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Abstract

In this thesis we further develop concepts in inverse scattering, which enable higher
resolution imaging with data from dense networks and arrays. We apply the new methods to
studies of the crust beneath south Tibet and the core-mantle boundary (CMB) region beneath
Central America and East Asia.

First, we develop a new method, which we call passive source reverse time migration
(RTM), for subsurface imaging with teleseismic array data. Multi-component array data are
first propagated backward by solving the elastic wave equation. After polarization
separation, a modified cross-correlation imaging condition between P and S wave
constitutes is applied to obtain an inverse scattering transform. From synthetic experiments
it is evident that for complex geological structures RTM is superior to traditional receiver
functions analysis, such as common conversion point (CCP) stacking.

Two preprocessing steps are required for RTM application on sparsely sampled
teleseismic dataset: source normalization and trace interpolation. The source radiation
pattern, especially the polarity of traces, is corrected by multi-channel cross-correlation
technique. The unknown source signature is then estimated by principle component analysis
and deconvolved from raw data by Wiener deconvolution. Curvelet interpolation with
sparsity promotion is employed to interpolate irregularly and sparsely sampled traces into
regular and dense grids. Synthetic and real data examples demonstrate that for typical
teleseismic acquisition geometry, with 50% to 85% missing traces, the curvelet-based
interpolation works remarkably well. The application on Hi-CLIMB array data in Tibetan
plateau reveals clear and continuous Moho discontinuity at the depth of about 70 km, as well
as fine crustal structures.

Second, we use a high-frequency approximation of inverse scattering, generalized Radon
transform (GRT), to probe the lowermost mantle beneath Central America and East Asia.
Inverse scattering of about 130,000 ScS traces and 120,000 SKKS traces reveals multiple
reflectors above the conventional D" region. This result is inconsistent with expectations
from a pure thermal response of a single isochemical post-perovskite transition but can be
explained with post-perovskite transitions in differentiated slab materials. Our results imply
that the lowennost mantle is more complex than hitherto thought and that the presence of
interfaces and compositional heterogeneity beyond the D" region.
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Thesis Co-Supervisor: Maarten V. de Hoop
Title: Professor, Purdue University
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(B) common conversion point (CCP) stacking of traditional receiver functions.
(A) Bottom: P waves impinging on a contrast produces direct P and converted S
waves, which can be recorded at an array of seismograph stations at the surface
(black triangles). Top: P and S energy due to scattering at, say, point i arrives at
different times (blue and red boxes, respectively). In inverse sense, the location
point i can be reconstructed by optimization of the correlation between the
back projected P and S wavefields. (B) Bottom: in traditional receiver functions,
the P-SV conversion is assumed to occur at an interface that is (locally)
horizontal. Top: The travel time difference At between transmitted P and
converted S is a measure of interface depth, and data redundancy is obtained by
stacking over common conversion points (CCP), shown as a red oval..........53

Figure 2-2 Synthetic data (A, B) computed for two test models - a lens-kink model
(C) and a layer-kink model (D) - with vx and v, the horizontal and vertical
components, respectively, of particle velocity. The dimension of the models is
90 km by 60 km. Receivers are at the surface and up to 22 (explosive) sources
are located at the bottom of the models, shown as white stars in (C) and (D).
The source central frequency is 2 Hz, and a Ricker wavelet is chosen as the
source time function. In the lens-kink model, a 7% low velocity Gaussian lens
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visible in the inset of (A). Corresponding S and mass density models are
obtained through scaling of the P models shown here......................................54

Figure 2-3 Background models (A, D) and converted wave RTM imaging results (B,
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2-2B) using the 1-D background model shown in (A). (D) Smooth 2-D
background (inset: with low velocity lens). (E) Recovery of the lens-kink model
with the 2-D background model (inset: recovery using 2-D model that includes
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Chapter 1

