
Computational Formulation, Modeling and

Evaluation of Human-Robot Team Training ARCaW

Techniques

by

Stefanos Z. Nikolaidis

OF TECHNOLOGY

MAR 20 2014

LIBRARIES
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Author................................................
Department of Aeronautics a d Astronautics

;nuary 28, 2014

C ertified by ................ ............
Julie A. Shah

Assistant Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by ....
Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee





Computational Formulation, Modeling and Evaluation of

Human-Robot Team Training Techniques

by

Stefanos Z. Nikolaidis

Submitted to the Department of Aeronautics and Astronautics
on January 28, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

This thesis is focused on designing mechanisms for programming robots and train-
ing people to perform human-robot collaborative tasks, drawing upon insights from
practices widely used in human teams.

First, we design and evaluate human-robot cross-training, a strategy used and
validated for effective human team training. Cross-training is an interactive planning
method in which a human and a robot iteratively switch roles to learn a shared plan
for a collaborative task. We present a computational formulation of the robot mental
model, which encodes the sequence of robot actions towards task completion and the
robot expectation over the preferred human actions, and show that it is quantitatively
comparable to the human mental model that captures the interrole knowledge held by
the human. Additionally, we propose a quantitative measure of human-robot mental
model convergence, and an objective metric of mental model similarity. Based on
this encoding, we formulate human-robot cross-training and evaluate it in human
subject experiments (n = 36). We compare human-robot cross-training to standard
reinforcement learning techniques, and show that cross-training provides statistically
significant improvements in quantitative team performance measures. Additionally,
significant differences emerge in the perceived robot performance and human trust.
Finally, we discuss the objective measure of human-robot mental model convergence
as a method to dynamically assess errors in human actions. This study supports the
hypothesis that effective and fluent human-robot teaming may be best achieved by
modeling effective practices for human teamwork.

We also investigate the robustness of the learned policies to randomness in human
behavior. We show that the learned policies are not robust to changes in the human
behavior after the training phase. For this reason, we introduce a new framework
that enables a robot to learn a robust policy to perform a collaborative task with a
human.The human preference is modeled as a hidden variable in a Mixed Observabil-
ity Markov Decision Process, which is inferred from joint-action demonstrations of a
collaborative task. The framework automatically learns a user model from training
data, and uses this model to plan an execution policy that is robust to changes in the

3



human teammate's behavior. We compare the effectiveness of the proposed frame-
work to previous techniques that plan in state-space, using data from the human
subject experiments in which human and robot teams trained together to perform
a place-and-drill task. Results demonstrate the robustness of the learned policy to
increasing deviations in human behavior.

Thesis Supervisor: Julie A. Shah
Title: Assistant Professor of Aeronautics and Astronautics

4



Acknowledgments

Personal Acknowledgments

I would like to thank my advisor, Professor Julie Shah, for her fantastic supervision,

guidance and support. Julie has been my role model of a young talented researcher,

who has always reminded me that both intelligence and genuine interest for the

students are necessary for a successful educator. Her constructive feedback has always

been to the point and has defined the content of this thesis. Moreover, her kindness

and enthusiasm have been an invisible force pushing me forward full-speed. It suffices

to say that our Tuesday afternoon meeting has been one of my most cheerful times

of the week! Looking back to when it all started, I am grateful for the amount of

knowledge, technical and presentation skills and maturity that she helped me achieve.

It has been truly a privilege.

Nothing of this would have been possible without the friendship and help of the

Interactive Robotics Group in all aspects of my graduate life. Special thanks to Pem

Lasota for being a great labmate and a companion in our gourmet marathons in

France, to Dr. Jim Boerkoel for his essential feedback on research and karaoke nights

in Tokyo, and to Ramya Ramakrishnan and Abhizna Butchibabu for the wonderful

surprise party for my birthday!

I would also like to thank Professor Nick Roy, for giving me the opportunity to

join the meetings of the Robust Robotics Group and share ideas with such a brilliant

group of people! I am also thankful to Dr. Brad Knox for his essential feedback and

our very exciting discussions.

Finally, I cannot thank enough my parents, Zachos and Efi, and my sister, Evelina,

for their unconditioned love and support.

Funding

Funding for this work was partially provided by ABB. I would also like to acknowledge

the Onassis Foundation as a sponsor.



6



Contents

1 Introduction 11

2 Human-Human and Human-Robot Team Training Practices 15

2.1 Human Team Training Practices .................... . 15

2.2 Human-Robot Team Training ...... ...................... 18

3 Mental Model Formulation 23

3.1 Shared Mental Models in Human Teams ..... ................ 23

3.2 Robot Mental Model Formulated as MDP .... ............... 24

3.3 Evaluation of Mental Model Convergence ................ 25

3.4 Human-Robot Mental Model Similarity ................. 26

4 Human-Robot Cross-Training 27

4.1 Cross-Training Emulation in Human-Robot Team .............. 28

4.1.1 Human-Robot Cross-Training Algorithm ................ 28

4.1.2 Forward Phase ....... .......................... 30

4.1.3 Rotation Phase .......................... 30

4.1.4 Reinforcement Learning with Human Reward Assignment . . 31

4.2 Human-Robot Teaming Experiments ..... .................. 32

4.2.1 Experiment Hypotheses ...... ..................... 32

4.2.2 Experiment Setting ...... ........................ 33

4.2.3 Human-Robot Interactive Training . . . . . . . . . . . . . . . 34

4.2.4 Human-Robot Task Execution . . . . . . . . . . . . . . . . . . 36

7



4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Quantitative Measures . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Qualitative Measures . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Fluency Metrics on Task Execution . . . . . . . . . . . . . . . 40

4.3.4 Transfer of Learning Experience from Virtual to Actual Envi-

ronm ent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Post-hoc Experimental Analysis . . . . . . . . . . . . . . . . . . . . . 43

4.4.1 Dynamic Error Detection Using Entropy Rate . . . . . . . . . 43

4.4.2 Algorithmic Performance . . . . . . . . . . . . . . . . . . . . . 46

4.5 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Efficient Model Learning for Human-Robot Collaborative Tasks 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Relevant Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 M ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Clustering of Human Types . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Mixed Observability Markov Decision Process Learning and Planning 62

5.5.1 MOMDP Formulation . . . . . . . . . . . . . . . . . . . . . . 62

5.5.2 Belief-State Estimation . . . . . . . . . . . . . . . . . . . . . . 63

5.5.3 Inverse Reinforcement Learning . . . . . . . . . . . . . . . . . 64

5.5.4 Policy Computation . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.7 Performance of Clustering of Human Types . . . . . . . . . . . . . . 69

5.7.1 Robustness of Computed Policy . . . . . . . . . . . . . . . . . 69

5.7.2 Quality of Learned Model . . . . . . . . . . . . . . . . . . . . 71

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and Future Work 73

6.1 C onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8



List of Figures

1-1 (Left) Coriolis Composite Placement Robot; (Right) Robotic Thermal

Spraying of Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4-1 Human-Robot Cross-Training Algorithm . . . . . . . . . . . . . . . . 29

4-2 Forward Phase of the Cross-Training Algorithm . . . . . . . . . . . . 31

4-3 Rotation Phase of the Cross-Training Algorithm. . . . . . . . . . . . 32

4-4 Human-Robot Interactive Planning Using ABB RobotStudio Virtual

Environment. The human participant controls the white anthropo-

morphic "Frida" robot on the left, to work with the orange industrial

robot, "Abbie," on the right. . . . . . . . . . . . . . . . . . . . . . . . 35

4-5 Human-Robot Mental Model Elicitation Tool . . . . . . . . . . . . . 36

4-6 Human-Robot Task Execution . . . . . . . . . . . . . . . . . . . . . . 37

4-7 Human-Robot Mental Model Convergence. The graph shows the per-

cent decrease of entropy rate over training rounds. . . . . . . . . . . 38

4-8 Entropy-rate of subject 1. The change in the participant's strategy is

illustrated by an increase in the entropy-rate at the third round. . 45

4-9 Entropy-rate of subject 2. The change in the participant's strategy is

illustrated by an increase in the entropy-rate at task execution. . . . 46

4-10 Entropy-rate of subject 3. The entropy-rate does not increase when a

change in the sequence occurs in states irrelevant to the user preference. 47

5-1 Framework flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5-2 Clustering Transition Matrices using EM . . . . . . . . . . . . . . . . 59

5-3 Finding Ideal Number of Clusters using BIC . . . . . . . . . . . . . . 60

9



5-4 Task execution from a human-robot team on a place-and-drill task. . 68

5-5 Accumulated reward averaged over 18 iterations of cross-validation,

one for each human subject. The plotted lines illustrate the perfor-

mance of a policy of a MOMDP model handcoded by a domain expert,

the learned policy of the automatically generated MOMDP model us-

ing the proposed framework, and the learned policy from the Human-

Robot Cross-Training algorithm. The x-axis represents the probability

of the human taking a random action, instead of replaying the action

he actually took in the task-execution phase with the robot. For each

subject, we ran 100 simulated iterations of task execution. . . . . . . 71

10



Chapter 1

Introduction

Traditionally, industrial robots in manufacturing and assembly work in isolation from

people. When this is not possible, the work is done manually. We envision a new

class of manufacturing processes that achieve significant economic and ergonomic

benefit through robotic assistance in manual processes. For example, mechanics in

automotive and aircraft assembly spend a significant portion of their time retrieving

and staging tools and parts for each job. A robotic assistant can provide productivity

benefit by performing these non-value-added tasks for the worker. Other concepts

for human and robot co-work envision large industrial robotic systems (examples in

Fig. 1-1) that operate in the same physical space as human mechanics, as efficient

and productive teammates.

Figure 1-1: (Left) Coriolis Composite Placement Robot; (Right) Robotic Thermal
Spraying of Parts

11



When humans work in teams, it is crucial for the members to develop fluent team

behavior. We believe that the same holds for robot teammates, if they are to perform

in a similarly fluent manner as members of a human-robot team. Learning from

demonstration [5] is one technique for robot training that has received significant

attention. In this approach, the human explicitly teaches the robot a skill or specific

task [6, 1, 42, 15, 3]. However, the focus is on one-way skill transfer from a human to

a robot, rather than a mutual adaptation process for learning fluency in joint-action.

In many other works, the human interacts with the robot by providing high-level

feedback or guidance [10, 26, 17, 54], but this kind of interaction does not resemble

the teamwork processes naturally observed when human teams train together on

interdependent tasks [34].

In this thesis, we focus on mechanisms inspired by human team training practices

for programming robots and training people onto working together in collaborative

tasks. Firstwe propose a training framework that leverages methods from human fac-

tors engineering, with the goal of achieving convergent team behavior during training

and team fluency at task execution, as it is perceived by the human partner and is

assessed by quantitative team performance metrics. Training with an actual robot on

shared-location collaborative tasks could be dangerous or cost-prohibitive. Contrary

to prior work, the training is done in a virtual environment, and we evaluate the

team fluency when the human does the task with the actual robot after the training.

Second, we expand the computational model, so that the robot can act robustly to

deviations in the expected human behavior.

We computationally encode a teaming model that captures knowledge about the

role of the robot and the human team member. The encoded model is quantitatively

comparable to the human mental model, which represents the interrole knowledge

held by the human [34]. Additionally, we propose quantitative measures to assess

human-robot mental model convergence, as it emerges through a training process, as

well as mental model similarity between the human and the robot. We then introduce

a human-robot interactive planning method which emulates cross-training, a training

strategy widely used in human teams [34]. We compare human-robot cross-training

12



to standard reinforcement learning algorithms through a large-scale experiment of

36 human subjects, and we show that cross-training improves quantitative measures

of human-robot mental model convergence (p = 0.04) and mental model similarity

(p < 0.01). Post-hoc experimental analysis shows that the proposed metric of mental

model convergence could be used for dynamic human error detection. Additionally, a

post-experimental survey shows statistically significant differences in perceived robot

performance and trust in the robot (p < 0.01). Finally, we observe a significant

improvement in team fluency metrics, including an increase of 71% in concurrent

motion (p = 0.02) and a decrease of 41% in human idle time (p = 0.04), during the

actual human-robot task execution phase that succeeds the human-robot interactive

planning process. The improvement in team fluency is indicative of a transfer of the

learning experience from a virtual environment to working with an actual robot.

In the next section, we discuss examples of human-robot interaction that motivate

our work, and we place our work in context of other related work in Chapter 2. Chap-

ter 3 presents our computational formulation of the human-robot teaming model, as

well as methods to assess mental model convergence and similarity. Chapter 4 in-

troduces human-robot interactive planning using cross-training, and describes the

human subject experiments. In the same chapter we present and discuss the ex-

periment results, which show a significant improvement in team performance using

cross-training, as compared to standard reinforcement learning techniques. In Chap-

ter 5, we exploit the fact that people generally have very few dominant preferences.

Therefore, we formulate the interaction as a Mixed-Observability Markov Decision

Process (MOMDP) framework, and show that planning in belief-space is more robust

compared to planning in state-space. Finally, we conclude and present future work

in Chapter 6.

