delays, the number of position changes in takeoff

sequencing, and total runtimes, for the constant high traffic demand scenarios. In

Scenario 3, more various performance metrics will be investigated for the realistic

flight schedules having peak times. These extended metrics include runway through-
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put and the number of taxiing aircraft, which can be varied by cyclic fluctuations in

demand.

3.2 Scenario 1: Constant high traffic demand with

a fixed fleet mix ratio (5% heavy aircraft)

3.2.1 Traffic data for Scenario 1

To model a high traffic demand scenario at DTW, we first assume that flights are

consistently supplied to this airport for 3 hours at the rate of 160 flights per hour, with

80 departures and 80 arrivals. This rate is twice the average hourly traffic demand

at DTW in 2007 and close to its declared capacity, namely, 184-189 operations/h in

optimal conditions and 168-173 operations/h in marginal conditions [48].

The detailed flight schedule data for individual flights, including scheduled push-

back or landing times, gates and runways, are randomly generated by SIMMOD.

Consistent with actual traffic data at DTW, the fleet mix ratio is assumed to be 5%,

10%, and 85% of heavy aircraft, B757, and large aircraft, respectively. As two run-

ways are usually used for departures, runways are assumed to be balanced. For this

experiment, 28 sets of flight schedule scenarios are generated and optimized using the

eight different optimization cases.

3.2.2 Optimization results

Figure 3-1 shows the average gate-holding time and the taxi-out time per departure

for each optimization case. The whiskers denote the standard deviation of the sum

of the two times, across the 28 flight schedules. All the optimization cases from

two different approaches show similar taxi-out times, except for the FPSt case that

minimizes only taxi times, but at the expense of long pushback delays. The figure

shows that the taxi-out time can be reduced by about 64 s per departure relative to

the NoGH case through gate-holding. The takeoff times (sum of gatehold and taxi-

out times) are similar, meaning that the gate-holding time translates to taxi-out time

71



25
. Gatehold Time

e 20 i Taxi-out Time

C 15

10

rc 5 I II I

FCFS 1-CPSd 2-CPSd 1-CPSm 2-CPSm FPSr FPSt NoGH

Figure 3-1: Scenario 1: Average taxi-out time per aircraft
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Figure 3-2: Scenario 1: Average taxi-in time per aircraft

savings. This result is same as the benefit analysis of the departure control strategy

from the field tests at BOS [116].

The average taxi-in times shown in Figure 3-2 are also similar to one another

(except for the FPSt case, which has a lower average taxi-in time at the cost of

takeoff delays). It appears that holding departures at their gates has little effect on

the arrivals.

Figure 3-3 shows the takeoff delay per departure for each of the eight optimization

cases. The takeoff delay is defined as the actual takeoff time minus the earliest

possible takeoff time (obtained by adding the unimpeded taxi time to the originally

scheduled pushback time). In the three-step approach (left five cases in the graph), the

takeoff delay from runway scheduling in Step 2 arises from the separation requirements

between takeoffs. In Step 3, small additional delay occurs due to taxiway interactions,
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Figure 3-3: Scenario 1: Average takeoff delay per departure

leading to a little longer delay than the FPSr case in the integrated approach.

Compared with other optimization cases, the FPSt case shows a significantly larger

runway delay because it does not consider runway delay (difference between actual

takeoff time and earliest takeoff time) in the optimization. The runway delay term in

the objective function is ignored in the MILP model for the integrated approach by

making its coefficient zero, a, = 0. Without this runway delay term, the FPSt case

tends to postpone the takeoff times of departures as long as possible by holding them

at gates in order to minimize the total taxi time alone. However, it appears that we

cannot obtain an additional reduction in the taxi-out times in this case, as shown

in 3-1. The other optimization cases achieve taxi-out times close to the unimpeded

taxi-out times, despite optimizing the runway schedule as well.

Some flights may not meet the initially assigned takeoff slots due to unexpected

interactions on the taxiways. This could increase the workload of air traffic controllers.

Figure 3-4 illustrates the number of position changes from the initial takeoff sequence

relative to the earliest possible takeoff times for each departure runway. In the FCFS

case, the takeoff sequence is determined on the first-come, first-served basis in Step

2, but about 10% of departures cannot follow the given sequence because of the

interactions with other aircraft while taxiing. When the pushback times of departures

are fixed, the impacts of taxiway interactions on the takeoff orders become larger. The

NoGH case shows that more than 39% of departures experience at least one position

shift in the takeoff sequence for both runways. In addition, a comparison of the FCFS,
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Figure 3-4: Scenario 1: Takeoff order changes from initially estimated sequence
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Figure 3-5: Scenario 1: Takeoff order changes between Step 2 and Step 3

1-CPSd, 2-CPSd, and FPSr cases demonstrates that the number of takeoff sequence

changes increases as the position change limit increases. The integrated approach

(i.e., FPSr and FPSt cases) shows more sequence changes than the other approach

because the limit of the takeoff slot shifts is not constrained.

The effects of taxiway scheduling on the takeoff sequence can also be studied by

observing the difference between the takeoff orders from Step 2 and Step 3 in the

three-step approach, as shown in Figure 3-5 for each runway. In this scenario, 8-11%

of flights cannot meet the optimal takeoff slots determined by the CPS algorithm.

These position changes are a consequence of taxiway scheduling, and may result in

additional delays to takeoffs.

Figure 3-6 compares the total runtimes of the different optimization cases for a

3-hour flight schedule period. The CPS algorithm used in the three-step approach is

typically fast, except in the 2-CPSd case which takes 20 min to optimize the 3-hour

long flight schedule. The MILP model used in Step 3 also shows good computational
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Figure 3-6: Scenario 1: Total runtimes

performance. As expected, the FPSr case for the integrated approach takes a long

time to optimize the Required Times of Arrival (RTAs) of the taxiing aircraft, because

it simultaneously implements both runway and taxiway scheduling. Considering that

the resultant runtime for a 3-hour flight schedule includes 12 iterations and that every

iteration the flights within each 30-minute time window are optimized, the average

runtime per iteration of the FPSr case is less than 5 minutes. On the contrary, The

FPSt case finds the optimal solution very fast because it does not account for the

runway schedule and focuses on minimizing taxi times only. Lastly, the NoGH case

needs a significant runtime because it determines the optimal takeoff times and RTAs

of flights like the FPSr case, although the pushback times of departures are fixed.

3.2.3 Comparison with simulation results

Using fast-time simulations in SIMMOD, we can investigate whether the optimization

strategies are valid in the current operational environment. Figure 3-7 illustrates the

average taxi-out times per departure from both optimization and simulation for the

eight different optimization cases. As described in Chapter 1 and 2, the optimization

and the fast-time simulation correspond to the RTA control utilizing the advanced

surface traffic control technologies and the pushback time control in the current op-

erational conditions, respectively. According to the simulation results, the significant

taxi-out time savings can be obtained by controlling pushback times only, compared

to the NoGH case.
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Figure 3-7: Scenario 1: Average taxi-out time comparison between optimization and

simulation
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Figure 3-8: Scenario 1: Takeoff order changes between optimization and simulation

A comparison of optimization and simulation results for the FCFS (or the FPSr)

case also shows that the RTA control can further decrease the taxi-out time by up to

16 s/aircraft. When the pushback times are only controlled, some departures interact

with other departures or arrivals on the taxiway. These interactions increase waiting

time in the departure queue since the takeoff sequence may change, as can be verified

by observing the takeoff position changes between the optimized solution and the

SIMMOD simulation. Figure 3-8 shows that some departing flights are affected by

the RTA control at significant points on the taxiway. In addition, the high percent-

age of shifted departures in the NoGH case implicates that more holds at taxiway

intersections are required when gate-holding is not applied.

For arrivals, the average taxi-in times from optimization and simulation are illus-.

trated in Figure 3-9. The graph shows that the average taxi-in times from simulation
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Figure 3-9: Scenario 1: Average taxi-in time comparison between optimization and
simulation

are 9-10 seconds lower than the values from optimization in all the optimization cases.

This difference stems from the functional limitations of the fast-time simulation tool.

First, holding on the taxiways, which is frequently used in the RTA control for se-

quencing at intersections, is ignored in SIMMOD. Second, the taxiway separation is

less restricted in SIMMOD, whereas the optimization model keeps the minimum sep-

aration distance between taxiing aircraft. In the optimization model, the constraints

for the taxiway separation let arrivals slow down at some control points when the

arrivals interact with departures on the ramp area or other arrivals in the taxi speed

transition area. These reasons may lead the arrivals to reach their gates faster in

simulation results, but the difference is not significant.

3.2.4 Effect of the objective in runway scheduling

In the three-step approach used for this scenario, we have tested two typical objectives

in runway scheduling: minimizing the sum of runway delays and maximizing runway

throughput. As mentioned earlier, it is noted that minimizing the sum of runway

delays is the same as minimizing the average takeoff delay of departures and that

maximizing the runway throughput is equivalent to minimizing the makespan of the

given departure flights.

In most cases, runway scheduling algorithms provide benefits on both the runway
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throughput and the average takeoff delay, regardless of its objective [60,83]. That is,

the optimal takeoff schedule to minimize the average delay improves the throughput

as well. Similarly, the maximum throughput schedule usually shows the better runway

delay, compared to the FCFS takeoff schedule. However, the prior research work using

Monte Carlo simulations showed that when the runway delay was minimized, the

probability of having adverse effects on the other objective (runway throughput) was

lowered than when the throughput was maximized. On the contrary, the maximum

throughput solution sometimes showed a large deviation from the optimal runway

delay.

When incorporating the runway scheduling with taxiway scheduling sequentially

as in the three-step approach, the comparison result with regard to the two runway

scheduling objectives can change because of the taxiway conditions. When optimizing

the runway schedule, the earliest takeoff time of each flight is generally estimated

based on the unimpeded taxi time, but the available takeoff time window may be

shifted due to the interactions with other taxiing aircraft on the surface. This shift

can sometimes make the optimal takeoff time solution suboptimal or infeasible in the

worst case. The additional runway delay by taxiway scheduling shown in Figure 3-3

justifies the effect of taxiway situations.

The comparison demonstrates that the difference between runway scheduling ob-

jectives is narrowed by taxiway scheduling. In Figure 3-3, the 1-CPSd case shows a

lower runway delay than the 1-CPSm case right after runway scheduling in Step 2,

but their final runway delays after taxiway scheduling are almost same. In addition

to the runway delay, the average taxi-out and taxi-in times achieved by optimization

have no difference between the two objectives in runway scheduling, as seen by the

comparison of the 1-CPSd, 2-CPSd, 1-CPSm, and 2-CPSm cases in Figures 3-1 and

3-2. It also seems that the maximum position shift (MPS) value in the CPS algorithm

does not influence the taxi time performance.

Provided that the resultant system performance is the same, minimizing the

makespan would be a better choice from the controller's point of view. Accord-

ing to Figure 3-4, the minimum makespan schedule requires small deviation from the
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initially estimated takeoff sequence, whereas the takeoff order changes are doubled

when the runway delay is minimized in Step 2 for runway scheduling. Furthermore,

the computational performance shown in Figure 3-6 is also better in the minimum

makespan solution (the 1-CPSm and 2-CPSm cases), which is critical for implement-

ing the algorithm in a decision support tool.

The conclusion about the effects of the runway scheduling objective on the airport

performance discussed in this subsection also seems valid for other air traffic scenarios

having different demand characteristics such as fleet mix ratio and peak periods that

will be described in the following sections.

3.3 Scenario 2: Constant high traffic demand with

a fixed fleet mix ratio (10% heavy aircraft)

3.3.1 Traffic data for Scenario 2

Scenario 2 was designed for investigating the effects of aircraft fleet mix. The flight

schedules in Scenario 2 were created in the same way as in Scenario 1, except for the

fleet mix ratios, which was set to 10%, 20%, and 70% for heavy aircraft, B757, and

large aircraft, respectively. In this scenario, the portion of heavy and B757 aircraft

was doubled from Scenario 1, resulting in more heterogeneous fleet mix ratio. The

detailed flight schedule data for each flight were generated by SIMMOD, as before.

The same traffic demand and runway balancing were used. For this experiment, 28

different sets of flight schedules were generated and optimized in eight optimization

cases.

3.3.2 Optimization results

Figures 3-10 and 3-11 illustrate the average taxi-out times and the average taxi-in

times in the eight different optimization cases. A comparison of Figures 3-1 and 3-2

shows that the average taxi-out and taxi-in times in Scenario 2 are almost the same

as in Scenario 1, when departures are controlled at their gates. In the NoGH case, by
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contrast, the average taxi-out time increases by 20 s/aircraft compared to Scenario 1

with the increased portion of heavy and B757 aircraft in the fleet mix.

The metrics mainly affected by the fleet mix change are the gate-holding time,

takeoff delay, and the takeoff sequence. Generally, increasing the proportion of heavy

aircraft in the fleet mix ratio of flights reduces the runway capacity and increases the

average waiting time for the next flight to use the runway. The increased separation

time for takeoffs translates to the longer gate-holding time in the optimization results

in order to reduce the taxi time, as seen in Figure 3-10. By comparing Figure 3-12

with Figure 3-3, we can see that the more heterogeneous fleet mix ratio leads to

increased runway delay due to the separation requirements.

