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ABSTRACT

Denitrification is a microaerophilic, microbially-mediated process, by which
nitrate is reduced to biologically-unavailable N, gas; the reaction is generally coupled to
the oxidation of organic carbon. We hypothesized that denitrification rates in
groundwater in the Waquoit Bay watershed on Cape Cod, USA, were controlled by both
nitrate and dissolved organic carbon (DOC) concentrations, and that groundwater DOC
concentrations were inversely related to the thickness of the vadose (unsaturated) zone
through which recharge occurred. We found that the deeper the vadose zone, the lower
the concentration of DOC in groundwater néar the water table; similarly, DOC
concentrations decreased with increasing depth below the water table, suggesting quite
active biogeochemical processing in these boundary environments.

We used stable isotope and mass balance approaches to estimate denitrification
rates in groundwater at two. forested field sites and in a septic system plume. These sites
provided a large range of groundwater nitrate and dissolved organic carbon (DOC)
concentrations. At all sites, denitrification rates increased with increasing nitrate
concentration. First order denitrification rate constants with respect to nitrate were
highest where groundwater DOC concentrations were highest: k =2.8 y™ in the septic
plume (~ 26 mg C 1), k= 1.6 y ! at South Cape Beach (DOC = 0.8 to 23.4 mg C 1M,
and k=0.25y" at Crane Wildlife (0.1 to 1.9 mg C I'), suggesting that, independent of
nitrate, DOC concentrations exert significant control on denitrification rates. A
simulation of N losses along groundwater flowpaths suggests that a saturating kinetics
expression with respect to both nitrate and DOC best predicts nitrate concentrations
measured at downgradient well ports (R2 = 0.96 for [NO3 Imodel VS. [NO3 Jmess). In
contrast, a saturating kinetics expression with respect to nitrate only, often overpredicts
nitrate losses along groundwater flowpaths, particularly where DOC concentration are
low, further confirming that DOC concentrations are an important control on
groundwater denitrification rates. The magnitude of a nitrate source, its travel distance to
shore, and the DOC concentration in groundwater are useful predictors of N
downgradient. These relationships can help in designing strategies to control
anthropogenic nitrogen loading.

Thesis Supervisor: Harold F. Hemond
Title: Professor of Civil and Environmental Engineering
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CHAPTER 1:

INTRODUCTION
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1. Anthropogenic Nitrogen and Eutrophication

A principal alteration of estuarine and coastal ecosystems worldwide is
eutrophication brought about by increasing loads of anthropogenically-derived nitrogen
(GESAMP 1990, NRC 1994, Nixon 1986) transported by freshwater to receiving coastal
waters (Cole et al. 1993). In the U.S., regional resources such as Long Island Sound and
Chesapeake Bay and local sites such as Waquoit Bay and Wellfleet Harbor are
experiencing cultural eutrophication. Nitrogen transport rates are of critical importance
because rates of coastal production, as well as many other key processes coupled to
production, are set by nitrogen supply (Nixon 1986, Nixon et al. 1996, Howarth et al.
1996). The effects of eutrophication on coastal ecosystems are far-ranging, and can
include red tides, fish kills, anoxia and hypoxia as currently observed over wide areas of
the Gulf of Mexico, contamination of shellfish beds (NRC 2000), and alteration of
valuable habitat including loss of eelgrass beds, such as that documented in Waquoit Bay,

MA (Costa 1988).

In coastal areas underlain by unconsolidated sands, such as Cape Cod, the
majority of land-derived N delivered to the coastal zone is transported by groundwater
(Valiela et al.1992, Cambareri and Eichner 1998). Nitrate contamination of freshwater
aquifers is a significant concern since nitrate is toxic to human infants and livestock at

high concentrations (Trudell et al. 1986).

14



Anthropogenic sources of nitrate to groundwater aquifers and coastal systems
have increased dramatically, particularly over the last 40 years, with the greatest fluxes of
N associated with areas of highest population density. Human activity has increased the
flux of nitrogen in the Mississippi River approximately 4-fold, in the rivers of the
northeastern United States 8-fold, and in the rivers draining the North Sea more than 10-
fold (NRC 2000). The dominant sources of anthropogenic nitrogen are fertilizers,
accounting for more than half of the human alteration of the nitrogen cycle (Vitousek et
al. 1997); atmospheric deposition of NOy from fossil fuel combustion, animal feed lots
and other agricultural sources, which have increased more than 8-foid over pre-industrial
levels (Holland et al. 1999); wastewater, which contributes 12% of the flux of nitrogen
from the North Atlantic landscape to the North Atlantic Ocean (Howarth et al. 1996); and

non-point sources (NRC 1993).

2. Transformations of Nitrogen within Aquifers

Understanding how N is transformed and transported within aquifers is necessary
to calculating watershed N budgets, understanding basic nitrogen biogeochemistry, and
estimating total N delivery to coastal waters. Previous mass balance data suggests that
significant losses of N can occur within watersheds and aquifers (Lee and Olson 1985,
Valiela at al. 1992, Valiela and Costa 1988, Weiskel and Howes 1992). Processes
capable of attenuating mobile N include dilution, adsorption and incorporation in soils
and forest biomass, assimilatory reduction into microbial biomass, dissimilatory nitrate

reduction to (sorbable) ammonium (DNRA), and denitrification (Korom 1992). Of these
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processes, only denitrification is effectively a permanent sink for biologically available
nitrogen, and is hypothesized to be the most significant sink for N in aquifers (Peterjohn

and Correll 1984, Valiela et al. 2000).

3. Denitrification
Denitrification, which converts biologically available nitrate to essentially inert
Nz (and small amounts of N;0) is a microbially-mediated process that uses NOs as an

electron acceptor:
5CH,0 + 4 NO; + 4H' —--> 2N, + 5C0O, + 7 H,0

where organic carbon is represented as a simplified carbohydrate, CH,O. Several
conditions must be met for denitrification to occur, including a viable population of
denitrifying bacteria, sufficient concentration of N oxides (NOs", NO;’, NO and N;0) as
terminal e receptors, available and suitable " donors (e.g. primarily dissolved organic
matter, but also compounds such as reduced manganese (Mn*"), ferrous iron (Fe**) or
sulfides, and anaerobic conditions or restricted O availability (Firestone 1982). Rates of
denitrification are thought to be governed by the supply of nitrate and carbon compounds,

while suppressed by dissolved oxygen (Tiedje et al. 1982, Keeney 1986).

Some authors have argued that due to the aerobic nature of aquifers and the lack
of suitable concentrations of labile organic substrates (Fisher 1977, Mulholland 1981),

denitrification is unlikely. However, numerous studies suggest that denitrification occurs
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in soils (Parkin 1987, Parkin and Robinson 1989, Christensen et al. 1990a, Christensen et
al. 1990b, van Kessel et al. 1993, Groffman 1991, Groffinan et gl. 1996, Groffman and
Tiedje 1989) and shallow groundwater (Jacinthe et al. 1998) in anaerobic “hotspots”
within otherwise oxygenated waters. The existence of heterotrophic bacteria (7.
pantotropha, Robertson et al. 1988, Dalsgaard et al. 1995; Alcaligenes sp., Krul 1976),
and activated sewage sludge (Muller et al. 1995) capable of simultaneous heterotrophic
nitrification and aerobic denitrification suggests another means by which denitrification
in aerobic aquifers is plausible. In addition, denitrification (-28.4 kcal equiv ™) is almost
as energetically favorable as aerobic respiration (-29.9 kcal equiv ~'); therefore, it seems
likely that organisms capable of exploiting this niche exist in groundwater. Finally,
recent work suggests that there may be more organic matter in groundwater (0.7-27 mg
DOC I'!, Ford and Naiman 1989, Fiebig et al. 1990, Fiebig 1995) than was previously

thought to occur, providing a source of electron donors for denitrification in groundwater.