13



14



Chapter 2

Human-Human and Human-Robot

Team Training Practices

Our work is heavily inspired by human team training practices, applied prior to the

execution of tasks or missions, with the goal of improving human team performance.

We first present an overview of human team training techniques, and then review

previous work on human-robot training.

2.1 Human Team Training Practices

In high-intensity domains, such as manufacturing, military and medical operations,

there is a variety of tasks that are too complex or cognitively demanding to be per-

formed by individuals working alone. To function as a team, individuals must coor-

dinate their activities; simply bringing together several people to accomplish a task

is not enough. Adaptive teams are able to coordinate their activities, not only under

routine conditions, but also under novel conditions for which the teams have not been

explicitly trained. Poor team coordination has been related to major system failures,

such as in the cases of Three Mile Island and Chernobyl [161, where deficiencies in

interaction and coordination resulted in failure to adapt to changes in the task envi-

ronment. Studies of team training practices have mainly focused on improving team

performance, particularly in response to novel event patterns.

15



One such technique is procedural training: A form of process training in which

"operators in complex systems are positively reinforced (through feedback) to fol-

low a standard sequence of actions each time a particular stimulus is encountered."

[20] Trainees practice by repetitively following prespecified procedures, with the goal

of learning to respond automatically to stimuli. The underlying assumption is that

training in this manner reduces the incidence of errors and enhances performance

[22]. Procedural training is prevalent in medical, manufacturing and military set-

tings, for tasks in which deviations from complicated procedures can be catastrophic.

Whereas this type of training enables team members to reflexively react under stress-

ful conditions and a heavy workload, it is argued that it can also limit a team's ability

to transfer training to novel situations, leading to poor performance when the actual

task execution conditions do not match the training conditions [20].

In cross-training, another common technique, team members are trained for each

other's roles and responsibilities, in addition to their own [9]. There are three types

of cross-training: (a) positional clarification, (b) positional modeling, and (c) posi-

tional rotation. Positional clarification involves verbally presenting team members

with information about their teammates jobs through lecture or discussion. Posi-

tional modeling includes observations of team-members' roles through videotape or

direct observation. Positional rotation is the most in-depth form of cross-training.

Findings [34, 13] suggest that positional rotation cross-training, defined as "learn-

ing interpositional information by switching work roles," is strongly correlated with

improvement in human team performance, as it provides individuals with hands-on

knowledge about the roles and responsibilities of their teammates [34]. Positional

rotation cross-training has been used by military tactical teams, as well as aviation

crews. It has been argued that shared expectations, resulting from the development

of shared knowledge, allow team members to generate predictions for appropriate

behavior under novel conditions and in cases when there is uncertainty in the infor-

mation flow [34]. The proposed human-robot cross-training algorithm is inspired by

the positional-rotation type of training practice. Whereas in this work we do not

examine novel situations in tasks performed by human-robot teams, uncertainty is

16



present due to the inherent lack of transparency between human and robot. Addition-

ally, task execution following training is conducted in an actual environment, which

is inherently different to the virtual environment where training takes place. From

an algorithmic point of view, switching roles has the additional benefit of enabling

the human to directly demonstrate his preference, as explained in Section 4.4.2.

While cross-training is feasible for small teams, it can become impractical as teams

grow in size. Recently, Gorman et al. introduced perturbation training [20]. Using

this approach, standard coordination procedures are disrupted multiple times during

the training process, forcing team members to coordinate in novel ways to achieve

their objective. Perturbation training aims to counteract habituation associated with

task processes a possible outcome of procedural training. It is inspired by prior work

in motor and verbal learning, and is aimed at improving team performance under

novel post-training conditions [48]. A form of perturbation training was examined

in [21], in which teams were trained to perform a repetitive command-and-control

task during two training rounds. Teams that changed members for the second round

developed higher quality team processes after training, compared to teams that main-

tained the same members during both rounds. Gorman et al. used a different form of

perturbation for an air reconnaissance task, by temporarily limiting communication

between team members and disabling available equipment [20]. The performance of

teams that received perturbation-training was compared to those that received pro-

cedural or cross-training. Whereas teams that cross-trained exhibited an increase

in interpositional teamwork knowledge across sessions and performed better in one

of three missions than those that underwent procedural training, those that received

perturbation training exhibited better performance in two of three missions. The Gor-

man study suggests that perturbation training is a very promising training method,

although a larger variety of experinients may be required to obtain conclusive evi-

dence. We believe that it would be interesting to introduce perturbation training in

a human-robot team setting, but leave the notion for future investigation.

17



2.2 Human-Robot Team Training

While there has been extensive work conducted on human team training techniques,

in human-robot team settings training has focused on one-way knowledge given by a

human teacher to a robot apprentice. An example of this method is the SARSA(A)

reinforcement learning approach, where the reward signal is interactively assigned by

the human. This technique falls into the category of learning wherein the human

and machine engage in high-level evaluation and feedback.

In some approaches within this category, a human trainer assigns positive re-

inforcement signals [10] to a virtual character - a method also known as "clicker

training." The state space is represented by a percept tree, which maintains a hierar-

chical representation of sensory input. The leaf nodes represent the highest degree of

specialization, and the root node matches any sensory input. Similarly, state-action

pairs consisting of percepts that generate the same action are organized hierarchically,

according to the specificity of the percept. Each state-action pair is assigned a reward

depending on whether it has good, bad or indifferent consequences. The structure of

the percept tree and the rewards is refined interactively by a human trainer. A sim-

ilar approach is detailed in [26], wherein clicker training is used to train four-legged

robots. In this proposed system, the behavior of the robot is implemented through

a hierarchical tree of schemata, where each schema is constituted by a set of acti-

vation conditions and a set of executable actions. Human feedback is then used to

create new behaviors through the combination of existing ones. The robot maintains

a user-specific model of human behavior that is updated through interaction and af-

fects the probability of transitions between different schemata. A user model is also

learned in [17], simultaneously with a dialog manager policy in a robotic wheelchair

application. The model is encoded in the transition and observation functions and

rewards of a Partially Observable Markov Decision Process framework. The hidden

state represents the user's intent; that is, the places where the user would like the

wheelchair to go. The human interacts with the system by giving verbal commands,

as well as a scalar reward after each robot action.

18



Other methods, such as TAMER-RL [28, 29], support the use of human input

to guide a traditional reinforcement learning agent in maximizing an environmental

reward. The TAMER framework is based upon two insights into how humans assign

rewards: First, human reward is delayed according to the time it takes the trainer

to evaluate behavior and deliver feedback. Second, a human assigns rewards after

considering their long-term effects; in that sense, the reward value more resembles a

state-action value than an environmental reward in the manner of a Markov Decision

Process (MDP) framework [51]. SARSA(A) is augmented by different approaches

of combining human reward in TAMER-RL, and their effectiveness is tested through

experiments involving a mountain-car and cart-pole task. Q-Learning with Interactive

Rewards [54] is identical to our version of SARSA(A), if we remove eligibility traces

on SARSA and set a greedy policy for both algorithms. In this case, the algorithm

has been applied to teach a virtual agent to cook from a recipe, with the human

assigning rewards to the agent by moving the green slider on a vertical bar. A

modified version [541 incorporating human guidance has been empirically shown to

significantly improve several dimensions of learning. That version of the algorithm

resulted in fewer failures, as the learning process was focused on smaller, more relevant

parts of the state-space.

The other category for learning in human-robot teams involves a human provid-

ing demonstrations to the machine. Work involving learning from demonstration

includes systems that learn a general policy for a task by passively observing a hu-

man expert executing that task. For example, in [14] the system learns a Gaussian

Mixture Model for each action class, using human demonstrations as training data.

Each new datapoint is assigned to a mixture class according to maximum likelihood.

The algorithm also returns a confidence measure, used by the agent to request ad-

ditional demonstrations. This proposed algorithm is improved through automatic

selection of multiple confidence thresholds in [15]. More recently, Gaussian Mixture

Models [3] have been used to teach a skill to a robot during experiments in which

a human physically guides the robot through a trajectory; this approach is known

as "kinesthetic teaching." These experiments have shown that guiding a robot arm

19



through keyframes is a more effective method of teaching means-oriented skills, such

as performing gestures, than guiding the robot through the entire trajectory. This is

partially due to the difficulty in smoothly manipulating a heavy robot arm. However,

demonstrating an entire trajectory has been more successful for goal-oriented skills,

such as pick-and-place tasks.

Another approach to robot training is to teach a plan to the robot. In [42], the

authors assume that the robot has an available set of low-level behaviors. Given this

assumption, the goal is then for the robot to build a high-level task representation

of a more complex, sequentially structured task using its existing behavior set. The

robot learns the necessary tasks by creating a link between observations and robot

behaviors that achieve the observed effects. Used in addition to human demonstra-

tions, instructional feedback focuses the learning process on the relevant aspects of a

demonstration. In [42], experiments in which a Pioneer 2-DX mobile robot attempts

to complete a pick-and-place task validate the correctness of learned representations.

In another training method, the robot learns a system model that consists of a

transition model from state s given action a, T(s'/s, a), and a reward function R(s)

which maps states to a scalar reward. Using this system model, a policy that maps

states to actions can maximize the finite- or infinite-horizon accumulated reward.

Atkeson and Schaal consider the problem of having a robot arm follow a demon-

strated trajectory [6]. In their paper, the robot learns the transition model through

repeated attempts to execute the task, and the reward function is modeled so as to

quadratically penalize deviation from the desired trajectory. A priori human knowl-

edge was used to divide a vertical balancing task into a swing-up component and

a balancing component. Results from experiments indicate improved performance

compared to simply mimicking demonstrated motions.

Apprenticeship learning [1] generalizes to task planning applications, employing a

Markov decision process framework. In this method, the algorithm assumes that the

expert tries to maximize a "true" unknown reward function that can be expressed as

a linear combination of known "features". A quadratic program is solved iteratively

to find feature weights that attempt to match the expected feature counts of the

20



resulting policy with those of the expert demonstrations. Experiment results using

this approach indicate that robot performance is similar to that of the expert, even

though the expert reward function may not be recovered. This work falls into the

category of inverse reinforcement learning (IRL), wherein the MDP state reward

function is derived from observed expert demonstrations [40]. In multi-agent settings,

state-of-the-art behavior modeling based on the game-theoretic notion of regret and

the principle of maximum entropy has accurately predicted future behavior in newly

encountered domains [561.

Our proposed human-robot cross-training algorithm uses the same inputs as Q-
learning with Interactive Rewards [54]. However, rather than asking the human to

explicitly provide feedback to the robot, the human feedback is instead provided im-

plicitly by having the human switch roles with the robot, in a manner similar to

effective human team-training practices. This part of training resembles Inverse Re-

inforcement Learning [40], as the state reward function is learned by human demon-

strations when the human and robot switch roles. A key difference from previous

work, however, is that we focus on collaborative tasks wherein robot and human

actions are interdependent. Therefore, the outcome of the robot actions depends

on the human actions, and leads to a learned model of human actions encoded in

the Transition Probabilities of a Markov Decision Process Framework similar to that

observed in [17]. By following a human-team inspired approach, we support the

mutual co-adaptation of both the human and robot, and focus on the team-fluency

in shared-location, joint-action collaborative tasks, rather than the optimization of

agent performance metrics.

21



22



Chapter 3

Mental Model Formulation

In this chapter, we describe the concept of shared mental models in human teams,

and then computationally encode a mental model for the robot as a Markov Decision

Process. Based on this encoding, we then introduce an objective measure - the

entropy rate of the Markov chain - to evaluate the convergence of the human and

robot mental models. Finally, we propose a metric for human-robot mental model

similarity inspired by shared mental model elicitation techniques in human teams.

3.1 Shared Mental Models in Human Teams

The literature presents various definitions for the concept of shared mental models

[31]. Marks et al. [34] state that mental models represent "the content and organi-

zation of interrole knowledge held by team members within a performance setting."

According to [37], mental models are "mechanisms whereby humans generate descrip-

tions of system purpose and form, explanations of system functioning and observed

system states, and prediction of future system states, ... and they help people to

describe, explain, and predict events in their environment." The objective of team

training is to foster similar or shared mental models, as empirical evidence suggests

that mental model similarity improves coordination processes, which, in turn, en-

hances team performance. Most researchers agree that there are multiple types of

mental models shared among team members. [37] state that one type is technol-

23



ogy/equipment mental models that capture the dynamics and control of the tech-

nology among team members. Task mental models describe and organize knowledge

about how a task is accomplished in terms of procedures and task strategies, whereas

team interaction models describe the roles and responsibilities of team members. Fi-

nally, team mental models capture team-specific knowledge of teammates, such as

their skills and preferences. In this work, we refer to robot mental model as the

learned sequence of robot actions toward task completion, as well as the expectation

that the robot has for human actions. We computationally encode this model as a

Markov Decision Process (MDP) [47].

3.2 Robot Mental Model Formulated as MDP

We describe how a robot teaming model can be computationally encoded as a Markov

Decision Process. A Markov decision process is a tuple {S, A, T, R}, wherein:

" S is a finite set of world states; it models the set of world environment config-

urations.

* A is a finite set of actions; this is the set of actions the robot can execute.