The number of takeoff order changes also increases by about 10% for all the cases,

excluding the FCFS case, as shown in 3-13. This result mainly stems from the efforts

to find the optimal takeoff sequence in runway scheduling. That can be verified by

observing Figure 3-14, showing that the percentage of takeoff sequence changes by

taxiway scheduling in Scenario 2 are similar to the percentage in Scenario 1.

Regardless of the fleet mix ratio in the flight schedule scenarios, the computational

performances are similar. The total runtimes shown in Figure 3-15 have the same

trend as the runtime results for Scenario 1, though there are variations case by case.
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Figure 3-10: Scenario 2: Average taxi-out time per aircraft
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Figure 3-12: Scenario 2: Average takeoff delay per departure
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Figure 3-13: Scenario 2: Takeoff order changes from initially estimated sequence
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Figure 3-14: Scenario 2: Takeoff order changes between Step 2 and Step 3

3.3.3 Comparison with simulation results

As in Scenario 1, SIMMOD simulations were also run with the optimized pushback

times. The simulation results in Figure 3-16 show that the average taxi-out time

can be reduced by up to 53 s/aircraft with just pushback time control, compared

to the NoGH case. Furthermore, the additional taxi-out time reduction from the

RTA control increases from 16 s/aircraft (Figure 3-7) to 30 s/aircraft, because the

average runway separation time between takeoffs and the resultant waiting time in

the departure queue both increase with more heavy aircraft.

With respect to the new fleet mix ratio, more departures cannot meet the optimal

takeoff sequence from the optimization model in the current operational environment.

The percentage of departures changing their takeoff sequence between optimization

and simulation is also increased, as shown in Figure 3-17.
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Figure 3-15: Scenario 2: Total runtimes
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Figure 3-16: Scenario 2: Average taxi-out time comparison between optimization and
simulation
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Figure 3-18: Scenario 2: Average taxi-in time comparison between optimization and
simulation

Arrivals, however, have no impacts by the fleet mix changes. The simulation

results in Figure 3-18 show the almost same taxi-in times as in Figure 3-9. Note

that we assume the nominal taxi speed is independent of the weight class of aircraft.

Similar to Scenario 1, the average taxi-in times from fast-time simulations are smaller

than the optimization results due to the same reasons as explained in the previous

section.

3.3.4 Effect of fleet mix ratio

In this section, the effect of fleet mix ratio in the schedule on the airport performance

metrics is discussed by comparing Scenario 1 with Scenario 2.

When departures are pushed back as scheduled like the NoGH case, all the metrics

indicating the performance of departures are affected. With the increased heavy

aircraft portion in the aircraft fleet mix, both taxi-out time and takeoff delay become

longer because the average separation time between successive takeoffs increases at

the runway, which is recognized as a main bottleneck at an airport. Assuming that

the taxi speeds have no difference between aircraft types, arrivals are not impacted

by the fleet mix ratio.

When the gate-holding strategy is applied, the average taxi times for departures

and arrivals in Scenario 2 are same as the values in Scenario 1. This implicates that
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the optimization models guarantee the minimum taxi times for both departures and

arrivals, regardless of the fleet mix ratio. However, the average gate-holding time and

the takeoff delay are both increased in Scenario 2 due to the existence of more heavy

aircraft. The takeoff sequence also changes from the initial estimates more frequently

to achieve the better runway schedule.

If the optimized pushback times are used in the current operational environment,

the average taxi-out time of departures increases from the optimization results, as

shown in the SIMMOD simulation results. This increase becomes larger when the

fleet mix has more heavy aircraft because the failure of taxiway conformance to the

given RTAs makes the waiting time in the departure queue longer when heavy aircraft

show up more frequently.

For the eight different optimization cases, however, it seems that the computa-

tional performance is independent of the fleet mix ratio in the flight schedules. All

the cases except for the FPSr case showed fast runtimes to find the optimal solutions

both in Scenario 1 and Scenario 2.

3.4 Scenario 3: Cyclic high traffic demand with

two peak times

3.4.1 More realistic traffic data for Scenario 3

In Scenario 3, we consider more realistic flight schedules with demand fluctuations.

According to Figure 3-19, two characteristics can be found in the actual daily traffic

demand pattern at DTW. First, the demand to use runways has cyclic periods over

time. Second, the departure demand peaks alternate with the arrival's. Also, the

hourly demand rate at DTW was around 80 aircraft/h in 2011 when the airport was

busy.

From these observations, it is assumed in Scenario 3 that the air traffic demand

has two peaks which are 4 hours in length, and varies with time (either 4, 8, 12 or 16

aircraft per 15 minutes for each runway), while the total hourly demand rate is 160
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Figure 3-19: Daily traffic demand pattern at DTW in 2011

aircraft/h as before. Arrivals are out of phase with departures. Fleet mix ratio and

other assumptions are the same as in Scenario 2 for the purpose of comparison. For

this experiment, 27 different sets of flight schedules were generated and optimized in

eight optimization cases.

3.4.2 Optimization results

The average values of gate-holding times, taxi-out times, and taxi-in times for the

eight optimization cases are summarized in Figures 3-20 and 3-21. Although the time

held at the gate significantly increases with the new traffic pattern in Scenario 3, the

optimized taxi times are similar to those in previous scenarios. On the other hand,

the average taxi-out time in the NoGH case dramatically increases from Scenario 2

because the flights leaving the gates at the scheduled pushback times are stranded in

the departure queues during peak times with delay propagation. Therefore, the gate-

holding strategy provides relatively more significant benefits when the flight schedule

has peak periods like this traffic scenario.

In the five optimization cases from the three-step approach, the takeoff delays in

Figure 3-22 are not increased by gate holding, compared to the NoGH case. Even

the FPSr case shows the lowest takeoff delay in this scenario. Moreover, the takeoff

delay value in this case is lower than the runway delays only by runway scheduling

in Step 2 (orange colored bars) for the first five cases in Figure 3-22. This is because
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Figure 3-20: Scenario 3: Average taxi-out time per aircraft
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Figure 3-21: Scenario 3: Average taxi-in time per aircraft
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Figure 3-22: Scenario 3: Average takeoff delay per departure
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Figure 3-23: Scenario 3: Takeoff order changes from initially estimated sequence

the optimization model in the integrated approach allows unlimited position changes

in the takeoff sequence, whereas the runway scheduling algorithm used in Step 2

constrains the maximum position shift up to 1 or 2 slots. It is justified by the graphs

in Figure 3-23 showing that the excessive position changes more than 3 position shifts

are observed more frequently in the FPSr case. The FPSt case is not compared here

because it does not matter about the runway schedule.

The bar graphs in Figure 3-24 show the average values of the largest takeoff delays

from the earliest possible takeoff times for two departure runways. The whiskers

denote the maximum and minimum values of the largest delays, across the 27 datasets.

The takeoff delay is a sum of gate-holding time and ground delay, mainly due to

runway separations during peak times. Note that the gate holding is limited to

15 minutes in the optimization for the gate utilization. As seen in the figure, the

maximum takeoff delay in every case is higher for Rwy 22L than for Rwy 21R. In the
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Figure 3-25: Scenario 3: Takeoff order changes between Step 2 and Step 3

three-step approach, the maximum values are always lower than the largest delays

in the integrated approach because of the limited position shifts allowed in takeoff

sequencing. They are also averagely lower than the NoGH case, even though the gate-

holding time is added. If necessary, the maximum takeoff delay can be constrained

in the optimization model.

The change of the demand patterns also affects the complexity on the surface. The

existence of peak periods in the flight schedule increases a possibility to change the

takeoff sequence while taxiway scheduling. In the three-step approach, the percentage

of takeoff sequence changes from Step 2 to Step 3 in Figure 3-25 is always higher than

the percentage from the previous traffic scenario having no peaks.

Figure 3-26 shows the runway throughput per 15 minutes for both departure

runways. The fact that the throughput curves are the same for all the cases, excluding

the FPSt case, implicates that the runway throughput is not reduced by optimization,
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Figure 3-26: Scenario 3: Runway throughput for both departure runways

compared to the NoGH case. However, the FPSt case shows some delays behind the

other cases on the throughput curves because of long gate-holding. Note that only

Rwy 22L can accommodate heavy aircraft, leading to a little lower throughput on

the runway during peak periods.

Figure 3-27 illustrates the number of taxiing aircraft on the ground, N, which is

measured every 15 minutes and represents the level of taxiway congestion. In the

NoGH case, the number of departures moving out on the ground accumulates along

with the growing demand because of the bottleneck on the runway threshold. As a

result, long queues are observed for both departure runways during peak times. Due

to the presence of heavy aircraft in the fleet mix, Rwy 22L shows relatively higher N

values when the traffic is most congested. In this graph, it is found that the taxiway

congestion can be mitigated by optimization. All the optimization cases show that

N values are maintained less than 10 aircraft for each departure runway. That means

the number of departures waiting for takeoff clearances in the queue is minimized.

The reason why the Rwy 21R has higher N values in the optimization cases is that

its average distance from gates to the runway is longer than that for Rwy 22L.

By integrating the data from Figures 3-26 and 3-27, we can plot the takeoff rates

as a function of the number of aircraft taxiing out. In Figure 3-28, the NoGH case

follows typical patterns from the actual traffic statistics. On the other hand, we

can observe clustering in the other optimization cases. During peak times, the data

points are concentrated on the specific region where the maximum runway throughput
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Figure 3-27: Scenario 3: Number of taxiing aircraft for each departure runway
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Figure 3-28: Scenario 3: Runway throughput vs. number of taxiing aircraft

intersects with a limited number of taxiing aircraft. In normal traffic, the number

of taxiing aircraft is minimized, whereas the takeoff rate is the same as the traffic

demand rate.

The plot for the departure throughput as a function of the number of flights

taxiing out can be compared with the actual traffic statistics at DTW, as shown in

Figure 3-28 [87,113]. The NoGH case basically follows the typical patterns from the

actual data, but shows higher takeoff rate at the same surface traffic congestion level

in a given runway configuration. The difference between the NoGH case plots and

the surveillance data can be explained by the followings: (1) The NoGH case has

the optimal takeoff schedules minimizing runway delays rather than heuristics; (2)

Tight runway operations to meet the minimum separation between takeoffs, as well as

between takeoffs and runway crossings, are assumed; (3) The unimpeded taxi times in
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the optimization model ignoring the delay in controller/pilot response are less than the

actual ones in the current operations system; (4) The fleet mix ratio in the experiment

could be different from the archived operational data; and (5) The actual separation

requirement may be different from the rules used in the optimization, especially for

Rwy 21R assuming no heavy aircraft allowed. Furthermore, the other optimization

cases show much higher runway throughput for the same amount of taxiing aircraft,

even for low demand. That can be explained in the same way as described above.

Figure 3-29 shows the total runtimes of the eight different cases for optimizing

a 4-hour flight schedule in Scenario 3. Although the FPSr case provides a better

optimization result in some metrics than the other cases in the three-step approach,

its computational performance is relatively weak. In order to see the effects of the

demand pattern, each bar in the graph is subdivided into the average runtime of the

CPS algorithm and the average runtimes of the MILP model by optimization time

window. Given a time limit of 10 minutes for the optimization solver, the FPSr case

often reaches the time limit with a suboptimal solution. In other optimization cases,

a significant portion of the total runtime comes from the time windows when the

departure demand is peak (4, 5, 6, 12, 13, and 14 in the graph).

3.4.3 Comparison with simulation results

The optimization and simulation results shown in Figure 3-30 compare the average

taxi-out times per departure for the eight optimization cases. In Scenario 3, the

taxi time savings from optimization are bigger than in the other scenarios. For in-

stance, when we use the optimized pushback time schedule from the FCFS case, we

can reduce the taxi-out time by 4.4 min/aircraft and 5.5 min/aircraft by using push-

back time control (corresponding to simulation) and RTA control (corresponding to

optimization), respectively.

The final takeoff sequences determined by the optimization models can be changed

in the simulations, as shown in Figure 3-31. As in the previous scenarios, the NoGH

case not using the gate-holding strategy shows the highest percentage of shifted de-

partures in takeoff sequencing for both runways. Compared to the graph in Scenario 2
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Figure 3-31: Scenario 3: Takeoff order changes between optimization and simulation

25

20

a15

10

5

0

0 Taxi-in Time for Optimization 0 Taxi-in Time for Simulation
-HHHHHH HH-HHHH-

FCFS 1-CPSd 2-CPSd 1-CPSm 2-CPSm FPSr FPSt NoGH

Figure 3-32: Scenario 3: Average taxi-in time comparison between optimization and
simulation

(Figure 3-17), the takeoff order changes between optimization and simulation become

doubled for Rwy 22L in Scenario 3, whereas the percentage for Rwy 21R does not

significantly increase. This indicates again that the existence of heavy aircraft in the

fleet mix affects the takeoff sequence conformance of the RTA control.

Figure 3-32 shows the taxi-in times from optimization and simulation for arrivals.

