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Abstract

Aphasia is an impairment in the expression or comprehension of language that results

from stroke, traumatic brain injury or progressive neurological disease. Approximately one

million people in the United States suffer from aphasia, with the prevalence projected to increase

to two million by 2020. Research has shown that speech-language therapy, the treatment for

aphasia, can significantly improve people's ability to communicate. However, a major limitation

in the field of aphasia rehabilitation is the lack of predictability in patients' response to therapy
and the inability to tailor treatment to individuals.

We hypothesize that learning represents a critical, underexplored factor in aphasia

rehabilitation. Predicting whether a patient will improve following therapy may depend more

upon that individual's ability to learn new information in general than upon a specific ability to
relearn and master language.

In this thesis I report a series of experiments that introduce a new approach that looks
beyond language, proposing that the answer to developing efficacious, individually tailored
therapies lies in a better understanding of the mechanisms of nonverbal learning in individuals
with aphasia. We first explore learning success on a test of nonlinguistic category learning to
examine whether learning differences arise among individuals with aphasia and non-aphasic
controls. In Experiment 2, we probe the impact of stimulus manipulations on learning success.
Experiment 3 presents an investigation into the relationship between learning score and language
therapy outcomes. Finally, in Experiment 4, we examine the strategies used to perform our task
in order to better understand how information is processed during probabilistic category learning.

Results support the hypothesis that aphasia differentially affects language and learning
networks. Instruction method and stimulus complexity were found to impact learning success
and strategy use in individuals with aphasia. Furthermore, a positive correlation was found
between learning scores and success with language therapy, suggesting that there is an
informative relationship between learning ability and therapy outcomes.

Findings draw attention to underlying processes that have not yet been the focus of

research in aphasia, yet likely contribute to outcomes with therapy and present a gateway
towards individualizing therapy and improving the predictability of patient outcomes.

Thesis Supervisor:

Swathi Kiran

Director, Aphasia Research Laboratory, Boston University
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1. Introduction

Imagine being a politician who loses his ability to speak to a crowd. Imagine having a PhD-

level education, yet when presented with a picture of a piano, being able only to say "white....

black." Even worse, imagine seeing a picture, writing its name down, yet not being able to read

your own writing to say that word. These are the types of situations that we witness every day

working with patients with aphasia, patients in their 30s with young children to patients who are

80 years old.

An approximate 795,000 individuals suffer from strokes each year, with 25% to 40%

resulting in aphasia (Nicholas, 2009; Roger et al., 2012), an impairment in the expression or

comprehension of language. Language therapy is the predominant treatment for aphasia, and an

increasing body of research is demonstrating the beneficial impact of aphasia therapy even in the

chronic stages of aphasia (Bhogal, Teasell, & Speechley, 2003; Holland, Fromm, DeRuyter, &

Stein, 1996; Robey, 1998; Shewan & Kertesz, 1984). While we have some understanding of

how individuals with post-stroke aphasia relearn language, why some patients respond to

treatment while others do not remains a looming question in the field of aphasia rehabilitation

(Best & Nickels, 2000; Kelly & Armstrong, 2009).

Much progress has been made in the field, such that clinicians and researchers are

equipped with means of assessing aphasia (Spreen & Risser, 2003), model frameworks of

language processing and impairment that help describe the nature of deficits and guide therapy

(Whitworth, Webster, & Howard, 2005), as well as multiple therapies and tasks that studies have

demonstrated are efficacious in improving language function in patients with aphasia (Holland et

al., 1996; Kiran & Sandberg, 2011). In spite of this progress, we still do not fully understand the

mechanisms of therapy (Ferguson, 1999) nor are we able to prescribe the most appropriate

treatments for patients based on their language deficits and cognitive profiles (Best & Nickels,

2000; Kelly & Armstrong, 2009).
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We propose that predicting whether a patient will improve following therapy instruction

may depend in part upon that individual's ability to learn new information. Brain damage that

leads to language loss likely damages the overall cognitive architecture of learning and memory,
an architecture that contributes nodes critical to the language reorganization network. Learning

is a process that is integral to relearning language and therefore to rehabilitation, yet has received

little attention in the field of aphasia rehabilitation. Our knowledge about learning ability in

aphasia is limited to a few verbal learning studies described in further detail below. The fact that

language is the primary deficit in aphasia, however, confounds studies of novel word learning.

This thesis investigates the nature of learning in aphasia by exploring the performance of

individuals with aphasia as they complete nonlinguistic category learning tasks. We hope that

through a better understanding of learning in aphasia, we can improve the predictability of

therapy outcomes and begin to individually tailor treatments to individuals.

1.1. Current treatment of aphasia: Diagnosis

Prior to administering aphasia therapy, patients' needs, strengths and weaknesses are

determined through a diagnostic assessment of areas such as word finding, speech fluency and

phrase length, auditory comprehension skills and repetition skills, as well as an evaluation of

reading and writing skills, the ability to produce volitional gestural and oral movements and the

extent to which behaviors and/or responses are repetitive (Helm-Estabrooks & Martin, 2004). In

addition to quantitative and qualitative characterizations of language symptoms and deficits,
clinicians collect information and observations about patients' neurological, medical,
occupational and educational histories as well as in the domains of cognition and emotional

behaviors. Information is gathered about patients' lifestyle and activities in order to better

understand their functional communication needs, motivation and environmental factors that

might affect recovery.

Once strengths and weaknesses have been evaluated, the goal of therapy is to reduce the

impairment produced by communicative deficits. Intervention can focus on strategies intended

to help increase the efficiency of residual language capacity or can focus on developing

substitutive compensatory strategies (Kiran & Bassetto, 2008; Kiran & Sandberg, 2011). While

therapies have been found to be effective, time after time patients with similar degrees of

language impairment show variable responses to treatment (Conroy, Sage, & Lambon Ralph,
2009; Fillingham, Sage, & Lambon Ralph, 2006; Hickin, Best, Herbert, Howard, & Osborne,
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2002; Lambon Ralph, Snell, Fillingham, Conroy, & Sage, 2010). Such variability is frustrating

for clinicians and patients, and suggests that critical factors are missing from the current

diagnostic characterization of individuals with aphasia.

Early research demonstrated that the severity of language impairment and lesion size

present important predictors of spontaneous recovery (Goldenberg & Spatt, 1994; Pedersen,

Vinter, & Olsen, 2004; Plowman, Hentz, & Ellis, 2012). In the chronic stages of aphasia

recovery, however, few measures stand out as reliable predictors of outcomes with therapy.

Researchers have suggested that cognitive deficits may be accountable for some of the variability

observed with communicative success and treatment outcomes in aphasia (Fridriksson, Nettles,

Davis, Morrow, & Montgomery, 2006; Lesniak, Bak, Czepiel, Seniow, & Czlonkowska, 2008;

Peach, Rubin, & Newhoff, 1994). An increasing body of work has explored aspects of cognition

that might be important towards constructing and retrieving language, such as attention

(Erickson, Goldinger, & LaPointe, 1996; Hula & McNeil, 2008), executive function (Zinn,

Bosworth, Hoenig, & Swartzwelder, 2007), concept knowledge (Chertkow, Bub, Deaudon, &

Whitehead, 1997) and memory (Helm-Estabrooks, 2002; LaPointe & Erickson, 1991).

Cognitive-linguistic factors such as these are often characterized prior to therapy via

standardized assessments (Helm-Estabrooks, 2001).

Language factors of oral expression (i.e. naming ability, syntax) and comprehension (i.e.

oral and written) have also been identified as potential prognostic factors and are often

extensively assessed at the onset of therapy. Diagnostics related to core components of language

production and comprehension are often informative for the selection of appropriate targets for

(El Hachioui et al., 2013). These measures however, frequently do not suffice to explain

observed treatment outcomes. Initial aphasia severity continues to stand out as one of the

measures related to language recovery (Plowman et al., 2012).

Studies probing these factors have provided insight into linguistic and cognitive-linguistic

deficits that arise in aphasia; but learning remains absent from this picture, and the problem of

predictability of outcomes persists. We propose that learning ability represents one of the

barriers hindering our ability to predict which individuals will improve following therapy and

which will not (see Figure 1.1).
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Figure 1.1: Schematic suggesting that critical factors are missing from the current diagnostic characterization of
individuals with aphasia and hinder our ability to peic therapy outcomes.

1.2. Learning in aphasia: What is known

Currently, our understanding of learning in aphasia is limited to studies focused on novel

word learning. In an early study of verbal learning, Grossman & Carey (1987) tested five control

participants and 15 patients with aphasia; eight characterized as Broca's aphasics and seven as

fluent. After exposing participants to an unfamiliar color term "bice" in naturalistic contexts,

participants were asked to make grammaticality and semantic classification judgments about the

word. Researchers found that different learning profiles surfaced in Broca's and fluent aphasics.

Broca's patients, who traditionally present with deficits in grammar and sentence formulation,

demonstrated control-like object classification of color but impaired grammaticality judgments.
In contrast, fluent patients, who traditionally present with comprehension deficits, demonstrated

control-like grammaticality judgments with impaired object classification. Not surprisingly,

researchers concluded that processing demands were similar for newly acquired and familiar

language skills.

This conclusion was later supported by Gupta et al. (2006), who found differential

phonological and semantic learning abilities in patients, which were predicted by standardized

composite measures of phonological and semantic processing abilities. Thus, the linguistic

strengths and weaknesses of individuals with aphasia have been found to impact their ability to

engage in new word learning.
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Freedman and Martin (2001) expanded upon these findings, exploring the impact of

phonological and semantic short-term memory (STM) skills on patients' abilities to learn

Spanish translations of common words (new phonological learning) and new definitions for

familiar words (semantic learning). Results demonstrated that successful learning of Spanish

translations correlated with high phonological STM scores while new definition learning

correlated with high semantic STM scores. These findings demonstrated how verbal cognitive

strengths, in addition to linguistic strengths, might support new learning. Novel word learning

has been shown to be possible under incidental learning conditions (Breitenstein, Kamping,

Jansen, Schomacher, & Knecht, 2004) and through explicit instruction (Gupta, Martin, Abbs,

Schwartz, & Lipinski, 2006; Marshall, Neuburger, & Phillips, 1992; Tuomiranta et al., 2011).

Considered together, these studies suggest that patients are capable of new verbal

learning and that cognitive and linguistic processing abilities have an impact on learning.

Despite these contributions however, our understanding of leaming in aphasia is still limited,

because all recent studies explore verbal learning.

1.3. Learning in other clinical populations

Though little is known about nonverbal learning in aphasia, studies in other clinical

populations and in healthy individuals have investigated pattems of behavior that arise during

various types of nonverbal learning. Research has demonstrated that manipulations of training

method, stimulus characteristics, category structure, and response selection impact learning

results (Ashby, Maddox, & Bohil, 2002; Ashby, Noble, Filoteo, Waldron, & Ell, 2003; Davis,

Love, & Maddox, 2009; Filoteo & Maddox, 2007; Knowlton, Squire, & Gluck, 1994; Maddox,

Love, Glass, & Filoteo, 2008). Often, manipulations of task and instruction method have been

found critical to promoting learning in patients with brain damage.

Patients with Parkinson's Disease (PD), for example, have shown impaired procedural-

based learning, information integration and rule-based learning, particularly when stimuli pose

high working memory or attention demands (Filoteo & Maddox, 2007; Filoteo, Maddox, Ing,

Zizak, & Song, 2005; Price, 2006). These patients show intact artificial grammar leaming

(Reber & Squire, 1999; Smith, Siegert, McDowall, & Abernethy, 2001; Witt, Nuhsman, &

Deuschl, 2002) and intact information integration learning under conditions of limited

complexity (Ashby et al., 2003; Filoteo, Maddox, Ing, et al., 2005; Filoteo, Maddox, Salmon, &
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Song, 2005). Similarly, patients with amnesia are sensitive to instruction method, demonstrating

impairments in learning that involves recall and recognition (Filoteo, Maddox, & Davis, 2001;

Knowlton, Ramus, & Squire, 1992), yet showing successful learning of probabilistic

classification tasks (Knowlton et al., 1994).

1.3.1. Multiple memory systems for learning. The mechanism underlying the

facilitation or impairment of learning for these patients is thought related to the existence of

multiple memory systems that rely on different neurobiological structures and support learning in

different ways. Specifically, local stimulation, functional magnetic resonance imaging (fMRI),

animal studies and lesion studies have demonstrated that memory can be divided into distinct

systems, with long-term memory divided into declarative memory and nondeclarative memory.

Many types of learning rely on recall of individual instances, facts or events in order to

form associations between previously unrelated stimuli. This type of learning, termed

declarative or explicit learning, is thought to rely heavily on the hippocampus and medial

temporal lobe structures (Seger & Miller, 2010; Squire 1992 for review). Declarative systems

are considered important for rule-leaming and for paired-associate learning, in which participants

store associations between cues and responses (Breitenstein et al., 2005; Squire, 1992;

Warrington & Weiskrantz, 1982; Winocur & Weiskranitz, 1976). In addition, in their

COmpetition between Verbal and Implicit Systems (COVIS) model, Ashby, Alfonso-Reese,

Turken and Waldron, (1998) draw attention to the likely engagement of explicit processes in the

early stages of many types of category learning (Ashby, Alfonso-Reese, Turken, & Waldron,
1998; Maddox & Ashby, 2004 for review). In these stages, learners are thought to engage logic

and reasoning to form hypotheses; often verbalizeable ones. Hypotheses are then tested and

results monitored, processes proposed to rely heavily on attention and working memory

networks.

In contrast, unconscious systems have been thought critical for gradual learning,
particularly of statistical properties, complex or abstract information, and learning via trial-by-

trial feedback (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; K6ri, 2003; Knowlton,
Mangels, & Squire, 1996; Knowlton & Squire, 1993; Maddox & Ashby, 2004; Seger & Miller,
2010). This type of learning, termed nondeclarative or implicit learning, is carried out via

automatic processes that incrementally reinforce experiences (Ashby et al., 1998; Knowlton &

Squire, 1993). Research suggests that unexpected rewards trigger the release of dopamine.
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Release of dopamine gradually strengthens the association between cues and responses (Seger &

Miller, 2010; Shohamy, Myers, Kalanithi, & Gluck, 2008; Shohamy, Myers, Onlaor, & Gluck,

2004).

Many early seminal studies focusing on these memory systems involved patients with

amnesia as they completed the weather prediction task (WPT), a task whose stimuli are four

unique cards composed of geometric shapes. On each trial one to three cards are presented.

Participants are instructed to guess whether each card combination predicts sunshine or rainy

weather. Individual cards are probabilistically associated with one outcome or another, such that

successful learning of the task is achieved through gradual, trial-by-trial learning influenced by

the statistical nature of weather-card associations. Early studies found that patients with amnesia

were able to engage in probabilistic learning in a manner comparable to that of healthy

individuals, at least in the early phases of learning (Knowlton, Mangels, et al., 1996; Knowlton et

al., 1994). Results provided evidence supportive of multiple memory system hypotheses.

Further research in patients with Parkinson's and Huntington's disease with known basal

ganglia dysfunction, demonstrated that for these patients, learning of the WPT was disrupted

from the onset of training (Knowlton, Mangels, et al., 1996; Knowlton, Squire, et al., 1996).

Behavioral studies, paired with neuroimaging work have identified cortico-striatal mechanisms

as vital systems of gradual feedback-based learning.

Though certain conditions are thought to emphasize the engagement of one system over

another, research has suggested that these systems can interact or compete throughout learning

(Ashby et al., 1998; Ashby & Maddox, 2011; Ashby & O'Brien, 2005; Ashby & Valentin, 2005;

Cincotta & Seger, 2007; Moody, Bookheimer, Vanek, & Knowlton, 2004; Poldrack et al., 2001;

Seger & Miller, 2010).

1.4. Learning in aphasia: Clinical implications

The fundamental assumption of most aphasia therapy approaches is that language can be

retrained through feedback and modeling and usually involves manipulation of auditory or visual

stimuli (written words, gestures or pictures) of varying complexity. Treatment aimed at

improving naming and word retrieval, for example, might involve presenting a patient with a

picture and asking him or her to name the picture. If the patient has trouble producing the

correct word, clinicians can cue the patient with a series of cues of decreasing complexity such
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as providing the first phoneme of the target, providing a word that rhymes with the target,

presenting the target in writing, or producing the word for repetition (Raymer & Rothi, 2001).

Patients might be asked to match pictures to written words or to related categories and might be

asked to produce or manipulate sentences of varying complexity.

Many aphasia therapies work towards retraining language in this manner through

manipulations of auditory and visual stimuli, feedback, and modeling. Currently however, we

are limited in our understanding of how patients approach such tasks. Are patients attending to

all stimuli presented during therapy, or are they focusing on one modality or one stimulus item at

a time? Are individuals actively integrating feedback and constructing hypotheses related to

instruction and cueing? Are patients able to carry over lessons from one therapy to another? Are

patients able to devise strategies to carry over what is learned in therapy into real-world

communicative scenarios?

All of these are questions relevant to therapy, whose answers lie in a better understanding

of the ways in which patients with aphasia process information while they are engaged in therapy

tasks. In addition, as highlighted in section 1.4, method of instruction can have a profound

impact on the learning outcomes of individuals with Parkinson's Disease and individuals with

amnesia. Does method of instruction have similar impacts on the learning success of individuals

with aphasia? If so, this has critical implications for therapy, as clinicians currently focus on

what they are targeting in therapy, with little focus on how those targets are instructed.
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2. Research questions and rationale

Lesion and neuroimaging research now recognizes that regions critical for language have rich

bilateral functional connections with frontal, temporal and parietal regions (for review see

(Turken & Dronkers, 2011) Conventional aphasia research, however, has neglected to explore

the implications of disrupted networks on rehabilitation and deficits; and has not yet

acknowledged the impact that brain damage produced by aphasia-inducing strokes might have on

non-linguistic networks. In this thesis, we aim to introduce a new approach that looks beyond

language. We aim to characterize nonlinguistic learning ability in patients with aphasia, further

probing how aspects of learning might impact therapy and therapy outcomes.

To this end, experiments in subsequent chapters address each of the following questions in

turn: (1) How does the nonlinguistic category learning ability of individuals with aphasia

compare with the learning ability of non-aphasic, age matched controls? (2) What are the

impacts of stimulus complexity and method of instruction on the learning ability of individuals

with aphasia? (3) Can a behavioral measure of nonlinguistic category learning predict patient

outcomes in therapy? (4) What strategies do individuals with aphasia implement during complex

nonlinguistic category learning?

2.1. How does the nonlinguistic category learning ability of individuals with aphasia

compare with the learning ability of non-aphasic, age matched controls?

Based on experimental paradigms well established in healthy adults and in brain damaged

individuals (Filoteo, Maddox, Ing, et al., 2005; Knowlton et al., 1994; Shohamy, Myers,

Grossman, et al., 2004), we have designed behavioral experiments probing abstract, novel

category learning in patients with aphasia and in healthy controls. We established a probabilistic

classification learning task adapting stimuli from Zeithamova, Maddox and Schnyer (2008) that

engages participants in the leaming of two prototypical categories. We have devised two

category-learning tasks, one with instruction administered in a trial-by-trial feedback manner and

another with paired-associate instruction.
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We expect non-aphasic controls to learn both feedback-based and paired associate tasks

efficiently. For individuals with aphasia, the literature leads to two hypotheses. Work in verbal

learning has suggested that patients with aphasia are capable of new learning, learning deficits

arising primarily in processing domains related to linguistic capabilities (Freedman & Martin,
2001; Grossman & Carey, 1987; Gupta et al., 2006). Therefore, one might predict that faced

with nonlinguistic category learning tasks, patients will learn in a manner equivalent to non-

aphasic controls. In contrast, research in other clinical populations has identified differences in

nonverbal learning ability across various disorders. These findings suggest that individuals with

aphasia may also show patterns of learning that are disrupted relative to non brain-damaged

controls. Should individuals with aphasia show impaired patterns of nonverbal learning, results

will suggest that language deficits are accompanied by deficits in the general cognitive

architecture supporting learning. If differences arise, we aim to devise a metric of learning that

can quantify the learning ability of individuals.

2.2. What are the impacts of stimulus complexity and method of instruction on the

learning ability of individuals with aphasia?

As research has shown that manipulations of training method, stimulus characteristics

and category structure contribute to learning (Ashby et al., 2002; Ashby et al., 2003; Davis et al.,
2009; Filoteo & Maddox, 2007; Knowlton et al., 1994; Maddox et al., 2008); in our second

experiment, we explore how manipulations to such factors impact learning in individuals with

aphasia. We continue to explore the impact of feedback based versus paired-associate

instruction on learning. In this experiment, we further manipulate the complexity of stimulus

items seen in training.

Complexity is of particular relevance to explore in individuals with aphasia, as it is one

of the factors currently examined and manipulated in language therapy protocols. Theories of

aphasia rehabilitation suggest that treatment focused on complex structures might facilitate

generalization to related, less complex structures (Thompson, Shapiro, Kiran, & Sobecks, 2003).

Hypotheses are motivated by connectionist work that has found that retraining complex, atypical

category items provides information about category breadth and variability thereby promoting

broad within-category learning (Plaut, 1996). Though learning under these conditions may
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progress more slowly than learning concentrated on simple items, the generalization benefits are

more robust than those observed following training focused on simple conditions and stimuli.

In our second experiment participants are exposed to either typical or atypical category

members in training. Typical category members are stimuli that have a large feature overlap

with category prototypes and thus present simple training conditions in which salient category

features are consistently reinforced. Atypical category members share fewer features with

category prototypes and therefore more closely resemble the complex items described by Plaut

(1996), providing information about category breadth and variability.

