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ABSTRACT

Denitrification is a microaerophilic, microbially-mediated process, by which
nitrate is reduced to biologically-unavailable N2 gas; the reaction is generally coupled to
the oxidation of organic carbon. We hypothesized that denitrification rates in
groundwater in the Waquoit Bay watershed on Cape Cod, USA, were controlled by both
nitrate and dissolved organic carbon (DOC) concentrations, and that groundwater DOC
concentrations were inversely related to the thickness of the vadose (unsaturated) zone
through which recharge occurred. We found that the deeper the vadose zone, the lower
the concentration of DOC in groundwater near the water table; similarly, DOC
concentrations decreased with increasing depth below the water table, suggesting quite
active biogeochemical processing in these boundary environments.

We used stable isotope and mass balance approaches to estimate denitrification
rates in groundwater at two forested field sites and in a septic system plume. These sites
provided a large range of groundwater nitrate and dissolved organic carbon (DOC)
concentrations. At all sites, denitrification rates increased with increasing nitrate
concentration. First order denitrification rate constants with respect to nitrate were
highest where groundwater DOC concentrations were highest: k = 2.8 y-1 in the septic
plume (~ 26 mf C 1-1), k = 1.6 y ~' at South Cape Beach (DOC = 0.8 to 23.4 mg C 1~1),
and k = 0.25 y at Crane Wildlife (0.1 to 1.9 mg C 1-), suggesting that, independent of
nitrate, DOC concentrations exert significant control on denitrification rates. A
simulation of N losses along groundwater flowpaths suggests that a saturating kinetics
expression with respect to both nitrate and DOC best predicts nitrate concentrations
measured at downgradient well ports (R2 = 0.96 for [NO3]model vs. [NC 3 imeas). In
contrast, a saturating kinetics expression with respect to nitrate only, often overpredicts
nitrate losses along groundwater flowpaths, particularly where DOC concentration are
low, further confirming that DOC concentrations are an important control on
groundwater denitrification rates. The magnitude of a nitrate source, its travel distance to
shore, and the DOC concentration in groundwater are useful predictors of N
downgradient. These relationships can help in designing strategies to control
anthropogenic nitrogen loading.

Thesis Supervisor: Harold F. Hemond
Title: Professor of Civil and Environmental Engineering
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1. Anthropogenic Nitrogen and Eutrophication

A principal alteration of estuarine and coastal ecosystems worldwide is

eutrophication brought about by increasing loads of anthropogenically-derived nitrogen

(GESAMP 1990, NRC 1994, Nixon 1986) transported by freshwater to receiving coastal

waters (Cole et al. 1993). In the U.S., regional resources such as Long Island Sound and

Chesapeake Bay and local sites such as Waquoit Bay and Wellfleet Harbor are

experiencing cultural eutrophication. Nitrogen transport rates are of critical importance

because rates of coastal production, as well as many other key processes coupled to

production, are set by nitrogen supply (Nixon 1986, Nixon et al. 1996, Howarth et al.

1996). The effects of eutrophication on coastal ecosystems are far-ranging, and can

include red tides, fish kills, anoxia and hypoxia as currently observed over wide areas of

the Gulf of Mexico, contamination of shellfish beds (NRC 2000), and alteration of

valuable habitat including loss of eelgrass beds, such as that documented in Waquoit Bay,

MA (Costa 1988).

In coastal areas underlain by unconsolidated sands, such as Cape Cod, the

majority of land-derived N delivered to the coastal zone is transported by groundwater

(Valiela et al. 1992, Cambareri and Eichner 1998). Nitrate contamination of freshwater

aquifers is a significant concern since nitrate is toxic to human infants and livestock at

high concentrations (Trudell et al. 1986).
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Anthropogenic sources of nitrate to groundwater aquifers and coastal systems

have increased dramatically, particularly over the last 40 years, with the greatest fluxes of

N associated with areas of highest population density. Human activity has increased the

flux of nitrogen in the Mississippi River approximately 4-fold, in the rivers of the

northeastern United States 8-fold, and in the rivers draining the North Sea more than 10-

fold (NRC 2000). The dominant sources of anthropogenic nitrogen are fertilizers,

accounting for more than half of the human alteration of the nitrogen cycle (Vitousek et

al. 1997); atmospheric deposition of NO. from fossil fuel combustion, animal feed lots

and other agricultural sources, which have increased more than 8-fold over pre-industrial

levels (Holland et al. 1999); wastewater, which contributes 12% of the flux of nitrogen

from the North Atlantic landscape to the North Atlantic Ocean (Howarth et al. 1996); and

non-point sources (NRC 1993).

2. Transformations of Nitrogen within Aquifers

Understanding how N is transformed and transported within aquifers is necessary

to calculating watershed N budgets, understanding basic nitrogen biogeochemistry, and

estimating total N delivery to coastal waters. Previous mass balance data suggests that

significant losses of N can occur within watersheds and aquifers (Lee and Olson 1985,

Valiela at al. 1992, Valiela and Costa 1988, Weiskel and Howes 1992). Processes

capable of attenuating mobile N include dilution, adsorption and incorporation in soils

and forest biomass, assimilatory reduction into microbial biomass, dissimilatory nitrate

reduction to (sorbable) ammonium (DNRA), and denitrification (Korom 1992). Of these
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processes, only denitrification is effectively a permanent sink for biologically available

nitrogen, and is hypothesized to be the most significant sink for N in aquifers (Peterjohn

and Correll 1984, Valiela et al. 2000).

3. Denitrification

Denitrification, which converts biologically available nitrate to essentially inert

N2 (and small amounts of N20) is a microbially-mediated process that uses N0 3-as an

electron acceptor:

5CH 20+4NO3~+4H+ ---> 2N2 +5CO 2 +7 H2 0

where organic carbon is represented as a simplified carbohydrate, CH20. Several

conditions must be met for denitrification to occur, including a viable population of

denitrifying bacteria, sufficient concentration of N oxides (NO3, NO2, NO and N 20) as

terminal e~ receptors, available and suitable e~ donors (e.g. primarily dissolved organic

matter, but also compounds such as reduced manganese (Mn2 +), ferrous iron (Fe2+) or

sulfides, and anaerobic conditions or restricted 02 availability (Firestone 1982). Rates of

denitrification are thought to be governed by the supply of nitrate and carbon compounds,

while suppressed by dissolved oxygen (Tiedje et al. 1982, Keeney 1986).

Some authors have argued that due to the aerobic nature of aquifers and the lack

of suitable concentrations of labile organic substrates (Fisher 1977, Mulholland 1981),

denitrification is unlikely. However, numerous studies suggest that denitrification occurs
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in soils (Parkin 1987, Parkin and Robinson 1989, Christensen et al. 1990a, Christensen et

al. 1990b, van Kessel et al. 1993, Groffman 1991, Groffman et l. 1996, Groffman and

Tiedje 1989) and shallow groundwater (Jacinthe et al. 1998) in anaerobic "hotspots"

within otherwise oxygenated waters. The existence of heterotrophic bacteria (T.

pantotropha, Robertson et al. 1988, Dalsgaard et al. 1995; Alcaligenes sp., Krul 1976),

and activated sewage sludge (Muller et al. 1995) capable of simultaneous heterotrophic

nitrification and aerobic denitrification suggests another means by which denitrification

in aerobic aquifers is plausible. In addition, denitrification (-28.4 kcal equiv -1) is almost

as energetically favorable as aerobic respiration (-29.9 kcal equiv -1); therefore, it seems

likely that organisms capable of exploiting this niche exist in groundwater. Finally,

recent work suggests that there may be more organic matter in groundwater (0.7-27 mg

DOC 1, Ford and Naiman 1989, Fiebig et al. 1990, Fiebig 1995) than was previously

thought to occur, providing a source of electron donors for denitrification in groundwater.

Many papers use mass balance methods to argue that significant losses of nitrogen

by microbially-mediated denitrification occur in aquifers (Bengtsson and Annadotter

1989, Bottcher et al. 1990, Bragan et al. 1997a, Bragan et al. 1997b, Clay et al. 1996,

Gillham 1991, Gold et al. 1998, Groffiman et al. 1996, Jacinthe et al. 1998, Korom 1992,

Peterjohn and Correll 1984, Valiela et al. 1992, Valiela et al. 2000, Verchot et al. 1997).

Convincing evidence for denitrification in groundwater includes experimental injections

in which N0 3- disappears downgradient faster than conservative tracers, and in which the

loss of N03- is accompanied by increases in bicarbonate believed to be derived from
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carbon mineralization associated with microbial denitrification (Korom 1991, Trudell et

al. 1986). Other evidence suggests that changes in the ratio of N isotopes (lSN/ 4N) in

ambient N0 3 or in injections of isotopically-enriched tracers, and/or changes in the

concentration of N2, derive from denitrification in groundwater (Fustec et al. 1991,

Mariotti et al. 1988, Smith et al. 1991, Vogel et al. 1981).

Rates of denitrification reported in the literature vary over several orders of

magnitude (.004 to 1.05 mg N kg 1 dry sediment per day in laboratory core incubations;

0.04 to 2.17 pM h7' in aquifers containing N derived from agriculture, Korom 1992), and

likely reflect both the variability in biogeochemical conditions across aquifer settings and

differing experimental approaches. Denitrification rates measured in controlled

laboratory experiments have been modeled using the Michaelis-Menten enzyme kinetic

equation with respect to nitrate concentration (Engberg and Schroeder 1975), and as a

first-order function of organic carbon substrate (Brenner and Argamann 1990). It is our

hypothesis that denitrification rates vary systematically with nitrate and DOC

concentrations in groundwater.

4. Study Goals

The goal of this study was to estimate groundwater denitrification rates in the

Waquoit Bay aquifer on Cape Cod, to examine how they vary as a function of nitrate and

DOC concentrations, and to construct a predictive model that might be used to assess

groundwater denitrification rates across the range of geochemical conditions present in
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this aquifer. Waquoit Bay, a shallow estuary located on the southwest coast of Cape Cod,

Massachusetts, is experiencing increasing eutrophication from anthropogenic nitrogen.

Nitrogen loads to this system have been measured and modeled as function of land use

patterns in the watershed (Nitrogen Loading Model, NLM, Valiela et al. 1997, Valiela et

al. 2000), and consist primarily of wastewater (50%), fertilizer (17%), and atmospheric

deposition. In NLM, a constant fraction of N reaching the water table (35%) is assumed

to be lost by denitrification during transport through the underlying aquifer en route to

Waquoit Bay.

Nitrate reduction rates, however, are likely to vary as a function of both electron

donor and nitrate concentrations; N loss rates in groundwater, therefore, should be

modeled to reflect variable chemical conditions. On Cape Cod, measured groundwater

nitrate concentrations vary by several orders of magnitude. Concentrations in

groundwater range from 0 to 2.7 pM beneath forested areas (Seely 1997), from < 1 to -

1,000 pM in the suburban subwatersheds of Waquoit Bay (Valiela et al. 2000) and

around a pond in a residential area (Kroeger et al 1999), up to 1,800 pM within the

Massachusetts Military Reservation wastewater plume (Savoie and LeBlanc 1998), and

as high as 4,300 VM in close proximity to a septic tank (our unpublished data).

Denitrification rates within this Cape Cod aquifer are likely to be similarly variable.

In this thesis, we investigated the controls on DOC fluxes $o groundwater (Ch. 2).

We hypothesized that 1) groundwater DOC concentrations decrease as the thickness of
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the vadose zone (Ta,) through which recharge occurs increases, and 2) DOC

concentrations in the saturated zone decrease with increasing depth below the water table

(Dt). We tested these hypotheses by measuring DOC concentrations in groundwaters

beneath a range of vadose thicknesses and at a range of depths below the water table. We

found that the deeper the vadose zone, the lower the concentration of DOC in

groundwater near the water table; similarly, DOC concentrations decreased rapidly with

increasing depth below the water table, suggesting quite active biogeochemical

processing in these boundary environments.

In Chapter 3, we used a stable isotopic approach to estimate average

denitrification rates occurring along groundwater flowpaths at two forested sites (Crane

Wildlife Management Area and South Cape Beach) in and near the Waquoit Bay

watershed. These sites provided a large range of groundwater nitrate (<1 to 91 pM) and

DOC (0.04 to 23 mg C 1-) concentrations. Denitrification rates increased with both

increasing initial nitrate and DOC concentrations, ranging from 0 to 2.1 x 103 pM N h-1.

We compared these rates to those that we measured using mass balance of N in a septic

plume (Ch. 4). First order denitrification rate constants with respect to nitrate were

highest where groundwater DOC concentrations were highest: k = 2.8 y4 in the septic

plume (- 26 mg C 17), k = 1.6 y - at South Cape Beach (DOC= 0.8 to 23.4 mg C 1-1),

and k = .25 y4 at Crane Wildlife (0.1 to 1.9 mg C 1-), suggesting that denitrification rates

were controlled by both nitrate and DOC concentration. We sirmulated N losses along

groundwater flowpaths for the Crane Wildlife site; the results of this analysis suggested
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that for the low DOC conditions at this site, a saturating kinetics expression with respect

to nitrate best predicts nitrate concentrations measured at the downgradient well ports (?2

= 0.96 for [NO3~],(.W vs. [NO3~]...).

In Chapter 5, we present an empirically-based saturating kinetics model

describing groundwater denitrification under carbon and nitrate-limited conditions.

Denitrification rates were described using a kinetic expression with double substrate

limitation (with nitrate as the terminal electron acceptor and dissolved organic carbon

(DOC) as the electron donor). The kinetic parameters were estimated from our field data

(half saturation constant for N0 3 (KNo3)) and USGS field data (bacterial population [B]),

and from data available in the literature (maximum bacterial growth rate (pmax), half

saturation constant for DOC (KDoc), and bacterial yield constant (Y)). The proposed

model is able to reasonably predict N losses along groundwater flow paths, measured at

the two forested sites, where DOC ranged from 0.04 to 23 mg C 1-1 and nitrate ranged

from <1 to 91 pM. Using higher values for the bacterial population ([B]) and the half-

saturation constant (KNo3), we were also able to predict N losses due to denitrification

within the very different biogeochemical conditions of the septic system plume ([N0 3

]max 4,400 pM, [DOC]~ 26 mg C-1, and presumably a larger and more active bacterial

population). The model performs well over the wide range of geochemical conditions

found at the three sites within this watershed (R2 = 0.92, m = 1.0 for measured vs.

modeled).
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We conclude that the magnitude of the nitrate source, its travel distance to shore,

and the DOC concentration in groundwater are useful predictors of N downgradient. The

saturating kinetics model, with double substrate limitation by nitrate and DOC, developed

here, provides a valuable tool for planners and managers interested in designing

management strategies to control nitrogen loading to coastal waters. Such a model might

be used in the design of setback limits for septic systems, in assessing the value of open

spaces for N load reduction, in regulating wastewater disposal, and in watershed-wide

land use planning.
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Abstract. Changes in concentration of dissolved organic carbon (DOC) reflect
biogeochemical processes that determine chemical composition of groundwater and other
natural waters. We found that the deeper the vadose zone, the lower the concentration of
DOC in groundwater near the water table, indicating that considerable attenuation of
surface-derived DOC occurred in the vadose zone. Under vadose zones <1.25 m, DOC
concentrations at the surface of the water table ranged to >20 mg J7' C, while for vadose
zones >5.0 m, DOC never exceeded 2.0 mg r, C. DOC concentrations also decreased
exponentially with increasing depth below the water table, most notably in the upper two
meters, implying continued attenuation in the upper layer of the saturated zone. Ninety-
nine percent of the DOC was attenuated by the time the water reached a depth of 19 m
below the water table. DOC concentrations in shallow groundwater show considerable
spatial variability, but the concentration of DOC at any one site is surprisingly stable over
time. The largest source of variation in DOC concentration in groundwater therefore is
spatial rather than temporal, suggesting that local heterogeneities play an important role
in DOC delivery to shallow groundwater. Our results highlight both the importance of
shallow vadose areas in DOC delivery to groundwater and the need to distinguish where
samples are collected in relation to flow paths before conclusions are made about mean
groundwater DOC concentrations. The substantial losses of DOC in the vadose zone and
in shallow depths within the aquifer suggest quite active biogeochemical processes in
these boundary environments.
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1. Introduction

DOC alters chemical composition of surface and grounl waters by acting as a

substrate for microbial catabolism, an electron acceptor for anaerobic respiration, and a

ligand for metal complexation, and by providing protons for apid/base chemistry, and

nutrients that stimulate biological productivity. DOC is generated in soil organic

horizons by microbial metabolism, root exudates, and leaching of organic matter (Schiff

et al. 1996) and transported by recharge water to the saturated zone (Cronan and Aiken

1985; Thurman 1985; Clay at al. 1996) or by surface runoff (Jordan et al. 1997) to

surface water bodies. Export of DOC from forested catchments depends on a complex,

seasonally and spatially varying interplay of production, decomposition, sorption,

precipitation, and hydrology (Cronan and Aiken 1985; Schiff at el. 1996).

DOC concentrations change as the organic matter is transported from the surface

of a watershed to receiving waters. Cronan and Aiken (1985), McDowell and Likens

(1988), Schiff et al. (1990), Easthouse et al. (1992), and Kookani and Naidu (1998)

demonstrated that DOC in soil solutions decreased as recharge water percolates through

soil horizons, from > 70 mg 1- C in upper soil horizons to 1-2 mg 1- C in lower soil

horizons. Mechanisms that may attenuate organic carbon as it percolates through soils

include sorption and complexation with mineral surfaces (e.g. Fe and Al oxides and

hydroxides) and clay minerals (Thurman 1985), microbial oxidation to CO 2 (Chapelle

1992), precipitation, flocculation and formation of insoluble complexes (Kookana and

Naidu 1998), and filtering of organic colloids (Wan and Tokunaga 1997).
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Several authors have pointed to the importance of the length or duration of

hydrologic flow paths in controlling DOC delivery (Cronan and Aiken 1985). Easthouse

et al. (1992) contend that work on inorganic constituents (Sullivan et al. 1986, Lawrence

et al. 1988, Neal et al. 1989, Mulder et al. 1990) has demonstrated the importance of

hydrologic flow paths in explaining variations in stream water chemistry. Similarly,

Schiff et al. (1996) highlighted the importance of flow paths when they concluded that

recently-fixed labile DOC leached from the A horizon or litter layer can only reach the

stream via short flow paths that bypass locations where significant soil sorption occurs.

Recharge is often spotty, and preferential flow paths, or fingers are likely to develop even

in relatively homogeneous sandy soils (Parlange et al. 1999), potentially resulting in

variable transport of DOC to groundwater.

Little information is available about the fate and transpqrt of DOC either in the

vadose zone or after it has reached the saturated zone. It seems likely that transport

through the vadose zone and through groundwater aquifers provides additional

opportunity for DOC to be attenuated by mechanisms similar to those thought to

attenuate DOC in the unsaturated zone (e.g., sorption, complexation, microbial oxidation,

precipitation, flocculation, formation of insoluble complexes, and filtering of organic

colloids). Thus we hypothesize that: 1) groundwater DOC concentrations decrease as

the thickness of the vadose zone (Tvad) through which recharge occurs increases, and 2)

DOC concentrations in the saturated zone decrease with increasing depth below the water

table (Dq). We tested these hypotheses by measuring DOC concentrations in
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groundwaters beneath a range of vadose thicknesses and at a range of depths below the

water table.

2. Materials and methods

2.1 Study site

This work was carried out in the watershed of Waquoit Bay, a shallow estuary on

the southwestern shore of Cape Cod, Massachusetts, subject to increasing eutrophication

from groundwater-transported nitrogen. The watershed is underlain by an unconsolidated

sole-source sand and gravel aquifer (Barlow and Hess 1993, Leblanc et al. 1986). The

aquifer matrix is comprised of primarily quartz and feldspar sand (95%) with some

ferromagnesian aluminosilicates and oxides (5%); sand grains are coated with hydrous

oxides of aluminum and iron (Stollenwerk 1996). Average groundwater velocity is

approximately 0.4 m per day (LeBlanc 1991), and annual recharge is 53 cm yr 1(Barlow

and Hess 1993, LeBlanc 1984). Groundwater discharge to Waquoit Bay and its

tributaries accounts for 89% of the total freshwater input to Waquoit Bay (Cambareri

1998), and is the primary avenue by which land-derived nitrogen is delivered to the

estuary (Valiela et al. 1997).