Many papers use mass balance methods to argue that significant losses of nitrogen
by microbially-mediated denitrification occur in aquifers (Bengtsson and Annadotter
1989, Bottcher et al. 1990, Bragan et al. 1997a, Bragan et al. 1997b, Clay et al. 1996,
Gillham 1991, Gold et al. 1998, Groffman et al. 1996, Jacinthe et al. 1998, Korom 1992,
Peterjohn and Correll 1984, Valiela et al. 1992, Valiela et al. 2000, Verchot et al. 1997).
Convincing evidence for denitrification in groundwater includes experimental injections
in which NOj5™ disappears downgradient faster than conservative tracers, and in which the

loss of NOs™ is accompanied by increases in bicarbonate believed to be derived from
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carbon mineralization associated with microbial denitrification (Korom 1991, Trudell et
al. 1986). Other evidence suggests that changes in the ratio of N isotopes (°’N/*N) in
ambient NO;” or in injections of isotopically-enriched tracers, and/or changes in the
concentration of N3, derive from denitrification in groundwater (Fustec et al. 1991,

Mariotti et al. 1988, Smith et al. 1991, Vogel et al. 1981).

Rates of denitrification reported in the literature vary over several orders of
magnitude (.004 to 1.05 mg N kg ~ dry sediment per day in laboratory core incubations;
0.04 to 2.17 uM h™' in aquifers containing N derived from agriculture, Korom 1992), and
likely reflect both the variability in biogeochemical conditions across aquifer settings and
differing experimental approaches. Denitrification rates measured in controlled
laboratory experiments have been modeled using the Michaelis-Menten enzyme kinetic
equation with respect to nitrate concentration (Engberg and Schroeder 1975), and as a
first-order function of organic carbon substrate (Brenner and Argamann 1990). It is our
hypothesis that denitrification rates vary systematically with nitrate and DOC

concentrations in groundwater.

4. Study Goals

The goal of this study was to estimate groundwater denitrification rates in the
Waquoit Bay aquifer on Cape Cod, to examine how they vary as a function of nitrate and
DOC concentrations, and to construct a predictive model that might be used to assess

groundwater denitrification rates across the range of geochemical conditions present in
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this aquifer. Waquoit Bay, a shallow estuary located on the southwest coast of Cape Cod,
Massachusetts, is experiencing increasing eutrophication from anthropogenic nitrogen.
Nitrogen loads to this system have been measured and modeled as function of land use
patterns in the watershed (Nitrogen Loading Model, NLM, Valiela et al. 1997, Valiela et
al. 2000), and consist primarily of wastewater (50%), fertilizer (17%), and atmospheric
deposition. In NLM, a constant fraction of N reaching the water table (35%) is assumed
to be lost by denitrification during transport through the underlying aquifer en route to

Waquoit Bay.

Nitrate reduction rates, however, are likely to vary as a function of both electron
donor and nitrate concentrations; N loss rates in groundwater, therefore, should be
modeled to reflect variable chemical conditions. On Cape Cod, measured groundwater
nitrate concentrations vary by several orders of magnitude. Concentrations in
groundwater range from 0 to 2.7 uM beneath forested areas (Seely 1997), from <1 to ~
1,000 uM in the suburban subwatersheds of Waquoit Bay (Valiela et al. 2000) and
around a pond in a residential area (Kroeger et al 1999), up to 1,800 uM within the
Massachusetts Military Reservation wastewater plume (Savoie and LeBlanc 1998), and
as high as 4,300 uM in close proximity to a septic tank (our unpublished data).

Denitrification rates within this Cape Cod aquifer are likely to be similarly variable.

In this thesis, we investigated the controls on DOC fluxes to groundwater (Ch. 2).

We hypothesized that 1) groundwater DOC concentrations decrease as the thickness of
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the vadose zone (7144) through which recharge occurs increases, and 2) DOC
concentrations in the saturated zone decrease with increasing depth below the water table
(Dwi). We tested these hypotheses by measuring DOC concentrations in groundwaters
beneath a range of vadose thicknesses and at a range of depths below the water table. We
found that the deeper the vadose zone, the lower the concentration of DOC in
groundwater near the water table; similarly, DOC concentrations decreased rapidly with
increasing depth below the water table, suggesting quite active biogeochemical

processing in these boundary environments.

In Chapter 3, we used a stable isotopic approach to estimate average
denitrification rates occurring along groundwater flowpaths at two forested sites (Crane
Wildlife Management Area and South Cape Beach) in and near the Waquoit Bay
watershed. These sites provided a large range of groundwater nitrate (<1 to 91 uM) and
DOC (0.04 to 23 mg C I'") concentrations. Denitrification rates increased with both
increasing initial nitrate and DOC concentrations, ranging from 0to 2.1 x 10° pM N h™".
We compared these rates to those that we measured using mass balance of N in a septic
plume (Ch. 4). First order denitrification rate constants with respect to nitrate were
highest where groundwater DOC concentrations were highest: k =2.8 y" in the septic
plume (~ 26 mg C 1), k=1.6 y ' at South Cape Beach (DOC = 0.8 to 23.4 mg C I'"),
and k = .25 y"' at Crane Wildlife (0.1 to 1.9 mg C I'"), suggesting that denitrification rates
were controlled by both nitrate and DOC concentration. We simulated N losses along

groundwater flowpaths for the Crane Wildlife site; the results of this analysis suggested

20



that for the low DOC conditions at this site, a saturating kinetics expression with respect
to nitrate best predicts nitrate concentrations measured at the downgradient well ports (R’

= 0.96 for [NO3 Jmodet VS. [NO3 meas).

In Chapter 5, we present an empirically-based saturating kinetics model
describing groundwater denitrification under carbon and nitrate-limited conditions.
Denitrification rates were described using a kinetic expression with double substrate
limitation (with nitrate as the terminal electron acceptor and dissolved organic carbon
(DOC) as the electron donor). The kinetic parameters were estimated from our field data
(half saturation constant for NOs™ (Kyo3)) and USGS field data (bacterial population /B)),
and from data available in the literature (maximum bacterial growth rate (¢max), half
saturation constant for DOC (Kpoc), and bacterial yield constant (¥)). The proposed
model is able to reasonably predict N losses along groundwater flow paths, measured at
the two forested sites, where DOC ranged from 0.04 to 23 mg C I and nitrate ranged
from <1 to 91 uM. Using higher values for the bacterial population (/B]) and the half-
saturation constant (Knos), we were also able to predict N losses due to denitrification
within the very different biogeochemical conditions of the septic system plume ([NO3"
Jomax ~ 4,400 pM, [DOC] ~ 26 mg C’, and presumably a larger and more active bacterial
population); The model performs well over the wide range of geochemical conditions
found at the three sites within this watershed (R° = 0.92, m = 1.0 for measured vs.