In line with connectionist models, we hypothesize that training limited to simple, typical

category members will facilitate the rapid recognition of categories. Following complex,

atypical training we predict that learning will generalize to typical category items. This pattern

of superior generalization may come at the cost of lower overall scores of learning.

2.3. Can a behavioral measure of nonlinguistic category learning predict patient

outcomes with therapy?

In order to establish the validity of our phenotype of learning and to translate behavioral

findings to the clinical setting, in our third experiment, we will examine the performance of

patients with aphasia enrolled in a structured 10-week therapy program targeted at a specific

aspect of their communication. We have selected a theoretically based comprehension treatment

aimed at improving sentence comprehension through instruction focused on thematic role

assignments.

Prior to enrolling in therapy, all patients complete behavioral nonverbal learning tasks to

characterize their learning ability phenotype and also complete standardized assessments

evaluating the severity of their aphasia, language and cognitive deficits. As described in the

introduction, measure of aphasia severity and cognitive-linguistic strengths and deficits have

previously been identified as potential prognostic factors. We will therefore examine how our

metric of learning compares with other frequently examined measures.

Treatment outcomes will be measured as percent change in the target language ability,

and effect sizes calculated as the difference in percent accuracy between three pre-treatment and

three post-treatment baseline probes. We hypothesize that non-verbal learning phenotype

(learning slope) will be positively associated with treatment outcomes.
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2.4. What strategies do individuals with aphasia implement during complex

nonlinguistic category learning?

Finally, in the fourth experiment of this thesis, we examine how individuals with aphasia

and non-aphasic controls process information during nonlinguistic category learning. While

early neuropsychological and neuroimaging studies exploring feedback-based probabilistic

category learning such as the weather prediction task pointed to nondeclarative memory systems

as being critical to learning, more recent research has suggested that learners actually implement

various strategies when approaching these tasks (Gluck, Shoharny, & Myers, 2002). Detailed

analyses of behavioral data have revealed that probabilistic learning can be accomplished

through a variety of strategies that include attending to one task dimension or learning the

probabilistic associations of multiple cues and outcomes (Gluck et al., 2002; Meeter, Myers,

Shohamy, Hopkins, & Gluck, 2006; Meeter, Radics, Myers, Gluck, & Hopkins, 2008). Studies

have shown that individuals often implement simple strategies at the onset of learning, gradually

invoking more complex strategies through the course of learning. Research has identified

differences in strategy implementation among healthy individuals, individuals with amnesia and

individuals with Parkinson's Disease.

Our first two experiments explore how experimenter-driven manipulations impact

learning. In our final study, we examine how participant-selected strategies impact success with

learning. This perspective is important as it presents a means of better understanding how

information is processed during learning.

In this experiment, we again examine feedback-based and paired associate learning, this

time adapting strategy analyses devised by Gluck et al. (2002) and Meeter et al. (2006) to better

understand the means with which controls and individuals with aphasia learn our tasks. We

expect differences to arise between controls and individuals with aphasia. Specifically, we

expect that individuals with aphasia will show a greater reliance on simple strategies than control

participants.

2.5. Summary

The experiments of this thesis have been designed to present a comprehensive approach

beginning with an investigation into how individuals learn and how that learning is susceptible to

stimulus manipulations and instruction methods. We then present an exploration into the
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translatability of findings to a therapy setting. Finally, we examine how participant-driven

processing mechanisms influence patterns of leaming.

The reader will note that a small group of age and education-matched controls have been

included in experiments 1, 2 and 4. This group has primarily been included to validate principles

and provide a baseline for interpretation of results. Due to the inherent heterogeneity of

individuals with aphasia, a relatively larger group of individuals with aphasia has been included

in each experiment. We obtain standardized cognitive-linguistic measures in every experiment

in order to interpret results within the context of well established and frequently referenced

assessments of aphasia.
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3. Experiment 1. Nonlinguistic learning and aphasia: Evidence
from a paired associate and feedback-based task'

Abstract
Though aphasia is primarily characterized by impairments in the comprehension and/or

expression of language, research has shown that patients with aphasia also show deficits in
cognitive-linguistic domains such as attention, executive function, concept knowledge and
memory (Helm-Estabrooks, 2002 for review). Research in aphasia suggests that cognitive
impairments can impact the online construction of language, new verbal learning, and
transactional success (Freedman & Martin, 2001; Hula & McNeil, 2008; Ramsberger, 2005). In
our research, we extend this hypothesis to suggest that general cognitive deficits influence
progress with therapy. The aim of this experiment is to explore learning, a cognitive process that
is integral to relearning language, yet underexplored in the field of aphasia rehabilitation. We
examine non-linguistic category learning in patients with aphasia (n=19) and in healthy controls
(n=12), comparing feedback and non-feedback based instruction. Participants complete two
computer-based learning tasks that require them to categorize novel animals based on the
percentage of features shared with one of two prototypes. As hypothesized, healthy controls
showed successful category learning following both methods of instruction. In contrast, only
60% of our patient population demonstrated successful non-linguistic category learning. Patient
performance was not predictable by standardized measures of cognitive ability. Results suggest
that general learning is affected in aphasia and is a unique, important factor to consider in the
field of aphasia rehabilitation.

3.1 Introduction

Traditional research in aphasia has predominantly focused on the role of brain regions

specialized for language, however a growing body of lesion and neuroimaging research now

recognizes that language is part of an extensive network of connected brain regions that subserve

not only language, but processes such as working memory and cognitive control (Tomasi &

Volkow, 2012; Turken & Dronkers, 2011). Accordingly, an increasing number of studies in

aphasia rehabilitation acknowledge the important contribution of multiple factors of cognition to

therapy outcomes and communicative success (Fridriksson et al., 2006; Helm-Estabrooks, 2002;

1 Portions of this chapter were originally published as Vallila-Rohter, S., & Kiran, S. (2013). Non-linguistic learning
and aphasia: evidence from a paired associate and feedback-based task. Neuropsychologia, 51(1), 79-90.
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Keil & Kaszniak, 2002; Ramsberger, 2005). Researchers have identified skills that might be

important towards constructing and retrieving language, such as attention (Erickson et al., 1996;

Hula & McNeil, 2008; Lesniak et al., 2008; Murray, 2012; Peach et al., 1994), executive

function (Keil & Kaszniak, 2002; Lesniak et al., 2008; Ramsberger, 2005; Zinn et al., 2007),

concept knowledge (Chertkow et al., 1997) memory (Helm-Estabrooks, 2002; LaPointe &

Erickson, 1991).

Along this line of work, many studies have demonstrated a disparity between language

skills and non-linguistic ability (Chertkow et al., 1997; Helm-Estabrooks, 2002), illustrating that

patients with aphasia can have differing degrees of impairment in both verbal and nonverbal

domains. Though degrees of impairment can differ in these domains, they remain related,

researchers postulating a contribution of non-linguistic cognitive impairments to the online

construction of language (Hula & McNeil, 2008) and to transactional success in functional

communication in aphasia (Ramsberger, 2005). In addition, some researchers have found that

treatment related outcomes are best predicted by non-linguistic skills such as executive function

and monitoring, rather than by language ability (Fillingharn, Sage, & Lambon Ralph, 2005a,

2005b). Studies such as these draw attention to the interconnectedness of cognitive, non-

linguistic factors and language, and to the importance of exploring nonverbal domains as a

means of better characterizing and understanding the deficits that surface in aphasia

We suggest that not only are nonverbal cognitive-linguistic processes important to the

retrieval and construction of language in conversation, but that nonverbal cognitive processes

might be important in the relearning or reaccess to language that is brought about through

therapy. More specifically, we identify learning as a critical process involved in language

relearning subsequent to stroke. Support for this hypothesis comes from recent neuroimaging

studies in aphasia that explore the association between treatment related changes and neural

structures and activation.

Goldenberg and Spatt (1994) for example, examined the correlation between success with

therapy and lesion location and volume. Researchers found that patients who showed limited

improvements in therapy had lesions that were close to, or that included portions of the

entorhinal cortex, an important structure in the relay of information between the neocortex and

the hippocampus (Squire, 1992) considered critical to learning and memory (Eichenbaum, Otto,

& Cohen, 1992; Squire, 1992). In a functional magnetic resonance imaging (fMRI) study,
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Menke et al. (2009), found evidence for a relationship between short-term improvements with

therapy and bilateral activation of the hippocampus, a structure critical to memory. Shortly

thereafter in a diffusion tensor imaging study (DTI), Meinzer et al. (2010) showed a correlation

between success with language therapy and the structural integrity of the hippocampus and

surrounding fiber tracts. Studies that explore novel lexical, semantic and syntactic learning in

healthy individuals have shown the engagement of similar structures (Breitenstein et al., 2005;

Maguire & Frith, 2004; Opitz & Friederici, 2003) suggesting that comparable mechanisms may

underlie the processes of language rehabilitation and novel learning in healthy individuals

(Menke et al., 2009; Rijntjes, 2006).

While we do not know the exact mechanisms by which aphasia rehabilitation leads to

functional outcomes, the findings outlined above demonstrate that the mechanisms of recovery

are unlikely to be restricted to language regions alone. Therefore, we aim to use nonverbal

learning in aphasia as a window into learning, proposing that a better understanding of these

mechanisms could be essential in the diagnostic characterization of patients with aphasia.

As touched upon in the introductory chapter, research in other patient populations, such

as Parkinson's disease, Alzheimer's disease, frontotemporal dementia and amnesia, has

emphasized the importance of understanding subtleties of learning ability in patients with brain

damage (Filoteo, Maddox, Ing, et al., 2005; Knowlton & Squire, 1993; Knowlton et al., 1994;

Koenig, Smith, & Grossman, 2006; Koenig, Smith, Moore, Glosser, & Grossman, 2007;

Shohamy, Myers, Grossman, et al., 2004) that we suggest is also essential in aphasia. One of the

seminal studies drawing attention to the impact of instruction method on success with leaming,

conducted by Knowlton et al. (1994), explored the ability of patients with amnesia to learn

stimulus outcome associations between geometric cards and weather conditions. Knowlton et al.

(1994) found that an alternate means of instruction administered through gradual trial-by-trial

feedback, allowed amnesic patients to overcome memory deficits and learn probabilistic card-

condition pairings as well as controls. This study demonstrated that for the case of amnesia,

characteristics of the to-be-leamed material were not the factor confounding learning; rather, it

was the method of instruction and the way in which memory systems were recruited to support

learning that facilitated success.

An exploration into nonverbal learning in aphasia offers the potential to determine

whether patients with aphasia experience language deficits that are supported by an intact
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cognitive foundation for leaming, or whether deficits in language occur in the context of

degraded cognitive architectures to support leaming. If patients learn novel nonverbal

information as well as controls, results will suggest that the observed variability in learning in

aphasia is directly linked to the integrity of the language system and to linguistic demands. If, in

contrast, patients with aphasia show deficits in learning novel nonverbal information, results will

suggest that, in addition to cognitive-linguistic deficits, deficits in the cognitive architecture

supporting general learning affect patients' abilities to learn or relearn language. If the latter is

true, in the long-term, measures of nonverbal learning ability can be included into diagnostic

characterizations of patients; such measures presenting a gateway towards language treatments

that are selected for and/or tailored to individuals.

To this end, in the current experiment we take a nonverbal approach in the exploration of

learning in aphasia and seek to determine whether patients learn novel non-linguistic tasks

similarly to healthy age-matched controls. In addition, we are interested in exploring whether

differences in nonverbal leaming arise following different methods of instruction. For these

purposes, we have developed two tasks in which participants learn to categorize novel animals as

belonging to one of two categories. The two tasks have shared stimuli, and in both tasks,

participants learn to categorize novel animals as belonging to one of two categories. We

compare learning following instruction that is paired associate in nature and instruction

administered through trial-by-trial feedback, paradigms similar in design to those implemented in

aphasia (Breitenstein et al., 2004) and in healthy and brain damaged populations (Knowlton &

Squire, 1993; Knowlton et al., 1994; Poldrack et al., 2001; Zeithamova, Maddox, & Schnyer,

2008).

Research has shown variable engagement of neural structures during paired associate and

feedback-based categorization that interact both competitively and cooperatively (Maddox et al.,

2008; Poldrack & Packard, 2003), however previous experiments suggest that trial-by-trial

feedback-based learning relies heavily on cortico-striatal loops of the basal ganglia and on

nondeclarative memory systems (Poldrack et al., 2001; Seger & Miller, 2010 for review). In

contrast, paired associate leaming in the absence of feedback is likely to have a greater

dependence on medial temporal lobe declarative memory systems (Poldrack et al., 2001). While

the present study does not specifically examine the neural underpinnings of feedback or paired
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associate leaming, the behavioral manifestations following these different learning methods may

be informative towards our understanding of learning in aphasia.

Based on experiments using similar tasks, we predict that healthy controls will learn

categories equally well following both methods of instruction. With respect to patients, we

conceive of two potential outcomes. One hypothesis is that patients with aphasia will

demonstrate non-linguistic category learning that is parallel to learning observed in healthy

controls. Previous studies have demonstrated that patients with aphasia are capable of new

learning (Breitenstein et al., 2004; Freedman & Martin, 2001; Gupta et al., 2006; Kelly &

Armstrong, 2009; Marshall et al., 1992; Tuomiranta et al., 2011), therefore in the context of non-

linguistic material normal learning can be expected. On the other hand, based on research in

populations with amnesia and Parkinson's disease that demonstrate disrupted nonverbal learning

subsequent to brain damage, we hypothesize that patients with aphasia may also have deficits in

nonverbal learning. Learning in aphasia may be attributable to both language and cognitive

processing, such that patients will show impaired category learning relative to healthy controls,

even when learning is non-linguistic. If this is the case, we anticipate that patients with greater

impairments in executive function may show more disordered learning, as some studies have

found executive function to be a predictor of therapy outcomes (Filloteo et al., 2005a, 2005b).

3.2 Materials and Methods

3.2.1 Participants. Twenty patients (ten men) with single left hemisphere strokes (M

61.40, SD = 11.98, ranging from 33.7 - 86.8 years of age) participated in the study. Upon

enrollment, patients had completed between 3 and 21 years of education (M= 14.84, SD = 4.08).

Patients were recruited from a patient pool at the Sargent College of Health and Rehabilitation

Sciences. All patients were premorbidly right handed and were tested at least six months after

the onset of their stroke. At the time of testing, patients had no concomitant medical problems.

Western Aphasia Battery (WAB, Kertesz, 1982) aphasia quotients (AQs) ranged from 24.8 - 98

encompassing Broca's and Wemicke's aphasia types, Conduction, Transcortical motor and

Anomic aphasia. Table 3.1 provides a breakdown of patient demographic information, aphasia

type and aphasia characteristics. One patient was dropped following testing (see results) and is

not included in Table 3.1. Another patient did not fully complete the WAB and therefore could

not be assigned an aphasia type or aphasia quotient.
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Table 3.1
Experiment 1 - Characteristics ofparticipants with aphasia (PWA)

Months
post

Age Gender Education onset
Aphasia

Type Comprehension Attn. Mem. Exec. VS BNT AQ
WNL Sev Mod WNL 0 25

WNL
WNL

Mild
Mild

Mild
Mild
Mild
Mild

WNL

Mild
Mild
Mod
Mild
WNL
WNL
WNL
Mod

Mild

WNL
Sev

Sev
Mild

Sev
Sev

Sev

Mod
WNL

Mod
Sev
Sev

Mod
Mod

WNL
Mod
Sev

Mild

WNL
Mod

WNL
Sev

Sev
Sev

Mild
Mod

WNL

Mild
Mod
Mild

Sev
WNL
WNL
Mod
Mod
Mod

WNL
WNL

WNL
Mild
Mild
Mild
WNL
Mild

WNL

Mild
Mild
Mild
Mod

WNL
WNL
WNL

Sev
Mild

100
7
7

80
13
0
0
2

98
58
58

32
57

78
43

30
83
30

94
41
48
91
68
28
34

98
88
58
61
80
83
68
69
82
74

PWA
34 FPWA 1

PWA 2
PWA 3
PWA 4
PWA 5
PWA 6
PWA 7
PWA 8
PWA 9

PWA 10
PWA 11
PWA 12
PWA 13
PWA 14

PWA 15
PWA 16
PWA 17
PWA 18
PWA 19

50
53
53
61
64
66
70
76
77
87
49
52
57

60
61
64
68
68

F
F

M
M
F
F
M
M
F

M
M
M
F
M
M
F
F

M

14

18
12

16
13
18
18
21
3

16
12
12
11
16
19
16
16
12
19

6
24
25
107
6

18
42
28
15
94

13
162
260

68
27
45

65
28
13

Cond
An.

Wern.

Cond/Wern.
An.
An.
Br.

Wern.

An.
An.

Br.
An.
An.
An.

Cond.
An.

TCM
An.

91
185
116
142
192
143
120
78

200
185
137
175
170
178
168
174
179
74

Note. For participants with aphasia (PWA), composite scores of attention (Attn), memory (Mem), executive functions (Exec) and
visuospatial skills (VS) as obtained with the CLQT, Boston naming test (BNT) scores and aphasia quotients (AQ) are reflected.
Aphasia types are abbreviated as follows: conduction (Cond.), anomic (An.), Wernicke's (Wern.), Broca's (Br.) and transcortical
motor (TCM). WNL indicates scores within normal limits. Italics indicate patients classified as learners during our experiment.
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Table 3.2
Experiment 1 - Characteristics of control (Cn) participants

Control Cnl Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8 Cn9 CnlO Cnl 1 Cn12

Age 33 57 58 57 61 60 61 65 69 70 73 59
Gender F M F F M F F F M M F M

Education 19 16 18 16 21 19 16 12 16 16 16 18
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Thirteen control participants (five men, see Table 3.2) with no known history of

neurological disease, psychiatric disorders or developmental speech, language or learning

disabilities took part in the study (M = 60.18, SD = 10.17, ranging from 32.9 - 72.6 years of

age). One control participant was left-handed. The control group and patient group did not

differ in age or in education level (mean years of education for controls = 17.00, SD = 1.91).

One control participant had to be dropped after testing (see results) and is not included in Table

3.2. All participants provided consent according to Boston University's IRB. Participants

received $5 for every hour of their time.

3.2.2 Stimuli. Stimuli for the experiment were two sets of 1024 cartoon animals

developed by Zeithamova et al. (2008) that vary on ten binary dimensions (neck length, tail

shape, feet, etc.). For each set, one stimulus was selected as prototype A with each other animal

identified in terms of the number of features by which it differed from the prototype. This

difference was defined as an animal's distance from the prototype. In other words, animals at a

distance of three from the prototype all differed from prototype A by three features, and thus had

seven features in common with prototype A. Only one animal differed from prototype A by all

ten features (distance of 10) and was therefore selected as prototype B. In this manner two

category extremes, or prototypes, were established for each stimulus set.

All animals that differed from prototype A by 1 to 4 features were then considered

members of category A. These animals all shared a majority of their features with prototype A,

sharing 90% to 60% of their features with the prototype as distance increased from 1 to 4, and

consequently, sharing 10% to 40% of their features with prototype B. In contrast, those animals

at distances 6 to 9 from prototype A were considered members of category B, as they shared

90% to 60% of their features with prototype B and only 10% to 40% of their features with

prototype A (see Figure 3.1). This established two categories along a continuum, each with an

internal structure related to the percentage of features shared with each of the two prototypes.

Animals were coded with a unique ten-digit string, with binary dimensions each

represented as a 0 or 1. Animal 0000000000 of one stimulus set had a short neck, straight tail,

pointed toes, rounded snout, pointed ears, blue color, pyramidal body, spots, downward facing

head and short legs while animal 1111111111 had a long neck, curly tail, curved feet, pointed

nose, rounded ears, pink color, round body, stripes, upward facing head and long legs.
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Prototype A A:1 A:2 A:3 A:4 5:4 5:3 5:2 B:1 Prototype B
Distance 0 1 2 3 4 6 7 8 9 10

% of features shared with prototype B 4
0 10 20 30 40 60 70 80 90 100

Figure 3.1: Representative animal stimuli. Sample animal stimuli contributed by Zeithamova et at. (2008).
Animals are arranged according to the number of features with which they differ from each prototypical anima. The
number by which an animal differs from each prototype is referred to as its distance from the prototype.

3.3 Design and Procedures

We used a mixed experimental design involving two groups of participants: patients and

controls. Over one to two testing days, each participant completed two category learning tasks,

one with paired-associate instruction and the other with feedback-based instruction. All patient

participants completed the WAB, the Boston Naming Test (BNT; Kaplan, Goodglass, &

Weintraub, 1983) and the Cognitive Linguistic Quick Test (CLQT; Helm-Estabrooks, 2001) in

order to determine severity of aphasia and naming ability as well as to characterize patients'

cognitive strengths and weaknesses.

All testing was conducted in a quiet room located at Boston University with a speech-

language pathologist present to explain tasks and answer questions. At the start of each

experiment, participants were instructed that they would be learning to recognize animals as

belonging to one of two categories. Instructions for the category learning tasks were provided

orally by the clinician with the aid of illustrated pictures. There was no limit placed on the
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duration of instruction so that clinicians could provide sufficient examples for patients to

demonstrate comprehension of the task. Additional directions were provided orally and in

writing at the start of each computerized paradigm. Learning tasks were programmed using E-

Prime 2.0 (Psychology Software Tools, Pittsburgh, PA; www.pstnet.com) and consisted of a ten

minute training phase involving 60 trials followed by a ten minute 72 trial testing phase. All

responses were made through a computer button press. Because many patients with aphasia

have compromised use of their right hand, all participants were instructed to enter responses with

the middle and index fingers of their left hand. Stimulus sets and learning tasks were

counterbalanced across participants.