We sampled groundwater near South Cape Beach and Sage Lot Pond in the

southern part of the watershed (SCB), and in the Crane Wildlife Management Area to the

north (CWMA). Both areas have mixed pitch pine and scrub oak forest cover and are

typical of forested areas throughout Cape Cod. Other data are from USGS wells located

in and near the watershed (Savoie and LeBlanc 1998).
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2.2 Groundwater sample collection and analysis

At SCB, we collected groundwater using a drive-point piezometer and hand

pump. Samples were taken in duplicate after multiple well volumes had been pumped

and the water ran clear (generally after pumping 1-2 liters). We sampled from 12 stations

on each of five sampling dates; we reached the water table in 56 of the 60 sampling

attempts.

At CWMA, we installed and sampled from 3 multi-level sampling devices (MLS)

(LeBlanc 1991). Each MLS had between 9 and 15 ports spanning from just below the

water table to a maximum depth of 9.3 m below the water table. At each port a 0.64 cm

diameter polyethylene tube protruded through a central 3.2 cm PVC pipe and was

covered with a nylon screen (Smith et al. 1991). We collected groundwater samples in

duplicate using a peristaltic pump (Geopump 2, Geotech Environmental Equipment, Inc.)

after purging a minimum of 3 well volumes (13.8 ml per m tube length) from each port.

All samples were collected in 15 ml amber glass vials (Supelco #27088-U)

previously soaked in a 5% Extran bath to remove any traces of organic carbon. Samples

from the MLSs were filtered in-line during pumping using 0.7 gm Whatman GF/F filters.

Samples obtained using the piezometer were vacuum filtered ehrough the same GF/F

filters upon return to the lab. All samples were acidified to pH ~ 2 with 5N HCI and

stored in a cold room (T = 4 *C) until analysis,
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At SCB, we located the surface of the water table by first driving the piezometer

below the water table (verified by drawing water), and then pulling it out of the ground in

0.1 m increments and attempting to pump at each position. We recorded the water table

position as that depth where we could no longer draw water thropgh the piezometer. At

CWMA, we measured the thickness of the vadose zone by lowering a Fisher m-SCOPE

Water Level Indicator into a nearby monitoring well (< 20 m) anc4 measured the distance

of the water table from land surface. Depth to the water table was tabulated for USGS

wells in Savqie and LeBlanc (1998).

We measured DOC concentrations in triplicate Ar-purged samples using high

temperature catalytic oxidation (HTCO) with infrared detection of CO 2 (Shimadzu TOC

5000). DOC data for USGS wells were taken from Savoie and LeBlanc (1998). Many of

the USGS wells were drilled to investigate groundwater pollution emanating from the

Massachusetts Military Reservation. We collected data only from wells located in areas

of clean groundwater, either outside the boundaries of mapped wastewater plumes or

having methyl blue active substances (MBAS) below 0.02 mg 1 .

3. Results and Discussion

Groundwater DOC concentrations varied from 0.04 to 23.38 mg C r' and

averaged 2.31 1 0.30 mg C 1-. The wells provided a range of vadose thicknesses (Tvad)

from 0.5 m to 17.5 m and water table depths (Dq) from 0.01 to 51,8 m. We found, as did

Cronan and Aiken (1985) and Easthouse et al. (1992), that DOC concentrations were
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quite variable spatially, but more consistent temporally. For example, at the 12 SCB

stations, where the vadose zone was routinely less than 1.5 m, 1)OC ranged from < 1 to

23 mg C 1-, with a coefficient of variation of 77% (Fig. 2.1). Despite this spatial

variability, when we sampled on 5 sampling dates at each of the 12 stations at SCB, we

found that DOC was consistently high at some sampling points and consistently low at

others. The average of the coefficients of variation of the time series data for each of the

12 stations was 37%. These observations suggests that local-scale heterogeneities in

properties such as soil composition and thickness, the position of the water table relative

to the soil organic layer, hydrologic flow paths, and recharge rates may provide more

variation than temporal changes.

Concentrations of DOC were inversely related to both Tyad and D (multiple

regression of log transformed values, R2 = 0.68, p < 0.00 1, Table 2.1). The two variables,

Tad and D,, were relatively independent: the highest variance inflation factor (VIF)

(Sokal and Rohlf 1995) was 1.3, which suggests only minimal correlation between

independent variables. To evaluate the relative influence of Tyag and D., on DOC

concentration, we calculated Kruskal's index of importance (average of squared partial

correlation coefficients) (Sokal and Rohlf 1995); the index was 0.58 for Dw, and 0.23 for

T,,d. This indicates that depth below the water table was relatively more important than

vadose thickness in predicting DOC concentration. These analyses suggest that Tvad and
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Figure 2.1. Mean DOC concentrations measured at 12 sampling stations at

South Cape Beach on 5 sampling dates in 1998. Coefficient of variation between

sampling stations is 77%; mean of coefficients of variation calculated for each

sampling station is 37%. Standard error bars are shown.
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Table 2.1. Analysis of variance for multiple regression of effect of depth below the
water table (Dw) and vadose thickness (T,.) on DOC concentration. Data were log-
transformed. Regression equation: log DOC = -0.52Dw - 0.39T,,d+0.19; R2= 0.68; df
= degrees of freedom, SS = sum of squares, MS = mean squares, and F = sample variance.
For probability < 0.001, df= 2 and 189, critical F value (F,.it) < 7.32.

df SS MS F
Regression 2 58.58 29.29 204.90***

Tas 1 4.58 4.58 32.02***

DW 1 30.86 30.86 215.89***
Residual 189 27.02 0.14
Total 191 85.59 0.45

D. were relatively independent, and both contributed significantly to DOC

concentrations in the aquifer.

To examine in more detail the effect of varying vadose thickness on losses of

DOC within the aquifer, we stratified the data into three categories of Tvad (0-1.25, 1.25-

5.00, and >5.00 m), and plotted DOC as a function of depth below the water table (Fig.

2.2). DOC concentrations at the water table were highest in groundwater under areas

with the shallowest vadose zones, and decreased with increasing vadose thickness. This

supports the hypothesis that DOC concentrations decrease as T 0d increases.

DOC concentrations also decreased with increasing depth below the water table.

Reductions occurred particularly within the upper few meters of the water table, and

resulted in DOC losses totaling two orders of magnitude, To better examine the
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Figure 2.2. DOC concentration as & function of depth below water table for each of three vadose thickness (Tad) strata: 0 -
1.25m, 1.25 - 5.0 m, and > 5.0 In.
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reduction of DOC concentration with Dw, we log-transformed the data (Fig. 2.3). The

data could be reasonably well fit with an exponential curve (R2 = 0.g2 for T=.s 0-1.25;

R2= 0.59 for T, = 1.25 - 5.0 m; R 2 = 0.10 for T.ad> 5.0 in). These losses-imply that

DOC reaching groundwater was biologically labile. For Tad =0 -1.25m, 99% of the

DOC was lost by the time a depth of 19 m was reached. A surprising result is that

regardless of vadose thickness, and thus of the concentration of DOC at the surface of the

water table, the DOC concentration at the deepest wells was similarly low (about 0.1 mg

C 1) (Fig. 2.3). It is as if the labile portion of the DOC was intercepted in the vadose

zone or in the aquifer, and that in either case, DOC concentrations at depth converged.

In this aquifer, depth is a remarkably close proxy for time (Solomon et al. 1995,

Portniaguine and Solomon 1998). Using data on age of the groundwater in this aquifer,

we can calculate that at a depth of 19 m, groundwater has traveled approximately 15.8

years since recharge (Vogel 1967). Therefore, for T,,d = 0 - 1.25 m, the mean DOC loss

rate between the surface and 19 m was approximately 1.5 mg c 4 yfr'. In contrast, for

Ta >5 m, the loss rate over this same distance was about 0.12 mg C F yfr-. The

difference in attenuation rates supports the conclusion that Tyas strongly controls the

transport and concentration of DOC reaching the surface of the aquifer.

We further investigated the depth dependence of the DOC loss rate by taking the

first derivative (dy/dz) of the fitted curve (a power function curve fit) for each Tad
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Figure 2.3. DOC concentration plotted as a function of depth below water table (D ,) for each of three
vadose thickness (Tvad) strata: 0 - 1.25 m, 1.25 - 5.0 m, and > 5.0 m. Axes are logarithmic;
*** denotes probability < 0.001, ns = not significant.
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category (Fig. 2.4). The DOC loss rate quickly diminished with depth for all Td

categories. At depth (-30 m), where DOC losses were small, the rate of attenuation was

lowest for groundwater beneath the thickest vadose zones. This supports the notion that

processes in the vadose zone affect the quality of the DOC in the saturated zone (and thus

the rate at which it is metabolized). It seems that the more labile forms of DOC are

selectively removed during transport through the unsaturated zone, so that only more

refractory DOC may reach the aquifer in those areas with thick vadose zones.

Our interest in understanding how DOC is distributed in groundwater stems from

the larger question of how nitrogen is transported to receiving waters and to what degree

denitrification in groundwater is limited by the supply of DOC. Research suggests that

many aquifers do not contain sufficient organic matter to produce the anaerobic

conditions required for denitrification (Bryan, 1981; Parkin and Meisinger, 1989;

Thurman, 1985; Barcelona, 1984; Lind and Eiland, 1989; McCarty and Bremner, 1982;

Obenhuber and Lowrence, 1991). Groundwater DOC values reported in the literature

from a wide range of aquifer settings and depths (Fig. 2.5) suggest, first, that there are

many places where groundwater contains significant concentrations of DOC. These

concentrations may be sufficiently high to support denitrification. Our measurements of

DOC concentrations fall within the wide range reported in the literature. The data in

Figure 2.5 can also be used to make a second point: sampling groundwater at depth may

provide underestimates of DOC dynamics in aquifers. The rather steep gradient in DOC
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Figure 2.4. Instantaneous DOC loss rate as a function of depth below water table for each
of three vadose thickness strata (Tvad): 0 - 1.25m, 1.25 - 5.0 m, and >5.0 m. Loss rate was

calculated as the first derivative (ly/dz) of the fitted power curve for DOC versus D , for

each of the 3 Tvad classes, and solved for at each measured depth.
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Figure 2.5. DOC concentrations in groundwater as a function of depth. White circles
represent the data from this study. Black circles represent data from the literatun
(Leenheer et al. 1974; Aelion et al. 1997; Ellis et al. 1998- Ford & Naiman 1989;
Hakenkamp et al. 1994; Hendricks & White 1995; Keller 1991; Rutherford & Hynes
1987; Schindler & Krabbenhoft 1998).
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concentration that we found near the water table suggests that measurements of DOC in

samples from deep groundwater wells may not only fail to describe the dynamics of

DOC, but may underestimate mean groundwater DOC concentrations. The strong

attenuation of DOC concentration within the vadose zone and he upper portion of the

water table suggests that these sites are potentially those where biogeochemical

transformations, including denitrification, should be active, and s1tould be measured.

The comparison of published DOC concentrations (black circles, Fig. 2.5) relative

to the values we report here (white circles, Fig. 2.5) also makes 4 third point: in general,

despite the scatter in the data, it appears that DOC concentrations do decrease with

increasing depth below the water table. Of course, the scatter of points from the diverse

sites makes the pattern less obvious, but it is nonetheless true that the larger

concentrations of DOC tend to lie in the shallower layers, as we demonstrate in our own

data in some detail.

The results we include here demonstrate that there are tight biogeochemical

couplings among components of the below-ground ecosystems. Labile DOC is

intercepted near or in boundaries layers, either in the vadosp zone or in the shallow

aquifer, leaving only a small concentration of DOC for transport to open receiving

waters. Such large decreases in DOC must follow significant stoichiometric relationships

linking carbon dynamics to other elements. Investigation of the stoichiometry is the next

step suggested by the large transformations documented in this paper.
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CHAPTER 3:

DENITRIFICATION RATES IN GROUNDWATER, CAPE
COD, U.S.A.: CONTROL BY NITRATE AND DISSOLVED

ORGANIC CARBON CONCENTRATIONS
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Abstract. Eutrophication by land-derived anthropogenic nitrogen (N) is a major cause of
alterations to coastal systems worldwide. Modeling N delivery to coastal waters is
therefore critical to designing appropriate land use and management strategies to control
N loading. Key to calculating watershed N budgets is understanding N losses by
denitrification as groundwater is transported through aquifers en route to receiving
estuaries. We used a stable isotope approach to estimate denitrification rates in
groundwater in and near the Waquoit Bay watershed on Cape Cod, USA. Two field sites
provided a large range of groundwater nitrate and dissolved organic carbon (DOC)
concentrations. Nitrification, although understandably important in the soils layer and
vadose zone, produced only minimal amounts of nitrate in the saturated zone, evidently
due to a limited supply of ammonium in the groundwater. Denitrification rates increased
with both increasing initial nitrate and DOC concentrations, and ranged from 0 to 2.1 x
10i pM N Y'. We compared these rates to those measured in a- septic plume (Ch. 4).
First order denitrification rate constants with respect to nitrate were highest where
groundwater DOC concentrations were highest, suggesting that, independent of nitrate
concentration, DOC concentration exerts a significant control on denitrification rates. In
previous work (Ch. 2) we showed that groundwater DOC concentrations decreased as the
thickness of the vadose (unsaturated) zone through which recharge occurred increased.
As a result, higher denitrification rates are likely to be found in those areas where the
vadose zone is thinnest. A simulation of N losses along groundwater flowpaths at Crane
Wildlife suggests that a saturating kinetics expression with respect to nitrate best predicts
nitrate concentrations measured at the downgradient well ports. We conclude that it is
critical to consider the magnitude of individual N0 3 sources, travel distances to shore,
and DOC concentrations in groundwater in assessing the downgradient impact of various
N sources, and in designing strategies to control anthropogenic nitrogen loading.
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1. Introduction

Eutrophication by land-derived anthropogenic nitrogen (N) is a major case of

alterations to coastal ecosystems worldwide (GESAMP 1990, NRC 1994, Nixon 1986).

In the US, Long Island Sound, NY, and Chesapeake Bay, MD, and sites such as Waquoit

Bay and Wellfleet Harbor on Cape Cod, MA, are experiencing cultural eutrophication. In

these and many other estuaries, excess nutrients, largely N, are inducing loss of

commercially important fish species, contamination of shellfish beds, and alteration of

valuable habitat including eelgrass beds (Costa 1988, GESAMP 1990, NRC 1994, NRC

2000, Nixon et al. 1986, Howarth et al. 1996).

In coastal areas underlain by unconsolidated sands, such as Cape Cod, the

majority of land-derived N delivered to the coastal zone is transported by groundwater

(Valiela et al. 1992). Understanding how N is transformed ano transported within

aquifers is therefore necessary to calculating watershed N budgets, understanding basic

nitrogen biogeochemistry, and estimating total N delivery to cqastal waters. Previous

mass balance data suggests that significant losses of N can occur within watersheds and

aquifers (Lee and Olson 1985, Valiela at al. 1992, Valiela and Costa 1988). Processes

capable of attenuating mobile N include dilution, adsorption and incorporation in soils

and forest biomass, assimilatory reduction into microbial bionass, dissimilatory nitrate

reduction to (sorbable) ammonium (DNRA), and denitrification (Korom 1992).

Denitrification is a significant sink for N in aquifers, as argued in many papers

using mass balance methods (Bengtsson and Annadotter 1989, Bottcher et al. 1990,
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Bragan et al. 1997, Bragan et al. 1997a, Clay et al. 1996, Gillharn 1991, Gold et al. 1998,

Groffinan et al. 1996, Jacinthe et al. 1998, Korom 1992, Petqrjohn and Correll 1984,

Valiela et al. 1992, Valiela et al. 2000, Verchot et al. 1997). Convincing evidence for

denitrification in groundwater includes experimental injections in which N0 3-disappears

downgradient faster than conservative tracers, and in which the loss of N0 3 is

accompanied by increases in bicarbonate believed to be derived from carbon

mineralization associated with microbial denitrification (Korom 1991, Trudell et al.

1986). Other evidence suggests that changes in the ratio of N isotopes (15 N/14 N) in

ambient N0 3 " or in injections of isotopically-enriched tracers, and/or changes in the

concentration of N2, derive from denitrification in groundwater (Fustec et al. 1991,

Mariotti et al. 1988, Smith et al. 1991, Vogel et al. 1981). Rates of denitrification

reported in the literature span several orders of magnitude (0.004 to 1.05 mg N kg -1 dry

sediment per day in laboratory core incubations; 0.04 to 2.17 M hW in aquifers

containing N derived from agriculture, Korom 1992), arkd likely reflect both the

variability in biogeochemical conditions across aquifer settings and differing

experimental approaches.

Denitrification rates measured in controlled laboratory experiments have been

modeled using the Michaelis-Menten enzyme kinetic equation with respect to nitrate

concentration (Engberg and Schroeder 1975), and as a first-order function of organic

carbon substrate (Brenner and Argamann 1990). Because, in general, reduction rates are

likely to vary as a function of both electron donor and nitrate concentrations, N loss rates

in groundwater should be modeled to reflect variable chemical conditions.
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Concentrations of organic matter and nitrate in groundwater are patchy and may

result in spatially variable denitrification rates. DOC concentrations in growdwater

range from 0.1-27 mg DOC F1 (Pabich et al. submitted, Ford and Naiman 1989, Fiebig et

al. 1990, Fiebig 1995), and mean concentrations may be higher than previous studies

suggest (e.g. Leenheer et al. 1974). On Cape Cod, measured groundwater nitrate

concentrations vary by several orders of magnitude. Concentrations in groundwater

range from 0 to 2.7 pM beneath forested areas (Seely 1997), from < 1 to ~ 1,000 pM in

the suburban subwatersheds of Waquoit Bay (Valiela et al. 2000) snd around a pond in a

residential area (Kroeger et al 1999), up to 1,800 pM within the Massachusetts Military

Reservation wastewater plume (Savoie and LeBlanc 1998), and as high as 4,300 pM in

close proximity to a septic tank (our unpublished data). Denitrification rates within this

Cape Cod aquifer are likely to be similarly variable. The goal of this study was to

estimate groundwater denitrification rates and to examine how they vary as a function of

nitrate and DOC concentrations.

2. Approach

Stable isotopes of N have been used effectively to study denitrification (Mariotti

et al. 1988, Bottcher et al. 1990, Smith et al. 1991). We used such an approach to

estimate both nitrification and denitrification rates occurring in groundwater after the

time of recharge to the water table. We measured 1 5N natural abundance variations

(Mariotti et al. 1988) in ammonium and nitrate in groundwater samples obtained from

wells installed in locations within the aquifer where N0 3 and DOC concentrations

differed significantly. Using the Rayleigh equation, which expresses the evolution of the
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isotopic composition of residual nitrate (or ammonium) during denitrification (or

nitrification), we estimated initial ammonium and nitrate concentrations at the water

table, from which losses due to nitrification and denitrification were assessed. Such mass

balance data were coupled with a groundwater age model (Vogel 1967) to estimate

nitrification and denitrification rates, respectively.

3. Nitrogen isotope geochemistry -

Because denitrifying organisms preferentially utilize the lighter isotope of

nitrogen (14N), fractionation of the nitrogen isotopes in the reactants and the products

occurs. The result is a predictable enrichment of '5N in residual substrate N0 3~ and

depletion in the N2 and N20 products of denitrification. This process has been described

as a single-step, unidirectional reaction (Mariotti et al. 1981, 1988), in which the 15 N

content of the N0 3 is a simple function of the progress of the reaction.

Isotopic fractionation occurs as a result of many biological (and abiotic) reactions,

including both nitrification and denitrification. The Rayleigh equation expresses the

evolution of the isotopic composition of the residual (reactant) material, and can be used

to model both nitrification and denitrification. The relationship is expressed as:

(1) 6s = so + e In (C/Co),

where o, represents the isotopic ratio (5'Nor J'N/N) of the reactant at time t, 6so is the

6'SN of the reactant at time = 0, . is the isotope enrichment factor (%o) of the reaction, C
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is the reactant content at time t, and Co is the initial reactant content. Stable isotopic

ratios are expressed as del (6) values in per mil (%o) deviations from standard

atmospheric nitrogen where:

(2) 15N= [(RsampIw1Rstanar)-1IX 1000, and R = ' 5N/ 4N.