modeled).
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We conclude that the magnitude of the nitrate source, its travel distance to shore,
and the DOC concentration in groundwater are useful predictors of N downgradient. The
saturating kinetics model, with double substrate limitation by nitrate and DOC, developed
here, provides a valuable tool for planners and managers interested in designing
management strategies to control nitrogen loading to coastal waters. Such a model might
be used in the design of setback limits for septic systems, in assessing the value of open
spaces for N load reduction, in regulating wastewater disposal, and in watershed-wide

land use planning.
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Abstract. Changes in concentration of dissolved organic carbon (DOC) reflect
biogeochemical processes that determine chemical composition of groundwater and other
natural waters. We found that the deeper the vadose zone, the lower the concentration of
DOC in groundwater near the water table, indicating that considerable attenuation of
surface-derived DOC occurred in the vadose zone. Under vadose zones <1.25 m, DOC
concentrations at the surface of the water table ranged to >20 mg I C, while for vadose
zones >5.0 m, DOC never exceeded 2.0 mg I’ C. DOC concentrations also decreased
exponentially with increasing depth below the water table, most notably in the upper two
meters, implying continued attenuation in the upper layer of the saturated zone. Ninety-
nine percent of the DOC was attenuated by the time the water reached a depth of 19 m
below the water table. DOC concentrations in shallow groundwater show considerable
spatial variability, but the concentration of DOC at any one site is surprisingly stable over
time. The largest source of variation in DOC concentration in groundwater therefore is
spatial rather than temporal, suggesting that local heterogeneities play an important role
in DOC delivery to shallow groundwater. Our results highlight both the importance of
shallow vadose areas in DOC delivery to groundwater and the need to distinguish where
samples are collected in relation to flow paths before conclusions are made about mean
groundwater DOC concentrations. The substantial losses of DOC in the vadose zone and
in shallow depths within the aquifer suggest quite active biogeochemical processes in
these boundary environments.
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1. Introduction

DOC alters chemical composition of surface and ground waters by acting as a
substrate for microbial catabolism, an electron acceptor for anaerobic respiration, and a
ligand for metal complexation, and by providing protons for acid/base chemistry, and
nutrients that stimulate biological productivity. DOC is generated in soil organic
horizons by microbial metabolism, root exudates, and leaching of organic matter (Schiff
et al. 1996) and transported by recharge water to the saturated zone (Cronan and Aiken
1985; Thurman 1985; Clay at al. 1996) or by surface runoff (Jordan et al. 1997) to
surface water bodies. Export of DOC from forested catchments depends on a complex,
seasonally and spatially varying interplay of production, decomposition, sorption,

precipitation, and hydrology (Cronan and Aiken 1985; Schiff at el. 1996).

DOC concentrations change as the organic matter is transported from the surface
of a watershed to receiving waters. Cronan and Aiken (1985), McDowell and Likens
(1988), Schiff et al. (1990), Easthouse et al. (1992), and Kookana and Naidu (1998)
demonstrated that DOC in soil solutions decreased as recharge water percolates through
soil horizons, from > 70 mg I"' C in upper soil horizons to 1-2 mg I C in lower soil
horizons. Mechanisms that may attenuate organic carbon as it percolates through soils
include sorption and complexation with mineral surfaces (e.g. Fe and Al oxides and
hydroxides) and clay minerals (Thurman 1985), microbial oxidation to CO, (Chapelle
1992), precipitation, flocculation and formation of insoluble complexes (Kookana and

Naidu 1998), and filtering of organic colloids (Wan and Tokunaga 1997).
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Several authors have pointed to the importance of the length or duration of
hydrologic flow paths in controlling DOC delivery (Cronan and Aiken 1985). Easthouse
et al. (1992) contend that work on inorganic constituents (Sullivan et al. 1986, Lawrence
et al. 1988, Neal et al. 1989, Mulder et al. 1990) has demonstrated the importance of
hydrologic flow paths in explaining variations in stream water chemistry. Similarly,
Schiff et al. (1996) highlighted the importance of flow paths when they concluded that
recently-fixed labile DOC leached from the A horizon or litter layer can only reach the
stream via short flow paths that bypass locations where significant soil sorption occurs.
Recharge is often spotty, and preferential flow paths, or fingers are likely to develop even
in relatively homogeneous sandy soils (Parlange et al. 1999), potentially resulting in

variable transport of DOC to groundwater.

Little information is available about the fate and transpart of DOC either in the
vadose zone or after it has reached the saturated zone. It seems likely that transport
through the vadose zone and through groundwater aquifers provides additional
opportunity for DOC to be attenuated by mechanisms similar to those thought to
attenuate DOC in the unsaturated zone (e.g., sorption, complexation, microbial oxidation,
precipitation, flocculation, formation of insoluble complexes, and filtering of organic
colloids). Thus we hypothesize that: 1) groundwater DOC concentrations decrease as
the thickness of the vadose zone (7y44) through which recharge occurs increases, and 2)
DOC concentrations in the saturated zone decrease with increasing depth below the water

table (Dyr). We tested these hypotheses by measuring DOC concentrations in
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groundwaters beneath a range of vadose thicknesses and at a range of depths below the

water table.

2. Materials and methods

2.1 Study site

This work was carried out in the watershed of Waquoit Bay, a shallow estuary on
the southwestern shore of Cape Cod, Massachusetts, subject to increasing eutrophication
from groundwater-transported nitrogen. The watershed is underlain by an unconsolidated
sole-source sand and gravel aquifer (Barlow and Hess 1993, Leblanc et al. 1986). The
aquifer matrix is comprised of primarily quartz and feldspar sand (95%) with some
ferromagnesian aluminosilicates and oxides (5%); sand grains are coated with hydrous
oxides of aluminum and iron (Stollenwerk 1996). Average groundwater velocity is
approximately 0.4 m per day (LeBlanc 1991), and annual recharge is 53 cm yr’* (Barlow
and Hess 1993, LeBlanc 1984). Groundwater discharge to Waquoit Bay and its
tributaries accounts for 89% of the total freshwater input to Waquoit Bay (Cambareri
1998), and is the primary avenue by which land-derived nitrogen is delivered to the

estuary (Valiela et al. 1997).

We sampled groundwater near South Cape Beach and Sage Lot Pond in the
southern part of the watershed (SCB), and in the Crane Wildlife Management Area to the
north (CWMA). Both areas have mixed pitch pine and scrub oak forest cover and are
typical of forested areas throughout Cape Cod. Other data are from USGS wells located

in and near the watershed (Savpie and LeBlanc 1998).
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2.2 Groundwater sample collection and analysis

At SCB, we collected groundwater using a drive-point piezometer and hand
pump. Samples were taken in duplicate after multiple well volumes had been pumped
and the water ran clear (generally after pumping 1-2 liters); We sampled from 12 stations
on each of five sampling dates; we reached the water table in 56 of the 60 sampling

attempts.

At CWMA, we installed and sampled from 3 multi-level sampling devices (MLS)
(LeBlanc 1991). Each MLS had between 9 and 15 ports spanning from just below the
water table to a maximum depth of 9.3 m below the water table. At each port a 0.64 cm
diameter polyethylene tube protruded through a central 3.2 cm PVC pipe and was
covered with a nylon screen (Smith et al.1991). We collected groundwater samples in
duplicate using a peristaltic pump (Geopump 2, Geotech Environmental Equipment, Inc.)

after purging a minimum of 3 well volumes (13.8 ml per m tube length) from each port.