As previously acknowledged, stimuli for the experiment were developed by Zeithamova

et al. (2008). One of the experiments implemented by Zeithamova et al. (2008) provided the

framework for our feedback-based task described below. The second experimental paradigm,

our paired-associate task, was adapted from Poldrack et al.'s (2001) experiment in which

researchers compared neural activations during paired-associate and feedback-based versions of

the weather prediction task.

3.3.1 Feedback based (FB) training. In the training phase of the FB task, category A

animals and category B animals were randomly presented one at a time on a computer screen.

As each animal appeared on the screen, participants were given 4000 msec to guess to which of

the two categories the animal belonged. Pictures and identifiers in the lower left and right

corners indicated that button presses "A" and "B" corresponded to the two different categories

(see Figure 3.2). After responding with a button press, participants received feedback for 3000

msec telling them the correct category and whether their response was correct or incorrect.

Training was comprised of 60 trials. Participants were trained on 20 animals that differed

from each prototype by 1 to 4 features. Participants were never trained on prototypes. Trained

animals were selected so that each feature appeared an equal number of times (30) during

training. Features that were typical of a category (shared with the prototype) were seen 21 to 24

times associated with that category, in contrast to atypical features which were only associated

with the category 5 to 9 times each. Participants were instructed to try to learn to recognize

animals as belonging to one category or to another without concentrating on one particular

feature. They were told that in the beginning they would be guessing entirely at random, but that

through feedback and practice they would begin to learn to recognize items. A counter in the
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upper right-hand corner of the screen reflected the participants' percentage of correct responses

with each trial. Only participants' first responses were recorded, scored and analyzed.

Following the training phase, participants were tested on their ability to categorize trained and

untrained items, this time receiving no feedback.

Feedback task (FB) Paired-associate task (PA)

_ ?:A VA: A: A;

At B *A BA A

---------- 4s ---------- 3s --- --------- 7s ------- j

Trained on 60 animals that differ from prototypes by 1-4 features. Features of each prototype
associated 20 - 25 times with their category. Prototypes never trained.

Testing phase following both PA and FB instruction

4,-.,-
A +

JA* B* A B I
Im-------- 4s ----------- 3s m--

Tested on 16 animals seen in training, 45 novel members of categories and both
prototypes

Figure 3.2: Structure of paired-associate (PA) and feedback-based (FB) instruction paradigms. Learning tasks both
involved ten minute training phases followed by ten minute testing phases. During PA learning participants were
provided with category labels with each stimulus presentation. During FB Learning, participants had to guess each
animal's category affiliation, receiving feedback telling them whether they were correct or incorrect.

3.3.2 Paired associate (PA) training. Similar to the FB task, category A animals and

category B animals were presented one at a time, however instead of learning through trial-by-

trial feedback, in this paradigm each animal was presented along with a label denoting its

category affiliation. Participants were instructed to press the button that matched the category

affiliation as soon as they saw an animal and affiliation appear on the screen. They were told

that the image would remain on the screen for a fixed number of seconds. Participants were
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instructed to study animals and their category labels with the goal of later recognizing animals as

belonging to one category or to the other. Participants were instructed to pay attention to all of

the characteristics of the animals without focusing in on one single feature.

Animals remained on the screen for 7000 msec, followed by a 1000 msec fixation cross,

matching the total trial time of the FB task. Again, participants were trained on 60 animals that

differed from each prototype by 1 to 4 features and were not included in the FB task, with each

feature appearing an equal number of times. Prototypical animals were not shown. Features that

were typical of a category were seen 20 to 25 times associated with that category, in contrast to

atypical features, which were only associated with the category 5 to 10 times each. Following

the training phase, participants were tested on their ability to categorize both trained and novel

members of the categories.

3.3.3 Testing phases. Short testing phases that followed each training task were

identically structured following PA and FB instruction (see Figure 3.2). Animals were presented

one at a time on the computer screen and participants were given 4000 msec to categorize each

animal as belonging to category "A" or "B". Patients received no feedback related to accuracy.

If in the initial trials of a testing participants took too long to respond or did not respond, a

researcher quietly encouraged them to make a button press reflective of their best guess.

Testing phases immediately followed training and were comprised of 72 trials.

Participants categorized 16 animals that were seen in training, 45 novel members of the

categories and both prototypes. Participants were tested on their categorization of three

repetitions of prototype A and prototype B animals (6 trials), seven instances each of animals

varying from prototypes A and B by 1 to 4 stimulus features (56 trials) and five midline animals

varying from prototypes by 5 features (5 trials). Animals that differed from prototypes by 5

features represent the middle of the spectrum and therefore have no accurate categorization. For

data analysis purposes these animals were coded with an "A" response and participants were

expected to show around 50% "A" response. Data were collected on accuracy and reaction time.

For the current paper, we limit our analyses to accuracy rates.

3.4 Data Analysis

One control participant and one patient participant reported attending to only one feature

during categorization. Review of their data confirmed that responses favored one feature over

others and were therefore dropped.
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In order to ensure that no single feature had been more salient than others in its influence on

responses during categorization paradigms, we completed preliminary analyses of raw data,

examining the frequency with which each feature was categorized with a specific prototype. If

gray color, for example, disproportionately stood out as a salient feature of category B and led

participants to base their categorization on this feature alone, we would expect a greater

percentage of "B" responses for those animals with the gray color feature. If all features were

equivalently salient in their influence on category responses, we would expect features to be

categorized with each prototype an equal number of times. Analyses confirmed that features had

equal salience, the average "B" response for each feature being 54.21%, SD = 2.55. See Figure

3.3 for a plot of percentage of "B" responses by feature for each stimulus set.

Percentage of "B" responses
feature for stimulus set I

880:. * 8 .

Percentage of "B" responses
feature for stimulus set 2
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*Prototype A

0 Prototype B

Feature

Figure 3.3: Analysis of category responses as a factor of feature dimension. Responses close to 50% represent
equally salient feature dimensions. Prototypes for stimulus set 1 (upper plot) and stimulus set 2 (lower plot) shown.
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Data included in further analyses were then interpreted in terms of participant ability to learn

categories following the two training methods. Responses were first converted from percent

accuracy score at each distance into a percent "B" response score (%BResp) at each distance.

Due to the continuous, probabilistic feature structure of the two categories, we hypothesized that

successful category learning would reflect internal category structure with accurate %BResp

predicted to increase by a factor of 10% with each incremental distance increase from prototype

A. As described in Knowlton et al. (1994), in probabilistic learning tasks, participants have a

tendency to "probability match" meaning that responses will reflect the probability with which

stimulus-response associations are reinforced during learning. Applied to our task, a probability

match for an animal at distance 1 is hypothesized to correspond to a 10%BResp (i.e. 90%

categorization with category A and 10% categorization with category B) since animals at

distance 1 share 10% of their features with prototype B. Learning of our categories, therefore, is

predicted to correspond to a linearly increasing %BResp with a slope of 10 (see Figure 3.4 for

model prediction). Chance response would result in a 50%BResp at each distance,

corresponding to a linear slope of zero.

Model rediction
100-
90
80
70

.60
cc 50

040
$ 30

20
10

0

0 1 2 3 4 5 6 7 8 910

Distance

Figure 3.4: Predicted percent "B" responses (%BResp) as a function of distance. Based on the hypothesized
probabilistic relationship between %Bresp and distance, successful category learning is thought to correspond to
%BResp that increases linearly by a factor of 10 (slope of 10).
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Overall performance was analyzed using a mixed model analysis of variance (ANOVA),

with %BResp at each distance (11) and task (2 - PA, FB) as within-subject factors, and Group

(2-controls, patients) as the between-subject factor. In this analysis, if overall results match our

predicted model, we expect to see a significant main effect of %BResp at each distance

corresponding to increasing %BResp scores with increasing ordinal distance. A significant main

effect of task would suggest that average results were higher following one method of instruction

over another. Similarly, higher overall scores for one group over another will result in a main

effect of group. Our question of interest is to examine whether the pattern of change in %BResp

with increasing distance differs between groups. Different patterns of change in %BResp at each

distance between patients and controls (i.e. controls show increasing %BResp with increasing

distance while patients show steady %BResp with increasing distance) will result in a significant

group x %BResp interaction. If there is a significant interaction between task and %BResp at

each distance, it would indicate that one method of instruction, FB or PA, is superior to the other.

We also conducted polynomial trend analyses at the overall participant, group and group x

task levels in order to test our model linear prediction. Finally, we investigated individual

results, calculating a linear correlation coefficient for each individual's data between %BResp at

each distance and the ordinal variable distance. Individual results were tested for linearity using

a method in which significance levels of regressions were compared when the independent

variable was squared (quadratic) or cubed vs. non-squared. Results were considered linear when

the non-squared regression reached significance with an alpha value <.05 and the significance of

the squared term exceeded this level (Cox & Wermuth, 1994; Gasdal, 2012). We propose that if

linear trends are maintained in the data, regression lines can be fitted to individual results and

scores reduced to slopes; a slope of 10 representing ideal learning as described above.

3.5 Results

3.5.1 Group results. Our 11 x 2 x 2 mixed-model ANOVA with a Huyhn-Felt

correction yielded a significant main effect of %BResp at each distance, F(4.39 Huyhn-Felt corrected df,

290 ) = 30.39, p < .00, matching our prediction that %BResp changed as stimulus distance from

prototype A increased. There was no significant main effect of task, F(1, 29) = 2.83, p = .10,

proposing that overall performance was the same for both tasks. Mean accuracy following FB

instruction was 51.43% (SD = 1.15) compared with a mean accuracy following PA instruction of
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48.89% (SD =.98). There was also no main effect of group, F(1, 29) = .061,p = .81, with mean

accuracy rates of 50.35% (SD = 1.18) for controls and 49.97% (SD = .94) for patient

participants. The mixed-model ANOVA yielded a significant interaction for group x %BResp at

each distance, F(4.39 Huyhn-Felt corrected df,2 9 0) = 14.21, p < .00, demonstrating that patients and

controls showed different patterns of learning. The interaction between task x %BResp at each

distance was not significant, F(4.04 Huyhn-Felt corrected df, 290) = .97, p = .42, demonstrating that

performance did not change based on method of instruction.

The polynomial trend analysis conducted over all participant results produced a

statistically significant linear trend for distance, F(1, 30) = 63.17, p < .001. No higher order

trends reached significance. At the group level, polynomial trend analysis confirmed a linear

relationship between %BResp and distance for the control group, F(1, 11) = 154.60, p < .001.

All higher order trends were non-significant. A significant linear trend was maintained in the

%BResp at each distance x task comparison, F(1,11) = 5.18, p = .04, with no significant higher

order trends. A linear trend was maintained for the PA task F(1, 11) = 634.17, p < .001, as well

as for the FB task, F(1, 11) = 33.29, p < .001, with non-significant higher order trends. Thus,

control group results support our hypothesis that learning is reflected through a linearly

increasing %BResp with increasing distance. In addition, a linear increase was observed

following both FB and PA instruction.
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Figure 3.5: Mean scores of learning following FB and PA instruction. Plots reflect mean %BResp and standard
deviations as a function of distance for control (left) and patients (right). Red lines represent predicted measures

demonstrating successful learning of category structure.
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For the patient group, neither linear nor quadratic trends reached significance, F(1, 18) =
3.34,p = 0.08; F(1,18) = 1.57,p = .23, respectively. Instead, results significantly matched third

and fourth order trends, F(1, 18) = 4.29, p = .05; F(1, 18 ) = 7.61, p = .01. Polynomial trend

analysis of %BResp at each distance x task did not yield any significant first, second or third

order trends. Control and patient results are summarized in Figure 3.5, in plots of mean accuracy

as a function of distance, in which a linearly increasing trend is apparent in the control group,
while absent from patient results.

3.5.2 Individual results. Control group results matched our prediction of linearly

increasing %BResp as a function of distance such that at the individual level, successful learning

was defined as a significant positive correlation between %BResp and ordinal distance that also

satisfied our tests of linearity.

Based on these criteria, all twelve controls demonstrated successful learning of our

category tasks, with 10/12 controls showing successful learning following both methods of

instruction. One additional control showed successful learning following PA instruction and FB

scores that approached significance (p = .06). One control participant showed successful

learning following PA instruction, but not FB instruction (see Table 3.3).

Among our patient group, only eleven out of nineteen patients had learning scores that

satisfied our criteria for learning following at least one method of instruction (learners: PWA 1-

11). In contrast, for the remaining eight patients, there were no significant positive correlations

between %BResp and distance, and pattems of increase of %BResp did not follow linear trends,

suggesting that these patients did not demonstrate category learning following either method of

instruction (non-learners).

Closer examination of the eleven learners revealed that three were able to learn following

FB instruction, but not PA instruction (PWA 1, PWA 3, PWA 11); four learned following PA

instruction but not FB instruction (PWA 5, PWA 6, PWA 7, PWA 9), and three patients

demonstrated control-like behavior, learning categories following both PA and FB instruction

(PWA 2, PWA 4, PWA 8, see Table 3.3). One patient, PWA10, learned following PA

instruction and had FB scores which approached significance (p = .07). Four patient learners,

two of whom were classified as FB learners (PWA 1 and PWA 3) and two PA learners (PWA 6

and PWA 7) showed a pattern in which correlations between %BResp and distance were linear,
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and coefficients approached negative one (see Figure 3.6 for a representative sample of patient

result plots).

Table 3.3
Individual control and patient results on PA and FB category learning tasks

PA task FB task

Task
ID Slope R p term p Slope R p term p Learned

Cn1 9.6 1.0 ***<.001 1.0 0.54 10.5 1.0 ***<.001 1.0 0.11 PA & FB

Cn2 9.5 1.0 ***<.001 1.0 0.08 11.6 1.0 ***<.001 1.0 0.75 PA & FB

Cn3 9.2 1.0 ***<.001 1.0 *0.02 8.7 1.0 ***<.001 1.0 0.89 PA & FB

Cn4 8.7 0.9 ***<.001 0.9 0.36 6.6 0.8 **<.01 0.8 0.48 PA & FB

Cn5 11.8 0.9 ***<.001 0.9 0.46 4.6 0.6 0.06 0.6 0.83 PA only

Cn6 8.7 0.9 ***<.001 0.9 0.53 9.7 0.9 ***<.001 0.9 0.97 PA & FB

Cn7 11.5 1.0 ***<.001 1.0 0.47 9.0 0.9 ***<.001 0.9 0.83 PA & FB

Cn8 8.1 0.9 **<.01 0.9 0.71 -3.6 -0.5 0.12 0.5 0.90 PA only

Cn9 9.9 0.9 ***<.001 1.0 0.05 3.1 0.6 *0.04 0.7 0.40 PA & FB

Cn1O 10.6 1.0 ***<.001 1.0 1.00 8.0 0.9 **<.0l 0.9 *0.04 PA & FB

Cn1 1 8.4 0.9 **<.01 0.9 0.08 7.7 0.9 ***<.001 0.9 0.89 PA & FB

Cn12 7.5 0.8 **<.0[ 0.9 0.31 5.9 0.7 *0.01 0.7 0.96 PA & FB

PWA 1 -9.1 -0.9 **<.01 0.9 0.71 10.3 1.0 **<.01 1.0 0.51 FB only

PWA 2 8.3 0.9 **<.01 0.9 0.17 9.5 0.9 **<.01 0.9 0.72 PA & FB

PWA 3 -9.5 -1.0 **<.0l 1.0 0.76 7.7 0.9 **<.0[ 0.9 0.84 FB

PWA 4 8.0 0.9 **<.01 0.9 0.30 9.5 0.9 **<.01 1.0 0.33 PA & FB

PWA 5 9.6 0.9 **<.01 0.9 0.53 -1.9 -0.3 0.38 0.5 0.25 PA only

PWA 6 5.2 0.7 *0.01 0.8 0.18 -7.3 -0.8 **<.01 0.8 0.91 PA only

PWA 7 9.8 0.9 **<.01 0.9 0.74 -9.7 -0.9 **<.01 0.9 0.41 PA only

PWA 8 6.1 0.8 **<.01 0.8 0.98 67 0.7 *0.02 0.8 0.07 PA & FB

PWA 9 4.9 0.7 *0.02 0.7 0.77 2.0 0.3 0.39 0.5 0.17 PA only

PWA 10 7.8 0.8 **<.01 0.8 0.59 3.9 0.6 0.07 0.6 0.48 PA only

PWA 11 -0.2 0.0 0.92 0.2 0.59 8.8 0.9 **<.01 0.9 0.72 FB only

PWA 12 -2.5 -0.3 0.35 0.3 0.79 -3.3 -0.5 0.11 0.7 0.05 none

PWA 13 1.9 0.3 0.42 0.3 0.76 -0.5 -0.1 0.84 0.5 0.11 none

PWA 14 -4.4 0.6 0.06 0.6 0.50 -0.8 0.1 0.72 0.2 0.63 none

PWA 15 -1.0 -0.2 0.61 0.3 0.56 2.3 0.3 0.32 0.7 *0.04 none

PWA 16 3.4 0.5 0.11 0.6 0.41 -1.2 -0.2 0.65 0.6 0.10 none

PWA 17 -2.7 -0.3 0.33 0.6 0.10 2.6 0.5 0.13 0.5 0.98 none

PWA 18 1.9 0.3 0.31 0.4 0.62 -1.2 -0.2 0.54 0.3 0.55 none

PWA 19 -0.8 0.0 0.77 0.8 0.67 -0.5 -0.1 0.83 0.2 0.55 none
* p <.05 ** p <.01 *** p <.001
Note. Slope values in italics indicate best slope of learning identified for each patient.
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We suggest that this might reflect some learning of category structure, as %BResp

increased linearly by a factor of negative ten, however that categories were reversed. For this

reason we remain conservative in our conclusions regarding comparisons between instruction

methods. We do, however, confidently report that learning in patients with aphasia was different

from learning in healthy controls, with only 60% of our patient participants demonstrating

successful nonverbal category learning. Furthermore, the patterns of learning observed in the

patients characterized as learners differed from the patterns of learning observed in non-learners.

While those patients classified as learners showed categorical learning following at least one

method of instruction as evidence by significant positive correlations between distance and

%BResp as a function of distance, the eight patients who we classified as non-leamers did not

show significant positive or negative correlations between %BResp and distance following either

method of instruction.
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Figure 3.6: Representative sample of individual patient results. Results are presented for nine participants, grouped
by learner type. Dark lines reflect FB learning and gray lines represent PA learning.
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In order to interpret results relative to patient characteristics such as months post onset,

aphasia type and severity to identify any predictors of learning ability, we aimed to reduce each

individual patient's results into a single score. Control results demonstrated linear trends in

22/24 tests (12 participants, two tasks) and thus confirmed that for each task, %BResp at each

distance was linearly related to the dependent variable and could therefore be reduced to a single

score. Supported by these findings, we reduced each patient's data to two scores: one for the PA

task and one for the FB task. A regression line was fitted to individual results, and slopes of

regression lines were recorded. Slopes were assigned as learning scores, and were used to

conduct further analyses considering the relationship between learning ability and patient profile,

language and cognitive function as characterized by standardized tests. Scores for patients who

did not show successful learning of our task and whose results therefore violated the assumption

of linearity were still reduced. We confirmed that slopes for patient learners were closer to ten

than the slopes of those patients who did not demonstrate successful learning (see Figure 3.7 for

patient slope scores).

Patient participant slopes of leaming

15

10~ _

0 6 PA

0-1 FB

Participant

Figure 3.7: Learning slopes for each patient participant. FB scores are presented in black, PA scores in fray.

Slopes closest to positive ten represent ideal learning of categories.

For subsequent interpretations of learning and patient profile we selected a "best slope"

for each patient, this slope being the slope that most closely approached positive ten whether

instruction was PA or FB based (see italicized values in Table 3.3). Pearson correlations of
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learning slopes with age and years of education were completed to explore the relationship

between category learning and aphasia characteristics. We conducted additional correlations of

learning slopes with aphasia quotients (AQs), raw scores on the BNT and CLQT subtests of

memory, attention, executive functions and visuospatial skills.

Bivariate correlations between best slope and patient age, months post onset of stroke and

years of education were non-significant. In addition, correlations between best slope of learning

and BNT scores, scores of attention, scores of memory, executive function, visuospatial skills

and AQs were not significant (see Figure 3.8). Visual inspection of the data demonstrated that

three clusters arose among participants with respect to AQ scores. The first cluster was made up

of patients who produced high scores of learning on our task and also had the most severe

aphasia as characterized by AQ scores. The second cluster was comprised of patients who

produced low scores of learning and had AQ scores in the middle range of severity, while the

third cluster was made up of patients with high scores of leaming and the highest AQ scores.
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Figure 3.8: Pearson correlations between patient best slopes of learning and cognitive-linguistic measures.
Correlations between best slope and AQ, BNT and scores of memory, executive function, attention and visuospatial
skills as measured by the CLQT are presented. Visual inspection of the data demonstrated the presence of three
clusters related to AQ scores (upper left plot).
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3.6 Discussion

The aim of the first experiment of this thesis was to explore how the nonlinguistic

category learning ability of individuals with aphasia compares with the learning ability of non-

aphasic, age-matched controls. As hypothesized, we found that control participants were able to

learn to categorize animals following both FB and PA instruction. Research exploring category

learning has proposed that the process of recognizing and grouping patterns is essential in

enabling our fast recognition of objects. Category learning requires individuals to process and

detect commonalities across stimuli, accruing information about a series that is then organized

within a framework, a process very different from single item recall or recollection (Knowlton &

Squire, 1993; Seger & Miller, 2010). The current results add to the body of work that

demonstrates how healthy individuals have a rapid ability to recognize and group patterns even

in the absence of explicit instruction.

For the patient group, we predicted that patients with aphasia would demonstrate one of

two outcomes. We hypothesized that if language deficits arise within the context of a preserved

architecture to support learning, patients would demonstrate preserved non-linguistic learning.