The isotopic composition of the reaction product (N0 3~ for nitrification, N2 for

denitrification) becomes progressively heavier as the reaction proceeds, and can be

calculated for any given amount of substrate consumed, using a modified version of the

Rayleigh expression:

(3) JNproduct = 4 5Nreactant - e[f Inf/(1 -f)]

where cVNproduct is the 5NP of the product of the reaction (e.g., NO3 or N2), P1 Nreacant is

the 6'5N of the reactant (e.g., NH4 or NO3 ), 6 is the isotopic enrichment factor for the

reaction, andf is the unreacted fraction of the substrate (Mariotti Pt al. 1981). We used

the Rayleigh equation (Eq. 1) to assess the rates of both nitrification and denitrification in

our groundwater samples, and the product formation expression (Eq. 3) to calculate the

615N value of N0 3 produced via nitrification beneath the water table.

4. Study Sites

This work was carried out in or near the watershed of Waquoit Bay, a shallow

estuary on the southwestern shore of Cape Cod, Massachusetts (Fig. 3.1), subject to
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Figure 3.1. Location of Crane Wildlife Management Area, South Cape Beach, -=d

septic system study sites in and near the Waquoit Bay watershed, Cape Cod, MA.
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increasing eutrophication from groundwater-transported nitrogen. The watershed is

underlain by an unconsolidated sole-source sand and gravel qquifer (Barlow and Hess

1993, Leblanc et al. 1986). The aquifer matrix is comprised primarily of quartz and

feldspar sand (95%) with some ferromagnesian aluminosilicates and oxides (5%); sand

grains are coated with hydrous oxides of aluminum and iron (Stollenwerk 1996).

Average groundwater velocity is approximately 0.4 m per day (LeBlanc 1991), and mean

annual recharge is 53 cm yr-1 (Barlow and Hess 1993, LeBlanc 1984). Groundwater

discharge to Waquoit Bay and its tributaries accounts for 89% of the total freshwater

input to Waquoit Bay (Cambareri 1998), and is the primary avenue by which land-

derived nitrogen is delivered to the estuary (Valiela et al. 1997).

We sampled groundwater at two sites that differed in DOC and N0 3 ~

concentrations: the Crane Wildlife Management Area to the rporth of the Waquoit Bay

watershed, and South Cape Beach near the Bay (Fig. 3.1). DOC concentrations in the

underlying groundwater at these two field sites differed because of differences in the

thickness of their vadose zones. We have shown (Pabich et al. submitted) that

groundwater DOC concentrations at these sites are inversely related to the thickness of

the vadose zone through which recharge occurs, presumably because DOC is attenuated

during transport through the unsaturated zone by sorption to minqral surfaces (e.g. Fe and

Al oxides and hydroxides) and clay minerals (Thurman 1985), microbial oxidation to

CO2 (Chapelle 1992), precipitation, flocculation and formation of insoluble complexes

(Kookana and Naidu 1998), and filtering of organic colloids (Wan and Tokunaga 1997).

DOC concentrations beneath shallow vadose zones also appear to be more spatially
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variable than beneath thick vadose zones. The vadose zone thickness is generally less

than a meter at South Cape Beach, and, correspondingly, groundwater DOC

concentrations were relatively high and variable (range = 0.8 to 23.4 mg C f1, mean = 7.0

mg C F'). In contrast, at Crane Wildlife, depth to groundwater ranged from 4 to 5.5 m,

and groundwater DOC concentrations were consistently low (range = 0.04 to 1.9 mg C I-

mean = 0.4 mg C 1-).

Groundwater nitrate concentrations differed at the two 4ites as well. The land

cover at South Cape Beach consists of mixed pitch pine and scrub oak forest typical of

forested areas throughout Cape Cod. At this site, the only sources of nitrate are

presumably soil organic matter and precipitation. Measured groundwater nitrate

concentrations at this site ranged from 0 to 4.0 pM, consistent with nitrate concentrations

found beneath other forested areas in the Waquoit Bay watershed (Seely 1997).

Land cover at Crane Wildlife is similar to that at South Cape Beach, except that

the site also contains several abandoned fields, and is downgradient from a golf course on

the Massachusetts Military Reservation; additional sources of nitrate to groundwater

include fertilizers applied regularly to the golf course (John Callahan, manager, Falcon

Golf Course, personal communication) and periodically to the abandoned fields (Richard

Turner, MA Division of Fish & Wildlife, personal communication). The inter- and intra-

site differences in groundwater DOC and nitrate concentrations provided the opportunity

to evaluate the role of both DOC and N0 3" as controls on denitrification rate.
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5. Methods

5.1. Groundwater sample collection

At Crane Wildlife, we installed and sampled groundwater from three multi-level

sampling wells (MLSs; LeBlanc 1991) arranged in a transect parallel to groundwater

flow (Fig. 3.2). Groundwater flow direction was determined using a MODFLOW model

(Masterson et al. 1997). Each MLS had between 9 and 15 ports spanning from just below

the water table to a maximum depth of 9.3 m below the water table. At each port a 0.64

cm diameter polyethylene tube protruded through a central 3.2 cm PVC pipe and was

covered with a nylon screen (Smith et al. 1991). Samples were taken in duplicate during

June 1998 using a peristaltic pump (Geopump 2, Geotech Environmental Equipment,

Inc.) after purging a minimum of 3 well volumes (13.8 ml per m tube length) from each

port.

At South Cape Beach, we established and sampled from 12 sampling stations

around the perimeter of Sage Lot Pond (Fig. 3.1) in March, June and August 1998.

Groundwater was sampled using a drive-point piezometer and hand pump. Samples were

taken in duplicate after purging groundwater through the piezometer (generally 1-2 liters)

until the water was free of visible turbidity.

5.2. Chemical analysis

All samples were collected in acid-washed 250 ml plastic bottles. Samples from

the MLSs were filtered in-line during pumping using 0.7 prm Whatman GF/F filters.
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Figure 3.2. Schematic of multi-level sampling (MLS) wells (USGS wells F606, F605, and F393) arranged in a transect

parallel to groundwater flow lines at Crane Wildlife Management Area. Well and sampling port locations are shown

relative to depth below water table (D,).
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Samples obtained using the piezometer were vacuum filtered through the same filters

upon return to the lab. All samples were acidified to pH w 2 with 5N HCl and stored in a

cold room (T = 4 *C) until analysis.

We measured N0 3~ concentrations using a Dionex ion cbromatograph (DX-120)

with a conductivity detector; for samples with concentrations of N0 3 ~ < 3.2 PM

the ion chromatograph was coupled to a Waters 484 Tunable Absorbance detector (UV).

The UV detector allowed for measurement of N0 3-as low as 0.10 pM. Ammonium was

measured using the OPA fluorescence method of Holmes et al. (1999). We used both

Hydrolab Minisonde and YSI 85 probes to measure dissolved oxygen and specific

conductivity in the field. DOC concentrations in triplicate Ar-purged samples were

measured using high temperature catalytic oxidation (HTCO) with infrared detection of

CO 2 (Shimadzu TOC 5000). Stable isotope analysis of nitrate and ammonium was

conducted by David Harris at University of California, Davis, and by Robert Michener at

the Boston University Stable Isotope Laboratory using Finnigan Delta S isotope ratio

mass spectrometers, and expressed in per mil notation (Eq. 2). Samples were prepared

for analysis using an adaptation of the ammonium diffusion method for oceanic nitrate

(Sigman et al. 1997).

6. Modeling Framework and Assumptions

For each groundwater sample collected at Crane Wildlife, we calculated the

average denitrification rate occurring over the groundwater flowpath, between the point
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of recharge and the point of sampling. These calculations included five steps (Fig. 3.3),

namely:

(1) Calculation of groundwater age (t) at each well port using the Vogel Groundwater

Age Model (Vogel 1967; Table 3.1);

(2) Estimation of the isotopic signature of nitrogen in nitrate (P 1 NOisourc.) and

ammonium (6' 5NH4+sourc,) at the water table;

(3) Calculation of the concentration ([NO3]fit) and isotopic signature of nitrate

(615NOi 1ni) produced via nitrification in the groundwater parcel between recharge

and sampling using the Nitrification Model (Table 3.2) and the Rayleigh Product

Formation Model (Table 3.3);

(4) Adjustment of the isotopic signature of the source nitratq to reflect the effects of

nitrification ( 15 NOiadj; 'Apparent 615NO1' Model, Table 3.4); and,

(5) Use of measured isotopic ratios (&''NOmeas) and nitrate concentrations

([NO3i]mea,) at each well port, to calculate the concentration of nitrate denitrified

([NO3idAt) and the average rate of denitrification over the length of the

groundwater flowpath (dNO3/dt; Denitrification Model, Table 3.5).
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Figure 3.3. Stable isotopic method for calculating average denitrification rate between recharge
and point of sampling for each water sample collected at Crane Wildlife Management Area.
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The assumptions and parameters used in each step are compiled in Tables 3.1 - 3.5, and

discussed in more detail below.

6.1. Steady State Conditions

Our calculations assume that the groundwater system is at steady state. At both

the Crane Wildlife and South Cape Beach sites, temporal variability in groundwater

chemistry (dissolved 02, DOC, NH4+, and N0 3 concentrations) over 2 to 8 sampling

dates between March 1998 and April 1999 was minimal (Fig. 3.4 and Table 3.6),

supporting this assumption.

6.2. Estimating Groundwater Age (t)

Groundwater age (t) at each of the well ports was estimgted using a model that

describes distribution of travel times in an unconfined aquifer in which recharge is

spatially uniform (Vogel 1967, Fig. 3.3 (1)& Table 3.1). In this model,

(4) t = (aH/W)* In (H /h)

where t = time since recharge to the water table in years; a = porosity; H = total depth of

aquifer in meters; W= recharge rate in meters per year; and h = height over bottom of

aquifer in meters. Solomon et al. (1995) used tritium and helium isotope analyses at the

nearby Massachusetts Military Reservation (Falmouth, MA) to confirm that in this

aquifer, measured vertical groundwater age profiles agree well with ages modeled using

the Vogel equation.
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Table 3.1. Vogel Groundwater Age Model: Quantities, estimation methods, and values used.

Model equation: t = (aH/W) * In (H /h).
Solve for: t.

Input vs. Means of Calculating and/or Value Used
Quantity Description Output Estimating in/Produced by Model

t Groundwater age (time since recharge, y) Output 0.1 to 7.0 yars
a Aquifer porosity Input Literature (Leblanc 1991) 0.39
H Total depth of aquifer (m) Input Literature (Barlow & Hess 1993) 33 m

W Groundwater recharge rate (m y-1 input Literature (Barlow & Hess 1993, .53 my'
LeBlanc 1984)

z Depth of sampling port below water table (m) Input Measured at each well port 0.2 to 9.7 m
h Height of sampling point over bottom of aquifer (H Input Calculated (H - z) 23.3 to 33.1 m



Table 3.2. Nitrification Model: Quantities, estimation methods, and values used.

Model equations: 5 1NH ,. =. 3'NH4 ource + S * In ([NH4+]. / [H4],);
[NO3],i = [NH4*]m,= - [H4]m,; and

Nitrification rate = ([NO3 ],) / t;

Solve for: [NH4],., [NO31,.t and Nitrification rate.

Quantity Description nput vs. Means of Calculating and/or Estimating Value Used in/Produced by ModelOutput

Soil: Measured in upper well ports Soil: +1.6 %.
( 4 N oH 6urc '-1 N of NH4 at the water table Input Fertilizer: Literature (Hubner 1986, Kendall & Fertilizer: -1.9 %0

McDonnell 1998)

[NH]. NW concentration at the water table output Soil: .04 to 4.1 sM
Fertilizer: .01 to 2.4 pM

15 "1 + 4 me, J- 'NH + 4 measured at each well port Input Measured at each well port Soil: -11.2 to +10.0 %o
Fertilizer: + 5.9 to +14.9 %o

[NH4 ]meas NH4 concentration at each well port Input Measured at each well port Soil: <.01 to 2.9 FM
Fertilizer: <.01 to 1.8 pM

ni Enrichment factor for nitrification reaction Input Literature (Kendall & McDonnell 1998) -21 %o

[NO 31i Quantity of nitrate produced via nitrification Output Soil: 0 to 1.2 pM
Fertilizer: 0 to 0.8 pM

t Groundwater age (time since recharge) Input Vogel model (Table 1) 0.1 to 7.0 years

Nitrification rate Average rate of nitrification over flow path Output Soil: mean= 1.0 x 10-4 sM 'h
Fertilizer: mean = 5.6 x 10" pM h"'



Table 3.3. Rayleigh Product Formation Model: Quantities, estimation methods, and values used.

Model equation: 15N0 3- nit = 8 1 NI mew - nit* [f * Inf / (1 -f)];

f = ([NIwi] - [N03-1n)/[N 1==;

Solve for: 5'N03it.

Quantity Description Input vs. Means of Calculating and/or Value Used in/Produced by
Output Estimating Model

6' 5NO3,- , 3'-N of NO3 produced via nitrification Output Soil: -15.6 to -21.%Fertilizer: -15.2 to21.6 %.

5,NH4 + m m NH 4
4 measured at each well port Input Measured at each well port Soil: -11.2 to +10.0 %.

Fertilizer: + 5.9 to + 14.9 %a

8 Enrichment factor for nitrification reaction Input Literature (Kendall & McDonnell 1998) -21 %o

Soil: 0.71 to 0.90
f Unreacted fraction of substrate Input Calculated Fertilizer: 0.46 to 0.98



Table 3.4. 'Apparentl 5 0 3' Model: Quantities, estimation methods, and values used.

Model equations: 8sN0 3 adi * [NO 3] ai = 8"N0 3 source

[NO 3] adi = [N 3] source + [NO 3] nit;

Solve for:

* [NO3] s. + 8' 5N0 3nit * [N03] nit;

5 N0 3 ad*

Quantity Description Input vs. Means of Calculating and/or Estimating Value Used in/Produced by
Output Model

5 -NO o "N of N0 3~ at the water Input Soil: Measured in upper well ports Soil: +3.49%o5Ns rce table Fertilizer: Literature (Wells & Krothe 1989) Fertilizer: -3.2 %o
Soil: Estimated from lysimeter flux Soil: 1.4 pM

[NO3 ]0 NO3~ concentration at the Input measurements (Seely 1997)
water table Fertilizer: Literature (Valiela et al. 2000, Fertilizer: 100 PM

Cohen et al. 1990)

6 'NO 515N of N0 3 produced via Input Rayleigh Product Model (Table 3) Soil: -15.6 to -21.3 %o
nitrification Fertilizer: -15.2 to 21.6 %o

[NO 3]t Quantity of nitrate Soil: 0 to 1.2 pM
produced via nitrification Input Nitrification Model (Table 2) Fertilizer: 0 to 0.8 pM

'5 NO 3  
5Nof N0 3~just below Output Soil: -1.8%o

water table, adjusted for Fertilizer: -3.3 to -3.1 %oUoncentrauon INU3 Just Assumed [NO3]nt << [N 0 3]aj; Soil: 1.4 pM
[N03]ad below water table, Input

therefore, [N03]adi ~ [N03".m Fertilizer: 100 PM



Table 3.5. Denitrification Model: Quantities, estimation methods, and values used.

Model equations: 6 15N03,,,,, = (5'5NO3 j + ,dent * In ([NO 3]1", / [NO3]ad);

[NO31den= [N) 3]ad. - [NO 3 meas; and
Denitrification rate= [NO3]d / t;

[NO3a4j, [NO 3 ]o, and Denitrification rate.

Quantity Input vs. en Value Used in/Produced byQuantity Description Input' Means of Calculating and/or Estimating ModeloutputMoe

6 1 5No3 ,, 55of N0 3 just below water Input 'Apparent 8'5N0 3 ' Model (Table 4) Fril:
table, adjusted for nitrification Fertilizer: -3.3 to -3.1 %9

[NO]d Concentration of N0 3~just below outut Assumed [NO 3 ,k << [NO 3 adj; Soil: 1.4 pM
3 water table, adjusted for therefore, [NO 3]1 ~ [NO31.m) Fertilizer: 100 PM

S lNO3 W 6 "NO3 measured at each well Inpu Mes h well h well port Soil: -2.2 to +4.6 %o
, ort port Fertilizer: +0.2 to +6.0 %o

[NO]mon N0 3 concentration measured at Input Measured at each well port Soil: 0.2 to 1.4 sM
each well port Fertilizer: 1.6 to 68.4 pM

Enrichment factor for Literature (Bates & Spalding 1998, Klein &
'"t denitification reaction Input Kaplan 1975, Mariotti et al. 1981 and 1988, -14%e

Parrott 1994, Smith et al. 1991)

[N031dei Quantity of nitrate denitrified Output Nitrification Model (Table 2) Soil: 0 to 1.2 pM
Fertilizer: 0 to 0.8 PM

t Groundwater age (time since Input (Vogel) Vogel Model (Table 1) 0.1 to 7.0 years

Soil: 0 to 1.2 x 10 4 PM h
Denitrification Average rate of denitrification output Fertilizer: 2.3xl0'to

rate over flow path 2.1x10 3 pmv

Solve for:



Figure 3.4. Temporal variability in groundwater chemistry at Crane Wildlife Management Area.
Mean concentrations of dissolved oxygen, DOC, ammonium, and nitrate, measured on 2 to 8
sampling dates between March 1998 and April 1999, are plotted against depth below the water
table (D w). Standard error bars are shown.
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Table 3.6. Comparison of spatial and temporal variability in groundwater chemistry at
South Cape Beach. Coefficient of variation is shown for measurements of dissolved
oxygen, dissolved organic carbon (DOC), ammonium, nitrate and 61 NO3 at 10 to 12
sampling stations located around the perimeter of Sage Lot Pond near South Cape Beach
both on one sampling date (spatial variability), and for one sampling station over 2 to 8
sampling dates (temporal variability).

Spatial Variabity Temporal Variability

Measurement MeanCoefficient of Number of Coefficit Number of
Mean Variation Sampling Mean Variation Sampling

Locations Dates

Dissolved 02 (mg F'y 6.74 46% 11 3.28 53% 8
DOC (mg [') 6.85 76% 12 20.90 9% 5
Ammonium (pM) 1.33 114% 10 5.94 56% 6
Nitrate (pM) 0.51 133% 11 0.33 56% 6
615NO -(%.) -1.82 145% 11 -2.61 60% 2
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6.3. Rayleigh Parameters and Assumptions

To use the Rayleigh equation to evaluate nitrification and denitrification in the

saturated zone, it was necessary to make several simplifying assumptions about nitrogen

transformations in the various subsurface compartments (soil, vadose zone, and

groundwater). To estimate initial concentrations of ammonium and nitrate (Co) from

measured downgradient concentrations (C) and 85N values (s), we estimated the 51N

value of the source ammonium and nitrate (s,o) at the water table (Fig. 3.3(2)). We

recognized that the pathways by which ammonium and nitrate are derived from fertilizer

are likely to differ from those by which inorganic N is derived from soil, resulting in

different 5 5N signals at the water table (515NH14wurc and 5"NO 3sw=) for the two

different sources (fertilizer and soil organic N, Figs. 3.5-3.7, Tables 3.2 & 3.4). It was

also necessary to estimate the isotopic enrichment factor for both the nitrification (Ct,

Table 3.2) and denitrification reactions (ed.nit, Table 3.5).