All samples were collected in 15 ml amber glass vials (Supelco #27088-U)
previously soaked in a 5% Extran bath to remove any traces of organic carbon. Samples
from the MLSs were filtered in-line during pumping using 0.7 pm Whatman GF/F filters.
Samples obtained using the piezometer were vacuum filtered through the same GF/F
filters upon return to the lab. All samples were acidified to pH ~ 2 with SN HCl and

stored in a cold room (T = 4 °C) until analysis,
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At SCB, we located the surface of the water table by first driving the piezometer
below the water table (verified by drawing water), and then pulling it out of the ground in
0.1 m increments and attempting to pump at each position. We recorded the water table
position as that depth where we could no longer draw water through the piezometer. At
CWMA, we measured the thickness of the vadose zone by lowering a Fisher m-SCOPE
Water Level Indicator into a nearby monitoring well (< 20 m) and measured the distance
of the water table from land surface. Depth to the water table was tabulated for USGS

wells in Savoie and LeBlanc (1998).

We measured DOC concentrations in triplicate Ar-purged samples using high
temperature catalytic oxidation (HTCO) with infrared detection of CO, (Shimadzu TOC
5000). DOC data for USGS wells were taken from Savoie and LeBlanc (1998). Many of
the USGS wells were drilled to investigate groundwater pollution emanating from the |
Massachusetts Military Reservation. We collected data only from wells located in areas
of clean groﬁndwater, either outside the boundaries of mapped wastewatér plumes or

having methyl blue active substances (MBAS) below 0.02 mg I'".

3. Results and Discussion

Groundwater DOC concentrations varied from 0.04 to 23.38 mg C I'' and
averaged 2.31 + 0.30 mg C I''. The wells provided a range of vadose thicknesses (Tyaq)
from 0.5 m to 17.5 m and water table depths (D,) from 0.01 to 51,8 m. We found, as did

Cronan and Aiken (1985) and Easthouse et al. (1992), that DOC concentrations were
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quite variable spatially, but more consistent temporally. For example, at the 12 SCB
stations, where the vadose zone was routinely less than 1.5 m, DOC ranged from < 1 to
23 mg C I, with a coefficient of variation of 77% (Fig. 2.1). Despite this spatial
variability, when we sampled on 5 sampling dates at each of the 12 stations at SCB, we
found that DOC was consistently high at some sampling points and consistently low at
others. The average of the coefficients of variation of the time series data for each of the
12 stations was 37%. These observations suggests that local-scale heterogeneities in
properties such as soil composition and thickness, the position of the water table relative
to the soil organic layer, hydrologic flow paths, and recharge rates may provide more

variation than temporal changes.

Concentrations of DOC were inversely related to both 7,4 and D, (multiple
regression of log transformed values, R?=0.68, p <0.001, Table 2.1). The two variables,
Tyaq and D, were relatively independent: the highest variance inflation factor (VIF) -
(Sokal and Rohlf 1995) was 1.3, which suggests only minimal correlation between
independent variables. To evaluate the relative influence of 744 and D,,; on DOC
concentration, we calculated Kruskal’s index of importance (average of squared partial
correlation coefficients) (Sokal and Rohlf 1995); the index was 0.58 for D,,, and 0.23 for
Tvaa. This indicates that depth below the water table was relatively more important than

vadose thickness in predicting DOC concentration. These analyses suggest that 7}z and
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Figure 2.1. Mean DOC concentrations measured at 12 sampling stations at
South Cape Beach on 5 sampling dates in 1998. Coefficient of variation between
sampling stations is 77%; mean of coefficients of variation calculated for each
sampling station is 37%. Standard error bars are shown.
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Table 2.1. Analysis of variance for multiple regression of effect of depth below the

water table (D,r) and vadose thickness (7.s) on DOC concentration. Data were log-
transformed. Regression equation: log DOC = -0.52D,; — 0.39T,4¢ + 0.19; R*=0.68; df
= degrees of freedom, SS = sum of squares, MS = mean squares, and F'= sample variance.
For probability < 0.001, df =2 and 189, critical F value (ferr) < 7.32.

df 8§ MS F
Regression 2 5858 2929 204.90***
Tvaa 1 4.58 4.58 32.02%**
Dw 1 3086 30.86 215.89***
Residual 189  27.02 0.14
Total 191  85.59 0.45

D, were relatively independent, and both contributed significantly to DOC

concentrations in the aquifer.

To examine in more detail the effect of varying vadose thickness on losses of
DOC within the aquifer, we stratified the data into three categories of Tiqq (0-1.25, 1.25-
5.00, and >5.00 m), and plotted DOC as a function of depth below the water table (Fig.
2.2). DOC concentrations at the water table were highest in groundwater under areas
with the shallowest vadose zones, and decreased with increasing vadose thickness. This

supports the hypothesis that DOC concentrations decrease as Tyqq increases.

DOC concentrations also decreased with increasing depth below the water table.
Reductions occurred particularly within the upper few meters of the water table, and

resulted in DOC losses totaling two orders of magnitude, To better examine the
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Figui'e 2.2. DOC concentration as a function of depth below water table for each of three vadose thickness (7;uq) strata: O -
1.25m, 1.25-5.0m, and > 5.0m.-
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reduction of DOC concentration with D,,, we log-transformed the data (Fig. 2.3). The
data could be reasonably well fit with an exponential curve (R? = 0.82 for Tiq = 0-1.25;
R’ =0.59 for Tyeq=1.25— 5.0 m; R>=0.10 for Tyas> 5.0 m). These losses.imply that
DOC reaching groundwater was biologically labile. For 7y,s =0 -1.25m, 99% of the
DOC was lost by the time a depth of 19 m was reached. A surprising result is that
regardless of vadose thickness, and thus of the concentration of DOC at the surface of the
water table, the DOC concentration at the deepest wells was similarly low (about 0.1 mg
C1") (Fig. 2.3). Itis as if the labile portion of the DOC was intercepted in the vadose

zone or in the aquifer, and that in either case, DOC concentratipns at depth converged.

In this aquifer, depth is a remarkably close proxy for time (Solomon et al. 1995,
Portniaguine and Solomon 1998). Using data on age of the groundwater in this aquifer,
we can calculate that at a depth of 19 m, groundwater has traveled approximately 15.8
years since recharge (Vogel 1967). Therefore, for Ty, = 0 — 1.25 m, the mean DOC loss
rate between the surface and 19 m was approximately 1.5 mg C I'' yr''. In contrast, for
Tyaa >5 m, the loss rate over this same distance was about 0.12 mg C I yr'!. The
difference in attenuation rates supports the conclusion that 7.4 strongly controls the

transport and concentration of DOC reaching the surface of the aquifer.

We further investigated the depth dependence of the DOC loss rate by taking the

first derivative (dy/dz) of the fitted curve (a power function curve fit) for each 7yq4
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Figure 2.3. DOC concentration plotted as a function of depth below water table (D ;) for each of three

vadose thickness (T ,4) strata: 0-1.25 m, 1.25-5.0 m, and > 5.0 m. Axes are logarithmic;
*** denotes probability < 0.001, ns = not significant.