On the other hand, if language deficits in aphasia are accompanied by deficits in general

cognition subsequent to brain damage, we hypothesized that patients would show impaired

learning of categories. In our experiment, only eleven out of nineteen patients produced category

learning results that were similar to controls following at least one method of task instruction.

For 60% of the patients with aphasia who were tested, therefore, results suggest that

general learning is supported, results further implying preservation of the conceptual knowledge

that provides the basis for categorization (Chertkow et al., 1997) and of categorization ability

(Koenig et al., 2006; Koenig et al., 2007). We do note, however, that among patients who

learned, eight showed learning following one method of instruction but not the other, a pattern

not observed in healthy age-matched controls. For the remaining 40% of patient participants,

impairment of general learning mechanisms or of general categorization cannot be ruled out.

Together, these results show for the first time that the nature of learning new category

information is impaired in stroke-related aphasia.

Concerning different methods of instruction, each posing different demands, PA and FB

tasks may have presented distinct cognitive challenges for each individual patient. As noted in

the introduction, the demands of feedback-based and paired-associate learning are different,
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feedback-based learning requiring active hypothesis generation and feedback monitoring, and

typically engages corticostriatal loops; while paired-associate learning depends on the formation

of associations between stimuli and outcomes through observation, and likely has a high

dependence on medial temporal lobe memory systems (Poldrack et al., 2001). Differences likely

impacted learning strategies, attention, monitoring and motivation of patients with aphasia while

completing tasks. In spite of this, results do not suggest that one method of instruction over

another provided a significant advantage for patients. Previous studies in patients with amnesia,

Parkinson's Disease, Alzheimer's disease and frontotemporal dementia identified methods of

instruction that significantly benefited the population tested (Filoteo et al., 2005; Knowlton et al.,

1994; Koenig et al., 2006; Koenig et al., 2007; Shohamy et al., 2004) a result that was not

produced in our patients with aphasia with these particular tasks and instruction methods.

For those patients who produced results with significant, but negatively correlated

%Bresp with distance, we conceive that impairments at the level of response selection and

execution may have played a role. Seger & Miller (2010) draw attention to the demands posed

on response selection and execution during category learning, pointing to the required

coordination of cognitive and motor control. We speculate that for patients who showed

significant negative correlations in their results, pattern abstraction systems may be intact with

deficits arising at the level of response encoding and execution. Research has confirmed that

task variables such as stimulus familiarity, complexity, modality, task demands, learning

situation and response mechanism contribute to distinct neural recruitment (Poldrack et al., 2001;

Seger & Miller, 2010; Squire, Stark, & Clark, 2004; Zeithamova et al., 2008). Task demands

have behavioral and neural implications and likely elicited damaged neural structures in our

patient participants to varying degrees. Even when some learning is observed, as it was in eleven

of our patients with aphasia, patients showed less consistency of learning under contrasting

instruction methods, meriting further study.

Eight patients with aphasia included in the current experiment showed no learning of

categorical structure following either method of instruction. In our experiment, we deemed these

eight patients to be non-learners since they were unable to learn categories relative to controls, as

well as relative to other patients with aphasia. We hypothesize that for these patient non-

learners, learning ability is present but reduced. The current stimuli contained ten variable

features and posed high processing demands. Furthermore, category boundaries were based on
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probabilistic associations of features with prototypes that are continuous, a design which can

pose additional challenges.

Previous research has suggested that categorization of discrete stimuli can rely on

automatic recognition, while continuous or complex stimuli require pattern abstraction, rule-use

and feature mapping in addition to hypothesis testing (Davis et al., 2009; Love & Markman,

2003; Maddox et al., 2008; Schyns, Goldstone, & Thibaut, 1998). The pace of learning and

limited trials may have provided insufficient opportunities to develop appropriate hypotheses and

strategies such that some participants might have benefitted from additional training trials.

While patient learners were able to overcome these complexities within the constraints of the

current methods, patient non-leamers may have learning systems that require additional trials,

simplified stimuli, or alternate instruction methods.

Prior studies have also pointed to attention deficits in stroke (Marshall, Grinnell, Heisel,

Newall, & Hunt, 1997; McDowd, Filion, Pohl, Richards, & Stiers, 2003) and many non-learners

may have experienced difficulty selectively attending to appropriate stimulus features,

particularly faced with complex stimuli with multiple dimensions. It should, however, be noted

that learning ability was unpredictable by standardized scores of attention; three of eight non-

learners scoring within normal limits on the CLQT subtests of attention. We propose that the

divergence of learning ability observed in the group of patients tested relative to controls further

emphasizes the need to accurately characterize learning. Many patients likely have deficits that

extend beyond language and accordingly require additional support and strategies in the setting

of learning. These patients may either lack some of the cognitive support systems necessary for

learning, or have compromised neural systems that require additional reinforcement and focus to

optimally engage neural systems during learning.

With respect to patient characteristics, language profile and learning ability, results

suggest that learning ability is unrelated to demographic variables such as age, months post onset

of stroke and years of education. We had predicted that learning ability might be predicted by

scores of executive function. Instead, learning scores did not correlate with any of the

standardized measures obtained (AQ, BNT, or CLQT scores of memory, executive function,

attention and visuospatial skills). These findings are consistent with previous studies that have

failed to find a predictable relationship between verbal impairments or demographic variables

and skills in nonverbal domains (Chertkow et al., 1997; Helm-Estabrooks, 2002). Findings
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further suggest that category learning ability is distinct from skills measured by the CLQT. In

the present study we aimed to explore systems that are distinct from those described through

existing cognitive and linguistic tests, such that experimental results which are not fully

explained by standardized assessments is not surprising.

We did note the interesting finding that upon inspection of the data, three clusters

surfaced among participants based on AQs. Those patients with the lowest and with the highest

AQs were most successful performing our task, while patients with AQs in the middle range

were not successful at learning categories. In other words, patients with the greatest level of

language impairment performed better on our learning tasks than many patients with milder

deficits. Germane to this finding is the fact that standardized measures provided by the WAB

and CLQT are highly language dependent. The WAB AQ is derived from measures of

spontaneous speech, verbal comprehension, repetition, naming and word finding, all measures

that are highly verbal. Based on our results, we posit that some patients with severely impaired

language may actually have cognitive learning systems that are largely intact yet often

undervalued since so many cognitive scores are dependent on language ability. The CLQT does

include measures that are nonverbal such as symbol cancellation, clock drawing, symbol trails,

design memory, mazes and design generation; however verbal tests requiring patients to express

personal facts, retell stories, and generate names weigh heavily on composite scores of memory

and attention.

Currently accepted standardized tests capture many factors that are critical to the

assessment of aphasia, however it is likely that they do not fully encompass the affected systems

in stroke. Results from our first experiment support the hypothesis that an additional metric of

nonverbal leaming ability is missing in the characterization of aphasia. As applied to a clinical

setting, we propose that those patients who appear to have higher-level language skills do not

necessarily present with the most intact cognitive or pattern abstraction systems. These skills are

likely affected to different degrees within individuals with aphasia, contributing to our current

inefficiency at predicting outcomes.
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4. Experiment 2. Nonlinguistic learning in aphasia: Effects of

training method and stimulus characteristics 2

Abstract
The purpose of Experiment 2 was to further our exploration of nonlinguistic learning ability

in patients with aphasia, examining the impact of stimulus typicality and feedback on success
with learning. Eighteen patients with aphasia and eight healthy controls participated in this
experiment. All participants completed four computerized, non-linguistic category-learning
tasks. We continued to probe learning ability under two methods of instruction: feedback-based
(FB) and paired-associate (PA). We also examined the impact of task complexity on learning
ability, comparing two stimulus conditions: typical (Typ) and atypical (Atyp). Performance was
compared between groups and across conditions. Results demonstrated that healthy controls
continued to successfully learn categories under all conditions. For our patients with aphasia,
two patterns of performance arose. One subgroup of patients was able to maintain learning
across task manipulations and conditions. The other subgroup of patients demonstrated a
sensitivity to task complexity, learning successfully only in the typical training conditions.
Results further support the hypothesis that impairments of general learning are present in
aphasia. Some patients demonstrated the ability to extract category information under complex
training conditions, while others learned only under conditions that were simplified and
emphasized salient category features. Overall, the typical training condition facilitated learning
for all participants. Findings have implications for therapy, which are discussed.

4.1 Introduction

In our first experiment exploring nonlinguistic category learning in aphasia, results

demonstrated that different profiles of learning arose between healthy controls and patients with

aphasia. Only eleven out of nineteen patients showed learning of categories compared with

across-the-board learning by control participants. Interestingly, measures of patient cognitive or

linguistic abilities did not correlate with performance on learning tasks.

Many individuals with aphasia were found to be unable to learn following either FB or PA

instruction. Results raised the question of whether such individuals could learn under different

2 Portions of this chapter were originally published as Vallila-Rohter, S., & Kiran, S. (2013). Nonlinguistic learning
in individuals with aphasia: Effects of training method and stimulus characteristics. American Journal ofSpeech
Language Pathology, 22, S426-S437.
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learning conditions or with additional trials. Thus, in the next phase of this thesis, we furthered

our investigation of nonlinguistic learning, this time examining whether manipulations to

stimulus complexity impacted learning in controls and individuals with aphasia.

Complexity has been the focus of considerable research in aphasia rehabilitation. Studies in

aphasia have noted generalization from complex to less complex related structures, following

both syntactic (Thompson, 2001, 2006; Thompson, Ballard, & Shapiro, 1998; Thompson,

Shapiro, & Roberts, 1993; Thompson et al., 1997; Thompson et al., 2003) and semantic therapy

(Kiran, 2007, 2008; Kiran, Sandberg, & Sebastian, 2011; Kiran & Thompson, 2003a, 2003b).

This observation led to the formulation of the complexity account of treatment efficacy (CATE)

hypothesis (Thompson et al., 2003), a hypothesis that draws attention to the potential impact of

stimulus complexity on treatment outcomes and generalization patterns in aphasia.

Motivation for the development of CATE came from results obtained through aphasia

treatment studies as well as from connectionist principles of generalization. In his influential

paper, Plaut (1996) used connectionist modeling to explore patterns of relearning after damage.

One experiment, focused on the impact of training typical or atypical words produced two major

findings. First, the retraining simulation showed better learning overall of typical words than of

atypical words. Second, and critical to the CATE hypothesis, training on atypical words resulted

in substantial generalization to untrained typical words. Plaut posited that training of atypical

exemplars highlighted feature variability within a category, simultaneously providing

information about the breadth of categories and of central category tendencies. This breadth of

information was lacking when models were trained only on typical words and resulted in limited

generalization.

The goal of the current experiment was to better understand nonlinguistic category learning

ability in aphasia, exploring the impacts of both stimulus characteristics and instruction method

on patient success with learning. We continue to examine nonlinguistic leaming ability in

patients with aphasia and in healthy controls, comparing feedback-based instruction and paired

associate instruction. Within these two conditions, we explore the impact of stimulus

characteristics, comparing one condition in which training is designed to emphasize salient

category features (typical training); and another condition in which training highlights feature

variability within categories (atypical training). We will further explore whether demographic
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variables or standardized measures of cognitive-linguistic ability demonstrate a predictive

relationship with patient scores of leaming.

We hypothesize that typical training (Typ) will result in better overall learning rates than

atypical training (Atyp). Based on connectionist theories, we propose that following training in

the Atyp condition, participants will show generalization of leaming to typical items. We

hypothesize that participants may learn the Atyp condition better under feedback conditions, as

research has suggested that implicit systems sensitive to feedback are better suited for complex

category learning that requires information integration (Ashby et al., 2002).

4.2 Materials and Methods

4.2.1 Participants. Eighteen patients (ten men) with aphasia subsequent to single left

hemisphere stroke participated in this experiment. All of the patients included in this experiment

were also required to complete Experiment 1. The mean age of participants was 61.32, SD =

12.17 (ranging from 33.7 to 77.2 years) having completed an average of 15.83 years of

education, SD = 2.92 (ranging from 11 to 19 years, see Table 4.1). Patients were tested at least

six months after the onset of their stroke and had degrees of severity of aphasia that ranged from

mild to severe at the time of testing, as determined by WAB (Kertesz, 1982) aphasia quotients

(AQ, AQs from 24.8 to 98). Our patient population represented a heterogeneous sample

including patients with Conduction, Broca's, Wernicke's, Transcortical Motor and Anomic

aphasia, classifications determined by the WAB. All patients were premorbidly right handed and

were medically and neurologically stable at the time of testing. One patient participant dropped

out of the study prior to completing our diagnostic test battery and therefore is missing measures

of cognitive-linguistic ability and was not assigned an aphasia type.

Eight non-aphasic control participants (three men) were also recruited to participate in

this study. Similar to our patient group, all of these control participants also completed

Experiment 1. Participants had no known history of neurological disease, psychiatric disorders

or developmental speech, language or leaming abilities. The mean age of participants was 62.87,

SD = 6.58 (ranging from 57.2 to 72.6 years) having completed an average of 16.5 years of

education, SD = 1.03 (ranging from 16 to 18 years, see Table 4.1). One control participant, Cn

4, was left-handed. We were most interested in patient patterns of learning and thus included

only a small group of similarly aged healthy controls to serve as a baseline.
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Table 4.1.
Experiment 2 - Participant information for controls (Cn) and participants with aphasia (PWA)

ID Age Gender Ed. MPO Aphasia
Type

Comp. Attn. Mem. Exec. VS BNT AQ

PWA 1 34 F 14 6 Con.
PWA 2 50 F 18 24 An.

PWA 3 53 F 12 25 Wern.

PWA 4 53 M 16 107 Won./
Wern.

PWA 5 61 M 13 6 An.
PWA 6 64 F 18 18 An.
PWA 7 66 F 18 41 Bro.

PWA 8 70 M 21 27 Wem.

PWA 9 77 F 16 94 An.

PWA 10 87 M 12 13 An.

PWA 11 52 M 11 260 An.

PWA 12 60 M 19 26 An.
PWA 13 61 M 16 45 Con.
PWA 14 64 F 16 65 An.

PWA 15 67 F 12 28 TCM

PWA 16 68 M 19 13 An.

PWA 17 48 M 16 86
PWA 18 72 M 18 15 Con.

Cnl 58 F 18

Cn2 58 F 18

91
185
116

WNL
WNL
WNL

Sev

WNL
Sev

Mod

WNL
Mod

WNL
WNL
WNL

0
100
7

142 Mild Sev WNL WNL 7 48

192 Mild Mild Sev Mild 80
143 Mild Sev Sev Mild 13
120 Mild Sev Sev Mild 0

78 Mild Sev Mild WNL 0
200 WNL WNL WNL WNL 98

185 Mild Mod Mild Mild 58
175 Mod Sev Mild Mild 32
178 WNL Mod WNL WNL 78

168 WNL WNL WNL WNL 43

174 WNL Mod Mod WNL 30
179 Mod Sev Mod Sev 83
74.3 Mild Mild Mod Mild 30

82

139 WNL Mild WNL WNL 85

Cn3 57 F 16
Cn4 60 F 16

Cn5 69 M 16
Cn6 70 M 18

Cn7 73 F 16

Cn8 59 M 16
Note: Table of participants, age, gender, education (Ed.), months post onset of stroke (MPO), aphasia
type, comprehension as determined by the WAB, attention (Att.), memory (Mem.), executive functions
(Exec.) and visuospatial skills (Visusopatial) as determined by the cognitive linguistic quick test (CLQT).
CLQT scores are within normal limits (WNL), mild, moderate (Mod) or severe (Sev). Scores are
provided for the BNT, and AQ is a patient's aphasia quotient, an indicator of aphasia severity, higher
scores representing lower degrees of impairment. Aphasia types are abbreviated as follows: Conduction
(Con.), Anomic (An.), Wernicke's (Wern.), Broca's (Bro.) and Transcortical Motor (TCM).
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4.2.2 Stimuli. Stimuli for the current study were the same as those included in

Experiment 1 and described in section 3.2.2. For this experiment, within a category, animals that

had a high feature overlap with the prototype, meaning that they had eight to nine features in

common with the prototype (80% to 90% feature overlap) were considered typical category

members. Animals that matched the prototype's features by only six to seven features (60% to

70% feature overlap) were considered atypical category members (see Figure 4.1).

Typical Atypica Typical

42V

A: $

Distance 0 1 2 3
% of feature overlap with prototype B

0 10 20 30

6 7 8 9

B:

10

40 60 70 80 90 100

Figure 4.1: Typical and atypical animals. Typical animals share 80% to 90% of their features with prototypes.

Atypical animals share 60% to 70% of their features with prototypes.

4.3 Design and Procedures.

All participants completed category learning tasks for which instruction method was either

feedback based (FB) or paired associate (PA) with training items that were either typical (Typ)

category members or atypical (Atyp) category members. Combining these task manipulations,

four conditions were established: FB Typ, FB Atyp, PA Typ, PA Atyp. Each category-learning

paradigm consisted of a ten minute training phase followed by a ten minute testing phase and is

described in further detail below. As noted above, all participants also completed baseline FB
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and PA tasks as part of Experiment 1. Participants with aphasia completed the BNT (Kaplan,
Goodglass, & Weintraub, 2001) and the CLQT (Helm-Estabrooks, 2001), standardized

cognitive-linguistic assessments.

Stimulus sets and leaming tasks were counterbalanced across participants, and paradigms

were built such that no animal was repeatedly presented across paradigms (see Figure 4.2 for

possible sequence of tests). At the start of testing, a speech language pathologist used illustrated

pictures to explain tasks to participants. Participants were told that they would be completing

multiple paradigms, each requiring them to learn to recognize animals as belonging to one of two

families. They were informed that each task would have a similar overall structure, but that each

was unique.

Experiment 1 Experiment 2

FB Baseline PA Baseline PA Typical PAAtypical FB Typical FB Atypical
Stimulus set 1 Stimulus set 2 Stimulus set 1 Stimulus set 2 Stimulus set 2 Stimulus set 1
Prototype 1 Prototype 2 Prototype 2 Prototype 1 Prototype 2 Prototype 1- - 0- -

Figure 4.2: Sample sequence of testing. All participants completed baseline tasks (Experiment 1) followed by the
completion of four additional category learning tasks. Task instruction, typicality, stimulus set and prototype were
counterbalanced across participants.

Overall methods, total number of trials and timing for FB and PA tasks were maintained

from Experiment 1. Again, for FB conditions, participants were required to guess each animal's

affiliation and received feedback after each trial. In PA learning, animals were presented one at

a time with a label denoting their category affiliation.

Within these parallel task structures, we constructed two training conditions: typical

(Typ) and atypical (Atyp). Recall that stimuli in each category were grouped into typical

animals (animals that had an 80% to 90% feature overlap with the prototype) and atypical

animals (60% to 70% overlap with the prototype). Under typical training conditions, all 60

stimulus animals presented in training were typical to categories. Participants therefore saw each

feature associated 24 to 30 times with one category and only 3 to 6 times with the opposite

category. This condition was created in order to emphasize typical category features, increasing

their salience through training.
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In the atypical condition, overall task structure was maintained, the only manipulation

being that the 60 stimulus animals presented in training were all atypical to categories. In this

condition, participants saw features associated 15 to 21 times with one category and 9 to 15

times with the opposite category. Therefore, the atypical training condition highlighted the

feature variability of categories. These paradigms are distinct from FB and PA conditions of

Experiment 1, as the training phase for Experiment 1 included both typical and atypical animals.

As in Experiment 1, all training paradigms were followed by a 72-trial testing phase.

Testing phases included prototypes, typical and atypical items. We were interested in examining

participant abilities to learn not only animals within the training group to which they were

exposed in training (typical or atypical), but whether learning generalized, such that participants

showed feature matching of their responses across category items. Data were collected on

accuracy and reaction time, though at this time only accuracy data are reported and analyzed.

4.4 Data Analysis

Similar to Experiment 1, mean accuracy scores at each distance from prototype A were

converted into a %BResp score and responses were examined as a function of distance from

prototype A. Once scores were converted to %BResp at each distance, we analyzed overall

performance using a mixed model analysis of variance (ANOVA) with typicality (2 - Typ, Atyp)

and instruction method (2 - FB, PA) as within-subject factors, and group (2 - controls, patients)

as the between-subject factor. Main effects of group, typicality or instruction method would

demonstrate that group or task manipulations impacted performance.

Next, we examined individual participant results to determine whether %BResp scores

did, in fact, match the probability of feature overlap with prototype A across all distances.

Linear regression coefficients and slope scores of learning were calculated for each participant in

the same manner described in Experiment 1, chapter 3.4.

This model also allowed us to probe the question of generalization from atypical items to

typical items following training. In order to produce %BResp scores that satisfied our conditions

for learning following atypical training, participants had to produce categorizations with a high

probability match for typical exemplars and prototypes. Therefore, successful learning following

atypical training necessitated generalization from atypical exemplars to typical exemplars. Due

to the nature of our task, where atypical exemplars have a 30% to 70% feature match with
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prototypes (close to chance response of 50%), we were unable to measure generalization from

typical to atypical items.

Finally, we used regression analyses to explore relationships between patient slope scores

of learning, demographic information and standardized cognitive-linguistic measures. Four

linear regressions were run with the independent variables: age, education, and months post

onset (MPO). Each of the four linear regressions had a different dependent variable: slope score

following PA Typ, PA Atyp, FB Typ and FB Atyp training. Four additional linear regressions

were run, this time evaluating patient slope scores of learning and standardized measures of

cognitive linguistic ability. In this regression, we explored AQ, attention, memory, executive

function and visuospatial skills as determined by composite scores on the CLQT.