" T : S x A -+ IIH(S) is the state transition function, giving a probability dis-

tribution over world states for each world state and action; the state transition

function models the uncertainty that the robot has in the human action. For

a given robot action a, the human's next choice of action yields a stochastic

transition from state s to a state s'. We write the probability of this transition

as T(s, a, s'). In this formulation, human behavior is the cause of randomness

in our model, although this can be extended to include stochasticity from the

environment or the robot actions.

" R : S x A -+ R is the reward function, giving the expected immediate re-

ward gained by performing each action in each state. We write R(s, a) for the

expected reward for taking action a in state s.

24



The policy 7r of the robot is the assignment of an action 'r(s) at every state s. The

optimal policy 7r* can be calculated using dynamic programming [47]. Under this

formulation, the role of the robot is represented by the optimal policy -r*, whereas

robot knowledge of the role of the human co-worker is represented by the transition

probabilities T.

3.3 Evaluation of Mental Model Convergence

As the mental models of the human and robot converge, we expect the human and

robot to perform similar patterns of actions. This means that the same states will be

visited frequently and robot uncertainty about human action selection will decrease.

Additionally, if the mental models of the human and the robot converge, the patterns

of actions performed will match the human preference, as elicited after the training.

To evaluate the convergence of the robot's computational teaming model and the

human mental model, we assume a uniform prior and compute the entropy rate [18]

of the Markov chain (Eq. 3.1). The Markov chain is induced by specifying a policy 7F

in the MDP framework. For the policy 7r, we use the robot actions that match human

preference as elicited by the human after training with the robot. Additionally, we

use the states s E S that match the preferred sequence of configurations for task

completion. For a finite state Markov chain X with initial state so and transition

probability matrix T, the entropy rate is always well-defined [181. It is equal to

the sum of the entropies of the transition probabilities T(s. ir(s), s'),for all s E 5,

weighted by the probability of the occurrence of each state according to the stationary

distribution p of the chain (Equation 3.1).

H(X) - Ep(s) 1 T(s, 7r (s), s')log [T(s, 7r (s), s')] (3.1)
sES s'ES

Interestingly, the conditional entropy given by Eq. 3.1 also represents the un-

certainty of the robot about the action selection of the human, which we expect to

decrease as human and robot train together. This measure can be generalized to

25



encode situations in which the human has multiple preferences or acts stochastically.

In Section 4.4.1, we conduct a post-hoc analysis indicating entropy evolution over

time in such cases. The entropy rate appears to be particularly sensitive to changes

in human strategy, and reflects the resulting increase in robot uncertainty about the

next actions of the human. We propose that these results provide intriguing first sup-

port for the potential use of entropy rate as a component of a human error detection

mechanism.

3.4 Human-Robot Mental Model Similarity

Given the formulation of the robot mental model, we propose a similarity metric

between human and robot mental models based on prior work [31] on shared mental

model elicitation for human teams. In a military simulation study [35], each partici-

pant was asked to annotate a sequence of actions that he and his teammates should

follow to achieve mission completion. The degree of mental model similarity was then

calculated by assessing the overlap in action sequences selected by each of the team

members. We generalize this approach in a human-robot team setting: In our study,

the participant annotates a sequence of actions that he or she thinks the human and

robot should perform in order to complete the assigned task. We then elicit the sim-

ilarity of the human and robot mental models by determining the ratio of annotated

robot actions matching the actions assigned by optimal policy to the total number of

robot actions required for task completion. This describes how well human preference

for robot actions matches the actual optimal policy for the MDP.

26



Chapter 4

Human-Robot Cross-Training

In the computational encoding of the mental model for the robot described in the

previous chapter, expert knowledge about task execution is encoded in the assign-

ment of rewards R, and in the priors on the transition probabilities T that encode

the expected human behavior. This knowledge can be derived from task specifica-

tions or from observation of expert human teams. However, rewards and transition

probabilities finely tuned to one human worker are not likely to generalize to an-

other human worker, since each worker develops his or her own highly individualized

method for performing manual tasks. In other words, a robot that works with one

person according to another person's preferences is not likely to be good teammate.

Empirical evidence suggests that mental model similarity improves coordination pro-

cesses, which in turn enhance team performance [34]. Mental model similarity is

particularly important under conditions in which communication is difficult due to

excessive workload, time pressure or another environmental feature, as teams are

unable to engage in necessary strategizing in these circumstances [36]. Shared or

similar mental models are important in such cases, as they allow team members to

predict the information and resource requirements of their teammates. In the case of

a human-robot team, communication is difficult for different reasons: Transparency

in the interaction between human and robot is an unsolved problem, mainly due to

the technical challenges inherent in the exchange of information about high-level goals

and intentions between human and robot. We therefore hypothesize that a shared-

27



mental model for a human-robot team will improve team performance in actual task

execution. Cross-training [34] is a validated and widely used mechanism for conveying

shared mental models in human teams; we emulate the cross-training process that

takes place among human team-members by having the human and robot train to-

gether in a virtual environment. We use a virtual environment because, especially in

high-intensity applications, it is infeasible or cost-prohibitive for a robot to perform

the human's role in an actual environment, and vice versa.

4.1 Cross-Training Emulation in Human-Robot Team

We emulate positional rotation in human teams by having the human and robot

iteratively switch roles. We name the phase in which the human and robot roles

match those of the actual task execution as the forward phase, and the phase in

which the human and robot roles are switched as the rotation phase. In order for

the computational teaming model of the robot to converge with the human mental

model:

1. The robot must have an accurate estimate of the role of the human in performing

the task. We use the human-robot forward phase of the training process to

update our estimation of the transition probabilities that encode the expected

human behavior.

2. The actions of the robot must match the human preference. We accomplish

this by including human inputs in the rotation phase to update the reward

assignments.

4.1.1 Human-Robot Cross-Training Algorithm

The Human-Robot Cross-training algorithm is summarized in Figure 4-1. In Line

1, rewards R(s, a) and transition probabilities T(s, a, s') are initialized from prior

knowledge about the task. In Line 2, an initial policy 7r is calculated for the robot;

we used value iteration [47] in our implementation. In Line 4, the Forward-phase

28



Algorithm : Human-Robot Cross-training
1. Initialize R(s, a) and T(s, a, s') from prior knowledge
2. Calculate initial policy n
3. while(number of iterations < MAX)
4. Call Forward-phase(n)
5. Update T(s, a, s') from observed sequence s,, a,, S2., sm_,. am-1, sM
6. Call Rotation-phase()
7. Update R(si, aj) for observed sequence sl, a,, S2, a2, ..., sNY aN
8. Calculate new policy rr
9. end while

Figure 4-1: Human-Robot Cross-Training Algorithm

function is called, where the human and robot train for the task. The robot chooses

its actions depending on the current policy ir, and the observed state-action sequence

is recorded. In Line 5, T(s, a, s') are updated based on the observed state-action

sequence. T(s, a, s') describes the probability that, for a task configuration modeled

by state s and robot action a, the human will perform an action such that the next

state will be s'.

In the rotation phase (Line 6), the human and robot switch task roles. In this

phase, the observed actions a E A are the actions performed by the human worker,

whereas the states s E S remain the same. In Line 7, the rewards R(s, a) are updated

for each observed state s and human action a. We then use the new estimates for

R(s, a) and T(s, a, s') to update the current policy (Line 8). The new optimal policy

is computed using standard dynamic programming techniques [47].
In our implementation, we update the rewards (Line 7) as follows:

R(s, a) = R(s, a) + r (4.1)

The value of the constant r needs to be large enough, compared to the initial values of

R(s, a), for the humans actions to affect the robot's policy. Note that our goal is not to

examine the best way to update the rewards, as this has proven to be task-dependent

[29]. Instead, we aim to provide a general human-robot training framework, and use

29



the reward update of Eq. 4.1 as an example. Knox and Stone [28] evaluate eight

methods for combining human inputs with MDP reward in a reinforcement learning

framework. Alternatively, inverse reinforcement learning algorithms could be used to

estimate the MDP rewards from human input [1].

We iterate the forward and rotation phases for a fixed number of MAX iterations,

or until a convergence criterion is met.

4.1.2 Forward Phase

The pseudocode of the forward phase is presented in Figure 4-2. In Line 1, the current

state is initialized to the start step of the task episode. The FINALSTATE in Line

2 is the terminal state of the task episode. In Line 3, the robot executes an action a

assigned to a state s, based on the current policy ir. The human action is observed

(Line 4) and the next-state variable is set according to the currentstate, the robot

action a and the human action. In our implementation, we use a look-up table that

sets the next state for each state and action combination. Alternatively, the next

state could be directly observed after the human and robot finish executing their

actions. The state, action, and next state of the current time-step are recorded (Line

6).

4.1.3 Rotation Phase

The pseudocode of the rotation phase is presented in Figure 4-3. In Line 3, the

action a is the observed human action. In Line 4, a robot action is sampled from the

transition probability distribution T(s, a, s').

Just as the transition probability distributions of the MDP are updated after the

forward phase, the robot policy is updated to match the humans expectations after

the rotation phase. This process emulates how a human mental model would change

while working with a partner. A key feature of the cross-training approach is that it

also provides an opportunity for the human to adapt to the behavior of the robot.

30



Function: Forward-phase(policy n?)
1. Set currentstate = STARTSTATE
2. while(currentstate != FINALSTATE)
3. Execute robot action a according to current policy n
4. Observe human action
5. Set nextstate to the state resulting from currentstate, robot

and human action
6. Record currentstate, a, nextstate
7. currentstate = nextstate
8. end while

Figure 4-2: Forward Phase of the Cross-Training Algorithm

4.1.4 Reinforcement Learning with Human Reward Assign-

ment

We compare the proposed formulation to the interactive reinforcement learning ap-

proach, wherein the reward signal of an agent is determined by interaction with a

human teacher [55]. We use SARSA(A) with greedy policy [51] as the reinforcement

learning algorithm, due to its popularity and applicability to a wide variety of tasks.

In particular, SARSA(A) has been used to benchmark TAMER framework [27], as

well as to test TAMER-RL [28, 29]. Variations of SARSA have been used to teach a

mobile robot to deliver objects [46], for navigation of a humanoid robot [39] and in an

interactive learning framework, wherein the user gives rewards to the robot through

verbal commands [53]. Furthermore, our implementation of SARSA(A) would be

identical to Q-Learning with Interactive Rewards [54], if we removed eligibility traces

on SARSA and, in the case of a greedy policy, for both algorithms.

After each robot action, the human is asked to assign a good, neutral, or bad

reward {-+r, 0, -r}. In our current implementation, we set the value of r, the reward

signal assigned by the human, to be identical to the value of the reward update in

cross-training (Eq. 4.1 in Section 4.1) for comparison purposes.

31



Function: Rotation-phase(
1. Set currentstate = STARTSTATE
2. while(currentstate != FINALSTATE)
3. Set action a to observed human action
4. Sample robot action from T(currentstate, a, nextstate)
5. Record currentstate, a
6. currentstate = nextstate
7. end while

Figure 4-3: Rotation Phase of the Cross-Training Algorithm.

4.2 Human-Robot Teaming Experiments

We conducted a large-scale experiment (n = 36) to compare human-robot cross-

training to standard reinforcement learning techniques.

4.2.1 Experiment Hypotheses

The experiment tested the following four hypotheses about human-robot team per-

formance:

" Hypothesis 1: Human-robot interactive planning with cross-training will im-

prove quantitative measures of human-robot mental model convergence

and mental model similarity compared to human-robot interactive planning

using reinforcement learning with human reward assignment. We base this

hypothesis on prior work indicating that cross-training improves similarity of

mental models among human team members [34, 13].

" Hypothesis 2: Participants who cross-trained with the robot will agree more

strongly that the robot acted according to their preferences, compared

to participants who trained with the robot by assigning rewards. Furthermore,

we hypothesize that they will agree more strongly that the robot is trustwor-

thy. We base this hypothesis upon prior work [49] that indicated that humans

32



find the robot more trustworthy when it emulates the effective coordination

behaviors observed in human teams.

" Hypothesis 3: Human-robot interactive planning with cross-training will im-

prove team-fluency metrics on task-execution compared to human-robot

interactive planning using reinforcement learning with human reward assign-

ment. We base this hypothesis on the wide usage of cross-training to improve

performance in human teams [34}.

* Hypothesis 4: The learning experience within a virtual environment of

training with a robot will transfer to an improvement in team fluency metrics

and subjective performance measures, when working with the actual robot

at the task execution phase.

4.2.2 Experiment Setting

As a proof of concept, we applied the proposed framework to train a team of one

human and one robot to perform a simple place-and-drill task. In the task, there

were three positions that could either remain empty or have a screw placed or drilled

into them. The human's potential actions included either the placement of a screw

in one of the empty holes, or waiting (no-action), while the robot could either drill

each placed screw or wait.