DOC Conc. (mg I) DOC Conc. (mg I'") DOC Conc. (mg ')
0014 014 1 10 100 001 01 1 10 100 0.01 0.1 1 10
0.01 1 1 L ] 1 1 1 ] L ] (]
T =0-1.25m T e =1.25-5.0 moo Tyag >5.0 m
0.1 - - ]
o o)
Dwt 1- ] i :o oo
e
10 - . - 0 & g
8 Edé°
100 - - i}
DOC conc. =2.13* D, *"® . DOC conc. = 0.94 * D, % DOC conc. =0.34* D, '

F =224.6**, R? =0.82 F =120.2"** R? = 0.59 F =5.48" R?=0.10



category (Fig. 2.4). The DOC loss rate quickly diminished with depth for all 7,44
categories. At depth (~30 m), where DOC losses were small, the rate of aticnuation was
lowest for groundwater beneath the thickest vadose zones. This supports the notion that
processes in the vadose zone affect the quality of the DOC in the saturated zone (and thus
the rate at which it is metabolized). It seems that the more labile forms of DOC are
selectively removed during transport through the unsaturated zone, so that only more

refractory DOC may reach the aquifer in those areas with thick vadose zones.

Our interest in understanding how DOC is distributed in groundwater stems from
the larger question of how nitrogen is transported to receiving waters and to what degree
denitrification in groundwater is limited by the supply of DOC. Research suggests that
many aquifers do not contain sufficient organic matter to produce the anaerobic
conditions required for denitrification (Bryan, 1981; Parkin and Meisinger, 1989;
Thurman, 1985; Barcelona, 1984; Lind and Eiland, 1989; McCarty and Bremner, 1982;
Obenhuber and Lowrence, 1991). Groundwater DOC values reported in the literature
from a wide range of aquifer settings and depths (Fig. 2.5) suggest, first, that there are
many places where groundwater contains significant concentrations of DOC. These
concentrations may be sufficiently high to support denitrification. Our measurements of
DOC concentrations fall within the wide range reported in the literature. The data in
Figure 2.5 can also be used to make a second point: sampling groundwater at depth may

provide underestimates of DOC dynamics in aquifers. The rather steep gradient in DOC
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Figure 2.4. Instantaneous DOC loss rate as a function of depth below water table for each
of three vadose thickness strata (7',,;): 0 - 1.25m, 1.25 - 5.0 m, and >5.0 m. Loss rate was

calculated as the first derivative (dy/dz ) of the fitted power curve for DOC versus D ,,, for
each of the 3 T',,; classes, and solved for at each measured depth.
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Figure 2.5. DOC concentrations in groundwater as a function of depth. White circles
represent the data from this study. Black circles represent data from the literature
(Leenheer et al. 1974; Aelion et al. 1997; Ellis et al. 1998; Ford & Naiman 1989;
Hakenkamp et al. 1994; Hendricks & White 1995; Keller 1991, Rutherford & Hynes
1987; Schindler & Krabbenhoft 1998).
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concentration that we found near the water table suggests that measurements of DOC in
samples from deep groundwater wells may not only fail to describe the dynamics of
DOC, but may underestimate mean groundwater DOC concentrations. The strong
attenuation of DOC concentration within the vadose zone and the upper portion of the
water table suggests that these sites are potentially those where biogeochemical

transformations, including denitrification, should be active, and should be measured.

The comparison of published DOC concentrations (black circles, Fig. 2.5) relative
to the values we report here (white circles, Fig. 2.5) also makes a third point: in general,
despite the scatter in the data, it appears that DOC concentrations do decrease with
increasing depth below the water table. Of course, the scatter of points from the diverse
sites makes the pattern less obvious, but it is nonetheless true that the larger
concentrations of DOC tend to lie in the shallower layers, as we demonstrate in our own

data in some detail.

The results we include here demonstrate that there are tight biogeochemical
couplings among components of the below-ground ecosystems. Labile DOC is
intercepted near or in boundaries layers, either in the vadoseg zone or in the shallow
aquifer, leaving only a small concentration of DOC for transport to open receiving
waters. Such large decreases in DOC must follow significant stoichiometric relationships
linking carbon dynamics to other elements. Investigation of the stoichiometry is the next

step suggested by the large transformations dacumented in this paper.
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CHAPTER 3:
DENITRIFICATION RATES IN GROUNDWATER, CAPE

COD, U.S.A.: CONTROL BY NITRATE AND DISSOLVED
ORGANIC CARBON CONCENTRATIONS
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Abstract. Eutrophication by land-derived anthropogenic nitrogen (N) is a major cause of
alterations to coastal systems worldwide. Modeling N delivery to coastal waters is
therefore critical to designing appropriate land use and management strategies to control
N loading. Key to calculating watershed N budgets is understanding N losses by
denitrification as groundwater is transported through aquifers en route to receiving
estuaries. We used a stable isotope approach to estimate denitrification rates in
groundwater in and near the Waquoit Bay watershed on Cape Cod, USA. Two field sites
provided a large range of groundwater nitrate and dissolved organic carbon (DOC)
concentrations. Nitrification, although understandably important in the soils layer and
vadose zone, produced only minimal amounts of nitrate in the saturated zone, evidently
due to a limited supply of ammonium in the groundwater. Denitrification rates increased
with beth increasing initial nitrate and DOC concentrations, and ranged from 0 to 2.1 x
10° uM N h!. We compared these rates to those measured in a septic plume (Ch. 4).
First order denitrification rate constants with respect to nitrate were highest where
groundwater DOC concentrations were highest, suggesting that, independent of nitrate
concentration, DOC concentration exerts a significant control on denitrification rates. In
previous work (Ch. 2) we showed that groundwater DOC concentrations decreased as the
thickness of the vadose (unsaturated) zone through which recharge occurred increased.
As a result, higher denitrification rates are likely to be found in those areas where the
vadose zone is thinnest. A simulation of N losses along groundwater flowpaths at Crane
Wildlife suggests that a saturating kinetics expression with respect to nitrate best predicts
nitrate concentrations measured at the downgradient well ports. We conclude that it is
critical to consider the magnitude of individual NOj sources, travel distances to shore,
and DOC concentrations in groundwater in assessing the downgradient impact of various
N sources, and in designing strategies to control anthropogenic nitrogen loading.
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1. Intreduction

Eutrophication by land-derived anthropogenic nitrogen (N) is a major cause of
alterations to coastal ecosystems worldwide (GESAMP 1990, NRC 1994, Nixon 1986).
In the US, Long Island Sound, NY, and Chesapéake Bay, MD, and sites such as Waquoit
Bay and Wellfleet Harbor on Cape Cod, MA, are experiencing cultural eutrophication. In
these and many other estuaries, excess nutrients, largely N, are inducing loss of
commercially important fish species, contamination of shellfish beds, and alteration of
valuable habitat including eelgrass beds (Costa 1988, GESAMP 1990, NRC 1994, NRC

2000, Nixon et al. 1986, Howarth et al. 1996).

In coastal areas underlain by unconsolidated sands, such as Cape Cod, the
majority of land-derived N delivered to the coastal zone is transported by groundwater
(Valiela et al.1992). Understanding how N is transformed and transported within
aquifers is therefore necessary to calculating watershed N budgets, understanding basic
nitrogen biogeochemistry, and estimating total N delivery to coastal waters. Previous
mass balance data 'suggests that significant losses of N can occur within watersheds and
aquifers (Lee and Olson 1985, Valiela at al. 1992, Valiela and Costa 1988). Processes
capable of attenuating mobile N include dilution, adsorption and incorporation in soils
and forest biomass, assimilatory reduction into microbial biomass, dissimilatory nitrate

reduction to (sorbable) ammonium (DNRA), and denitrification (Korom 1992).