It seems that arrivals are not affected by the traffic demand fluctuation both in

optimization and simulation results. As in the previous scenarios, the average taxi-in

times from fast-time simulations are a little smaller than the optimization results.

The maximum takeoff delays are also compared between optimization and simu-

lation results in Figure 3-33. As seen in Figure 3-24, the maximum delays are always

observed at Rwy 22L between two departure runways. The largest takeoff delays are

various depending on the flight schedule in a dataset, but their average values are
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Figure 3-33: Maximum takeoff delay - SIMMOD result

usually higher in the simulation results. In the optimization model, the takeoff times

of departures are adjusted by speed control on the ground while taxiing. Without

the RTA control, however, some departures can experience much longer delays for

takeoffs than expected, by unintentional sequence changes.

Figure 3-34 illustrates the aircraft flows on the airport surface having two different

flight schedules, captured from the SIMMOD animations at the same moment. While

the upper figure comes from the NoGH case having the initial schedule, the lower one

is from the FPSr case with optimized departure schedule. In this figure, we can

observe a long queue for takeoffs at Rwy 22L in the NoGH case. On the contrary,

the lower picture in Figure 3-34 shows that by controlling the pushback times, we

can ensure enough space between flights moving toward the same departure runway,

resulting in the significantly reduced waiting times for takeoffs.

3.4.4 Effect of traffic demand fluctuation

This section investigates how the demand patterns in the flight schedule affect the

airport performance metrics by comparing Scenario 2 with Scenario 3.

When the gate-holding strategy is not applied to departures, the average taxi-out

time of them dramatically increases with the demand fluctuation. During the peak

times, the number of flights in the departure queues waiting for takeoffs accumulates,

and the waiting time is propagated. By the same token, the takeoff delay also in-
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Figure 3-34: Scenario 3: Aircraft flow comparison
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creases. This result agrees closely with the on-time performance analyses at New

York JFK and EWR airports stating that the more evenly flights are distributed over

time, the lower the resulting delays are likely to be [71]. Compared to Scenario 2,

the average taxi-in time of arrivals is also increased slightly in Scenario 3 due to the

longer holdings for runway crossings.

In Scenario 3, both optimization approaches using the gate-holding policy show

the similar taxi-out and taxi-in times to the optimization results for the flattened

demand pattern in Scenario 2. However, the demand fluctuation makes both gate-

holding time and takeoff delay longer. When the demand for takeoffs exceeds the

runway capacity, the takeoff times of departures are delayed exponentially, and its

impact is propagated even after peak times. The optimization results in Scenario 3

show the maximum takeoff delay can be longer than 30 minutes.

When the flight schedule has two peaks, the takeoff sequence changes more fre-

quently from the initially estimated order. It seems that the sequence changes occur

more frequently at taxiway intersections during the peak times. This is supported by

the takeoff order changes from Step 2 to Step 3 in the three-step approach. While

optimizing taxiway schedules, the percentage of shifted departures in the sequence is

increased by more than 5% in Scenario 3.

According to the simulation results, the taxi-out time difference between the RTA

control and the pushback time control becomes bigger in Scenario 3. When the flight

schedule includes peak periods, the taxiway is locally more congested, resulting in the

longer taxi time, as well as more changes in the takeoff sequence while taxiing without

the RTA control. Controlling only the pushback times in the current operations also

leads to the increase in the maximum takeoff delay.

When optimizing the realistic flight schedules having peaks and valleys of demand,

the total runtimes increase significantly in all the optimization cases. The detailed

runtime analyses show that some iterations reach the time limit before obtaining

the optimal solution, when the number of departures within 30-minute time window

exceeds a threshold. However, the three-step approach is still amenable to real time

implementation.

97



3.5 Conclusions

Through the case study at DTW, two different optimization approaches were evalu-

ated with various airport performance metrics in this chapter. For three high traf-

fic demand scenarios, the optimization results commonly showed significant taxi-out

time savings at no expense to other major performance metrics such as takeoff delay,

runway throughput and taxi-in time. Compared to the three-step approach, the in-

tegrated approach (represented by the FPSr case) had small advantages in terms of

taxi-out time and takeoff delay, but its computation time was long.

In the three-step approach, two different objectives were introduced in runway

scheduling to study their impacts on the airport performance obtained after taxiway

scheduling. Both the minimum makespan solution and the minimum runway delay

solution showed the same taxi times, and their runway delay difference in Step 2 was

eliminated in Step 3 because of the additional delay induced by taxiway conditions.

However, minimizing the makespan would be a better objective when taking controller

workload and computational performance into consideration.

A comparison of Scenario 1 and 2 showed that the fleet mix ratio in the flight

schedule could affect some performance metrics of departures, including gate-holding

time, takeoff delay, and position changes in takeoff sequencing. When the gate-

holding strategy was applied, however, the optimized taxi-out and taxi-in times were

independent of the aircraft fleet mix.

By comparing Scenario 2 with Scenario 3, we demonstrated that the demand fluc-

tuation had significant impacts on most performance metrics. For the same number of

flights, the average taxi times and the takeoff delay dramatically increased due to the

existence of peak times when the gate-holding strategy was not used. In other words,

the taxiway congestion could be reduced by only flattening the peak demand in the

fight schedule. On the other hand, the optimized taxi times from both optimization

approaches were not affected by the cyclic traffic pattern, although the takeoff time

was more delayed because of longer gate-holding.

We also implemented the fast-time simulations using the optimized pushback times
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as inputs in SIMMOD. The comparison between optimization and simulation results

showed that the taxi-out time could be significantly reduced by only controlling the

pushback times in the current operational environment, although its benefits were

smaller than the RTA control.
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Chapter 4

Comparison of individual aircraft

trajectory-based control and

aggregate queue-based control

As mentioned before, there are two kinds of control approaches to achieving efficient

surface traffic management: individual aircraft trajectory-based control and aggregate

queue-based control. In the previous chapters, we discussed the optimization mod-

els to determine the optimal taxiway and runway schedule on the trajectory basis

of individual aircraft. In this chapter, we introduce the aggregate queue-based con-

trol (N-Control) for departure management. Then, we describe two trajectory-based

control approaches (RTA control and PbT control), depending on the technology

readiness level in the operational environment.

These control approaches are implemented with the same traffic scenarios for

comparison and evaluated in terms of various airport performance metrics largely

categorized into gate, taxiway, and runway.

The gate-holding strategy commonly used in these departure control approaches

can cause the gate conflict between a gate-held departure and an arriving aircraft

assigned to the same gate. The frequency of gate conflicts is analyzed for investigating

their impacts on the surface traffic. Then, several possible solutions to avoid the gate

conflicts are proposed, and the effects of the solutions are evaluated.
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4.1 Aggregate queue-based control for departure

management (N-Control)

For efficient surface traffic management, some control approaches deal with departing

aircraft in an aggregate manner rather than using the trajectory of individual aircraft.

From this point of view, the traffic flow of aircraft on the surface is taken into account

more importantly than the detailed movement of each flight. Also, aircraft counts in

a specific control volume at the airport are significantly used for the optimal control.

The models using this aggregate control approach are called Eulerian models. The

objective of the Eulerian models is to send the flights released from gates to runways

efficiently without starving the runways. In these models, taxiway area and runway

departure queues are considered as specific control volumes of a queueing system, and

the runway is recognized as a bottleneck of the system. In order to reduce congestion

on the ground, we can limit the number of taxi-out aircraft entering the queueing

system below a specified control parameter by controlling the pushback times of

departures. This approach is called the N-Control strategy.

N-Control is an initiative to reduce taxi delays and emissions in the departure

process while maintaining high departure throughput, which is motivated by the fact

that the takeoff rate is saturated when the number of taxi-out aircraft, N, is greater

than a threshold, N* [1111. N-Control was initially proposed in the Departure Plan-

ner project [49], and its variants have been discussed in later studies [30,31,103]. The

main idea of N-Control was derived from an observation of the airport performance

curve showing the departure takeoff rate as a function of the number of aircraft taxiing

out. Figure 4-1 illustrates a typical form of the airport performance curve. The curve

is drawn based on the statistical data at an airport. The pattern of the curve can

be different depending on the airport operational conditions such as runway config-

uration, weather, and traffic characteristics. In Figure 4-1, the takeoff rate increases

when more departures are pushed back from their gates onto the surface because the

demand for takeoff grows. However, as surface traffic increases further, the runway

system reaches its capacity limit and the takeoff rate is saturated eventually. That is,
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Figure 4-1: Typical airport performance curve for takeoff rate as a function of the
number of aircraft taxiing out

if the number of taxi-out aircraft exceeds a saturation point, additional pushbacks of

departures will not help the runway throughput increase, but increase only taxiway

congestion and taxi-out delays [1141.

From this observation, we can find that it would be better to hold some departures

at gates instead of pushing them back when the surface congestion level is higher

than a control point, denoted by Ntr. Accounting for possible variations from the

averaged curve, the control point is generally chosen slightly higher than the expected

saturation point (N*) to maintain high runway throughput, but not too high to

increase the surface congestion level.

Then, the N-Control method can be applied to the airport operations heuristically.

To figure out the congestion level on the surface, the number of active departures on

the taxiway, N, is counted. If the total number of aircraft on the ground exceeds the

chosen control point, the gate-holding strategy is applied to the departures ready to

push back. That is, controllers do not allow any more aircraft requesting pushback

clearance to move out onto the taxiway until the number of active aircraft on the

surface drops below the threshold. In fact, a similar policy has already been used by

air traffic controllers heuristically during excessively congested situations.

By introducing the N-Control policy, we can expect to reduce the taxi times,

including the waiting times in departure queues, and the corresponding fuel burn

and emissions on the surface, while maintaining the runway utilization [112]. Since
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the N-Control approach activates the gate-holding strategy only when the surface

traffic is congested, it requires minimal modifications to the current procedures. Fur-

thermore, the additional workload for controllers to implement this approach is also

limited [1161.

In the N-Control approach, however, interaction with arrivals or other departures

on the taxiway is not considered. The possible holds at intersections or runway cross-

ings to avoid conflicts can lead to adverse effects on other performance metrics such

as increased taxi-in time and reduced runway throughput. In addition, actual takeoff

time of a gate-held flight can be delayed from the initially estimated takeoff time

due to the same reason. Unless the maximum gate-holding time is restricted, several

departing aircraft may experience too long waiting time at gates, sometimes result-

ing in conflicts with arriving aircraft assigned to the same gate. The departure rate

predictions along with the taxiway congestion are based on empirical data, which is

specific to the runway configuration at a given airport. If a new runway configuration

is introduced or the airport layout changes due to some reasons like runway closures

and building a new terminal, therefore, the choice of queue control parameters would

be difficult until statistical data are accumulated.

Various surface congestion management methods similar to the N-Control concept

have recently been applied to several busy airports in field tests or automated simu-

lation environments. A specific Surface Congestion Management (SCM) approach at

New York JFK airport was developed by PASSUR Aerospace, Inc. and assessed in

terms of taxi-out time reductions, fuel savings, and emissions reduction [95]. The Col-

laborative Departure Queue Management (CDQM) concept was also tested at Mem-

phis airport (MEM) [271. Through the active participation of air traffic controllers, the

human-in-the-loop (HITL) simulations of the Spot And Runway Departure Advisor

(SARDA) concept were performed for Dallas/Fort Worth airport (DFW) [64,65,75].

Another heuristic modification of N-Control, called the Pushback Rate Control, was

developed for easier implementation and successfully tested at Boston Logan Interna-

tional Airport (BOS) [116]. In Europe, the Departure Management System (DMAN)

concept [25] was tested at Athens international airport (ATH) [110]. The detailed
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implementation techniques are dependent on the target airport, but the fundamental

concept of the departure control approaches is same, which is to control the departure

queue size by holding a limited number of departure flights in a holding area during

the congested conditions.

4.2 Individual aircraft trajectory-based control

4.2.1 RTA control

While the aggregate queue-based control model manages the pushback times of excess

departures only, the individual aircraft trajectory-based optimization model finds

the optimal taxiway schedules along the given taxi routes, as well as the controlled

pushback times of all departures and the optimal takeoff sequences at runways. This

approach determines the Required Times of Arrival (RTAs) of taxiing aircraft at

significant control points on the taxiway. These control points include gates or spots

to start taxiing, intersection nodes between two taxiways, holding areas for runway

crossings, and runway thresholds for takeoffs.

By this RTA control, we can obtain the minimum taxi times that can be obtained

in a given flight schedule, while maintaining the maximum runway throughput. In

addition, we can minimize the frequency of possible conflicts at taxiway intersections

and reduce operational uncertainties. To maximize the benefits from the RTA control,

the gate-holding strategy is aggressively applied to most departing flights, even in low

traffic conditions. In this approach, the arbiter of aircraft movements on the surface

is centralized from the cockpit of individual aircraft to the control tower, which can

lead to the better airport management for the system objective.

To meet the RTAs on the surface, the taxi speed of aircraft on the ground is con-

trolled. However, it is hard to control the taxi speed of individual aircraft as planned.