Although this task is simple, we found it adequate for the testing of our framework

as there is a sufficient variety of ways to accomplish the task among different per-

sons. For example, some participants preferred to place all screws in sequence from

right-to-left and then have them drilled in the same sequence, while others preferred

to place and drill each screw before moving on to the next. For the humans who

preferred to place all three screws first before drilling, there are 3! x 3! = 36 different

potential orderings for the placement and drilling of the screws. For those who anno-

tated as their preference to have a screw drilled immediately after placement, there

are 3! = 6 different possible orderings. Therefore, there are a total of 36 + 6 = 42

different potential orderings for these two high-level strategies. This is a lower bound

33



on the possible human preferences for this task, as it does not include the case of a

mixed strategy, where the human preferred to have the robot drill one screw imme-

diately after placement, but only drill the remaining screws after they had all been

placed. The participants consisted of 36 subjects recruited from MIT. Videos of the

experiment can be found at: http://tiny.cc/5q685w

4.2.3 Human-Robot Interactive Training

Before initiating training, all participants were asked to describe, both verbally and

in written form, their preferred method of executing the task. We then initialized

the robot policy using a set of prespecified policies, in a way clearly different from

the participant's preference. We did this to avoid the potential trivial case in which

the initial policy of the robot matches the preferred policy of the user, and also to

evaluate mental model convergence starting from different human and robot mental

models.

The participants were randomly assigned to two groups: Group A and Group

B. Each participant then underwent a training session within the ABB RobotStudio

virtual environment, where the human controlled the white anthropomorphic "Frida"

robot depicted on the left in (Figure 4-4) while working with the orange industrial

robot, "Abbie," on the right. The human chose an action in discrete time steps and

observed the outcome by watching "Frida" move concurrently with "Abbie." The

motions of both human and robot actions were predefined, and there was a single

motion for each action.

Depending on the assigned group, the participant underwent one of the following

training sessions:

1. Cross-training session (Group A): The participant iteratively switched positions

with the virtual robot, placing the screws during the forward phase and drilling

during the rotation phase.

2. Reinforcement learning with human reward assignment session (Group B): This

is the standard reinforcement learning approach, wherein the participant placed

34



screws and the robot drilled at all iterations, with the participant assigning a

positive, zero, or negative reward after each robot action [17].

Figure 4-4: Human-Robot Interactive Planning Using ABB RobotStudio Virtual En-
vironment. The human participant controls the white anthropomorphic "Frida" robot
on the left, to work with the orange industrial robot, "Abbie," on the right.

For the cross-training session, the policy update (Line 8 of Figure 4-1, Section ??)

was performed using value iteration with a discount factor of 0.9. The SARSA(A)

parameters in the standard notation of SARSA [51] were empirically tuned (A =

0.9, y = 0.9, a = 0.3) for optimal task performance.

After the training session, the mental model of all participants was assessed using

the method described in Section 3.4. For each workbench configuration through task

completion, participants were asked to choose a placing action and their preference

for an accompanying robot drilling action, based on the training they had experienced

together (Figure 4-5).

35

a: Human Robot Intvactive Planning

Abbie> Choose action

Ow jMW

h6c



ai Foi ml

ROBOT
WAITS

Figure 4-5: Human-Robot Mental Model Elicitation Tool

4.2.4 Human-Robot Task Execution

We then asked all participants to perform the place-and-drill task with the actual

robot, Abbie. To recognize the actions of the human, we used a Phasespace motion-

capture system of eight cameras [451 that tracked the motion of a Phasespace glove

worn by the participant (Figure 4-6). Abbie executed the policy as learned from the

training sessions. The task execution was videotaped and later analyzed for team

fluency metrics. Finally, all participants were asked to respond to a post-experiment

survey.

4.3 Results and Discussion

Results of the human subject experiments indicate that the proposed cross-training

method outperforms standard reinforcement learning in a variety of quantitative and

qualitative measures. This is the first evidence that human-robot teamwork is im-

proved when a human and robot train together by switching roles in a manner similar

36



Figure 4-6: Human-Robot Task Execution

to effective human team training practices. Unless stated otherwise, all the p-values

in this section are computed for two-tailed, unpaired t-tests with unequal variance.

4.3.1 Quantitative Measures

Mental Model Similarity

As described in Section 3.4, we computed the mental model similarity metric as the

ratio of human drilling actions matching the actions assigned by the robot policy

to the total number of drilling actions required for task completion. Participants

in Group A had an average ratio of 0.96, compared to an average ratio of 0.75 in

Group B (p < 0.01). This shows that participants who cross-trained with the robot

developed mental models more similar to the robot teaming model than participants

who trained with the robot by assigning rewards.

Mental Model Convergence

Mental model similarity was also reflected by similar patterns of actions observed

during the training process, and by decreased robot uncertainty about the human's

37



action selection, as computed by the entropy rate of the Markov Decision Process

(Section 3.3). We computed the entropy rate at each training round using the pre-

ferred robot policy, as elicited by the human with the mental model elicitation tool

(Figure 4-5 of Section 4.2.3). Since the initial value of the entropy rate varies for

different robot policies, we used the mean percent decrease across all participants

of each group as a metric to compare cross-training to reinforcement learning with

human reward assignment. To calculate the entropy rate in the human reward assign-

ment session, we updated the transition probability matrix T from the observed state

and action sequences, in a manner identical to how we calculated the entropy-rate

for the cross-training session. We did so for comparison purposes, as SARSA(A) is a

model-free algorithm and does not use T in the robot action selection [51].

Figure 4-7 shows the entropy rate after each training round for participants in both

groups. We considered only the 28 participants who did not change their preference.

The difference between the two groups after the last training round is statistically

significant (p = 0.04), indicating that the robot's uncertainty about the human par-

ticipant's actions after training was significantly lower for the cross-training group

than in the group that used reinforcement learning with human reward assignment.

0%

--- reinforcement
0 -5%

0 olearning with
human reward

-10% assignment

-15% -cross-training
o~0

-20%
1 2 3

Training Rounds

Figure 4-7: Human-Robot Mental Model Convergence. The graph shows the percent
decrease of entropy rate over training rounds.

38



We noticed that the cross-training session lasted slightly longer than the rein-

forcement learning with human reward assignment session, as switching roles took

more time on average than assigning a reward after each robot action. Since partic-

ipants often interrupted training to interact with the experimenters, we were unable

to reliably measure the training time for the two groups.

The above results support our first hypothesis: Cross-training improves quantita-

tive measures of human-robot mental model convergence.

4.3.2 Qualitative Measures

After each training round, each participant was asked to rate his or her agreement with

the following statement on a five-point Likert scale: "In this round, Abbie performed

her role exactly according to my preference, drilling the screws at the right time and

in the right sequence." Participants were also asked to respond to a survey upon

completion of the experiment. Subjects who cross-trained and then executed the

task with Abbie (Group A) selected a significantly higher mark on the Likert scale

than those who trained with Abbie using the standard reinforcement learning method

(Group B) for the following statements:

" "In this round, Abbie performed her role exactly according to my preference,

drilling the screws at the right time and in the right sequence.":

(For the final training round) Group A: 4.52 [SD=0.96]; Group B: 2.71 [SD=1.21];

p < 0.01

" "In the actual task execution, Abbie performed her role exactly according to

my preference, drilling the screws at the right time and in the right sequence.":

Group A: 4.74 {SD=0.45]; Group B: 3.12 {SD=1.45]; p < 0.01

" "I trusted Abbie to do the right thing at the right time.":

Group A: 3.84 [SD=0.83]; Group B: 2.82 [SD=1.01]; p < 0.01

" "Abbie is trustworthy.":

Group A: 4.05 [SD=0.71]; Group B: 3.00 [SD=0.93]; p < 0.01

39



" "Abbie does not understand how I am trying to execute the task.":

Group A: 1.89 [SD=0.88]; Group B: 3.24 [SD=0.97]; p < 0.01

" "Abbie perceives accurately what my preferences are.":

Group A: 4.16 [SD-0.761; Group B: 2.76 [SD=1.03}; p < 0.01

The p-values above are computed for a two-tailed Mann-Whitney-Wilcoxon test.

The results show that participants in Group A agreed more strongly that Abbie had

learned their preferences, compared to those in Group B. Furthermore, cross-training

had a positive impact on their trust in Abbie, in accordance with prior work [49]. This

supports Hypothesis 2 of Section 4.2.1. The two groups did not differ significantly

when subjects were asked whether they themselves were "responsible for most of the

things that the team did well on this task," whether they were "comfortable working

in close proximity with Abbie" or whether they and Abbie "were working toward

mutually agreed upon goals."

4.3.3 Fluency Metrics on Task Execution

We elicited the fluency of the teamwork by measuring the concurrent motion of the hu-

man and robot and the human idle time during the task execution phase, as proposed

in [23]. The measurements of the above metrics were evaluated by an independent

analyst who did not know the purposes of the experiment, nor whether a participant

had been a member of Group A or B. Additionally, we automatically computed the

robot idle time and human-robot distance. Since these metrics are affected by the

human's preferred way of performing the task, we used only the subset of partici-

pants who self-reported their preferred strategy as "while Abbie is drilling a screw, I

will place the next one." This subset consisted of 20 participants and was the largest

subset of participants who reported the same preference on task execution.

Concurrent Motion

We measured the time duration in which both human and robot were concurrently in

motion during the task execution phase, and found that participants in Group A who

40



preferred to "finish the task as fast as possible, placing a screw while Abbie was drilling

the previous one" had a 71% increase in the time of concurrent motion with the robot

compared to participants in Group B who reported the same preference (A: 5.44 sec

[SD = 1.13 sec]; B: 3.18 sec [SD = 2.15 sec]; p = 0.02). One possible explanation for

this difference is that cross-training engendered more trust in the robot (supported

by subjective results presented in Section 4.3.2), and therefore participants in Group

A had more confidence to act while the robot was moving.

Human Idle Time

We measured the amount of time each human spent waiting for the robot. Partici-

pants in Group A spent 41% less time idling, on average, than those in Group B a

statistically significant difference (A: 7.19 see [SD = 1.71 see]; B: 10.17 see [SD =

3.32 see]; p = 0.04). In some cases, the increase in idle time occurred because the

participant was waiting to see what the robot would do next. In other cases, the

robot had not correctly learned the human preference and did not act appropriately,

confusing the human team-member or forcing them to wait.

Robot Idle Time

Our task-execution software automatically calculated the time that the robot re-

mained idle while waiting for the human to perform an action, such as place a screw.

The difference in idle time between Group A and Group B was statistically significant

(A: 4.61 see [SD = 1.97 sec]; B: 9.22 sec [SD = 5.07 see]; p = 0.04).

Human-Robot Distance

Statistically significant differences between Group A and Group B were observed for

the distance from the human hand to the robot base, averaged over the time the

robot spent moving and normalized to the baseline distance from the participant

(A: 23 mm [SD = 26 mm]; B: 80 mm [SD = 73 mm1]; p = 0.03). This difference

occurred because some participants of Group B "stood back" while the robot was

moving. Previous work using physiological measures has shown that mental strain

41



among operators is strongly correlated with the distance of a human worker from an

industrial manipulator moving at high-speed [4]. We therefore suggest that cross-

training with the robot may have a positive impact on emotional aspects such as

fear, surprise and tension, and leave further investigation to be conducted in future

studies.

The above results confirm our third hypothesis: that human-robot interactive

planning with cross-training improves team fluency metrics on task execution, com-

pared to human-robot interactive planning using reinforcement learning with human

reward assignment.

4.3.4 Transfer of Learning Experience from Virtual to Actual

Environment

The significant differences in team fluency metrics and subjective measures between

the two groups are indicative of a transfer of the learning experience from the virtual

environment to the actual environment. In fact, we observed an intermediate corre-

lation between the mental-model similarity metric, elicited after the training process,

and the time of human-robot concurrent motion at task execution (r = 0.37). Ad-

ditionally, we found an intermediate correlation between the entropy-rate after the

final training round and the concurrent motion (r = 0.59), as well as human idle

time (r = -0.69) during task execution. Finally, an intermediate correlation was

observed between the entropy-rate and the participants Likert-scale response to the

statement: "In the actual task execution, Abbie performed her role exactly according

to my preference, drilling the screws at the right time and in the right sequence"

(r = 0.49). While these results do not fully support our fourth hypothesis, they are

indicative of a transfer of learning from virtual to actual environment, and warrant

further investigation.

42



4.4 Post-hoc Experimental Analysis

In this section, we use the data collected from the human subject experiment to discuss

the entropy-rate as a method to dynamically assess change in human preference or

a human mistake. A change in human preference during task execution could mean,

for instance, that a new user has arrived, and therefore the new human and robot

should cross-train before performing the task. Dynamic detection of human mistakes

could serve as an automated inspection mechanism to encourage the human to self-

correct, while increased detection of inconsistencies in human actions could be a sign

of fatigue. There is great potential for robots to use this information to improve

team efficiency and safety: For instance, the robot could adapt its action selection

and motion generation to avoid areas where there is greater uncertainty about human

behavior.

We support this assertion with the entropy-rate plots of three participants who

changed their screw placement sequences during training. Additionally, we conduct

an analysis of the algorithmic performance of cross-training, and explain why it out-

performed SARSA(A) in the human subject experiment.