We assumed that nitrate generated in soils or from fertilizer was transported

through the vadose zone by recharge with no fractionation in the unsaturated zone. This

assumption is consistent with work by Fogg et al. (1998) demonstrating that the 6'51 N

"fingerprint" of nitrate did not change significantly during N0 3 transport to groundwater

through thick vadose zones (>12 m). We also neglected fractionation in N isotopes in the

saturated zone by mechanisms other than denitrification and nitrification (e.g.,

mineralization, sorption/desorption, etc.). Mineralization usually causes only a small

fractionation (+-1/oo) between soil organic matter and soil ammonium (Kendall and
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Figure 3.5. Pathways by which fertilizer-derived nitrate and ammonium at Crane Wildlife
Management Area are delivered to the water table. Fractionations associated with N

transformations, and the values used for 6 15 N at the water table (6 I NO3 - and

6 1"NH4*ourc) and for 8 5N adjusted for nitrification near the water table (81 NOiad)

are shown.
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Figure 3.6. Pathways by which soil-derived nitrate and ammonium at Crane Wildlife
Management Area are delivered to the water table. Fractionations associated with N

transformations, and the values used for 6 " N at the water table (5 "NO3 ,so, and

5"N1H 4 .,) and for S"N adjusted for nitrification near the water table (85NO 3 4)

are shown.
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Figure 3.7. Pathways by which soil-derived nitrate and ammonium at South Cape
Beach are delivered to the water table. Fractionations associated with N
transformations, and the values used for 3 1 5N at the water table (3 5'NO s3ource and

3'5 NH4 ,,,.) and for 8"N adjusted for nitrification near the water table (e5" 5NOf3 -)
are shown.
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McDonnell 1998). Sorption/desorption can cause +1 to +8 6o isotope fractionations as a

result of isotope exchange on the charged surfaces of clays and other materials.

However, the majority of ammonium sorption is likely to have occurred above the water

table in the soil organic horizons, with little sorption to the qpartz sand particles that

comprise the bulk of the aquifer matrix. There is little evidence for nitrate sorption in

soils (Kendall and McDonnell 1998). Thus, mineralization an4 sorption/desorption are

likely to exert minor influences of isotopic signatures in the saturated zone.

6.3.1. Soil-Derived 6l'N Source Signatures at Crane Wildlife Management Area

To estimate the 65N values for nitrate (PY5NOisource) and ammonium

(65NH4'source) at the water table, we used a linear regression through a plot of measured

6"N values versus depth below water table (D) for those samples at Crane Wildlife in

closest proximity to the water table (4 samples; Fig. 3.8). While it would have been

preferable to use more than four data points to estimate the source '5Nvalues, we did not

have additional data from which to do so. In addition, the appgrent inverse relationship

in the values of 615NOI and c5JNH4+ in the groundwater profiles (Fig. 3.11) suggests a

coupling of these signals due to fractionating reactions (i.e., nitrification and

denitrification) as the water mass ages. Therefore, it seemed most reasonable to use only

the youngest samples (those impacted the least by fractionating reactions) in our

estimation of 615N values at the water table. Using these linear regressions, we

extrapolated the 6' 5N values for ammonium and nitrate at the water table (D. = 0 m), and

used these values to represent the isotopic signature of the source ammonium

(6'5NH4+souc,= + 1.6 o) and source nitrate (JNO 3 source + 3.4 %oo).
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Figure 3.8. Estimation of 8 1 NO3  (top panel) and 8 1 NH4 + + (bottom panel) values

for soil-derived N at Crane Wildlife Management Area. Measured & 15N values are plotted against

depth below the water table (D ,) for samples from the four shallowest well ports at the site. The

y-intercept of a linear regression through the points provides an estimate of the 3 " N value at the

water table (Dw = 0; 61 NOqs =+ 3.4 % H; H surc + 1.6 %o). Dashed lines show

linear regressions for individual wells (F605 and F606).
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Our (5 N.. . values are consistent with what we might expect to find for

ammonium and nitrate derived from soil, which has '5N values ranging between - 10

and + 1596o, with the majority of soils falling between + 2 and + 5%o (Kendall and

McDonnell 1998). Ammonium derives from soil organic N via ammonification with

minimal fractionation (+ or - 1 %o, Kendall & McDonnell 1998), producing ammonium

with 6' 5N values similar to that of soil organic nitrogen (Koba et al. 1998; Fig. 3.6 a & b,

and 3.7 a & b). Sorption/desorption of ammonium on the charged surfaces of clays and

other material, and other retardation processes, can decrease the 6I5N value of the more

"mobile" ammonium (Delwiche & Stein 1970, Kendall & McDonnell 1998, Hubner

1986). The 65N value we estimated for ammonium at the water table ('NH4+ source- +

1.6 %o) is consistent with ammonification of soil organic N (+ 2 tp + 5 %o; mean ~ 3.5 %o)

followed by slight fractionation during transport through the soil profile and vadose zone

(-1.9 %o).

The 6' 5N value that we estimated for nitrate at the water table (P'NOisourc, +

3.4 %o) is consistent with the literature; measurements of.6'sN of soil water nitrate

derived from soil organic N range from about -10 to +12 %o, wvith mean values ranging

from -3 to +5 %o (Fogg et al. 1998). Further, since fractionation during nitrification is

minimal in N-limited systems (Kendall and McDonnell 1998), we expect that nitrate

produced via nitrification of soil-derived ammonium, with no further fractionation during

transport through the vadose zone, would result in 6'5N of nitrate at the water table

similar to that of soil organic N (- 3.5 %o). In our system, fraQtionation may have been

on the order of -0.1 %o.
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6-3.2. Fertilizer-Derived Y5N-Ammonium Source Signature at Crane Wildlife

Management Area

Fertilizer containing nitrogen (N), phosphorus (P), and potassium (K) at a ratio of

23:3:3 was historically applied to the upgradient golf course (John Callahan, manager,

Falcon Golf Course, personal communication). Discussions with the fertilizer

manufacturer led us to believe that the N content of this particular fertilizer would have

been 0.5% ammonia, 15.6% urea nitrogen, 12.4% water soluble nitrogen

(methylenediurea and dimethylenetriurea nitrogen), and 0.5% water insoluble nitrogen.

Hubner (1986) compiled 6 5N values for numerous fertilizers and reported that the

mean 65N was - 0.91 ± 1.88 %o for ammonium in 39 fertilizer samples, and + 0.2 ± 1.27

%o for urea in 8 fertilizer samples. The fertilizer applied to the golf course was comprised

primarily of organic forms of nitrogen (-98%). If we assume that ammonification of

organic fertilizer N proceeds with essentially zero fractionation (+- 1%o, Kendall &

McDonnell 1998) to produce ammonium with the same 6'"N value as urea (+0.2 %o), the

bulk signal of ammonium derived from this fertilizer would be +0.2 % (2% from

ammonium fertilizer, 98% from urea; Fig. 3.5 b). Assuming that ammonia from fertilizer

undergoes fractionation due to sorption to soils and in the vadose zone to the same degree

as we hypothesize for soil-derived ammonium (-1.9 %o), we calculated that the 515Nvalue

of ammonium at the water table would be -1.7 96o, which we assigned as the source

signature (Fig. 3.5 e).
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6.3.3. Fertilizer-Derived c5JN-Nitrate Source Signature at Crane Wildlife Management

Area

We assumed that after application, fertilizer ammonium and urea compounds

undergo relatively complete ammonification and nitrification within the soil horizons,

with slight fractionation, and that the nitrate produced is largely leached through the

vadose zone to the water table during recharge, with no further transformations occurring

in the vadose zone. This would result in nitrate at the water table bearing a 615N

signature only slightly more negative than that of the original fertilizer ammonium (+0.2

%o, Fig. 3.5 b) and urea. This is an important distinction, since the isotopic enrichment

factor (c) for nitrification is quite large (-12 and -29 %o, Kendall and McDonnell 1998),

and incomplete nitrification would results in significant fractionation between the

ammonium reactant and the nitrate product.

An assumption of fairly complete nitrification is consistent with work by Wells &

Krothe (1989) who measured 6' 5N values and leachable nitrate and ammonium

concentrations in soil samples beneath several fertilized fields. They demonstrated that

ammonium concentrations in the soil, in all but one case, were below detection limits,

and that nitrate had low 6"SN values (averaging -3.2 %o) reflective of the original

fertilizer. From this evidence, they concluded that complete rgitrification of anhydrous

ammonium fertilizers had occurred with only minimal fractionation. We assumed that

the '5N of the fertilizer-derived nitrate at the water table would be similar to that

measured by Wells & Krothe (1989), or -3.2 %o (Fig. 3.5 c), consistent with the range of

5N values reported in the literature for fertilizer (-8 to +6.2 96o, Freyer and Aly 1974,
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Kohl et al. 1971, Kreitler 1977, Mariotti and Letolle 1977), and suggesting limited

depletion (-3.4 %o) relative to the fertilizer anmonium (+0.2 %). A greater degree of

fractionation during nitrification of fertilizer-derived N (-3.4 96o) than during nitrification

of soil-derived N (-0.1 %o) is expected due to the higher N concentrations associated with

fertilizer, which promote fractionation (Kendall and McDonnell 1998).

6.3.4. Soil-Derived 6 1 N Source Signatures at South Cape Beach

A comparison of frequency plots of the 6I"N value of nitrate measured at South

Cape Beach and at Crane Wildlife (Fig. 3.9) suggests that there s a significant difference

in the distributions of the 6" 5N values at the two sites. The central tendency of the 6"'5N

values at South Cape Beach has been shifted by about -4 %o relative to: those at Crane

Wildlife, such that the modal 5"NO category at South Cape Beach (-4 to -2 %o) is

approximately 4 %o lighter than the modal category (0 to + 2 %o) at Crane Wildlife. A

similar shift is observed in the means (+2.9 96o and-3.0 % at Crane Wildlife and South

Cape Beach, respectively). We presume that at South Cape Beach, nitrification in the

unsaturated zone was less complete than at Crane Wildlife. At Crane Wildlife, the soil

was significantly separated from the groundwater (- 5 m), resulting in longer travel times

for water recharging through the forest soils to the underlying groundwater. In contrast,

the vadose zone at South Cape Beach was shallow (< 1 m), providing only minimal

separation between the mineral soil, where ammonium is produced, and the groundwater.

The shorter hydrologic flowpaths at South Cape Beach may havp provided less time for

nitrification to occur in the unsaturated zone. Less complete nitrification would result in

greater fractionation between the soil-derived ammonium and the nitrate product; thus the
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Figure 3.9. Frequency plots of measured 6 15NO - at Crane Wildlife Management Area and South Cape

Beach. The modal category at South Cape Beach (-4 to -2 %o) is about 4 %o lower than at Crane Wildlife

Management Area (0 to +2 %o).
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groundwater nitrate at South Cape Beach would bear a lower 15NO1 value than at Crane

Wildlife (UN5s 7 C.. = + 3.4 %e), where longer flowpaths through the unasturated zone

may have allowed for more complete nitrification.

This hypothesis is supported by our measurements of inorganic N at both sites.

At South Cape Beach, ammonium made up a much larger fraction, on average, of the

total inorganic nitrogen (NH 4 + N0 3 -, 57%), than at Crane Wildlife (13 %). Assuming

that nitrate derives primarily from nitrification of ammoniunr, these data suggest that

nitrification at South Cape Beach is less complete than at Crane Wildlife.

Because we did not measure Y 3'NH4 at South Cape Beach, we could not directly

correct the b"5NOWUWCB value to reflect the effects of nitrification taking place beneath the

water table. Instead, we assumed that the lowest 615N value measured in our shallow

groundwater samples (- 4.9 %o) was reflective of the effects on nitrification on the

isotopic signature of the source nitrate, and assigned this value to 651 NOadj. This value

is 3.2 %o lower than the adjusted source value calculated for Crarle Wildlife (-1.7 %o; see

Results), consistent with less complete nitrification at South Cape Beach than at Crane

Wildlife. Use of our lowest measured 6"'N value implies that no denitrification has

occurred in that particular water parcel (since d'5NOjma, = 6 1 5NOjadj) In reality, this

may be a conservative estimate of the impacts of nitrification, since denitrification may

have increased 6' 5N from some lower value to that which we measured (- 4.9 %o). If the

impacts of nitrification are, in fact, greater than what we estimate, then our calculated
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denitrification rates for South Cape Beach represent a conservative estimate of N

reduction rates at this site.

6.3.5. Isotopic Enrichment Factor for Nitrification (Ei)

Isotopic fractionation during nitrification results in isotopic enrichment (8,i) of

residual ammonium between -12 and -29 %6o (Kendall and McDonnell 1998). We used

the mean of this range, or -21 96o, as e for this analysis (Table 3.2).

6.3.6. Isotopic Enrichment Factor for Denitrification (Edit)

In the literature, values of de,,,t ranged from -4.7 96o in the Chalk aquifer in France

to -30 %o in an aquifer in the Kalahari (Vogel et al., 1981; Heaton, 1986), to as large as -

40 %o in the marine environment (Cline and Kaplan 1975). Enrichment factors measured

in groundwater in the sewage plume at the Massachusetts Military Reservation (MMR)

on Cape Cod averaged -14 %oo (Smith et al. 1991). We chose to use -14 %6o as .6 denit for

our model, since this value was derived from the same aquifer system (Table 3.5) and

falls in the midrange of the literature values.

7. Results and Discussion

7.1. Crane Wildlife Management Area

7.1.1. Geochemistry

Figures 3.10 and 3.11 shows depth profiles of dissolved oxygen (3.1 Oa), dissolved

organic carbon (3.1 Ob), ammonium (3. lc), and nitrate (3.11 a), as well as 15 1_NO3.,a, and

65NHmeas for fertilizer-derived N (>1.5 pM N0 3 ; (3.11 .b)) and soil-derived N (<1.5
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Figure 3.10. Profiles of dissolved oxygen, DOC, and ammonium with depth below

groundwater (D w) at Crane Wildlife Management Area. Concentrations measured in
wells F606 (top row), F605 (middle row), and F393 (bottom row), as sampled in July 1998,
are shown.
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Figure 3.11. Profiles of nitrate and J SN with depth below water table (D ) at Crane Wildlife Management
Area. Concentrations measured at wells F606 (top row), F605 (middle row), and F393 (bottom row), as sampled
in July 1998, are shown.
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JM N0 3 ~; (3.11.c)) measured for the three Crane Wildlife wells on one sampling date.

These measurements are consistent with measurements made on several other sampling

dates (Fig. 3.4).

Groundwater was oxygenated at all depths (8.4 to 12.9 mg 02 1i, averaging 10.9

mg 02 1-). For the two wells with ports near the surface of the water table (F605 and

F606), DO decreased slightly with increasing depth below the water table, though the

regression was only significant for F606 (F = 0.009). DOC concentrations at this site

ranged from 0.1 to 1.9 mg C F and averaged 0.5 mg C ri. Ammonium concentrations

ranged from 0 to 2.9 pM and averaged 0.6 pM, consistent with calculations we made of

groundwater ammonium concentration at the water table (3.2 pM) using estimates of the

ammonium flux from soil to groundwater at three similarly forested sites within the

Waquoit Bay watershed (Seely 1997).

Nitrate concentrations were low (<1.5 pM) in portions of the profile, suggestive

of low-level soil-derived N0 3~emanating from forested cover. This concentration range

is consistent with estimates of groundwater nitrate concentrations (0 to 2.7 PM) that we

made from nitrate flux measurements by Seely (1997) beneath forested areas in the

Waquoit Bay watershed. The nitrate profiles also show several well-defined peaks, with

concentrations much greater than would be expected if soil leaching were the only

source. We suspected that the peaks of up to 68 pM N03- observed in the profiles for

F606 and F605 derive from an additional (presumably fertilizer) nitrate source (> 1.5 pM
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N0 3 ~). 6 1 5N of nitrate ranged from -2.2 to + 6.0 96o, and averaged + 2.1 %o; 6'sNof

ammonium ranged from -11.2 to + 15 %o, and averaged + 3.7 %o (Fig. 3.11 b & c).

We back-calculated the flowpaths between each well port and its upgradient

recharge location, and examined the land use at each recharge point. We first estimated

groundwater age using the Vogel (1967) model (Eq. 4 & Table 3.1), assuming that the

thickness of the aquifer, H, was the distance between the water table and the bottom of

the uppermost, highly conductive, medium- to fine-sand strata. Using geologic cross-

sections for this area of the Cape (Masterson et al. 1997), we estimated that this layer was

approximately 60 m thick in the vicinity of our site. Since groundwater flow is almost

entirely in the horizontal direction within this aquifer (LeBlanc et al. 1991), we next

estimated the travel distance between the sampling port and the point of recharge for each

water mass by multiplying groundwater age at that port by mean groundwater velocity

(0.4 m per day, LeBlanc et al. 1991). We then backtracked each water mass the

calculated travel distance upgradient (Table 3.7) along south-southwest trending

flowpaths modeled by the US Geological Survey using MODFLOW (Masterson et al.

1997) to the appropriate recharge points, and located these points on a USGS topographic

map. Figure 3.12 is a planar view of the recharge zones calculated in Table 3.7.

Our backcast calculations suggest that the land use at the recharge points for the

three wells is consistent with our hypothesis that the high measured nitrate concentrations

derived from fertilizer, and the low concentrations derived from soil. For example, the

water mass containing the uppermost nitrate concentration peak in well F605 (1 - 4.2 m
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Table 3.7. Groundwater age and horizontal distance to upgradient recharge point for Crane
Wfldbfe Management Area wells. Groundwater age was calculated using the Vogel model
(Eq. 4, Vogel 1967); distance to recharge point was calculated assuming that horizontal
groundwater flow velocity is 0.39 m day-' (Leblanc 1991).

Well- Port Number Depth below Groundwater Distance to
Water Table Age (yrs) Recharge

(M) Point (km)

F393-1
F393-2
F393-3
F393-4
F393-5
F393-6
F393-7
F393-8
F393-9

F605-2
F605-3
F605-4
F605-5
F605-6
F605-7
F605-8
F605-9

F605-1 0
F605-11
F605-12
F605-13
F605-14
F605-15

F606-2
F606-3
F606-4
F606-5
F606-6
F608-7
F606-8
F606-9

F606-1 0
F606-11
F606-12
F606-13
F606-14
F606-15

5.52
5.83
6.13
6.44
6.74
7.05
7.35
7.6
7.96

0.18
0.63
1.09
1.55
2.01
2.46
2.92
3.38
4.14
4.90
5.68
6.43
7.95
9.47

0.36
0.82
1.27
1.73
2.19
2.65
3.10
3.56
4.32
5.08
5.85
6.61
8.13
9.66

4.03
4.28
4.53
4.78
5.03
5.30
5.55
5.82
6.08

0.12
0.43
0.74
1.05
1.36
1.68
2.00
2.32
2.86
3.41
3.97
4.54
5.69
6.89

0.24
0.55
0.86
1.17
1.49
1.81
2.13
2.45
3.00
3.55
4.11
4.68
5.84
7.03

0.57
0.61
0.64
0.68
0.72
0.75
0.79
0.83
0.87

0.02
0.06
0.10
0.15
0.19
0.24
0.28
0.33
0.41
0.49
0.57
0.65
0.81
0.98

0.03
0.08
0.12
0.17
0.21
0.26
0.30
0.35
0.43
0.51
0.58
0.67
0.83
1.00



Figure 3.12. Recharge zones for 3 wells at Crane Wildlife Management Area. Distance to
upgradient recharge point was calculated by determining groundwater age at each well port
using the Vogel model (1967), multiplying age by groundwater flow velocity (-0.4 m day-;
Leblanc 1991), and backtracking the resulting flow distance upgradient in the direction of
groundwater flow (MODFLOW (Masterson et al. 1997) to the recharge point.
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Figure 3.13. Schematic of multi-level sampling (MLS) well transect parallel to groundwater flow fines at Crane Wildlife
Management Area. Sources of nitrate and inferred plume configurations are shown relative to depth below water table (D

and well and sampling port locations.
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below the water table) was 0.7 to 2.9 years old and originated 0.1 to 0.4 km upgradient

(Table 3.7). This recharge point coincides with an abandoned fiqld (Figs. 3.12 & 3.13),

in the midst of primarily forested cover, which is managed by the Massachusetts Division

of Fish and Wildlife to provide habitat for pheasant, bobwhites, and rabbits. Land

management practices here have included plowing and occasional top dressing with

fertilizer and ground limestone (Richard Turner, Massachusetts Division of Fish &

Wildlife, personal communication), which is likely to be the source of the nitrate we

measured downgradient.

