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ABSTRACT

Observations suggest that during the last deglaciation (roughly 20,000-10,000
years ago) the Earth warmed substantially, global sea level rose approximately 100
meters in response to melting ice sheets and glaciers, and atmospheric concentrations
of carbon dioxide increased. This interval may provide an analog for the evolution of
future climate. The ocean plays a key role in the modern climate system by storing
and transporting heat, salt, and nutrients, but its role during the last deglaciation
remains uncertain.

Prominent signals of the last deglaciation in the ocean are a gradual warming
and a decrease of the seawater oxygen isotope ratio 5180 (a signature of melting
land ice sheets). These changes do not occur uniformly in the ocean, but propagate
like plumes of dye over hundreds and thousands of years, the aggregate results of
turbulent advective and diffusive processes. Information about changing temperatures
and oxygen isotopes is stored in the shells of benthic organisms recovered in ocean
sediment cores.

This thesis develops and applies an inverse framework for understanding deglacial
oxygen isotope records derived from sediment cores in terms of the Green functions
of ocean tracer transport and ocean mixed layer boundary conditions. Singular value
decomposition is used to find a solution for global mixed layer tracer concentration
histories that is constrained by eight last-deglacial sediment core records and a model
of the modern ocean tracer transport. The solution reflects the resolving power of the
data, which is highest at model surface locations associated with large rates of volume
flux into the deep ocean. The limited data resolution is quantified and rationalized
through analyses of simple models.

The destruction of information contained in tracers is a generic feature of advective-
diffusive systems. Quantifying limitations of tracer records is important for making
and understanding inferences about the long-term evolution of the ocean.

Thesis Supervisor: Carl Wunsch
Title: Cecil and Ida Green Professor of Physical Oceanography, Emeritus
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Chapter 1

Introduction

Our understanding of the physics of the ocean and climate is limited by the length

of the instrumental period. Direct measurements of the climate system, whether from

satellites, hydrographic sections, drifter pathways, or anything else, provide what is

effectively a snapshot of a system that is believed to vary on all time scales. Moreover,

while the climate response to large-amplitude, high-frequency, external forcings such

as the diurnal or annual cycles can be quite profound, we have not observed how the

climate responds to forcings of similar magnitudes on longer time scales. Inference of

the evolution of past climates from paleoclimate archives can aid our understanding

of the physics underlying low-frequency variability in the climate system and may

provide analogs for future climate change.

This work focuses on interactions between the ocean and surface climate during the

interval from 25 kya (25000 years before present) to 5 kya. During this time Earth's

climate underwent major changes as it evolved from the Last Glacial Maximum (the

period of maximum ice volume during the last glacial interval, roughly 20 kya) to

the warmer Holocene climate (roughly the last 10 kya). During this time, sea level

13



rose by roughly 120 meters as meltwater from land ice entered the ocean and the air

warmed by as much as 10 degrees in high latitudes.

The first chapter of this thesis provides background on the last deglaciation and

the role of the ocean therein. Some of the literature on the study of ocean tracers

during the last deglaciation is reviewed, with an emphasis on the use of the oxygen

isotope ratio as expressed by the measured quantity 6180. Chapter 2 describes a

framework for the inference of tracer boundary conditions in steady flow from tracer

observations in the system interior and provides examples using a simple four-box

model. Chapter 3 describes eight sediment core records of 6180,, (6180 measured in

calcium carbonate derived from benthic foraminifera) and an objective mapping to

construct evenly-sampled records and uncertainty estimates. Chapter 4 applies the

inverse methods developed in Chapter 2 to the eight sediment cores to estimate ocean

mixed-layer 6'80,,. Finally, Chapter 5 discusses the results, assesses the utility and

shortcomings of the techniques developed, and suggests future directions for research.

1.1 Roles for the ocean in the last deglaciation

Several records of deglacial surface climate are plotted in Figure 1.1. The panel

first is a time series of sea surface temperature (SST) in the Cariaco basin derived from

planktonic foraminifera. The second shows time series of the oxygen isotope ratios

of ice, 61 8 0ice, from Greenland (GISP) and Antarctica (EPICA Dome C), which are

linearly related to surface air temperature (SAT) at the ice core locations. The third

plot shows changes in sea level relative to the modern as derived using Barbados

corals [Peltier and Fairbanks, 2006]. These time series summarize the major surface

climate shifts over 20-10 kya: Earth became warmer, especially at the poles, and sea

level rose by roughly 80 m. The overall deglacial transitions evident in Figure 1.1

14
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Figure 1.1: Chronologies of deglacial proxies for surface climate over the interval 25-

10 kya. Colored bars indicate approximate ranges for millennial "events": purple is

Heinrich Event 1 (HI); light blue is the Bolling Allerod (BA); mauve is the Younger

Dryas (YD). TOP: Cariaco Basin SST record derived from planktonic foraminiferal

measurements of Mg/Ca [Lea et al., 2003]. MIDDLE: 6 8 Oice in permil deviations

from VSMOW for the GISP2 Greenland ice core record (blue, Grootes et al. [1993],
Stuiver et al. [1995]) and the EPICA Dome C ice core record (green, Stenni et al.

[2001]). BOTTOM: Sea level measured at Barbados using corals, reported relative to

the modern and corrected for isostatic rebound [Peltier and Fairbanks, 2006].
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are part of a glacial-interglacial cycle that is a dominant signal in records of climate

over the past million years and is believed to be coupled to changes in Earth's orbit

around the sun [Hays et al., 1976, Huybers and Wunsch, 2005] and greenhouse gas

concentrations [Shakun et al., 2012].

A large paleoceanographic and geochemical literature is dedicated to studying

differences between the LGM and modern ocean states - the initial and final condi-

tions of the deglaciation [Curry et al., 1988, Curry and Oppo, 2005, Wunsch, 2003,

Lynch-Stieglitz et al., 1999, Marchal and Curry, 2008, Dail, 2012, Lund et al., 2011,

and many others]. Curry and Oppo [2005] obtained benthic foraminiferal oxygen

and carbon isotopes from sediment cores recovered at a range of depths on the Brazil

Margin. They concluded that, within the western Atlantic, deep ocean waters formed

in the North Atlantic fed a more intermediate water mass than in the modern ocean

and that deep water from the Southern Ocean filled more of the basin. Keigwin

and Schlegel [2002] argued that ventilation ages (the time since a parcel was exposed

to the atmosphere, as measured by C ages) during several time slices within the

LGM (21-18 kya) were roughly five times as great as those found in modern NADW.

Marchal and Curry [2008] used an inverse method to show that about 20% of LGM

estimates of VO8Oc and 61 3 C in the Atlantic are inconsistent with modern estimates,

but only if certain assumptions about sediment core measurement error and tracer

transport are made. Many estimates of Holocene and LGM ocean properties assume

that the ocean was in a steady state over a long interval, which can introduce sub-

stantial errors (see Section 3.3.2). Conjectures of differences between ocean states at

the LGM and in the Holocene provide testable hypotheses for the long-term evolution

of the abyssal circulation.

In addition to the overall glacial-interglacial change, features in some deglacial

records have been interpreted as "events" that may have global or regional extent.
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In particular, three shifts in geochemical records persisting for roughly 1000 years -

"Heinrich Event 1" (HI), ca. 17.5-16.5 kya, the "Bolling/Allerod" (BA), ca. 14.5-

13 kya, and the "Younger Dryas" (YD) or "Heinrich Event 0", ca. 13-11.5 kya -

are probably the best-studied features of the last deglaciation. Qualitatively similar

structures have been observed in preceding glacial and interglacial intervals, where

they are sometimes lumped together as "millennial variability." It is unclear whether

the YD, BA, and HI are modes of climate variability that are superimposed upon

more gradual deglacial changes, or whether millennial variability played an intrinsic

role in the glacial-interglacial transition.

Alley et al. [2003] and Broecker [2003] suggested that features like the YD and

BA could be explained by a local climate instability that is amplified by feedbacks

and communicated (via a "globalizer") across different hemispheres. The perturbed

climate state must be maintained for hundreds or thousands of years, requiring a

so-called "flywheel." The "globalizer" and "flywheel" concepts are frequently used to

implicate the ocean because the ocean can transport properties over large distances

and has long tracer equilibration time scales.

On time scales shorter than that of the deglaciation, many studies have suggested

that the meridional mass transport of the Atlantic Ocean (the Atlantic Meridional

Overturning Circulation or AMOC) changes as a response to freshwater input at high

latitudes [Keigwin et al. [1991], Keigwin and Jones [1994], Alley et al. [2003], Broecker

[2003]]. In this paradigm, freshwater released in the high latitudes of the North

Atlantic forms a low-density "lid" that stabilizes the water column to deep convection

and reduce the creation of the modern North Atlantic Deep Water (NADW).

Numerous studies (so-called "hosing" experiments) have investigated the sensi-

tivity of the high-latitude North Atlantic to freshwater forcing in coupled ocean-

atmosphere GCMs and have found reduced NADW formation and multiple regimes
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of flow [Manabe and Stouffer, 1988]. Additional modeling studies have concluded that

the AMOC has multiple stable equilibria and exhibits hysteresis behavior, such that

freshwater forcing can trigger rapid transitions between different AMOC regimes but

recovery times to the initial state can take hundreds or thousands of years [Rahm-

storf, 1995]. However, Condron and Winsor [2011] suggest that better-resolved GCMs

distribute meltwater along western boundaries rather than exporting it to the open

ocean where deep convection occurs. Eisenman et al. [2009] suggested that reductions

in deepwater formation could have been caused by rain driven by receding ice sheets.

It is difficult to assess the likelihood of such scenarios given that the unforced vari-

ability of the AMOC is poorly constrained (and even what is meant by the AMOC

must be carefully specified; see Wunsch and Heimbach [2013]).

AMOC changes have also been cited to explain the apparent interhemispheric

lags in temperature anomalies between Greenland and Antarctic ice cores during

so-called Dansgaard-Oeschger events [Dansgaard et al., 1993, Blunier and Brook,

2001]. The "bipolar seesaw hypothesis" posits that, subsequent to AMOC reductions

due to melting from regional warming, the deep Atlantic ocean is filled with water

from the Southern Hemisphere, and increased deep-water formation in the Southern

Ocean results in a local increase in surface air temperature [Broecker, 1998]. In

this instance, the interhemispheric heat transport of the meridional ocean circulation

serves to "globalize" the regional temperature perturbation.

The ocean is also thought to play an important role in melting land ice through

the interaction with ice-sheet margins, particularly during times of sea level change.

The barotropic response of the ocean to mass fluxes is extremely rapid and can be

viewed as another potential "globalizer," allowing local ice sheet dynamics to have an

indirect effect on ice margins elsewhere. However, the role of rising global sea level

in melting ice-sheet margins and changing land ice flow rates is poorly constrained

18



and very complicated. The intuitive notion that submerging a tongue of ice may

destabilize it is complicated by changes in local gravity [Gomez et al., 2010] and

compensating effects of sedimentation on grounding line location [Alley et al., 2007].

Hypothetical changes in ocean temperature or circulation could also have played

a role in the melting of land ice by bringing ice into contact with warmer water. Pro-

nounced differences in melt rates are observed on modern Antarctic ice shelves de-

pending on the temperature of underlying waters [Joughin et al., 2012], and warming-

induced thinning is believed to have been responsible for the recent loss of the Jakob-

shavn Isbrae floating ice tongue in Greenland [Joughin et al., 2008]. However, it is

unclear to what extent one must implicate large-scale changes in ocean heat content

or circulation in order to induce melting.

In summary, numerous hypotheses have been advanced regarding the role of the

ocean in deglacial climate change. Constraining the evolution of the ocean's mass

circulation during the deglacial interval is an important step in understanding the

evolution of climate on millennial and longer time scales and the response of the

ocean to low-frequency forcing.

1.2 Previous applications of ocean tracers in deglacial

paleoclimatology, with an emphasis on 6180

The use of tracers in the ocean to infer flow properties is one of the oldest and most

useful procedures in oceanography. Using the so-called dynamic method, modern

shipboard observers gather measurements of temperature and salinity to construct

multiple vertical density profiles, which are then incorporated in the thermal wind

equation to yield vertical shear. An interior flow condition, typically a "level of no
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motion," can then be used to determine absolute velocities and thus to estimate the

transport.

Unfortunately, information about vertical density profiles in paleoclimates is scarce

and difficult to interpret [Lynch-Stieglitz et al., 1999, Wunsch, 2003, Huybers and

Wunsch, 2010]. Nevertheless, most of what is known about past ocean circulation

states has been derived from records of tracer concentrations, albeit recording prop-

erties other than density, that can be retrieved from foraminifera, bulk sediment,

or pore waters deposited beneath the seafloor. Commonly used paleoproxy tracer

quantities include the isotope ratios 618, 613C, and A 4 C, and the elemental ratios

Mg/Ca, Sm/Nd, Cd/Ca, and 2 31Pa/ 230Th.

In the absence of dynamical constraints, a "clock" is necessary to constrain flow

rates (as opposed to flow paths) [LeGrand and Wunsch, 1995, Huybers et al., 2007].

A so-called "age tracer" that sets a relative age condition for a water parcel can yield

information about flow rates. For example, surface ocean concentrations of radioac-

tive 14C tend to equilibrate with atmospheric values through air-sea gas exchange,

while parcels isolated from the atmosphere decay radioactively. Determining flow pat-

terns and rates from such tracers, e.g. 14C/ 12 C ratios, is an analytically challenging

problem, with numerous time scales of importance [Wunsch, 2002].

Another geochemical measurement used to infer mass flux rates is the isotopic

ratio 2 13Pa/ 230Th. These isotopes are differentially particle reactive in the water

column and their ratio has been interpreted as a local proxy for column-averaged ad-

vection. McManus et al. [2004] measured ratios of 2 13Pa/ 2 3 0Th excess in sediments

at Bermuda Rise which they related to the strength of the AMOC. The authors pos-

tulated a slightly reduced AMOC during the LGM and the YD and a complete halt

in overturning during H1. Subsequent work has documented issues with these inter-

pretations, including varying particulate fluxes [Lippold et al., 2011], biases from opal
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fluxes [Bradtmiller et al., 2007], and questions about the vertical extent of velocity

averaging [Thomas et al., 2006]. Burke et al. [2011] used an inverse method to find

that a compilation of 2 13Pa/ 2 3 0Th measurements from the Holocene, LGM, and HI

did not provide evidence of differences in circulation between those intervals when un-

certainties in the data and their model were taken into account. Nevertheless, 213 Pa/
230Th is frequently cited alongside hosing studies in support of reductions in deepwa-

ter formation and/or AMOC transport during stadials. A sluggish stadial AMOC is

an a priori assumption in many tracer studies of the LGM or Heinrich events.

The oxygen isotope ratio 6180 is described in permil deviation from a standard

value,

6180 [(= 1/ " aml ] * 1000%o
-(0111/016) sadr

where the "standard" is typically Pee Dee Belemnite (PDB) for carbonates and Vienna

Standard Mean Ocean Water (VSMOW) for water and ice. Differences in the 6180

values of various substances arise because of mass-dependent fractionation. Com-

pounds containing the lighter of the three stable isotopes of oxygen, 160, have less

mass and thus are more likely to evaporate and less likely to condense and rain out

of clouds than compounds containing heavier molecules. Measurements of isotope

ratios in mass spectrometers are more robust than measurements of absolute quanti-

ties, hence the widespread use of 6180. The repeated evaporation and precipitation

of water along storm tracks is an example of so-called Rayleigh distillation; the effect

is that water precipitated over land is typically much isotopically lighter (40%o) than

ocean water. Land ice, which is formed by accumulated precipitation, typically has

618Oce = -40%o [Cronin, 2010].

The 6180 of benthic sediment cores has been used for decades as a stratigraphic

tool to build relative age models for cores (e.g. Lisiecki and Raymo [2005]). While this
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approach appears to be robust on long time scales, the time it takes for the meltwater

isotope anomaly to equilibrate in the global ocean has been modeled [Wunsch and

Heimbach, 2008, Siberlin and Wunsch, 2010, Gebbie, 2012, Primeau et al., 2009] to

be on the order of thousands of years, potentially introducing errors in calibration

when global synchroneity of tracer values is assumed.

While lags between records of 180 complicate its use as a calibration tool, they

have been used by several authors to infer properties of the ocean circulation. Skinner

and Shackleton [2005] studied cores TR163-31B and MD99-2334K raised from the

eastern equatorial Pacific and the Iberian Margin, respectively, and noted a -4000

year lag in the onset of deglaciation (defined as the midpoint of glacial-interglacial

6180, change) in the two cores. The authors reasoned that this phase difference was

too large to be explained by the canonical - 103 year mixing time of the ocean or

by changes in reservoir ages or record dating uncertainty. Instead, the offset was

attributed to in-situ benthic temperature changes in the Pacific and to covarying

temperature and V180, changes in the Atlantic, suggesting a change in deep water

mass source and/or mode of formation at the Atlantic core site.

Wunsch and Heimbach [2008] challenged the conclusion of Skinner and Shackleton

[2005] by calculating the propagation of tracer in a steady-state estimate of the mod-

ern circulation (ECCO-GODAE) while holding concentration values fixed at regional

(basin-sized) surface mixed-layer patches. The time to reach 90% equilibration was

several thousand years in many parts of the intermediate and deep ocean. Regard-

less of whether the dye patch lay in the North or South Atlantic or South Pacific,

deepwater formation sites in the model North Atlantic were principally responsible

for the communication of properties from surface to intermediate and deep waters.

The model deep and intermediate North Pacific were observed to be the "end of the

line" in terms of tracer equilibration times; the North Atlantic had the shortest equi-
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libration times. The authors concluded that a 4000-year lag is not unthinkable given

three-dimensional tracer propagation times in the modern circulation, a conclusion

that can cautiously be extended to include other, past ocean circulation states with

localized regions of deepwater formation remote from core sites.

Primeau et al. [2009] evaluated the use of Dirichlet (concentration) boundary

conditions assumed by Wunsch and Heimbach [2008] to simulate the injection of

water-borne tracers into the ocean. They showed that tracer equilibration time scales

are strongly dependent upon the surface area over which Dirichlet conditions are

imposed and noted that the net input of tracer into the interior ocean was a function

of the model flow field: the locally-defined 90% equilibration time of Wunsch and

Heimbach [2008] is equivalently the time it takes for 90% of the water in a local

parcel to have traveled through the region of surface forcing. Siberlin and Wunsch

[2010] compared Neumann and Dirichlet boundary conditions in a reduced-resolution,

offline state-transition version of the ECCO-GODAE flow field and, like Primeau et al.

[2009], found reduced equilibration times and Atlantic-Pacific lags in the Neumann

boundary case.

Regardless of the boundary condition type that is chosen, the implication from

equilibrium time experiments is that changes in tracer properties set in the sur-

face ocean are not observable simultaneously in the global ocean. Depending on the

physics of the problem, a spike in tracer concentration at one location may not be ob-

servable for centuries or millennia elsewhere. Moreover, sequences of tracer pulses are

smoothed and shifted as they move through the ocean, with the effect that informa-

tion at high frequencies and wavenumbers is subject to path-dependent attenuation.