4.5 Results

Our 2 x 2 x 2 mixed model ANOVA yielded a significant main effect of group, F(1,23) =

14.52, p < .01, demonstrating that performance on our task differed between patients and

controls. There was also a significant main effect of typicality, F(1, 23) = 11.67, p = <.01,

indicating that performance varied depending on whether instruction was focused on typical or

atypical exemplars. The interaction between typicality and group was non-significant, F(1, 23) =

0.46, p = .50, suggesting that stimulus typicality influenced the performance of both patients and

controls. There was no significant main effect of training method, F(1,23) = 0.13, p = .72. Thus,

results do not suggest an advantage of one method of instruction over another, feedback-based or

paired associate. Similarly, the interaction between training method and group was non-

significant, F(1, 23) = 0.32,p = .57.

Patient and control slope scores for all four test conditions and for baseline conditions are

reflected in Table 3.2. Recall that successful learning of categories was defined as a positive,

linearly increasing %BResp with a slope approaching ten. Slope scores marked with an asterisk

indicate scores that satisfied our conditions of linearity and produced significant positive

regression results.

An examination of individual control results revealed that six out of eight controls were

able to successfully learn categories following every method of instruction; FB Typ, FB Atyp,

PA Typ and PA Atyp. One control participant (Cn 1) learned under all conditions except the PA
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Atyp condition, and another control participant (Cn 4) learned only following typical training

(see Table 4.2 and Figure 4.3a).

Table 4.2
Slope scores

Participant

Cnl

Cn2

Cn3

Cn4

Cn5

Cn6

Cn7

Cn8

Pt 1

Pt 2

Pt 3

Pt 4

Pt 5

Pt 6

Pt 7

Pt 8

Pt 9

Pt 10

Pt 11

Pt 12

Pt 13

Pt 14

Pt 15

Pt 16

Pt 17

Pt 18

for control and patient participants on baseline conditions, Typ andAtyp training

FBBaseline

*8.70

*6.62

4.63

*8.96

*7.96

*7.71

*5.89

*10.52

*10.26

*9.48

*7.66

*9.48

-1.9

-7.32

-9.74

*6.71

1.95

3.94

-3.33

-0.52

-0.78

2.27

-1.17

2.55

-1.17

-0.52

PABaseline

*9.22

*8.74

*11.75

*11.49

*10.56

*8.40

*7.53

*9.61

-9.07

*8.29

-9.46

*7.96

*9.57

*5.15

*9.81

*6.06

*4.87

*7.84

-2.45

1.91

-4.37

-1.04

3.4

-2.66

1.93

-0.76

FBTyp

*7.27

*11.20

*10.64

*10.73

*9.91

*8.45

*8.48

*7.58

*10.41

*8.75

*9.89

*8.48

*9.35

0.88

*10.00

*10.21

*10.52

*5.14

*11.39

*9.72

*10.23

-0.96

-2.36

*7.58

*10.61

*10.61

FBAtyp

*6.74

*8.27

*9.59

-5.39

*9.68

*10.43

*9.89

*7.59

*10.84

*6.73

*10.11

-5.96

-1.5

-5.96

*8.98

1.07

*9.09

2.08

**6.10

2.48

-5.76

0.76

-4.08

-2.93

-6.21

-6.212

PATyp

*7.84

*12.79

*11.15

*11.21

*9.35

*12.25

*11.26

*9.44

*10.10
*9.61

*9.719

*10.74

0.06

*8.01

-10.11

-4.03

*11.21

*4.74

*6.88

*8.79
3.92

*11.47

-7.42

-1.77

*9.61

PAAtyp

-3.55

*4.46

*8.44

4.31

*7.47

*9.57

*9.63

*8.98

-8.29

-1.04

*9.59

-6.60

*9.35

*8.48

*9.00

4.26

*8.01

8.27

-4.61

-1.99

1.69

1.86

2.77

-7.51

3.333 *8.29

Note: Slope scores indicated with an asterisk satisfied our conditions of linearity and also produced
positive significant regressions with ordinal distance from prototype A. These slopes represent successful
learning of categories.

Upon examination of individual patient results, we found that nine out of eighteen

patients with aphasia were able to learn categories under at least one atypical training condition

(See Table 4.2 and Figure 4.3b). All nine of these patients were also able to learn categories
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successfully following at least one typical training condition, FB or PA. We examined the

performance of these patients on Experimental task 1 and found that of the nine patients who

learned following at least one atypical training condition, six also demonstrated successful

learning of at least one baseline task.

A. Control participant results across conditions (n=8)

12

8

4

0

-4

8 FB Typ

MFBAtyp

E PA Typ

0 PA Atyp
-8 - - - - - - - - - - - - - - -

-12
Cn1 Cn2 Cn3 Cn4 Cn5 Cn6 Cn7 Cn8

Patient participant results across conditions (n = 18)

A

Pt 1 Pt 2 Pt 3

U- U

Pt 4 Pt 5 Pt 6 Pt 7 Pt 8

U

v~ -Eu if ff~ DE:3

V -~

---- U-

Pt 11 Pt 12 Pt 13 Pt 14 Pt 15 Pt 16 Pt 17 Pt 18

Figure 4.3: Slope scores of learning across tasks. Panel A shows results for control participants. Panel B shows
results for patient participants. The horizontal line indicates the lower bound for scores that satisfied learning
conditions of linearity and significant regression between /oBResp and distance.
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Of the nine remaining patients who did not learn following atypical training, eight were

able to learn under at least one typical training condition, FB or PA. Among these patients, only

three were able to successfully learn baseline tasks from our previous experiment, suggesting an

overall more limited ability to extract central category tendencies from training items that

contain category variability. For these patients, learning occurred primarily under conditions that

emphasized feature overlap between categories.

Regression analyses exploring patient learning scores (slopes) with demographic

measures produced only one significant relationship. Age was significantly related to slope

scores on the PA Atyp condition (p<.01, see Table 4.3). Results from all other regressions of

demographic measures and slope scores of leaming in PA Typ, PA Atyp, FB Typ and FB Atyp

conditions were non-significant. Similarly, all linear regressions between slope scores and

cognitive-linguistic measures of AQ, attention, memory, executive function and visuospatial

skills were non-significant (see Table 4.3).

Table 4. 3
Regression results exploring slope scores and patient demographic and linguistic variables

Dependent Independent Standard
Variable Variable B Error (of B) p Significance

PA Typ Age -0.19 0.14 -0.35 0.18
Education -0.08 0.59 -0.04 0.89
MPO 0.02 0.03 0.17 0.52

PA Typ AQ -0.24 0.18 -0.97 0.21
Attention -0.02 0.10 -0.16 0.85
Memory 0.17 0.12 1.19 0.18
Executive Function 0.18 0.51 0.19 0.73
Visuospatial -0.06 0.26 -0.23 0.82

PA Atyp Age 0.36 0.09 0.69 **<0.01
Education -0.53 0.41 -0.23 0.22
MPO -0.04 0.02 -0.38 0.06

PA Atyp AQ 0.24 0.15 1.05 0.14
Attention 0.12 0.09 1.05 0.21
Memory -0.10 0.01 -0.78 0.35
Executive Function -0.32 0.47 -0.35 0.51
Visuospatial -0.15 0.25 -0.57 0.56

FB Typ Age -0.09 0.09 -0.27 -0.30
Education 0.38 0.38 0.26 0.33
MPO 0.02 0.02 0.25 0.36
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FB Typ AQ -0.17 0.10 -1.10 0.13
Attention -0.04 0.06 -0.45 0.56
Memory 0.08 0.07 0.87 0.27
Executive Function 0.22 0.30 0.37 0.46
Visuospatial 0.02 0.15 0.12 0.90

FB Atyp Age -0.09 0.13 -0.18 0.50
Education -0.40 0.58 -0.19 0.51
MPO 0.00 0.03 0.01 0.97

FB Atyp AQ -0.06 0.17 -0.27 0.72
Attention 0.06 0.10 0.55 0.52
Memory -0.04 0.11 -0.27 0.75
Executive Function 0.56 0.48 0.63 0.26
Visuospatial -0.12 0.25 -0.50 0.63

** p <. 0 1

4.6 Discussion

In this study, we extended our previous examination of learning ability through an

investigation into the impact of training method and stimulus characteristics on the non-linguistic

category learning ability of patients with aphasia and a control group of healthy individuals. We

compared feedback based and paired associate instruction on a multi-dimensional category

learning task; conditions which researchers have posited might differentially engage learning

systems through the course of learning. We posited that patients would learn better under

feedback-based conditions, as researchers have found improved information integration learning

under feedback conditions (Ashby et al., 2002).

For both our patients with aphasia and our healthy controls, at the group level learning

ability was similar under paired associate and feedback-based conditions. Thus, for our task,

there was no observed advantage of feedback over observational training. Our task differed from

the task implemented in Ashby et al. (2002) by stimulus type and categorical rules. Training

manipulations may have had a less significant impact on strategy use in our task than it did in the

Ashby et al. (2002) study.

Results suggest that when patients with aphasia are able to successfully learn categories,

they can do so under either PA or FB conditions. These findings are in line with results from

Experiment 1. Though studies conducted in other patient populations with brain damage have

suggested that feedback-based and paired associate instruction significantly impact learning
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ability (Ashby et al., 2002; Ashby et al., 2003; Ell, Weinstein, & Ivry, 2010; Knowlton, Mangels,

et al., 1996; Knowlton et al., 1992; Maddox, Ashby, Ing, & Pickering, 2004; Maddox et al.,

2008), this was not the case for our patients with aphasia examined as a group. In Parkinson's

disease and in amnesia, brain regions critical to feedback-based and paired associate learning,

basal ganglia structures and medial temporal lobe structures respectively, are the known foci of

lesions. Therefore, the observed behaviors and sensitivity to the presence or absence of feedback

are supported by characteristics of the underlying neural damage. While our experiments 1 and 2

do not reveal which strategies are used by patients with aphasia, results suggest that patient are

able to select appropriate strategies whether instruction is paired associate or feedback-based.

Diverse methods of instruction exist that have not yet been systematically explored in aphasia,

and may merit further study. The diversity of lesions and profiles in aphasia may require ideal

instruction methods to be identified on an individual basis.

Our second factor of interest, stimulus typicality, did impact performance on our category

learning tasks. Overall, we found that the typical training condition facilitated learning for all

participants. All controls learned under typical training conditions and seventeen out of eighteen

patients were able to learn following typical training. These findings are supported by Plaut's

(1996) work that noted that connectionist networks relearned trained items faster when exposed

to typical category exemplars than when trained on atypical category exemplars. Plaut proposed

that typical training conditions highlight salient category features, limiting the complexity of

training.

Regarding atypical training conditions, we first found that most control participants showed

successful category learning in this condition. Successful learning following atypical training

requires accurate categorization of typical items; therefore data from six control participants

demonstrate support for connectionist principles that suggest that highlighting feature variability

provides not only information about category breadth, but also about central category tendencies

(Plaut, 1996). The majority of control participants were able to successfully extract category

information in a short period of time despite high task demands. For one control (Cn4), we

hypothesize that the atypical training condition was too complex for her to extract category

information successfully following such a limited number of trials. For this control, learning was

limited to the typical training condition in which salient category features are emphasized.
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For our patient participants, only 50% were able to extract central category tendencies

following training that highlighted feature variability. Examination of their results on baseline

tasks showed that most of these patients also learned under baseline conditions of Experiment 1.

We propose that these patients have robust category learning mechanisms that allow them to

recognize and track patterns efficiently. For the remaining patients tested, category learning was

only successful under the typical training condition. These patients did not demonstrate the

ability to extract central category tendencies from atypical training items, and in addition,

generally did not successfully learn under Experiment 1, baseline conditions. Thus, for seven of

eighteen patients, learning was only successfully achieved when instruction highlighted feature

overlap within categories. For these patients, an emphasis on central category tendencies proved

critical to successful learning. We propose that for these patients, general mechanisms of

learning are impaired, successful category learning occurring only under conditions that are

facilitative and simplified.

In our examination of the relationship between demographic and cognitive-linguistic

variables and learning scores, only age and slopes scores in the PA Atyp condition were

significant. The severity of deficits, as characterized by the WAB aphasia quotient did not

predict patient success with our task, suggesting that performance on our task is not directly

related to severity of aphasia. We hypothesize that the aphasia-inducing strokes that each of our

patients participants experienced may have differentially affected learning and language

networks. Some patients may have severe language deficits within the context of a relatively

persevered system for category learning while others experience mild language deficits within a

more significantly impaired category learning network.

One might also hypothesize that patients had different premorbid learning abilities.

Though for the majority of our control group learning was consistently maintained across

conditions, controls may have engaged learning strategies differently to perform the various

tasks. Explicit and implicit learning systems are described to compete or interact throughout

learning (Ashby & Valentin, 2005; Cincotta & Seger, 2007; Poldrack et al., 2001; Moody et al.,

2004; Seger & Miller, 2010). Healthy individuals may engage the learning system that is most

efficient for them despite varying task demands.

Clinically, results demonstrate differential category learning abilities among patients with

aphasia. Category learning depends upon the ability to detect and integrate commonalities or
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patterns and is considered essential towards helping us rapidly recognize and classify objects

meaningfully (for review see Ashby et al., 1998; Ashby & Maddox, 2005; Keri, 2003; Seger &

Miller, 2010). Current results suggest that post-stroke some patients may have difficulty

engaging in such integrative processes. We do not suggest that these patients lose the ability to

learn categories entirely. Our task engaged participants in very short phases of learning of

complex information. It is conceivable however, that many patients with aphasia may

experience difficulty in the process of integrating commonalities across stimuli.

We propose that patients who experience difficulty integrating commonalities during our

task might also have difficulty integrating commonalities during therapy. Thus for these

patients, therapies focused on simple targets and simple tasks that reinforce salient patterns and

strategies are likely to be the most effective means of promoting improvement. Patients with

general learning mechanisms that are not well suited for extracting central category tendencies,

likely do not have language learning mechanisms well suited for extracting central category

tendencies.

In contrast, we suspect that patients with a demonstrated ability to extract commonalities

under conditions that highlight feature variability will translate these skills to therapy. These

patients likely have general learning mechanisms suited to integrate variability and abstract

patterns, mechanisms which can be recruited in therapy. We propose that these patients would

be suitable candidates for therapies which include complex, variable tasks and targets.

We are limited in our predictions, as the current study involved a limited group of

patients with heterogeneous profiles of aphasia. Also, we can only infer that skills demonstrated

on our non-linguistic category learning task will translate to performance in actual language

therapy. The next step will be to test whether predictions drawn from short, controlled non-

linguistic tasks can translate to progress with therapy.
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5. Experiment 3. Learning ability as a predictor of successful
outcomes with language therapy in post-stroke aphasia3

Abstract
One of the major challenges in the field of aphasia rehabilitation is the problem of

predictability of outcomes. Studies have begun to point to a combination of cognitive-linguistic
factors as potential predicting factors. In Experiment 3 of this thesis, we examine the
relationship between abstract category-learning ability and progress with language therapy.
Thirty-seven individuals with chronic aphasia completed the nonlinguistic category learning
paradigms outlined in Experiment 1. Individuals were also enrolled in ten weeks of structured
language therapy. Effect sizes in therapy were compared with measures of learning ability as
well as with standardized demographic and cognitive-linguistic measures. Scores of feedback-
based learning paired with years of education was found to be the best model predictor of
outcomes with language therapy. No standardized cognitive-linguistic measures correlated with
performance in therapy. Analyses also demonstrated that instruction method impacted strategy
use when performing category-leaming tasks. Results confirm the hypothesis that non-verbal
learning phenotype is positively associated with treatment outcomes. We propose that many
skills necessary for non-linguistic leaming (hypothesis formation, feedback monitoring) likely
play an important role in the relearning or re-accessing of language brought about through
therapy.

5.1 Introduction

As described in the introduction, one of the major issues that clinicians and researchers

continue to be faced with in aphasia rehabilitation is the problem of predictability of outcomes

with therapy. Early research demonstrated that the severity of language impairment and lesion

size present important predictors of spontaneous recovery (Goldenberg & Spatt, 1994; Pedersen

et al., 2004; Plowman et al., 2012). In the phases of aphasia rehabilitation, however, time after

time patients with similar degrees of language impairment show variable responses to treatment

(Conroy et al., 2009; Fillingham et al., 2006; Hickin et al., 2002; Lambon Ralph et al., 2010).

While current therapies are selected based on extensive tests that characterize language

3 Portions of this chapter have been submitted for publication and are currently under review as Vallila-Rohter, S., &
Kiran, S. (under review). Learning ability as a predictory of successful outcomes with language therapy in post-
stroke aphasia.
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impairments in individuals, these tests are not sufficient in predicting patient responses to

therapy. The field remains in great need of improving the predictability of outcomes following

language rehabilitation.

For many years, the general rehabilitation literature has pointed to cognitive factors as

important factors in patient progress with therapy (Galski, Bruno, Zorowitz, & Walker, 1993;

Mysiw, Beegan, & Gatens, 1989; Novack, Haban, Graham, & Satterfield, 1987; Robertson,

Ridgeway, Greenfield, & Parr, 1997). Factors such as abstract thinking, sustained attention and

judgment have proven to be successful predictors of recovery and outcomes post-treatment

(Mysiw et al., 1989; Novack et al., 1987; Robertson et al., 1997). These skills are thought to be

important skills for learning and functional carry-over of rehabilitation skills into real life (Galski

et al., 1993).

Such findings from general rehabilitation have begun to influence the factors examined in

studies of targeted language treatments in aphasia. Increasingly, researchers are exploring a

broad range of standard assessments of cognitive-linguistic function when trying to identify

predictors of outcomes. In most cases, standardized measures of language alone do not suffice to

predict outcomes. Instead, researchers are finding that cognitive assessments or a combination

of cognitive-linguistic assessments most consistently surface as measures significantly correlated

with therapy gains (Conroy et al., 2009; Fillingham, Sage, & Lambon Ralph, 2005; Fillingham et

al., 2006; Fillingham, Sage, & Ralph, 2005; Goldenberg & Spatt, 1994; Hinckley, Patterson, &

Carr, 2001; Lambon Ralph et al., 2010; Seniow, Litwin, & Lesniak, 2009; van de Sandt-

Koenderman et al., 2008).

Fillingham et al., (2005a, 2005b, 2006) for example, completed a three-part study

examining the effects of an anomia treatment using errorful and errorless learning paradigms,

exploring outcomes as they related to patient profiles of cognitive-linguistic ability. In all three

studies, patients were found to progress equally well following errorless and errorful methods.

In two of the studies, no measure of language ability correlated with observed therapy outcomes

(Fillingham et al., 2005a, 2006). Instead, therapy gains most closely correlated to non-language

scores of recognition memory skills (Fillingham et al., 2005a, 2006), the test of self-rating,

thought to represent monitoring skills (Fillingham et al., 2005a, 2005b, 2006), and the Wisconsin

Card Sorting Test (WCST), thought to reflect executive skills (Fillingham et al., 2005a, 2005b,

2006). Researchers hypothesized that therapy protocols likely required executive skills, memory
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and attention, as patients integrated and tracked feedback (errorful condition), or as they learned

through Hebbian principles of increased strength through exposure (errorless condition).

In another treatment study, this time focused on anomia treatment using phonemic and

orthographic cueing, Lambon Ralph et al., (2010) examined the treatment progress of 33

individuals with aphasia, comparing outcomes with a battery of standardized cognitive-linguistic

assessments. Pearson correlations between post-treatment naming results and cognitive-

linguistic measures produced six significant correlations. Three of these were with tests of

language ability measuring naming (BNT), semantic memory (three picture Pyramids and Palm

Trees test; PAPT) and reading ability (Psycholinguistic Assessments of Language Processing in

Aphasia; PALPA, oral reading: imageability x word frequency subtest). The remaining three

significant correlations were with cognitive tests of attention (The Test of Everyday Attention

elevator counting with distraction), and tests thought to require perceptive analysis, memory,

attention, planning and working memory (Rey Figure Copy and Rey Figure delayed recall).

Results further confirmed the importance of assessments of non-linguistic cognitive ability in the

evaluation of patients as well as in the development and selection of appropriate therapies for

individuals.

Experiments 1 and 2 demonstrated that patients with aphasia exhibit variable patterns of

learning ability on our category learning tasks. Observed patterns have led us to postulate that

patterns of learning might reflect behaviors in therapy. In Experiment 3, therefore, we examine

the relationship between nonlinguistic category learning ability and rehabilitation outcomes. We

have proposed that learning ability should be included in the diagnostic characterization of

patients with aphasia (see Figure 5.1). Via this experiment, we explore whether it is realistic to

propose that a task as abstract as our category-learning task might relate to treatment outcomes.

Though this is the first time that skill leaming has been explored as a predictor of therapy

in stroke-related aphasia, learning ability has been probed in other fields (Uprichard, Kupshik,

Pine, & Fletcher, 2009; Watzke, Brieger, Kuss, Schoettke, & Wiedl, 2008). In a longitudinal

study of learning potential and rehabilitation in patients with schizophrenia, Watzke et al., (2008)

found a positive association between measures of learning potential and long-term rehabilitation

outcomes. Researchers used a modified version of the Wisconsin Card Sorting test administered

in three phases to classify patients as high scorers, learners or non-learners. Researchers found

that learning ability rating related to performance during rehabilitation as well as to performance
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in follow-up three months later. Researchers proposed that learning represented a means of

measuring a patient's potential to respond to intervention. Traditional assessments focus on

quantifying strengths and weaknesses. Assessments of learning quantify potential, independent

of baseline level of functioning.