The water mass containing the one N03 peak in the upgr;dient well (F606, 5.1 -

9.7 m below the water table) and the lower nitrate concentration peak at well F605 (5.7 -

9.5 m below the water table) was estimated to be 3.6 - 7.0 years old at F606 and 4.0 - 6.9

years old at F605 (Table 3.7). The recharge point for this parcel of water was calculated

to be 0.5 to 1.0 km upstream of F606, corresponding to the position of the Falcon Golf

Course (Figs. 3.12 & 3.13), where 23:3:3 (N:P:K) had been applied during the time

period (1991-2) when recharge of the water we sampled would have occurred. The

recharge points for most other well ports mapped to areas with forested cover. The

schematic in Figure 3.13 shows inferred fertilizer plume configurations relative to depth

below water table (Dw), and well and sampling port locations.

Before estimating denitrification rates for each groundwater sample, we

segregated the samples by nitrate concentration into those containing fertilizer-derived

nitrate (>1.5 pM) and those containing soil-derived nitrate (<1.5 pM), consistent with
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measurements of nitrate fluxes from forests (Seely 1997) and with our measured

groundwater nitrate profles (Fig. 3.11 a). This was necessary because the Q1 5N source

values for soil-derived ammonium (e5'NH4 ,rouc,; Table 3.2) andnitrate (JSNOVNrc ;

Table 3.4) differ from those of fertilizer-derived ammonium and nitrate. In segregating

the data in this manner, we implicitly assumed that the nitrate concentration gradients

observed in the groundwater nitrate profiles (from the edges of thp fertilizer plumes to the

concentration peaks) were due to concentration variations at the source rather than to

mixing via diffusion between two nitrate end-members, fertilizerderived nitrate and soil-

derived nitrate. The implications of this assumption for the calculated denitrification

rates are discussed further in section 7.1.4. Denitrification.

7.1.2. Nitrification

Our model assumes that nitrification of ammonium supplied to the water table

([NH4 sourc,) occurs fairly rapidly, and due- to mixing, impacts the 6I5N signal of the pool

of nitrate supplied to the water table (5'-5NOisoMrce). We assessed the effect of nitrification

(Nitrification Model, Table 3.2 & Fig. 3.3(3)) in the following manner. For each

groundwater sample, we measured the isotopic signature (5 5NHs4',,,as) and concentration

([NH4*]meas) of ammonium. Using the Rayleigh equation (Eq. 1; Table 3.2), we solved

for initial ammonium concentration (Co in Eq. 1; INH4+]wur.in Table 3.2), and the mass

balance loss of NH4 between the groundwater recharge and the sampling point (Co - C

in Eq. 1; [NH4]stin Table 3.2). This difference represented the total mass of N nitrified

in each groundwater sample since recharge. We estimated an average, integrated

nitrification rate (dNH4 /dt) over the life of each water parcel by dividing the total mass
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of N nitrified ([NO 3 it =[NH4 ']i 1) by groundwater age (t), calculated using the Vogel

model (Eq. 4; Table 3.1).

Total nitrate produced via nitrification averaged 0.4 pM over 1.8 years for soil-

derived N and 0.1 pM over 4.1 years for fertilizer-derived N. These rates are several

orders of magnitude less important than denitrification in terms of moles of N

transformed (see section on denitrification). Mean groundwater nitrification rate (2.1 x

105 pM hIf) was several orders of magnitude less than water column nitrification rates

measured in eutrophic lakes (D'Angelo and Reddy 1993, Gelda et sl. 2000). This is not

surprising, given that the flux of ammonium to groundwater beneath forested areas (Seely

1997) results in relatively low concentrations of ammonium at the water table surface (~

3.2 M, our calculations), which are likely to limit nitrification. In a soil-stream

interface, Hedin et al. (1998) also concluded that groundwater nitrification was either

generally less important than denitrification in defining N transformations or less

localized than denitrification.

We then assessed the 615N signature of the N03 produced by nitrification using a

version of the Rayleigh equation appropriate for product formation (Eq. 3; Rayleigh

Production Formation Model, Table 3.3 & Fig. 3.3(3)). Using an isotopic enrichment

factor (ena) of -21 %, and a cYSNH4sourc value of+ L6 %o for soil-derived N, and -1.7 %o

for fertilizer-derived N, we calculated the 615N value of the nitrate produced via

nitrification for each groundwater sample (Table 3.3). 6'YNOink values ranged from -

15.0 to -21.5 %o. We used these calculated [NO3iti and 6' 5NOini values in the
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'Apparent 8'NO3"' Mode[ (Tble 3A.4)-to adj"u the isotopic signature of the source

nitrate (PNOie.) to reflect the effects of nitriication.

7.1.3. 'Apparent 6"NOL' Model

We assumed that nitrification occurred primarily near the surface of the water

table. We used the following mass balance equations to adjust the P'NO1 signal of

nitrate near the water table (615JNOasource) to reflect nitrification of ammonium ( 1 5NOi,-,

Fig. 3.3(4) & Table 3.4):

(5) [NOij = [NOi,..e+ [No]ni

(6) (6JS NO3)aj*[ N03iaj =( 6I NOJ)orc*[ N03 m]urce + (tl NOI)nft*[ NO3i,

where [NO3 lad = the concentratim of nitrate after nitrification, [NO3 ~1,,. the

concentration of nitrate at the water table, [NO3]n1 t= the concentration of nitrate

produced in situ via nitrification, (45'5 NOi)a 4 = the isotopic value of nitrate near the

water table, adjusted for nitrification, (61 NOI)source = the isotopic value of nitrate at the

water table, and (65 5 NO). 1 i = the isotopic value of nitrate produced in situ via

nitrification.

For soil-derived N, we used the average mass ([N3~]it = 0.37 pM) and isotopic

signal of the nitrate produced via nitrification (6' NOn =-18.3 %o) as inputs to this

model. For fertilizer-derived N, we used calculated dlsNO3i-i (-16.2 to -21.6 %o) and

[NO31it (0 to 0.75 pM) for each individual sample. The Z' N0I.., value for soil-
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derived N was calculated from measured values in the uppermost well ports (+3.4 %o);

the 5JsNOime value for fertilizer-derived N was estimated from the literature (-3.2 %(),

since water table samples were not available.

Our correction resulted in a . NOiadj value for soil-derived nitrate (-1 -7 %o) that

was 5.2 %o lower than that of the 615 NOIsoure value (+3.4 %o). For fertilizer-derived

nitrate, the correction resulted in 61 NOiadj values ranging from -3.2 to -3.3 %o, only

slightly lower (- 0.1 %o) than the 5 0'JOisource value (-3.2 %o). The larger correction for

soil-derived nitrate results from the hyperbolic nature of stable isotope mixing models

(Mariotti et al. 1988, Kendall & McDonnell 1998), whereby a small increase in the

quantity of one of the mixing end-members can have a significant impact on the

measured PU NOI values. Because [NO3]3it is much larger relative to [NO3-]s}.e for

soil-derived nitrate (29 %) than for fertilizer-derived nitrate (< I%), we expect a larger

correction to the 5 NOI values for the soil-derived samples.

7.1.4. Denitrification

The 615N values of nitrate measured in our -samples increased with decreasing

nitrate concentrations (Fig. 3.14), suggesting that denitrification occurred in the

groundwater, leaving the residual nitrate enriched relative to the nitrate delivered to the

water table. We segregated these data into two populations based on N0 3 concentration:

those samples with high N03 concentrations, comprising the peaks within the depth

profiles and believed to represent water bearing N0 3 derived from fertilizer (> 1.5 pM

N0 3 ); and samples with the low concentrations of N0 3 above and below the peaks,
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Figure 3.14. b 15 N of nitrate measured at Crane Wildlife Management Area for fertilizer- and

soil-derived nitrate. 6 15 N values increase with decreasing nitrate concentration.
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presumably representing N0 3 originating from soil organic N sources (< 1.5 PM N0 3 ~),

since the isotopic signature of these two nitrate sources is different (Table 3.5).

As we did for nitrification, we used the Rayleigh equation (Eq. 1; Denitrification

Model, Table 3.5 & Fig. 3.3(5)) to solve for initial nitrate concerjtration (Co in Eq. 1, and

[NO3~]aj in Table 3.5), and for mass balance losses of nitrate between the sampling point

and the groundwater recharge point (C - Co in Eq. 1, and [NO3]dph in Table 3.5) for each

groundwater sample. In this calculation, we used the values for 6I"NOfa4 calculated

using the 'Apparent 65NOi' Model. -The calculated nitrate loss ([NO3 ]d.i) was divided

by groundwater age (t) to produce an average denitrification rate (dNOi/dt) for each

groundwater sample over the groundwater flowpath since the time of recharge.

Calculatedinitial nitrate concentrations ([NO3~)aj) for the soil-derived nitrate

samples (0.3 to 1.6 pM N0 3 ~) were consistent with calculations we made of nitrate

concentrations in groundwater beneath forest soils (0 to 2.7 pM N0 3~), using estimates of

nitrate fluxes to groundwater at three sites within the Waquoit Bay watershed (Seely

1997). Initial nitrate concentrations calculated for samples containing fertilizer-derived

nitrate (2.5 to 98.0 pM) fell within the range of nitrate concentrations measured in

groundwater beneath four Cape Cod golf courses (0 to 2,143 pM N, Cohen et al. 1990),

and were somewhat lower than our calculations for mean total nitrogen concentration

delivered to the water table from golf course turf (165 pM N, NLM, Valiela 1997).
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Average denitrification rates spanned 3 orders of magnitude (2.7 x 10' to 2.1 x

10- M N h"'), and increased with increasing initiatnitrate concentration (0.3 to 98 pM).

The data was fit with a power curve (Fig. 3.15, low DOC site, rate =. 17*iNO3701o, R2

0.76).

To address any issues of circularity associated with using several of the same

points to both parameterize the Rayleigh model (i.e., those points from which we

estimated the 515N values for ammonium (5"NH4source) and nitrate (6'-NOisource) at the

water table) and to estimate denitrification rates using the model, we removed those four

points from the data set and reexamined the results. We found that removing these four

points does not change the calculated range in denitrification rates and increases the mean

denitrification rate only slightly (3.3 x 10' PM N h1 when we exclude the points, versus

3.0 x 104 pM N h' when we include them).

In our analysis, we segregated the data into only two populations, those

containing fertilizer-derived nitrate (>1.5 M; 6"NOisourc, = -3.2 %o) and those

containing soil-derived nitrate (<1.5 M; bt5'NOisource= +3.4 %o). In doing so, we

neglected the impact of mixing between the two nitrate sources, which would result in a

range of jI"N03'source values lying between the two end-member (515NOisource values. To

assess the implications of this assumption, we used the following stable isotope mixing

equations to assign variable 5'NOisource values to the fertilizer-derived nitrate samples:
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Figure 3.15. Average denitrification rate versus initial nitrate concentration for two forested sites

(South Cape Beach and Crane Wildlife), and for a septic plume (Ch. 4).
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[NO3 In.== [NO 3 ].. + [NO 3ifit

c5"5NOi.ource * [NO 3 .1 = 6'5NOi * [NO3 l.d + [NO3 ]u

where [NO 3 ].. is the nitrate concentration measured in thq profile, [NO3J1. is the

concentration of the nitrate derived from soil, [NO] is the concentration of nitrate

derived from fertilizer, 5JNOi, is the 6' 5N value of nitrate derived from the mixture

of fertilizer and soil sources, 6SNOi,,a is the 65'5N source vaue for soil-derived nitrate

(+3.4 %o), and 6"'5NO3  is the 61"N soure value for fertilizer-derived nitrate (-3.2 90).

Recalculating the denitrification rates for the fertilizer-derived nitrate samples using the

variable J"NO .sowo, values resulted, on average, in a 25/6- reduction in the denitrification

rate. Reductions in the calculated denitrification rates were greatest (50-75%) where

nitrate concentrations were lowest (1-2 pM) and negligible (< 8 %) where nitrate

concentrations were higher (>10 pM).

Our calculated average denitrification rates are consistent with groundwater

denitrification rates estimated by Smith and Duff (1988; 1.0 x 10-6 to 1.2 x 10' pM N h71)

using an acetylene blockage assay on slurried aquifer core material obtained near

wastewater disposal beds, located approximately 1 km to the east of the Crane Wildlife

field site on the Massachusetts Military Reservation. Nitrate concentrations in the

groundwater at the locations where core material was obtained ranged from 0 - 1,760

JM; DOC concentrations were estimated to be - 12 mg C 1-, and were found to be

limiting to denitrification.
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In this aquifer, DOC concentrations in groundwater decrease with increasing

depth below the water table, with the majority of the attenuation occurring in the first

several meters beneath the water table (Pabich et al. submitted). Based on this previous

work, we hypothesized that the upper portion of the aquifer is a particularly

biogeochemically active zone. If this is the case, we would expect denitrifying activity to

be high near the water table, and decrease with increasing depth below the aquifer

surface, as groundwater ages and labile carbon and nitrate are consumed by

denitrification and other metabolic reactions. To test this hypothesis, we plotted

denitrification rate against depth below the water table for those samples containing soil-

derived nitrate. Denitrification rate indeed decreased with depth below the water table;

R2= 0.84, Fig. 3.16), so that denitrification was fastest in the youngest water and slower

in older waters.

Given the positive relationship between nitrate concentration and denitrification

rate, we investigated whether the data could be modeled using both a first order rate

approximation ([NO3imes= [NO3]adj*e-) and a saturating kinetics expression (d[NOI

dt= (Vmax*([NO3aj(K + [NO-] ad#) where Vma is the maximum reaction velocity and

Km is the half-saturation constant) with respect to nistrate. For the first order

approximation, we calculatedafirst order rate constant (k =[lfl([NO3iadj/[NO3imeas) / t ],

or k = [ln (C/Co)]/t from Rayleigh equation) for each individual groundwater sample, and

averaged the individual values to produce a first order rate congtant for the data set as a

whole (k = 2.9 x 10-5 h or ,26-y -). Calculating a numerical average of the individual

k's provided a better fit to the data than did a graphical estimatio of k (i.e., the slope of a
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Figure 3.16. Denitrification rates decrease with increasing depth below the water table

(D Wt) for soil-derived nitrate samples at Crane Wildlife Management Area (R 2= 0.84).
Axes are logarithmic.
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plot of ln([NO ]m./[NO 3']jd) vs. time represents k; data not shown). The half-life for

nitrate (ty2) given this first order rate constant, was calculatqd to be 2.7 years. To

parameterize the saturating kinetic expression, we used a Lineweaver-Burke plot (Fig.

3.17; 1/(d[N03 ]/dt) vs. 1/[NOiaj) to calculate the half-saturation constant (Km= 112

pM) and the maximum reaction velocity (Vm = 1.1 x I0- pM N h-1).

To test how well each of these three approximations (average rate over flowpath,

first order rate, and saturating kinetics) represented our data, we ran simulations to

estimate the total N lost in each groundwater sample over the flowpath from recharge to

the downgradient well port. For the first order and saturating kinetics simulations, we

discretized each groundwater flowpath into 4 time steps. FPr the first time step, we

estimated the denitrification rate based on the initial nitrate concentration ([NO 3 ~]-j),

calculated the total mass of N lost to denitrification during thai time band ([NOi]it),

and subtracted the two values ([NO3iaIj - [NO3]dent) to estimate the final nitrate

concentration at the end of the time band. In each sequential tjme band we calculated a

new denitrification rate, N loss, and final N concentration, based on the mass of nitrate

remaining from the previous time band. For the simulation using the average

denitrification rate, we estimated an average denitrification rate over the length of the

flowpath using the power curve fit (Fig. 3.15) and either the initial or the final nitrate

concentration ([NOiaj). We multiplied this denitrification rate by the total groundwater

travel time (from recharge to downgradient well port) to calculate total N lost over the

flowpath [NOfideit); we subtracted this value from the initial nitrate concentration
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Figure 3.17. Lineweaver-Burke plot using fertilizer-derived nitrate samples at Crane Wildlife to

derive saturating kinetics parameters. The half-saturation constant (Km) was estimated to be

112 pM and the maximum denitrification rate (Vx) was estimated to be 1.1 x 10-3 i'.
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([NO37}4). These simulations provided approximations of the nitrate concentration

expected at each downgradient well port ([N0 3]mci).

For each simulation, we plotted expected nitrate concentration ([NO3~]moI)

against nitrate concentration measured at each well port ([NQ 3 ]u; Figs. 3.18-3.20).

The saturating kinetics expression provided the best approximation of measured values

(R" = 0.96; Fig. 3.20). Losses estimated using the average rate (Fig. 3.19) also closely

approximated the measured nitrate concentrations. For this analysis, we estimated the

denitrification rate using both the nitrate concentration measured at the downgradient

well port ([NO 3 ]m.; R 2 = 0.94) and the estimated initial nitrate concentration ([NO3~]4;

R2= 0.89). The first order rate expression was the least effective in predicting the

measured downgradient nitrate concentration (Fig. 3.18; R2 = 0.62). This model

substantially overestimated nitrate loss due to denitrification, especially as nitrate

concentration increased (data points below the 1:1 line), suggesting that the reaction

becomes saturated with respect to nitrate.

7.2. South Cape Beach

7.2.1. Geochemistry

Dissolved oxygen concentrations at the twelve sampling §tations near South Cape

Beach were much more variable than at Crane Wildlife, ranging from 1.6 to 10.7 mg 02 1

and averaging 6.4 mg 02 11. This-is consistent with the higher and more variable DOC

concentrations at South Cape Beach (range = 0,8 to 23.4 mg C l", mean = 7.0 mg C 1).

Differences in DOC concentrations are likely to result in differences in microbial
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Figure 3.18. Results of simulation predicting nitrate concentrations at downgradient well ports

([NO3lxe) using a first order rate expression, versus nitrate concentrations measured at those well

ports ([NO 3 i-n; R 2 = 0.62, probability << 0.001).
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Figure 3.19. Results of simulation predicting nitrate concentrations at downgradient well ports

([NO3 ]mo&) using average denitrification rates over the flowpaths (calculated from both initial and final

nitrate concentrations) versus nitrate concentrations measured at those well ports ([NO3]m;

R 2= 0.89 and 0.94, probability << 0.001).
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Figure 3.20. Results of simulation predicting nitrate concentrations at downgradient well ports

([NO]3oj&) using saturating kinetics expression with respect to nitrate versus nitrate

concentrations measured at those well ports ([NO3 ].; R 2 = 0.96; probability << 0.001).
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metabolism between the two sites; where DOC supply is high, greater microbial activity

is likely to reduce dissolved oxygen concentrations.

Nitrate concentrations at the South Cape Beach stations ranged from 0.01 to 4.0

pM, and averaged 0.6 pM, which were low relative to those at Crane Wildlife and to

other more residential areas in the Waquoit Bay watershed (up to 1000 pM; Kroeger et al.

1999, Valiela et al. 1992). Ammonium concentrations were similarly low, ranging from

0 to 3.9 pM, and averaging 0.8 pM, consistent with inputs of ammonium derived solely

from soil organic matter (Seely 1997). 6'5N of nitrate ranged from -4.9 to +4.5 %o, and

averaged -3.0 %o; the modal 31 sNO1 value (- -2 %o) was ~ 4 %o lower than at Crane

Wildlife Management Area (- +4 %o; Fig. 3.9). Like at Crane Wildlife, temporal

variability in groundwater chemistry was much less than spatial variability (Table 3.6).

7.2.2. Nitrification

Because we did not measure 6 5N of ammonium at South Cape Beach, we could

not estimate nitrification rates directly as we did at the Crane Wildlife site. Instead, we

assumed that the lowest measured 515NOi value (-4.9 %o) was representative of the

impact of nitrification on the stable isotopic signature of nitrate near the water table, and

assigned this value to 65NOiadf.

7.2.3. Denitrification

To model denitrification at South Cape Beach, we used the same enrichment

factor (6) as at Crane Wildlife (-13.9 %o), and -4.9 %6o for the source nitrate adjusted for
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nitrification (515NOa 4 ), as discussed above. Measured 65N values at South Cape Beach

were consistently lower than those at Crane Wildlife (Fig. 3.9), suggesting that loss

complete nitrification (greater fractionation) occurred at South Cape Beach. Ammonium

made up a much larger fraction, on average, of the total inorganoc nitrogen (NH4 + N03,

57%) than at Crane Wildlife (13 %), supporting the idea that nitrification was less

complete at South Cape Beach, and therefore played a more important role in

determining groundwater 5'5N signals.