To realize the RTA control, therefore, we need enhanced Communications, Naviga-

tion, and Surveillance (CNS) technologies for the communication between controllers

and cockpit crew and the taxi conformance monitoring [35]. The relevant advanced
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equipment should be equipped both in aircraft and at airport traffic control tow-

ers. New operational procedures for Surface Trajectory-Based Operations (STBO)

are also required, for which additional controller workload and training are expected.

Moreover, since the existing trajectory-based optimization usually needs long runtime

to find an optimal solution, it also requires a better computational performance for

the faster response speed to the schedule updates.

4.2.2 PbT control

In the current operational environment, it is not possible to implement the RTA con-

trol yet. Controllers usually control the departures ready to move out from their gates

by giving them pushback clearance. So, even though the RTAs from the trajectory-

based optimization model ensures the minimum taxi time and takeoff delay, the only

control points where we can control departures in the current system would be gates.

From a practical perspective, therefore, we can consider using the optimal pushback

times (PbT) only from the optimization model, instead of meeting all the RTAs along

the taxi routes. This interim control approach will be called PbT control in this the-

sis because in this approach, controllers can control the pushback times only at gates

among the RTAs at all control points on the surface.

Compared to the RTA control, it is expected that the benefits from the departure

management will be reduced since the interaction with other flights is not properly

handled on the taxiway by controllers as optimized. During peak periods, the takeoff

sequence may change from the optimal sequence while taxiing, leading to the reduced

runway throughput. On the other hand, the PbT control would still result in shorter

taxi time than the N-Control because more departures are held at gates, instead of

waiting in departure runway queues, to have the separation required for successive

takeoffs. The more aggressive gate-holding in the PbT control, however, may increase

the workload of controllers.

In the previous research at DTW, the PbT control has been compared with the

N-Control by using the pushback time schedule optimized by the trajectory-based

optimization model as the input to the queuing model [87]. The result showed that
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the runways were sometimes under-utilized ending up in additional takeoff delays

because some departures arrived at the runways at non-scheduled times. However, the

experiment was for the 1-day flight schedule at the current traffic demand level. In the

heavy traffic scenarios overloading runways frequently, the PbT control is expected

to get more benefits on taxi times than the N-Control approach having a reduced

control parameter, while maintaining similar runway throughput. As in the N-Control

approach, however, the PbT control also has some fundamental limitations in terms

of control input because its control points are not the departure runway queues, but

the gates, whereas the main bottleneck of the surface traffic is the runway.

4.3 Implementation of different departure control

approaches

The different control approaches to managing the surface traffic congestion described

above are implemented and evaluated with the same traffic scenarios in this chapter.

Since these control approaches are based on the different framework, the details for

their implementation, which will be described in this section, are not same. To make

the comparison reasonable, they have the identical assumptions on the fundamen-

tal rules in operations, such as separation requirements, nominal taxi speeds, and

schedule update cycle.

4.3.1 Implementation of N-Control

Aggregate queue-based control of departures is a simple strategy that can easily be im-

plemented under current operational procedures [114]. In this chapter, the N-Control

policy is performed as the following procedure. Before starting each 15-minute pe-

riod,

1) We count the number of departing flights currently active on the ground. This

number can be obtained by calculating the difference between the total number of

departures already pushed back and the total number of departures that took off
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by that moment. In actual operations, the number can be counted through visual

observations.

2) The takeoff times of departures within 15 minutes from the starting moment are

estimated from the scheduled pushback times, their unimpeded taxi-out times along

the given taxi routes, and the imposed separation requirements for consecutive take-

offs. From the predicted takeoff times, we can also calculate the expected departure

throughput in the next 15-minute time window.

3) The difference between the number of active departures on the surface and the

expected departure throughput is calculated. If the number of active departures is

less than the throughput, the gate-holding will not be applied to any flights ready

to push back. If not, this difference represents the number of active flights that are

expected to remain on the ground through the next 15-minute period. Using the

estimated takeoff times, we can pick out which flights will remain on the ground.

4) The difference between the number of these flights and the given queue control

parameter Ntil provides us with the additional number of flights allowed to push

back as scheduled in the next 15 minutes.

5) The excess flights in the next time window should be rescheduled with the in-

troduction of gate holding. The pushback times of them will be shifted to the next

takeoff times in the initial pushback time order. In this way, the number of active

departures on the surface can be maintained below the given Ncir, value.

In case that there are multiple departure runways at the airport like DTW, DFW,

and ATL, this control approach can be applied to each departure runway by separating

the whole departing flights into several flight groups assigned to the same runway [87].

The final pushback times adjusted by N-Control will be used as input data in

the fast-time simulations using SIMMOD for evaluation. The choice of the queue

control parameters is critical to the simulation results. If they are too high, they will

have no impacts on the airport performance. In contrast, if they are too low, they

will introduce significant delays [114]. To prove this anticipation and determine the

optimal parameter in the given traffic conditions, various queue control parameters

will be tested in the simulations.
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4.3.2 Implementation of RTA control and PbT control

The input data used in the RTA control can be obtained by solving the optimization

model for taxiway and runway scheduling described in Chapter 2. The individual air-

craft trajectory-based optimization provides the Required Times of Arrival (RTAs)

at all control points on the surface, including pushback times at gates, takeoff times

of departures, gate-in times of arrivals, and passage times at intersections. However,

following the given RTAs precisely is the ideal case because the optimization is based

on the deterministic model. Due to various uncertainties inherent in surface opera-

tions, it is almost impossible to meet the RTAs from the optimization model exactly

under the current operational environment. In the evaluation of the departure control

approaches, the RTA control will show the best solution which can be achieved with

the given flight schedule by departure control, compared to the other approaches.

When implementing the RTA control, the optimization model determines the

RTAs of departures and arrivals within the 30-minute time window. Also, the optimal

flight schedules are updated every 15 minutes, which is same as the N-Control's update

cycle. Once the flights are already optimized in the previous iteration, the RTAs of

them are assumed to be fixed. In this way, we can prevent some departures from

experiencing significant delays by repeated rescheduling and reduce the workload of

controllers and pilots required to meet the capricious RTAs. This assumption will

also help maintain the trajectory conformance at an acceptable level.

The PbT control is the realizable version of the RTA control in the current surface

operation system. These two control approaches share the same pushback times of

departures, as well as the same landing times of arrivals. The PbT control can be

simulated in SIMMOD by inputting these times that flights begin going into the

taxiway system. In the SIMMOD simulations, the passage times at intersections

or runway crossings are not controlled. This is similar to the current operational

conditions.

The outcome from the implementation of a control approach can be different

from the expectations because of the complexity of the taxi-out process. There may
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exist tradeoffs between two outputs indicating the airport performance. Therefore,

the actual impacts of the departure control strategy should be assessed in terms of

various airport performance metrics such as taxi time, takeoff delay, and runway

throughput. This assessment will be described in the following section.

4.4 Airport performance comparison

In this section, we compare the different control policies for surface congestion man-

agement described in the previous section. To see the benefits from the gate-holding

strategy, another case using the scheduled pushback times is also simulated. This

'do-nothing' approach is called No control in this thesis. So, there are four different

control approaches, namely, RTA control, PbT control, N-Control, and No control.

The N-Control approach has several derivatives depending on the queue capacity

control parameters assigned to the departure runway queues.

These control approaches should be compared with each other using the same

flight schedule. In this section, they are applied to the 4-hr flight schedules at DTW

as for Scenario 3 used in the previous chapter. In this evaluation, the departure

queue capacity control parameter Nctri used in the N-Control approach ranges from

7 to 15 aircraft per queue. Although the two departure runways at DTW (Rwy 22L

and 21R) may have different saturation points N*, it is assumed that they have the

same control parameter for each case in order to see the tendency of the performance

metrics with respect to the parameter. Note that when the Nctr value is too low, the

gate-holding time applied to a departure becomes so long that the gate conflict with

an arrival using the same gate can happen.

The simulation results from these control approaches are then evaluated in terms

of various airport performance metrics. These performance metrics can be categorized

into three major airport elements: gate, taxiway, and runway. At gates, the number

of gate-held flights, the average gate-holding time, and the maximum holding time are

compared. For the taxiway area, the average taxi-out time of departures, the average

taxi-in time of arrivals, the number of taxiing aircraft, and the number of stops while
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Figure 4-2: Average gate-holding time and number of gate-held flights

taxiing are evaluated. Lastly, the runway performance such as runway throughput,

the average takeoff delay, and the maximum takeoff delay is also investigated.

4.4.1 Gates

First, we focus on the relationship between the gate holding level and the queue

control parameter in the N-Control approach. Figure 4-2 shows the number of gate-

held flights and the average gate-holding time of them by departure runway, depending

on the Ncti values from 15 to 7. As the Nti, value becomes lower, more flights are

held at gates for a longer time. For the same NTIL value, flights toward runway 22L

are affected more heavily by the gate-holding strategy because a longer waiting time

is expected in the departure queue for the runway. Note that Rwy 22L only can

allow the heavy type of aircraft to take off at DTW due to the runway requirement

about the minimum takeoff roll distance. When Ntri = 7, total 36% departures are

held at gates for 10.5 minutes on average. As a reference, the FCFS case, a typical

trajectory-based optimization case, makes 88% flights to be held at gates for 6.3

minutes.

Table 4.1 provides us with more detailed gate-holding data depending on the Nel

value for both departure runways. Both the total gate-holding time and the number
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Ntrl value 15 13 11 9 7 FCFS
Total gate-holding time (min) 53.9 151.2 341.2 654.0 1211.4 1766.3
Number of gate-held flights (out of 320 12.5 27.7 50.9 79.3 115.0 280.6
departures)
Avg. gate-holding time (min/aircraft) 0.17 0.47 1.07 2.04 3.79 5.52
Avg. gate-holding time of flights held 4.3 5.5 6.7 8.3 10.5 6.3
(min/aircraft)

Max. gate-holding time applied (min) 9.5 11.9 15.0 28.1 33.2 15.0

Table 4.1: N-Control approach gate-holding result depending on N,

NctrL value for Rwy 22L 15 13 11 9 7 FCFS
Total gate-holding time (min) 51.7 136.7 286.6 514.3 844.1 1229.4
Number of gate-held flights (out of 160 11.5 22.8 37.2 53.5 73.1 145.0
departures)
Avg. gate-holding time (min/aircraft) 0.32 0.85 1.79 3.21 5.28 7.68
Avg. gate-holding time of flights held 4.5 6.0 7.7 9.6 11.6 8.48
(min/aircraft)
Max. gate-holding time applied (min) 9.5 11.9 15.0 28.1 33.2 15.0

Table 4.2: N-Control approach gate-holding result for Runway 22L

of gate-held flights out of 320 departures in the 4-hr flight schedule dramatically

increase as the control parameter decreases. However, the effects of the N-Control

approach at gates are much less than the trajectory-based optimization approach.

The FCFS case in the last column of the table shows 1.5 times longer gate-holding

time and 2.4 times more gate-held flights, compared to the most aggressive case in

the N-Control approach (Nti=7). However, its average gate-holding time per gate-

held flight is about 60%. This suggests that N-Control holds the excess flights only

at gates, whereas the individual aircraft trajectory-based control approach uses the

gate-holding strategy more extensively. As a result, when the control parameter is

low, the maximum gate-holding time of the excess flights can be too long unless there

is a proper constraint to avoid gate conflicts.

In Tables 4.2 and 4.3, the gate-holding results by N-Control are divided into each

departure runway. When the same Negl value is applied, the departures assigned

to the busier departure runway, Rwy 22L, are more frequently held at gates, and

its gate-holding time is longer. In the gate-holding results from the trajectory-based

control approach, a similar tendency is seen.
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Nt,l value for Rwy 21R 15 13 11 9 7 FCFS
Total gate-holding time (min) 2.2 14.5 54.6 139.7 367.3 536.9
Number of gate-held flights (out of 160 1.0 5.0 13.6 25.8 41.9 135.6
departures)
Avg. gate-holding time (min/aircraft) 0.01 0.09 0.34 0.87 2.30 3.36
Avg. gate-holding time of flights held 2.2 2.9 4.0 5.4 8.8 4.0
(min/aircraft)

Max. gate-holding time applied (min) 6.9 8.9 10.9 12.9 14.9 15.0

Table 4.3: N-Control approach gate-holding result for Runway 21R

4.4.2 Taxiways

The average taxi-out times from four different departure control approaches are illus-

trated and compared each other in Figure 4-3. In this evaluation, the FCFS case is

used as a typical trajectory-based control. As described in the previous section, the

optimization result of the FCFS case and its simulation result from SIMMOD runs

correspond to RTA control and PbT control, respectively. The N-Control method is

subdivided with various queue control parameters Nctri between 7 and 15 in the figure.

According to the graph, the taxi-out time savings from the trajectory-based control

approaches (RTA control and PbT control) are much higher than the queue-based

control, even though a very low queue capacity control parameter is applied. These

additional savings are obtained by controlling more departures aggressively. As seen

in Table 4.1, the trajectory-based control holds most flights at their gates even when

the taxiway is not congested, aiming to prevent almost all flights from waiting in

departure queues. On the other hand, the, N-Control method allows some departures

to wait in the queues and becomes activated only when the runway is saturated.