Learning ability Cognitive ability Languae ability Denographics

E.g: E.g: Eg: E.g:
FB leaming - CLQT * WAB AQ * Age
PA learning - Raven's Matrices . BNT - Years of Education

- Comprehension - Months post onset of
stroke

Therapy Outcomes

Figure 5.1: Potential predictors of language therapy outcomes

Uprichard et al., (2009) applied a similar approach in a study of outcomes and

community integration in a group of individuals suffering from acquired brain injury. Learning

potential was assessed following completion of the Wisconsin Card Sort Task with instruction

and feedback. Researchers found that scores of learning on this task predicted the degree of

patient integration into the community following treatment. Researchers again suggested that

learning ability reflected potential for improvement. They found a measure of potential to be

superior in predicting outcomes, compared with static measures that characterized strengths and

deficits at a specific point in time.

In this experiment, individuals with aphasia were enrolled in theoretically based language

therapy that engaged patients in metalinguistic instruction related to thematic role assignments

and sentence meaning. Participants also completed FB and PA category-learning paradigms to

assess their learning ability on our structured task. A therapy based on thematic role assignments

and sentence meaning was selected as the focus of this experiment as it likely requires many of
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the complex skills of stimulus tracking, hypothesis generation and feedback monitoring

necessary for successful feedback-based category learning. We hypothesize that scores of

learning will relate to outcomes with therapy in aphasia, such that better learners produce greater

improvements in language ability following a 10-week language therapy protocol. We predict

that individuals with relatively poor scores of learning will show more limited improvements

following therapy. We compare learning ability scores under FB and PA conditions.

5.2 Methods

5.2.1 Participants. Thirty-six individuals with aphasia (21 men) due to left hemisphere

stroke, ages ranging from 33.7 to 86.8 participated in this experiment (mean age = 60.5, SD =

11.6). Thirty-four participants were pre-morbidly right handed and suffered from a left

hemisphere stroke. Two participants were left-handed prior to their right-hemisphere aphasia-

inducing stroke.

Severity of aphasia, as determined by aphasia quotients (AQs) computed from the WAB

(Kertesz, 1982) ranged from 10.2 to 98.0 (mean AQ = 71.3, SD = 23.2). Aphasia types included

Global, Broca's, Wemicke's, Conduction, Transcortical motor and Anomic aphasia as

determined by the WAB. Though the WAB classifies AQ scores under 92 as abnormal,

individuals with higher AQs were included in our study as they were judged to have aphasia by a

clinical speech-language pathologist. In addition, they all demonstrated deficits in

comprehension on our therapy screeners making them eligible for therapy. Participants were

tested at least six months after the onset of their stroke (the individual in the most chronic stage

of his aphasia was 260 months post onset of stroke). All participants were English speaking and

two were bilingual speakers of English and Spanish. See Table 5.1 for participant information.

Participants were recruited from the Boston area and tested at the Sargent College of

Rehabilitation Sciences.
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Table 5.1
Experiment 3 - Participant characteristics and scores

PWA23 F 74 51
PWA24 F 55 85

TCM
Anomic

Comp BNT Attn Mem Exec VS Raven MPO
Aphasia

ID Age AQ Type
PWA1 M 49 58 Broca's
PWA2 M 52 62 Anomic
PWA3 M 53 58 Wernicke's
PWA4 F 68 82 TCM

PWA5 F 63 69 Anomic

PWA6 M 60 83 Anomic
PWA7 M 54 93 Anomic

PWA8 M 61 91 Anomic
PWA9 M 46 73 Broca's

PWA1O F 77 98 Anomic
PWA11 F 57 80 Anomic
PWA12 M 72 77 Wernicke's

PWA13 M 44 96 Anomic
PWA14 M 61 68 Conduction

PWA15 M 68 74 Anomic
PWA16 F 50 94 Anomic
PWA17 M 76
PWA18 F 34 25 Wernicke's
PWA19 M 53 91 Anomic
PWA20 M 59 86 Anomic

PWA21 F 83 93 Anomic
PWA22 F 58 88 Anomic

89
65
70

61

51
67

52

61
49
53

43

73

74

89
55
84
61
56

79

56

53

86

17
90

58
32

72

83

30

78

80
80

82

98
57
85

95

43

30

100
2

0
47

82

95
97

38 113
192 152

14
26

38

88
59
73

163 98 19 74 49
54 96 21 52 27
125 108 11 57 86
110 89 17 35 43

194 139 19 92 92
190 132 25 91 92
193 143 27 96 81
167 145 15 72 57
195 118 30 99 92
206 183 29 86 92
132 118 7 43 51
173 132 21 83 57

196 151 27 96 95
199 157 22 94 --

142 136 19 73 68
210 181 31 100 92
142 102 8 55 --

184 66 18 92 27
72 113 23 56 78
196 148 26 95 89
172 145 22 79 78
178 144 20 80 65

14
10

162
260

48
28

65
27

115
6

86
94
68
15

12

45

13
24

15
6

24
28

39

65

68

Ed FB PA
12 -3.3 -2.5
11 -0.5 1.9
16 -6.5 0.9
12 -1.2 1.9
16 2.6 -2.7

19 2.3 -1.0
16 2.1 6.0
13 -1.9 9.6
16 0.4 0.6
16 3.9 7.8
16 -0.8 -4.4
18 -0.6 0.4

12 5.8 -5.4
16 -1.2 3.4

19 -0.5 -0.8
18 9.5 8.3
3 2.0 4.9

14 10.3 -9.1
16 1.5 6.3
12 2.8 0.8
16 -7.5 2.6
16 -0.8 -4.4

12 0.3 -6.1
12 2.5 9.9

ES
-1.2
-0.3
-0.1
0.6
0.6
1.3
1.4
2.1
2.3
2.6
3.0
4.0

4.9

8.7
9.8
11.5
0.0
8.2
7.1
1.4
1.7
3.0

3.0
1.2



PWA25 M 59 78 Conduction 52 83.3 194 156 40 92 100 110 16 9.3 9.6 6.3

Wernicke's/
Conduction

Conduction

53 6.67 197 93 28 101 -- 120 16

48 62 184 120 20 88 65 84 18

PWA28 M 87 88 Anomic 68 58 143 110 14 56 51 13 12 8.8 -0.2 0.4

48

68

41

10
31

86
78

Wernicke's/
Conduction

Anomic

Wernicke's

Global
Broca's
Anomic
Anomic

95 Anomic

61

52
53

7

13
7

178 93 24 92 65 107 16 9.5 8.0 1.5

146 102
144 74

14
17

71
64

68
35

18

25

18
12

-0.5
7.7

46 0 13 30 3 17 38 76 12 10.0
48 0 101 40 3 39 31 42 18 -9.7

52 73 -- -- -- -- -- 123 16 8.7

71 55 173 139 22 77 57 53 16 10.3
97 77 192 155 28 97 95 21 17 6.4

-3.4 4.7
-9.5 5.9
-3.5
9.8

-10.0
-0.2
-7.0

9.8
5.8

0.5
3.1
3.5

PWA indicates participant with aphasia
F indicates female; M male
Comp indicates comprehension score as determined by therapy screening batteries. Bilingual patients do not have this measure.
Attn, Mem, Exec, VS indicate scores of attention, memory, executive functions and visuospatial skills as determined by the CLQT
Ed indicates years of education
FB and PA indicate slope scores on category learning tasks
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PWA26
PWA27

M
F

65
66

23

70

PWA29

PWA30
PWA31

PWA32
PWA33
PWA34
PWA35
PWA36

M 53

F 64
F 53
M 70
F 66

M 66
F 38
M 68

8.5
7.8

8.7 -1.5
-6.5 0.0



5.3 Design and Procedures.

All participants completed standardized assessments of their cognitive-linguistic ability. The

WAB was administered to assess language abilities and determine ratings of aphasia severity.

Four participants completed only part of our assessment battery and therefore have incomplete

scores (see Table 5.1). The BNT (Kaplan et al., 2001) was administered to gather information

about naming ability. The CLQT (Helm-Estabrooks, 2001) was administered to characterize

cognitive strengths and weaknesses. All participants completed learning tasks as described in

Experiment 1, chapters 3.2 and 3.3. Participants were enrolled in therapy as described in further

detail below.

5.3.1 Language therapy. Prior to being included in the treatment portion of the study,

each participant completed a screening measure to assess auditory comprehension of the nouns

and verbs that would be included in treatment and monitoring batteries. Participants also

completed a sentence comprehension screener to assess their auditory comprehension of the

multiple sentence structures included in therapy. Individuals were assigned a baseline score of

sentence comprehension based on their performance on this screener. Screening procedures and

detailed stimulus information are available in Kiran et al. (2012). After completing screening

measures, participants were enrolled in a sentence comprehension treatment involving one to two

hour sessions with a clinician two times a week.

5.3.1.1 Stimuli Stimuli for language therapy were object relative (OR), object cleft

(OC), passive (PA) or unaccusative (UNACC) sentences (see Kiran et al., 2012). Stimulus

pictures were drawn for each sentence depicting the action of the sentence. Foil pictures were

created which contained the same nouns and actions of the sentence with altered thematic roles.

Paper dolls were also created representing the nouns contained in each sentence. Sentences

contained an equal number of animate and inanimate nouns.

5.3.1.2 Design. A single subject, multiple baseline design was used (Thompson, 2006).

Prior to initiating therapy, participants completed three baselines. During these baselines,

individuals were presented with 75 sentences, which included 10 to 15 tokens of their trained

sentence type and 60 to 65 tokens of alternative sentence types. Once treatment was initiated,

weekly monitoring batteries were administered. Four different versions of each monitor were

created and versions were counterbalanced across baselines and throughout the course of

therapy.
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Individuals were trained on fifteen to twenty OR, OC, PA or UNACC sentences in

therapy. Therapy protocols were designed to explicitly emphasize thematic role assignment. In

the first step of therapy, the clinician read the target sentence aloud and asked the participant to

indicate his/her interpretation of the sentence. Individuals with aphasia either indicated their

understanding using two presented pictures, one depicting the action of the sentence and the

other its foil with alternate thematic role assignment; or by manipulating paper dolls that

represented constituents of target sentences. Feedback regarding accuracy was provided. The

clinician then provided additional explanations regarding the roles of agent and theme while

focusing on the target picture or manipulating paper dolls.

This therapy protocol was selected, as it is metalinguistic in nature requiring patients to

think about thematic role assignments as they relate to sentence meaning. Patients had to attend

to complex auditorily and visually presented information, receive and integrate feedback across

sessions. The two bilingual participants were enrolled in a therapy with a different structure, but

which posed similar auditory, visual processing and feedback integration demands.

Therapy continued for ten weeks or until participants reached 80% accuracy on

monitoring batteries for two consecutive weeks. After treatment was terminated, participants

completed three additional post-treatment monitoring batteries. All baseline, treatment and

monitoring sessions were video recorded and scored by the treating clinician. Reliability was

performed by an unbiased student trained to code responses and adherence to treatment protocol.

A therapy effect size (ES) was calculated for each participant by subtracting the average

of all post-treatment baseline scores from the average of all pre-treatment baseline scores. This

value was then divided by the standard deviation of pre-treatment baselines (Beeson & Robey,

2006).

5.4 Data Analysis

All participant category-leaming data were analyzed and assigned a score of learning.

Prior to calculating learning scores for each individual, as completed in Experiment 1, raw data

were examined to ensure that participants did not base responses on one feature alone. In order

to do this, we looked at responses to every animal based on feature, examining the percentage of

B responses made for each feature value. Individuals with close to a 100% response rate for one

feature value (e.g. circular body) and close to 0% response rate for the alternate feature value
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(e.g. square body) were judged to be basing responses on one feature. Using this method, we

found that eleven participants attended to only one feature during training or testing. In every

case, this occurred in the FB condition. Because instructions emphasized attending to multiple

animal features during learning and categorization, our primary analyses focus only on those

participants who demonstrated attention to multiple animal features during categorization (n =

25; PWA1 to PWA25). As individuals who attended to only one feature in FB training (n=11;

PWA26 to PWA36) showed an interesting pattern of FB versus PA behavior, we retained their

data for secondary analyses.

Next, to determine whether there was a relationship between learning score and treatment

outcomes, we examined the correlation between learning slopes and ES in treatment. We were

also interested in determining whether other measures related to outcomes and therefore

examined correlations between ES in treatment and scores on our battery of standardized

cognitive-linguistic assessments. Individual Pearson correlations were run between ES and AQ,

BNT, scores of attention, memory, executive function, language and visuospatial skills as

determined by the CLQT, and Raven's matrices. Additionally, we examined the correlation

between ES and demographic variables of age, months post onset (MPO) and education.

Analyses were first run on our main subgroup of twenty-five individuals. Follow-up analyses

examined results from the eleven participants who were found to attend to only one feature

during learning.

5.5 Results

5.5.1 Main participant subgroup. The average participant slope scores of learning

following FB instruction for the twenty-five participants in our main subgroup was 2.7, SD =

5.33. FB learning scores ranged from -9.7 to 10.3. The average slope score of learning

following PA instruction for these participants was 0.69, SD = 6.01. PA learning scores ranged

from -9.9 to 9.9. Average effect size scores following language therapy for these patients was

3.2, SD= 3.35. Effect size scores ranged from -1.2 to 11.5. Both learning ability and effect size

exist along a continuum and therefore a range is to be expected.

Pearson correlations between treatment ES and our FB slope of learning produced a

significant correlation. The correlation between ES and learning slope in the PA condition was

non-significant. Pearson correlations between ES and cognitive-linguistic measures of aphasia
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severity, naming, comprehension, attention, memory, visuospatial skills, executive functions, and

Raven's matrices abilities all produced non-significant correlations (see Table 5.2, Figure 5.2).

Thus FB learning slope was the only measure that significantly correlated with ES in treatment.

We then explored the relationship between ES in language treatment and demographic

variables of age, education and MPO. Results were only significant between ES and years of

education (see Table 5.2, Figure 5.2).

- 1 -.. 26 14 1

.330

Correlation results for main group between effect size in treatment and cognitive-linguistic and
demographic measures
Variable N r p value
FB slope 25 0.51 0.01*
PA slope 25 0.04 0.83
AQ 24 -0.01 0.98
BNT 25 -0.07 0.73
Comprehension 23 0.26 0.24
CLQT Language 24 0.14 0.51
CLQT Attention 25 0.18 0.38
CLQT Memory 25 0.3 0.15

CLQT Executive function 25 0.32 0.12
CLQT Visuospatial skills 25 0.31 0.13
Raven's Matrices 23 0.12 0.59
Age 25 -0.21 0.32

Education 25 0.47 0.02*
Months post onset 25 -0.36 0.07

* p < .05
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Multiple regressions were run to determine the best predictors of effect size in treatment.

A two-variable model including feedback slope and education was found to be the best model

predictor of effect size in language treatment F(2,22) = 9.22, p = .001, R2 = .45. This model

accounted for 41.6% of the variance in the data. Both variables added statistically significantly

to the prediction, p< .05. Scores of months post onset, executive function, memory and

visuospatial skills, the measures with the next highest correlation values, did not contribute

significantly to the prediction.

5.5.2 Subgroup of patients who attended to only one feature in FB learning. We

next examined cognitive-linguistic measures and aphasia types among our subgroup of

individuals who attended to only one feature during treatment to determine whether cognitive-

linguistic differences arose between this subgroup and our main group of individuals.

Independent samples t-tests demonstrated two significant differences. Our subgroup of eleven

participants was found to have significantly lower average BNT scores than the main group,

t(33)= 3.l,p <.01. Average scores of memory as measured by the CLQT were also significantly

lower for this group, t(33) = 2.95, p <.01. Measures of aphasia severity approached a significant

difference, with the subgroup having overall lower AQ scores, t(33) = 2.04, p =.06. Raven's

matrices scores also approached a significant difference, t(33) = 1.8, p = .08. No significant

between-group differences arose in measures of comprehension, attention, executive function or

visuospatial skills. Interestingly, overall treatment effect sizes did not differ between groups,

t(34)=.21,p =.83.

Non-parametric Spearmen correlations were evaluated between ES, cognitive-linguistic

and learning measures due to the smaller size of this group. Spearmen correlations between ES

and scores of attention and visuospatial skills both produced a significant relationship in the

negative direction. Individuals with high scores of attention and those with high visuospatial

scores produced low ES scores in treatment. The correlation between ES and measures of

executive function approached significance. Spearman correlations between ES and all other

standardized cognitive-linguistic measures as well as with FB and PA slopes produced non-

significant results (see Table 5.3).
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Table 5.3
Correlation results for subgroup between effect size in treatment and cognitive-linguistic and
demographic measures

Variable N r p value
FB slope 11 -0.19 0.57
PA slope 11 -0.18 0.59
AQ 11 -0.34 0.3*
BNT 10 -0.51 0.13
Comprehension 11 -0.26 0.45
CLQT Language 9 -0.38 0.32
CLQT Attention 10 -0.71 0.02*
CLQT Memory 10 -0.52 0.12
CLQT Executive function 10 -0.61 0.06
CLQT Visuospatial skills 10 -0.68 0.03*
Raven's Matrices 9 -0.47 0.2
Age 11 -0.06 0.86
Education 11 -0.13 0.7
Months post onset 11 -0.39 0.23

p <. 0 5

5.6 Discussion

The aim of this experiment was to explore the relationship between measures of learning

ability on our nonlinguistic category learning task and effect size following a structured language

therapy program. In experiments 1 and 2, we identified variability among patterns of learning in

individuals with aphasia. Thus, in the current experiment, we were interested in exploring the

relationship between category-learning ability and success with therapy. We aimed to examine

whether measures of learning and/or a combination of standardized cognitive-linguistic measures

might serve as superior predictors of outcomes with therapy.

Results demonstrated that for this particular therapy paradigm, no standardized linguistic

or cognitive measure correlated with effect size following treatment. This finding is not

surprising, as many studies have failed to identify correlations between success in therapy and

established cognitive-linguistic measures (Fillingham et al., 2005a, 2006). We do acknowledge

that our cognitive-linguistic battery was not exhaustive and that standardized tests may exist that

correlate with success with therapy. In the current thesis however, we have tried to focus on

tests that are frequently reported in the aphasia literature, and on those tests that have previously

been implicated as having a relationship with language therapy outcomes.
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We hypothesized that scores of category learning would be related to participant

outcomes with therapy and found that the only measure that correlated with effect size was our

slope measure of learning following feedback-based instruction. The FB condition of our

learning task engaged individuals in gradual trial-by-trial feedback learning which likely relies

on many networks and skills as individuals integrate visual information, track stimulus-response

associations and select strategies (Cincotta & Seger, 2007). Feedback processing, rule learning,

hypothesis testing, switching and tracking are likely integral to this form of learning (Filoteo &

Maddox, 2007). We propose that such skills were also likely important for the successful

completion of our sentence comprehension treatment.

In therapy, individuals with aphasia were asked to attend to auditorily presented

information while looking at pictures or dolls. After making a response, individuals received

feedback, integration of which was integral to success with therapy. In addition, individuals with

aphasia received metalinguistic instruction related to thematic role assignments as they related to

sentence meaning. Successful progress with therapy required attending to multiple facets of

instruction while integrating multiple inputs. This type of complex integration likely involves

many cognitive skills such as attention, executive function, monitoring and integration working

in unison. While these skills may individually be captured by the CLQT to certain degrees, we

propose that our feedback-based learning task likely requires simultaneous use and balance of

these skills in a complex way. FB learning ability may thus more accurately characterize the

integrity of skills needed for successful progress with therapy.

Regression analyses demonstrated that the best model predicting performance in therapy

combined measures of FB learning with years of education. For this therapy paradigm in

particular, education may have related to participant exposure and familiarity with complex

sentence structures. Education and learning ability may also be related and both contribute to the

way in which patients engage in and approach therapy.

Results from this experiment demonstrate that a link can in fact be made between abstract

nonverbal tests and language therapy. Though many facets of learning and language therapy

remain to be explored, current findings validate the hypothesis that nonverbal category learning

is informative for therapy. These results serve as a first indication that nonverbal learning

phenotype is positively associated with therapy outcomes.
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6. Experiment 4. Strategy use and category learning in individuals

with aphasia

Abstract
In experiment 3 we observed that a subgroup of participants with aphasia attended to only

one feature during FB instruction but not PA instruction. Prior research has suggested that
clinical populations implement distinct strategies to perform probabilistic learning tasks and that
these strategies may reflect processing strengths and deficits. As a result, we developed
experiment 4, an experiment in which we examine the strategies implemented as controls and
individuals with aphasia complete probabilistic category learning tasks. We compare strategy
use following instruction that is feedback-based versus paired-associate. Results demonstrate
that controls and patients with aphasia engage a variety of strategies when completing feedback-
based category learning. While the majority of controls engaged optimal or suboptimal
strategies, nearly half of our patients with aphasia did not engage an effective strategy following
feedback-based instruction and produced poor overall learning scores. In contrast, the paired-
associate version of our task led nearly all participants to engage a random pattem of responses.
Results confirm that individual variability arises not only in category learning ability, but in the
strategies implemented to complete category learning tasks. Method of instruction has a
significant impact on the strategy implemented during learning and is likely important for
learning during language therapy.

6.1. Introduction

One of the factors that remains unexplored in aphasia is strategy use, the means with which

individuals carry out learning when presented with a task. Many aphasia therapies work towards

retraining language through manipulations of auditory and visual stimuli, feedback, and

modeling. Currently, we are limited in our understanding of how patients approach such tasks.