Denitrification is a signiﬁcént sink for N in aquifers, as argued in many papers
using mass balance methods (Bengtsson and Annadotter 1989, Bottcher et al. 1990,
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Bragan et al. 1997, Bragan et al. 19974, Clay et al. 1996, Gillham: 1991, Gold et al. 1998,
Groffiman et al. 1996, Jacinthe et al. 1998, Korom 1992, Peterjohn and Correll 1984,
Valiela et al. 1992, Valiela et al. 2000, Verchot et al. 1997). Convincing evidence for
denitrification in groundwater includes experimental injections in which NOs™ disappears
downgradient faster than conservative tracers, and in which the loss of NO3™ is
accompanied by increases in bicarbonate believed to be derived from carbon
mineralization associated with microbial denitrification (Korom 1991, Trudell et al.
1986). Other evidence suggests that changes in the ratio of N isotopes (*N/**N) in
ambient NOs’ or in injections of isotopically-enriched tracers, and/or changes in the
concentration of N, derive from denitrification in groundwater (Fustec et al. 1991,
Mariotti et al. 1988, Smith et al. 1991, Vogel et al. 1981). Rates of denitrification
reported in the literature span several orders of magnitude (0.004 to 1.05 mg N kg ~* dry
sediment per day in laboratory, core incubations; 0.04 to 2.17 uM h™ in aquifers
containing N derived from agriculture, Korom 1992), and likely reflect both the
variability in biogeochemical conditions across aquifer settings and differing

experimental approaches.

Denitrification rates measured in controlled laboratory experiments have been
modeled using the Michaelis-Menten enzyme kinetic equation with respect to nitrate
concentration (Engberg and Schroedei‘ 1975), and as a first-order function of organic
carbon substrate (Brenner and Argamann 1990). Because, in general, reduction rates are
likely to vary as a function of both electron donor and nitrate concentrations, N loss rates
in groundwater should be modeled to reflect variable chemical conditions.
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Concentrations of organic matter and nitrate in groundwater are patchy and may
result in spatially variable denitrification rates. DOC concentrations in groundwater
range from 0.1-27 mg DOC I (Pabich et al. submitted, Ford and Naiman 1989, Fiebig et
al. 1990, Fiebig 1995), and mean concentrations may be higher than previous studies
suggest (e.g. Leenheer et al. 1974). On Cape Cod, measured groundwater nitrate
concentrations vary by several orders of magnitude. Concentrations in groundwater
range from O to 2.7 uM beneath forested areas (Seely 1997), from <1 to ~ 1,000 pM in
the suburban subwatersheds of Waquoit Bay (Valiela et al. 2000) and around a pond in a
residential area (Kroeger et al 1999), up to 1,800 pM within the Massachusetts Military
Reservation wastewater plume (Savoie and LeBlanc 1998), and as high as 4,300 pM in
close proximity to a septic tank (our unpublished data). Denitrification rates within this
Cape Cod aquifer are likely to be similarly variable. The goal of this study was to
estimate groundwater denitrification rates and to examine how they vary as a function of

nitrate and DOC concentrations.

2. Approach

Stable isotopes of N have been used effectively to study denitrification (Mariotti
et al. 1988, Bottcher et al. 1990, Smith et al. 1991). We used such an approach to
estimate both nitrification and denitrification rates occurring in groundwater after the
time of recharge to the water table. We measured N natural abundance variations
(Mariotti et al. 1988) in ammonium and nitrate in groundwater samples obtained from
wells installed in locations within the aquifer where NO3”and DOC concentrations
differed significantly. Using the Rayleigh equation, which expresses the evolution of the
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isotopic composition of residual nitrate (or ammonium) during denitrification (or
nitrification), we estimated initial ammonium and nitrate concentrations at the water
table, from which losses due to nitrification and denitrification were assessed. Such mass
balance data were coupled with a groundwater age model (Vogel 1967) to estimate

nitrification and denitrification rates, respectively.

3. Nitrogen isotope geochemistry

Because denitrifying organisms preferentially utilize the lighter isotope of
nitrogen (**N), fractionation of the nitrogen isotopes in the reactants and the products
occurs. The result is a predictable enrichment of !’V in residual substrate NOs™ and
depletion in the N; and N,O products of denitrification. This process has been described
as a single-step, unidirectional reaction (Mariotti et al. 1981, 1988), in which the "N

content of the NOs" is a simple function of the progress of the reaction.

Isotopic fractionation occurs as a result of many biological (and abiotic) reactions,
including both nitrification and denitrification. The Rayleigh equation expresses the
evolution of the isotopic composition of the residual (reactant) material, and can be used

to model both nitrification and denitrification. The relationship is expressed as:
(1) =05+ eIn(C/Cy),
where J; represents the isotopic ratio (6”°N or ’N/*N) of the reactant at time ¢, 6,0 is the

8"°N of the reactant at time = 0, & is the isotope enrichment factor (%) of the reaction, C
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is the reactant content at time ¢, and Cj is the initial reactant content. Stable isotopic
ratios are expressed as del (§) values in per mil (%o) deviations from standard

atmospheric nitrogen where:

(2) 6" N=[(Roampie/Rotandard)-11 x 1000, and R = °N//*N.

The isotopic composition of the reaction product (NO;" for nitrification, N, for
denitrification) becomes progressively heavier as the reaction proceeds, and can be
calculated for any given amount of substrate consumed, using a modified version of the

Rayleigh expression:

(3) 515A7product = 515N reactant — € [flnﬂ (1 _j)]

where 6" Nproguer is the & N of the product of the reaction (e.g., NOs~ or N3), "’ Nysactant is
the "°N of the reactant (e.g., NH4 or NO53), ¢ is the isotopic enrichment factor for the
reaction, and fis the unreacted fraction of the substrate (Mariotti et al. 1981). We used
the Rayleigh equation (Eq. 1) to assess the rates of both nitrification and denitrification in
our groundwater samples, and the product formation expression (Eq. 3) to calculate the

6°N value of NOs™ produced via nitrification beneath the water table.

4. Study Sites
This work was carried out in or near the watershed of Waquoit Bay, a shallow
estuary on the southwestern shore of Cape Cod, Massachusetts (Fig. 3.1), subject to
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Figure 3.1. Location of Crane Wildlife Management Area, South Cape Beach, and
septic system study sites in and near the Waquoit Bay watershed, Cape Cod, MA.
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increasing eutrophication from groundwater-transported nitrogen. The watershed is
underlain by an unconsolidated sole-source sand and gravel aquifer (Barlow and Hess
1993, Leblanc et al. 1986). The aquifer matrix is comprised primarily of quartz and
feldspar sand (95%) with some ferromagnesian aluminosilicates and oxides (5%); sand
grains are coated with hydrous oxides of aluminum and iron (Stollenwerk 1996).
Average groundwater velocity is approximately 0.4 m per day (L.eBlanc 1991), and mean
annual recharge is 53 cm yr'! (Barlow and Hess 1993, LeBlanc 1984). Groundwater
discharge to Waquoit Bay and its tributaries accounts for 89% of the total freshwater
input to Waquoit Bay (Cambareri 1998), and is the primary avenue by which land-

derived nitrogen is delivered to the estuary (Valiela et al. 1997).