Consistent with our findings at Crane Wildlife, average denitrification rates at

South Cape Beach increased with increasing initial nitrate concentration, from 9.2 x 10-9

pMNO3 h-to 7.2 x 1 0 4 pM NO3I 1 as initial nitrate inereased from 0.2 to 5.9 pM

N0 3 . However, denitrification rates at this site were higher for any given initial nitrate

concentration than in the lower DOC environment of Crane Wildlife. This is illustrated

by a power curve fit through a plot of average denitrification rgte versus initial nitrate

concentration (Fig. 3.15), where the regression slope is similar for both the high and the

low DOC populations, but the curve has been shifted such that the value of the y-

intercept is higher for the higher DOC population. This suggests that DOC concentration

is an important determinant of denitrification rate. In fact, the mean of the first order rate

constants (k = [ln([NQij].W[NO3]jm.)] t ) calculated for the individual samples at South

Cape Beach was 6 times higher (1.8 x I04 h~l or 1.5 y 1; .12,= 0.45 y)than that

calculated for the Crane Wildlife samples. This suggests that, independent of nitrate

concentration, denitrification rates are higher at the higher DOC site.
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In Chapter 4, we calculated denitrification rates in excess of dilution in a septic

system plume outfitted with 9 multilevel sampling wells along a downgradient transect.

Losses of nitrate were assessed with respect to boron, a conservative tracer; rates were

calculated for each water sample by dividing the mass of nitrate lost between the septic

system leach field and the downgradient well sampling port, by groundwater age at that

port calculated using the Vogel (1967). Denitrification rates in the septic system (0.01 to

2.23 pM N03- h-) also increased with increasing initial nitrate concentration (137 to

4,396 pM). We assumed that DOC concentrations in the septic plume were similar to

those measured in other plumes of this age (Ch. 4, - 26 mg C 1- from Robertson et al.

(1998)).

We add this data here (Fig. 3.15) to illustrate that denitrification rates, both

assessed using a different method (mass balance instead of stable isotopes), and in a very

different system (higher DOC and nitrate concentrations, and presumably a larger and

more active microbial population), follow the same general trend as observed in the

natural forested sites. The addition of the septic system data to Figure 3.15 supports the

conclusion that denitrification rates are higher for any given nitrate concentration in the

two systems with higher DOC concentrations (South Cape Beach (0.8 to 23.4 mg C F),

and the septic plume (-26 mg C I); denitrification rate = 0.82*[N0 3 ]1., R2= 0.89) than

in the system with low DOC (Crane Wildlife (<2 mg C ri); denitrification rate =

0.-17*[NO 3' 5 , Rz = 0.76). Eurther; the mean of the first order rate constants (Table 3.8)

calculated for the individual septic plume samples (k = 3.1 x 10' h7' or 2.7 y1;
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Table 3.8. First order rate constants for denitrification in groundwater at three field sites increase with increasing DOC
concentration (e.g. septic plume > South Cape Beach > Crane Wildlife). The half-life for nitrate, and the groundwater
travel distance required for nitrate to be attenuated to 1/2 its initial concentration, are shown for each site.

[DOC]- First order Half-life Travel distance
Field site [DC 11 [NO$] (pM) rate constant for nitrate, to t12

(mg) k (y -) t in (y) (m)

Crane Wildlife Management Area < 2 0 -68 0.26 2.8 409

South Cape Beach 0.8 - 23 0- 4 1.5 0.45 86

Septic system plume ~ 26 up to 4,000 2.7 0.25 37



tiI2 = 0.25 y) was 11 times- higher than at CraneWildlife (k = 2.9 x 10~' h~' or .26 y1; tm1

= 2.8 y), but only twice as high as the first order rate for South Cape Beach (k = 1.8 x 10-

h7 h' or 1.5 y7, t, = 0.45 y), presumably because the DOC concentrations in the septic

plume are similar to the high end of the range of DOC concentrations measured at South

Cape Beach (0.8 to 23.4 mg C r'), but are- significantly higher than those found at Crane

Wildlife (0.1 to 1.9 mg C r~). In Chapter 5, we pursue the idea that denitrification rates

are controlled by both nitrate and DOC concentrations by modeling denitrification rates

at the three sites using a saturating kinetics model where denitrification rate is substrate-

limited by both nitrate and DOC concentrations.

7.3. Sensitivity Analysis

To test the robustness of our model, we varied the values of the input parameters

(6i"NOcsource, (51NH4source, denit, Snit) across a range of reasonable values for each and

compared the results to those generated using the input parameters defined in this paper.

We conducted this analysis for both soil-derived nitrate (Fig. 3.21) and fertilizer-derived

nitrate (Fig. 3.22) at Crane Wildlife. For soil-derived nitratp, we varied the value of

5iNO3source across the range- of values that might reasonably be interpolated from our

measurements of 65NO3 in the near water table samples (Fig. 3.8). We used the

regression line through the two measurements in well F606 to interpolate a water table

value for c5iNOI and used this to represent the low end 6fthe range for 1 ,NOisource (+

1.9 %o); similarly, we used the regression through the measured values for F605 to

extrapolate a higher 6iSNOisource value (+ 3 .9,%). In an alternative interpretation, we

118



Figure 3.21. Results of sensitivity anaLysis of denitrification model for soil-

derived nitrate. Input parameters (6 1s NH4 + source' Y (5NO 3 + source C denit, and

c,,, were varied across a reasonable range of values; dashed lines represent the
modeled denitrification rates used in this paper.
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Figure 3.22. Results of sensitivity analysis of denitrification model for fertilizer-
derived nitrate. Input parameters ( 5 NH4 + source, 1 '5 NO + source , 6 denit, and

e6 , were varied across a reasonable range of values: dashed lines retresent the
modeled denitrification rates used in this paper.
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used an average of the two regression lines (as opposed to the regression through all four

points as used in our previous calculations) to interpolate a value for the mean water table

51NO1 (+ 2.9 %o). Since the value used in our model (+ 3.4%o) was near the high end of

the range defined by these other regressions, we tested a higher value (+ 5 %o), placing

our model value in the middle of the range used in the sensitivity analysis.

We used a similar analysis of our measured 5JNH+ values near the water table

(Fig. 3.8) to define a range of bV5NH4 M,, values for the sensitivity analysis. The

regression through the 51"NH4+ measurements for F606 gave usthe high end of the range

(+ 5.0 %o); the regression through the 1 NNJ+ measurements- for F605 produced a lower

value (+ 1.2 %o). The average of these two regressions produced an intermediate value

for & 5 NHV source (+- 3.1 %o). We rounded out the analysis by using another lower value

(-1.8 %o), again placing our model value (+ 1.6 %o) in the middle of the range used in the

sensitivity analysis.

For fertilizer-derived nitrate, we varied the value for 5"NOisource from the low

end of the range of P'Nmeasured forfertilizer reported in the literature (-8.0 %o, Freyer

and Aly 1974, Kohl et al. 1971, Kreitler 1977, Mariotti and LetQlle 1977) through +2 %o,

or 4.8 %o in either direction of our model value (-3.2 96). While fertilizer values can

range as high as + 6.2 %o (Freyer and Aly 1974, Kohl et al. 197, Kreitler 1977, Mariotti

and Letolle 1977), the fertilizer applied on Falcon golfcourse was primarily urea.

Because nitrate in the underlying groundwater was likely produced via nitrification of

urea,-a significantly positive J5NO.rc, signal is unlikely. We similarly varied the
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5 NH 4 sourc, valuefor fertilizer-derived-N through the full range reported in the literature

(-8 to + 6.2 %o), with our model value falling in between the twp end-members (-3.2 %o).

For both soil-derived and fertilizer-derived N, we varied the enrichment factors

for nitrification and denitrification (denit and Enit, respectively) across the fill range

reported in the literature, or from -5 to -40 %o for ed,,,,, and from -12 to -29 % for en,,it.

In both cases, our model value was the mean of the literature range.

The sensitivity analysis suggested that our results are highly insensitive to the

value used for cnit for both soil-derived (Fig. 3.21) and fertilizer-derived (Fig. 3.22)

nitrate,and to the value used for ('NH4 *,urce in the case of fertilizer-derived N. Mean

denitrification rate calculated for the Crane Wildlife groundwater samples changed, at

most, only 1.4 % over the range of Enwt values used in the sensitivity analysis (lower right

panels in Figs. 3.21 & 3.22). For the fertilizer-derived N samples, mean denitrification

rate changed only 3.9 %, at most, when the value of 65NH4 source was varied across the

entire of the literature range (Fig. 3.22, upper left panel).

Calculated denitrification rates were more sensitive to the values used for

t5 NH4sourc, in the case of-soil-derived N, and to the values used for 5NO3sourc, and

Edenit for both soil-derived and fertilizer-derived N. In all case , the results were within

the same order of magnitude as those used in this paper. In the case of soil-derived N,

mean denitrification rate increasing almost 3 foldwhe- the b"NH4 source value was

decreased to the lowest end of the range (-1.2 %o; Fig. 3.21, uppeT left panel). The model
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produced negative denitrification rates when the highest 5'SNH4+,mrce value was used (+

5.0 %.). Over the range of input values for 61 5NO,J.., mean denitrification rate

changed by a maximum of+ 54% for soil-derived nitrate (Fig. 3.21, upper right panel),

and + 136% for fertilizer-derived nitrate (Fig. 3.22, upper right panel), when the lowest

65"SNOs,,oce values were used (+1.9 and -8 %o, for soil- and fertilizer-derived N,

respectively).

An interesting result of the sensitivity analysis was that denitrification rates were

only somewhat sensitive to a decrease in the value of the enrichment factor for

denitrification (esd.t) from that used in our calculations, but muqh more sensitive to an

increase in ent. Mean denitrification rate decreased by 69 % when cs,.i was decreased

from -14 to -40 %o (lower left panels in Figs. 3.21 & 3.22). In contrast, mean

denitrification rate increased to a much greater extent (3.5-fold) when the value of Ed,,it

was increased from -14 to -5 %o. The sensitivity of our calculations to the enrichment

factor, particularly as ednit becomes less negative, points to the importance of

understanding what controls the degree of fractionation during denitrification, and to

what degree fractionation in groundwater is site-specific.

Researchers have observed that cenit values measured in qitu (Mariotti et al. 1988,

Smith et al. 1991) are lower than those measured in laboratory incubations (Delwiche and

Steyn 1970). Mariotti et al. (1988) suggested that groundwater denitrification may

proceed in dead-end or "cul-de-sac" pores in the aquifer, within which reduction may go

to completion with no net fractionation; diffusion of nitrate into those pores may then be
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what controls the degree of fractionation. Thus, what we measure in groundwater may be

an "apparent" enrichment factor. A similar effect might be observed where

denitrification is otherwise transport-limited (i.e., in organic clusters or sediment-water

interfaces, J.K. Bohlke, personal communication), or rate-limited at the enzymatic or

cellular level. In an aquifer system such as ours, characterized by oxygenated

groundwater and relatively low NO3 concentrations, denitrification is likely to proceed

primarily in anaerobic microsites (Koba et al. 1997, Parkin 1987, Hojberg et al. 1994)

within the aquifer matrix or within areas of restricted flow where oxygen concentrations

may be reduced and carbon substrate accumulated. The progress of the denitrification

reaction in such environments would necessarily be diffusion-limited. An interesting

question for future research is to what degree do the physical characteristics of the aquifer

system effect the measured enrichment factor (Sden,,).

8. Conclusions

Our results have important implications for interpretation of natural variability in

groundwater denitrification, and suggest that both DOC and nitrate concentrations exert

important controls on denitrification rates. First order denitrification rate constants with

respect to nitrate were highest where groundwater DOC concentrations were highest: k =

2.8 yl in the-septic plume (- 26 mg C I-), k = 1.6 y - at South Cape Beach (DOC = 0.8

to 23.4 mg C 1 ), and k = .25 y' at Crane Wildlife (0.1 to 1.9 mg C 1-), suggesting that

denitrification rates in all cases increase with increasing nitrate, and that, independent of

nitrate concentration, DOC concentrations exert a significant control on denitrification

rates. A simulation of N losses alonggroundwater flowpaths at Crane Wildlife suggests
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that a saturating kinetics expression with respect to nitrate best predicts nitrate

concentrations measured at the downgradient well ports (R2= 0.96 for [NO3 1.. Vs.

[NO3~m.). In Chapter 5, we further explore the use of a saturating kinetics expression

that incorporates both nitrate and DOC concentrations to model denitrification rates.

Our findings have relevance for land use and planning decisions related to

nitrogen loading. The distance-dependent nature of N losses resulting from aquifer

denitrification suggests that while denitrification occurs at relatiyely low rates within the

Waquoit Bay aquifer, when integrated over long flow path lengths, substantial natural

attenuation of N can occur. In assessing the potential N loads from various sources, it is

critical to consider the magnitude of individual N0 3 ~ sources, travel distances to shore,

and the DOC concentrations in groundwater in determining options for reducing N loads.

For example, if we consider two nitrate sources, both located 100 m from a downgradient

receiving water body, one a fertilizer plume containing 500 PM N0 3- (where DOC <2

mg C 1 and k = 0.26 y'), and the other, a septic system plume containing 4,000 pM

N0 3 ~ (where-DOC ~ 26 mg C r" and k = 2.7 y-), we find that by the time these plumes-

have reached the downgradient water body, nitrate concentrations within the fertilizer

plume have been reduced by denitrification to about 430 M N0 3 ~, while nitrate

concentrations in the plume have been reduced to about 1100 pM. In this case, the

septic-derived N clearly constitutes a larger fraction of the total N load from these two

sources. However, if we then institute a 200 m setback limit from the receiving water

body for all N sources, we find that by the time these two plumes have reached the

downgradient water body, the nitrate concentration in the septic plume has been reduced
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by groundwater denitrification to approximately 100 pM N0 3 , while the fertilizer plume,

given its lower DOC concentration, still contributes about 350 pM N0 3~, making it the

dominant N source. The principles outlined in this paper should be applied to the design

of setback limits for septic systems, in assessing the value of open spaces for N load

reduction, in regulating wastewater disposal, and in watershed-wide land use planning.
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CHAPTER 4.

FATE OF NITROGEN FROM A SEPTIC SYSTEM IN A
NEARSHORE CAPE COD AQUIFER
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1. Introduction

The largest source of anthropogenic nitrogen to Cape Cod groundwater is

wastewater (1,2,3). The following paper examines mass balance losses of nitrogen from

a single private septic system, located near the banks of the Moonakis River in Falmouth,

near the head of Waquoit Bay. The septic system had been in operation approximately

twenty years for two household occupants at the time of sampling, and the associated

flows and nutrient concentrations were presumed to be at steady state. The septic tank

and leach field were located approximately 60 m from the bank pf the river. The site was

outfitted with 11 multi-level sampling wells, 9 in the plume downgradient from the septic

tank and leach field, and 2 outside the plume, spanning a 50 m transect.

The high concentration of ions in wastewater make it more conductive than

ambient groundwater. This property of wastewater alloweI us to conduct a ground

conductivity survey using a Geonics EM31 ground conductivity meter to roughly

delineate the contours of the septic plume prior to well installation. We augmented this

data with nitrate and ammonium measurements on groundwater samples obtained at the

seepage face of the site using a piezometer; these measurements showed the location of

the plume as it passed through the seepage face into the Moonakis River, and guided our

placement of multi-level sampling wells upgradient.

In the following paper, we present data on nitrate loss as a function of

groundwater age, and show that 50% of the nitrogen attenuation in the septic plume

occurs within the first 0.2 yrs of travel time, and that reduction rates decline with time. I
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augment this paper with a presentation of denitrification rates, which range from 0.01 to

2.23 JAM N0 3~ h~'; these reduction rates are 4 to 7 orders of magnitude ligher than those

measured in ambient groundwater using N stable isotopes at lwo forested sites, Crane

Wildlife Management Area and South Cape Beach (Ch. 3). Denitrification rates in the

plume increased with increasing initial nitrate concentration (R2= 0.86, Fig. 4.3) in a

manner similar to what we found at South Cape Beach, suggesting that the higher DOC

concentrations typically found in septic plumes (Robertson et al. 1988) and those found at

South Cape Beach (relative to Crane Wildlife) allow for faster rates of denitrification for

a given nitrate concentration. In Chapter 5, we model these rates using a Monod kinetic

expression, where denitrification rates are both -itrate- and DOC-limited.
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Nitrogen loading from land is a principal cause of eutrophication of shallow

estuaries (1,2,3). In regions such as Cape Cod, Massachusetts, which are underlain by

unconsolidated sands, the major mechanism that transports nitrogen to estuaries is

groundwater flow, and the major nitrogen source (primarily in the form of nitrate, N0 3 ~)

is often wastewater from septic systems (1,2,3). Wastewater nitrate concentrations

decrease during travel in groundwater due to dilution with clean groundwater and to loss

by denitrification (4). The loss of nitrogen during flow betyveen a septic tank and

receiving estuary can be calculated by determining the reduction in concentration of

dissolved inorganic nitrogen relative to the change in concentration of a passive tracer

that accounts for dilution.

We investigated losses of nitrate for a domestic septic system in the watershed of

Quashnet River, Cape Cod. Effluent from septic systems moves downgradient, forming

plumes containing high concentrations of nitrate: In addition, the study area has plumes

derived from fertilized turf or fields. To sort out the different plumes, we measured
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boron (B, a passive tracer derived from laundry detergents and associated with

wastewater sources (5, 6, 7)) and potassium (K, associated with both wastewater and

fertilizer sources (8, 9)) in the samples of groundwater.

To calculate loss of nitrate along the plumes, we collected samples from nine

wells downgradient from the septic system. Each well was furnished with 14 ports that

allowed us to sample groundwater at intervals of 1-2 m. We collected 300 mL of water

from 129 ports during June and July 2000 and measured concentrations of nitrate (N0 3 +

N0 2 ) and ammonium (NH4) using colorimetric and fliorometric techniques,

respectively. We selected samples with nitrate concentrations above 8 sM and

conductivities less than 4,000 pS/cm for measurements of B an4 K. These samples were

analyzed by Ward Laboratories (Kearney, NE).

Examination of vertical and horizontal profiles of nitrate and ammonium

suggested that there were three distinct plumes within our well field (Fig. 4.1). The upper

plume moved along near the surface of the water table and contained the highest nitrate

concentration of the three plumes; at nearly 3000 M, it was similar to literature values

(8) for septic effluent that has just left the leaching field. The nitrate, B, and K

concentrations in this plume differed considerably from those of the other plumes (Fig.

4.2, A and B).

In contrast, the lower plume showed no increase in nitrati relative to increase in B

(Fig. 4.2, A). It did, however, show a positive relationship to K, and at a given K
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concentration, had a much higher nitrate concentration than did the upper plume (Fig.

4.2, B). This evidence suggests that the lower plume might be due to fertilizer use

upgradient of our septic system.

The middle plume had no significant relationships between nitrate and B or K,

perhaps because of the small number of samples and the low concentrations. The

concentrations of nitrate, B, and K from the middle plume do, however, fit on the lower

portions of the curves for the upper plume (Fig, 4.2, A and B). These circumstances lead

us to think that the middle plume was probably the leading edge of a plume from a septic

system located farther upgradient from our septic system. We therefore used data for the

upper and middle plumes in our examination of the fate of septic system nitrogen in this

watershed.

Concentrations of nitrate and B diminished as water parcels aged (age, Fig. 4.2, C

and D, calculated from the Vogel equation (10)), which predicts groundwater age as a

function of position in the aquifer. To allow for dilution, we normalized the data by

expressing concentrations as NO37B (Fig. 4.2, E). We estimated the NO37B in the

effluent that had just left the septic system (age 0) by using a literature value (8) (Fig. 4.2,

E, upper dashed line). The N0 37B values we used came from a Cape Cod site near our

study area, and the data dated from 1992, only a 7-8 year differepce from our date of

collection. We presume that differences in B were therefore a reasonable proxy for those

in our study system. We calculated losses of N0 3' as the difference between the age 0

nitrate concentration, allowing for dilution, and the measured nitrate concentration.
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Losses of nitrate in excess of dilution were quite rapid, with rates reaching 50%

loss at 0.2 years (Fig. 4.2, F). The loss rates diminished with time, which suggests that, if

these data are representative of losses elsewhere, N losses by denitrification and retention

take place primarily near the septic system source. Extrapolating the curve of Figure 4.2

(F), we find that near-complete losses may be reached at 4.8 years, which is equivalent to

480-730 m from the septic system, assuming a travel rate of 100-150 m per year (11).