As a result, the problem of inferring remote temporal and spatial patterns in the

presence of observational noise is harder at smaller scales, and information will be

lost. The distribution of a particular equilibration percentile or the lag between the
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crossing of a specific threshold in two records are special cases of this effect.

In a linear, time-invariant system as was considered by Primeau et al. [2009] and

Siberlin and Wunsch [2010], the effect of propagation from some boundary region to an

interior location is to smooth tracer signals via convolution with Green function. The

Green function (or, in signal processing, the impulse response) is the starting place

for a vast literature on signal propagation. Until recently, Green function approaches

in paleoceanography centered on so-called transit time distributions (TTDs, Peacock

and Maltrud [2006], Rutberg and Peacock [2006]), which are probability distributions

for scalar properties (such as ventilation age or tracer concentration) of water parcels;

taken in aggregate, TTDs are Green functions. The use of Green functions is outlined

in Section 2.3.3.

The properties of observational noise can strongly influence how much can be

said about both boundary and flow conditions. Gebbie [2012] applied an inverse

approach to the Atlantic-Pacific phase lag discussed in Skinner and Shackleton [2005]

and found that a global surface history of 6180cc could be found that agreed with

cores TR163-31B and MD99-2334K in a least-squares sense using an estimate of the

modern circulation. To arrive at this solution, Gebbie [2012] defined a cost function

J (q) which was minimized with respect to the vector q of time-varying surface tracer

concentrations of 18 0, and potential temperature 6. The cost function penalized

(1) deviations from a "first guess" deglacial 618 0S, and 6 evolution at every surface

grid point; (2) rapid transitions in time; and (3) large horizontal tracer gradients at

the surface. Inferred surface tracer concentrations resemble modern distribution of

6180S, and 6 over most of the ocean.

Friedrich and Timmermann [2012] compared tracer propagation in coupled GCM

simulations with and without a strongly reduced AMOC (intended to mimic H1 con-

ditions) induced by hosing the North Atlantic with 0.5 Sv (Sv = 106 m 3s- 1) of fresh-
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water for 2000 years. The authors suggested that transport pathways in the global

ocean were sensitive to freshwater forcing and that the steady-state assumptions of

Gebbie [2012], Peacock and Maltrud [2006], and others should be revisited.

Previous studies have also evaluated relationships between more than two 6180

records. Waelbroeck et al. [2006] considered time series of benthic 680c and 13 Cc

from five sediment cores in the Atlantic, Indian, and Southern Oceans. Simultaneous

reductions in 6"80cc and 613 Cc at a high-latitude Atlantic core site coeval with HI

and the YD are interpreted as the signature of a poorly-ventilated, brine-generated

intermediate water mass. The low 6 3 C properties of this water mass are proposed to

be formed by biological fractionation beneath a buoyant fresh-water lid resulting from

iceberg melting; the low 6'VO properties are thought to be due to brine-rejection dur-

ing sea ice formation of low-6V8O glacial meltwater. By comparing with other records,

this signal is interpreted as propagating through the ocean, becoming entrained in the

Antarctic Circumpolar Current, and mixing with intermediate waters in the Indian

Ocean.

Waelbroeck et al. [2011] compiled a network of high-resolution benthic 6180 records

from the margins of the Atlantic basin with independent age models. The authors

concluded that the deglaciation (defined in terms of deviations from a nominal LGM

value) is first apparent in waters of roughly 1000m and suggested that the later onset

of deglaciation in waters deeper than 3000m is consistent with a reduction of advec-

tion of surface 6VO signals in deeper waters during H1. Low benthic 613 C and 6180

measurements at HI were interpreted as northern-sourced brine signals.
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Chapter 2

Tracer inverse problems in steady

flows

This chapter establishes a framework for the inference of time-varying bound-

ary conditions of tracer concentration. Green functions prove to be powerful tools

both conceptually and practically for formulating inverse and forward tracer prob-

lems. Relating models and observations of tracers in space and time requires careful

and consistent bookkeeping; two examples are discussed in detail to illustrate basic

practices. The solution relies upon singular value decomposition (SVD) to find the

solution to the inverse problem that minimizes misfit with the data in a least-squares

sense.

A substantial part of this chapter is dedicated to defining notation and reviewing

standard material on inverse methods. The purpose of the chapter is to give the

reader some intuition for the paleoceanographic tracer problem (discussed in Chap-

ter 4) through a development of inverse procedures and the consideration of simple

models; while the work is original, the motivation here is primarily pedagogical. The
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primary reference for this chapter is Wunsch [2006]; Wunsch et al. [1988] and Wunsch

[2002] provide additional examples of simplified tracer models. A vast literature ex-

ists on control theory methods and applications (see e.g. Franklin et al. [1997]), and

applications to the ocean tracer problem are laid out in Wunsch [1987] and Wunsch

[2006].

2.1 Notation

Scalar values are written in plain math font; vectors are bold and lower-case;

matrices are bold and upper-case. Unless otherwise noted, all vectors are column

vectors. A column vector of dimension N, a c RN, will be referred to as an N-vector.

A matrix with M rows and N columns will be referred to as an M x N matrix.

It is convenient in some cases to write matrices and vectors in tensor notation, i.e.

A = Aij, where i indexes rows and j columns; for tensor products, the convention

is Einstein summation notation. Individual elements of vectors and matrices are

specified using brackets; for example, the element lying in the ith row and Jth column

of a matrix A is written [A] j. Subscripts on scalars denote the index of the scalar

value in a matrix, e.g. x = [x1, X 2 , ... XN ] T. Similarly, subscripts on column vectors

denote the column index of the vector within a matrix, e.g X = [x 1, x 2 ... XN -

Many of the problems addressed in this chapter and Chapter 4 concern a matrix

M x N (call it E) describing a linear relationship between the vectors x, y, and n

y = Ex + n (2.1)

where y is an M-vector whose elements correspond to measurements at multiple

spatial locations, n is an M-vector of unknown noise amplitudes measured at the loci
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of observations, and x is an L-vector of unknown values. The rank K of E is defined

as the maximum number of linearly dependent column vectors (or row vectors; they

are equivalent) therein. The problem (2.1) is said to be underdetermined if M < N,

overdetermined for N < M, and rank-deficient for K < min (M, N).

Methods for solving problems having the form y = Ex + n are discussed in the

following subsection. Solutions or estimates of the true parameters x are denoted

with a tilde, R. The reconstructed data are defined as y ER. The residuals or noise

estimates are defined as ii = y - y.

The covariance matrix of a random vector a is defined as the dispersion of a about

its expectation (taken over multiple realizations of the random vector and denoted

by angle brackets),

Caa = D2 (a - (a)) (a - (a)) (a - (a))T).

The second moment matrix will be denoted R, e.g.

Raa = (aaT).

When a process has zero mean, the second moment matrix and the covariance matrix

are identical. If an estimate d of a vector a has been obtained, then define the

uncertainty of the solution to be the dispersion of the estimate about the true value

[Wunsch, 2006],

P = D 2 (d - a) = ( - a) (a - a)T)
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2.2 Machinery: Least Squares and SVD

This subsection is a recapitulation of material in Wunsch [2006] and other text-

books. It is included to define terms for the convenience of the reader.

2.2.1 Least Squares

The least-squares solution to Equation (2.1) is found by minimizing a cost function

J (x) equal to the squared solution-data misfit:

J = nTn = (y - Ex)T(y - Ex) (2.2)

(2.3)R = arg min J(x)
X

The row-weighted least squares solution includes a weight matrix in the cost function

that scales the noise amplitudes,

J = nTWln = (y - Ex)TW-l(y - Ex)

R = arg min J(x)
X

(2.4)

(2.5)

A common, statistically motivated choice is to set W

(ETW-1E>
1 exists, the

= Cnn. Assuming that

solution is given by

R = (E TW-1E7 ETW-ly (2.6)

Additional terms in the cost function can be introduced to impose conditions on

the solution in addition to requiring agreement with the data. Consider the modified
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cost function

J(x) = (y - Ex)T W-1 (y - Ex) + Y2 (X _ X)T -1 (x - xo). (2.7)

Just as the weight matrix W scales the relative importance of observations, the

second term in the cost function (2.7) can be used to penalize various properties of the

solution. The vector xo is a "first guess"; deviations from the first guess are penalized,

and in the absence of constraints from the data, R = xO. The scalar y determines the

relative importance of constraints from the data and from the first guess. The matrix

S defines what kind of deviations from the first guess are penalized. If S =I, then

the solution minimizes the squared difference between x and xO, a solution known as

"tapered" least squares. If xo = 0, then the effect is to minimize the variance of R.

Alternately, if

S = HTH

where

1 -1 0 ... 0

0 1 -1 ... 0

0 0 --- 0 1

then the difference between sequential values of R about xO is minimized, yielding a

solution that is "smoothed" in the dimension of x.

Cost functions of the form (2.7) can be expressed more succinctly in terms of scaled

quantities. Let A = AT/ 2 A1 /2 define the Cholesky decomposition of a symmetric,

positive-definite matrix A, and similarly denote the decomposition of the inverse as
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A- 1 - A-1/ 2 A-T/ 2. Then defining (Wunsch [2006] 2.132)

G'/= W-T/ 2GST/ 2

x = S-T/ 2X

(2.8)

n' = W-T/2 n

y' = W-T/2y

the cost function (2.7) can equivalently written as

J (x')
= (y'

- E'x') (y' - E'x') + -,2 (x )T (x' - xf) (2.9)

Solutions obtained in this way must be re-scaled. The solution minimizing (2.9) before

re-scaling is

R' = (E'T E' + " 21)-1 (E'T/ +

2.2.2 Singular value decomposition

The singular value decomposition (SVD) is written as

E=UAVT (2.10)

where U and V are orthonormal matrices whose columns are the eigenvectors of EET

and ETE, respectively, and A is a M x N diagonal matrix with K strictly positive

entries A,, A2 , ... AK in decreasing order along the diagonal. Right-multiplying (2.10)
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by V gives

EV = UA.

The solution range vectors are the columns vi, i = 1, 2, ... K, of V for which Evi $ 0;

for K < N, the solution nullspace vectors of E are the vi i = K + 1,.. .N such that

Evi = 0. Similarly, left-multiplying (2.10) by UT and transposing the equation yields

ETU = VAT.

The data range vectors are the ui, i = 1, 2, ... K, such that ETu, $ 0 and if K < M,

the data nullspace vectors are the ui, i = K + 1, ... M, such that ETu, = 0.

Because the ui span the space of y and n and the vi span the space of x, it

is possible to rewrite the basic relationship y = Ex + n in the SVD bases. If the

requirement is made, as it is in the derivation of the LS solution, that uTn = 0, i =

1, 2,... K, then the noise estimate or residual ft = ER - y will have a minimum L2

norm and will lie strictly in the data nullspace of E.

The general SVD solutions are

K T N

R = E yv + : aivi (2.11)
i=1 Ai i=K+1

K

ER = (uTy) ui
i=1

M

nl = E (u y) ui
i=K+1

[Wunsch, 2006]. The nullspace coefficients ac defining R are unconstrained: there

is no information in the data about the structures in the solution nullspace vectors.

Equations (2.11) can be written more compactly in matrix form. Define Q, and Q,
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to be the matrices whose columns are the nullspace vectors, i.e.

U = {UK Qu}, V = {VK Qv}

where the subscript K denotes a submatrix in which the first K columns (ordered by

the Aj) are retained. Then (2.11) is equivalent to

: = VKA- Uky + QIU (2.12)

= UKU y

ni = QuQiTy

Setting a = 0 minimizes the norm of : and yields what will be called the particular

SVD solution,

x = VKAJ UTy (2.13)

When E is full rank, the LS solution coincides with the particular SVD solution.

Where the least-squares solution does not exist, the SVD solution provides a gener-

alized least-squares approach in terms of the range vectors of E.

The uncertainty P is defined as the dispersion of R about the true value. Given

that (n) = 0

P D 2 (R X-((R _X)(R _ X)T)

= VKA'UTK nnT) UKA-'VK + Qv aaT) QT

= Cxx + QV aaT) QT (2.14)

The weights on solution range vectors in Equation (2.11) are determined both by

u y and Aj. Very small values of Ai that lie in the denominator of elements of Cx can
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dramatically increase the solution uncertainty. In many applications it is desirable

to reduce P by truncating the expansion in vi in at K' < K, thereby reducing the

contribution from C,, but increasing the nullspace contribution (and biasing the

solution). The truncation procedure assumes that there is a range of singular vectors

that lie outside of the formal nullspace (for which Ai = 0) but which are not useful in

the construction of a solution. The selection of K' defines the effective nullspace.

The effects of the rank-deficiency of E on the solution are illustrated by the sym-

metric resolution matrices Tu and TV. In the absence of observational noise, the

solution and estimated data are related to the true parameters and data by R = Tex,

Tuy, where

T= UKUK

VKVK

The resolution matrices will be unity unless K < M ( - T I) or K < N

(=- Tv - I).

The ith column (or row) of the solution resolution matrix Tv is the solution R2

obtained when the true parameters are xi 6 ,i, where 6ij is the Kronecker delta

function

iij =j (2.15)

0 i/j

If xi = Ri, then xi is said to be fully resolved; if not, evidently the solution range

vectors of E are insufficient to represent xi fully. Similarly, the ith column of Tu is the

expression of a hypothetical observation y = 6j,i in the data range of E; if y, # yi,

then the observation is not resolved and the model cannot distinguish changes in

the ith observation from observations distributed as S. The diagonal elements of the
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data resolution matrix T, may be used to rank the data by their importance to the

solution [Wunsch, 2006].

2.3 Forward and inverse tracer problems

2.3.1 Models and controls

Consider a system with tracer concentration C (x, y, t) described by a two-dimensional,

advective-diffusive equation with constant diffusivity , and constant fluid velocities

u = (u, v), on a closed domain x E [0, Lx], y E [0, L.]. Define time-dependent tracer

concentration boundary conditions at a set of locations {Xb, Yb} such that the system

is defined by

+u - VC- rV 2C = 0. (2.16)
at

C (x, y, 0) = CO (2.17)

C(Xb,yb,t) = q(t) (2.18)

Equation (2.16) is a model for the two-dimensional evolution of a tracer: it describes

the relationships between concentrations at all locations and times. Several addi-

tional definitions are helpful here. The quantities u and K are the parameters of the

model. The state of the system is the information internal to the system (as opposed

to information about boundary conditions) that is necessary to predict the evolution

of the system a small interval of time At into the future. In the case of Equation

(2.16), knowledge of C(x, y, t) and C (xb, Yb, t) permits forward predictions of arbi-

trary accuracy as At -+ 0. As described above, C is a so-called "passive" tracer,

meaning that its concentration does not affect the parameters of the system (unlike,
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for instance, salinity in the ocean, which affects velocity through the density field).

When a physical system is modeled in discrete space, the system can be summa-

rized by the state vector, c (t), which is the set of elements in the system necessary to

describe the state of the system in the discrete model. Consider (2.16) discretized in

space using a finite difference approximation, indexing horizontal locations in space

by i =1, 2, ... I and vertical by j = 1, 2, . . . J for some integer time step multiple n,

C -, ((ri + 1) At) - C- (nAt) ____

At - 2 (Ci+1,,i (nAt) - 2Ci,, (nAt) + Ci-1,,j (nAt))

2 (Ci,,j+1 (nAt) - 2 C,,j (nAt) + Ci,,j_1 (nAt))
(Ay)'

-(Ci+1,,5 - Cs,,5) - (C ,,s+1 - Ci,,5) (2.19)
AX Ay

At present the details of the discretization are not important; what is notable is that

just as 2 was linear in C in equation (2.16), so too is C (t + 1) linear in C (t) in

equation (2.19). Take At = 1 for notational simplicity so that time is an integer. The

state vector is
- T

c (t) [ C1,1 C2,1 .. . CI, .. . CI,J I

where c is an (I * J) x 1 column vector. Then (2.19) can be written in the form

c (t + 1) = Ac (t)

where, defining N = PQ, the state vector has dimension N x 1 and A is the N x N

state transition matrix, which is a function of u and ,. Since u and i, are constant in

time, so is A. Tracer concentrations at boundaries can be enforced by including an

additional term F (t) q (t) so that

c (t + 1) = Ac (t) + F (t) q(t) (2.20)
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Any linear discretized model may be put into the canonical form of Equation 2.20.

The elements in the L-vector q (t) [ qi(t) q2 (t) ... qL (t) ] are referred to as

controls. The controls are quantities that can be adjusted in order to improve the

performance of a system; an aeronautical example is the pitch and roll of an aircraft

as it comes in for a landing. The time-varying, N x L matrix F (t) will be called the

control matrix; it describes how the controls at time t contribute to the state vector

at t + 1.

Say that one wishes to learn how the state will evolve under certain boundary

and initial conditions. The forward problem is to specify F (t) q(t) and calculate the

state vector forward in time from an initial condition c (0). Equation (2.20) can be

rewritten to describe the state vector at any time t explicitly in terms of the initial

and boundary conditions:

c (t) = Atc (0) + F (t - 1) q (t - 1) + AF (t - 2) q (t - 2) + -- - + At-1F (0) q(0).

(2.21)

Conversely, often one has some measurements of the left hand side of Equation

(2.21) and wants to learn something about quantities on the right hand side: this

is the inverse problem. In oceanography, a typical inverse problem is the inference,

though observational estimates of tracer concentrations Cj, of the parameters u and

, of a model. In the case where an M-vector y of observations of the physical system

is linearly related to the tracer concentrations c (t), then the inverse problem may be

written

y (t) = B (t) c (t) + n (t) (2.22)

where B (t) is an N x M matrix1 (called the data matrix) relating the observations

1 The dimensions of B (t) and F (t) will vary in time if the number of observations and controls

changes, but one can set the sizes of these matrices to the largest such number at all times (M and
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to the state vector and n is an M-vector of measurement errors or noise. The ob-

servations y (t) in this problem are a nonlinear function of the controls q (t), the

parameters u and r (through their determination of A), and the noise n (t), and at

this point the problem is already complicated.

In practice, the practitioner of inverse methods typically has additional, "prior"

information about the boundary conditions and model parameters, and the problem

need not be informed strictly by the observations. A major challenge in paleoceano-

graphic research is the specification of prior information for the climate system, which

is extremely complex and undersampled. Lagrange multiplier methods [e.g. Dail,

2012, Wunsch, 2006] are able to incorporate prior information from dynamical models

and avoid explicitly imposing a flow parameter prior. In the case where the data have

the power to constrain model parameters, such techniques can select a candidate set

of flow parameters that matches the data while satisfying dynamic constraints (e.g.,

mass conservation, geostrophy, etc). But numerical models are plagued with prob-

lems of their own and cannot provide a firm verdict as to whether or not a certain

circulation regime is physically realizable.