Introduction

1.1 Inverse Scattering

In the past decades our knowledge of the Earth's interior has evolved from a radial

stratified model, for instance, PREM [Dziewonski and Anderson, 1981] or akl35

[Kennett et al., 1995], to a complex 3D view exhibiting strong lateral heterogeneities on

all (resolved) length scales. The relatively smooth deviations from a ID radially

symmetric Earth can be delineated by body wave [e.g. van der Hilst et al., 1997; Grand,

2002; Li et al., 2008] or surface wave transmission tomography [e.g. Trampert and

Woodhouse, 1995; Boschi and Ekstrem, 2002; Yao et al., 2006; Lebedev and van der

Hilst, 2008]. Seismic tomography attributes travel time anomalies to volumetric

heterogeneities and is relatively insensitive to seismic sharp discontinuities due to, for

instance, compositional or mineral phase changes. On the other hand, reflected [e.g.

Shearer and Flanagan, 1999; van der Hilst et aL., 2007; Cao et al., 2011] or scattered
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waves, including wave mode conversion (P-to-S or S-to-P conversion) [e.g. Langston,

1977; Dueker and Sheehan, 1997; Bostock et al., 2001; Kind et al., 2002; Gilbert et al.,

2003], can recover the topography of sharp boundaries, such as Moho, 410', 660' and D"

discontinuities.

The seismic methods used so far to probe Earth's discontinuities fall into three main

categories: forward modeling, 1D stacking, and inverse scattering (migration). The trial

and error based forward modeling has provided evidence for strong and wide-spectrum

heterogeneities in the Earth [e.g. Lay and Helmberger, 1983; Zhu and Helmberger, 1998;

Garnero, 2000]. However, waveform modeling requires sufficient energy for the signal

of interest to be clearly visible in individual traces. This requires large earthquakes and,

often, analysis of data near the critical angle. In turn, this implies that only very limited

regions can be studied [Wang et al., 2006]. Stacking the traces over a Fresnel zone can

enhance the signal-to-noise ratio, and is routinely applied in teleseismic imaging, for

instance SS in the transition zone [e.g. Shearer, 1993; Deuss and Woodhouse, 2001], ScS

in the lowermost mantle [e.g. Thomas et al., 2004a; Hutko et al., 2006], and receiver

functions in crust and upper mantle [e.g. Dueker and Sheehan, 1997; Zhu, 2000]. An

important drawback of stacking is the ID model assumption, which is only valid when

the discontinuity is laterally continuous and the topographic variation is small [Zheng,

2007; Shang et al., 2012]. Compared with the two methods above, inverse scattering

relies on fewer prior assumptions about the Earth's structures and can provide finer

resolution images with less artifacts. It has become popular recently with available dense
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seismographic arrays [e.g. Poppeliers and Pavlis, 2003; Chen et al., 2005; Wang et al.,

2006; Cao et al., 2010; Shang et al., 2012].

There are different implementations of inverse scattering. We consider the category of

approaches known under the collective names of Kirchhoff migration or generalized

Radon transform (GRT) [see Beylkin, 1985; Miller et al., 1987; Bleistein et al., 2001] and

reverse time migration (RTM) [Whitmore, 1983; McMechan, 1983; Baysal et al., 1983;

Op't Root et al., 2012; Brytik et al., 2012]. GRT is based on the high frequency

approximation and is applicable in sufficiently smooth background models. On the other

hand, RTM solves the wave equation and leads to robust solutions, which admit

background models of limited regularity. From data acquisition aspect, GRT is relatively

flexible for source-receiver configuration whereas RTM has more stringent sampling

requirement. One can choose different approaches according to the imaging targets and

acquisition geometry. For instance, GRT might be adequate for deep mantle imaging due

to the smoothness of available background models and sparse and irregular samplings

over the globe. With dense seismic array data, RTM can be applied for high-resolution

seismic images of the crust and upper mantle.