In the N-Control cases, the average taxi-out time decreases as the Nciri value

decreases. When the Ni, value is greater than 7, the taxi time savings translate to

the holding times at gates (see the dark color bars in Figure 4-3), resulting in the

same takeoff time as the 'No control' case (see a dotted line matched with the top of

the last bar in Figure 4-3). When Ne,1=7, the taxi time is reduced by 2.9 min per

aircraft, but its takeoff is delayed by 0.8 min due to excessive gate-holding. Compared

to the PbT control, the N-Control case with Nti,=7 shows similar takeoff delay, but
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Figure 4-3: Taxi-out time comparison

its taxi-out time is longer. This observation tells us that setting the queue capacity

on N-Control too low can compel departures to stay at their gates for a long time,

resulting in takeoff delay. In addition, the usage of the low queue control parameter

can increase the possibility of gate conflicts, which will be discussed later.

Since there are two departure runways at DTW, the taxi-out time comparison

in Figure 4-3 can be broken down by runway, as shown in Figure 4-4. Although the

number of flights using each runway is same, the absolute values of taxi-out times and

gate-holding times are not the same because of their different traffic characteristics.

For example, the average unimpeded taxi-out times from gate to runway are different

as Rwy 22L is closer to the main terminal. Also, there is a distinct difference between

their fleet mix ratios since Rwy 21R cannot accommodate heavy aircraft due to

its shorter length. However, the trend among control approaches is same for both

runways. That is, the RTA control obtains the most taxi time savings without takeoff

delays; the PbT control shows a significant taxi time reduction with small takeoff

delays; and the taxi-out time decreases as the Natr value on the N-Control decreases,

but the amount of taxi time reduction is smaller than the trajectory-based control

approaches. By comparing the two bar graphs in Figure 4-4, we can also observe that

flight schedules having more heterogeneous fleet mix get more benefits from departure

control.

Taxi-in times of arrivals are not affected by the departure control strategy, as
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Figure 4-5: Taxi-in time comparison

long as a gate conflict does not happen. Figure 4-5 shows taxi-in times from various

departure control approaches, including N-Control cases with various queue control

parameters. While the average taxi-in time increases a little in the trajectory-based

control cases, it is not affected by the aggregate queue-based control. When the Ndl

value is very low, however, some departures are excessively held at gates, leading to

gate conflicts and the corresponding gate-in delays for arrivals assigned to the same

gates.

As an indicator of the taxiway congestion, the number of aircraft taxiing out

to each departure runway, N, is shown in Figure 4-6, depending on the threshold

capacity, Narl. In the graphs, the N values of the N-Control cases are lowered from

the NoGH case during peak times and maintained less than the corresponding queue

capacity control parameters. This means the taxiway congestion can be mitigated
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to an acceptable level by N-Control. The curves for two departure runways have

different forms in terms of the maximum number of taxiing aircraft and the duration

of peak times. This difference stems from their different fleet mix ratios, making Rwy

22L more congested. Trajectory-based control cases (RTA control and PbT control)

from the FCFS optimization case are plotted as well in Figure 4-6 for comparison.

They show the similar level of N values to the N-Control with Ntri=7 for Rwy 22L

and with Nctr=9 for Rwy 21R.

Figure 4-7 compares the total numbers of stops while taxiing on the ground when

a 4-hr flight schedule is implemented with different departure planning. The number

of stops is obtained by counting the number of times that the aircraft is held on the

taxiway for a while in the SIMMOD simulation. Depending on the locations where

aircraft stop, these stops are categorized as one of the followings: holding in departure

queues, holding on taxiways, and holding for runway crossings. When the departure

schedule is not controlled as in the NoGH case, most stops occur in departure runway

queue areas. The number of holdings in departure queues is sensitive to the queue

control parameter on N-Control. As the Nci value decreases from 15 to 7, the

number of holdings in the queues also decreases. Secondly, holdings due to taxiway

separation are induced by various reasons related to the operational safety on the

ground movement, including the minimum distance between two aircraft entering the

same taxiway link, the minimum ground separation constraints, and vehicles traveling

in the opposite direction on a no-passing link. Regardless of the queue control capacity
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Figure 4-6: Number of taxiing aircraft for each departure runway
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on N-Control, the total number of holdings due to taxiway separation is constant,

whereas the optimization cases (FCFS and FPSr) for the PbT control show fewer

stops. Lastly, runway crossing holdings are usually applied to arrivals which need

to cross the active departure runways, so it seems that the number of holdings is

independent of the departure control method.

4.4.3 Runways

To evaluate the runway performance, runway throughput curves for departure run-

ways are illustrated in Figure 4-8. Compared to the NoGH case, there are no sig-

nificant impacts on runway throughput by any departure control strategies during

non-peak times. However, some peak points in the runway throughput curves are

flattened by N-Control. Especially when Ntr = 7, the runway throughput during

peak times is reduced, and the takeoffs of some flights are shifted to the next time

window because of excessive pushback delays.

By putting the runway throughput data from Figure 4-8 and the numbers of

taxiing aircraft from Figure 4-6 together, we can observe their relationship under the

N-Control approach, as illustrated in Figure 4-9. In the NoGH case, the departure

throughput saturates when the number of taxiing aircraft exceeds a specific threshold.

When the departures are controlled, however, the distribution of data points looks

different. In N-Control cases, the N values of the 15-minute periods are limited by
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Figure 4-8: Runway throughput for both departure runways

the given queue capacity control parameter, while maintaining the maximum takeoff

rate of each departure runway.

As the last performance measurement, the maximum takeoff delay values from

the earliest possible takeoff times are compared in Figure 4-10. While the queue

control parameter decreases in the N-Control cases, the largest takeoff delay in a 4-

hr flight schedule generally increases because the gate-holding time becomes longer.

When the Ntr value is low, there are large variations among flight schedule data

sets, compared to the trajectory-based control approaches. Differently from the other

metrics, however, we can find no clear tendency on the maximum takeoff delay.
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Figure 4-9: Runway throughput vs. number of taxiing aircraft
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4.5 Gate conflicts

For efficient departure management in airport operations, the gate-holding strategy

can be used to mitigate the congestion on the surface and reduce the taxi-out time,

while maintaining seamless takeoffs. However, when some departing flights are held

at gates, there is a possibility that several arrivals cannot access their gates and have

to wait for a while until the gates are cleared. This situation is called a gate conflict.

A gate conflict usually happens at the gate that is allocated to an arriving flight, but

still occupied by a departure. Depending on the airport layout, the gate conflicts

may occur on the ramp area like a horseshoe shaped terminal having only one access

point for multiple gates. Gate conflicts are also sensitive to gate characteristics such

as airline's gate ownership, gate equipment and aircraft type limitation, which can

constrain the number of usable gates. For example, only a few gates with dual-height

jetway capability can handle A380 aircraft at many major international airports.

Minimizing the frequency that the gate conflicts occur is one of the main con-

cerns in the gate assignment problem. Robust gate assignment algorithms have been

developed to minimize gate conflicts and maximize the time gap between two con-

secutive flights using the same gate. These algorithms were tested at several busy

airports [78,79,88,126].

In the N-Control approach, some departing flights can be held at gates for a long

time, resulting in gate conflicts with arrivals. According to the recent study at New
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York La Guardia Airport (LGA), the gate conflict frequency can be increased by 12

times when gate holding is on [79]. Other studies utilizing the gate-holding strategy

also admitted the possibility of the gate-use conflicts [75,86,116]. In the discussion

about the comparison of departure control approaches, it is therefore necessary to

check the frequency of the gate conflicts in a given flight schedule and investigate

their impacts on the arrivals. For this study, the flight schedules in Scenario 3 will

be used continuously.

4.5.1 Gate conflict frequency

First of all, we count how many times gate conflicts occur. For a given flight sched-

ule, the frequency of gate conflicts is measured by scanning the pushback times of

departures and the estimated gate-in times of arrivals at each gate and then counting

the situations that two flights share the same gate area simultaneously. The esti-

mated gate-in times of arrivals used in the N-Control cases come from the NoGH case

since the N-Control approach does not predict the movement of arrivals. Previous

studies also showed that little difference on taxi-in delays was observed among the

trajectory-based optimization cases.

It is assumed that the gate conflict occurs when the time gap between a departure

and a next arrival assigned to the gate is less than the minimum round-trip time

on the last taxiway link between the gate and the adjacent node on the ramp area.

The minimum round-trip time includes the travel times required for the departure

to move out and for the arrival to reach the gate. The sum of gate conflicts at the

entire gates is calculated and averaged over 27 data sets in Scenario 3 flight schedules.

For the trajectory-based control, both optimization approaches, represented by the

FCFS and FPSr cases, are investigated. These are compared with the 'No control'

case (NoGH case) and the N-Control cases having different queue control parameters.

The average gate conflict frequency over 320 arrivals in a 4-hr flight schedule for

each control case is illustrated in Figure 4-11. In the N-Control cases, the gate conflict

frequency increases as the queue capacity control parameter decreases. As long as

the Nctr value is greater than 7, the frequency is lower than both optimization cases
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Figure 4-11: Gate conflict frequency

for the trajectory-based control, in which about 90% departures are held at gates.

When Ntr = 7, however, the number of gate-held flights is half of the FCFS case,

but more flights experience gate conflicts. As a reference, the gate conflict frequency

at LGA was 2.45% in [79], although it is hard to compare the frequencies directly

because the frequency is strongly dependent on airport layout, gate availability, and

ramp control guidelines. It is also observed that the departures assigned to Rwy 22L

experience more frequent gate conflicts than the flights going to Rwy 21R because

longer gate-holding times are generally applied to the flights going toward Rwy 22L.

4.5.2 Options to resolve gate conflicts

A gate conflict situation rarely happens, but once it occurs, it produces adverse ef-

fects on the surface operations such as gate-in delays and additional workload of ramp

controllers. The best way to prevent flights from undergoing possible conflicts around

gates would be planning a plausible flight schedule that ensures the sufficient buffer

time between two consecutive flights at the same gate in advance and implementing it

as planned, while carefully monitoring off-nominal events on the ground. In real op-

erations, however, gate conflicts are sometimes inevitable under congested conditions

or at resource-limited airports.

When a gate conflict unavoidably happens, we can consider the following solutions

from a tactical point of view.
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Option 1: Arrivals wait for gate

The easiest ad hoc solution is to have the arriving flight wait on the ramp area

until the departure moves out and the gate is cleared. This solution affects neither

departure planning nor runway throughput, but directly increases the taxi-in times

of arrivals. Although this option can lead to a gridlock situation to the following

aircraft on the taxiway, we assume that the secondary effect can be neglected in this

preliminary evaluation.

To study the effect of gate conflicts on arrivals, we calculate the arrival's gate-in

delay, which is the difference between the taxi-in times with and without a pre-

occupied departure at the gate. In the N-Control approach, the total gate-in delay

value by gate conflicts dramatically increases when the queue capacity control param-

eter is lowered, as shown in Figure 4-12. In the trajectory-based optimization cases,

additional taxi-in time by gate conflicts is 2.5-3.5 s/arrival or 3.4-3.8 min/conflict.

Compared to the trajectory-based control, the taxi-in time added by introducing the

N-Control method is smaller, as long as the Ncti, value is greater than 7. In both

control approaches, the total gate-in delays are dominated by the gate-held flights

assigned to Rwy 22L. For the Solution 1, it seems reasonable that there is a propor-

tional relationship between the gate-in delays by gate conflicts and the gate-holding

times of departures for each runway. Note that the gate-in delays estimated in this

study are only for the arrivals directly affected by gate holding and that the addi-

tional effects that can be propagated by taxiway blocking of the waiting aircraft are

not considered. Therefore, the actual impact of this solution on the ground delay

may be more significant.

Figure 4-12 shows that the departing aircraft assigned to Rwy 22L have higher

values in both gate conflict frequency and total gate-in delays. According to Figure

4-13, the average waiting time of the arrival experiencing a gate conflict is also higher

for Rwy 22L. As the Nctri value decreases, the gate-in delay per conflict induced by

departures going to Rwy 22L increases significantly, whereas the Rwy 21R case shows

invariant values.
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Figure 4-12: Total gate-in delays by departure runway
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Figure 4-13: Gate-in delays by departure runway
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Optimization case FCFS FPSr NoGH Nctri=7
Total gate-hold time reduction (min/dataset) 19.1 13.5 0.3 27.5
Total takeoff delay reduction (min/dataset) 5.4 0.1 0.0 15.4
Total taxi-out time increase (min/dataset) 13.7 13.4 0.0 12.1
Total taxi-in time reduction (min/dataset) 17.2 12.7 0.3 26.9

Table 4.4: Effects of early pushback of departures

Option 2: Departures pushback early

When the gate-holding strategy is applied, most gate conflicts are caused by holding

departures at their gates for an excessively long time. In this case, it could be more

effective to push the departures back earlier than the controlled pushback times. That

is, when a gate conflict is expected, the departure is forced to leave its gate before

the arrival allocated to the same gate reaches the access point to the terminal. This

is based on the premise that predicting the gate-in times of arrivals is possible. This

solution can minimize the effect on arrivals. However, the takeoff time schedule and

sequence optimized by departure planning can be mixed up, resulting in increased

taxi-out times and unintended takeoff delays. Furthermore, Solution 2 has a limitation

on its implementation. If an early arrival raises a gate conflict, it may be impossible

to release the departure flight from the impacted gate earlier than the scheduled

pushback time.