Are patients attending to all stimuli presented during therapy, or are they focusing on one

modality or one stimulus item at a time? Are individuals actively integrating feedback and

constructing hypotheses related to instruction and cueing? Are patients able to devise strategies

to carry over what is learned in therapy into real-world communicative scenarios? All of these

are questions relevant to therapy, whose answers lie in a better understanding of the ways in

which patients with aphasia process information while they are engaged in therapy tasks.
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Thus, in the current experiment, we aim to better understand how information is

processed during learning through an exploration into strategy use during probabilistic category

learning. While this represents a unique approach in aphasia, recent studies in other populations

have examined strategy use. Research has suggested that distinct strategy use likely influences

individual performance on probabilistic learning tasks, and may better explain the differential

results observed in clinical subgroups (Gluck et al., 2002; Hopkins, Myers, Shohamy, Grossman,

& Gluck, 2004; Meeter et al., 2006; Meeter et al., 2008; Rustemeier, Schwabe, & Bellebaum,

2013).

Of particular relevance to the current experiment for its methods and findings, Gluck et

al. (2002) explored strategy use while healthy participants undertook learning of the weather

prediction task (WPT, briefly described in chapter 1.3.1). In the first phase of their study,

interview and multiple-choice questions proved to be unreliable indicators of strategy selection.

Researchers therefore, devised quantitative methods to evaluate strategies. Three model

strategies were proposed: multi-cue, one-cue and singleton. Multi-cue strategies were those in

which responses matched the probabilistic association of individual cards and also of

combinations of cards. Singleton strategies were defined as strategies in which outcomes only

matched the probabilistic association of individual cards (not card combinations). One-cue

strategies were defined as responses based on the presence or absence of a single cue card (Gluck

et al., 2002; Shohamy, Myers, Onlaor, et al., 2004). Behavioral responses of 60 subjects

completing 200 classification trials were compared with expected data predicted from each

model. In an analysis over all trials, researchers found that the majority of participants engaged

singleton strategies. Analyses over blocks of 50 trials however, demonstrated that most

individuals actually engaged in a mix of strategies. Many started with a simple, singleton

strategy before shifting to complex multi-cue strategies in the last blocks of training. Overall,

researchers concluded that there are many ways to approach the WPT; healthy individuals

exhibiting use of a variety of strategies and/or shift in strategies during learning.

Since this pioneering work, other researchers have applied similar methods towards

strategy analysis, furthering our understanding of probabilistic learning (see Meeter et al., 2008

for review). Meeter et al., 2006 applied strategy analysis to previously published data involving

controls and individuals with amnesia (Hopkins et al., 2004). Researchers incorporated a

"random" strategy into these analyses that corresponded to random patterns, switching strategies
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or probablistic rules not captured by other models. Researchers observed a pattern similar to that

observed by Gluck et al., (2002) in which control participants shifted from a reliance on simple

strategies to complex ones through the course of learning. In contrast, individuals with amnesia

were found to rely on simple strategies, or no strategy throughout learning. Researchers

hypothesized that individuals with amnesia were impaired in their ability to recall attempted

strategies and consolidate feedback during learning.

Another study recently explored strategy use under two different instruction conditions:

feedback-based versus observational learning (Shohamy, Myers, Grossman, et al., 2004). Under

these conditions, researchers compared performance between healthy controls and a group of

individuals with Parkinson's Disease (PD). Results demonstrated that 1) individuals with PD

were impaired relative to controls under feedback-based learning conditions, 2) individuals with

PD showed a heavier reliance on singleton strategies than controls in feedback-based conditions

and 3) strategy use greatly differed between feedback-based and observational learning

conditions. Specifically, while most participants were either fit by multi-cue or singleton cue

strategies under feedback-based learning conditions; the majority of participant results were not

consistent with any strategies previously described by Gluck et al. (2002) following

observational learning. Findings highlighted the fact that different instruction methods led to

distinct strategy implementation. Furthermore, one method of instruction was found to be

superior in promoting learning for PD patients. As PD patients have known basal ganglia

dysfunction, researchers concluded that striatal and midbrain dopaminergic regions are critical to

feedback processing in probabilistic category learning. Researchers hypothesized that

observational versions of this probabilistic learning task were likely supported by medial

temporal lobe declarative memory systems, a finding consistent with previous neuroimaging

research (Poldrack et al., 2001).

The sum of these studies draws attention to the insights that can be brought about through

an examination of strategy use during learning. Furthermore, they demonstrate how distinct task

conditions can elicit distinct performance and strategy use. Therefore, in the current experiment,

we analyze strategy use in a group of patients with aphasia and a group of healthy controls as

they complete probabilistic category learning tasks. We continue to compare conditions in

which training is feedback-based versus paired-associate (observational). We apply an

adaptation of Gluck et al. (2002) and Meeter at al.'s (2006) mathematical models to determine
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whether individuals engage an optimal multi-cue strategy (OMC), various singleton cue

strategies (SC) or a random pattern (RP) during classification following training phases.

In our experimental paradigm, instructions specifically emphasized attending to multiple

features at once. We therefore suspect that the majority of our participants will enlist OMC

strategies during learning following feedback-based instruction. As previous studies have

observed a shift from SC to OMC strategies through the course of learning, we do suspect that

the shorter nature of our task may lead to an increased reliance on SC strategies. Based on prior

research that has identified impairments in strategy switching in populations with brain damage,

we predict that more participants with aphasia will rely on SC strategies than controls.

6.2. Methods

6.2.1. Participants. Forty-six patients (29 men) with aphasia due to stroke, ages

ranging from 28.4 to 86.8 (mean age = 60.6, SD = 11.9) participated in the study. Patients

completed an average of 15.3 years of education, SD = 3.1. Severity of aphasia, as determined

by AQs computed from the WAB (Kertesz, 1982) ranged from 10.2 to 98.9. Aphasia types

included Global, Broca's, Wemicke's, Conduction, Transcortical motor and Anomic aphasia as

determined by the WAB. Patient cognitive-linguistic abilities were tested using the CLQT

(Helm-Estabrooks, 2001). Patients were tested at least six months after the onset of their stroke

(the patient in the most chronic stage of his aphasia was 260 months post onset of stroke). All

patients were English speaking and two patients were bilingual speakers of English and Spanish.

Two patients were premorbidly left handed and suffered from right-hemisphere stroke. One

patient was premorbidly left handed and suffered from left-hemisphere stroke. The remaining

patients were right handed and had aphasia subsequent to a left-hemisphere stroke. See Table

6.1. for patient information. Patients were recruited from the Boston area and tested at the

Sargent College of Rehabilitation Sciences. One participant dropped out of the study prior to

completing the non-feedback based version of the category learning task.

A group of twelve non-aphasic control participants (4 men) also completed the experiment.

These individuals were matched in age with the group of patients with aphasia (mean age =

61.27, SD = 2.95) ages ranging from 32.9 to 83.1 years. Controls were also matched to the

average years of education of the patient group (mean years of education = 16.2, SD = 2.95).

Control participants had no known history of neurological disease or developmental disabilities.

One control participant was left-handed. These controls are the same controls included in
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experiment 1 (see Table 3.2). All participants completed FB and PA learning tasks as described

in experiment 1, Chapter 3.3.

Table 6.1
Experiment 4 - Patient participant characteristics, slope scores and implemented strategy

Age AQ

52

53
67
63
61
46
57
72
61
68

76
53
59
73
66
58
74

55

61

58
82
69
91

72
80

77
68
74

91

86
91

97
88
50
85

AphasiaType
Anomic

Wernicke's
TCM

Anomic

Anomic

Broca's

Anomic

Wernicke's

Anomic

Anomic

Anomic
Anomic

Anomic;
Anomic

TCM

Anomic

BNT
32

72
83
30
80

82
57

85
43

30
2

47

82
77
65
97
17
90

Attn Mem Exec VS MPO Edu

54 96
125 108
110 89
194 139
167 145

195 118
132 118
173 132
199 157

142 136

142 102

72 113
196 148

46 142

200 142
178 144

38 113
192 152

21 52
11 57
17 35
19 92
15 72

30 99
7 43

21 83
22 94
19 73

8 55

23 56
26 95
16 32
29 101
20 80
14 38
26 88

260
48

28
65
6

86
68
15
45
13
15
24

28
136
15
65
14

10

11
16
12

16
13
16
16
18
16
19

3
16
12

19
12

16
12

12

PWA19 75 83 TCM

PWA20 28 86 Conduction

PWA21 59 74 Conduction or
PWA21 ~Anomic

PWA22

PWA23

PWA24

87
50
58

88
94

78

Anomic;

Anomic
Conduction

PWA25 69 34 Conduction or
Wernicke's

PWA26 60 99 Anomic

PWA27 34 25 Wernicke's

PWA28

PWA29

PWA30
PWA31

PWA32

68
56
57
49

59

95
87
97
58
83

Anomic

Anomic

Anomic
Brocas

Anomic;

90 144 114 10 62 17 16

78 202 156 30 100 23 18

23 131 113 6 52 48 16

58 143 110
100 210 181
83 194 156

14 56

31 100
40 92

13
24

110

12

18
18

0 167 66 23 91 27 21

98
0

77
83
83
58
78

209 175
184 66
192 155
196 150

160 147
163 98
190 132

32 101
18 92
28 97
26 96

25 77
19 74
25 91

70
6

21

13
9

162
26

16
14

17
16
16
12

19

81

PWA1

PWA2

PWA3

PWA4

PWA5

PWA6

PWA7

PWA8

PWA9
PWA10

PWA11

PWA12

PWA13

PWA14

PWA15

PWA16

PWA17

PWA18



PWA34 44 95 Anomic 95 196 151 27 96 12 12

PWA35 66 86 Anomic 73 -- -- -- -- 123 16
PWA36 65 98 Anomic 95 187 163 22 81 24 19
PWA37 66 31 Broca's 0 101 40 3 39 41 18
PWA38 53 41 Wernicke's 7 144 74 17 64 25 12

PWA39 38 78 Anomic 55 173 139 22 77 53 16
PWA40 83 93 Anomic 95 172 145 22 79 39 16
PWA41 54 93 Anomic 80 193 143 27 96 115 16

PWA42 65 22 Conduction or 7 197 93 28 101 120 16
Wernicke's

PWA43 66 70 Conduction 62 184 120 20 88 84 18

PWA44 53 48 Conduction or 7 178 93 24 92 107 16
Wernicke's

PWA45 70 10 Global 0 13 30 3 17 76 12

PWA46 64 68 Anomic 13 146 102 14 71 18 18
PWA denotes patient with aphasia. BNT denotes the Boston Naming Test. The following headers denote
standardized scores from the CLQT: attention (Attn), memory (Mem), executive function (Exec),
visuospatial skills (VS). MPO denotes months post onset of stroke. Edu denotes years of education.

6.3. Strategy Analysis

Each participant's raw data on FB and PA category learning tasks (described in Chapter

2.3) were analyzed at the feature level, calculating the percentage of "B" responses made for

each individual feature. Animals had ten features, each with a binary distribution (i.e. body

pattern: spots or stripes), and we examined the percentage of "B" responses made for each binary

option (percentage of "B" responses when the animal had the feature spots, percentage of "B"

responses when the animal had the feature stripes). Recall that if feature was characteristic of

prototypical animal B, it was reinforced as belonging to category B on 70% to 80% of trials.

Correspondingly, the feature was reinforced as belonging to the opposite category on 30% to

20% of trails.

In the first step of our analyses, we calculated each individual's percentage of "B"

responses for each binary dimension of the ten features. Next, we set up multiple model

strategies adapted to our task and stimuli, based on those models presented by Gluck et al. (2002)

and Meeter et al. (2006). Our first strategy, the optimal multi-cue strategy (OMC) was modeled

as a strategy for which responses matched the actual "B" reinforcement rate for each dimension

of each feature. In this model, for example, optimal categorization of the feature body pattern
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corresponded to a 70% "B" response rate for spots and a 30% B response rate for stripes (see

Table 6.2). To produce results that truly fit the OMC strategy model, individuals had to produce

near optimal categorization rates for multiple feature dimensions, not just one. Results with

optimal categorization rates for all features suggest attention and effective learning of an entire

pattern.

Next, we established twenty singleton cue strategies (SC), one for each feature dimension

(A and B). Imagine that the feature body pattern was labeled as feature 1. The first singleton

cue strategy (1A) was modeled as a strategy in which participants produced a "B" categorization

rate of nearly 100% for all animals with a body pattern stripes and a nearly 0% "B"

categorization rate for all animals with a body pattern spots. Model 1B would correspond to a

near 0% "B" categorization rate for all animals with body pattern stripes and near 100% "B"

categorization for all animals with body pattern spots. Based on the methods of Meeter et al

(2006), in order to account for error, we set the model likelihood of responding "B" to stripes as

variable 7r and its corresponding feature dimension (i.e. spots) as 1- 7r; rather than setting these to

1 and 0, respectively. Meeter et al. (2006) evaluated error parameters, of .9, .95, .975 and .995.

Researchers found that higher values of x produced best fits to data with few errors, while lower

values of 7c produced ideal fits to data with many errors. This finding was logical since 2r

represents an error tolerance criterion. A value of 0.95 was judged to optimize fits for a wide

range of error rates. For our study therefore, we adopted a value of .95 for our parameter x. For

each singleton cue strategy, responses to the remaining feature dimensions were modeled as

chance, or a 50% "B" categorization rate (see Table 6.2).

Finally, we included a "random strategy" as proposed by Meeter et al. (2006). A random

strategy is modeled as a 50% "B" response rate to each feature. As described by Meeter et al.

(2006) behaviors that best fit random strategies can represent random behavior, or no strategy.

Random strategies can also, however, encompass a multitude of strategies that simply deviate

from those already modeled (OMC and SC in our study). Random strategies may therefore

encompass no strategy, switching strategies, or a combination of probabilistic rules not captured

by the other models. Including a random model into analyses helps reduce the number of falsely

identified singleton cue and multi-cue strategy fits. Under stringent error criteria (n), such as

0.95, the range of responses fit by a random strategy is wide (see Figure 6.1). In the current

study and subsequent analyses, we will call this range and strategy fit: random pattern (RP).
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random

40
~=.9

0
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0% 50% 100%

o %B response to feature xA(ex: stripes)

Figure 6.1: Response patterns modeled in the space of all O/B values. This plot is modeled after Figure 2, of Meeter
et al. (2006). This adaptation reflects two singleton cue strategies for a feature x. The upper left quadrant represents
a near 100% B response categorization for all animals with dimension xB (ex: spots) and near 0% B categorization
of the opposite dimension xA (ex: stripes). Semicircles represent the range of responses that would fit this singleton
cue model under various parameters a. All areas shaded in gray that are not enclosed by semicircles represent
patterns best fit by a "random strategy," in our study deemed a "random pattern" (RP). High parameters of i lead to
a large range of responses best fit by RPs.

Finally, we adapted the quantitative methods proposed by Gluck et al., (2002) in order to

quantify the fit of each participant's responses with each of our models. We used the following

calculation to assign each participant with a fit score for each model:

Score for Model M = 5(#B expected . - #B actual,)
YF (#BpresentationsF)2

using F to indicate feature (10 features, each with a binary value); #B expectedF for the number

of times that a B feature would be expected to appear under model M; #BactualF for the number

of B responses made by the participant for that feature and #BpresentationsF was the number of

times that the feature B appeared in testing. In this manner we scored each participant's

response fit with an OMC strategy, twenty SC strategies and a random pattern (RP). Each

participant was assigned with a fit score between 0 and 1 for each strategy model. The score

closest to 0 represented the closest model match.
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Table 6.2
Set-up of model strategies

%Brate SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC SC
in - - - - - - - - - - - - - - - - - - - -

Feature training OMC RP 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B 1OA 10B

1 A 30% 0.3 0.5 7c 1-n 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 70% 0.7 0.5 1-n x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

2 A 20% 0.2 0.5 0.5 0.5 x 1-n 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80% 0.8 0.5 0.5 0.5 1-7r x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

3 A 30% 0.3 0.5 0.5 0.5 0.5 0.5 a 1-n 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 70% 0.7 0.5 0.5 0.5 0.5 0.5 1-m 7r 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

4 A 20% 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 7v 1-n 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80% 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-n x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

5 A 20% 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 7 1-It 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80% 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-7 a 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

6 A 20% 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x 1-n 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
B 80% 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-x x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

7 A 30% 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x 1-x 0.5 0.5 0.5 0.5 0.5 0.5
B 70% 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-x x 0.5 0.5 0.5 0.5 0.5 0.5

8 A 20% 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x 1-n 0.5 0.5 0.5 0.5
B 80% 0.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-x x 0.5 0.5 0.5 0.5

9 A 30% 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x 1-N 0.5 0.5
B 70% 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-x K 0.5 0.5

10 A 30% 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 x 1-i
B 70% 0.7 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1-7 X

Parameter 7c was set to .95

OMC stands for optimal multi-cue strategy, in which responses were modeled to match that actual "B" reinforcement rate for each feature. SC
stands for singleton strategy in which categorization rates approach 100% (7 ) for one feature value and approach 0% (1- 7r) for its alternative. RP
stands for random pattern, modeled as a 50% "B" response rate to each feature.
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6.4. Results

6.4.1. Strategy use following FB instruction

6.4.1.1. Controls. Strategy analyses over control participant data demonstrated

that following FB instruction four control participants were best fit by an OMC strategy. Seven

control participants were best fit by a SC strategy. Features were numbered from 1 to 10 and

singleton users were found to attend to a variety of features, focusing on features 1, 4, 5, 6, 7, 8,

9 and 10; corresponding to body shape, nose, ears, head direction, body pattern, head direction

and color. The variety of features focused on by singleton strategy users suggests that no single

feature stood out as a more salient feature than the others. Only one control produced results that

were fit by the RP.

Analyses of learning slope demonstrated that only two control participants produced

scores that were suggestive of unsuccessful category learning under FB conditions (see Figure

6.2). Control participant 1 (CNl), the participant whose results fit the RP had a low slope of

learning and results that were non-linear. This suggests a pattern of random responses that did

not lead to effective category leaming. We hypothesize that CN1 was unsuccessful at devising

an effective strategy through training. The other control participant (Cnl0) who did not learn

following FB instruction was found to engage a SC strategy. SC strategies have been considered

suboptimal, and in this case the participant focused on a feature that did not lead to successful

overall categorization rates. All other control participants produced categorization scores that

resulted in positive slopes of learning, which also satisfied conditions of linearity. Average

slopes of learning for controls using an OMC strategy (n = 4) was 9.9, SD = 1.6. Average slopes

of leaming for controls using a SC strategy and demonstrating successful learning (n = 6) was

6.9, SD = 2.2. As seen in other studies, results demonstrate that category learning can be

successfully achieved through OMC or SC strategies. Overall learning slopes were higher for

participants engaging an OMC strategy than those engaging SC strategies.

6.4.1.2 Individuals with aphasia. Strategy analyses over patient participant data

demonstrated that following FB instruction six patient participants were best fit by an OMC

strategy. Nineteen individuals with aphasia were best fit by a SC strategy. Similar to what we

observed in control participants, singleton users were found to attend to a variety of features.

Patient participants focused on features 1, 2, 3, 5, 6, 8, 9 and 10; corresponding to tail shape, foot
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shape, headpiece, head direction, leg width, body pattern and color. The remaining 21

individuals with aphasia produced results that best fit a RP (see Figure 6.3).

Control Participant Data for FB Task (n=12)
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Figure 6.2: Control participant data for the FB task. The y-axis represents scores of learning. Recall that scores
approaching positive ten represent ideal learning. Asterisks indicate scores that satisfied tests of linearity and
approached positive ten. Marked scores represent successful category learning.

Patient Participant Data for FB Task (n=46)
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Figure 6.3: Patient participant data for the FB task. The y-axis represents scores of learning. Asterisks indicate
scores that satisfied tests of linearity and approached positive ten, therefore representing successful category
learning.
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Analyses of learning slope demonstrated that none of the 21 individuals who engaged a

RP during FB tasks successfully learned categories. As expected, all of the OMC strategy users

had high scores of learning that satisfied conditions of linearity. Twelve of the SC strategy users

were successful at category learning.

As this group was larger than the control group, we were able to conduct a one-way

analysis of variance (ANOVA) using strategy as the between groups factor (OMC, RP and SC)

to examine the group differences between FB learning slope and strategy use. The assumption of

homogeneity of variance was not met for these data; therefore, the Welch's F test was used. Our

one-way ANOVA yielded significant variation among strategy conditions; Welch's F(2, 21.47) =

90.1, p = <.001. A post-hoc Games Howell test demonstrated that slopes following RPs

significantly differed from slopes following OMC strategies, p < .001 and SC strategies, p < .01.

Slopes obtained under learning using a SC strategy also significantly differed from slopes

obtained when classification engaged an OMC strategy, p =.01. Slope scores were highest when

participants engaged an OMC strategy (M = 8.9, SD = 1.2) followed by scores obtained while

engaging a SC strategy (M = 4.5, SD = 5.9) and finally a RP (M = -.25, SD = 2.1) (see Figure

6.4).

Thus, like controls, all individuals with aphasia who engaged OMC strategies during FB

classification demonstrated successful learning of categories. The majority of patients engaging

SC strategies also learned categories. In contrast, none of the participants with aphasia who

engaged a RP following FB instruction were found to successfully learn categories. Engaging

either an OMC strategy or SC strategy appears critical to successful learning under FB

conditions. Engaging a RP following FB instruction is not ineffective.

6.4.1.3. FB instruction and cognitive-linguistic factors. In order to examine

whether any differences arose in the cognitive-linguistic characteristics of OMC, SC and RP

users following FB instruction, we conduced ANOVAs comparing aphasia quotient, BNT score,

scores of attention, memory, executive function, and visuospatial skills as determined by the

CLQT. We also included demographic variables of age, months post onset and education into

analyses. All comparisons were found to be non-significant (see Figure 6.4). We observed a

very mild trend in which RP users were found to have lower Raven's matrices scores, and lower

scores of attention and executive function as determined by the CLQT.