4.4.1 Dynamic Error Detection Using Entropy Rate

We discuss the entropy-rate as a method for dynamic error detection. First, we explain

the reason for the entropy rate sensitivity in the human strategy, and then show the

evolution of the entropy rate for two participants in Group A and one participant in

Group B who changed their strategy during task execution.

After the training session, we asked all participants to annotate their preferred

sequences of human and robot actions toward task completion. We calculated the

entropy rate using Eq. 3.1 of Section 3.3, taking into account only the states that

appeared in the annotated sequence. As human and robot follow a mutually agreed-

upon sequence of actions during training, the uncertainty that the robot has about

the human actions in these states decreases. On the other hand, if the human changes

the sequence of their screw placement at some point, the transition probability dis-

43



tribution over the next states becomes flatter, and the entropy increases. We would

like to note, however, that this increase appears only when the robot has correctly

learned the users preference to some degree. For instance, if the user annotates as

their preferred sequence to "have a screw drilled as soon as it is placed in the order

A-B-C", the states in the annotated sequence used for the calculation of the entropy-

rate are: "no screw placed," "screw A placed, "screw A drilled and screw B placed,"

etc. However, if the robot has not yet learned that it should drill after the user places

a screw, most of these states are not reached, and therefore any change in the place-

ment sequence will not affect the entropy calculation. We present three examples of

participants who changed their strategy while working with the robot.

1. Subject 1, Group A: This user's stated preference was to "place the screws

down in the order B-A-C, and Abbie drills them immediately after each one

is placed." The user followed this preference during the first two rounds, but

changed the sequence from B-A-C to A-C-B during the third round, causing an

increase in the entropy rate. At task execution, the user then switched back to

the predefined sequence B-A-C, and the entropy decreased again (Figure 4-8).

2. Subject 2, Group A: This participant followed her initial stated preference of

placing the screws in the order C-B-A during training, but switched to the

sequence A-B-C during task execution without realizing it. The robot had

correctly learned her preference of C-B-A during training, and the result of the

change of strategy at execution was a sharp entropy increase, as illustrated in

Figure 4-9.

3. Subject 3, Group B: This user started with a stated preference of placing screws

in the order C-B-A, with Abbie "drilling them as they are put in place." Dur-

ing the first round, the robot did not learn the users preference, and instead

waited for the user to finish placing all screws. At the second round, the partic-

ipant changed the sequence to A-B-C. However, this change affected states that

were not included in entropy-rate calculation, as explained at the beginning of

44



0

0.
0

0 -0.04
'4-M

-0.16

-0.2

1 2 3 Task Execution

Figure 4-8: Entropy-rate of subject 1. The change in the participant's strategy is
illustrated by an increase in the entropy-rate at the third round.

the session, and therefore entropy remained constant during the second round

(Figure 4-10).

Cs

In conclusion, we observed an increase in the entropy rate when there were changes

or inconsistencies in execution, and when these changes occurred after the human and

robot had converged to a mutually agreed-upon sequence of actions toward task com-

pletion. Practical use of this metric as an informative measure at task execution

would require confirmation that the robot had correctly learned the humans prefer-

ence; this confirmation could be obtained by the human upon completion of training.

After each task execution, the entropy-rate decrease can be compared to that of a

consistent user via a distance metric, and a large deviation can signify a change in

human behavior. We leave the testing of this hypothesis for future investigation.

45



0

-0.04
0

-0.08

C

-0.12

1 2 3 Task Execution

Figure 4-9: Entropy-rate of subject 2. The change in the participant's strategy is
illustrated by an increase in the entropy-rate at task execution.

4.4.2 Algorithmic Performance

The results presented in Section 4.3 imply that the robot better learned human pref-

erences through cross-training than training using reward assignment. Upon analysis

of the experimental data, we identified three main reasons for this difference:

First, if the robot performs an action that does not match the humans preference,

the human will then assign a negative reward, and the SARSA(A) algorithm will

update the value of the corresponding state-action pair that estimates the expected

return. When the same state is visited again, the algorithm will most likely not

result in the same action, as its value has been reduced. However, the robot will

not have any information about which of the other available actions best matches

the preference of the human. On the other hand,, in the cross-training algorithm,

when the human switches roles with the robot, he directly demonstrates his preferred

robot action, and the rewards of the visited states are updated. Therefore, the values

of the most relevant states are affected to the greatest extent after each iteration,

46



0

- .
0

GJ -0.04.-
0

tkO

U -0.08

-0.12

1 2 3 Task Execution

Figure 4-10: Entropy-rate of subject 3. The entropy-rate does not increase when a
change in the sequence occurs in states irrelevant to the user preference.

speeding up the learning process for the robot. To verify the above, we calculated for

each algorithm the ratio of the number of visited states during training that matched

the human preference, as elicited after the training process, to the total size of the

state-space. For participants in Group A, this ratio was 76% while for participants

of Group B it was 67%, supporting our explanation.

Second, we observed that some participants in Group B had a tendency toward

more neutral reward values, even when the actions performed by the robot were very

different from their stated preferences. This slowed the performance of SARSA(A)

for these participants.

Third, even though we explicitly asked participants in Group B to evaluate the

action that the robot performed after each state, some participants treated the re-

ward as a future-directed signal. We will provide as an example one participant who

preferred that the robot drill a screw as he was placing the next one, in a direction

from left to right. During the first training round, the robot policy was initialized so

that it was very different from human preference. Therefore, the human placed the

47



first screws and the robot waited instead of drilling, contrary to the stated preference.

When the human finished placing all screws, the robot began drilling at the leftmost

screw. The participant then assigned a positive reward to the robot, assuming that

this would encourage the robot drilling behavior. This resulted in an increase in the

estimated value of the state-action pair, "drill screw" at "screw A placed, screw B

placed, screw C placed". However, the state "all screws have been placed" would

never appear if the robot had followed the human preference of drilling a screw as

soon as it was placed. By assigning a positive reward to the aforementioned state-

action pair, the human increased the estimated value of a state that does not appear

in his preferred sequence of states, and therefore misled the learning algorithm.

In conclusion, the proposed cross-training algorithm outperformed standard ap-

proaches with human reward assignment, as it enabled updating of the values of

the most relevant parts of the state-space, and switching roles is more intuitive to

a human participant compared to assigning rewards. However, reinforcement learn-

ing with human reward assignment has proven very effective when a human teacher

guides an agent toward maximizing an objective performance metric [29]. We believe

that the above observations are helpful in effectively designing the user interface and

reward assignment method in such a case.

4.5 Conclusion

We designed and evaluated human-robot cross-training, a strategy widely used and

validated for effective training in human teams. We first presented a computational

formulation of the robot's teaming model and showed that it is quantitatively com-

parable to the human mental model. Based on this encoding, we formulated human-

robot cross-training and evaluated it in a large-scale experiment of 36 subjects. We

found that cross-training improved quantitative measures of human-robot mental

model convergence (p = 0.04) and mental model similarity (p < 0.01), while post-hoc

experimental analysis indicated that the proposed metric of mental model convergence

could be used for dynamic human error detection. A post-experimental survey yielded

48



statistically significant differences between groups in perceived robot performance and

trust in the robot (p < 0.01). Finally, we observed a significant improvement in team

fluency metrics, including an increase of 71% in concurrent motion (p = 0.02) and

a decrease of 41% in human idle time (p = 0.04), during the human-robot task ex-

ecution phase in the cross-training group. These results provide the first evidence

that human-robot teamwork is improved when a human and robot train together by

switching roles in a manner similar to effective training practices for human teams.

In this experiment, we focused on a simple place-and-drill task as a proof of

concept. We are currently extending the cross-training algorithm to a complex hand-

finishing task, wherein the robot manipulator lifts and places a heavy load at an

ergonomically friendly position for the human, whose role is to refinish the surfaces

of the load. The best position and orientation of the load depend on the size of

the human, his arm length, his age and other physical characteristics, and therefore

should be different for each individual worker. Additionally, there is a wide variety of

different potential preferences for the sequence of surface refinishing and the velocity

of robot motion. As this task must be encoded in a very large state-space, we will need

to use value-function approximation methods for the reward-update of the rotation

phase, rather than the currently implemented tabular approach.

In the next chapter we extend the computational formulation of the robot's team-

ing model to a Partially Observable Markov Decision Process framework [25]. In the

future, we plan to incorporate information-seeking behavior, and testing this frame-

work using more complex tasks. Although cross-training is applicable to a wide range

of manufacturing tasks with well-understood task procedures, there are also tasks that

are difficult to model and simulate in a virtual environment, such as robot-assisted

surgery. For these cases, other team training techniques, such as perturbation training

as presented in Section 2.1, could be more suitable; however, we leave this assessment

for future work.

49



50



Chapter 5

Efficient Model Learning for

Human-Robot Collaborative Tasks

5.1 Introduction

New industrial robotic systems that operate in the same physical space as people

highlight the emerging need for robots that can integrate seamlessly into human

group dynamics, by adapting to the personalized style of the human teammates.

This adaptation requires learning a statistical model of the human behavior and

integrating this into the general decision making of the robot in a principled way. This

work presents a framework on learning types of humans from observation of human

teams, and associating each type with an action selection mechanism. The learning

is done completely automatically, without any human intervention. Additionally, the

robustness of the action selection mechanism of the robot is compared to previous

model-learning algorithms for increasing deviations of the human actions from the

demonstrated behavior.

This work is based on our observation that even where there is a large number

of different human preferences, the actual high-level strategies followed by humans

working in teams are generally limited in number. We use this insight to denote the

preference of a human team member on his teammate as a partially observable vari-

able in a Mixed Observability Markov Decision Process [44], and constrain its value

51



to a limited set of possible assignments. We chose the MOMDP formulation, as the

number of observable variables in human-robot collaborative tasks in manufacturing

settings is much larger than the partially observable ones. We define as human type

the preference that the human has on a subset of the task-related actions taken by

the robot, in a collaborative task. Denoting the human preference on the actions of

his partner as a hidden variable naturally models collaboration with humans, since

their intentions can never be directly observed in the training, and must be inferred

through interaction and observation.

We present a framework for learning human user models from joint-action demon-

strations, that enables the robot to compute a robust policy on a collaborative task

with a human. We assume access to demonstrations of human teams working on

a collaborative task. First, we describe the clustering of the demonstrated action

sequences into different human types using an unsupervised learning algorithm. We

then use the demonstrated sequences to learn a reward function that is representative

for each type, by employing an inverse reinforcement learning algorithm. The learned

model is then used as part of a MOMDP formulation, wherein the human type is

a partially observable variable. With this framework, we can infer either offline or

online the type of a new human user that was not included in the training set and

we can compute a policy for the robot that will be aligned to the human preference

and will be robust to deviations of the human actions.

5.2 Relevant Work

Learning a model of a human usually requires a human expert to explicitly teach

the robot a skill or a specific task {5, 6, 2, 42, 15, 3]. In manufacturing settings,

a large part of work is done manually by humans. Wherever we see manual work,

people develop their own personalized style of doing the task, although some aspects

of the task at hand are well-defined. In this work, we use demonstrations of human

teams executing a task, and automatically learn the human types using unsupervised

learning. The data of each cluster is then inputted to an inverse reinforcement learning

52



algorithm. In the context of control theory this problem is known as Inverse Optimal

Control, originally posed by Kalman and solved in [11]. There have been a number

of inverse reinforcement learning methods developed, many of which use a weighted-

features representation for the unknown reward function. We follow the approach of

Abbeel and Ng [2], solving a quadratic program iteratively to find feature weights that

attempt to match the expected feature counts of the resulting policy with those of

the expert demonstrations. Other approaches find a weight vector that explains the

expert demonstrations by optimizing the margin between competing explanations.

There have also been game-theoretic approaches [52, 56] that aim in modeling multi-

agent behavior. We use human demonstrations to learn a number of different human

types and a reward function for each type, and use these as part of a MOMDP

formulation.

Related approaches in learning user models include natural language interaction

with a robot wheelchair [17}, where a user model is learned simultaneously with a dia-

log manager policy. The human interacts with the system by giving verbal commands,

as well as a scalar reward after each robot action. The model is encoded in the tran-

sition functions, observation functions and rewards of a Partially Observable Markov

Decision Process framework. The system initially assumes that the model parame-

ters are initially uncertain, and improves the model through interaction. Rather than

learning a new model for each human user, which can be tedious and time-consuming,

we use demonstrations from human teams to infer some "dominant" human types and

then associate each new user to the new type. For pursuit games, researchers employ

an empirical approach in which an agent plans using Monte Carlo Tree Search using

a set of known models of possible teammates, which are then used to generate action

likelihoods to infer the teammates type from observed behavior [8]. Rather than hav-

ing a fixed set of known models, we estimate the models automatically from training

data. Additionally, the robot uses observations, rather than states in its histories,

which allows it to account for unobserved state variables in its plans.

Recent work also infers human intentions in collaborative tasks for game Al appli-

cations. [41] focus on the case of inferring the intentions of a human player, allowing a

53



Non-Player Character (NPC) to assist the human. They propose the CAPIR frame-

work, in which a task is decomposed into subtasks, each of which is computationally

tractable and is modelled by a Markov Decision Process. Alternatively, [32] proposed

the Partially Observable Monte-Carlo cooperative planning system, in which the hu-

man intention is inferred for the cops-and-robbers turn-based game. The algorithm

uses a black-box simulator to generate human actions, and interfaces it with a Monte-

Carlo planner [50]. In both works, the model of the human type is assumed to be

known beforehand.