We sampled groundwater at two sites that differed in DOC and NO;5”
concentrations: the Crane Wildlife Management Area to the north of the Waquoit Bay
watershed, and South Cape Beach near the Bay (Fig. 3.1). DOC concentrations in the
underlying groundwater at these two field sites differed because of differences in the
thickness of their vadose zones. We have shown (Pabich et al. submitted) that
groundwater DOC concentrations at these sites are inversely related to the thickness of
the vadose zone through which recharge occurs, presumably because DOC is attenuated
during transport through the unsaturated zone by sorption to mineral surfaces (e.g. Fe and
Al oxides and hydroxides) and clay minerals (Thurman 1985), microbial oxidation to
CO, (Chapelle 1992), precipitation, flocculation and formation of insoluble complexes
(Kookana and Naidu 1998), and filtering of organic colloids (Wan and Tokunaga 1997).
DOC concentrations beneath shallow vadose zones also appear to be more spatially
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variable than beneath thick vadose zones. The vadose zone thickness is generally less
than a meter at South Cape Beach, and, correspondingly, groundwater DOC
concentrations were relatively high and variable (range = 0.8 t0 23.4 mg C I'', mean = 7.0
mg C I'). In contrast, at Crane Wildlife, depth to groundwater ranged from 4 to 5.5 m,
and groundwater DOC concentrations were consistently low (range =0.04to 1.9mg CI

! mean=0.4mg CI").

Groundwater nitrate concentrations differed at the two sites as well. The land
cover at South Cape Beach consists of mixed pitch pine and scrub oak forest typical of
forested areas throughout Cape Cod. At this site, the only sources of nitrate are
presumably soil organic matter and precipitation. Measured groundwater nitrate
concentrations at this site ranged from 0 to 4.0 uM, consistent with nitrate concentrations

found beneath other forested areas in the Waquoit Bay watershed (Seely 1997).

Land cover at Crane Wildlife is similar to that at South Cape Beach, except that
the site also contains several abandoned fields, and is downgradient from a golf course on
the Massachusetts Military Reservation; additional sources of nitrate to groundwater
include fertilizers applied regularly to the golf course (John Callahan, manager, Falcon
Golf Course, personal communication) and periodically to the abandoned fields (Richard
Turner, MA Division of Fish & Wildlife, personal communication). The inter- and intra-
site differences in groundwater DOC and nitrate concentrations provided the opportunity

to evaluate the role of both DOC and NOs as controls on denitrification rate.
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5. Methods
5.1. Groundwater sample collection

At Crane Wildlife, we installed and sampled groundwater from three multi-level
sampling wells (MLSs; LeBlanc 1991) arranged in a transect parallel to groundwater
flow (Fig. 3.2). Groundwater flow direction was determined using 8 MODFLOW model
(Masterson et al. 1997). Each MLS had between 9 and 15 ports spanning from just below
the water table to a maximum depth of 9.3 m below the water table. At each port a 0.64
cm diameter polyethylene tube protruded through a central 3.2 cm PVC pipe and was
covered with a nylon screen (Smith et al. 1991). Samples were taken in duplicate during
June 1998 using a peristaltic pump (Geopump 2, Geotech Environmental Equipment,
Inc.) after purging a minimum of 3 well volumes (13.8 ml per m tube length) from each

port.

At South Cape Beach, we established and sampled from 12 sampling stations
around the perimeter of Sage Lot Pond (Fig. 3.1) in March, June and August 1998.
Groundwater was sampled using a drive-point piezometer and hand pump. Samples were
taken in duplicate after purging groundwater through the piezometer (generally 1-2 liters)

until the water was free of visible turbidity.

5.2. Chemical analysis
All samples were collected in acid-washed 250 ml plastic bottles. Samples from

the MLSs were filtered in-line during pumping using 0.7 um Whatman GF/F filters.

63



Figure 3.2. Schematic of multi-level sampling (MLS) wells (USGS wells F606, F605, and F393) arranged in a transect
parallel to groundwater flow lines at Crane Wildlife Management Area. Well and sampling port locations are shown
relative to depth below water table (D ;).
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Samples obtained using the piezometer were vacuum filtered through the same filters
upon return to the lab. All samples were acidified to pH ~ 2 with SN HCI and stored in a

cold room (T = 4 °C) until analysis.

We measured NO; concentrations using a Dionex ion chromatograph (DX-120)
with a conductivity detector; for samples with concentrations of NO3” < 3.2 uM
the ion chromatograph was coupled to a Waters 484 Tunable Absorbance detector (UV).
The UV detector allowed for measurement of NO3 as low as 0.10 uM. Ammonium was
measured using the OPA fluorescence method of Holmes et al. (1999). We used both
Hydrolab Minisonde and YSI 85 probes to measure dissolved oxygen and specific
conductivity in the field. DOC concentrations in triplicate Ar-purged samples were
measured using high temperature catalytic oxidation (HTCO) with infrared detection of
CO; (Shimadzu TOC 5000). Stable isotope analysis of nitrate and ammonium was
conducted by David Harris at University of California, Davis, and by Robert Michener at
the Boston University Stable Isotope Laboratory using Finnigan Delta S isotope ratio
mass spectrometers, and expressed in per mil notation (Eq. 2). Samples were prepared
for analysis using an adaptation of the ammonium diffusion method for oceanic nitrate

(Sigman et al. 1997).

6. Modeling Framework and Assumptions
For each groundwater sample collected at Crane Wildlife, we calculated the

average denitrification rate occurring over the groundwater flowpath, between the point
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of recharge and the point of sampling. These calculations included five steps (Fig. 3.3),

namely:

(1) Calculation of groundwater age (¥) at each well port using the Vogel Groundwater

Age Model (Vogel 1967, Table 3.1);

(2) Estimation of the isotopic signature of nitrogen in nitrate (6"’ NO3 source) and

ammonium (6"’ NH " source) at the water table;

(3) Calculation of the concentration ([NO3]ni) and isotopic signature of nitrate
(6"’ NOys ) produced via nitrification in the groundwater parcel between recharge
and sampling using the Nitrification Model (Table 3.2) and the Rayleigh Product

Formation Model (Table 3.3);

(4) Adjustment of the isotopic signature of the source nitrate to reflect the effects of

nitrification (6’ 5N03-a¢y; ‘Apparent 6°NO; ¢ Model, Table 3.4); and,

(5) Use of measured isotopic ratios (6"’ NO5 meas) and nitrate concentrations
([NO3Imeas) at each well port, to calculate the concentration of nitrate denitrified
(INOs3]aenit) and the average rate of denitrification over the length of the

groundwater flowpath (dNO;/dt; Denitrification Model, Table 3.5).

66



Figure 3.3. Stable isotopic method for calculating average denitrification rate between recharge
and point of sampling for each water sample collected at Crane Wildlife Management Area.
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The assumptions and parameters used in each step are compiled in Tables 3.1 — 3.5, and

discussed in more detail below.