88



.2

SC RP OMC

C

C I
0

SC RP OMC

0

SC R M

120 ~ -
I-z TI

Figure 6.4: ANOVA results from analysis comparing strategy (OMC, RP, SC) with FB slope of learning and
cognitive-linguistic measures. Analyses produced significant differences between FB slopes across all strategy
conditions. No other comparisons were significant

6.4.2. Strategy use following PA instruction

6.4.2.3. Controls. Following PA instruction, all twelve control participants were

found to produce scores that best fit the RP. Interestingly, learning results using a RP following

PA instruction are quite different from those observed in the FB condition. Following FB

instruction, results that matched the RP led to unsuccessful learning and appeared to represent a

failure to develop a strategy in training. In contrast, under PA instruction conditions, all control

participants produced results that best fit the RP, and all controls also showed learning scores

that approached positive ten and satisfied conditions of linearity (see Figure 6.5). Thus, across-

the-board learning was observed under PA conditions for controls. The average group score of

learning was 9.5, SD = 1.3.

Results suggest that under paired associate conditions, in which learning takes place

through passive observation rather than through active feedback, developing a singleton cue or

optimal cue strategy through the course of learning is not essential. Instead, in every case,

successful learning for controls was achieved through responses that were classified as RPs.
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Control Participant Data for PA Task (n=12)
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Figure 6.5: Control participant data for the PA task. Y-axis represents scores of learning, with a slope of positive
ten representing ideal learning. All control participants were found to successfully learn categories following PA
instruction conditions.

6.4.2.4. Individuals with aphasia. Similar to control results, strategy analyses on

classification trials following PA instruction demonstrated that 43 of the 45 patient participants

who completed the PA task engaged a RP. Patient slope scores following RP use encompassed a

wide range (M= 0.96, SD = 6.0). Sixteen of these patients produced slope scores characterized

as scores of successful learning. The remaining 27 produced slope scores that corresponded to

unsuccessful learning (see Figure 6.6). Only two individuals with aphasia did not use a RP and

instead engaged a SC strategy. Neither was successful at learning categories using this strategy

under PA conditions.

6.4.2.5. PA instruction and cognitive-linguistic factors. We were again

interested in examining how cognitive-linguistic factors and demographic variables impacted

patient performance following PA instruction. For this condition, nearly all participants fell into

the RP user group; however, unlike control participants who all learned successfully using a RP,

a wide range of learning scores was seen under RP conditions in patients with aphasia.

Therefore, we examined correlations between PA slope scores and cognitive-linguistic variables

for RP users (n = 43). Analyses yielded one significant correlation between PA slope of learning

and visuospatial skills as determined by the CLQT; r (43) = .35, p = .02. All other correlations

were non-significant. Similarly, a one-way ANOVA examining the cognitive-linguistic
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characteristics of learners and non-learners who implemented SC strategies revealed no

significant differences.

Patient Participant Data for PA Task (n=45)
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Figure 6.6: Patient participant data for the PA task. Forty-three of forty-five participants engaged a RP. The y-axis
represents scores of learning. Asterisks indicate scores that satisfied tests of linearity and approached positive ten,
therefore representing successful category learning.

6.4.3. Summary of results. Control participants and individuals with aphasia showed a

similar overall pattern in which they engaged a variety of strategies following FB training.

Under FB conditions, the use of OMC strategies and of SC strategies led to effective

categorization in testing phases following training. Data that were best fit by a RP under FB

conditions resulted in poor learning in all cases. Results suggest that in FB conditions, where

individuals receive feedback on a trial-by-trial basis, development of an OMC or SC strategy is

critical for successful learning.

Following PA training, a different pattern of strategy use arose. All controls and nearly

all individuals with aphasia produced results that best fit a RP. All control participants showed

successful learning following PA instruction. Sixteen of 45 individuals with aphasia showed

successful learning following PA instruction.
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6.5. Discussion

In this study, we aimed to explore strategy use in patients with aphasia compared to

control participants during two different versions of a probabilistic category learning task: FB

and PA. Differences arose in strategy use both between groups (controls and patients with

aphasia) and between conditions (FB and PA). All control participants showed successful

category learning following PA instruction. Ten of these controls also showed successful

learning following FB instruction. For our individuals with aphasia, 18 learned following FB

instruction compared with 16 following PA instruction.

We observed that following FB instruction, participants were able to produce scores of

successful learning using both OMC strategies and SC strategies. Successful learning following

OMC strategies is not surprising as this reflects that through the course of training, participants

learned to produce responses that closely matched the actual reinforcement rate of multiple

animal features. As noted in the introduction, similar patterns have been observed in previous

studies examining healthy populations (Gluck et al., 2002; Hopkins et al., 2004; Knowlton et al.,

1994; Meeter et al., 2006; Shohamy et al., 2008; Shohamy, Myers, Onlaor, et al., 2004) Though

our participants only underwent 60 training trails with feedback, four control participants and six

patient participants were able to implement a complex OMC strategy.

Based on prior studies that found that patients with amnesia and patients with PD were

not able to implement complex strategies (Hopkins et al., 2004; Meeter et al., 2008; Shohamy,

Myers, Onlaor, et al., 2004), we had hypothesized that individuals with aphasia might also rely

on simple strategies. In our study however, six individuals with aphasia produced results that

best fit a complex OMC strategy following FB instruction. Findings suggest that a small group

of individuals with aphasia have preserved abilities to rapidly develop complex, multi-

dimensional strategies. Feedback-based probablistic learning tasks are thought to rely heavily on

basal ganglia circuits, regions specifically damaged in PD (Meeter et al., 2008 for review). For

the case of aphasia, lesions are heterogeneous and unilateral, not always affecting these

structures. It is therefore likely that many individuals with aphasia have neural networks capable

of supporting the development of complex strategies to engage in learning of this sort.

Cognitive-linguistic factors were not sufficient to predict which individuals with aphasia had

these complex probabilistic learning abilities.
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SC strategy use led to successful learning for the majority of control participants and for

twelve of the nineteen individuals with aphasia that implemented a SC strategy. Individuals

focused on a variety of features in SC strategy use suggesting that no one feature was more

salient than others. Successful patterns of learning using SC strategies are consistent with

previous results in healthy individuals and in clinical populations (Gluck et al., 2002; Rustemeier

et al., 2013; Shohamy, Myers, Grossman et al., 2004; Shohamy, Myers, Onlaor et al., 2004).

These individuals likely identified a feature with a high reinforcement rate in training and

implemented this strategy in testing phases. Based on previous research that showed a gradual

progression from singleton cue to multi-cue strategies in learning, one might predict that these

individuals would have progressed to an OMC strategy given additional training trials.

Interestingly, seven individuals with aphasia focused on one feature during testing,

however produced poor overall scores of learning. This group did not significantly differ from

the learner group on standardized cognitive-linguistic measures. Results suggest an alternate

profile, in which individuals focused in on a single-feature, but were not effective at selecting a

feature with an ideal reinforcement rate. Such a pattern may suggest that individuals were

unable to attend to multiple features at once and therefore honed in on a single feature regardless

of its reinforcement rate in training. Participants may otherwise have realized that certain

features had high reinforcement rates with a particular category, but experienced difficulty

recalling the correct category membership of that particular feature.

In contrast to OMC and SC strategy implementation, results that best fit a RP following

FB instruction produced poor overall category learning in all cases. For these individuals (1

control participant, 21 individuals with aphasia), training did not lead to an optimization of

responses or to a focus on a single feature with a high reinforcement rate. Instead, we propose

that these individuals were unable to develop strategies in training, or had difficulty tracking

feedback and refining strategies. Such deficits were posited in Meeter et al.'s (2006) study

involving patients with amnesia. Researchers proposed that deficits in recall of attempted

strategies and resulting feedback likely accounted for the observed lack of strategy

implementation. Shohamy, Myers, Onlaor et al. (2004) hypothesized that deficits of integration,

working memory deficits or impairments in switching between strategies led to poor strategy-

development in PD patients. Any of these factors could have contributed to the random response

rates produced by our RP group; all of which resulted in poor scores of learning.
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Critically, results suggest that in order to successfully learn categories following FB

instruction, one must implement an OMC or an SC strategy. In the FB condition of our task,

participants were presented with a stimulus item and were instructed to guess to which category

it belonged. Only following a response were participants provided with feedback telling them

whether they were correct or incorrect. Under such a paradigm, participants are expected to

accumulate information about the probabilistic environment through the course of multiple trials

(Knowlton et al., 1994). Current results suggest that under this instruction paradigm, participants

had to adapt and use feedback in order to succeed with learning. The feedback aspect of the task

required strategy development.

Meeter et al. (2008) reviewed multiple mechanisms that have been hypothesized to be

engaged during feedback-based probabilistic category learning. Three major mechanisms were

outlined: rule-based learning, information-integration and exemplar memorization. The

predominant reliance on SC strategies under FB conditions in our experiment implies that

participants devised rules or engaged in active hypothesis testing through learning; mechanisms

that likely engage explicit processes (Ashby et al., 1998; Ashby & Maddox, 2011). OMC

strategies may reflect information-integration, the process of gradually integrating information

across multiple dimensions through the course of learning (Ashby & Ell, 2001). Such processes

are hypothesized to rely on reward-mediated procedural networks (Ashby & Maddox, 2011;

Ashby et al., 2002). Processes of hypothesis testing, tracking or monitoring appear to be critical

to learning during our FB task, whether they were conscious or unconscious.

In contrast, our strategy analyses following PA instruction produced compelling results,

in which fifty-five of the fifty-seven individuals who completed the task produced scores that

best fit a RP. Considered alongside FB results, one would anticipate that all participants

therefore produced poor scores of learning. However, despite a best fit to RPs, all control

participants showed scores of successful learning following PA training. Sixteen individuals

with aphasia were also successful in testing phases. These results are consistent with results

observed by Shohamy, Myers, Grossman et al. (2004). Of their 20 participants (9 controls and

11 individuals with PD), only three produced results that fit multi-cue, single cue or singleton

cue strategies following observational conditions of probabilistic learning. Results from the

remaining participants were not consistent with any of the models. Importantly, even though

results were not consistent with modeled strategies, successful learning was observed. We,

94



therefore, suggest that distinct mechanisms not captured through OMC and SC models are at

play during PA learning.

Much research has already demonstrated that distinct systems are engaged during FB

versus PA learning (Ashby et al., 2002; Poldrack et al., 2001) and the differences in strategy use

seen in FB and PA conditions of our task support this hypothesis. We further propose that the

mechanisms behind RP use following FB instruction are different from those following PA

instruction that leads to successful learning. As described above, hypothesis testing, tracking and

monitoring appear to be inherent to FB learning. Importantly, these do not appear to play a

critical role following PA instruction.

We propose that during PA learning, participants are undergoing prototype extraction in

which they implicitly learn the regularities among stimuli that determine category membership.

During passive observation of category items, participants build an abstract representation of

prototypes based on the statistical properties of items seen in training, thus forming a broader

understanding of the overall category. Many studies propose that passive exposure to stimulus

items within a category leads to this type of extraction of common features and promotes

recognition of novel items (Kdri, 2003; Knowlton & Squire, 1993; Reed, Squire, Patalano,
Smith, & Jonides, 1999; Smith, 2008; Squire & Knowlton, 1995). Such prototype extraction

learning has been proposed to rely on implicit processes and is described as being systematically

different from intentional leaming (Smith, 2008; Smith & Grossman, 2008). Feedback has

actually been described as disrupting this type of process as the intention to learn engages

explicit processes (Smith, 2008).

We therefore propose that during PA learning of our task, participants engaged in implicit

tracking of similarities and statistical properties of category exemplars throughout PA

instruction. In support of this interpretation, prototype learning has been hypothesized to rely on

perceptual learning with a high dependence on the visual cortex (Ashby & Ell, 2001; Seger &

Miller, 2010). This may explain the significant correlation observed between PA scores of

learning and visuospatial skills as measured by the CLQT.

Compelling differences were observed following FB and PA instruction methods.

Notably, RP use was found to be detrimental to learning under FB conditions. In contrast, nearly

all participants engaged RPs during PA learning and often experienced successful category

learning. Findings provide support for the hypothesis that these methods of instruction engage
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distinct processes. Results also demonstrate that subtle alterations in instruction can lead to the

distinct engagement of strategies, some of which may be more or less beneficial for individual

patients. While it is important to consider tasks and targets in therapy, current results reiterate

that the way in which therapy is administered is potentially of equal importance.
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7. Conclusion

This thesis has presented a collection of studies exploring the nonlinguistic learning

ability of individuals with aphasia. Our work was motivated in large part by the fact that

predicting outcomes continues to be a problem facing clinicians in aphasia. Clinicians frequently

encounter patients with similar deficits and linguistic profiles who show variable patterns of

progress following structured therapy programs. Such observations led to the hypothesis that

important factors are missing in our current diagnostic characterization of individuals with

aphasia and our understanding of the mechanisms of therapy. As described in the introduction,

we propose that learning, which is intrinsically linked to rehabilitation in aphasia, presents an

avenue through which individual variability following treatments might be better understood and

explained.

In our first experiment, data collected from 19 patients with aphasia and 12 healthy age-

matched controls established a proof of principle that patients with aphasia do not learn non-

linguistic information in the same manner as controls. Nearly all age-matched controls

successfully learned categories following both methods of instruction, however only 11 out of 19

patients showed successful learning following at least one method of instruction. Of these 11

learners, 8 patients demonstrated a preference for learning following FB or PA instruction. The

remaining three patients learned successfully following both methods of instruction. Nonverbal

learning scores did not correlate with language ability, further suggesting that general learning

ability is not predicted by language ability.

Interestingly, a cluster analysis produced three meaningful clusters related to AQ scores

as determined by the WAB. Two clusters, one including patients with the lowest AQ scores

(greatest degree of aphasia severity) and another including patients with the highest AQ scores

(lowest degree of severity) demonstrated successful leaming of our tasks. In other words,
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learners came from the two extremes with respect to severity of aphasia, while, with the

exception of one patient, all non-learners had AQ scores that fell in the middle range of scores on

standardized tests (see Figure 3.8). Findings support the hypothesis that brain damage to areas

that are not themselves considered critical to learning can, in many cases, lead to impairments in

nonlinguistic category learning. Importantly, nonverbal learning scores did not correlate with

language ability, further suggesting that learning ability is not predicted by language ability. As

a result of this experiment, we also devised a metric to quantify success on our category learning

tasks. This metric allowed us to examine patterns and behaviors related to learning in

subsequent experiments.

In our second experiment, motivated by language therapy studies that have examined the

impact of complexity on patterns of generalization following treatment, as well as by research

demonstrating the variable impacts of training method and stimulus characteristics on learning;

we investigated learning following typical (simple) and atypical (complex) training conditions.

Typical training conditions are thought to facilitate learning through an emphasis on salient

category features. Atypical training conditions are thought to promote generalization to

untrained within-category items through exposure to within-category feature variability.

Atypical training conditions are considered more complex than typical training conditions, as

successful learning requires that participants extract central category tendencies from training

items that contain variability.

Our experiment demonstrated, as hypothesized, that controls and individuals with aphasia

were able to successfully learn under typical training conditions. This condition was found to

facilitate learning even for individuals with aphasia who were unable to learn categories under

baseline conditions established in experiment 1. Most controls were also able to maintain

learning under complex, atypical training conditions. A smaller group of individuals with

aphasia were able to learn under these more complex conditions. We did note that those patients

who learned atypical conditions generally succeeded at baseline tasks included in experiment 1.

Though task requirements were different, results present a preliminary measure of test-retest

reliability. Once again, standardized cognitive-linguistic measures were not predictive of which

individuals with aphasia were robust, atypical learners versus those who learned only from

facilitative conditions.
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Results suggest that variability arises within the learning ability of individuals with

aphasia and led us to hypothesize how these relate to treatment. Aphasia treatment studies have

suggested that treatment focused on complex tasks and targets are superior for promoting

generalization than treatment focused on simple targets. Considering this, patients with aphasia

who demonstrated robust abilities to extract commonalities from complex training items during

nonlinguistic learning might also be those for whom complex therapy paradigms will promote

generalization. In contrast, many patients with aphasia were unable to perform such extraction

during nonlinguistic learning and therefore might not be candidates as appropriate for complex

therapies.

In experiment 3, we aimed to bridge the gap between abstract category learning tasks and

actual therapy, as the goal of our research is to apply findings to a therapy setting. In this

experiment, we enrolled individuals with aphasia in a theoretically motivated sentence

comprehension treatment, assigning each a metric of learning ability. Results demonstrated that

FB learning ability score was the only measure that significantly correlated with effect sizes

following treatment. The best model predicting treatment outcomes combined measures of FB

learning with years of education. We proposed that our sentence comprehension treatment likely

recruited many of the skills of integration of visual information, strategy selection and response

selection important for FB learning.

Interestingly, through this study, we noticed that a subgroup of participants attended to

only one feature following FB instruction, but not PA instruction. This observation led to the

development of experiment 4 in which we completed a systematic investigation into strategy use

following FB and PA instruction. Experiment 4 revealed that distinct patterns of strategy use

arose following FB and PA instruction. The implementation of OMC or SC strategies was found

to be critical to successful FB learning. In contrast, all controls and 43 patients with aphasia

implemented a RP during PA learning. Implementing this strategy led to successful learning for

all controls and for 16 individuals with aphasia. Results suggest that distinct mechanisms are at

play during PA learning that are not captured by OMC and SC strategies. Results bring attention

to the fact that characteristics of instruction significantly impact the ways in which individuals

approach a task. Cognitive neuroscientists have understood for many years the significance that

such an implication has on observed behavioral patterns and learning. The current work,
however, represents the first time that the importance of method of instruction is brought to light
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in aphasia research. The finding is simple, yet fundamental. The means with which input is

provided to patients likely influences the way that they engage with that input, also impacting the

underlying mechanisms that are recruited.

The sum of these studies has established a preliminary understanding of nonlinguistic

category learning in aphasia. Experiments have probed the impact of input variables on learning.

We also explored how an abstract metric of learning ability might relate to therapy outcomes,

finding a positive relationship between FB learning scores and success with therapy. Finally, we

examined the participant-driven factor of strategy selection determining that individuals

approach learning tasks in a variety of ways, and furthermore; that method of instruction has a

significant impact on strategy implementation.

These represent an important body of findings, as they are the first systematic exploration

into nonlinguistic leaming in stroke-related aphasia. Prior therapy studies have focused on

language deficits in order to identify appropriate tasks and targets for therapy. Additional studies

have explored processes of new word learning in patients with aphasia. As aphasia is a deficit

defined by impairments in language however, a perspective not so heavily laden with language is

important to incorporate into our understanding of the disorder. In addition, our findings and

approach can be extended to other populations characterized by language disorders such as

semantic dementia, frontotemporal dementia and primary progressive aphasia.

Our project has presented an innovative approach, using nonlinguistic paradigms that are

well established in cognitive neuroscience, but that to date have not been examined to understand

the mechanisms of learning in patients with language impairment. As described in the

introduction, much research now recognizes that regions critical for language are part of an

extensive, interconnected network within the brain. Conventional aphasia research has for the

most part narrowly focused on regions critical to language; neglecting to explore the broader

impact that brain damage produced by aphasia-inducing strokes might have on nonlinguistic

networks. We aimed to introduce a fundamentally new approach that looked beyond language,

proposing that the answer to developing efficacious, individually tailored therapies lies in a

better understanding of the supporting systems and networks of general learning. In our work,

we proposed the novel hypothesis that cognitive-linguistic deficits may be accompanied by

deficits in the general architecture supporting leaming. Our results have supported this

hypothesis.
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In addition, throughout our experiments behaviors that surfaced during learning were not

correlated with measures of language severity or other standardized metrics. We thus suggest for

the first time that differential deficits in language and learning networks are present in aphasia.

Applied to a clinical setting, we propose that those patients who appear to have higher-

level language skills do not necessarily present with the most intact cognitive or pattern

abstraction systems. Instead, these skills are likely affected to different degrees within

individuals with aphasia, contributing to our current inefficiency at predicting outcomes.

Patients with deficits that extend beyond language may require additional reinforcement or

training in therapy in order to facilitate the efficient integration and absorption of information.

Our strategy work suggests that control participants are able to independently select

effective strategies regardless of the method of instruction. Cognitive neuroscience research has

demonstrated that healthy individuals are equipped with multiple neural systems that support

learning. Presented with stimulus and task demands, healthy individuals appear adept at

selecting and engaging effective supporting mechanisms for learning. In our patients with

aphasia, a subgroup of individuals was not able to implement strategies that promoted effective

learning. Results might suggest that patients with aphasia are more limited in the number of

strategies available to them or in their ability to rapidly adapt to task demands. Patients may

therefore require additional instruction to help them optimally engage strategies and thus neural

systems during learning.

Much still remains to be understood about leaming in aphasia and its contribution to

therapy and therapy outcomes. A logical next progression would be to incorporate neuroimaging

methodologies to identify how neural substrates relate to observed patterns of behavior. In

addition, neuroimaging will provide additional insights into the relationship between behavioral

measures, aphasia presentation and site and extent of lesion.

We have proposed many hypotheses of the potential relationship between patterns of

nonverbal learning and therapy that remain to be tested. We have speculated, for example, that

our findings about stimulus complexity in nonverbal learning might inform appropriate stimulus

selection for individuals with aphasia. If this is the case, we will finally have taken a much

needed step towards individualized treatment in aphasia.

Overall, we propose that the nonverbal domain of learning presents a window into the

relearning or reaccesing of language that is brought about through rehabilitation. In the future,
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we hope that assessments can include a metric of learning that helps identify strategies and

supporting cognitive capabilities that are selectively intact in patients. A better understanding of

these supporting systems may be the gateway to developing effective, individually tailored

treatment for patients with aphasia.
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