As a minimum estimate of loss, we also calculated loss relative to our highest

measured NO3~/B ratio (Fig. 4.2, E, lower dashed line). If our initial NO3~/B ratio were

closer to this measured value, our estimate of time to 50% N0 3 loss would increase to

0.6 years, but the estimate of time to 100% loss would not be affpcted. The extrapolation

to 100% loss assumes that the relationship between % loss N0 3~ and age continues to

hold beyond our oldest sample. This would not be the case if the availability of labile

organic carbon were to limit N0 3 ~ loss before 100% loss is achieved.

If coastal zone managers wish to regulate septic nitrogen loads, they could

concentrate on management of septic systems that lie within 480-730 m of the shore,

since these appeared to be the major contributors of nitrate to repeiving estuaries. Septic

sources farther upgradient probably contribute less significantly.

This research was supported by an internship from the Woods Hole Marine

Science Consortium to Elizabeth Westgate, an MIT Sea Grant (#65591) awarded to Ivan
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Valiela and Harold Hemond, and National Estuarine Research Reserve Fellowships to

Wendy Pabich and Kevin Kroeger.
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Figure 4.1. Vertical cross section from the soil swface, water table, and aquifer through
our field of multiple sampling weds (devation relative to mean low water (MLW). The
numbers are concentrations of NO (M) for water samples collected from each of the
14 ports in each of the 9 wes. Although the wells were not all in one plane, they are

shown as if they were for simplicity. Contour lines are drawn to indicate NO0
concentrations of 32, 128, 512, and 2048 yM. Position of salty water determined from
salinity of water samples.
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Figure 4.2., A: N0 3 concentration versus B concentration for samples collected from
upper (0 ), middle (U), and lower (8) plumes. B: N0 3~ concentration versus K
concentration for all three plumes. C: N0 3 concentration versus age for upper and
middle plumes. D: B concentration versus age for upper and middle plumes. E: N0 3 to
B ratio versus age for upper and middle plumes. F: % Loss of N0 3 versus age for upper
and middle plumes.
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3. Denitrification Rates in Groundwater Containing Septic Effluent

Denitrification rates were calculated for each water sample by dividing the mass

of nitrate lost between the septic system leach field and the downgradient well sampling

port, by groundwater age at that port. Mass balances losses of nitrate in excess of

dilution were assessed using the following equations:

[N03].w= R * [B]n..

[NO3 ]a..it = [NO3 IV - [NO3~]m.

(or [NO3~]enit = R * [B]ma. - [NO3~Ime.)

where [NO3~].xp is the concentration of nitrate expected in the absence of denitrification,

corrected for dilution; R is the ratio of nitrate concentration to borpn concentration ([N0 3~

]/[B] (pM)/mg I')) expected in septic system effluent leaving the leaching field (assumed

to be constant = 14,000; (8)); [B]meas is the measured boron concentration at the

downgradient well port; [NO 3f]dit is the mass balance loss of nitrate between the leach

field and the sampling port attributed to denitrification; and [NO3~]me is the

concentration of nitrate measured at the well port.

Denitrification rates were calculated by dividing the mpss of nitrate lost ([N0 3~

],nit) by groundwater age (y), calculated using the Vogel model (Ch. 3, Eq. 1).

Calculated initial nitrate concentrations ([NOI],) ranged from 140 to 4,400- M, while

denitrification rates ranged from 0.01 to 2.2 M N0 3-h', and averaged
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0.42 PM N0 3-h-. These rates are 4 to 7 orders of magnitude higher than those measured

in groundwater at our two forested sites, Crane Wildlife Management Area and South

Cape Beach (0 to 2.1 x 10 4 pM N0 3-h"l), where N was derived from either from soils or

from fertilizer, with concentrations of nitrate < 1.5 pM and 1.5 to < 100 M, respectively.

Denitrification rates in the septic plume increased with increasing initial nitrate

concentration ([NO3 ~]ep), and could be fit with a power curve (Fig. 4.3, R 2 = 0.86 at p <

.0002), similar to our findings at the two forested sites, Cranes Wildlife Management

Area and South Cape Beach (Ch. 3).

Figure 4.3. Denitrification rates in groundwater containing septic effluent as a function
of calculated initial nitrate concentration corrected for dilution. Axes are logarithmic.
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The relationship between denitrification rate and nitrate concentration exhibited in

the septic plume samples is similar to that found at South Cape Beach (Ch. 3, Fig. 3.15),
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where DOC concentrations were higher (0.8 to 24 mg C 1 ; mean = 7.0 mg C 1t) than at

Crane Wildlife Management Area (0 to 1.9 mg C F'; mean = 0.4 mg C 1-). While we did

not measure DOC concentrations at the septic system site, thie similarity of the septic

system and South Cape Beach trends suggests that DOC concentrations at the septic

system are likely to be similar. Robertson et al. (12) measured DOC in 10 mature septic

system groundwater plumes in a sand aquifer in central Canada. We used their data to

plot DOC concentrations against plume age (Fig. 4.4; R-2'= 0.72).

Figure 4.4. Dissolved organic carbon concentrations (DOC) in groundwater as a
function of septic system plume age. Data from Robertson et al. (12).
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Using this relationship, we estimated DOC concentrations for each of our septic

plume samples, based on calculated groundwater age (mean age = 0.90 yrs, mean DOC

26 mg 1). Estimated this way, DOC concentrations in the septic system samples fall just
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outside the high end of the range measured at SCB (range = 0.8 to 23.4 mg C 11, mean =

7.0 mg C 1-1), clearly higher than DOC concentrations at Crane Wildlife (mean = 0.4 mg

C 1-1). Higher DOC concentrations in the septic plume and at South Cape Beach appear

to have allowed for faster rates of denitrification, relative to those in the low DOC

environment of Crane Wildlife for any given initial nitrate concentration.

The relationship between denitrification rate and DOC concentration is reflected

in a comparison the first order rate constants calculated for each site. We calculated a

first order rate constant (k = [ln([NO3~]aj/[NO3~]mm) / t ], or k = [ln (C/Co)]/t from

Rayleigh equation) for each individual groundwater sample frorp the septic plume, and

averaged the individual values to produce a first order rate constant for the data set as a

whole (k = 3.1 x 10-4hf or 2.7 y-). The half-life for nitrate (t112) in the plume, given this

first order rate constant, was calculated to be 0.25 years. This first order rate was 11

times higher than at Crane Wildlife (k =2.9 x -10- h or .26 y-; 112= 2.8 y), but only

twice as high as the first order rate for South Cape Beach (k = 1.8 x 10 -4 h' or 1.5 y1, t112

= 0.45 y), presumably because the-DOC concentrations- in the septic plume are similar to

the high end of the range of DOC concentrations measured at South Cape Beach (0.8 to

23.4 mg C F'), but are- significantly higher than those found at Crane Wildlife (0.1 to 1.9

mg C 1-). Higher rates in the septic plume and at South Cape Beach lead us to

hypothesize that denitrification in this groundwater system is cpntrolled by both nitrate

and DOC concentrations, and could be modeled using a saturating kinetics expression

with double substrate limitation by nitrate and DOC (Ch. 5).
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4. Conclusions

Denitrification rates measured in groundwater at our septic systmn site ranged

from 0.01 to 2.23 pM N0 3 h-', and averaged 0.42 pM N0 3 h7'. Rates increased with

increasing initial nitrate concentration (137 to 4,396 pM), and cpuld be fit with a power

curve (R2 = 0.86 at p < .0002). The calculated septic system denitrification rates (k = 3.1

x 10 4hI) were several orders of magnitude higher than those measured in groundwater

at both the South Cape Beach (k = 1.8 x 10 4 h-1) and Crane Wildlife sites (k = 2.9 x 10 -5

hIf), where nitrate concentrations were significantly lower (0 to 91 pM). The relationship

between denitrification rate and nitrate concentration in the septic plume was similar to

that found at South Cape Beach, suggesting that higher DOC concentrations in these two

environments allowed for faster rates of denitrification for any given nitrate concentration

relative to the low DOC environment at Crane Wildlife.
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CHAPTER 5.

AN EMPIRICAL MODEL TO PREDICT GROUNDWATER
DENITRIFICATION RATES, CAPE COD, USA: SUBSTRATE

LIMITATION BY DOC AND
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Abstract. An empirically-based saturating kinetics model describing groundwater
denitrification under carbon and nitrate-limited conditions was developed.
Denitrification rates were described using a kinetic expression with double substrate
limitation (with nitrate as the terminal electron acceptor and dissolved organic carbon
(DOC) as the electron donor). The kinetic parameters were estimated from our field data
(half saturation constant for NO3 (KNO3)) and USGS field data (bacterial population [B]),
and from data available in the literature (maximum bacterial growth rate (pmax), half
saturation constant for DOC (KDOc), and bacterial yield constant (Y)). The proposed
model is able to reasonably predict N losses along groundwater flow paths, measured at
two forested sites (Ch. 3), where DOC ranged. from 0 to 23 mg C 1- and nitrate ranged
from <1 to 91 pM: Using higher values for the bacterial population ([Bj) and the half-
saturation constant (KNO3), we were also able to predict N losses due to denitrification
within the very different biogeochemical conditions of a septic system plume ([NO3 ]ma
- 4,400 pM, {DC ~ 26 mg C-1 and presumably a larger and more active bacterial
population). The model performs well over the wide range of geochemical conditions
found at the three sites within this (R2= 0.96, m = 0.96 for measured vs. modeled).
Eliminating the DOC term from the saturating kinetics expression, so that denitrification
is limited only by nitrate concentration, results in an overprediction of nitrate losses along
groundwater flowpaths, particularly where DOC concentration are low. These results
further confirm our previous conclusion (Ch. 3) that DOC concentrations exert a
significant control orn grotndwter denitrification rates.
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1. Introduction

Eutrophication by land-derived anthropogenic nitrogen (N) is the major cause of

alterations to coastal ecosystems worldwide (GESAMP 1990, NRC 1994, Nixon 1986).

In coastal areas underlain by unconsolidated sands, such as Cape Cod, the majority of

land-derived N delivered to the coastal zone is transported by groundwater (Valiela et al.

1992). Many studies show that some portion of groundwater nitrogen is lost via

denitrification within aquifers (Bengtsson and Annadotter 1989, Bottcher et al. 1990,

Bragan et al. 1997a, Bragan et al. 1997b, Clay et al. 1996, Gillham 1991, Gold et al.

1998, Groffman et al. 1996, Jacinthe et al. 1998, Korom 1992, Peterjohn and Correll

1984, Valiela et al. 1992, Valiela et al. 2000, Verchot et al. 1997). Accurate estimation

of land-derived nitrogen loads delivered to estuaries requires that significant losses

occurring during transport, notably denitrification, be incorporated into models of

nitrogen loading.

Our measurements of denitrification rates in the Waquoit Bay aquifer on Cape

Cod, Massachusetts (Chs. 3 & 4), suggest that groundwater denitrification rates increased

with increasing nitrate and dissolved organic carbon (DOC) concentrations. N losses

along groundwater flowpaths at Crane Wildlife Management Area, where nitrate

concentrations ranged from 0.2 to 68 pM, but DOC was consistently low (< 2 mg C r-),

could be best predicted using a saturating kinetics expression with respect to nitrate (R2

0.96; Ch. 3, Fig. 3.20). Denitrification rates in the higher DOC environments of South

Cape Beach (up to 24 mg C 1-), and a septic plume (-26 mg C F1), were higher for any
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given nitrate concentration than in the low DOC environment of Crane Wildlife. These

results are consistent with other studies that demonstrate the importance of carbon

substrate availability (Bradley et al. 1992b, Bremner and Argamann 1990, Christensen et

al. 1990, Groffman et al. 1996, Knowles 1982, Parkin 1987, Payne 1981, Smith and Duff

1988, Sprent 1987) and nitrate concentration (Bengtsson and Bergwall 1995, Bradley et

al. 1992a, Korom 1992, Morris et al. 1988, Slater and Capone 1987, Smith and Duff

1988) to denitrification rates.

Because concentrations of organic matter in groundwater are variable (0.1 to 27

mg C I', Pabich et al. 2000a, Ford and Naiman 1989, Fiebig et al. 1990, Fiebig 1995) and

concentrations of nitrate in Cape Cod groundwaters may vary over several orders of

magnitude (0 to 4,400 pM N0 3 , our data, Kroeger et al. 1999, Savoie and LeBlanc 1998,

Seely 1997, Valiela et al. 2000), our goal in this paper was to explore the use of a

saturating kinetics model, not only with respect to nitrate as in Chapter 3, but also with

respect to DOC, since higher concentration of DOC in groundwater appear to result in

higher rates of denitrification for any given nitrate concentration.

This approach is consistent with other previous studies. Numerous models of

varying complexity have been developed to predict denitrification rates, often for the

purposes of wastewater treatment system design (Almeida et al. 1995, Brenner and

Argamann 1990, Carucci et al. 1996, Engberg and Schroeder 1975, Glass and Silverstein

1998, Griffiths 1994, Kornaros et al. 1996, Kornaros and Lyberatos 1997, 1998, Wang et

155



al. 1995), or to predict co-metabolism of organic compounds under denitrifying

conditions (Jorgensen et al. 1995). This study draws from information on denitrification

kinetics in published laboratory experiments, and from our own field measurements, to

develop a field-scale model to assess denitrification in a groundwater setting.

2. Saturating Kinetics

Several lines of evidence suggest that denitrification in the Waquoit Bay aquifer is

controlled by saturating kinetics with respect to both DOC and nitrate concentrations.

We found that first order rate constants for denitrification with respect to nitrate (Ch. 3)

were highest where groundwater DOC concentrations were highest: k = 2.8 y~' in the

septic plume (- 26 mg C r'), k = 1.6 y -' at South Cape Beach (DOC = 0.8 to 23.4 mg C

I-), and k = .25 y-' at Crane Wildlife (0.1 to 1.9 mg C F-), suggesting that both DOC and

nitrate concentrations exert important controls on denitrification rate. In addition, Smith

and Duff (1988) found that denitrification, measured using an acetylene blockage assay

on slurried aquifer core material obtained near wastewater disposal beds, located

approximately 1 km to the east of the Crane Wildlife field site on the Massachusetts

Military Reservation, was carbon-limited ([DOC] was estimated to be - 12 mg C ri).

Groundwater nitrate concentrations in this aquifer (0 - 4,400 pM; Seely 1997, Valiela et

al. 2000, Kroeger et al. 1999, Savoie and LeBlanc 1998, Pabich, unpublished data) are of

similar magnitude to half-saturation constants (Km) measured for denitrification with

respect to nitrate (5-290 pM N0 3 , Knowles 1982; -1,300 pM Reddy et al. 1982),

suggesting that denitrification may become saturated with respect to nitrate.
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Given this evidence, we modeled denitrification rates using a Michaelis-Menten-

type substrate-utilization expression with double substrate limitation (nitrate as the

terminal electron acceptor and organic carbon as the electron donor). In Chapter 3, we

derived values for maximum denitrification rate (V..) for both the forested sites and for

the septic plume from our field measurements of nitrate losses. One of the goals of this

paper was to determine whether the literature provided insight into the mechanistics of

bacterial metabolism that would allow us to predict maximum reaction rates based on

microbial theory. Toward that end, we modeled denitrification rates using the following

expression:

d[NO31/dt = [(Pmax *Bdenit)/Y] * [[N03/(KNO3 + [NO3 ])] * [[DOC]/(KDOC + [DOC])],

where is the maximum bacterial growth rate (hrf ), Bd, 1it is the population of

denitrifying bacteria (mg ri), Y is the bacterial yield constant (mg biomass mg C-1),

[NO3~] and [DOC] are the substrate concentrations (mg r'), KNo3 and KD0C (mg F') a

the half-saturation constants for nitrate and dissolved organic carbon, respectively.

Maximum reaction velocity (Vm=) determined from our field data is essentially a lumped

parameter equivalent to the first set of terms in the above model ( [(p * Bdenit)/Y]). The

advantage to utilizing this more explicit description of V.m. is thzt the population density

and activity of denitrifying bacteria have been shown to increase with increasing nitrate

concentration (Bengtsson and Bergwall 1995, King and Nedwell 1987), potentially

allowing us to develop a model for which only nitrate and DOC concentrations need be
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measured in order to use the model to predict denitrification rates. We compare both

approaches to estimating Vm..

2.1 Assumption of steady state

We assumed that each of the sampling points in the Waquoit Bay aquifer

represented the output of a steady state reaction/flow system, with a population of

bacteria acclimated to the existing N0 3' and DOC concentrations within the aquifer. At

both the Crane Wildlife and South Cape Beach sites, temporal variability in groundwater

chemistry (dissolved 02, DOC, NH4+, and N0 3 concentrations) was minimal (Ch. 3, Fig.

3.4 and Table 3.6), and groundwater flow rates are believed to be relatively constant

(~0.4 m day-, Leblanc 1991), supporting this assumption.

We also assumed that at each location, there was a specific maximum denitrifier

population density, reflected in a constant growth rate (U) less than Fmax, which is often

the case when the substrate concentration is below the half-saturation constant (S <<K,

Alexander 1999). Given this conceptualization, we took each sampling location within

the aquifer to represent a specific position on a Michaelis-Menten-like substrate

utilization rate curve, that, taken together, would represent denitrification under

saturating conditions across the range of nitrate and DOC concentrations measured.

158



3. Model Parameterization

The literature suggests that the population density and activity of denitrifying

bacteria increase with increasing nitrate concentration. Bengtsson and Bergwall (1995)

showed that the population (B), growth rate (u..), and activity (higher Kn) of

denitrifying bacteria in groundwater of three Swedish aquifers increased with increasing

groundwater nitrate concentration. Similarly, King and Nedwell (1987) found that

denitrifying activity increased with increasing concentrations of nitrate in a nitrate

gradient in an estuarine sediment, and suggested that nitrate reducers were adapted to the

in situ concentrations of nitrate at each site. We estimated the effect of increasing nitrate

concentrations on the population and activity of denitrifying bacteria.

3.1 Half-saturation constants for nitrate (KNo3) and DOC (KDOC)

For the forested sites, we estimated KNo3 from groundwater profiles measured in

three multi-level sampling wells containing a range of nitrate concentrations (0 - 68 pM)

derived from soil and fertilizer (Ch. 4). DOC concentrations in the same samples

remained low and nearly constant (<2 mg C 'i), independent of the N0 3- concentration.

Using measured NO3" concentrations and denitrification rates for these samples, we

constructed a Lineweaver-Burk plot (I/dNOI3/dt vs. 1/[N03-]; Fig. 5.1) to estimate KNo3

(112 pM N0 3 ~). We estimated KNO3 from the septic plume samples in the same manner

(Fig. 5.2, 1760 pM N0 3 ~). Our estimates fall within the range of K. values for

denitrification reported in the literature (5-290 pM N0 3-, Knowles 1982; -1,300 PM

N0 3-, Reddy 1982).
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Figure 5.1. Lineweaver-Burke plot for forested sites used to estimate the half-saturation
constant for denitrification with respect to nitrate (KNo3) and the maximum denitrification

rate (Vmax).
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Figure 5.2. Lineweaver-Burke plots for septic system site used to estimate the half-saturation

constant for denitrification with respect to nitrate (KNo3) and the maximum denitrification

rate (V,,).
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While DOC concentrations in the aquifer varied between sites (0.04 to 24 mg C r

1), we were not able to use a Lineweaver-Burke plot to estimate KDOC as we did for

nitrate, since nitrate concentrations did not remain constant as DOC varied. Instead, we

estimated KDoc from kinetics experiments by Kornaros and Lyberatos (1997), who

calculated Ks for growth of Pseudomonas denitrificans on glutamic acid (C4H 9NO4) at

0.025 mM (or 1.4 mg C 1~ 1, which we assigned as the value for KDoc).