For this reason, before turning to Lagrange multiplier methods and considering

new physics, a first test of the power of paleoceanographic tracer data is to deter-

mine whether or not estimates of the modern circulation fit the data to within error

[Gebbie, 2012]. Then the procedure is to assume a set of model parameters as well

as covariance estimates C. for the observational noise and Cqq for the controls and

to seek solutions i~ for the controls that minimize the model-data misfit (residual) fi.

This optimization problem - finding the set of boundary conditions that best agrees

L) and substitute rows of zeros to standardize the matrix size.
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with the data in a least-squares sense given a choice of the model parameters that

define A - will be referred to as the inverse boundary condition (IBC) problem.

If a solution to the IBC problem can be found that matches (in a statistical sense,

perhaps verified using a goodness of fit test) the prior statistics Cn and Cqq, then

evidently the modern circulation and choices of initial and boundary conditions are

adequate to explain the data. In a sense, this outcome is not desirable from an

inference perspective: it implies that the data lack the power to constrain the flow

properties [Wunsch, 1987]. When the statistics of the residuals and the observational

uncertainty are in disagreement for the best-fit solution E, then there are errors in

the model specification, the choice of the parameters u and r', the priors Can and

Cqq, or some combination thereof.

All random variables are assumed to be Gaussian. An implication of this assump-

tion is that tracer solutions can technically take real-numbered values (positive or

negative). While this approach is at odds with the conventional notion of a tracer -

there is no such thing as negative concentration - it is a reasonable approximation for

a scaled, tracer-like quantity such as 18Q, or for tracer anomalies about a reference

value. It is possible to implement positivity constraints [Gebbie, 2012, Tziperman

and Hecht, 1988], but these approaches are not discussed in this work.

2.3.2 The steady inverse boundary condition problem

For simplicity, assume that the time step is At = 1 and that t is a non-negative

integer. The evolution of the state vector is described by Equation (2.21). For the

case of constant boundary conditions q (t) = qo and F (t) = FO, Equation (2.21) may
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be written

c A'c (0) + [ At'] FOqO (2.23)

Here it is useful to note a property of the transition matrix used in the paleo-

ceanographic application in Chapter 4. In that system, tracer enters the system state

(defined to be the ocean below the mixed layer) and then is said to exit the system

state as it upwells; this upwelling is prescribed by the state transition matrix. For this

reason, the following discussion treats transition matrices that also "lose" tracer by

fluxing it out of the state. For any such state transition matrix, At -+ 0 as t -+002

and the sum of matrix powers converges to a matrix with non-negative elements de-

fined as A, = _1 A'. Physically, this corresponds to the system's "forgetting"

long-past values (including initial conditions).

In the time-asymptotic case when there is no influence from initial conditions,

c (t) is constant in time and one can define limt, c (t) = co, ; then 2.23 is

c = A.Foqo. (2.24)

Alternately, using that as t - oc, c (t) = c (t + At) = c,,, the canonical form (2.20)

becomes

c = Ac,0 + Foqo. (2.25)

2 Proof: Gershgorin's circle theorem states that for a matrix A with any eigenvalue A, JA - Ajjj <
E Aj, . Fully connected state transition matrices that lose tracer have the property that

_1 Aijg < 1Vj, implying that IA - A, Ij < |AijI < 1 - IAjjI =#> Al < 1 [Golub and
Van Loan, 2012, Giraudo]. This is true for any A, and because the eigenvalues of A all obey JAI < 1,
At - 0 as t -* oc.
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From (2.25),

CO = (I - A)-' Fogo; (2.26)

evidently A, = (I - A)- 1 and the existence of the inverse is guaranteed by the

convergence of the sum A, = E'_At'. Equation (2.26) is the time-asymptotic

solution to the forward problem under fixed boundary conditions.

In the inverse boundary condition problem, one typically has noisy observations

representative of only a subset of the state vector. Using the steady, forward model so-

lution (2.26) in (2.22), ignoring the effects of initial conditions, and assuming a steady

data matrix B (t) = BO, the inverse problem for the inference of steady boundary con-

ditions can be written

yo = BO (I - A)- 1 FOqO + n. (2.27)

The steady inverse problem can be written in the standard form y = Ex+n discussed

in Section 2.2, where E = Bo (I - A)-' Fo is an M x L matrix that describes M

equations (one for each observation) in L unknowns (the controls). Solutions to this

problem could be sought, for example, by minimizing a cost function

J (qo) = (y - BO (I - A)-' Foqo) (y - B0 (I - A)- 1 Foqo)

40 = arg min J(qo)
qo

bringing row and column weights to bear if appropriate. Depending on the size and

rank of (Bo (I - A)- Foqo), the problem could have a solution nullspace, a data

nullspace, or both.
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2.3.3 The time-varying inverse boundary condition problem:

Green functions and the whole-domain formulation

The forward evolution of the state vector is fully specified by (2.20) and a choice

of initial and boundary conditions. The inverse problem is made more tractable by

reformulating the forward problem in terms of Green functions, which are introduced

here.

In the previous section, the transient effects of initial conditions were ignored

and the time-asymptotic state vector was determined by the choice of time-invariant

boundary conditions. Now consider the complementary case where (2.20) is a pure

initial value problem with q (t) = 0 such that Equation (2.21) becomes

c (t) = A'c (0) .

Following Wunsch [2002, section 5], define a time-dependent N-vector indexed by

position j,

gi (to, t) = Atgj (to, to) , t > to, (2.28)

where [gj (to, to)] = 6 ij is a vector consisting of zeros at all indices i f j and 1

at i = j. The time-dependent vector gj (to,t) is the numerical Green function. It

describes the time evolution of the state vector from the initial condition gj (to, to).

If the dimension of the state space is N, then one may define N Green function

vectors gj (to, t) for j = 1, 2,. .. N. These vectors may be grouped to form a N x N

Green function matrix defined as

G (to, t) = g1 (to, t) g2 (to, t) ... gN (to t)
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and obeying

G (to, t + 1) = AG (to, t) , G (to, to) = I

-- >- G (to,7 t) = At

Because the flow has been assumed to be stationary in time, the Green function

gj (to, t) describing the contribution to the state vector at time t from a unitary

concentration in the jth box at any time to > 0 can be written strictly in terms of the

difference between to and t,

G (to,t) - G (t - to).

To avoid notational ambiguity, the stationary Green function matrix corresponding

to a lag r will be indexed by a subscript rather than written as a function of time,

i.e.

A(t-to) t > to
Gt-O = G (t - to) = (2.29)

10 t < to

Having defined this notation, the general forward problem (2.21) can readily be

recast in terms of the Green functions by substituting according to (2.29):

c(t) Gtc(0)+GoF(t-1)q(t-1)+GF(t-2)q(t-2)+...

+Gt_ 1 F (0) q(0),.

This expression can be written as a convolution,

t-1

c(t) = Gtc(0) + EGt'F(t- 1 -t')q(t- 1 -t'). (2.30)
t,=o
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Equation (2.30) may be written for different times t = 1, 2, ... T in a set of simulta-

neous equations in matrix-vector form,

c (1)

c (2)

c (T)

+

G1

G2

GT

Go

G,

c (0)

0

Go

0

0

F (0) 0

0 F (1)

0 0

0

0

.. F(T)

q (0)

q(1)

q (-1)

The concatenated vectors of c (t) and q (t) are indexed in

are referred to as whole-domain state and control vectors.

and matrices will be denoted with an overbar:

c (1)

c (2)

c (T)

q (0)

q(1)

q(T-1)

both space and time and

All whole-domain vectors

Note that while E and Ji span the same number of time steps T, the actual times

are offset by one. This offset is a reflection of the statement in (2.20) that the state

vector at a time t only "sees" the effects of the controls from time t - 1 and earlier.
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It is also convenient to define the whole-domain block matrices

G1 Go 0 ... 0

G2 __ G1 Go ... 0
Go =,G =0(2.31)

GT GT GT_1 ... GO

F (0) 0 ... 0

0 F (1) ... 0

0 0 ... F(T)

so that the whole-domain formulation of the forward problem is simply

c = Goc (0) + GFij. (2.32)

Equation (2.32) is exactly equivalent to the statement of the forward problem in

Equation (2.21). In the control theory literature, matrices of the form Go are known

as "controllability" matrices when the controls are the initial conditions c (0); G

describes T simultaneous controllability problems.

The time-varying inverse problem can also be written in whole-domain form. Sub-

stituting the convolution form of state evolution observations (2.30) into the definition

of the inverse problem (2.22) yields

y (t) B (t) Gtc (0)
t-1

+B (t) >: Gt'F (t - 1 - t') q (t - 1 - t') + n (t) . (2.33)
t,=o
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Define the whole-domain block data matrix

B (1) 0 ... 0

0 B (2) ... 0
B =

0 0 ... B(T)

and the noise and data vectors as

n (1) y() c (1)

n (2) y (2) c (2)
Yn = yB +.

n (7) y (T) c (T)

Equation (2.33) in whole-domain matrix form is then

y = Goc (0) + B j+Ii (2.34)

Equation (2.34) is the most general and compact form of the IBC problem for steady

flow. The focus of this thesis is on understanding and solving special cases of this

equation. Note that when effects from initial conditions are neglected, the equation

has the canonical form y = Ex + n.

All of the information about how tracer boundary conditions are propagated to

the loci of observations is specified in the matrix B -GF, which is unwieldy in large

problems. To gain some physical intuition for this operator, consider the block sub-

matrices of HIGF in the simplified case where B (t) = Bo and F (t) = Fo. Assuming

that B (t) and F (t) are constant requires that observational loci and the influence of
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controls on the state vector are time-invariant, respectively. Then each block subma-

trix of BGF is of the form BO Gt FO.

Define the function (6j (t) = [BOGtFo]jj, t = 0, 1, ... , T to be the impulse response.

The impulse response (ij (t) describes the evolution of tracer at the observational

locations specified in the ith row of BO in the case when the control values are

1 t = 0and k-=j
qk (t) =

10 otherwise

Writing the convolution form of the inverse problem (2.33) in index form, neglect-

ing initial conditions and substituting the definition of the impulse response, yields

yi (t) - ni (t) = (ij (t') qj (t - 1 - t')
t'=O

- (ij (t) * qj (t - 1) (2.35)

where * denotes convolution in time. Equation (2.35) treats q (t) as a sequence of

impulses and Bc (t) = y (t) - n (t) (call this the observable signal) as the difference

of sequential impulse responses and noise. Convolution relationships of this form are

familiar from the study of linear, time invariant filters; evidently observable signals

are filtered versions of the control signals and the kernel of the filter is the impulse

response (see also Rutberg and Peacock [2006]). Viewed in this light, UF is a

filtering operator and the inverse boundary problem is a deconvolution problem.

Consideration of (2.35) in the Fourier domain will be useful for understanding the

differences between observable and control signals, as well as the null space of the

deconvolution problem. Define the discrete Fourier transform (DFT) of a function
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f (t) to be

f (s) = f (t) e-2x7isAt.
m=-oo

Applying the discrete forms of the convolution and shift theorems (the latter to

account for the time step offset between q3 (t - 1) and (ij (t) in equation (2.35)) yields

ji (s) - ^i~ (S) e2 i(tij (s) Q3 (S)

which states that the DFT of the jth control signal, qj (s) and of the ith observable

signal Qi (s), are related multiplicatively in frequency space by the complex transfer

function, (ij (s). The gain (ij (s) is the amplitude attenuation of the convolution

operator and arg ((ij (s)) is the associated phase change.

In practice the computation of the matrices in Equation (2.34) can be prohibitive.

As written in Equation (2.31), it is necessary to run T steps of the forward model L

times in order to compute G. Recall that Gt-to - A(-tO) (Eq. (2.29)). Whenever

M < L, it is more efficient (but exactly equivalent) to compute the transpose of each

of the block matrices in B GF using

B (t1 ) Gt2 F (t3 )= B (ti) At2F (t3 ) =(F (t 3 )T A Tt2B (tl) , (2.36)

where t1, t 2 and t3 are three integer times corresponding to one of the block subma-

trices and ATt2 is the tt2 power of the "adjoint" model A T. Then BGF is computed

by running r steps of the adjoint model A T M times, once for each row of B. The

adjoint model can be thought of as running the forward model backwards in time and

transporting tracer away from the data locations.

In the numerical simulations run to generate B G F in Chapter 4, it is more

numerically stable to calculate the forward model response to a step function tracer
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pulse than to a delta function. The response to the step function is the cumulative

sum of the impulse response and is called the Heaviside response

t

Zij M E (ij W')
t1=0

which describes the evolution of tracer

the case where the control values are

qk(t)=

10

concentrations specified in the ith row of B in

t >0 and k

otherwise

This is a case of steady boundary conditions. If a limit is taken in t,

Zij (t)

lim Zij (t)t-+00

E ( C (t')
t'=0

t

= [BoGt'F0 ]i 3t,=0

S[Bo( Gt') FO]

= [BoAcoF 0 ]ij

recovering the steady solution derived in 2.3.2.

2.4 Inference from tracers in a four-box model

In this section, the general discrete advective-diffusive equation (2.19) is consid-

ered in the simplified context of a four-box model. This model has been constructed

to mimic some of the features of the more complex tracer transport model used in

Chapter 4. Two of the four boxes in the model are designated "control boxes" and the
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other two constitute the system state. Fluid volume bearing tracer enters the system

state from the control boxes at each time step, and an equal volume of fluid exits

the system state in order to satisfy volume conservation. The two control boxes are

analogous to the mixed layer in the model used in Chapter 4. When fluid is upwelled

into the ocean mixed layer, its tracer properties may be modified by surface climate

properties and thus not conserved.

2.4.1 Model setup

Consider the model depicted in Figure 2.1, in which there are four homogeneous

fluid reservoirs labeled 1-4, each with a time-varying scalar property Ci (t) E R. Take

this property to be the (homogeneous) tracer concentration (tracer mass per volume)

in the reservoir3 . Such a model might represent fluxes between porous membranes

in a filtration system, chambers in a heart, or ocean basins. The first objective is to

describe the forward evolution of the model state in the canonical form (2.20).

The parameters of the model are the reservoir volumes V and the volume flux

Jij > 0 between reservoirs i and j. Volume fluxes are specified to be positive to permit

bidirectional exchanges between reservoirs. The volume fluxes can be representative

of advective processes, diffusive properties, or both. As a stability requirement, the

discrete time step of the model, At, is chosen so that boxes cannot be completely

refilled in a single time step:

3At < I Vj. (2.37)

3 Physically, concentration can only take positive values, but inference under positivity constraints

requires special procedures that are not essential to the present discussion. It suffices to assume that

values here have been shifted and rescaled to take a range of positive and negative values.
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Equivalently, the time step is required to be less than the tracer residence time -=

in every box.

Boxes 1 and 2 are defined as boundary reservoirs; the concentrations C1 (t) and

C2 (t) are the boundary conditions of the forward tracer problem and the control
T

vector is q (t) = C1 (t), C2 (t)] . At each time step, the boundary conditions are

set to a prescribed value by a mechanism exterior to the model setup. The model

state is specified by the concentrations of boxes 3 and 4 (the interior reservoirs) and

the state vector is c (t) = C3 (t), C4 (t)] T.

1 3 2

J J13 3423

4 JI
43

14 24

400

Figure 2.1: A
The subscript

box model with four reservoirs related by constant volume flux rates.
oc denotes that the flow is out of the system.

Define the set of box indices corresponding to the state and controls as Y and ',

respectively. For a box model of arbitrary size, the equation of volume conservation

for all i C Y is

(2.38)S {Jii - Ji}+ JiC = 0
jEYUW
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and the equations for tracer mass conservation are

(2.39)I C (t) Jii - Ci ( ii} - Ci (t) Ji0O
jESUC

Combining Equations (2.38) and (2.39) to eliminate the Jij yields a closed form for

the evolution of the tracer in terms of interior and boundary boxes,

Cz(t+ At) = E
jESUC {

- j ICi (t)+ Ci (t) .

The forward tracer evolution equation is readily written in the canonical form of

Equation (2.20) using the definitions of the state and control vectors c (t) and q (t).

The state transition matrix is [Wunsch et al., 1988]

J At
Aii = I --

jESUC Vi

j L

(2.41)

(2.42)Aij = J, I,
jES Vi

and F is

(2.43)FijC )

The state evolution equation in the four-box case can then be written in terms of the
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(2.40)

Vi(Ci (t+ At) -Ci (0)
Vi~At =



state transition matrix A and control matrix F according to (2.39):

C3 (t + At)

C4 (t + At)

c(t+At)

1 3J23+J43 At 1-"At C3 (t)V3 V3 f
[ At 1 _ AJ +Ju At C 4 (t)

A c(t)

ju i& C1 t
+ At V V3 (2.44)

{ 1 C2(t)

F q(t)

2.4.2 The steady inverse boundary condition problem

The steady IBC problem is the inference of steady controls qO using noisy mea-

surements of c,. Define observations yo to be samples of the steady state vector plus

a noise component,

yo = BOcO + n.

In the case where M observations of the state vector are available, yo and n are

M-vectors, cm, is a 2-vector, FO is 2 x 2, and BO is 2 x M.

Recall that the statement of the steady inverse problem (2.27) is

yO = [Bo (I - A)- 1 Fo o + n.

As discussed in 2.3.2, (2.27) has the canonical form y = Ex + n. If one has a

priori information about the noise amplitude and/or some desirable properties of the

solution, then the inverse problem may be row- and column-weighted accordingly (see
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(2.8)) and the scaled problem written as

y = E'q- + n'
0 T

E W Bo (I - A)- FoS-2

gO = S-T/2qo

n = W-T/ 2 n

y = W-T/2y0

By specifying the solution and data nullspaces, the singular values and vectors of

the E' matrix provide an important diagnostic of the power of the data to resolve

features in the controls. Specifically, the scaled left singular vectors U' describe the

structures in y that are projected onto the right singular vectors V' in the range

contribution (the Ai 4 0, i = 1, 2, .. . K) to the SVD solution (Equation (2.11))

K UIT I/ N

ile= i yzi E aiv's.
i=1 i=K+1

Moreover, small singular values are an indicator of structures (the corresponding

singular vectors) that cannot be well resolved in the data and solution (particularly,

they are sensitive to noise in the data). These ill-resolved structures can be eliminated

from the solution by defining an effective nullspace K' < K. The following four

examples discuss the inverse problem in different configurations.

Case 1: Full-rank

Set J13 - J4 = J24- = 1, J34 = J23 = 0, 'At = 1, and V3 = V4 = 10.

Thus the boundary reservoirs contribute equally to the interior boxes and half of the

flux out of box 4 is into box 3 (the other half leaves the system). Stipulating that
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Bo= W-1 S-1 = I yields

A 0.8 0.1 [0.1 0 1 1 5 2.5
A V F0 - I, (I-A)-= I

0 0.8 0.1 0.1 0  5

_ T 0.75 0.25
E=W BO(I-A)IFog 2

0.5 0.5

In this case, W- 1 B0, (I - A)-', FO, and S- 1 are all full-rank. The singular value

decomposition E = UAVT is, after rounding to two significant figures,

-0.75 -0.66 1.0 0 -0.86 -0.50
U =I A =I V =_ (2.45)

-0.66 0.75 0 0 .24  -0.50 0.86

The inverse problem is formally just determined ("formally" in the sense that there

is an equal number of observations and controls; the presence of noise makes the

problem underdetermined) and full rank. There are no null spaces and the resolution

matrices are unitary.