Table 4.4 shows the changes from the Solution l's simulation results when So-

lution 2 is applied instead. As expected, we can save the taxi-in times of arrivals

by pushing some departures back at gates earlier when gate conflicts are predicted.

Reducing the gate-holding times of departures increases the taxi-out times and the

taxiway congestion level because the departures leaving the gates early join the depar-

ture runway queues at unplanned times and interrupt the optimal takeoff sequence.

However, the total takeoff delays are slightly reduced with the earlier pushback times.

Option 3: Gate reassignment

If there are enough available gates to accommodate the traffic demand at the airport,

finding an alternative gate can be the easier solution for a ramp controller to resolve
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the gate conflict problem. However, when assigning an arrival to an alternative gate,

the controller needs to account for operational constraints like airlines, aircraft type,

and gate equipment. In order to avoid passenger confusion, gate changes are gener-

ally made in advance. Robust gate assignment to minimize the occurrences of gate

conflicts is an ongoing topic of research in airport operations [88,126], but it is beyond

the scope of this thesis.

4.6 Conclusions

In this chapter, we described two different control approaches to managing the surface

traffic efficiently. The aggregate queue-based departure control approach, represented

by N-Control, was introduced first. This approach was then compared with the

individual aircraft trajectory-based control approach, called RTA control. The PbT

control was also compared as an intermediate control approach before the advanced

technologies required for the RTA control are realized.

These three methods were implemented for high traffic flight schedule scenarios

at DTW and evaluated with respect to various airport performance metrics. The

simulation results of the N-Control method showed that as the queue capacity control

parameter became lower, the better taxiway performance could be achieved at the

expense of other metrics such as takeoff delays and gate conflicts, while maintaining

the same level of runway throughput. The other control approaches based on the

aircraft trajectories showed more taxi-out time savings by applying the gate-holding

strategy more aggressively. If implementable, the RTA control would provide us with

the most significant taxi time savings during peak times without losing any runway

performance.

It was also found that the departure control by gate holding could lead to gate

conflicts in real operations. A few options to resolve the gate conflict situations

were reviewed in this chapter. The waiting of arrivals would be an easy way for ramp

controllers to implement, but produce the gate-in delays. According to the simulation

results, the earlier pushback of departures could be a better solution to minimize the
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side effect of gate conflicts.
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Chapter 5

Impact of uncertainty on airport

performance and planning

5.1 Uncertainty in airport operations

All of the optimization and simulations done so far have been based on the assumption

that airport operations are deterministic. That is, the operational parameters used

in both optimization and simulations were fixed, and the disturbances from them

were not allowed. However, there exist lots of variations and uncertainties in real

operations. They include actual pushback times of departures, actual landing times

of arrivals, taxi speed of aircraft, holding time on the taxiway and in departure queue,

roll distance of takeoff or landing, and actual separation times between consecutive

flights over the runway. These uncertainties are caused by the variety of airline

procedures, aircraft types, pilots, air traffic controllers, surface conditions, weather,

and operational environment. Since these uncertainties cannot be neglected, it is

necessary to reflect them in the simulations and investigate the impacts of them

on ground delays, runway throughput, and any other airport performance metrics.

However, some less frequent uncertainty factors that lead to large perturbations from

the original plan, such as airport configuration changes, aircraft malfunctions and

emergency situations, are beyond the scope of this thesis.

SIMMOD provides a stochastic process function in order to accommodate the
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presence of uncertainties in airport operations. This simulation tool can model several

uncertain factors in the form of random variables and produce statistical outputs

representing the variations in air traffic phenomena through many iterations. The

random number streams provided by SIMMOD include gate selection and occupancy

time, multiple arrival and departure, takeoff and landing roll distance, inter-aircraft

separation, flight lateness, bank late flight holding probability, bank late transfer

time, and arrival and departure clone [2,7].

In this chapter, several uncertainty factors in airport operations are modeled as

random variables at microscopic level in a fast-time computer simulation tool (SIM-

MOD) and studied through stochastic simulations in order to investigate their impacts

on ground delays and taxi times. These uncertainties consist of:

1. Actual pushback times of departures, which are random perturbations of the

given flight schedule using gate service (occupancy) times in SIMMOD,

2. Varying taxiway entrance times of arrivals, which can be varied by landing roll

distances in SIMMOD,

3. Different taxi speeds on the taxiway and the ramp areas depending on the

flights,

4. Uniformly distributed separation times between takeoffs, determined by the

in-trail separation multiplier in SIMMOD.

In the next section, we describe the simulation modeling approach and the flight

schedule scenarios used in the simulation-based uncertainty studies.

5.2 Simulation modeling for uncertainty studies

5.2.1 Simulation model validation

To run the various simulation scenarios for uncertainty studies in surface operations,

a basic SIMMOD simulation model for an airport should be developed first. To make

the process easy, DTW airport is chosen again for these uncertainty studies. So, the
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same SIMMOD model constructed in Chapter 2 is used for the uncertainty studies as

it is. The operational parameters defined in the model also remain the same, except

for the random variables varied in the uncertainty experiments.

As mentioned earlier, several parameters in the SIMMOD input data can be varied

in the stochastic process using random number seeds. SIMMOD can repeat the

entire surface traffic movements with the given input and with randomly generated

parameters as many times as needed. After iterating simulation runs, SIMMOD

brings out the statistics from the simulation result, such as aircraft movement starting

and ending times for individual flights, average travel time and delay on the ground

and in the airspace, and fuel consumption (if available).

Before using this SIMMOD model for various uncertainty studies, the simulation

model is validated with actual flight data from DTW airport on 8/1/2007. The whole

day flight schedule is simulated in SIMMOD under the same operating conditions,

and the resultant travel times on the surface, including the unimpeded taxi time and

ground delay for each flight, are analyzed in this section.

Figure 5-1 shows the average taxi-out times from the SIMMOD simulation and

the surveillance data for each 5-min interval during the day. The two curves are

similar for low traffic levels, like the early morning periods. At most times, however,

there is a significant gap between the simulated and actual values. As the number

of flights moving on the ground increases, the gap becomes larger. The reason of

this gap is that no uncertainty is taken into account in this SIMMOD simulation.

As a result, the deterministic simulation neglects the effect of uncertainty on travel

times and the increased interactions between flights in high traffic density situations.

Other causes for the difference between the simulated and observed values may include

measurement errors and missing records in the surveillance data.

To validate simulation parameters such as taxi speeds and routes, the unimpeded

taxi-out times from the SIMMOD simulation and a queueing model are also compared.

The unimpeded taxi times for departures can be estimated by the linear regression

method used in the queueing model for airport departure process using historical traf-

fic data [114]. This method was validated for several major airports [115] and applied

129



2400
2200

law0
1800

1400
Tall-out 1200

tiMe (Sec)

400

200
0
OMaAM 8O AM

RMJ
10OAM 1200 PM 200 PM 400 PM 600 PM 800 PM 1O-O PM

Local time (hour)

Figure 5-1: Taxi-out time comparison between SIMMOD simulations and surveillance
data
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Figure 5-2: Unimpeded taxi-out time comparison between SIMMOD simulation and
queueing model

to DTW airport, considering airlines, gates, runways, and weather conditions [87].

As shown in Figure 5-2, the unimpeded taxi-out time curves from the queuing model

and the SIMMOD simulation are very similar.

The result from Figures 5-1 and 5-2 implicates that the SIMMOD airfield model

and the related simulation parameters have been modeled appropriately and that the

gap between real operations and simulation can be diminished by considering the

uncertainty in surface operations, of which the effects on the taxi time increase as the

traffic becomes congested, in the simulation.

5.2.2 Flight schedules used in simulations

To evaluate the impacts of various uncertainty factors in surface operations in more

detail, we use two flight schedule scenarios at DTW, depending on the traffic level.
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The first schedule scenario representing the current traffic level is one hour of data

at DTW between 7:00PM and 8:00PM on August 1st, 2007, which is one of the bus-

iest times on that day. In this scenario, two different flight schedules are simulated

and compared for each uncertainty effect experiment. One corresponds to the origi-

nally scheduled pushback times, and the other schedule corresponds to the optimized

pushback times obtained by holding flights at their gates (gate-holding strategy).

The optimized flight schedule is from the 2-CPSd case using the three-step approach.

The pushback times are optimized so that their takeoff times are appropriately sepa-

rated, and so that the ground delays and the sizes of departure queues are minimized.

Through the stochastic simulation, we will check if these benefits from optimization

are still valid under the uncertain operational conditions. Arrivals are also simulated

to create a realistic surface environment.

The second flight schedule scenario is from Scenario 3 in Chapter 3, which repre-

sents the higher traffic level at DTW in the future. This scenario models four-hour

flight schedules having two peaks, of which the hourly demand rate is double the cur-

rent traffic level. In this scenario, we also test two kinds of flight schedules, which are

original and optimized departure schedules. To obtain the optimized flight schedule,

the FPSr case based on the integrated approach is used. By comparing the stochastic

simulation results from the two schedule scenarios, we can investigate the relationship

between traffic level and uncertainty effects on the airport surface.

5.2.3 Iterations with random variables

Parameters in the SIMMOD input data can be varied using random seeds. Given

the flight schedule and the fixed operational inputs, SIMMOD can repeat the en-

tire surface traffic movements with randomly generated parameters as many times as

needed. The random parameters varied for the uncertainty studies in this chapter

include gate occupancy time for pushback time perturbation, landing roll distance for

runway exit time perturbation, and in-trail separation multiplier for inter-departure

time perturbation. In case of taxi speed perturbation, aircraft taxi speeds are ran-

domly distributed within a given range by using a separate pre-processing module.
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After iterating simulation runs, SIMMOD will compile statistics from the simula-

tion results, such as movement start and end times of aircraft at gates and runways,

travel times and delays on the ground and in the airspace.

5.3 Pushback time variations

Airport taxiway optimization models generally assume that flights leave the gates

exactly at the optimized pushback times. In reality, however, uncertainties in the

pushback process make it very unlikely for an aircraft to meet its assigned pushback

time. A flight may move out from the gate later than the scheduled pushback time

due to late passengers, delayed loading of galley carts for cabin service, unexpected

maintenance checks, waiting for clearance from the control tower, or communication

with ground crews. Similarly, a flight may depart earlier if there are no delays or

disruptions during the pushback process.

This uncertainty in pushback time can be modeled in SIMMOD by using random-

ized gate service times within a given range. For example, if flight A is scheduled

to depart at 9:00AM and the mean gate service time is 30 minutes, then flight A

will show up at 8:30AM in SIMMOD simulation in the absence of uncertainty. If

we allow ±5 min deviation from the mean value of gate occupancy times, the actual

pushback time will be chosen as a random value between 8:55AM and 9:05AM. Each

flight in the flight schedule has a different deviation independently drawn from the

given distribution.

5.3.1 Pushback time uncertainty study at current traffic level

First, the random variables for gate occupancy times are applied to the 1-hr flight

schedule scenario with the current traffic level described in the previous section. The

pushback time deviation from the deterministic flight schedule is assumed to range

between 0 min (no uncertainty) and 5 min. In this case study, a truncated Gaussian

distribution and a uniform distribution are considered for the pushback time uncer-

tainty. For each probability distribution, 100 different flight schedules are generated
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Flight Probability Total Ground Delay / Simulation Run (min)
Schedule Distribution 21R..Dep 22LDep 22RArr 27L.Arr

Initial Deterministic 5 49 1 1
Pushback Gaussian 8 54 1 0

Time Uniform 9 56 1 0
Optimized Deterministic 1 15 1 0
Pushback Gaussian 8 32 1 0

Time Uniform 9 36 1 0

Table 5.1: Impact of pushback time uncertainty on the ground delay

and simulated in SIMMOD for both the initial and optimized pushback schedules.

Table 5.1 summarizes the total ground delay per iteration in minutes categorized

by runway (and averaged over 100 trials). For each pushback schedule, the deter-

ministic case is used as a baseline. We see that the ground delay increases for both

departure runways 21R and 22L, as the uncertainty of pushback times increases from

deterministic to Gaussian, and then to a uniform distribution. By contrast, there is

little effect on arrivals because the landing schedules remain deterministic. The sim-

ulations also demonstrate the benefits of the gate-holding policy. For the departure

runway 22L, the optimized pushback schedule has a lower ground delay even with

uniformly distributed pushback uncertainty compared to the deterministic case with

no gate-holds. This result suggests that the solutions recommended by deterministic

surface traffic optimization provide benefits even in the presence of pushback time

uncertainty.