3.2 Denitrifying bacterial population

Deeper regions of the unsaturated zone, and uncontaminated, shallow water-table

aquifers contain populations of around 105 to 107 organisms per gram of dry subsurface

material or per liter of groundwater (Balkwill and Ghiorse 1985, Fliermans 1989, Ghiorse

and Wilson 1988, Webster et al. 1985) with 1-10% of these organisms being

metabolically active (Gehlen et al. 1985, Federle et al. 1996, Marxen 1988, Webster et al.

1985). In the same Cape Cod aquifer in which we worked, the USGS estimated the

abundance of free-living bacteria in groundwater using fluorescent labeling (Savoie and

LeBlanc 1998). Measured bacterial population averaged 6.1 x 107 cells 11 in clean

groundwater (or 0.33 mg F, assuming that each cell weighs 5.5 x 10-10 mg,

Schwarzenbach et al. 1993). We used this value to represent the total groundwater

bacterial population (Botai).

Only a small percentage of enumerable groundwater bacteria are metabolically

active (-1 - 10 %, Webster et al. 1985). Given the generally low ambient nutrient
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concentrations in this aquifer, we assumed that only 1% of the enumerable population

was metabolically active. This parameter is essentially a fitting parameter, since in the

absence of field measurements to assess bacterial viability, we might reasonably assume

that up to 10% of the bacterial population is viable. However, we found that our results

were best when we used the lower value for bacterial viability.

Denitrifying bacteria, like viable bacteria, also represent a subset of the total

bacterial population. To estimate the fraction of total bacteria that were denitrifiers, we

constructed a linear relationship between nitrate concentration and % denitrifiers using

data from Bengtsson and Bergwall (1995) from three aquifers in Sweden (Fig. 5.3, %

denitrifiers = .015*[N0 3 1+ 15, R2 = 0.95). For each groundwater sample from the two

forested sites, we used measured nitrate concentration and this linear regression to

estimate the fraction of denitrifying bacteria. Because nitrate concentrations at our two

sites spanned a small range (up to 68 M) relative to the range measured by Bengtsson

and Bergwell (450 to 2500 M), the calculated percent denitrifiers remained relatively

constant at all of our sampling locations (-15%). We multiplied the calculated percent

denitrifiers by the total bacterial population (Btotai), and by the 1% percent metabolically

active; the product represented the denitrifying population (Bd,,t). This resulted in a

relatively constant estimate of denitrifying population around 9.1 x 105 cells 1- for the

two forested sites (Table 5.1).
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Figure 5.3. Denitrifying bacteria as a percentage of total bacterial population
versus groundwater nitrate concentration measured in 3 Swedish aquifers.
Data from Bengtsson and Bergwall (1995).
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Table 5.1. Parameters and values used in saturating kinetics model for denitrification.

Parameter Value for Forested Sites Value for Septic System Comments Data Source

Half-saturation constant, NO3 (KNo3)

Half-saturation constant, DOC (KDoc)

Total bacterial population (fBJta,)

Percent viable

Percent denitrifiers

Denitrifying population ([B]j,)

Maximum growth rate (P max)

Yield constant (Y)

112 pM

1.4 mg C 1-

6.1 x 10 ce r

1%

-15%

- 9.1 x 10 5 cells 1i

0.23 h~

1.11 ma biomass ma C1 1.11 ma

1760 pM Lineweaver-Burk plot

1.4 mg C r1  incubations

Cape Cod aquifer

1% 1 - 10 % in groundwater

linear regression

2.1 x 107 cep r1 measured in septic fter

0.23 h-' incubations

biomass ma C-1 incubations

this study

Komaro. & Lyberatos (1997)

Savoie & LeBlanc (1998)

Webster et al. (1985)

Bengtsson & Bergwal (1996)

Pet et al. (1990)

literature, Table 5.2

literature. Table 5.2



Pell et al. (1990) measured bacterial populations in a sand-filter system for

treating septic-tank effluent. Denitrifying bacterial densities ranged from 1.1 x 10' cells

g_ dry weight sediment in the upper several centimeters of the filter to 2.0 x 107 cells g'

dry weight sediment at 20 cm depth into the filter. Using the 10.4% water content figure

that these authors reported, we converted these values to 1.0 x 1011 cells 1- in the upper

portion of the filter and 2.1 x 10 9 cells 1' in the lower portion. We assumed that

denitrifying bacterial populations (Bd.njt) in the septic plume at our site were similar to

those at the base of the sand filter (2.1 x 10 9 cells 1-1 or 1.14 mg 1-), and that 1% of that

population was metabolically active (2.1 x 107 cells r', Table 5.1).

3.3 Maximum bacterial growth rate (pma)

Maximum growth rate has been estimated for various denitrifying species in

controlled kinetic experiments (Alneida et al. 1995, Jorgensen et al. 1995, Kornaros and

Lyberatos 1997, Wang et al. 1995). Values presented in the literature were surprisingly

consistent (Table 5.2). We used the-average of pma values (0.23 hfr) presented for two

denitrifying species and wastewater sludge.

3.4 Bacterial yield constant (Y)

Growth yield constants (Y) have been measured in the laboratory for a variety of

denitrifying species using various carbon sources. Using the appropriate molecular

weights for each of the carbon substrates, we normalized the Yvalues presented in the

literature to mg biomass mg C- (0.15 - 2.74 mg biomass mg C', Table 5.2). We also
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Table 5.2. Estimated values for maximum growth rate (,,,. ) and yield constant (Y) from the

literature, and from our thermodynamic calculations for Y. Mean values for each parameter were

used in the model.

Maximum growth rate Culture Study
(p, max, h-)

Ps. denitritcans

wastewater sludge

Ps. denitrificans

P. fluorescens

Mean

Komaros & Lyberatos (1997)

Jorgensen et al. (1995)

Wang et al. (1995)

Almeida et al. (1994)

Yield constant (Y mg Culture Carbon Study
biomass mg C~) source

0.17 Ps. denitrficans glutamate Kornaros & Lyberatos (1998)

0.15 wastewater sludge toluene Jorgensen et al. (1995)

0.64 wastewater sludge wastewater Slade & Dare (1993)

2.74 Ps. denitriflcans methanol Wang et al. (1995)

0.82 wastewater sludge acetate Rittman & McCarty (1980)

2.14 thermodynamic calc acetate this study

1.11 Mean

0.36

0.10

0.21

0.26

0.23

I



calculated the yield constant for denitrifying organisms growing on acetate (2.14 mg

biomass per mg C utilized) using a thermodynamic relationship between free energy of

reaction and maximum cell yield (McCarty 1971). The average of these values was 1.11

mg biomass mg C-1, which we used in our model.

4. Results and Discussion

Our estimation of maximum reaction velocity for the bacterial population (~(p,,

* Bdenit)/Y]) at the septic system site was 0.17 pM h~l, which is surprisingly close to the

lumped V., value (0.19 pM h) estimated using a Lineweaver-Burk plot of our field data

(Fig. 5.2). For the forested sites, where we assumed that Bdenit varied with nitrate

concentration, maximum reaction velocity also varied with nitrate concentration.

However, because the nitrate concentrations at these two- sites (0.2 - 68 pM) were

relatively low, our calculations for percent denitrifiers in the system (% denitrifiers =

.015*[N03-1 + 15) varied minimally over the range of nitrate concentrations. Thus,

maximum reaction velocity across these two forested sites was also nearly constant (7.4 x

10-3 to 8.0 x 10-3 pM hI). In comparison, using the Lineweaver-Burke plot and our field

measurements (Fig. 5.1), the V. value was lower (1.1 x 10-3 pM h-'), but within the

same order of magnitude.

The utility of the full -expression for V..( [(pmax* Bdenit)/Y]) lies in the fact that

both maximum bacterial growth rate (u,) and yield (Y) are relatively invariable relative
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to the large changes that are expected in both total bacterial population (B.awz) and the

percentage of that population that are denitrifiers (Bs.t) with changing groundwater

nitrate and DOC conditions. An expression that accurately characterizes the denitrifying

population (and therefore the maximum reaction velocity (Vma)), would be quite useful

in terms of allowing the model to be applied to a wider range of field situations. Had the

nitrate concentrations beneath the forested sites varied more widely, we might have been

able to test how well our V., expression captures the relationship between nitrate

concentration and denitrifying activity, and thus, its utility in predicting losses of N via

denitrification from a generalized understanding of bacterial dynamics. Testing our

model using nitrate, DOC, and denitrification measurements from another site would be a

valuable future exercise.

We tested the model (using the V., values estimated from the full expression

([(um * Bdenit)IY]) for maximum reaction velocity) to determine how well we could

predict groundwater nitrate loss along the length of groundwater flowpaths across a range

of geochemical conditions. We ran a simulation to estimate total N lost in groundwater

between recharge and a downgradient sampling location, at two forested sites where

nitrate (0-91 pM) and DOC(0-24 mg C r') varied considerably, and in groundwater

sampled from a septic plume ({NO 3 ]. ~ 4,400 pM, [DOC] 26 mg C-). We compared

predicted downgradient nitrate concentrations [NO3 ~1.& with those actually measured in

the field [NO3 ]... For each water parcel, we discretized the groundwater flowpath into

4 time steps. For the first time step, we estimated the denitrification rate based on the
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initial nitrate concentration ([NO3]adj), calculated the total mass of N lost to

denitrification during that time band ([NO3~d,wit), and subtracted the two values ([NO 3 ~]j

- [NO3~a&t) to estimate the final nitrate concentration at the end of the time band. In

each sequential time band we calculated a new denitrification rate, N loss, and final N

concentration, based on the mass of nitrate remaining from the previous time band. We

did the same for [DOC] concentration, assuming that DOC was utilized in a 5:4 molar

ratio relative to nitrate.

Figure 5.4 shows a plot of expected nitrate concentration determined in the

simulation ([NO3-]m1&) versus nitrate concentration actually measured each well port

([N0 3]me.) for the three sites. Using the same parameter values for both South Cape

Beach and Crane Wildlife, and higher values for the bacterial population ([B]) and the

half-saturation constant (KNo3) at the septic site, we were able to reasonably predict

expected nitrate concentrations at the end of the flowpath (R2 = 0.96, m = 0.96 for

measured vs. modeled) across the wide range of geochemical conditions represented by

these sites: Crane Wildlife (0.2 to 68 jiM N0 3 ~ and < 2.0 mg C 1 ), South Cape Beach

(0.01 to 4.0 pM N0 3-and 0.8 to 23.4 mg C r'), and a septic system plume ([NO 3 ]. ~

4,400 pM, [DOC] --26 mg C-1). The model provided a similar fit to the data when we

used the field estimated values for V.., specific to each site, suggesting that reasonable

approximations of denitrifying bacterial activity in groundwater can be made using data

from the literature.
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Figure 5.4. Nitrate louses by denitrification simulated over groundwater flowpaths using a

saturating kinetics expression with respect to nitrate and dissolved organic carbon (DOC).
Modeled nitrate concentration at the end of each flowpath is plotted against the measured nitrate

concentration for two forested sites (South Cape Beach and Crane Wildlife) and a septic system

plume. Kinetic parameters for the septic system site differ from those used at the two forested sites.

Axes are logarithmic.
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We also simulated nitrate losses along the groundwater flowpaths using a

saturating kinetics expression with respect only to nitrate. We used the Vmw value

estimated from the bacterial parameters, but eliminated the DOC terms ([DOC]/(KDoc +

[DOC])) from the kinetics expression (i.e., d[N03 ]/dt =Vmax * ([N03-1/(KO3 + [N0 3 ~]).

Figure 5.5 is a plot of expected nitrate concentration determined in the simulation ([N0 3~

]mcie) versus nitrate concentration actually measured each well port ([NO3]me.) for the

three sites. We found that, especially where DOC concentrations were low, the model

often overpredicted the rate of denitrification, resulting in negative predicted nitrate

concentrations. Where predicted nitrate concentrations were negative, we set [NO3~]m.

to 10~ pM in order to include this data on a logarithmic plot. The problem was

particularly noticeable for the Crane Wildlife dataset, where low DOC concentrations (<

2 mg C 1- 1) clearly limit groundwater denitrification rates. As a typical example, for a

groundwater parcel at Crane Wildlife with an initial nitrate concentration of 1.6 pM, and

a DOC concentration of 0.26 mg C 1-, the kinetic expression with respect to nitrate only,

predicts loss of 1.9 pM nitrate within the first time band (resulting in a [NO3~]m&I < 0).

In comparison, the kinetics expression that uses double substrate limitation by nitate and

DOC resulted in a predicted nitrate loss of only 0.09 PM during the first time step,

reflecting the impact of low DOC concentrations on denitrification rate. The much better

fit between [NO3~model and [NO3 ]hieas using the kinetics expression with respect to both

nitrate and DOC (Fig. 5.4), than using the model with respect only to nitrate (Fig. 5.5)

illustrates the importance of DOC as a control on gFoundwater denitrification rates.
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Figure 5.5. Nitrate losses by denitrification simulated over groundwater flowpaths using a
saturating kinetics expression with respect to nitrate. Modeled nitrate concentration at the
end of each flowpath is plotted against measured nitrate concentration for the two forested sites
(South Cape Beach and Crane Wildlife) and a septic system plume. Kietic parameters for
the septic system differ from those used for the two forested sites. Where the model
overestimated nitrate losses (i.e., [NO3 1 1 < 0), [NO3 1 1 was set to 10 4 pM in order to
present data on logarithmic plot.
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These results further confirm our conclusions from Chapter 3, where we show

that first order denitrification rates with respect to nitrate are highest where DOC

concentrations are highest, suggesting that independent of nitrate concentration, DOC

concentrations play a critical role in controlling groundwater denitrification rates. The

kinetics model, with double substrate limitation by nitrate and DOC, that we present here,

provides a valuable tool for planners and managers interested in designing management

strategies to control nitrogen loading to coastal waters. Such a model might be used in

the design of setback limits for septic systems, in assessing the value of open spaces for

N load reduction, in regulating wastewater disposal, and in watershed-wide land use

planning.
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CHAPTER 6:

CONCLUSIONS
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1. Conclusions

A principal alteration of estuarine and coastal ecosystems worldwide is

eutrophication brought about by increasing loads of anthropogenically-derived nitrogen

(GESAMP 1990, NRC 1994, Nixon et al. 1996) transported by freshwater to receiving

coastal waters (Cole et al. 1993). Nitrogen transport rates are of critical importance

because rates of coastal production, as well as many otherkey processes coupled to

production, are set by nitrogen supply (Nixon, in press, Nixon et al. 1986, Howarth et al.

1996). The effects of eutrophication on coastal ecosystems are far-ranging, and can

include red tides, fish kills, anoxia and hypoxia as currently observed over wide areas of

the Gulf of Mexico, contamination of shellfish beds (NRC 2000), and alteration of

valuable habitat including loss of eelgrass beds, such as that documented in Waquoit Bay,

MA (Costa 1988).

Understanding how N is transformed and transported within aquifers is necessary

to calculating watershed N budgets, understanding basic nitrogen biogeochemistry, and

estimating total N delivery to coastal waters The- goal of this study was to estimate

groundwater denitrification rates in the Waquoit Bay aquifer on Cape Cod, to examine

how they vary as a function of nitrate and DOC conoentrations, and to construct a

predictive model that might be used to assess groundwater denitrification rates across the

range of geochemical conditio-ps present in this aquifer.
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2. Controls on Groundwater DOC Concentrations

We show that the thickness of the vadose zone through wich recharge occurs and

the depth below the water table exert significant control on DOC concentrations in

underlying groundwater: We found that the deeper the vadose zone, the lower the

concentration of DOC in groundwater near the water table, indicating that considerable

attenuation of surface-derived DOC occurred in the vadose zope. Under vadose zones

<1 .25 -m, DOC concentrations at the surface of the water table ranged to >20 mg I' C,

while for vadose zones>5:0 in, DOC never exceeded 2.0 mg 14 C. DOC concentrations

also decreased with increasing depth belowthe water table, most potably in the upper two

meters, implying continued attenuation in the upper layer of the saturated zone. Ninety-

nine percent of the DOC was attenuated by the time the watergeached a depth of 19 m

below the water table. DOC concentrations in shallow groundwater show considerable

spatial variability; but concentration ofDOG: at- any one site is, qurprisingly stable over

time. The largest source of variation in DOC concentration in groundwater therefore is

spatial rather than temporal; suggesting that local-heterogeneits play an important role

in DOC delivery to shallow groundwater. Our results highlight both the importance of

shallow vadose areas in DOC delivery to groundwater-and the ieed to distinguish where

samples are collected in relation to flow paths before conclusions are made about mean

groundwater DOC concentrations. The substantial losses of DO( in the vadose zone and

in shallow depths within the aquifer suggest that quite active biogeochemical processing,

particularly denitriflcationt may occur in these boundary environments.
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3. Groundwater Denitrifcation Rates

We used a stable isotopic approach to estimate average denitrification rates

occurring along groundwater flowpaths at two forested sites (Crane Wildlife

Management Area and South Cape-Beach) in and -near the Waquoit Bay watershed.

These sites provided a large range of groundwater nitrate (<1 to 91 pM) and DOC (0 to

23 mg CT') concentrations. We compared these rates to those that we measured using

mass balance of N in a septic plume. Denitrificatiorrrates increased with increasing

nitrate concentration, from 0 to 2.1 x 1 pMNh-- at the forestpd sites, and 0.01 to 2.23

pM NO 3 ~ h' in the septic system plume. First order denitrifiqation rate constants with

respect to nitrate were highest where- groundwater DOC concentrftions were highest: k =

2.8 y' in the septic plume(~ 26mg Cr'), k = 1.6y' -at South-Cape Beach (DOC= 0.8

to 23.4mg CT'), and k = .25y yat Crane-Wildlife- (0. to 1.9 mg Cr'), suggesting that,

independent of nitrate concentration, DOC concentration exert a significant control on

denitrification rates.

We simulated N losses along groundwater flowpaths- for the Crane Wildlife site;

the results of this analysis suggested that for the low DOC conditions at this site, a

saturatingkinetics expression with respect to-nitrate best predi9ts nitrate concentrations

measured at the dawngradilit well ports.(R2 = 0.96 for [NO3lmoeI vs. [NO 31meas).
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4. Modeling of Denitrification Using a Saturating Kinetics Expression

We developed an empirically-based saturating kinetics 9xpression to describe

groundwater denitrification under carbon and nitrate-limited conditions. Denitrification

rates were described using a kinetic expression with double substrate limitation (with

nitrate as the terminal electron acceptor and dissolved organic carbon (DOC) as the

electron donor). The kinetic parameters were estimated from our field data (half

saturation constant for N0 3 ~ (KNo3)) and USGS field data (bacterial population [B]), and

from data available in the literature (maximum bacterial growth rate (pmax), half

saturation constant for DOC (Koc), and bacterial yield constant (Y)). The proposed

model was able to reasonably predict N losses along groundwater ,flow paths, measured at

the two fdrested. sites, where DOC ranged from 0 to 23 mg C r' and nitrate ranged from

<1 to 91 pM. Using higher values for the bacterial populatiop ([Bj) and the half-

saturation constant (KNO3), we were also able to predict N losses due to denitrification

within the very different biogeochemical conditions of the septic system plume ([N0 3~

]me~ 4,400 pM, [DOC] ~ 26 mg C4 , and presumably a larger. and more active bacterial

population). The model performs well over the wide range of geochemical conditions

found at the three sites within- this watershed (R?2 = 096; m = 0.96 for measured vs.

modeled). Eliminating the DOC term from the saturating kipetics expression, so that

denitrification is limited only by nitrate concentration, results in an overprediction of

nitrate losses along groundwater flowpaths; particularly wherN DOC concentration are

low. These results further confirm our previous conclusion that DOC concentrations

exert a significant control on groundwater denitrification rates.
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We conclude that the magnitude of the nitrate source, its travel distance to shore,

and the DOC concentration in groundwater are useful predictors qf N downgradiat. The

saturating kinetics model, with double substrate limitation by nitrate and DOC, developed

here, provides a valuable tool for planners and managers interested in designing

management strategies to control nitrogen loading to coastal waters. Such a model might

be used in the design of setback limits for septic systems, in asgessing the value of open

spaces for N load reduction, in regulating wastewater disposal, and in watershed-wide

land use planning.
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