Partially Observable Markov Decision Process models have been used to infer

human intention on driving tasks [12] as well. Since the hidden variable is the

human intention on its own actions, rather than the robot actions, the user model

is represented by the transition matrix of a POMDP, instead of the reward struc-

ture. The transition matrix is learned using action-rules, that are task-specific. In

our framework, none of the learning steps requires task-specific rules. Alternative

POMDP models of multi-agent collaboration have been used for interactive assistant

applications[19]. The MOMDP formulation [44] has been shown to achieve significant

computational efficiency, and it has been used in motion planning applications [7],

with uncertainty on the human intention over its own actions. In the aforementioned

work, the reward structure of the task is assumed to be known. We automatically

learn the reward function that corresponds to each human type is learned automati-

cally from unlabeled demonstrations.

In summary, the proposed framework makes the following contributions.

* It enables fast estimation of a human user model, which can be done either

offline or online, by learning a priori a set of "dominant" models using un-

supervised learning. This differs from previous approaches [17] that start with

uncertain model parameters and learn them through interaction. Although such

approaches do not have the limitation of a fixed set of available models, they

require a very large amount of data for a good model, which can be an issue

when using them for practical applications.

54



" It uses a MOMDP formulation to compute personalized policies for the robot

that take into consideration the uncertainty over the human type. Similar

MOMDP formulations have been used in prior work [44], [7], but the reward

structure there was assumed to be known. We present a pipeline to automati-

cally learn the reward function of the MOMDP using unsupervised learning and

inverse reinforcement learning. Research on POMDP formulations for collabo-

rative tasks in game Al applications [41, 32, 50] also assumed a known human

model.

" It presents a MOMDP formulation with a human type as the partially observ-

able variable, and the reward function as a function of the human type. This

allows the computation of a policy that is in accordance with the preference of

the human teammate over what the robot should do. Previous partially observ-

able formalisms [44, 7, 12, 19, 41, 32] in assistive or collaborative tasks had as

partially variable the human preference or intention over its own actions, rather

than the robot actions.

" It addresses the problem of seamless integration of a robot into human group

dynamics, by adapting to the personalized style of the human teammate. We

use data from actual human subject experiments to show that that the learned

MOMDP policies perform close to the ones from a handcoded model from a

domain expert, and significantly more robustly compared to previous algorithms

for human-robot collaborative tasks that reason in state-histories [43].

We describe the proposed framework in the next section.

5.3 Method

Our proposed framework has two main stages, as shown in Figure 5-1. In the first

stage the training data is preprocessed, and in the second stage the robot infers the

personalized style of a new human teammate and executes its role on the task based

on the teammate's preference.

55



Assuming access to a set of demonstrated sequences of alternating actions from

human teams working together on a collaborative task, we use an unsupervised learn-

ing algorithm to cluster the data into dominating human types. We associate each

type with a set of sequences of alternating actions from human teams. When a robot

is introduced to work with a new human worker, it needs to infer the human type

and choose actions that are aligned to the preference of the human. Additionally, the

robot should reason over the uncertainty on the type of the human. Therefore, the

cluster indices are used as the values of a partially observable variable denoting the

human type, in a Mixed-Observability Markov Decision Process. We learn a reward

function for each human type, which represents the preference of the human of that

type on a subset of task-related robot actions. We then compute an approximately

optimal policy for the robot that maximizes the expected accumulated reward, rea-

soning over the uncertainty on the human type.

In the second stage, a new human subject is asked to execute the collaborative task

with the robot. The human is first asked to demonstrate a few sequences of human

and robot action. A belief over his type is then computed based on the likelihood of

the human sequences belonging to each cluster. Alternatively, if the human actions

are informative on his type, that is his preference on the robot actions, the human

type can be estimated online. The robot then executes at each timestep the action

based on the computed policy of the MOMDP, based on the current belief of the

human type.

In the following section, we describe the first block of the proposed framework,

which is finding the number of dominating human types in a collaborative task by

clustering the demonstrated sequences.

56



Input DB of u
sequences

Sequences of m}
new user

Learn a reward
Cluster sequences

function er cluster

Compte aTraining Data
MOMDP policy Pr

User type is Human and robot
inferred do task actions

Online Task

Excuio

Figure 5-1: Framework flowchart

5.4 Clustering of Human Types

To improve a robot's ability to adapt to human preferences, we first try to find human

preferences using an unsupervised clustering approach. In this problem, we have a

data set D = x1 , ..., x, where each xi is a demonstrated sequence of alternating dis-

crete human and robot actions. The robot actions are actions that the human would

like the robot to take. We can determine these actions, for example, by observing

how two humans work together. The goal is to find the number of human types, k,

in this data and the assignment of each sequence of actions xi to a type.

Previous work has approached this problem of clustering sequential data using

various methods. Murphy and Martin [38] clustered ranking or ordinal data through

Expectation Maximization (EM) by learning distance-based models that had two

parameters, a central ranking and a precision parameter. The distance between rank-

ings was defined using Kendall's. Spearman's, and Cayley's distances, as specified in

[33]. To select the best model, Bayesian information criterion (BIC) and integrated

complete likelihood (ICL) were used. In another work, Jddskinen [24] clustered DNA

'This work was done by Ramya Ramakrishnan. It is reproduced in this thesis for completeness
of the framework

57



sequences modeled as Markov chains using a Dirichlet process prior over the parti-

tions. A greedy search of joining and splitting partitions was used to determine the

number of clusters, and EM was used to learn transition probability matrices and to

correctly assign sequences to clusters.

In solving our clustering problem, we chose to use a hybrid approach of these

two methods. Similar to [24], we learn transition matrices between human and robot

actions using EM because this would provide information about how the human will

act based on the robot and visa versa. However, we use a uniform prior distribution

over the partitions, rather than the Dirichlet process prior [24], as it was sufficient

for our task. We use BIC to find the ideal value of k, as done in [38], rather than

the greedy approach in [24], due to the small number of possible values of k. Again,

we base this on the observation that even in complex tasks, the actual high-level

strategies followed by humans working in teams are usually few in number.

We begin by using a hard variant of EM, similar to [24], to cluster the data into

a set of human preferences. In the algorithm, we represent each preference or cluster

by a transition matrix of size JAl x |A| where JAl is the size of the action space,

A = {Ar, Ah}, which includes both robot actions A, and human actions Ah. Since

the data consists of a sequence of actions where the human and robot take turns, the

transition matrix encodes information about how the human will act based on the

previous robot action and visa versa.

We define 6 as the set of k representative transition matrices 01, ... , Ok that corre-

spond to the k clusters. Every sequence xi, each of length 1, in the data D = xi...x,

needs to be assigned to one of these k clusters. The assignments of these sequences

to clusters can be denoted as Z = zi...z, where each zi E {1, ..., k} .

The probability of one sequence x parametrized by 6 can be represented by:

k

P(xi; 6) = P(zi)P(Xilzi; 6)
zj=Z 

(5.1
k

= EP(zi) rizix 1)
zj=1 (j=2

58



Algorithm: Clustering-Transition-Matrices-using-EM (k)

1. Initialize 0 by randomizing 01, ... ,

2. Initialize sequence assignments Z = z1 , ... , Zn

3. repeat

4. E-step: Compute assignments for each sequence zi

for i = 1, ... , n

zi = arg max
zi j 0j1j=2

5. M-step: Update each transition matrix 0,

for z = 1, ..., k

njlj : observed count of transitions from i to j
0 zijj = A' for ij A1,...,IA|

X=1

6. until Z converges to stable assignments

Figure 5-2: Clustering Transition Matrices using EM

x3 denotes the jth element of the ith demonstrated sequence.

For all data points, the log-likelihood can be represented by:

n

l(D; 6)= logP(xi; 6)

(5.2)k n

E S 6(zjzj)log
z=1 i=1

6(zlzi) = 1 if z = zi and zero otherwise.

In the Clustering-Transition-Matrices-using-EM algorithm, we learn the optimal

transition matrices 01, ... , k by iteratively performing the E-step and the M-step.

We first randomly initialize k transition matrices and sequence assignments (lines

1-2). We then repeatedly execute the E-step and M-step until the assignments Z

59

P (zi) H O2(jzi-(i 1) ~
j=2



Algorithm: Select-Best-Model (kmin, kmax, numOfIterations)

1. for k = kmin to kmax,

2. for i = 0 to numOf Iterations

3. Call Clustering-Transition-Matrices-using-EM (k)

4. Calculate the log-likelihood for this model:

l(D;6) =

k n

EE6(zjzi)log P(zi) H Oz 2,(xixi-1)
z=1 i=1 j=2

5. Calculate BIC term for this value of k:

BIC = l(D; 0) - {log(n)
where K is the number of parameters

and n is the number of data points.

6. For the current value of k, choose the cluster

partition with the highest BIC value.

7. Return the value of k with the maximum BIC value and the corresponding
cluster partition.

Figure 5-3: Finding Ideal Number of Clusters using BIC

60



have converged to stable values (lines 3, 6). In the E-step, we complete the data by

assigning each sequence to the cluster that has the highest log-likelihood (line 4). In

the M-step, each cluster's transition matrix is updated by counting the transitions in

all sequences assigned to that cluster (line 5). These two steps are repeated until the

assignments zj, ..., z, do not change (line 6).

The EM algorithm used here, however, requires k as input, but since we use an

unsupervised clustering approach, this value is unknown to us. We run the Select-

Best-Model algorithm to find the ideal value of k using Bayesian information criterion

(BIC). As input, we specify the range of possible values for k: kmin - kmax and run

EM for each value of k within this range. For our problem, we chose the range for k

to be from 2 to 10, which is based on the observation that there tends to be only a

few high-level human preferences for a particular task (line 1). In addition to testing

multiple values of k, because the results can differ based on initialization and EM often

finds locally optimal solutions, for each value of k, we run EM for multiple iterations,

specified by the input numOfIterations. In our case, we use numOfIterations = 20,

as this was sufficient to see consistent results (line 2). After each run of EM, we

calculate the log-likelihood based on the resulting cluster partition, as specified in

line 4. We then use BIC to introduce a penalty term for complex models, so as

the value of k increases, the penalty increases as well. In this case, the number of

parameters K is kJAI(fA| - 1), since we have k transition matrices, each of which

has IAI(IAI - 1) free parameters (line 5). The cluster partition with the highest BIC

value over all the iterations was chosen as the best model for that particular value of

k (line 6). Comparing the BIC values for each value of k then determines the final

cluster partition (line 7). By using EM and BIC in this way, we have found both the

number of clusters and the cluster partition for this data.

We then input the learned clusters into a Mixed-Observability Markov Decision

Process, which treats the human type as a partially observable variable that can take

a finite set of values. Each human type value is associated with a corresponding

cluster. In the next section, we describe the MOMDP formulation, the learning of a

reward function for each human type value and the computation of an approximately

61



optimal policy for the robot.

5.5 Mixed Observability Markov Decision Process

Learning and Planning

The clusters of the demonstrated action sequences represent different types of humans.

When a robot is introduced to work with a new human worker, it needs to infer the

human type and choose actions that are aligned to the preference of the human.

Additionally, the robot should reason over the uncertainty on the type of the human.

Therefore, the cluster indices are used as the values of a partially observable variable

denoting the human type, in a Mixed-Observability Markov Decision Process. We

learn a reward function for each human type, which represents the preference of the

human of that type on a subset of task-related robot actions. We then compute an

approximately optimal policy for the robot that maximizes the expected accumulated

reward, reasoning over the uncertainty on the human type.

We describe the MOMDP formulation, the learning of the reward function and

the computation of an approximately optimal policy as follows.

5.5.1 MOMDP Formulation

We treat the unknown human type as a hidden variable in a Mixed-Observability

Markov Decision Process (MOMDP), and have the robot choose actions based on

the estimated human type. The MOMDP framework uses proper factorization of the

observable and unobservable state variables, which reduces the computational load.

The MOMDP is described by a tuple {X, Y S, Ar, Tx, T, R, Q, O}, so that:

* X is the set of observable variables in the MOMDP. In our framework, ob-

servable variable is the current task-step, among a finite set of task steps that

signify the progress towards task completion.

9 Y is the set of partially observable variables in the MOMDP. In our framework,

a partially observable variable y represents the human type.

62



* S : X x Y is the set of states in the MOMDP that consist of the observable

and non-observable variables. The state s E S consists of the task-stepx, that

we assume is fully observable, and the unobservable type of the human y.

* A, is a finite set of discrete task-level robot actions.

* 7 : S x A, -- H(X) is the probability of the fully observable variable at the

next time step being x' if robot takes action a, from state s.

: S x Ar x X -- + [(Y) is the probability of the hidden variable at the

next time step being y' if robot takes action a, from state s and the next fully

observable state variable has value x'.