Case 2: Null space from B and W-1

The matrices B and W 1 are both row weighting matrices, but they represent

different aspects of the inverse problem: B describes the structure of the observations

or linear problem (and may not be square), and W- 1 is chosen to be the inverse of

the noise covariance matrix. Consider the case in which the noise amplitude in Box

4 is ten times larger than that in Box 3: o-4 = 10, o3 = 1:
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1 0 1 0 T 1 0 1 0
B= ,W= W-i= ,s=

o 1 0 100 0 0.1 0 1

Using the same values for FO, and A as above, the scaled matrix E' is

S-T 0.75 0.25
E' = W-Bo (I - A)-- FoS-- =

0.05 0.05

and its singular value decomposition is

-1.0 -0.08 0.79 0 -0.95 -0.32
U'= I, A'= , =

-0.08 1.0 0 0.03 -0.32 0.95

This problem is mathematically full-rank, but the second singular value A2 is very

small relative to the first. The first singular vectors project a quantity dominated

by the (relatively low-noise) observation of C3 onto a mode v, that attributes con-

centrations in the boundary boxes in approximate proportion to their flux into the

system.

Case 3: The null space from F

What happens to the solution if the influence of one of the boundary reservoirs

becomes very small? Consider the case where J13 is reduced to 10-1. Then

0.8 0.1 0.1 0 5.0 5.0

0 0.89 0.1 0.01 0 9.9
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T 0.95 0.05
E = W-vB, (I - A)- FS- =0.

0.91 0.01

The rows of E are nearly linearly dependent and the SVD of E is now

-0.71 -0.71 1.3 0 -1.0 -0.07
U =I A= V=

-0.71 0.71 0 0.03 -0.07 1.0

If the small value A2 is set to 0, then inference of the second control C2 lies in

the effective nullspace of the inverse problem. This makes physical sense - very

little information about C2 is present in the system relative to the noise amplitude.

Since only C, is observable in the system, gradients between the observable boxes are

unobservable, and the vector proportional to such gradients lies in the left nullspace

u 2 . The resolution matrices are

0.53 0.50 0.99 0.07

0.50 0.48 0.07 0.005

The fact that similar values lie on the diagonal of Tu means that the two mea-

surements have roughly equal importance in determining the solution. However, the

data have very different resolving power for the two control values: the control vector

q = [1, 0 ]T will be reconstructed as 4 = [0.99, 0 .0 7 ]T, but the control vector q = [0, 1 ]T

will be reconstructed as E= [0.07, 0 .0 0 5 ]T, a dramatic reduction in solution norm that

does not preserve any of the structure of the true controls.

Case 4: The null space from S'

In most cases, one has a priori information about the boundary conditions that

does not come from the data. In the paleoceanographic case, placing prior constraints
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on surface distributions of tracer perturbations is complicated and involves compli-

cated mixed-layer processes. In the four box model, structures in the controls can

be thought of as originating from a prescribed covariance between C1 and C2. For

example, specify that C, and C2 are known to covary highly:

1 0.99
S =q Rg=

0.99 1

5.3 -4.7 -r 2.3 -2.1
-- S-1 S-vT=

-4.7 5.3 0 1.0

and that all other matrices are the same as in the full-rank case. Then

T 0.75 0.78
E' = W-vBo (I - A) FoS--T =

0.5 0.57

-0.82 -0.57 1.3 0 -0.68 -0.73
U'= , A'= , V'=

--0.57 0.82 0 0.03 -0.73 0.68

A solution that includes the second set of singular vectors will have a substantially

higher uncertainty because of the relatively small associated singular value. This

greater uncertainty reflects the high covariance specified a priori by S - by stipulating

that gradients between the controls are unlikely, the presence of any gradient in the

solution is inferred as likely due to error.

2.4.3 The time-varying inverse boundary value problem

The time-varying inverse boundary value problem is the inference of q (t) using
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noisy measurements of c (t). Here, the purpose is to consider the information lost

as a tracer signal (or time series) in the boundary regions of the four box models

propagates into the interior boxes.

As in the steady tracer case, set the time step At = 1, J13 = J14 J24 = J4 1,

J34= 2= 0, and V3 = V4 = 10, B = I so that

0.8 0.1 0.1 0 1 0
A, F= , B ] (2.46)

0 0.8 0.1 0.1 0 1

Consider the case in which the initial conditions are known and specify c (0) = 0 and

r = 20. The statement of the weighted, time-varying inverse problem is

= [W 2 BGFS q'+ii'.

The matrix choices specified in (2.46) yield the four impulse responses (ij (t) =

[BG (t) F]ij plotted in Figure 2.2. (41 (t) and (42 (t) - the responses observed in Box 4

to impulses in Boxes 1 and 2 - are exactly the same: a spike of 0.1 at t = 1, followed

by an exponential decay. The responses C31 (t) and (32 (t) of Box 3 to impulses in the

two control boxes are qualitatively different. An impulse in Box 1 is observed in Box

3 at t = 1 as a spike to 0.1 followed by a gradual decay, but an impulse in Box 2 is

observed in Box 3 as a smooth time series with the first nonzero value at t = 2 and

maximum values at t = 5 and t = 6.

The features in the impulse responses are readily rationalizable. The impulse

response at t = 1 is determined by the matrix F; for instance, in the cases of (41 and

(42, 1/10 of the volume of Box 4 is replaced by fluxes from boxes 1 and 2 at each time

step. The phase lag before onset in (32 (t) arises because the signal from Box 2 can

only get to Box 3 by going through Box 4, which takes a model time step. The signal
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Impulse

0.8

0.6-
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0
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0.06- 
(31

CD2 0.0 ___ (32
0- (41, (42
0.02

0
0 2 4 6 8 10 12 14 16 18 20

Tran sifSniWction
0.8

0.6__ 31

0.4- 30 1 C321

0411, 1421

0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency (timestep)~

0

89 31

Cc -It xg6

arg( 41, arg 42

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Frequency (timestep)
1

Figure 2.2: The discrete-time impulse response (ij (t) describes the evolution of tracer

concentration at the ith state element in response to an "impulse" in the jth control

element. Panel (a) shows the impulse, which is 0 at all times except t = 0, when

it is 1. Panel (b) shows the impulse response in each of the two state boxes due

to impulses in the two control boxes. (41 (t) and 42 (t) are the same. Measurable

tracer concentrations in the state boxes are smoothed and phase-shifted relative to

the impulse. The transfer function is the Fourier transform of the impulse response;

the real and imaginary parts of the transfer function are plotted in (c) and (d) and

describe the attenuation and lag of the initial impulse experienced in each state box

as a function of frequency, respectively.
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from Box 1 in Box 3 appears smooth because the flux of tracer from Box 1 into Box 3

compensates the exponential decay in Box 4. The latter statement also explains why

Box 3 has a fatter "tail" of concentration at large times: new tracer is constantly being

fluxed into Box 3 from Box 4 even as both slowly approach their equilibrium values of

zero concentration at t = oc. Indeed, because tracer exchange between any two boxes

is described by a convolution, downstream boxes will always have smoother responses

to boundary impulses, and the phase lag increases monotonically downstream at all

frequencies along a one-dimensional pathway.

The amplitude (gain) and argument (phase shift) of the transfer function (the

Fourier transform of the impulse response) relates the frequency content of control

signals (those in boxes 1 and 2) and observable signals (3 and 4). All frequencies

are attenuated; higher frequencies are attenuated more than lower frequencies. The

0 frequency (the mean) is the integral over the impulse response (equivalently, the

Heaviside response) over the times calculated; as the time over which the impulse

response is calculated grows to infinity, arg (ij (0) -+ Acij. The phase shifts are

smoothly varying curves between the mean and the Nyquist frequency (half the sam-

pling frequency, the highest frequency resolvable by the time step). The mean phase

shift is 0; the Nyquist phase shift is 7r or 27r depending on whether the first nonzero

impulse response falls on an odd or even time step, respectively.

What are the importance of the gain and phase shift for inference? In the steady

inference problem discussed in Section (2.3.2), when the flux from one control reservoir

was relatively small, the singular vector associated with the inference of the control

reservoir concentration was very small, yielding greater uncertainty. The 'r time

step time-varying problem with L control boxes is equivalent to a L x r-box steady

problem, where the objective is to infer the amplitude of each Fourier component

from each control box, and the gain is equivalent to the flux out of each box. Thus,
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in analogy with the steady case, when the gain is small for a particular frequency, the

uncertainty is larger. In general, the signal-to-noise ratio of the observations and the

uncertainty of the inferred solutions both depend upon frequency.

Although the gain lies in the Fourier domain rather than the SVD domain, the two

bases span the same set of time-varying functions, and features that are ill-resolved

in one basis will be ill-resolved in the other. This statement is borne out by the SVD

plotted in Figure 2.3. In that figure, the left and right singular vectors of the time-

dependent problem resemble harmonic functions, especially for lower SVD indices.

Because of the connection to linear filters, the Fourier basis is an intuitive way to

consider the null space of the IBC deconvolution problem. (In some applications, the

deconvolution problem is solved in the Fourier domain, a procedure known as spectral

division.)

Another nullspace in the time-dependent problem arises from the destructive in-

terference of control signals in the system state. This matter is addressed further in

Gebbie [2012].

Changes in phase are important for the interpretation of paleoceanographic tracer

records (see the discussion of Skinner and Shackleton [2005] and ensuing papers in

the Chapter 1) and a natural question to ask is how robustly the phases of signals

can be inferred given observational uncertainty. However, the phase uncertainty is

a complicated function of the observational uncertainty (as well as the chronological

uncertainty, which is ignored here altogether) and a discussion is outside the scope of

this thesis at present. The useful lesson is that phases are shifted between the control
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Figure 2.3: Top: Singular values for the time-dependent four-box tracer inverse
boundary problem decay rapidly with SVD index from a few high values to values
roughly an order of magnitude smaller. Bottom: Left and right singular vector pairs
corresponding to SVD indices 1, 2, 19, and 20 plotted as time series for each box. Left
singular vectors show structures in the observable boxes 3 and 4, while right singular
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and observable signals.

2.4.4 A comment on null spaces in the four-box model

The weighted, time-varying inverse problem is

2 [w* GFs 1>~i

As was demonstrated in the steady and time-varying problems, vanishing singular

values in the matrix E =W 2-BGFS 2 can arise from vanishing singular values

in any of its five matrix factors (W- , B, G, F, 2). Each of these matrices is a

linear operator representing a physical process in the inverse problem, and each can

attenuate or destroy spatiotemporal structures in tracer concentration. Structures

that are destroyed in this way lie in the nullspace of the operator; that is, for an

M x N operator E with rank K < N, the structures lie in the space spanned by the

right nullspace vectors of the operator, VK+1, ... VN, for which Evi = 0. Specifically:

T

1. The right null space of W I corresponds to signal features that are present at

the loci of observations but are dwarfed by noise.

2. The right null space of B corresponds to features that are present in the system

state but which are not observed.

3. The right null space of G corresponds to features that are destroyed by the

advection and diffusion of tracer signals along fluid transport pathways en route

to loci in the system state.

4. The right null space of F corresponds to features that are present in the controls

but which are not communicated to the system state.
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T

5. The right null space of S 2 corresponds to features that are a priori "undesir-

able" (aesthetically, statistically, or otherwise) in the control fields.

2.5 Inference of steady flow: Models of Gebbie and

Huybers [2010, 2012]

Previous sections in this chapter described tools for the inference of tracer bound-

ary conditions under steady flow assumptions. Errors in inferred boundary conditions

arise whenever modeled flow patterns and rates deviate from the modeled system. In

the ocean, deriving even a statistically steady estimate of flow that is constrained by

observations is a highly nontrivial task. This section highlights the two such efforts

that are used in tandem in the deglacial problem studied in Chapter 4.

Building on previous water mass decomposition studies [e.g., Tomczak Jr, 1981,

Johnson, 2008], Gebbie and Huybers [2010] (henceforth GH10) devised a tracer inver-

sion procedure dubbed "Total Matrix Intercomparision" (TMI) to constrain a water-

mass pathways model using climatological tracer observations. First note that the

tracer concentration of a fluid parcel in the ocean interior can be expressed as a sum

of contributions from N source volumes, each constituting a mass fraction 0 < mi < 1

of the parcel and having a concentration Cj:

N

C = EmiC, + AC (2.47)
i=1

(GH10, Eq 1) where AC is a term accounting for interior tracer sources and sinks. If

the parcel is taken to be a rectangular grid box in a three-dimensional model, then
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Equation (2.47) can be written in terms of the mass contributions and concentrations

of the six neighboring grid boxes adjacent to the faces of the grid box whose indices

are offset by 1:

ACiik Cijk - m1Ci+1,jk - m2Ci_1,jk - m3Ci,,j+1,k

-m4C,,_1,k - m5CiJ,k+1 - m6C,,k_1, ij, k C I (2.48)

where I is the set of interior grid boxes (GH10, Eq. 15).

While Equation (2.48) is intuitive, solving a system of such equations for all inte-

rior points is a nonlinear problem because both the mi and Cijk represent unknown

quantities. TMI is a two-step procedure that finds approximate solutions to Equa-

tion (2.48) by linearizing about the local (grid box-scale) tracer flux problem and

using the inferred mi and ACiik in the global problem. For a single grid box, obser-

vations of M tracers C', C2, . . .CM can be written as a system of equations of the

form Ci = Z (Ci + Ae) mi + ni, where both Aeq and ni are observational noise

processes. In vector form,

C1 C C ... C Ael Ael ... Ael m ni

C2 C2 C2 ... C6 Ae2 AeC ... Ae 2

(2.49)

Equation (2.49) is appended with equations of mass conservation (Z_ 1 m= 1) and

tracer non-conservation (the ACiik) and solved using a nonlinear tapered least squares

approach subject to mi > 0 V i. Nonconservative tracer effects emerge from nutrient

proxies, which are constrained in GH1O by a stoichiometric ratio, and by unresolved
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processes such as abyssal overflows. The effect is a constrained, simultaneous mini-

mization of the ni and Aeq and inference of mi and ACijk.

Having solved the local problems, Equation (2.48) may be written simultaneously

for all interior grid points in matrix form as

Ac = d

where the vector c describes the concentration of each tracer in every grid box in the

model state (a generalization of the "state vector" discussed earlier in this chapter)

and A is a matrix of the mi that describes ocean transport pathways. The vector d is

a vector of source terms ACijk due either to nonconservative behavior in interior grid

points (from remineralization, etc.) or from the domain boundary, where parcels are

reset by external forcing (e.g., isotopic exchange with the atmosphere). The boundary

Green functions are the columns, corresponding to boundary grid boxes, of the matrix

A 1 .

In GH10, the relative contributions of 2806 surface 4x4 degree grid boxes to the

boxes in the interior ocean were estimated by inverting observations of distributions

of potential temperature, salinity, phosphate, nitrate, and oxygen in the modern

ocean from hydrographic transects (WOCE and previous measurements, Gouretski

and Koltermann [2004]) and the gridded V180, product of LeGrande and Schmidt

[2006]. The resulting steady-state solution agrees with the tracer measurements,

some of which date to the 1950s, within estimated observational error. A "twin"

experiment using artificial data generated by adding noise to GCM output and a

reconstruction with artificial noise added to the observations both suggested that the

TMI reconstructions have less than 5% error. Gebbie and Huybers [2011] performed a

similar experiment but using a higher-resolution (2 x 2 degree) domain and showed the
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pathways to be consistent with the GEOSECS [Kroopnick, 1985] 6C distribution,

which was not used to constrain TMI.

Estimating flow rates requires additional steps. Gebbie and Huybers [2012] (here-

after GH12) sought upper and lower bounds as well as a mean estimate of the ages

(the time since ventilation) of water parcels in the interior ocean using the GLODAP

gridded dataset of pre-anthropogenic radiocarbon, which is based on hydrographic

sections, and a correction for bomb radiocarbon using measured potential alkalinity

[Rubin and Key, 2002, Key et al., 2004]. Similarly as in TMI procedure, GH12 first

performed a local inversion for the residence time T of every grid box and then solved

a system of tracer equations for the advection of a mean age tracer a,

6

a = miai + T

where T acts as a nonconservative source of parcel age. Mean ages were found to have a

similar spatial pattern as found by using a "standard" technique of age inference (e.g.

Broecker et al. [1991]), but were 50-200 years older. These deviations were attributed

to adjustments to accommodate a steady-state solution and radiocarbon-age bias in

observations due to ocean mixing.

Radiocarbon measurements also permit calculation of the transient time distribu-

tions (TTDs) (a form of Green functions) through the time rate of change of Equation

2.47 for a radioactively decaying tracer,

dC 6

dt FiCI - FOC - AC = 0

(GH12, Eq. 8) where F is volume flux from neighboring grid boxes, F, is the total

volume flux into the neighboring boxes, and A is the radioactive decay rate. Mean-
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to-width ratios of the North Pacific TTDs provides a measure of the ratio of diffusive

and advective processes in a flow configuration; by this metric, GH12 was found to be

somewhat less diffusive than derived in a study using a GCM [Peacock and Maltrud,

2006], though both are consistent with an observational estimate Holzer and Primeau

[2010].

Sources of uncertainty in GH12 include errors in surface radiocarbon values (reser-

voir ages), the presence of "exotic" unresolved water masses with extremely low C

ages, and errors in removing the influence of bomb radiocarbon. The Green functions

derived by GH12 provide the modern mass circulation estimate used in Chapter 4.

Future work should evaluate the IBC problem using other estimates of the modern

circulation to estimate sensitivity.
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Chapter 3

Benthic records of 6180cc

Sediment core records of 1s0, have been used for decades to investigate a vari-

ety of paleoceanographic phenomenon. This chapter has three parts. First, a brief

overview of sediment core records is presented, with an emphasis on their error char-

acteristics. The next section describes the eight sediment core records used in the

deglacial tracer inverse problem discussed in Chapter 4. Finally, an error model is

constructed for the models and an objective mapping scheme implemented in order

to interpolate them in time and estimate the error covariance matrix.

3.1 Records of V18Occ

The normalized ratio of stable oxygen isotopic compositions is defined as

6180 [(= 1 ) sample _ I 1000%0
(018/01") sadr

where the "standard" is typically Pee Dee Belemnite (PDB) for carbonates and Vienna

Standard Mean Ocean Water (VSMOW) for water and ice. The 6180 of seawater will
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be denoted 6180s, and the 6180 of calcium carbonate Jl80,,. As discussed in Section

(1.2), 6180 has been used for decades in paleoceanography as an indicator of global

ice volume and as an ocean water mass tracer [e.g. Imbrie et al., 1984].