6.1. Steady State Conditions

Our calculations assume that the groundwater system is at steady state. At both
the Crane Wildlife and South Cape Beach sites, temporal variability in groundwater
chemistry (dissolved Oz, DOC, NH;", and NOj3” concentrations) over 2 to 8 sampling
dates between March 1998 and April 1999 was minimal (Fig. 3.4 and Table 3.6),

supporting this assumption.

6.2. Estimating Groundwater Age (1)
Groundwater age (7) at each of the well ports was estimated using a model that
describes distribution of travel times in an unconfined aquifer in which recharge is

spatially uniform (Vogel 1967, Fig. 3.3 (1)& Table 3.1). In this model,
4  t=(aH/W)*In(H /)

where 7 = time since recharge to the water table in years; a = porosity; H = total depth of
aquifer in meters; W = recharge rate in meters per year; and # = height over bottom of
aquifer in meters. Solomon et al. (1995) used tritium and helium isotope analyses at the
nearby Massachusetts Military Reservation (Falmouth, MA) to confirm that in this
aquifer, measured vertical groundwater age profiles agree well with ages modeled using
the Vogel equation.
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Table 3.1. Vogel Groundwater Age Model: Quantities, estimation methods, and values used.
Model equation: ¢ = (aH/W)* In (H /h).

Solve for: 7.
. .. Input vs. Means of Calculating and/or Value Used
Quantity Description Output Estimating in/Produced by Model
t Groundwater age (time since recharge, y) Output 0.1 to 7.0 years
a Aquifer porosity Input  Literature (Leblanc 1991) 0.39
H Total depth of aquifer (m) Input  Literature (Barlow & Hess 1993) 33m
1 Literature (Barlow & Hess 1993, 1

4 Groundwater recharge rate (my") Input LeBlanc 1984) S3my
z Depth of sampling port below water table (m) Input  Measured at each well port 021%9.7m
h Height of sampling point over bottom of aquifer (/- Input  Calculated (4 -z) 233t033.1m




Table 3.2. Nitrification Model: Quantities, estimation methods, and values used.
Model equations: 6" NH ;" peas = 0 NH " sures + & * 1 (INH, Jnens / INHL Tyuzee);

[NO3-]nit = [N}I;]som - [NI—I4+]meas; and
Nitrification rate = ([NO3 ] / £

Solve for: [NH, Jsouroe» [NO3 Juie, and Nitrification rate.
Quantity Description I:);::::):: Means of Calculating and/or Estimating Value Used in/Produced by Model
Soil: Measured in upper well ports Soil: +1.6 %o
SUNH™ {souree 07N of NH,' at the water table Input  Fertilizer: Literature (Hitbner 1986, Kendall &  Fertilizer: -1.9 %o
McDonnell 1998)
+ + . Soil: 04t04.1 pM
[NHy lioure ~ NH, concentration at the water table Output Fertilizer: 01 t02.4 1M
JEJ— Py —— Soil: -11.2 to +10.0 %o
S NH" 4 mess 6 NH", measured at each well port Input  Measured at each well port Fertilizer: +5.910+14.9 %o
[NH, lmes  NH," concentration at each well port " Input  Measured at each well port 3011:.'. ) :g} : %g m
€ pit Enrichment factor for nitrification reaction Input  Literature (Kendall & McDonnell 1998) -21 %o
[NO3 Tt Quantity of nitrate produced via nitrification Output goﬂ:. izer: 8 :g (l)é t:;
t Groundwater age (time since recharge) Input  Vogel model (Table 1) 0.1 to 7.0 years
. _ 4 ]
Nitrification rate  Average rate of nitrification over flow path Output Soil: mean = 1.0x 10" yM

Fertilizer: mean = 5.6 x 10° yM h’!




Table 3.3. Rayleigh Product Formation Model: Quantities, estimation methods, and values used.
Model equation: 8"°NO; ;= 8"NH," peas - €m* [f *Inf/ (1 -
S = (INH, Tuouros = INO3 Juid/ [INH, Jucuarces

Solve for: §°NO; i
. . Input vs. Means of Calculating and/or Value Used in/Produced by
Quantity Description Output Estimating Model

. . g Soil: -15.610-21.3 %0

6PNO; iy 67N of NO, produced via nitrification Output Fertilizer: -15.2 t0 21.6 %o
15 + 15 + Soil: -11.2 t0 +10.0 %o
0°NH, .. 0 NH, measuredateach well port Input  Measured at each well port Fertilizer:  +5.9 to +14.9 %o

€ it Enrichment factor for nitrification reaction Input  Literature (Kendall & McDonnell 1998) -21 %o
F  Unreacted fraction of substrate Iput  Calculated Soil: 071 t0 0.90

Fertilizer: 0.46 to 0.98




Table 3.4. 'Apparent 5"°NO;' Model: Quantities, estimation methods, and values used.
Model equations: 5°NOs ,5;* [NO3] 45 = 8""NOs souce * [NO3] soure + 5" °NO; e * [NO3] i
[NOs] 44 = [NO3] source + [NO3] it;

Solve for: §°NO; o4
. . . Input vs. . .. Value Used in/Produced by
Quantity Description Output Means of Calculating and/or Estimating Model
sNo 3N of NOj at the water Input Soil: Measured in upper well ports Soil: +3.4 %o
3source  able p Fertilizer: Literature (Wells & Krothe 1989) Fertilizer: -3.2 %o
Soil: Estimated from lysimeter flux Soil: 1.4 yM
[NO;] NO; concentration at the Input measurements (Seely 1997)
3houwes water table Fertilizer: Literature (Valiela et al. 2000, Fertilizer: 100 uM
Cohen et al. 1990)
8N of NOs™ produced via - . Soil: -15.6 10 -21.3 %o
N0 s, 3 Input leigh Product Model (Table 3 - '
"% nitrification put  Rayleigh Product Model (Table 3) Fertilizer: -15.2 to 21.6 %o
0.l Quantity of m@atg . ' T Soil: 0to1.2 yM
[NO;3] produced via nitrification Input  Nitrification Model (Table 2) Fertilizer: 010 0.8 uM
8N of NO;™ just below Soil: -1.8 %o
dPNO ;4 3 Output - '
*%  water table, adjusted for P Fertilizer; -3.3 to -3.1 %o
INOL, ;e‘;me““i‘;‘;’? ke mput Assumed NOsJ << [NOyl,g; Soil: 14 uM
j ow water table ‘ .
i fommieitonntin therefore, [NO3],g; ~ [N acerse Fertilizer: 100 pM




Table 3.5. Denitrification Model: Quantities, estimation methods, and values used.
Model equations: 3 NO ;s = 3 NO 525 + € gonit * In (INO3)peas / INOslog);

[NOs3)denit = INO3lagi - [NOs3)imeas; and
Denitrification rate = [NO3)yens / £;

Solve for: [NOj3lag55 [NO3)deasr, and Denitrification rate.
. . Input vs. . .. Value Used in/Produced by
Quantity Description Output Means of Calculating and/or Estimating Model
8"°N of NO; just below water ] Soil: -1.8 %o
s°NO 3 Input ‘A ®NO," 1(T -
% table, adjusted for nitrification Py pparent 5" °NO;" Model (Table 4) Fertilizer:.  -3.31t0-3.1 %o
NOsl. Concentration of NOj; just below Output Assumed [NO;]p << [NO3],;; Soil: 1.4 M
2 water table, adjusted for therefore, [NO3]a; ~ [INOs3]source Fertilizer: 100 uM
6’ NO ;<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>