* R : S x A, -+I R is a reward function that gives the immediate reward for the

robot taking an action a, at state s. It is a function of the observable task-step

X, the partially observable human type y, and the robot action ar.

* Q is the set of observations that the robot receives from the game. An observa-

tion is the human and robot action taken.

* 0 : S x A, -+ [(Q) is the observation function, which gives for each state s,

and robot action ar, a probability distribution over possible observations. We

write O(s, ar, o) the probability that we receive observation o given s and ar.

5.5.2 Belief-State Estimation

Based on the above, the belief update is then [44]:

by (y') = il 0(s', a,, o)

' lr (sI ar, i')7y(s, ar, s') by(y) (5.3)

yEY

The denominator Pr(o/ar, by) can be treated as a normalizing factor, independent

of s'. Note that in the proposed framework, the robot can estimate an unknown

human type only if the human actions are informative on that type. That is, if the

63



human preference on the robot actions can be disambiguated by the human actions,

then the robot will update its belief on the human type by Equation 5.3. If this

is not the case, we ask the human of the unknown type to provide a sequence of

demonstrations, and initialize the belief over the human types for that human by

using Equation 5.1 of the Performance of Clustering of Human Types section.

5.5.3 Inverse Reinforcement Learning2

Given a reward function, an exact value function and an optimal policy for the robot

can be calculated. Since we want the robot to choose actions that are aligned with the

type of the human teammate, a reward function needs to be specified for every value

that the human type can take. Manually specifying a reward function for practical

applications can be tedious and time-consuming, and represents a significant barrier in

the applicability of the proposed framework. In this section we describe the learning

of a reward function for each human type, using the demonstrated sequences that

belong to the cluster associated with that type.

For a fixed human type y, we can reduce the MOMDP into a Markov Decision Pro-

cess (MDP). The Markov Decision Process in this context is a tuple (X, Ar, Tx, R, y),

where Y, Ar,T and R are defined in the MOMDP Formulation section above. Given

demonstrated sequences of state-action pairs, we can estimate the reward function of

the Markov Decision Process using the Inverse Reinforcement Learning (IRL) algo-

rithm [2]. Note that we assume the human type to be constant in the demonstrated

sequences. To compute the reward function for each cluster, we first assume there

exists a feature vector W for each state and a feature expectation for a given policy.

A feature expectation over a policy represents the expected discounted accumulation

of feature values based on the policy. Formally, we define the feature expectations of

a policy 7r to be:

[E) EE <(st)17r] (5.4)
t=w

2 Joint work with Keren Gu

64



We require an estimate of the feature expectations for each human type. Given

a set of n, demonstrated state-action trajectories per human type z, we denote the

empirical estimate for the feature expectation as:

Pz z - EA= i ~ s ) (5.5)
nzi=1 t=0

The IRL Algorithm begins with a single random policy, and attempts to generate

a policy that is a mixture of existing policies, and whose feature expectations are

close to the ones of the policy followed by the expert. In our case, the "expert"

demonstrations are the demonstrations followed by all humans of a particular type.

The algorithm terminates when I IPz - Pir) 12 < c. The IRL algorithm is implemented

as follows:

1. Randomly pick some policy 7r(O) and approximate via Monte Carlo ( -

p(7r(0)), and set i = 1.

2. Compute a new "guess" of the reward function by solving the following convex

(quadratic) programming problem:

min jA - P12 (5.6)
A4L

subject to Z 0 A it(s) = , A > 0, and Ej0 A= 1. We set t(Z) = ||A - P 112

and W() - Az-f
11O 112 *

3. If t() < 6, then terminate.

4. Use reinforcement learning to compute the optimal policy r(j) of the MDP using

the reward function R(s) = 0)0(s).

5. Approximate via Monte Carlo p(i) -

6. Set i = i + 1, and go back to step 2.

The result of the IRL algorithm is a list of policies {lr(i) : i = 0 ... M} with mixture

Ai and feature counts y. M is the total number of iterations. Each policy i maximizes

65



the expected accumulated reward function, calculated as R(s) = w(')O(s). The output

of the algorithm is a reward function, computed by taking the average of the weight

values w(') over the second half of the iterations. We ignore the first half in the

averaging, as the first policies (and associated weights) generated by the algorithm

are of lesser quality.

For each human type, we run the inverse reinforcement learning using as input

the demonstrated sequences of that type to calculate an associated reward function.

Having a reward function for any assignment of the partially observable human type

variable y, we can now compute an approximately optimal policy for the robot. This

is described in the next section.

5.5.4 Policy Computation

We can solve for a policy that will take into account the uncertainty of the robot over

the human type y. A standard POMDP solution maximizes the expected reward for

each belief. Using the concept of a value function to represent a policy, we let the

value function V(x, by) represent the expected reward of a MOMDP agent starting

with belief (x, by). The optimal value function is unique and satisfies the Bellman

equation:

V(x, by) = max Q(x, by, ar)
arEAr

Q(x, by, ar) = R(x, by, a,) + ZO(olx, by, ar)V(x, b"r) (5.7)

oEQ

The belief b is the belief after a Bayesian update using Equation 5.3. Equa-

tion 5.7 may be solved iteratively. Each iteration, or backup, brings the value function

closer to its optimal value. Once the value function has been computed, it is used

to choose actions. After each observation, we update the belief using Equation 5.3.

The next action is then chosen using argmaxarEArQ(x, by, ar), with Q(x, by, ar) given

in Equation 5.7.

An exact solution to Equation 5.7 using an iterative backup approach is exponen-

tially expensive. Instead, we can select a set of belief points, and then track the value

66



and its derivative for those belief points. The quality of approximation is determined

by the choice of belief points. To calculate the optimal policy, we used the SARSOP

algorithm, due to its ability to scale-up to hundrends of thousands of states [30, 7].

The SARSOP algorithm samples a representative set of points from the belief space

that are reachable from the initial belief, and uses it as an approximate representation

of the space, allowing for an efficient computation of a satisfactory solution.

5.6 Evaluation

We show the applicability of the proposed framework on a place-and-drill collaborative

task between a human and a robot.

We used data from a human subject experiment, where 18 human subjects pro-

vided demonstrations for a shared-location joint-action collaborative task. The hu-

man's role was to place screws in one of the three available positions. The robot's

role was to drill each screw. The demonstrations were provided through a training

phase, in which human and robot switched roles, giving the human the opportunity to

show to the robot how he would like the task to be executed, by demonstrating robot

drilling actions. To evaluate our framework, we used leave-one-out cross-validation,

by removing one subject and using the demonstrated sequences from the remaining

17 subjects as the training set. We apply the clustering algorithm presented in the

section Performance of Clustering of Human Types. In all cross-validation iterations,

the human subjects were clustered into two types. A "safe" type, in which each

screw was placed first before drilling, and an "efficient" type, in which each screw

was drilled immediately after placement. The order of the screws did not affect the

clustering. Note that the human demonstrations are on the robot actions (drilling),

rather than on the actions of the original role of the human (placing). For each type,

we then used the inverse reinforcement learning algorithm to learn a reward function

associated with that type. The number of types and associated reward function was

passed as input to the MOMDP formulation.

Therefore, the unobservable variable y in the MOMDP formulation could take

67



two values, "safe" or "efficient". The observable state variable for this task x is the
workbench configuration. The actions a, are the drilling actions, as well as the noop.
The human placing actions are encoded implicitly in the transition and observation

matrices.

Each subject that was left out from the training set in the cross-validation, named
as "testing subject", provided three demonstrated sequences of human and robot ac-
tions, using the same training phase, and a probability distribution over its type was
calculated using Equation 5.1 of the Performance of Clustering of Human Types sec-
tion. Using this as initial belief on the human type, and the associated reward function
from the inverse reinforcement learning algorithm, the SARSOP solver computed a
policy for the robot. We then had the testing subject execute the place-and-drill task
with the actual robot, in a phase that we call "task execution phase" (Figure 5-4).
In that phase, human and robot did their predefined roles, that is the human was
placing screws and the robot was drilling screws. We assume that the preference of
the testing subject over the robot actions is the same when demonstrating the ac-
tions and also when executing the task. This assumption was verified by the subject
responses in a post-experimental questionnaire.

Figure 5-4: Task execution from a human-robot team on a place-and-drill task.

68



5.7 Performance of Clustering of Human Types 3

Clustering of human types was performed on the place-and-drill data, which consisted

of 54 demonstrated sequences, 3 for each of the 18 participants. We consider only

the phase in the experiment where the human performs the robot actions and the

robot performs the human actions because this reveals the human's preference over

the robot actions. To evaluate whether the robot is acting as a human would, we

compare the order of the place actions of the robot performing the human actions

with the order of the human doing them, and we see that the actions match 87.65%

of the time. This indicates that although the robot does not perform exactly as the

human does, the actions are similar enough that we can consider these sequences in

our clustering approach. We do not use the phase of the experiment where the human

and robot are performing their respective roles because this does not capture human

preferences over the robot actions.

To validate the clustering on this data, we used leave-one-out cross-validation,

testing on each participant. Because each participant had 3 demonstrated sequences,

we took a weighted average of the resulting assignments of the 3 sequences to de-

termine the final type assigned to the participant. The weights were obtained from

the likelihoods calculated in the EM algorithm. The type predicted by the clustering

algorithm was then compared against manual labels handcoded by a human expert.

We obtained an average accuracy of 96.5% for this data. This algorithm performs

well on this data set because the data is simple and there is a clear partition in the se-

quences that separate the "safe" type from the "efficient" type. We believe, however,

that this algorithm can be used for more complex data sets.

5.7.1 Robustness of Computed Policy

We compare the computed policy with a state-of-the-art iterative algorithm for human-

robot collaborative tasks, called human-robot cross-training [43], in which the robot

3 This work was done by Ramya Ramakrishnan. It is reproduced in this thesis for completeness
of the evaluation section

69



learns a model of the human by switching roles. We use the demonstrated sequences

of the testing subject as input to the cross-training algorithm, which learns a user

model by updating the transition and reward function of a Markov Decision Process.

The algorithm then computes a policy based on the learned model, which was shown

to match the human preference in task execution, when human and robot resume

their predefined roles [43].

In the actual human subject data, the human placing actions in task execution

were in most cases identical to the ones provided in the demonstrations, therefore we

simulate the task execution for increasing degrees of deviations from the demonstrated

actions of the human. For instance, if in the demonstrated sequences the human

placing actions were first "Place screw A", second "Place screw B", and finally "Place

screw C", during the actual task execution we gradually increase the probability of

the human choosing a different placing action at each task-step, leading the execution

to previously unexplored parts of the state-space. We do this by having a simulated

human do a random placing action with a probability c, or the actual action taken by

the testing human subject with probability 1 - c. The x-axis of Figure 5-5 denotes the

value of c. For increasing levels of deviations, we compute the accumulated reward for

the policy of the proposed framework, and the policy computed by the human-robot

cross-training algorithm. We do this for each iteration of the cross-validation, and plot

the mean accumulated reward (Figure 5-5). We see that the policy of the human-robot

cross-training algorithm performs similarly to the one of the proposed framework, if

the user does not deviate from his demonstrated placing actions. However, as the

deviations increase, the policy from the cross-training algorithm performs worse. On

the other hand the MOMDP agent reasons over the partially observable human type,

using a reward function that is learned from all demonstrated sequences that belong

to the cluster associated with that type, and therefore its performance is not affected

by these deviations.

70



5.7.2 Quality of Learned Model

To evaluate the quality of the clusters and corresponding reward functions that are

generatede automatically from our framework, we had a domain expert partition

manually the data and empirically handcraft a reward function. Figure 5-5 shows

that the policy computed by the MOMDP using the automatically generated user

model is comparable to the one that uses the handcoded model by the human expert.

The plotted lines denote the accumulated reward, averaged over all iterations of cross-

validation.

C_
0

C)

E)
xw
u/

EU

H

18

16V

14

12

10

8

6

4-

0'
0

Policy from Learned MOMDP
Human-Robot Cross-Training
MOMDP with Handcrafted Model

0.1 0.2 0.3
Randomness in Human Actions

0.4 0.5

Figure 5-5: Accumulated reward averaged over 18 iterations of cross-validation, one
for each human subject. The plotted lines illustrate the performance of a policy of
a MOMDP model handcoded by a domain expert, the learned policy of the auto-
matically generated MOMDP model using the proposed framework, and the learned
policy from the Human-Robot Cross-Training algorithm. The x-axis represents the
probability of the human taking a random action, instead of replaying the action he
actually took in the task-execution phase with the robot. For each subject, we ran
100 simulated iterations of task execution.

71



5.8 Conclusion

We presented a framework that automatically learns the "dominant" types of human

subjects, when working in teams on a collaborative task. Assuming access to a set of

demonstrated sequences of alternating actions from human teams working together on

a collaborative task, we find the number of human types by clustering these sequences.