Records of past Ol80., from the seafloor can be derived directly from interstitial

pore waters in sediment mud and indirectly by analyzing the calcium carbonate shells

of benthic foraminifera, which are deep-dwelling, single-celled protists. Empirical

studies have shown that J80,, is a function of both the VO80s, that bathed the

foraminifer in situ at the time of calcification and the in situ temperature [Bemis

et al., 1998]. In this study, 6180cc is treated as a passive, conservative tracer, meaning

that it is assumed to have no sources or sinks away from the air-sea boundary and

that its concentration does not affect the flow parameters. This approximation is

discussed in greater detail in Chapter 4.

In order to obtain oxygen isotope records from sediment cores, a scoop of mud

corresponding to a depth interval is taken. The sample is rinsed and sorted by size

fraction to yield a collection of foraminiferal shells and other material; subsequently

an investigator extracts particular species by hand under a microscope. The samples

are then ground, homogenized, and analyzed in a mass spectrometer.

A sediment core record is a noisy, discrete subsample of a time-continuous phys-

ical process s (t), such as the 6180cc at a sediment core site. There are numerous

sources of noise in a sediment core record. Organisms may alias certain frequencies

or features in s (t) as they are calcifying, biasing results. During times of low sed-

imentation rates or low foraminiferal abundance, fewer organisms are available to

sample and aggregate measurements will be less robust. Analytical procedures (se-

lection of shells, cleaning, preparatory chemistry, etc.) can vary between sediment

cores and sometimes within measurements. Calibration of calcite 6180 can vary be-

tween instruments by up to 0.3%o [Ostermann and Curry, 2000]. The calibration of
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offsets between different species has an associated uncertainty that could introduce

biases between monospecific records and errors within cores where multiple species

are processed [e.g. Shackleton et al., 2000]. A host of diagenetic effects (chemical

and bioturbative) can modify the record after deposition.

Core chronologies

Even in a case where independent age measurements are available for each data

point, age model construction is non-trivial. 14 C is a cosmogenic nuclide that is gen-

erated in the atmosphere by the collision of cosmic rays with atmospheric nuclei (and

by nuclear testing); this process is not constant, and the atmospheric concentration of

14 C varies in time correspondingly [Ramsey et al., 2012]. Radiocarbon projection ages,

which are the sample age assuming constant 14 C at modern levels, are converted to

calendar ages by projecting the age probability distribution onto a calibration curve.

Even in the case when the only source of uncertainty in radiocarbon ages is believed

to be from analytical uncertainty (and is assumed to be Gaussian), this procedure

yields sample ages estimates that can be strongly non-Gaussian. Post-depositional ef-

fects such as bioturbation, in-situ ("diagenetic") modification of chemical properties,

and distortion from core retrieval can all distort the timing of measurements further.

Because sedimentation rates vary with time, an age model (that is, a calendar-

year assignment to each measurement) must be constructed independently for each

sediment core. A typical procedure is to radiocarbon date the more abundant plank-

tonic foraminifera from a subset of the sediment scoops and to interpolate converted

calendar ages with depth in the intervening sediment.

Because radiocarbon is introduced into marine environments via air-sea gas ex-

change, so-called reservoir corrections must be made to account for the apparent 1 4C

age difference between the surface water and the atmosphere. For instance, the ra-
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diocarbon date of a modern planktonic foraminifera would typically be 400 before

present (the nominal average reservoir age of the modern surface ocean) because that

is the "age" of the typical in situ water mass derived using 14C. Changes in reser-

voir ages (especially at high latitudes) due to different circulation regimes have been

implicated on deglacial time scales [Skinner and Shackleton, 2004] and potentially

complicate conclusions about phase relationships between cores. Future work should

consider reservoir changes in a more quantitative way. The reservoir offsets for the

records in this study are the same as those used by previous authors.

3.2 Descriptions of sediment core records

This study considers eight sediment core records of Ol8Oc spanning the Last

Deglaciation. The records were selected on the basis of sampling interval so as to

resolve sub-millennial variability and on the basis of availability after a thorough but

not exhaustive search. No comprehensive list of deglacial benthic 6180 records exists,

and the data may be biased towards those records that are most cited or visible in

the literature.

Figure 3.1 shows the distribution of the core locations. For convenience, records

will be referred to by abbreviations denoting depth and their basin of origin rather

than their cruise number; see Table 4.1. All of the records but SA3770 come from

continental margins. Four of the records come from the Atlantic Ocean, two from the

Indian Ocean, and one from the Pacific. Depths range from 1299m to 3770m.

The records are plotted in Figure 3.2. All records show a deglacial transition of

1-2%o over the interval from 25 to 5kyr, though the timing of the transition is different

for different records, and higher-frequency variability is visible as well. The transi-
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Figure 3.1: Locations for the eight sediment core records of 6180 used in this study.
Labels are abbreviations based on ocean basin and water depth; the original core
names are found in Table (3.1).

tion in EP3210 (one of the two cores that was discussed in Skinner and Shackleton

[2005], Wunsch and Heimbach [2008], and Gebbie [2012]; the other is NA3146) ap-

pears markedly later than in other records. The shallower records (NI1580, E12100,

SA1967, and NA1299) appear to share a two-stage decrease in 6180, with the first

transition occurring between about 18 and 16kya. All of the records span the interval

from 25kyr to 5kyr except SA1967, which begins slightly after 24kyr. The records are

unevenly spaced in time, and in several cases there are gaps of nearly 1000 years.

The following section summarizes the development of each record and age model.

A list of references is included in Table (3.1). Analytical procedures vary between

cores. Most of the records use tests from the genus Cibicidoides, but NA3146 and

EP3210 use other genera. All records are corrected to the Uvigerina standard for

6180c,; e.g., Cibicidoides foraminifera are offset by the conventional 0.64%o. In the

case where multiple sample values exist contemporaneously in a record, the average

value was used.

GeoB1711 (SA1967)
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SA1 967
C. wuellerstorfi
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C. wuellerstorfi
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C. kullenbergi
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Figure 3.2: The eight benthic foraminiferal 680 records used in this work plotted
about their means. Computation of record mean values is discussed in section 3.3.2.
Grid spacing in the vertical is 1%o and in the horizontal is 1000 years. Some records
contain measurements from multiple benthic foraminferal species.
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References

Site Ocean Depth Name Benthic 6180

GeoB1711 Atl S 1967m SA1967 Little et al. [1997a]

vidal et al. [1999]

GeoB9526-4 Atl N 3223m NA3223 Zarriess and Mackensen [2011]

M35003-4 Atl N 1299m NA1299 Hils and Zahn [2000]

Zahn and Stiiber [2002]

MD07-3076Q Atl S 3770m SA3770 waelbroeck et al. [2011]

MD98-2165 Ind E 2100m E12100 waelbroeck et al. [2006]

MD99-2334K Atl N 3146m NA3146 Skinner and Shackleton [2004]

NIOP-905 Ind N 1580m NI1580 Jung et al. [2001]

Jung et al. [2009]

TR163-31b Pac E 3210m EP3210 Shackleton et al. [1988]

Dating

vidal et al. [1999]

Zarriess and Mackensen [2010]

R ihlemann et al. [1999]

Skinner et al. [2010]

waelbroeck et al. [2006]

Skinner et al. [2003]

Ivanochko et al. [2005]

Skinner and Shackleton [2005]

Table 3.1: Summary of benthic foraminferal P180 records. The "Name" field indicates
reference codes used in this thesis for ease of discussion. SA1967 refers to a South
Atlantic core at 1967 m depth, N11580 to a North Indian core at 1580 m depth, etc.

Gravity core GeoB1711 (referred to in plots as SA1967) was retrieved south of the

Walvis Ridge at 23'18.9S, 12'22.6E at a depth of 1967 meters by Meteor cruise M20/2

in 1991. The core was 1066 cm long and was sampled at 5 cm intervals. Tests of

Globorotalia inflata (G. inflata, planktonic) and Cibicidoides wuellerstorfi Schwager

(C. wuellerstorfi, benthic) were picked from the wet-sieved 250-500 Pm fraction to

yield 8-10 well-preserved, clean specimens from each sample. P180c analyses were

conducted on benthic specimens at Kiel University using a Finnigan MAT 251 mass

spectrometer with analytical precision ±0.08%o and calibrated to the PDB standard

[Little et al., 1997a].

In Little et al. [1997a], the age model for GeoB1711 was constructed by maximizing

the correlation between the benthic P8O, record and the stacked record of Imbrie

et al. [1984]. Additional age constraints were developed by Little et al. [1997b], who

obtained 4 AMS C dates on G. inflata, and by Vidal et al. [1999], who "C-dated
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planktonic foraminifera G. inflata and G. bulloides in five IRD layers corresponding

to Heinrich events. One of the dates published by Little et al. [1997b] implies an

exceptionally high sedimentation rate during a 1000-year interval and is discarded in

Vidal et al. [1999] and in this study. All ages have a 400-year reservoir correction

applied. Dates were converted from 14 C years to calendar years using OxCal 4.1

[Bronk Ramsey, 2009, Reimer et al., 2009] and calendar ages were linearly interpolated

with sediment core depth between 14 C tie points.

GeoB9526-5 (NA3223)

Gravity core GeoB9526-5 (referred to in plots as NA3223) was recovered off of

West Africa at 12'26.1'N, 18'03.4'W from a depth of 3231 meters. The core was 1080

cm long and was sampled at 5 cm intervals. Between 2 and 5 tests of C. wuellerstorfi

were extracted from the >125 pm fraction of each sample. Measurements of S180c

were performed using a Finnigan MAT 151 mass spectrometer at Kiel University

with analytical uncertainty of ±0.08%o and standardized to Vienna PDB [Zarriess

and Mackensen, 2011].

The age model is constrained by seven "C AMS dates calculated using multi-

species samples of shallow-dwelling species from the >12511m fraction at the Leib-

niz Laboratory for Radiometric Dating and Stable Isotope Research Kiel, Germany

[Zarriess and Mackensen, 2010]. These authors applied a 400-year reservoir correction

and used the approach of Fairbanks et al. [2005] to convert from 14 C years to calendar

years. Additional age constraints were provided in Zarriess and Mackensen [2010] by

aligning the planktonic 618Occ record with that of MD95-2042.

M35003-4 (NA1299)

Core M35003-4 was raised at the southern end of the Lesser Antilles island chain in
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the Caribbean Sea (12'5.4'N, 61'14.6'W) from a depth of 1299 meters. Three to five

benthic tests were picked from the > 250 pm fraction for PlOcc analysis. Epibenthic

species C. wuellerstorfi, C. kullenbergi, and C. pseudoungerianus were used where

available; below 450 cm in the core (roughly 25 kya), the endobenthic species Uvige-

rina peregrina was used due to low epibenthic species abundances. Measurements of

PO8,, were performed using a Finnigan MAT 252 mass spectrometer at Kiel Univer-

sity with analytical uncertainty of ±0.066%o and standardized to Vienna PDB [Zahn

and Stiiber, 2002].

A total of twenty 14 C AMS dates are available to constrain the core chronology.

Twelve dates were run on samples of G. ruber (white) [Hills and Zahn, 2000] and

eight were run on a mixture of G. ruber (white) and G. sacculifer /Riihlemann et al.,

1999]. All dates were obtained at the Leibniz Laboratory in Kiel. A 400 year reservoir

correction was applied to the "C data, which I then converted to calendar ages

using OxCal and interpolated linearly with depth to construct age estimates for each

measurement. "Fine-tuning" of the record chronology via comparison with the GISP2

P'8O record as performed in Hills and Zahn [2000] is not used here.

MD07-3076Q (SA3770)

Core MD07-3076Q was raised in the Southern Ocean on the eastern flank of the

Mid-Atlantic Ridge (44009.19'S, 14 013.70'W) at a depth of 3770 meters. Samples were

taken at 2 cm intervals and benthic foraminifera C. kullenbergi were picked from the

> 150 pm fraction for P10cc analysis. Samples were run on a Finnigan A+ mass

spectrometer at LSCE (Gif-sur-Yvette) and calibrated to the VPDB standard, with

reproducibility lo- of +0.05%o.

The chronology for MD07-3076 is based on monospecific planktonic foraminiferal

1C ages taken from 59 samples along the core. Corrections for variable reservoir age
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effects were applied by 1) correlating temperature trends as measured by Antarctic

ice-core records and SSTs as measured by planktonic foraminifera and 2) comparing

reservoir corrections to those published for core TN057-21 in the Cape Basin [Skinner

et al., 2010]. These corrections are used in this study.

MD98-2165 (E12100)

Core MD98-2165 was recovered on board the Marion Dufresne in the eastern

tropical Indian Ocean (9'38.96'S, 118'20.31'E) at 2100 m depth. Samples of 1 cm

were taken every 2 to 4 cm. Cibicides were picked in the > 150 pm fraction, with a

preference for C. wuellerstorfi, though in some levels Cibicides spp. (C. ungerianus,

C. pachyderma, C. kullenbergi) were analyzed. 6180,, analyses were performed at

LSCE on a Finnigan MAT251 mass spectrometers, with reproducibility i0- of ±0.05%o.

No offsets in isotopic values were observed between C. wuellerstorfi and the other

species [Waelbroeck et al., 2006].

The age model was constructed [Waelbroeck et al., 2006] using 20 AMS "C dates

measured on G. ruber white samples. Carbon ages were converted to calendar ages

using Calib 4.3 [Stuiver and Braziunas, 1993] and the method of Bard et al. [1998]

after subtracting a 400 year reservoir correction. Two ages near the top of the core

gave anomalously old ages and were discarded. Sample ages were linearly interpolated

with depth between 1 4C control points.

MD99-2334K (NA3146)

Core MD99-2334K was recovered from the Iberian Margin (37'48'N, 10'10'W) at

a depth of 3146 m. Several sets of measurements and accompanying chronologies are

available for this record [Skinner et al., 2003, Skinner and Shackleton, 2004, 2005];

here the record from Skinner and Shackleton [2005] is used because of its high tempo-
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ral resolution. Benthic foraminifera P. wuellerstorfi and G. affinis were picked from

the > 212 pm fraction of sediment samples. On average 3 P. wuellerstorfi and 20

G. affinis were picked from each sample; the former was used strictly for stable iso-

tope measurements and the latter for both stable isotope and Mg/Ca measurements.

Oxygen isotope measurements were performed on a Micromass Multicarb Sample

Preparation system attached to a PRISM mass spectrometer. Measurements were

standardized using VPDB and had an analytical precision better than 0.08%0.

The age model is based upon synchronization of the planktonic 08 ,c record with

the GISP2 ice core record. This synchronization is corroborated using 17 "C dates

calculated at LSCE, Gif-sur-Yvette on monospecific samples of G. bulloides and N.

pachyderma. A 400-year reservoir age is used [Skinner et al., 2003].

NIOP-905 (N11580)

Piston core NIOP-905 was recovered off of the continental slope of Somalia (10'46'

N, 51'57' E) at a depth of 1580 m. Oxygen isotope measurements were made on

foraminifera picked from the 250-350 pm fraction. Values are the average of multiple

analyses of C. kullenbergi tests; in some cases in the older (>11 kya) parts of the

core, Cibicidoides spp. are used to avoid record gaps where kullenbergi is sparse. The

internal reproducibility for these measurements is ±0.05%o [Jung et al., 2009, 2001].

The age model is based upon twelve "C dates of samples from the past 31 kya [Jung

et al., 2001].

TR163-31b (EP3210)

Kasten core TR163-31b was recovered in the eastern equatorial Pacific (3'37.2'

S, 83'58' W) at 3210 m. Benthic foraminifera Uvigerina senticosa and C. wueller-

storfi were picked from the > 250 /im fraction at roughly 2 cm intervals. Analytical
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measurement noise is roughly t0.07%o [Shackleton et al., 1988].

The age model for TR163-31b was constructed from 19 "C measurements per-

formed on planktonic dutertrei [Shackleton et al., 1988] and calibrated [Skinner and

Shackleton, 2005] to calendar ages using the datasets of Bard et al. [1998] and Hughen

et al. [2000, 2004]. A 580-year reservoir age correction was subtracted, reflecting the

modern radiocarbon age in the near-surface ocean above this core site.

3.3 Error models, mean estimation, and objective

mapping

Time series of geochemical measurements sampled from sediment cores are un-

evenly spaced with sources of error from numerous physical, biological, and chemical

processes. In order to use sediment core records in an inverse context, it is necessary

to have an explicit statement of the uncertainty of each of the measurements. Such

statements are not always reported in published accounts of recovered records; in-

stead, a typical value for the analytical uncertainty or reproducibility error is given

for the entire record. This section develops and applies an error model to the eight

sediment cores used in the study that incorporates information about sample spacing

and a conservative uncertainty estimate for each measurement.

3.3.1 The sediment core error model

Construction of the error model occurs in three steps. First, each record y is

separated into a "mean" and a "fluctuating" component,

y = dm + f
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where y is an M-vector of observations, m is a scalar mean value, f is the M-vector

corresponding to the fluctuating part, and d is an M-vector of ones. These com-

ponents represent the entire observed signal y, including the observational error n.

The procedure for finding the mean is outlined below and described in greater detail

in Wunsch [2006]. Because some (potentially large) sources of error affect only the

record means, the mean and fluctuating parts are isolated in the inverse problems

posed in Chapter 4. Next, a "conservative" estimate of 0.2%o (pers. comms., E.

Boyle and L. Keigwin) uncertainty is assumed for every VO8 Oc measurement. Finally,

each record is interpolated to be uniformly spaced in time with a sampling interval of

200 years, reflecting a rough average sampling rate (though this varies between and

within cores).

The interpolation of the records addresses a complication arising from the use

of unevenly-spaced records in a tracer inverse problem. In an unevenly sampled

record, some time intervals are more densely sampled than others, with the result

that the minimization of the cost function preferentially reduces model-data misfit at

some intervals in time. To enforce some parity of influence among different intervals

without imposing solution priors, objective mapping is used to relate the unevenly

spaced record to a regularly spaced grid.

The statistical treatment of time uncertainty is an emerging discipline [Blaauw

et al., 2003, Huybers and Wunsch, 2004, Buck and Millard, 2004, Buck, 2004, Haam

and Huybers, 2010, Tierney and Anchukaitis, 2011] and no additional steps were taken

to account for uncertainty due to age models beyond the steps taken in generating

the original records.

Implementing a more sophisticated error model for sediment cores may be an

important step in future paleoceanographic inverse problems. A procedure that used

sampling interval length and species abundance was considered but rejected in the
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current approach because it would have required substantial testing and validation.

Particular care should be given to records that rely upon different species at different

times.

3.3.2 Mean estimation and objective mapping

This section outlines procedures for isolating the means of records and interpo-

lating them to uniform spacing in time. Much of the material is a recapitulation of

standard methods.

Estimation of the record mean

The problem of estimating the mean of a vector of observations can be written

[Wunsch, 2006, Eqn. 2.412]

dm+f = y

d = [1, 1... 1]T. (3.1)

When no prior distribution is specified for m, the minimum variance solution in to

(3.1) (that is, the solution that minimizes the variance of the solution about the true

value m) is the estimate that minimizes the cost function [Wunsch, 2006, p. 130]

J (m) = (y - dm)T Rf1 (y - dm) = fTR lf.