This experiment can be extended to observe the effect of the deviation limit on

the ground delay. The actual pushback time of a flight may sometimes be beyond

the 5 min deviation from the given schedule. So, the same simulations have been

implemented with various deviation limits from the deterministic pushback times,

ranging from 0 to 15 minutes. In terms of flight operations, however, it is not allowed

that a flight leaves the gate more than 5 minutes earlier than the schedule in the

simulations. For the same 1-hr flight schedule data, 100 different samples, in which

the pushback times of departures are randomly selected over the given range using

a uniform distribution, are generated and run in SIMMOD for each pushback time

deviation limit.
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Figure 5-3: Average ground delay per departure with pushback time perturbation at
current traffic level

Figure 5-3 presents the average ground delay per departure as a function of the

maximum pushback time deviation. The whiskers in the graph denote the standard

deviation of the delays from the 100 simulations. For both departure runways, the

ground delays for both original and optimized pushback time schedules increase until

the range of the pushback time perturbation becomes t5 min from the given sched-

ule. For the scheduled pushback time case, the ground delay of a departure going

to Runway 22L decreases gradually when the allowed deviation increases beyond 5

minutes. This reduction shows that the unintended pushback delays may act as an

implicit gate-holding policy when the departure traffic demand is high, by keeping

aircraft at their gates until the surface congestion has decreased.

5.3.2 Pushback time uncertainty study at higher traffic level

Next, the same uncertainty study about pushback time perturbation is performed

with the second traffic scenario, 4-hr flight schedules having 2 peak periods used in

Chapter 3. As in the previous experiment, 100 different trials having various push-
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Figure 5-4: Average ground delay per departure with pushback time perturbation at
higher traffic level

back time deviations are simulated in SIMMOD. The pusliback times are uniformly

distributed within a given deviation range, and the deviation limit applied to the

simulations increases from 0 to 15 minutes.

Figure 5-4 shows the average ground delay per departure depending on the un-

certainty level of the pushback times. The curves are categorized by the assigned

departure runway and the schedule optimization using the gate-holding strategy. Ac-

cording to the simulation results, the pushback time uncertainty makes a limited

effect on the ground delay. When the pushback times of departures are optimized,

the ground delay increases as the pushiback time perturbation range becomes wider,

but the delay curves saturate at around 8 minutes of the deviation limit. On the

other hand, when the departures leave their gates at the scheduled pushback times,

their average taxi-out delay does not change much along with the uncertainty level

in pushback times. It seems that the adverse effects on the ground congestion by

uncertain pushback times are offset by gate-holding caused by the uncertainty.

We now investigate how the traffic demand level affects the stochastic simulation

results showing the relation between the pushback time uncertainty and the taxi-out
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Figure 5-5: Average ground delay per arrival with pushback time perturbation at
higher traffic level

delay. By comparing Figures 5-3 and 5-4, we can observe that the absolute values

on ground delays (and the taxi-out time savings by pushback time optimization) are

always much higher when the traffic is more congested. However, the two graphs

commonly show that the taxi-out delay curves saturate at some points as the max-

imum deviation from the given pushback times increases, regardless of the surface

traffic level. Also, the benefits from the gate-holding strategy on the ground delay

are still valid in the presence of the pushback time uncertainty for both current and

higher traffic levels.

For arrivals, there are little impacts on their average ground delays. As shown

in Figure 5-5, the pushback time perturbation applied to departing flights does not

affect arrivals' ground movements, unless gate conflicts occur. Note that the scale on

the y-axis in Figure 5-5 is a hundredth of Figure 5-4's.

136



5.3.3 Impacts of pushback time uncertainty on gate conflicts

The pushback time uncertainty can lead to gate conflicts. If a departing flight actually

leaves its gate later than the given pushback time for some reason, an arrival assigned

to the same or adjacent gate may have to wait on the ramp area to avoid a conflict

with the departure. Therefore, we need to investigate how often the gate conflicts

occur in the presence of pushback time uncertainty.

The gate conflict frequency can be obtained by analyzing the gate arrival and

departure times from SIMMOD simulations. For this analysis, the simulation results

for the higher traffic level scenario are used because gate conflicts seldom happen in

the current traffic level flight schedules. As performed in the previous section, 100

simulations are implemented for each pushback time deviation limit ranging from 0

to 15 minutes, and each simulation has randomly deviated pushback time schedules

within the given perturbation limit. The same simulations are run with both initially

scheduled and optimized pushback times.

Figure 5-6 illustrates the averaged gate conflict frequencies of the original and

optimized flight schedules as a function of pushback time uncertainty level. According

to the graph, it seems that the gate conflicts can happen due to the pushback time

uncertainty, but the frequency does not proportionally increase as the uncertainty

range becomes wider. Note that the pushback delay of a specific departure flight is

not directly related to the deviation limit of the pushback time perturbation, but

randomly determined within the given deviation limit. Compared to the original

departure schedule, the optimized schedule is more likely to have gate conflicts in

the presence of pushback time uncertainty because most departures are held at their

gates. This prediction can be confirmed by observing Figure 5-6, showing that gate

conflicts occur more frequently (up to 3%) when the pushback times are optimized.

5.4 Landing time variations

Arrivals also have uncertainty associated with their runway exit times, that is, the

times when they enter the taxiway system. This uncertainty can be modeled by vary-
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Figure 5-6: Gate conflict frequency by pushback time uncertainty at higher traffic
level

ing the landing-roll distances in SIMMOD. The landing roll distance is affected by

many factors, such as aircraft weight, approach speed, braking performance, head-

wind, runway surface condition, slope, and human factors [66]. In this uncertainty

study, the deviation range from the normal landing roll distance used in SIMMOD

is set to +500 ft. It is also assumed that arrivals use the same runway exit so as to

restrict the uncertainty to the runway exit time alone, and that the landing sequence

does not change due to this uncertainty.

For the same flight data as the previous case studies, 100 trials were implemented

by using random seeds in SIMMOD. The Monte Carlo simulation showed no effect

on the ground delay. The perturbation in roll distance impacted just the gate-in time

of each arrival. This result is reasonable since the inter-arrival times for safe landing

provide consecutive flights with sufficient spacing on the taxiway.

5.5 Taxi speed variations

The objective of the case studies described in this section is to investigate the impact

of flights moving at differing taxi speeds on airport surface traffic. In the previous

simulations, it was assumed that all flights taxiing on the ground move at the same

taxi speed, which is the average value of various taxi speeds observed at the airport.

With this assumption, the trailing flight on a taxiway can keep a constant separation
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distance from the leading flight on the same taxi route. In practice, however, taxi

speeds may differ from flight to flight [55] due to many factors such as aircraft type,

pilot behavior, operational procedures, taxiway length, etc. We therefore simulate

differing taxi speeds and scrutinize the impacts of taxi speed variations on the ground

delay.

5.5.1 Case study 1: Taxi speed variations on taxiways only

First, we assume that the pushback times for departures and the runway exit times

for arrivals are known and deterministic. Each flight is assumed to have a different

taxi speed within a given range on the taxiway area, which it maintains along the

entire taxi route. The upper and lower bounds of the taxi speed range would be

determined by aircraft performance, ground congestion, and operational rules at the

airport. In this case study, all flights are assumed to maintain a constant speed of 7

knots in the ramp areas. We also suppose that there are no significant differences in

taxi speeds based on aircraft type or between arrivals and departures.

The same flight schedule scenarios at DTW as the previous uncertainty studies

are used. Values within the given taxi speed range are randomly generated using a

uniform distribution, and assigned to the flights in the schedule. The mean value of

the taxi speeds is set to 18 knots, which is consistent with the parameters used in the

optimization models for aircraft taxiway scheduling.

For the Monte Carlo simulation, 100 trials with randomly generated taxi speeds

are run by SIMMOD for each taxi speed range condition. The data sets contain the

same flight schedules, pushback times and landing times, but different taxi speeds

are assigned to the same flight in each trial. To investigate how the uncertainty in

taxi speed affects the ground delay, six different taxi speed deviation ranges from 0

to ±5 knots are studied. Also, for comparison, the simulations are conducted with

the original schedule and the optimized pushback time schedule.

Figure 5-7 illustrates the average ground delays per flight with standard deviations

from 100 simulations implemented for the current traffic level scenario along with taxi

speed perturbation, depending on the runway and on the taxi speed range. In these
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Figure 5-7: Average ground delay with taxi speed perturbation on taxiway area at
current traffic level

simulation results, the ground delay includes holding for runway crossings, intersection

holds to avoid conflicts, wait times in the departure queue, and holds for maintaining

separation on the taxiway due to a slower flight ahead. In Figure 5-7, the average

ground delay for departures increases as the taxi speed range becomes wider. This

tendency is to be expected because the taxi speeds of flights are constrained by slower

flights. For instance, if a leading flight is slower than a group of flights behind it

along the same taxi route, the trailing flights cannot taxi faster than the leading one,

resulting in increased taxi times and wait times in the departure queue. In rare cases,

the ground delay can decrease with increased taxi speed perturbation because the

different taxi speeds may widen the spaces between flights on taxiway and runway.

In general, however, the average ground delay increases as the taxi speed deviation

limit increases.

By contrast, there is little impact on the ground delay of arrivals since the average

delay per arrival from each runway is less than 15 seconds for any of the taxi speed

ranges. This result is due to the fact that arrivals are already separated enough when

exiting the runway, resulting in minimal interactions with the following aircraft. Taxi

routes for arrivals are almost independent of the paths for departures, except in the

ramp area, further minimizing interactions between them.

In the simulation results, the original and optimized pushback time schedules are

also compared. For the more congested runway (Runway 22L), the ground delay

of the optimized pushback time schedule is always much less than the delay of the
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Figure 5-8: Average ground delay with taxi speed perturbation on taxiway area at

higher traffic level

original schedule. The ground delay values for the two schedules are similar for the

less congested runway (Runway 21R), and they become more similar as the taxi speed

deviation increases. The additional ground delay compared to the deterministic case is

greater for the optimized schedule case as the taxi speed deviation increases, possibly

because the optimized flight schedule is more sensitive to taxi speed uncertainty.

Figure 5-8 shows the average ground delay curves as a function of taxi speed

perturbation range for the higher traffic level scenario used in Section 5.3.2. The

simulation results are fundamentally similar to the current traffic level scenario results

shown in Figure 5-7, although the initial ground delay values in the constant taxi

speed case are different depending on the surface traffic level. When the taxi speed

variation among aircraft moving on the taxiway area increases, the average ground

delays also gradually increase, but their growth rates are not steep for both departures

and arrivals.

5.5.2 Case study 2: Taxi speed variations on taxiway and

ramp areas

In the previous case study, different taxi speeds were applied to the taxiway areas

only. This uncertainty can be extended to the ramp area where aircraft move from/to

gates around the terminals at slower speed. When the flights move both on the ramp

and taxiway areas at differing speeds, ground delay is expected to increase because
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Figure 5-9: Average ground delay with taxi speed perturbation on taxiway and ramp
area at current traffic level

of more frequent interactions, especially in the ramp area.

As in the previous case, taxi speed values perturbed around the average taxi

speed are assigned to flights. The same deviation is applied to the taxi speed values

on both ramp area and taxiways. For example, if the random deviation of a flight

is +1.5 knots, the assigned speed will be 19.5 knots on the taxiway and 8.5 knots in

the ramp area. While increasing the taxi speed deviation limit from 0 to 5 knots,

SIMMOD runs 100 simulations with different taxi speed distributions for each taxi

speed range. This uncertainty study is also performed with respect to the same flight

schedules used in the previous case study.

Figure 5-9 shows the average ground delay from each runway for the current traffic

level scenario. As expected, the absolute values of the ground delay are significantly

increased for all cases, compared to Figure 5-7. As in the previous case study, the

delay increases as the taxi speed range increases. In contrast to the previous results,

arrivals also experience increased ground delay due to taxi speed perturbation. This

fact is due to arrivals sharing the ramp area with departures. It is worth noting that

most arrival ground delays in the SIMMOD simulations occur in the ramp area. We

also note that the optimized pushback time schedule shows one minute less delay

per departure for Runway 22L compared to the original schedule, but the difference

becomes narrow as the taxi speed variance increases. On the other hand, flights using

other runways show almost the same delay values for all taxi speed ranges, regardless

of the pushback time optimization.
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Figure 5-10: Average ground delay with taxi speed perturbation on taxiway and ramp
area at higher traffic level

The average ground delay curves for the higher traffic level scenario are drawn

in Figure 5-10. For the departures in the more congested surface traffic condition,

the initial ground delays with no taxi speed perturbation are much higher than the

delay values in Figure 5-9. However, it seems that the rate of delay increase to the

taxi speed perturbation is similar, regardless of the traffic level. For both departure

runways, the optimized schedule is more sensitive to the taxi speed perturbation, but

always shows much lower taxi-out delays in the presence of taxi speed uncertainty.

The average ground delay of arrivals also increases significantly when both taxiway

and ramp areas are affected by taxi speed perturbation. Similar to the departures,

however, the growth rate of delays looks uncorrelated with the traffic congestion level.

5.5.3 Case study 3: Taxi speed variations on taxiway and

ramp areas, with faster arrivals

The prior case studies assumed that there was no difference between arrivals and

departures in terms of taxi speeds. However, arrivals tend to taxi faster in practice.