We then learn a user model for each type, represented by a reward function of a

Mixed Observability Markov Decision Process. An approximately optimal policy that

maximizes the expected accumulated reward is computed, taking into consideration

the uncertainty on the human types. When a new human subject is introduced

to execute the collaborative task with the robot, his type is inferred either offline

from few demonstrations or online during task execution. Evaluation on a place-and-

drill task shows that the robot performance is robust to increasing deviations of the

human behavior from the demonstrated actions, compared to previous algorithms

that reason in state-space. Futhermore, the performance is comparable to the policy

of a MOMDP agent computed using a handcoded model by a domain expert. These

results show that models of the human types in collaborative tasks can be efficiently

learned and integrated into the general decision making, enabling robots to develop

robust policies that are aligned with the personalized style of their human partners.

72



Chapter 6

Conclusion and Future Work

6.1 Conclusion

We designed and evaluated mechanisms for programming robots and training people

in collaborative tasks.

First, we presented human-robot cross-training, a strategy widely used and val-

idated for effective human team training. Cross-training is an interactive planning

method in which a human and a robot iteratively switch roles to learn a shared

plan for a collaborative task. We first presented a computational formulation of the

robot's teaming model and show that it is quantitatively comparable to the human

mental model. Based on this encoding, we formulated human-robot cross-training and

evaluated it in a large-scale experiment of 36 subjects. We show that cross-training

improves quantitative measures of human-robot mental model convergence (p = 0.04)

and mental model similarity (p < 0.01). Post-hoc experimental analysis shows that

the proposed metric of mental model convergence could be used for dynamic human

error detection. Additionally, a post-experimental survey shows statistically signif-

icant differences in perceived robot performance and trust in the robot (p < 0.01).

Finally, we observed a significant improvement in team fluency metrics, including an

increase of 71% in concurrent motion (p = 0.02) and a decrease of 41% in human

idle time (p = 0.04), during the human-robot task execution phase. These results

provide the first evidence that human-robot teamwork is improved when a human

73



and robot train together by switching roles, in a manner similar to effective human

team training practices.

Additionally, we presented a framework that robustly infers a human type from a

fixed set of known human models from joint-action demonstrations. The robot then

computes a policy that takes into account the uncertainty over the estimate of the

human preference. We showed that the computed policy is robust to changes in the

human behavior, and outperforms the policy learned from previous work.

6.2 Future Work

In the experiments of this thesis we focused on a simple place-and-drill task, as a proof

of concept. We are currently extending the cross-training algorithm to a complex

hand-finishing task, where the robot manipulator lifts and places a heavy load at an

ergonomically friendly position for the human, whose role is to refinish the surfaces

of the load. The best position and orientation of the load depends on the size of

the human, his arm length, his age, and other physical characteristics, and therefore

should be different for each human worker. Additionally, there is a wide variety of

different preferences on the sequence of the surface refinishing, and velocity of robot

motion. As this task needs to be encoded in a very large state-space, we will need

to use value-function approximation methods for the reward-update of the rotation

phase, rather than the currently implemented tabular approach.

Additionally, although cross-training is applicable to a wide range of manufactur-

ing tasks, which have well-understood task procedures, there are tasks that are hard

to model and simulate in a virtual environment, such as robot-assisted surgery. For

these cases, other team training techniques, such as perturbation training, could be

more suitable, and we leave this for future work.

74



Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the Twenty-first International Conference on
Machine Learning. ACM Press, 2004.

[2] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proc. ICML. ACM Press, 2004.

[3] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz.
Trajectories and keyframes for kinesthetic teaching: a human-robot interaction
perspective. In HRI, pages 391-398, 2012.

[4] T. Arai, R. Kato, and M. Fujita. Assessment of operator stress induced by robot
collaboration in assembly. CIRP Annals - Manufacturing Technology, 59(1):5 -
8, 2010.

[5] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A
survey of robot learning from demonstration. Robot. Auton. Syst., 57(5):469-
483, May 2009.

[6] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration.
In ICML, pages 12-20, 1997.

[7] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu,
Wee Sun Lee, and Daniela Rus. Intention-aware motion planning. In Algorithmic
Foundations of Robotics X, pages 475-491. Springer, 2013.

[8] Samuel Barrett, Peter Stone, and Sarit Kraus. Empirical evaluation of ad hoc
teamwork in the pursuit domain. In Proc. of 11th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS), May 2011.

[9] Cannon-Bowers J.A. Blickensderfer E. and Salas E. Cross-training and team
performance. Making decisions under stress: Implications for individual and
team training, American Psychological Association, pages 299-311, 1998.

[10] Bruce Blumberg, Marc Downie, Yuri Ivanov, Matt Berlin, Michael Patrick John-
son, and Bill Tomlinson. Integrated learning for interactive synthetic characters.
ACM Trans. Graph., 21(3):417-426, July 2002.

75



[11] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory, volume 15 of Studies in Applied Mathematics.
SIAM, Philadelphia, PA, June 1994.

[12] Frank Broz, Illah Nourbakhsh, and Reid Simmons. Designing pomdp models of
socially situated tasks. In RO-MAN, 2011 IEEE, pages 39-46. IEEE, 2011.

[13] Blickensderfer E. Bowers C. Cannon-Bowers J.A., Salas E. The impact of cross-
training and workload on team functioning: a replication and extension of initial
findings. Human Factors, pages 92-101, 1998.

[14] Sonia Chernova and Manuela Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Proceedings of the 6th In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS '07, pages 233:1-233:8, New York, NY, USA, 2007. ACM.

[15] Sonia Chernova and Manuela Veloso. Teaching multi-robot coordination using
demonstration of communication and state sharing. In Proc. AAMAS, Richland,
SC, 2008.

[16] L. Tom Davis, Catherine D. Gaddy, John R. Turney, and Jennifer L. Koontz.
Team skills training. Performance + Instruction, 25(8):12-17, 1986.

[17] Finale Doshi and Nicholas Roy. Efficient model learning for dialog management.
In Proc. HRI, Washington, DC, March 2007.

[18] L. Ekroot and T.M. Cover. The entropy of markov trajectories. Information
Theory, IEEE Transactions on, 39(4):1418 -1421, jul 1993.

[19] Alan Fern and Prasad Tadepalli. A computational decision theory for interactive
assistants. In Interactive Decision Theory and Game Theory, 2010.

[20] Jamie C. Gorman, Nancy J. Cooke, and Polemnia G. Amazeen. Training adap-
tive teams. Human Factors: The Journal of the Human Factors and Ergonomics
Society, 52(2):295-307, 2010.

[21] Jamie C Gorman, Nancy J Cooke, Harry K Pedersen, Jennifer Winner, Dee
Andrews, and Polemnia G Amazeen. Changes in team composition after a break:
Building adapative command-and-control teams. In Proceedings of the Human
Factors and Ergonomics Society Annual Meeting, volume 50, pages 487-491.
SAGE Publications, 2006.

[22] G.R.J. Hockey, J. Sauer, and D.G. Wastell. Adaptability of training in simulated
process control: Knowledge versus rule-based guidance under task changes and
environmental stress. Human Factors, 49(1):158-74, 2007.

[23] Guy Hoffman and Cynthia Breazeal. Effects of anticipatory action on human-
robot teamwork efficiency, fluency, and perception of team. In Proc. HRI, pages
1-8, New York, NY, USA, 2007. ACM.

76



[24] Vind Jddskinen, Ville Parkkinen, Lu Cheng, and Jukka Corander. Bayesian
clustering of dna sequences using markov chains and a stochastic partition model.
Statistical applications in genetics and molecular biology, pages 1-17, 2013.

[25] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning
and acting in partially observable stochastic domains. Artif. Intell., 101:99-134,
May 1998.

[26] Fr6deric Kaplan, Pierre-Yves Oudeyer, Enik6 Kubinyi, and Adam Mikl6si.
Robotic clicker training. Robotics and Autonomous Systems, 38(3-4):197-206,
2002.

[27] W. Bradley Knox and Peter Stone. Interactively shaping agents via human
reinforcement: The tamer framework. In Proc. K-CAP, September 2009.

[28] W. Bradley Knox and Peter Stone. Combining manual feedback with subsequent
mdp reward signals for reinforcement learning. In Proc. AAMAS, May 2010.

[29] W. Bradley Knox and Peter Stone. Reinforcement learning from simultaneous
human and mdp reward. In Proc. AAMAS, June 2012.

[30] Hanna Kurniawati, David Hsu, and Wee Sun Lee. Sarsop: Efficient point-based
pomdp planning by approximating optimally reachable belief spaces. In Robotics:
Science and Systems, pages 65-72, 2008.

[31] Janice Langan-Fox, Sharon Code, and Kim Langfield-Smith. Team mental mod-
els: Techniques, methods, and analytic approaches. Human Factors, 42(2):242-
271, 2000.

[32] Owen Macindoe, Leslie Pack Kaelbling, and Tomas Lozano-Perez. Pomcop:
Belief space planning for sidekicks in cooperative games. In AIIDE, 2012.

[33] John I Marden. Analyzing and modeling rank data. CRC Press, 1995.

[34] M.A. Marks, M.J. Sabella, C.S. Burke, and S.J. Zaccaro. The impact of cross-
training on team effectiveness. Journal of Applied Psychology, pages 3-13, 2002.

[35] Michelle A. Marks, Stephen J. Zaccaro, and John E. Mathieu. Performance
implications of leader briefings and team-interaction training for team adaptation
to novel environments. J Appl Psychol, 85:971-986, 2000.

[36] John E. Mathieu, Tonia S. Heffner, Gerald F. Goodwin, Janis A. Cannon-Bowers,
and Eduardo Salas. Scaling the quality of teammates' mental models: equifinality
and normative comparisons. Journal of Organizational Behavior, 26(1):37-56,
2005.

[37] John E. Mathieu, Tonia S. Heffner, Gerald F. Goodwin, Eduardo Salas, and
Janis A. Cannon-Bowers. The influence of shared mental models on team process
and performance. Journal of Applied Psychology, 85(2):273-283, 2000.

77



[38] Thomas Brendan Murphy and Donal Martin. Mixtures of distance-based models
for ranking data. Computational statistics 6 data analysis, 41(3):645-655, 2003.

[39] Nicolas Navarro, Cornelius Weber, and Stefan Wermter. Real-world reinforce-
ment learning for autonomous humanoid robot charging in a home environment.
In Proc. TAROS, pages 231-240, Berlin, Heidelberg, 2011. Springer-Verlag.

[40] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning.
In Proceedings of the 17th International Conference on Machine Learning, pages
663-670. Morgan Kaufmann, 2000.

[41] Truong-Huy Dinh Nguyen, David Hsu, Wee Sun Lee, Tze-Yun Leong, Leslie Pack
Kaelbling, Tomas Lozano-Perez, and Andrew Haydn Grant. Capir: Collaborative
action planning with intention recognition. In AIIDE, 2011.

[42] Monica N. Nicolescu and Maja J. Mataric. Natural methods for robot task learn-
ing: Instructive demonstrations, generalization and practice. In Proc. AAMAS,
pages 241-248, 2003.

[43] Stefanos Nikolaidis and Julie Shah. Human-robot cross-training: computational
formulation, modeling and evaluation of a human team training strategy. In
Proceedings of the 8th ACM/IEEE international conference on Human-robot in-
teraction, HRI '13, pages 33-40, Piscataway, NJ, USA, 2013. IEEE Press.

[44] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Planning under
uncertainty for robotic tasks with mixed observability. The International Journal
of Robotics Research, 29(8):1053-1068, 2010.

[45] Phasespace motion capture http: //www. phasespace. com, 2012.

[46] Deepak Ramachandran and Rakesh Gupta. Smoothed sarsa: reinforcement
learning for robot delivery tasks. In Proc. ICRA, pages 3327-3334, Piscataway,
NJ, USA, 2009. IEEE Press.

[47] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[48] Richard A. Schmidt and Robert A. Bjork. New conceptualizations of practice:
Common principles in three paradigms suggest new concepts for training. Psy-
chological Science, 3(4):207-217, 1992.

[49] Julie Shah, James Wiken, Brian Williams, and Cynthia Breazeal. Improved
human-robot team performance using chaski, a human-inspired plan execution
system. In Proc. HRI, pages 29-36, New York, NY, USA, 2011. ACM.

[50] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances
in Neural Information Processing Systems, pages 2164-2172, 2010.

78



[51] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 1998.

[52] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship
learning. In Advances in neural information processing systems, pages 1449-1456,
2007.

[53] Ana C. Tenorio-Gonzalez, Eduardo F. Morales, and Luis Villasenior Pineda. Dy-
namic reward shaping: training a robot by voice. In Proc. IBERAMIA, pages
483-492, Berlin, Heidelberg, 2010. Springer-Verlag.

[54] Andrea L. Thomaz and Cynthia Breazeal. Reinforcement learning with human
teachers: evidence of feedback and guidance with implications for learning per-
formance. In Proc. AAAI, pages 1000-1005, 2006.

[55] Andrea Lockerd Thomaz, Guy Hoffman, and Cynthia Breazeal. C.: Real-time
interactive reinforcement learning for robots. In Proc. of AAAI Workshop on
Human Comprehensible Machine Learning, 2005.

[56] Kevin Waugh, Brian D. Ziebart, and J. Andrew (Drew) Bagnell. Computational
rationalization: The inverse equilibrium problem. In Proc. ICML, June 2011.

79