When the fluctuating part of the record is stationary white noise, R 1 = Ior2 , where

I is the identity matrix and a2 is the variance of the white noise. Then in and its
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uncertainty P are given by the familiar equations

m = y (3.2)

Pm = o 2/M.

The approximation that climate time series are spectrally white is a poor one;

physical evidence [Frankignoul and Hasselmann, 1977, Huybers and Curry, 2006]

suggests that climate spectra are red over large frequency ranges. The more general

solution to (3.1) is given by

fin = dTRf1d} dTRjly

f y - df (3.3)

Pm = dT Rid},

a form of the standard weighted least-squares solution (2.6). The mean and its un-

certainty can take dramatically different values from the "standard" form in (3.2)

depending on the covariance of individual observations [Wunsch, 2006].

One-dimensional objective mapping

Begin with the estimated fluctuating part of the record f defined in Equation

(3.3); removing the least-squares mean estimate simplifies notation and makes the

interpolation unbiased [Rybicki and Press, 1992]. For consistency of notation, this

fluctuating part will be written without a tilde in this section, f --+ f.

The tracer inverse problem for the fluctuating part of a single sediment core record

may be written

f =Eq+ n (3.4)
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where E (M x N) is one of the matrices constructed from Green functions that

is discussed in Chapter 2, q is an N-vector of controls, and n is an M-vector of

noise. Equation (3.4) may also be thought of as a decomposition of f into a "signal"

component s = Eq and the noise component n,

f=s+n

Each of the three vectors f, s, and n is a series of realizations of time-continuous

random processes f (t), s (t), and n (t) at times t = t 1, t 2 ,... tM. In the objective

mapping problem, the goal is to estimate a value of the function s (t) at any time

t*. An estimate of s (t*) that is linear in the observations f = [fi, f2,... fM] can be

written
M

s(t*) =Ee fi + u*, (3.5)
i=1

where the e* are coefficients and u* is the discrepancy.

Define the covariance function of the mean-removed, time-continuous process s (t)

to be

Rs (t, t*) = s S (t*))

Assuming that the signal and noise are uncorrelated, the minimum variance estimate

of s (t*), which minimizes the objective function J (el) = (u*)2 , is [Wunsch, 2006,

3.27]

s (t*) = E~*f
M

e= R, (s (tj) s (t*)) [Rsr + Rnn]
j=1
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where R,, and R,, are the covariances of the zero-mean signal and noise process at

the observed times and [R,, + R ]_1 denotes the j, ith element of the inverse matrix.

The minimum possible uncertainty (defined in terms of estimates of s (t) at two times

t* and t*) is [Wunsch, 2006, 3.28]

P (ta, ts) = R8 8 (t*, t;) -S S Rs (t*,, tj) [Rss + Rn] R 8 (ti, tt*) . (3.6)

Estimation of the signal covariance function R,8 (-,-)

In order to apply the results derived in 3.3.2 to the benthic 08Oc records, it is

necessary to estimate the signal covariance at both the tj (the times of observation in

the original record) and the t* (the new times when we would like to estimate s (t))

as well as the noise covariance matrix Rnn. The noise covariance matrix is assumed a

priori to be Ran = I. 2 , where u = 0.2%o and I is the identity matrix. The procedure

used to estimate R 8 is based on an application to astrophysical data described in

Press et al. [1992] and Rybicki and Press [1992].

First assume that the process s (t) is stationary so that

Rss (t, t*)= fR (t - t*) - R(r)

where R (T) is the autocovariance function for a lag r. The so-called structure function

or variogram V (T) is closely related to the autocovariance,

V (T) 1 [s (t + ) - s (t)]2) s2 (t)) - (s (t + ) s (t))

=(S2 (t)) - R (,T)

87



and is readily estimated from the data. To estimate the structure function, the lags

Tij ti - t1 and estimates of the structure function vij (fi - f)- - were

computed for each pair of points within each sediment core record. A power-law

estimate of V (T) was computed by fitting a line to binned and averaged point-wise

estimates of the structure function in log-log space. The signal variance (s2 (t)) was

estimated using the sample variance fTf) [Rybicki and Press, 1992, Press et al.,

1992].

3.3.3 Application to benthic VO8Occ records

The objective mapping of the sediment core records onto an evenly-spaced 200

year mesh spanning 25kya to 5kya is plotted in Figure 3.3. The interpolated function

is smoother than the raw data. The uncertainty (shading) grows when estimates are

far from observed values or when observations are in disagreement. Mean values for

each record were also inferred, but their physical meaning is unclear because of the

nonstationarity of the records. Treatment of the mean in the tracer inverse problem

is elaborated upon in the next chapter.

The uncertainty plotted in Figure 3.3 is the square root of the diagonal of the

P matrix defined in Equation (3.6). However, the P matrix is not diagonal. The

interpolated estimates inherit their uncertainty from the observations, of which the

estimates are linear combinations. Thus the error in interpolated estimates that are

nearby in time is expected to covary. The full P matrix is used in Chapter 4.
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Figure 3.3: Similar to Figure 3.2, but including objectively-mapped samples (black
lines) and their uncertainty (shading) every 200 years. Grid spacing in the vertical
is 1%o and in the horizontal is 1000 years. The plotted uncertainties are the square
roots of the diagonal of the uncertainty matrix P (Eqn 3.6).
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Chapter 4

The deglacial benthic 6 180 tracer

problem

The distribution of tracers in the ocean is determined by boundary conditions im-

posed at the ocean surface and by the ocean circulation. It thus bears the imprint of

both processes. As in Chapter 2, the problem of inferring boundary condition values

under an assumed tracer transport model is called the inverse boundary condition

(IBC) problem. This chapter solves the IBC problem in a discretized model represen-

tation of the modern ocean, using the ocean mass circulation estimate of Gebbie and

Huybers [2012]. In this inverse problem, the boundary conditions or "controls" are

(unknown) patterns of tracer concentration in the ocean mixed layer (ML) grid boxes,

and the system state consists of the rest of the ocean. Deglacial sediment core records

are treated as noisy observations of ocean tracer concentration and a solution to the

IBC problem is sought using the tracer inverse approaches described in Chapter 2.

The scientific context for this chapter is outlined in Chapter 1. Previous work

[Skinner and Shackleton, 2005, Waelbroeck et al., 2006, 2011] suggested that differ-
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ences between multiple contemporaneous records of benthic sediment core 6180,, at

remote core sites were due to circulation changes. Seeking a solution to the IBC prob-

lem is a complementary approach to inferring circulation changes and asks whether

the data can be explained assuming the a steady-state estimate of the modern circu-

lation under changing boundary conditions (see Section 2.3, Gebbie [2012]; Wunsch

[1987] is an analog). The guiding principle behind the IBC approach is Occam's ra-

zor: while it is well known that light 6180,, entered the ocean during the deglaciation

because of melting ice sheets, the evidence for changes in ocean circulation during

the deglaciation is indirect and inconclusive, and the physical mechanisms for such

changes are not clear. If variability in boundary conditions alone suffices to explain

the benthic records, then implicating changes in ocean circulation violates parsimony

and is unnecessary.

A novel contribution of this work is to estimate the uncertainty of the IBC solution.

This uncertainty has two components: one comes from noise in the observations,

and one comes from the nullspace of the problem (see 2.2.2 for a discussion of the

nullspace). Features that lie in the nullspace of the IBC problem are not constrained

by the data, and additional information must be brought to bear in order to say

something about these features.

4.1 Assumptions

Several assumptions and procedural choices are made in finding a solution to the

IBC problem.

First, the approximation is made that 6180,, is a passive tracer, meaning that

the tracer does not affect the flow field. The passive assumption runs counter to the

expectation that meltwater input, which is expected to covary with 6Vs0, and has
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a dynamical effect due to its density anomaly compared to seawater, will alter the

ambient ocean circulation in some way. Friedrich and Timmermann [2012] pursued an

approach to the 18Q problem using an estimate of the ocean's sensitivity to freshwater

forcing provided by a numerical model. However, this sensitivity is generally not well

known; in particular, the result that meridional overturning shuts down subsequent

to large coastal freshwater inputs (as seen in "hosing" experiments, e.g. Manabe and

Stouffer [1988]) is subject to question [Condron and Winsor, 2011]. Simulations by

Siberlin [2010] suggest that the passive approximation is not unreasonable for small

(~ 0.001 Sv) freshwater fluxes.

Second, the assumption is made that P 8 ,, is a conservative tracer, meaning that

there are no interior sources or sinks of the tracer away from the surface boundaries.

At least two factors are ignored in approximating 6180, as a conservative tracer.

First, the ratio of conserved quantities is itself not conserved, a fact that has been

dismissed by other authors on the basis of the low abundance of 180 [Dail, 2012].

Second, 08O, is the function of two quantities, V'5 0, and in-situ temperature T;

while the former is conserved, the latter, due to compressive effects, is not. The non-

conservative compressive effects correspond to a 0.02%o - 0.07%0 negative deviation in

the time-mean 6O80c of each record depending on depth and latitude [Fofonoff and

Millard [1983], Bryden [1973], Saunders [1981], assuming the linear paleotemperature

equation of Bemis et al. [1998]]. This deviation is not treated explicitly, but it is

expected to be removed as part of the record means.

Third, no solution priors are enforced by column weighting, which selects for

solution properties that are a priori desirable (see Section 2.2.1 for a discussion of

column weighting). Rather, the solution is controlled only through the definition of

an effective nullspace by choice of the SVD truncation parameter K', which limits the

solution variance and reduces the solution covariance (at the expense of increasing
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solution bias and uncertainty from nullspace contributions). Gebbie [2012] found a

solution by minimizing a cost function that penalized deviations in the solution from

a "first guess" pattern of deglacial surface P'80, and 0 evolution at every surface

grid point; rapid transitions in time; and large horizontal tracer gradients. Reflecting

data constraints, his posterior solution deviates from the modern prior in several high-

latitude regions. In this thesis, solution features that cannot be resolved by the data,

including most features of the modern tracer distribution, are set to zero (yielding

the so-called "particular" SVD solution, Wunsch [2006]).

Fourth, the IBC problem is decomposed into three components - the time mean,

a "fluctuating" or "mean-removed" problem, and the initial value problem of the fluc-

tuating part - each of which is treated separately. The separation of the mean from

the fluctuating part is motivated by properties of errors in sediment cores, wherein

some sources of error, such as intercalibration error and species biases, affect mainly

record means. It is also conventional wisdom to remove record means before perform-

ing regressions. The physical content of the mean values is uncertain because they

depend strongly upon the phase of the low-frequency deglacial signal. This depen-

dence dictates that the mean and fluctuating problems cannot be solved separately,

and instead the record means are simply subtracted and only the fluctuating part

treated. The separation of the initial condition problem makes the fluctuating prob-

lem more tractable and permits the evaluation of a steady tracer solution during the

last glacial maximum (LGM), which directly preceded the deglaciation.

Additional assumptions are made about properties of the data (3.3.3), properties

of the model (4.2.1), and the representation of the model state space by the data

(4.2.2) that are discussed in greater detail in the respective sections.
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4.2 Formulation of the inverse boundary problem

Consider again the canonical statement (2.20) of the forward state vector evolution

under boundary conditions over a finite time interval:

c (t + 1) = Ac (t) + F (t) q(t), t = 0,1, 2, ... T.

How might this framework be used to represent the evolution of tracer concentrations

in a system representative of the global ocean circulation? The simple four-box fluid

transport model discussed in Section 2.4 provides a framework for discussion. In that

model, the system state c (t) was defined by the homogeneous tracer concentrations

in the two interior boxes. The evolution of the system state was prescribed by the

state transition matrix, which described mass fluxes within and out of the system, and

by the matrix F (t), which described mass fluxes into the system from two adjoining

boundary boxes. The concentrations within the two boundary boxes were the controls

q (t) on the problem; ignoring the transient initial state, the forward problem was

completely specified by knowledge of q (t).

In the global circulation problem, the global ocean is represented by the discrete

domain and fluxes derived in Gebbie and Huybers [2012], hereafter referred to as

GH12. Section 2.5 discusses this work in greater detail. The global ocean below the

mixed layer is represented by a 57,514-box model, and the ocean state vector c (t)

consists of the tracer concentrations in each box. The controls are the concentrations

in the 2806 surface grid boxes, each of which is identical to the concentrations in the

underlying mixed layer grid boxes. The matrix A is a function of box volumes and

inter-box volume fluxes and describes how tracer is transported in the model state.
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The matrix F describes how tracer is exported from the ocean mixed layer to the

interior. Fluxes between and among elements of the state and control vectors are

representative of the combined effects of advection and diffusion. Fluxes are constant

in time, reflecting the statistical steady state solution specified by GH12.

The tracer inverse problem is described by Equation (2.22),

y (t) = B (t) c (t) + n (t), t = 0, 1, 2, ... I.

In the paleoceanographic context, sediment core records are treated as noisy obser-

vations y (t) of a subset of the state vector. The matrix B (t) describes the subset

of the state vector believed to be observed by sediment cores at a time t; the time

dependence of B (t) reflects the fact that measurements in some records are not avail-

able at all times. The noise n (t) is defined as any part of the observational signal

that does not originate from the transport of tracer by the modern steady-state cir-

culation estimate. The noise can originate both from observational error (analytical

error, diagenesis, chronological error, or other errors described in Chapter 3) and from

deviations of the model mass circulation from the modern estimate. Inevitably, both

sources of error will contribute.

The IBC problem may also be written in the whole-domain formulation of Equa-

tion (2.34) by creating vectors and matrices (denoted with bars) whose elements vary

in both space and time:

y = BGoc (0) + RU Fi. (4.1)

To summarize the discussion in Section 2.3.3, y is the whole-domain data vector,

B Go describes the contribution (decaying in time) of the initial state vector c (0) to
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the data, B GF relates the boundary conditions q to the observations at all locations

and times; and 1i is the noise. The remainder of this section describes the model and

addresses the construction of the matrices B, F, G, and Go. In short, products of the

matrices G, Go, and F are constructed from the state transition matrix A derived

in GH12, and B is determined by the times and locations of available sediment core

records.

4.2.1 Model specification

Section 2.5 discusses the basis of the GH12 modern circulation estimate in detail.

The GH12 model domain has 33 vertical levels and a 4'x4' resolution, giving a total

of 74,064 grid boxes, 2806 of which lie at the ocean surface and 16550 of which

lie above a prescribed mixed layer (defined locally based on observational estimates

of winter mixed layer depth). The GH12 model is expected to deviate from the

modern mass circulation in many ways, not least because steady fluxes are used to

approximate the highly nonlinear and turbulent ocean, which is known to vary on

all temporal and spatial scales. In particular, there is no annual cycle, which figures

prominently in the subduction of tracers [Stommel, 1979, Marshall et al., 1993] and

in high-latitude convection [Knauss, 1996]. Many properties of the mass circulation

are not constrained by the available data and the GH12 estimate is intended here

to represent a statistical steady state that is determined largely by time-variable

processes. GH12 is a good choice for the problem at hand because it represents a

plausible estimate of global tracer flux rates and because it was tuned specifically to

represent the modern tracer distribution. However, any candidate circulation estimate

(e.g. GCM output or other state estimates) could be used in the IBC problem, and

future work should investigate the sensitivity of the results to this choice.
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The state vector c (t) is a time-varying N-vector where N = 74064-16550 = 57514

(the number of grid boxes outside the ML). Each element of c (t) corresponds to the

tracer concentration of one of the N ocean grid boxes below the local mixed layer

at the time t. Tracer concentrations are conservative in the model state, with the

exception of small contributions from parameterized bottom flow; see GB1O.

The control vector q (t) is a time-varying L-vector, where L = 2806 and is equal

to the number of surface grid boxes. Tracer concentrations within the mixed layer are

assumed to be vertically uniform, and thus the mixed layer concentration is completely

specified by the L values describing concentrations at the surface.

The treatment of upwelling in the circulation model is important for long-term

simulations of global ocean tracer transport. In the GH12 forward model, the mass

circulation is closed, and fluid upwelling into the mixed layer compensates the flux

into the interior at each time step. However, tracer concentration in the mixed layer

boxes is not conserved; it is fixed by the controls at each time step. Thus if a

delta function in space and time of tracer concentration were imposed in the mixed

layer of the forward model, the tracer would propagate into the system state and

the total tracer concentration there would converge to zero over long times as the

tracer was gradually upwelled into the mixed layer and obliterated. This asymptotic,

nonconservative behavior of the system is a consequence of nonconservative boundary

conditions.

Alternatively, consider the tracer flux boundary conditions that are equivalent

to the concentration boundary conditions (such a set always exists). To maintain a

zero boundary concentration in the presence of upwelling positive tracer, as in the

delta function case of the previous paragraph, there must be a compensating negative

tracer flux at the boundary from the mixed layer grid boxes (that is, exterior to the

ocean state). In the deglacial IBC problem, it is important to remember that 6180,,
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concentration boundary conditions reflect upwelling (both local and from the global

mean glacioeustatic component) and mixed-layer transport (e.g. the spreading of

buoyant plumes) as well as forcing by surface climate (e.g. precipitation, river runoff,

or air-sea exchange).

The matrices BGo and BUF in Equation (4.1) are constructed from Green

functions following the adjoint procedure (Equation 2.36). Using the time tendency of

A T augmented to include F, eight forward runs of the adjoint model (corresponding to

the 8 different core sites) were integrated for 5,000 years using MATLAB's odel5s stiff

solver routine with variable time steps following a procedure similar to that of Gebbie

[2012]. Initial conditions in all integrations were zero tracer concentration everywhere

in the domain. In each of the eight integrations, a different Heaviside (in time) tracer

concentration boundary condition was imposed at the locus of a sediment core record,

and time series of tracer concentration in surface grid points was stored. The adjoint

boundary Green function in the mixed layer is computed from the Heaviside response

by differentiating in time using a centered difference scheme and interpolating to a

spacing of 200 years. Finally, forward boundary Green functions are normalized from

the adjoint Green functions by requiring that the time-asymptotic concentration at

sediment core loci is 1 when subject to a uniform concentration boundary condition

of 1.

Heaviside responses are shown in Figures 4.2 and 4.3 to illustrate the propagation

of tracer in the TMI steady state forward model. In each of these figures, large

regions (illustrated in 4.1) that include deep water formation sites are "dyed" with

a concentration of 1 at t = 0 (i.e. a Dirichlet boundary condition) and held at that

concentration for the rest of the integration. Each figure column shows the time-

evolution of tracer concentration at a particular depth level.