Analysis of surface surveillance data at DFW has shown that arrivals are about 2

knots faster than departures while taxiing [55]. While the average taxi speed was

assumed to be 18 knots in the previous case studies, the mean values of taxi speeds

in this case study are assumed to be 17 knots for departures and 19 knots for arrivals

on the taxiway. On the ramp area, however, it is assumed that both departures and
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Figure 5-11: Average ground delay with taxi speed perturbation on taxiway and ramp
area with faster arrivals at current traffic level
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Figure 5-12: Average ground delay with taxi speed perturbation on taxiway and ramp
area with faster arrivals at higher traffic level

arrivals have the same average of 7 knots.

The resultant average ground delays for this case study are shown in Figures 5-11

and 5-12 for two flight schedule scenarios having different traffic levels. The average

ground delay variation with taxi speed deviation in Figure 5-11 is almost the same

as in Figure 5-9, suggesting that ground delay is not affected by the absolute values

of the average taxi speed, but only by the deviation range. The average taxi speed

value in the stochastic simulation affects the unimpeded taxi time alone. The same

conclusion can be reached by comparing the ground delay curves from Figures 5-10

and 5-12 for the higher traffic level scenario.
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5.6 Inter-departure time variations

The takeoff separation times between consecutive departures differ in real operations,

even when the weight classes are the same. The inter-departure separation time

variation is modeled in SIMMOD using a random variable for the in-trail separation

multiplier. This factor multiplies the minimum separation time to yield the separation

time in the simulation. In this analysis, various separation times between takeoffs are

randomly generated in SIMMOD within the given range, while the minimum separa-

tion requirements are maintained. The upper limit of the in-trail separation multiplier

applied in this experiment ranges from 1.0 (tight separation) to 1.5 (conservative op-

eration). For each case, 100 simulation runs are performed.

For the current traffic level scenario, Figure 5-13 illustrates the average simulated

ground delay along with the upper limit of the separation time multiplier, depending

on the runway and on the flight schedule. As expected, the ground delay linearly

increases as the range of separation times widens. The increased delay on the ground

comes from the increased wait time in the departure queue because the following flight

needs to wait longer before takeoff. Furthermore, the waiting time is propagated when

the departure queue is full. For Runway 22L in the graph, the average ground delay

for the optimized pushback time case reaches 1.4 minutes per departure when the

multiplier limit is 1.4, implying that conservative runway operations can cancel out

the benefits from taxiway schedule optimization. It is also evident that the separation

time uncertainty can decrease runway throughput.

Figure 5-14 shows the average ground delay as a function of the inter-departure

separation time uncertainty for the higher traffic demand. In this traffic scenario,

the absolute ground delay values increase due to separation requirements, even in no

uncertainty cases. Because of the delay propagation in departure queues, the ground

delays for the higher traffic level scenario are more sensitive to the inter-departure

time uncertainty, but the benefits from surface traffic optimization are greater for

both departure runways.
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5.7 Conclusions

In this chapter, significant uncertainty factors in airport operations were identified,

and stochastic simulations using SIMMOD were developed for evaluating the impacts

of the uncertainties on airport performance. The simulation model was validated with

actual flight schedules at DTW. Monte Carlo simulations for various uncertainty

studies were then conducted with two flight schedule scenarios at the same airport,

depending on the traffic level.

Simulation results showed that the ground delays saturated or decreased as the un-

certainty in pushback times grew because the pushback delay due to the uncertainty

acted like gate-holding. Uncertain runway exit times for arrivals did not significantly

impact airport performance, apart from gate arrival times. It was also shown that

perturbations in taxi speeds resulted in significant increases in ground delay for de-

partures. By contrast, the taxi-in times of arrivals increased only when there were

taxi speed variations in the ramp area, where arrivals interact with departures; how-

ever, the ground delay did not depend on the absolute value of the average taxi speed.

In most cases, the delay growth rate to the taxi speed perturbation was also inde-

pendent of the traffic level. Uncertainty in inter-departure separation times increased

wait times in the departure queue, while reducing runway throughput.

The case studies presented in this chapter also compared simulations of originally

scheduled and optimized pushback times and showed that the surface traffic opti-

mization based on a deterministic model can still provide benefits in the presence of

uncertainties.
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Chapter 6

Summary and Next Steps

6.1 Summary of this thesis

In this thesis, we developed two different approaches to optimizing runway and taxi-

way schedules for efficient airport surface planning. The integrated approach opti-

mized both runway and taxiway schedules simultaneously in a single MILP model,

while the three-step approach sequentially combined a taxi-out time estimation mod-

ule, a runway scheduling algorithm, and a MILP model for taxiway scheduling. These

two approaches were compared using actual flight schedules at Detroit airport (DTW).

The optimization results indicated that the three-step approach could provide bet-

ter computational performance without a significant sacrifice in optimality. We also

developed a fast-time simulation model for DTW using SIMMOD to model the air

traffic flow on the surface and verify the benefits from the departure planning based

on the surface traffic optimization.

We then evaluated the proposed optimization approaches in more detail with

various scenarios having a higher traffic demand at DTW, by analyzing several airport

performance metrics. Both optimization approaches provided significant taxi-out

time savings with no impacts on departure runway performance and on arrivals. In

most traffic scenarios, the integrated approach performed a little better in terms of

taxi-out time and takeoff delay, but its computational tractability was worse than

with the three-step approach. When we used the three-step approach, minimizing
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the makespan would have been a better objective in the runway scheduling phase

because it required shorter computation time and less controller workload, while the

taxi times and takeoff delays obtained after taxiway scheduling were the same as

the minimum runway delay solution. We also showed that the traffic characteristics

in the flight schedule, such as fleet mix ratio and demand fluctuation, could affect

the airport performance metrics of departures, including gate-holding time, takeoff

delay, and position changes in takeoff sequencing. However, the optimized taxi times

obtained by both optimization approaches were independent of the traffic properties

and close to the unimpeded taxi times.

Next, we compared two types of departure control methods for efficient surface

traffic management, which were aggregate queue-based control (N-Control) and in-

dividual aircraft trajectory-based control (RTA control). If implementable, the RTA

control based on the optimal taxiway schedules from the surface traffic optimization

would provide us with the most significant taxi time savings without losing any run-

way performance. Since we are not able to realize the RTA control in the current

operational environment, we modeled an interim control method using the optimized

pushback times only among the RTAs as control inputs in the SIMMOD simula-

tions, and this pushback time control method (PbT control) was still able to reduce

the taxi times considerably. The SIMMOD simulations for the N-Control method

demonstrated that as we lowered the queue capacity control parameter, we could

obtain the better taxiway performance, while maintaining the same level of runway

throughput. However, the taxi time savings from N-Control could not exceed the

benefits from the trajectory-based control because the N-Control method was acti-

vated only when the surface traffic was congested. We also found that the departure

control using the gate-holding strategy could result in gate conflicts with arrivals. We

examined possible solutions to avoid the gate conflicts through fast-time simulations.

The evaluation results suggested that the earlier pushback of departures could be a

better option to minimize side effects than the waiting of arrivals.

In the last part of the thesis, we investigated how the uncertainty factors in airport

operations could have impacts on airport performance. For this evaluation, we de-
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fined the main uncertainties that might affect the airport performance and developed

stochastic simulation models using SIMMOD for these uncertainty sources. Monte

Carlo simulations for each uncertainty factor were then conducted with various flight

schedules at DTW. Simulation results showed that the ground delays saturated or

decreased as the uncertainty in pushback times grew because the unintended push-

back delay due to the uncertainty might act as the gate-holding strategy. Uncertain

runway exit times for arrivals did not significantly impact airport performance, apart

from gate arrival times. It was also found that taxi speed variations among aircraft

significantly increased ground delay. Uncertainty in inter-departure separation times

increased wait times in the departure queues, while reducing runway throughput.

These uncertainty studies also compared the simulations of originally scheduled and

optimized pushback times and showed that the surface traffic optimization based on

a deterministic model could provide benefits even in the presence of certain types of

uncertainties.

6.2 Future research directions

The research work in this thesis can be expanded in the following directions in the

future.

6.2.1 Extensions of airport surface traffic optimization

The objectives used in the airport surface traffic optimization approaches proposed

in this thesis can be varied by considering various stakeholders related to airport

operations. Instead of minimizing taxi times and runway delays or maximizing runway

throughput, we may want to minimize operational costs for airlines or environmental

impacts on the surface such as fuel consumption and gas emissions. These variants

can be calculated easily by changing the delay cost coefficients for individual flights

in the objective function of the given optimization model, as long as appropriate data

are furnished. We can also refine the operational parameters used in the optimization

to enable more accurate control of aircraft on the surface. Although the current
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optimization models are based on reasonable assumptions, the values for the nominal

taxi speed, the minimum separation distance on the taxiway, and the maximum

holding time could be further subdivided, depending on the aircraft weight classes or

models. For the runway scheduling of departures, we may consider more separation

constraints like miles-in-trail (MIT) and departure fixes after takeoffs as well.

In this thesis, we assumed that the taxi routes of flights were given. However,

flights may have alternative routes to reach the assigned runway or gate. By intro-

ducing decision variables for selecting the optimal taxi route among available routes,

we can extend the existing MILP models to deal with the multiple route taxi schedul-

ing problem, as proposed in [941. In the three-step approach, for instance, the MILP

model in Step 3 may be modified to choose a better taxi route for each aircraft while

meeting the optimized takeoff times from the runway scheduling algorithm in Step

2. This approach can also be extended to assign departures to the better runway,

when the airport has multiple departure runways. In addition, for efficient terminal

area operations, the airport surface traffic optimization should be integrated properly

with the traffic flow management problem in the airspace.

We assumed that the airport runway configuration did not change during the

evaluation because the current configuration is the most frequently used one and the

configuration changes do not often happen at DTW. In general, however, the runway

configuration can change due to several factors affecting airport operations such as

weather conditions, wind direction, airspace availability, noise mitigation procedures,

and traffic demand [37]. It is therefore necessary to consider how the runway and taxi-

way scheduling algorithms can work in the configuration change situation. During

airport configuration changes, we may use the runways used in the previous runway

configuration as taxiways for rerouting and optimize the runway and taxiway sched-

ules again attuned to the new configuration, as suggested in [37]. In this approach,

the departure flights which have left the gates, but have not yet taken off will be

rescheduled along the temporary taxi routes from their current locations to the new

departure runways.

Improving the computational performance of the optimization can be a significant
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research direction for future work. We can introduce mathematical approaches like

Bender's decomposition to the current optimization model, but we may be able to

reduce the solution time more easily by appropriate problem modeling techniques.

It would be helpful to reduce the number of control points on the surface by using

a simplified node-link network model for the airport layout or excluding the ramp

area from the control domain. Also, making the time discretization rougher could

improve the computational performance significantly at a relatively small cost to the

optimization benefit, as shown in the related tradeoff study in [85]. These efforts

would make the proposed optimization approaches more amenable to practical use as

a decision support tool for real airport operations.

6.2.2 Adaptations to other airports

In this thesis, we focused on the surface traffic optimization at Detroit airport, but

we can apply the same approaches to other busy airports. For these applications,

we have to create a node-link network model to represent the target airport layout

based on the geographical information first. We also need to carefully consider the

surface infrastructure characteristics and operational rules of the airport, such as

runway configuration, taxiway layouts, holding area locations, standard taxi routes,

available taxi speed range, separation requirement rules, and gate usage limitations.

If there are lots of interactions between departures and arrivals on such taxiway areas

like intersections and runway crossings, we will be able to obtain significant taxi

time savings through optimization. On the other hand, if the airport has a simple

layout with a single runway for departures and few interactions with arrivals, it will

likely derive benefits from departure runway scheduling alone. For the large airports

having multiple runways and a complicated airport layout, the proposed surface traffic

optimization approaches may be more effective because there are more opportunities

to optimize the flight schedules by sequencing at control points.

The traffic characteristics of the target airport such as traffic demand level and

fleet mix ratio can also affect the benefits of the scheduling algorithms, as shown in

Chapter 3. We expect greater benefits from optimization during peak traffic times. If
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the fleet mix ratio in the flight schedule becomes more heterogeneous among aircraft

types, we can reduce takeoff delay and taxi times more by the surface traffic optimiza-

tion. In addition to the traffic characteristics tested in this thesis, the optimization

models can be evaluated with other traffic scenarios (e.g., impact of general aviation,

addition of A380 aircraft) for further study in the future.

6.2.3 Applications of fast-time air traffic simulations

We showed that the fast-time simulations using SIMMOD could be used effectively

for evaluating the new control approaches to improving surface traffic management

and analyzing the statistical data from various traffic scenarios in the presence of un-

certainties before implementing human-in-the-loop (HITL) simulations or field tests.

If the simulations present sufficient evidence of reliability through validation with his-

torical data, we can try simulation-based optimization to find the optimal pushback

times of departures by repeating a number of simulations with updated inputs until

the objective reaches an acceptable level [99].

Through the stochastic simulations using SIMMOD, we can also evaluate the other

sources of uncertainty in airport and airspace operations (e.g., weather conditions,

ceiling/visibility, airport configuration, departure/arrival fixes) in a similar manner.

Since these uncertainties usually occur together in the real world, the combined im-

pacts of different sources of uncertainty will need to be studied as well. As the main

sources of uncertainty are different from one airport to another, we also need to im-

plement the same uncertainty studies for the other airports so as to check the impact

of the airport characteristics.
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