In the North Atlantic forcing case, the tracer propagates within the Atlantic Ocean
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Figure 4.1: Seven surface regions defined in Gebbie and Huybers [2010]. Heaviside
responses in Figures 4.2 and 4.3 were generated by enforcing uniform concentrations
of 1 in the mixed layer of the North Atlantic (NATL, cyan), and the Antarctic (ANT,
blue) regions.

from north to south, establishing a meridional gradient. There is visual evidence

for preferential transport of tracer along western margins and along the Equator

in the Atlantic. At 4,000 years, when the tracer distribution is near equilibrium,

meridional gradients are sharpest at 2000 and 3000 m where the Atlantic Ocean

joins the Southern Ocean, while at 1000 m the gradient is more moderate. The

tracer plume in the Pacific Ocean moves northward from the Southern Ocean and

eventually establishes a meridional gradient. Equilibrium tracer concentrations in

the Pacific Ocean are of order 0.1 and increase with depth between 1000 and 3000 m.

In the Southern Ocean forcing case, tracer signals penetrate to depth and propa-

gate northward, with local maxima in the Ross and Weddell Seas. Tracer concentra-

tions in the Atlantic are modest, and at equilibrium a sharp gradient appears at the

latitude of Cape Horn that is complementary to that observed in the Atlantic forcing

case. At equilibrium outside of the Atlantic sector, meridional tracer gradients are

sharpest at 1000 m, and tracer concentrations in the deep North Pacific are roughly

0.5, again with a local maximum at depth.

There are many additional suggestive features in these plots and a complete de-

scription is beyond the scope of this work. Clearly evident, however, is the com-

plexity and three-dimensional anisotropy of the evolving tracer plume, with evidence
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Figure 4.2: Heaviside response in the TMI steady circulation estimate when the mixed layer in the North Atlantic (see
the definition of this region in Figure 4.1) is held at a fixed concentration of 1 beginning at t = 0. Each column shows
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for transport from both advective and diffusive properties. The Heaviside responses,

which show the pathways for transmission of surface climate signals to depth, illus-

trate some of the challenges of the tracer inverse problem. Comparisons with tracer

concentration forcings in other surface regions (not shown) show that mixed layer

concentration signals are transmitted to depth, where they might be observed by

benthic observations, most rapidly and with least distortion when they originate in

areas of high deep water formation rates.

In the deglacial inverse problem, the time step At is set to 200 years and the

number of time steps T is 101, corresponding to the 20,000 year reconstruction interval

25,000 ybp - 5,000 ybp, i.e. t = -25000, -24800,.. - 5200, -5000 chosen to resolve

the deglacial transition (roughly -20000 to -8000 years). The time step was chosen

to reflect the resolution of benthic time series and so as to resolve millennial-scale

variability. After 5,000 years, the boundary Green functions are set to zero, which is

accurate to within 5 x 10-5. This approximation may lead to errors in solutions of

the steady IBC problem and should be revisited in future work.

It is now possible to specify the dimensions in the statement of the IBC problem,

y = R-oc (0) + BGFj + ii.

The whole-domain y is an 785-vector, B is an 785 x (101 * 57, 514) matrix describing

elements of the state vector observed by the data, Go is a (57, 514 * 101) x 57, 514

matrix that describes contributions to the system state at different times due to

the initial conditions, c (0) is a 57, 514-vector of (unknown) initial conditions, G

is a (57, 514 * 101) x (57, 514 * 101) matrix describing the evolution of the system

state, F is a (57, 514 * 101) x (2806 * 101) matrix describing the contributions to the

system state from the boundary conditions, -j is a (2806 * 101)-vector of (unknown)
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boundary conditions, and hi is an 785-vector of observational noise. Luckily from a

computational perspective, it is possible to construct just the products B Go F, which

is 785 x (2806), and B G F, which is 785 x (101 * 2806), and to use the sparsity of

these matrices to make the inverse problem much more tractable.

Omitting the contribution from initial conditions, the problem appears to be

highly underdetermined: 785 noisy observations are being used to constrain 785 noise

observations and 2806 * 101 controls.

4.2.2 Treatment of benthic 08Occ data in the inverse problem

The fluctuating part of the ith record is defined by subtracting an estimate hni of

the record mean,

fi =yi - dii

d = [11, ... 1]I

where the fni are least-squares estimates of record means and the yi are the objectively

mapped records of P0,, (described in Chapter 3). The whole-domain vectors y and

Y were constructed by concatenating the yi and fi to yield vectors that vary in both

space and time:

y = [y1,y2,...y91

Y = [fI, f2 ,...f 9].

The matrix B (t) has 74,064 columns and a number of rows corresponding to the

number of available sediment cores at a given time. Each row Bi = 6 j,TMI, where

TMIh is the index of the location of the ith sediment core as represented in the TMI
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Name Depth TMI Depth Lat TMI Lat Lon TMI Lon Start (ybp) End (ybp)

SA1967 1967 2000 -23.32 -24 12.38 10 23,800 5,200

NA3223 3223 3000 12.4 12 -18.1 -18 24,800 5,400

NA1299 1299 1300 12.08 12 -61.25 -62 24,800 5,200

SA3770 3770 4000 -44.15 -48 -14.23 -18 24,800 5,200

E12100 2100 2000 -9.65 -12 118.34 118 24,800 5,200

NA3146 3146 3000 37.8 36 -10.17 -10 24,800 5,200

NI1580 1580 1500 10.77 12 51.95 50 24,800 5,200

EP3210 3210 3000 -3.6 -4 -84 -86 24,800 5,200

Table 4.1: Properties of the data as used in the inverse model. Locations of sediment
cores were interpolated to TMI ocean grid box locations by minimizing differences in
depth, longitude, and latitude.

state vector (Table 4.1). In several cases

grid boxes and core depths; future work

between grid boxes.

there are offsets of 200-300 m between model

should correct these offsets by interpolating

4.3 Results

Results are described for two IBC problems. First, the initial conditions for the

mean-removed problem are estimated by seeking a steady set of boundary conditions

4o that best matches the average of the interval [-25000, -20000] in each record,

nominally representative of the LGM. Next, a time-varying solution f[ is sought that

best matches the mean-removed records.

4.3.1 Solution to the "LGM equilibrium" problem

To solve the initial value problem, we seek a steady solution of controls 4o that

best reconstructs the average values of the mean-removed sediment core records f

over the shorter interval [-25000, -20000] in a least-square sense. The initial state

vector estimate E (0) is defined as the system state that is in equilibrium with the
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steady boundary conditions eo. Notably, since the initial conditions have no effect on

the system state after -20000, they have no impact on the deglacial interval [-20000,

-8000] that is of primary interest here.

The statement of the initial value problem is

yo = BoGoFqo + n,

where yo is an 8-vector consisting of the mean values of the fluctuating parts of the

sediment cores on [-25000, -20000]; BoGoF is a 8 x 2806 matrix that describes the

steady tracer problem at the model locations corresponding to the core sites, qo is

an unknown 2806-vector of mixed layer tracer concentration, and no is an unknown

8-vector of observational noise. No row weighting was applied. The solution is given

by

K5 OTifo 
2806

40 = o Voi + E oovs
i=1 Oi i=K6+1

Here, the nullspace parameter is set to Ko = 3 and the nullspace contributions are

set to zero. The nullspace parameter was chosen to be the lowest number that fit the

data roughly to within 0.2%o (specifically, the K' = 2 case had substantially larger

residual amplitudes io).

Figure 4.4 plots the solution Elo to the initial value problem as a map of surface

6180,. The solution is everywhere positive but is extremely sparsely distributed.

Fundamentally this occurs because the solution is a set of sums and differences of

the adjoint Green functions calculated at each core site, each of which is heavily

weighted towards regions of deepwater formation in the model of GH12 (see 4.16 and

the discussion in Section 4.5). A single maximum in the Weddell Sea accounts for

most of the variance in 40, but there are nonzero values distributed throughout the
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Figure 4.4: The solution to the initial value problem. Panel 4.4a shows the singular
values of the initial value problem and panel 4.4b plots the solution 4o. A single
maximum in the Weddell Sea accounts for most of the variance, but there are nonzero
values distributed throughout the North Atlantic, Arctic, and Southern Oceans. Units
of both plots are %6180.

Name Yo (%o) 4jo (%0) fio (%o)
SA1967 0.96 1.02 0.06
NA3223 0.78 0.70 -0.08
NA1299 0.68 0.70 0.03
SA3770 0.92 0.70 -0.21
E12100 0.72 0.70 -0.02
NA3146 0.84 0.79 -0.06
NI1580 0.50 0.71 0.21
EP3210 0.55 0.62 0.07

Table 4.2: Data, reconstructed data, and residuals for the initial value problem.

North Atlantic, Arctic, and Southern Oceans. Values of yo, eo, and fio are listed in

Table 4.2.

4.3.2 Solution to the fluctuating problem

Problem setup

To solve the fluctuating problem, we seek the time-varying solution of controls ii

that best reconstructs the time-varying components T of the sediment core records in

107

6

4

2

0
200
(b)

300



a least-squares sense on the interval [-25000, -5000]. In all cases, the effect of the

initial conditions was removed from the data by subtracting -G0 Oq 0 from F before

scaling; this component was added back to the reconstructed data before plotting. A

whole-domain row weighting matrix W was constructed as a block-diagonal matrix of

the uncertainty matrices Pi of the eight sediment core records as defined in Equation

3.6,

P1  0 ... 0

0 P2 ... 0
W=

0 0 ... P 9

The prior noise statistics are spectrally red in time because of non-zero off-diagonal

terms in the Pi (Section 3.3.3). Measurement errors between records are believed,

a priori, to be uncorrelated at all times as specified by the zero off-diagonal block

matrix elements of W.

The statement of the fluctuating IBC problem is, after applying the row weighting,

W-T2 [1wT/ 2R-GF 4J W-T/ 2i,

where WT/2f is the scaled 785-vector of fluctuating sediment core records, [WT/2

is a 785 x (2806 * 101) matrix relating controls at all locations (L = 2806) and times

(r = 101) to the state vector at the core sites, and W-T/21 is an 785-vector of scaled

observational noise. Define the singular value decomposition to be

UAV T - T/2

As before, the SVD solution is
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K' uTY 2806*101

E =vi + : aivi (4.2)
i=1 i i=K'+1

and setting the ai = 0 yields the particular SVD solution. Figure 4.5 shows the

singular values and weights on the fluctuating SVD problem. The decay of the singular

values of [W-T/2R-G F] is gradual and hundreds of singular values are of order 1,

suggesting that many structures in the range vectors vi, i < K' are resolvable by

the data (Figure 4.5). Plateaus in the plot of ranked singular values correspond to

structures in space that are resolvable at a range of frequencies. Panel 4.5b, which

plots and uff, show that the pattern of data projection onto singular vectors is

complex, with strong projections appearing in groups near SVD indices 0, 190, 290,

and 420. Solutions were obtained for a variety of choices of K'; here the K' = 300

and K' 400, cases are discussed.

A note about plotting whole-domain vectors

Solutions to the fluctuating problem are three-dimensional fields (two spatial di-

mensions and a time dimension) and can be thought of as 20,000-year long movies

of surface mixed layer concentration variability. To give some sense of the evolution

of the fields (rather than, for instance, just plotting snapshots at various times), the

solutions j are singular value decomposed into what are known in meteorology as

EOF-PC pairs [e.g. Bretherton et al., 1992]. It should be stressed that this addi-

tional SVD procedure is distinct from the procedure used to obtain the solution and

is just a convenient way of plotting the results.

The EOF decomposition is effected by reordering the whole-domain vector j into

a matrix Q whose rows index spatial locations and whose columns index time. Thus

Q is a L x r matrix, where L = 2806 and r = 101. The singular value decomposition
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of Q is
Q =UqAqV q,

where the uqj are orthonormal 2806-vectors (the EOFs) describing spatial patterns,

the vqj are orthonormal 101-vectors (the PCs) that weight the corresponding EOFs

at each time step, and the singular values on the diagonal of Aq are the amplitudes

(in units of concentration) weighting each EOF-PC pair. In the case when a subset

of singular values contain most of the variance in the field, a truncated representation

of Q consisting of a few EOF-PC pairs can be a very good approximation.

In the results discussed in this section, very good representations of the solutions

can be obtained with only several EOF-PC pairs. This is not immediately intuitive

given that solutions j = Uv are the sum of many orthogonal components

(the range vectors V of the IBC problem). However, consider two whole-domain

vectors that are orthogonal in space but not time (for instance, two orthogonal spatial

patterns varying in time by the same annual cycle). These whole-domain vectors are

orthogonal, but their sum can be expressed as a single EOF-PC pair (the sum of the

two spatial patterns, varying in time as the annual cycle). The SVD solution is such

a sum of whole-domain vectors that are orthogonal in space and time but that have

many spatial structures in common (specifically, the spatial patterns dictated by the

surface expression of adjoint Green functions computed at sediment core sites).

Comparison of solutions with K' 300 and K' = 400

Figures 4.6 and 4.7 show solutions q+4o to the fluctuating IBC problem (40 is the

contribution from the initial condition problem) for choices of nullspace parameter

K' = 300 and K' = 400, respectively. Henceforth these solutions will be referred to

as q3 00 and 4 400.
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At every space and time, the amplitude of the concentration is the product of the

corresponding location in the EOF and time in the PCs. As always, it is important

not to interpret EOF-PC pairs (EPPs) as dynamically independent modes of the

physical system; here, the decomposition is merely a convenient way of plotting the

solutions. In both solutions discussed, the first three EPPs account for over 90% of

the solution variance.

All solutions have nonzero values in regions of the GH12 model that export volume

below the mixed layer. The discussions of the solution resolution in Sections 4.4.1

and 4.5 help to understand this feature of the solutions.

The leading PC in 4300, representing 50% of the solution variance, is a smooth

curve (the high frequencies are smaller than the standard error of the solutions and

can be disregarded) with a minimum value of roughly -6%o at -19000 years, climbing

over an 11kyr period to a maximum value of roughly 8%o shortly before -8000 years.

The decay to zero at -5000 is an edge effect 1 . The corresponding spatial pattern is

everywhere negative, with a pattern of values over the North Atlantic and Arctic

similar to those seen in the solutions of the mean and initial value problems, though

with reduced maxima in the Weddell Sea. The second EPP pair deviates strongly

from zero in intervals centered on [-17000, -16000] and -8200 with a spatial pattern

dominated by a gradient of values in the model North Atlantic and Arctic. The third

EPP consists of relatively low-amplitude, low frequency variations.

Solutions obtained for K' = 300 and K' = 400 differ by the addition of 100

additional right singular vectors v301 , v 302 , ... v400 weighted by the corresponding -i-1.

As such 4400 has greater variance (by over a factor of 2) and greater uncertainty

(discussed in the next section) than q300. Analysis of the difference of the two solutions

'At -5000 and times shortly before, there is very little information about the controls because
insufficient time has passed for tracer concentration values therein to propagate to the loci of obser-
vations.
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(not shown) shows that the additional variability is approximately represented by

first EPP pair of 4 400. The leading EOF of q400 is dominated by a zonal gradient

in the Southern Ocean and predominantly positive contributions in the Northern

Hemisphere. The corresponding PC shows a large, negative excursion in the middle

third of the interval with peaks centered on -15.5 kyr and -12.5 kyr. The second EPP

of 4 4 00 has structure and amplitude similar to the first EPP pair of 4 300. The third

PC has a broad excursion centered on [-17000, -16000] and a sharp peak at -8200.

Because the spatial structure of these solutions is dominated by deepwater forma-

tion regions, the physical meaning of the solutions is not clear. A particular cause for

concern are the negative V10cc values inferred at some surface locations. Implications

of this result are addressed in Section 4.5.

Nevertheless, some features in the principal components are suggestive of deglacial

features and are worthy of mention. The PC1 of =300 and PC2 of -44O describe a

canonical, gradual picture of the deglaciation in terms of benthic 6180,. The two-

peaked excursion in PCi =400 may be suggestive of the Bolling Allerod / Younger

Dryas transition at some locations. Large peaks are visible at -8.2 kyr in PC2 of 430

and PC3 of =400; these may be due to the 8.2 kyr event (hypothesized to have been

from catastrophic draining of Laurentide lakes; e.g. Barber et al. [1999]).

The raw (mean-removed) observations, objectively mapped data f, observational

uncertainty, and reconstructed data f are plotted as time series in Figures 4.8 and

4.9 for K' = 300 and K' = 400, respectively. The K' = 400 case necessarily produces

a superior reconstruction, at the expense of higher solution amplitudes and uncer-

tainties. In particular, q400 does substantially better at matching EP3210 during the

deglacial transition as well as NA1299 around -15000, though SA1967, which is re-

constructed poorly, is not much improved and the estimate for NI1580 has additional

high-frequency variability in the residual for q400. The origin for the 8.2 kyr peak
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Figure 4.6: The solution El obtained with effective nullspace parameter K' =300

for the time evolution of "fluctuation" (mean-removed) surface VO,8c is plotted as

three EOF-PC pairs. EOF-PC pairs are computed by finding the singular value

decomposition of the whole-domain solution vector, reordered into a matrix indexed

by space in rows and time in columns (see Section ). The EOFs (spatial patterns,

right panels) are shown in normalized units, while the PCs (time series, left panels)

have the units of the tracer. Times and regions of zero value lie in the solution null

space of the problem. The solution has low values everywhere at the end of the

reconstruction interval because of lags in transporting tracer to observable regions.
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in both solutions can be seen in NA1299 and NA1580, each of which has a negative

excursion near that time.

4.4 Further discussion of the K'= 400 case

For the sake of brevity, further properties of the solution will be discussed only

for the K' = 400 case, which was chosen because it reproduces the data qualitatively

well (in particular, the K' = 400 reconstructs the phase lag between NA3146 and

EP3210, which motivated the studies of Skinner and Shackleton [2005], Wunsch and

Heimbach [2008], and Gebbie [2012]). This section evaluates the uncertainty of the

solution and the statistics of the residuals.

4.4.1 Solution uncertainty and resolution

The uncertainty of the particular SVD solution is given by Equation (2.14):

where the solution covariance matrix Cq is a square, sparse matrix with dimen-

sions (101 * 2806) x (101 * 2806), Qv is the (2806 * 101) x (2806 * 101 - K') matrix of

solution nullspace vectors, and (aaT) is the (2806 * 101 - K') x (2806 * 101 - K')

covariance matrix of nullspace weights. The total uncertainty P may thus be thought

of as having two parts, one (Cq) arising from observational uncertainties and the

other (Qv (9aZT) QT) arising from contributions of the solution nullspace vectors,

which are omitted in the particular solution. The first of these components may be

estimated; the second is harder to quantify, but the solution resolution matrix Tv

provides some insight.
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Due to the size of C~, only the diagonal entries [Cg] are considered here. The

square root of the diagonal entries is known as the "standard error" and is a measure

of the variability of the solution due to uncertainties in the data. Off-diagonal terms

contain information about the covariance of the solution. Like the solution f4, the

Cq iiis a three-dimensional field showing how the two-dimensional error changes

in time.

Figure 4.10 shows that the spatiotemporal evolution of the K' = 400 solution

standard error Cg] 1/2 is represented well by a single EOF-PC pair. Like the solution

EOFs, the uncertainty has nonzero elements in the North Atlantic, Arctic, Ross and

Weddell Seas, and southwest of Australia in the Southern Ocean. The PC, which

has units of permil 18O, holds approximately steady at values between -1.7 and -1.2

for the duration of the reconstruction, which (when scaled by the EOF) suggests an

uncertainty of % for many of the locations with nonzero solution amplitudes. The

standard error is zero over much of the domain (and at the end of the reconstruction

interval, which is ill-constrained by the data) because those regions are not constrained

by the data and lie in the solution nullspace. By comparison, the standard error for

the K' = 300 case has a similar spatial pattern, but an amplitude reduced by roughly

a factor of two, reflecting the lower uncertainty (but larger nullspace) of that solution.

The second component of solution uncertainty, Q, KQT) QT, arises from the

expected contributions from the nullspace vectors. By definition, the data are unable

to constrain the a, and prior notions of these weights must be used if Qv aaT) QT

is to be estimated. The (2806 * 101) x (2806 * 101) solution resolution matrix Tv =

VKVT", where VK' is the (2806 * 101) x K' matrix of solution range vectors, can

be useful in understanding which spatiotemporal features lie in the nullspace and in

rationalizing differences between true and inferred control values.

For instance, one might ask how a pulse of tracer at -15000 years (i.e., in the
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Figure 4.10: The diagonal elements of the solution covariance matrix Cqq (the "stan-

dard error") constitute a spatiotemporal pattern with the same dimension as q-. Here,
the standard error is plotted in terms of its leading EOF-PC pairs for the K' = 300
(4.10a) and K' = 400 (4.10b) cases. The EOFs (spatial patterns, right panels) are
shown in normalized units, while the PCs (time series, left panels) have the units of
the tracer. Times and regions of zero concentration lie in the solution null space of
the problem. The leading EOF-PC pair accounts for over 97% of the variance in both
cases and is a good representation of the standard error.
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middle of the reconstruction interval) at a location in the North Atlantic might be

inferred by a particular SVD solution with K' = 400. The three panels in Figure

4.11 show maps of the inferred solution j at three times (-15200, -15000, and -14800)

when the true control vector 4 is a Kronecker delta function in time and space, with

an amplitude of 1 at the location marked by a green circle (top left) at t = -15000

and 0 amplitude at all other places and times. The inferred solution has sidelobes in

both time and space. Evidently this choice of control vector did not lie entirely in

the space of solution range vectors, i.e., at least some part of the delta function could

not be inferred because it lay in the solution null space.

A telling feature of Figure 4.11 is that a delta function of tracer at the location

and time chosen is inferred with a 70% reduction in amplitude (1 vs. 0.3). At other

locations, the amplitude reduction is even more dramatic. The inferred amplitude of

a delta function in the ith element of the whole-domain control vector -q (i.e., a delta

function in time and space) is [T,]i. A map of these diagonal elements for the time

-15000 is shown in Figure 4.12. At all locations but a few, the variance of the inferred

solution at the appropriate place and time is an order of magnitude less than the true

value, and in most cases the values are extremely small. One Weddell Sea location is

the exception, with a value of 0.94; this point is associated with a large ocean volume

contribution.

The covariance and resolution matrices are important for interpreting the solution,

and evidently several caveats are in order when assessing solutions to the time-varying

IBC problem. The solution uncertainty is unbounded over most of the ocean because

mixed layer concentrations there lie in the nullspace of the IBC problem. When a

component of the controls does not lie entirely in the solution range, the hypothetical

solution will have sidelobes in space and time. Thus while the IBC solution (Figure

4.7) appears to be a relatively simple pattern of deglacial change over regions of
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Figure 4.11: Three consecutive columns of the solution resolution matrix T, show
sidelobes in time and space in the inference of a delta function of tracer at the lo-
cation marked by a green circle (top left) at t = -15000. Note that color maps
between panels differ by factors of 10. Rather than reconstructing the delta function,
the network of eight sediment cores infers a pattern of nonzero boundary conditions
smeared out over the North Atlantic and Arctic Oceans, with a small amount inferred
as originating 200 years earlier.
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Figure 4.12: Diagonal elements of T, selected at t -15000 show how variance

is attenuated in estimates of surface boundary conditions 4j. For instance, a delta

function of tracer released at t = -15000 in the Weddell Sea (lower right hand corner,
red pixel) will be reconstructed at t = -15000 with a value of 0.94 (with additional

variance in spatial and temporal sidelobes). For the great majority of surface points,
very little or no variance is reconstructed faithfully.

subduction and deepwater formation, with covariance structure that suggests modest

uncertainty due to observational error relative to the solution amplitude (Figure 4.10),

many features of the "true" solution remain hidden. This observation holds true for

any least-squares solution to the IBC problem, not just the SVD solution.

4.4.2 Data resolution, residuals, and hypothesis testing

Plots of f, f, and i (Figure 4.9) broadly agree with the interpolated data in

many respects. The deglacial 618O, transition is evident at every core site, and no

record-long biases are apparent, though residuals in some records are dominantly

low-frequency.

Some sediment core records appear to be better reconstructed than others. The

shallower records (NI1580, E12100, SA1967, and NA1299) appear to share a two-
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stage decrease in 6180, with the first transition occurring somewhere between 18 and

16kya; these features are captured in NA1299 and arguably NI1580 but not in the

others. By contrast, the deep North Atlantic records (NA3223 and NA3146) show

few excursions outside of the 1-- envelope.

The diagonal [T,,] of the 785 x 785 data resolution matrix is known as the "data

importance" and describes the contributions of an observation in a particular core and

time to the corresponding value in the reconstructed data (Figure 4.13). In all cases,

data importance is zero at the beginning of the reconstruction interval, a reflection

of the effects of initial conditions. The data importance varies by nearly nearly an

order of magnitude between some sediment core records. Other variations in [Tu]ii

arise from noise and different row weighting by W reflecting uncertainties from data

interpolation. Values of [Tu]ii corresponding to record SA3770 are nearly 1 over

the duration of the record, perhaps because it is the only core site that lies near the

Southern Ocean and important deep water formation regions in the Ross and Weddell

Seas or perhaps because of its relatively small uncertainty. The data importance

of NI1580 appears sensitive to the uncertainty in that record, with several jumps

during intervals of high core sampling and commensurate low record uncertainty.

Records E12100, EP3210, and SA1967 have less importance than the other records;

evidently more of these records lies in the data nullspace, and their reconstruction

would improve with larger choices of K'.

A visual examination of f, f, and fi (Figure 4.9) shows that residuals are generally

larger in some sediment cores than in others and that there are multiple, persistent

features in the residuals n. Testing the likelihood that n is a realization of the

random process described by the prior uncertainty statistics in W is an important

step in evaluating whether or not the solution is able to reconstruct the data, and

thereby also important in evaluating the hypothesis that the modern circulation can
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The distribution is non-

explain deglacial sediment core records. Ideally, we would like a quantitative way to

evaluate whether or not the model-data misfit can be explained by what we think we

know about the observational uncertainty.

Here we evaluate only variance and Gaussianity of the scaled residuals W _T .

The variance of is 0.155, suggesting that the solution may over-fit the data.

A histogram of the scaled residuals is plotted in Figure 4.14. There is a strong peak

around 0 and the residuals are skewed right. A x 2 goodness-of-fit test rejects the null

hypothesis that the distribution is Gaussian at the 5% level. The K' = 300 solution

has scaled residual variance of 0.32 and is also non-Gaussian.

4.4.3 A check for self-consistency

The tj 0 solution prescribes a set of surface mixed layer concentrations of 6180cc,

which is related to physical variables through paleotemperature equations, e.g. [Bemis
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et al., 1998]

18 0, = 3.4 + V180, - 0.21T.

This section discusses a forward integration of the GH12 model in which the q400

mixed layer boundary conditions were applied. Based on the evolution of the tracer

field in the model, can we evaluate post hoc whether the passive tracer assumption is

tenable?

Figure 4.15 compares the distribution of J18Occ anomaly (varying about the solu-

tion mean) in a latitudinal cross-section at 260 of a snapshot at -15400 years in the

forward run to a modern estimate of salinity at the same location from Gouretski

and Koltermann [2004]. This time was chosen as an indicative example; 260 is the

location of numerous modern oceanographic surveys and the RAPID array. Noting

that modern 6"80,,-S estimates are 0.51 for NADW 0.23 for AABW [LeGrande and

Schmidt, 2006] and assuming that 6"80, accounts for half the variations in O80cc

suggests that if 61180, were advected as a passive tracer, perturbation zonal salinity

gradients in the abyssal ocean from deglacial meltwater would be of the same order

as zonal gradients in the modern ocean. Insofar as these gradients affect density, per-

turbation zonal salinity gradients may induce perturbative meridional flow depending

on the relative stratifying effects of temperature on density. Other, different solutions

may exist that fit the data but do not imply horizontal salinity gradients.
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model forced by controls derived in the inverse problem with K'= 400.
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4.5 Discussion

This chapter posed a tracer inverse boundary condition problem in the context

of deglacial benthic S150 records of calcium carbonate recovered at eight core sites.

Particular SVD solutions for the time history of surface mixed layer boundary condi-

tions were derived for the (mean-removed) sediment core records and for the average

values of the records on the interval [-25000, 20000] (representative of the LGM).

A time-invariant set of boundary conditions was found that satisfied the LGM-era

means.

The characteristics of the time-varying solution, and the corresponding fit to the

data, changes substantially with different choices of the SVD truncation parameter

K'. Lower values of this parameter yield solutions with magnitudes of 6180c more

like those found in today's ocean, but at the expense of increased misfit with the

data.

The formal disagreement of the solution residuals with their a priori statistics

says that something is wrong with the assumptions that went into the inverse model

- the way the data were processed, the representation of sediment core error, the

ability of GH12 to represent the modern ocean, or the ability of the modern ocean

to explain deglacial sediment core records. In this case, the skewness of the residuals

appears to be due to misfits with two cores (SA1967 and NI1580) over several con-

tiguous intervals, and the non-Gaussianity of the residuals could be removed if the

conservative error estimate of 0.2%o used in the construction of sediment core records

were reduced. Given the great uncertainty surrounding error estimates of sediment

core records, there is insufficient evidence to demonstrate that the modern circulation

did not persist throughout the deglaciation without the inclusion of additional infor-

mation. Further investigation of the misfits of SA1967 and NI1580 is a clear avenue
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Figure 4.16: The global ocean volume is filled disproportionately in the steady path-

ways model of Gebbie and Huybers [2010] by a subset of surface grid boxes. In this

figure, circle radii are propotional to the proportion of ocean volume below the mixed

layer that originates from the corresponding surface locations. Figure 2 from Gebbie

and Huybers [2011] is a logarithmic version of this plot.

for future work.

Another insight is that solutions obtained using SVD (without imposing prior in-

formation about solutions) have spatial structures that are determined primarily by

the resolving power of the network of benthic records. Comparisons of the spatial

structure in the solutions or uncertainties with Figure 4.16, which shows the con-

tributions of surface locations to the global ocean volume in the model of GH1O,

demonstrates that solutions have positive variance in regions that are most respon-

sible for filling the ocean. The algebraic understanding comes from the resolution

matrix: Range vectors of the BC problem have spatial structure derived from the

distribution of dominant deepwater locations. A simple analog is provided in the 4-

box model in Section 2.4.2 and discussed in Section 2.4.4. The physical understanding

is straightforward: measurements of scalar properties in the deep ocean only constrain
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properties of parcels that actually enter the deep ocean.

The solutions, dominated as they are by the resolvable spatial patterns of the

problem, do not resemble the much smoother distributions of 6 and 6'8 OS that are

expected for physical reasons and observed in the modern ocean. Moreover, some

inferred surface tracer concentrations have much larger amplitudes than observed in

the modern [LeGrande and Schmidt, 2006, Gouretski and Koltermann, 2004] and

are negative. Given these a priori unreasonable solution characteristics, physical

interpretations of the solutions should be approached cautiously; however, several

features in the time-variability of the solutions are suggestive of canonical stages of

last deglacial climate (reflecting similar variability in the sediment core records).

From the unphysicality of the solution, one is led to conclude that the SVD solution

approach is inappropriate in this context to test the null hypothesis that a solution

can be found that fits the benthic observations using an estimate of the modern

circulation. A solution can be found, but clearly other information must be brought

to bear in the problem to find a solution that fits a priori notions of physicality.

One way forward is the use of column weighting as in Gebbie [2012]. Despite this

drawback, the SVD approach has proved insightful for understanding and quantifying

the nullspaces of the problem.
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Chapter 5

Concluding remarks

This thesis develops and applies a framework for understanding deglacial benthic

records of 6180 in the context of the tracer inverse problem, the goal of which is to

infer boundary conditions and flow parameters from observations of a fluid system

(the ocean). The approach taken is to solve the inverse boundary problem (IBC),

whereby a time history of surface mixed layer 680,, concentrations is sought that,

when propagated in space using an estimate of the modern mass circulation, best

agrees with the data in a least-squares sense.

Some of the lessons learned in the ocean inverse problem can be understood in

the context of the much simpler box models studied in Chapter 2. Advective-diffusive

properties delay and smooth tracer signals that are imposed at system boundaries,

and the effect of tracer signal propagation in steady flow is mathematically the same

as the application of a linear, time-invariant filter, as also discussed in Rutberg and

Peacock [2006]. The solution nullspace is the set of features that cannot be inferred

from the data. Nullspaces in the inverse tracer problem can arise from observational

sparsity, attenuation of structures by tracer transport (e.g. mixing), and vanishing
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influence of the controls on the system state.

In Chapter 3, eight sediment core records were discussed and processed for use in

the IBC problem. Objective mapping was used to interpolate the records to be evenly

spaced in time and to estimate uncertainty in the data due to uneven sampling. This

procedure inferred higher uncertainties during times of sparse sampling and tended

to smooth over rapid transitions or spikes.

Chapter 4 solves the IBC problem for the evolution of 6180c in the ocean mixed

layer under the assumption that the modern ocean circulation, as estimated by Gebbie

and Huybers [2010, 2012], persisted over the time interval [-25000,-5000]. Particu-

lar SVD solutions for the time history of surface mixed layer 6180cc were derived,

constrained by the eight sediment core records discussed in Chapter 3. The inverse

problem seeks to infer 6180,, at 2806 locations and is highly underdetermined.

The inverse problem has a large nullspace, and the data can be accommodated

reasonably well in the fluctuating problem using the 400 leading singular vectors. A

solution obtained using 300 leading singular vectors had lower amplitude and uncer-

tainty but did not resolve the Atlantic-Pacific lag introduced in Chapter 1. Solu-

tions are dominated by resolvable patterns of the data, which reflect locations and

magnitudes of ocean volume contributions. There are time-persistent features in the

residuals of two records, despite the fact that the total variance of the scaled residuals

suggests that the solution over-fits the data.

Given the large uncertainties in sediment core error models and the unphysicality

of the solutions, we conclude the records cannot disprove the null hypothesis that the

modern ocean circulation persisted during the deglaciation. Solutions obtained (e.g.

Gebbie [2012]) that explicitly use information about surface tracer distributions are

more appropriate for testing the null hypothesis that the modern circulation persisted

during the deglaciation.
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Directions for future work

Is 6180, a passive tracer? The deglacial freshwater forcing problem is chal-

lenging and alluring because it involves most of the processes studied in physical

oceanography. The beginning of the 6180c transport pathway begins when cold,

fresh water is released into the coastal ocean (except in the case of Heinrich events,

where a substantial amount of ice is thought to melt in the open ocean), probably

forming a buoyant coastal plume that is eventually entrained into gyre-scale flow

[Condron and Winsor, 2011]. The 6"08,, signal will be transmitted to the abyssal

ocean via subduction or convective deep water formation. Buoyancy anomalies in

the deep ocean can lead to the reorganization of baroclinic structure through the

transmission of planetary waves [Kawase, 1987]. A major question in implicating

freshwater forcing in past ocean circulation changes is to what extent 6180,, may be

treated as a passive tracer; Siberlin [2010] provides some first steps in a modeling

framework.

What kinds of changes can be inferred by available observations? The

detectability of circulation changes by available data should be weighed when evalu-

ating any hypotheses about past ocean evolution. There is naturally a nullspace for

detecting changes in flow parameters, e.g. if a change in circulation AG obeys

B (G + A ) Ftj= o,

then it is unobservable. Clearly the form of 4J is important in governing observability,

motivating the study of cases (such as the deglaciation) with relatively well-defined

boundary conditions.

Construct an improved error model. Problems with data - sparsity, covari-
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ance, and noise - are endemic in paleoceanography. In this thesis, effort was taken

to treat records uniformly and consistently, but the statistics of sediment core errors

- including human error, undersea landslides, instrument drift, age model error, and

other potentially non-Gaussian processes that are difficult to quantify - may be so

complicated that only an expert can actually say what is going on in a particular

record. Unless such an expert is willing to assign uncertainties to individual data

points in a sediment core, this leaves inverse studies with an insoluble quandary of

ad hoc error statistics. Alternatively, a concerted effort to simulate, via pseudoproxy

studies or otherwise, and characterize the uncertainty in sediment core records may

make such records better suited for use in quantitative problems.

Where should new records be recovered? Locations and times that re-

duce the null space are desirable for future sediment core recovery in order to better

constrain the IBC problem.

Incorporate new benthic 6180 records from New Zealand. A yet-unpublished

set of deglacial Ol8Oc records (E. Sikes, pers. comm.) was recovered at multiple

depths in the water column and dated using ash layers. The cores' proximity to

modern regions of deepwater formation in the GH12 representation of the Southern

Ocean is ideally suited to reducing the nullspace of the IBC problem.

Assemble a network of planktonic deglacial 180 records in regions of

deepwater formation. These records can be compared to the inverse solutions

obtained here or included explicitly in the inverse problem to test the consistency

of the modern circulation with both benthic and planktonic tracer observations. If

the data are inconsistent with a steady modern flow assumption, can they be used

to constrain aspects of the flow evolution? A first assumption is that modern and

LGM states form a basis for the intervening times (i.e. that tracer transport in the

deglaciation is a weighted sum of the modern and LGM transports).
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Test the sensitivity of conclusions to age model errors. How large must

reservoir age errors be in order to explain phase offsets between benthic 6VO records?

Derive Green functions from other state estimates. How sensitive are

the results in this thesis to the choice of circulation estimate? What does the inverse

problem look like in circulations representative of other climates? Are some inferences

about surface climate conditions (via boundary conditions) robust to differences in

circulation estimates? The Holocene and LGM bookend the deglaciation, and the

deglacial IBC problem could equally well be solved with an LGM tracer transport

estimate.

Express tracer inverse problems in terms of concentrations exported

from the mixed layer. Given that reconstruction variance is focused on deepwater

formation regions in the model of GH12, it seems likely that inferences of mean tracer

concentrations exported from the ML in a geographical region can be inferred much

more robustly than the average ML tracer concentrations there. The rationale for this

result echoes a recurring theme in this thesis: benthic observations can only constrain

properties that are exported to the deep ocean.
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