1.2 Thesis Objectives and Motivation

Increasingly dense seismographic arrays are being deployed all over the world to

constrain better subsurface structures and geological processes. For conventional methods

of detecting seismic discontinuities, e.g. receiver functions and common-bounce-point
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stacking, the gain from reducing station interval is diminishing due to the simplifying but

often limiting assumptions about the Earth's structures (ID velocity model assumption,

for instance) [e.g. Rondenay, 2009; Shang et al., 2012]. In this thesis we further develop

the concepts of inverse scattering for utilizing the full complexity of the wavefields

recorded by dense arrays and networks. We propose passive source elastic reverse time

migration, a new type of wave equation migration, for subsurface imaging with multi-

component teleseismic data. Following the pioneer work of Wang et al. [2006] and Wang

et al. [2008], ray theory based GRT is further refined for deep mantle probing. An

efficient and robust data preprocessing workflow, including source normalization and

trace interpolation, is necessary for inverse scattering applications, and is presented in

this thesis as well. As real data examples, we apply passive source RTM to the images of

south Tibetan lithosphere, and employ GRT to probe the lowermost mantle beneath

central America and east Asia.

The most prominent feature in the lithosphere is the Mohorovi'id discontinuity (Moho),

which marks the boundary between the Earth's crust and mantle. Though a precise

definition of Moho is absent, it is a distinct manifestation of a differentiated Earth, as

physical and chemical properties change significantly across it, such as seismic wave

velocity, density, rheology petrology, and mineralogy. Using Moho as a structural marker,

we can infer valuable information about tectonic processes, e.g. how the oceanic slab

subducts into the trench, how the lithosphere deforms during continental collision, and to

which level the crust is compensated isostatically. For detailed reviews on the nature of
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Moho we refer to Jarchow and Thompson [1989] and Eaton [2006] and references

therein.

There are two popular seismic methods to determine the location of Moho discontinuity.

One is the controlled source method. The sources explode on the surface and the

reflection/refraction data are collected to constrain the Moho depth and crust velocity.

The accuracy highly depends on the identification of Pg and Pn phases [e.g. Prodehl and

Mooney, 2012]. Another method is the passive source method, such as common

conversion point stacking (CCP) of receiver functions, which exploits wave mode

conversions between P and S at discontinuities [e.g. Langston, 1977; Ammon, 1991;

Dueker and Sheehan, 1997; Gilbert et al., 2003]. This method fails in presence of small-

scale structures (comparable with wavelength) due to the ID model assumption. Under

complex geological circumstances inverse scattering, such as passive source RTM, can

improve the image quality with less artificial structures.

Since the collision between the Indian and Eurasian plates started -50 million years ago,

the Tibet plateau has been uplifted more than 5 km and the crust is twice as thick as

average continental crust (-70 km) [e.g. Yin and Harrison, 2000; Royden et al., 2008].

Evident deformation occurred in the crust and lithosphere during the continental collision.

Rich features of Moho in Tibet are reported, such as abrupt steps (up to 20 km vertical

offset) [e.g. Hirn et al., 1984; Zhu and Helmberger, 1998; Wittlinger et al., 2004], double

Moho [e.g. Kind et al., 2002; Wittlinger et al., 2004; Ndbilek et al., 2009; Wittlinger et

aL., 2009], and disrupted Moho [e.g. Nowack et al., 2010]. In this thesis we use passive
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source RTM to delineate the Moho discontinuity in south Tibet with Hi-CLIMB array

data.

The structure atop the core-mantle boundary (CMB) is as enigmatic as that of the Earth's

lithosphere. One prominent feature in the lowermost mantle from global tomography is a

belt of high seismic velocity along the circum-Pacific and two large low velocity

provinces (LLVPs) beneath the middle Pacific and west Africa [e.g. Li and Romanowicz,

1996; Grand, 2002; Ishii and Tromp, 2004; Li et al., 2008]. Due to the good spatial

correlation with subduction zones and hot spots, a popular hypothesis is that the high

velocity anomaly may be related to subducted slab dregs [e.g. Richards and Engebretson,

1992; Christensen and Hofmann, 1994; Grand et al., 1997; van der Hilst et al., 1997],

while the low velocities are often interpreted as dense thermochemical piles or super

mantle plumes [e.g. Kellogg et al., 1999; Ni et al., 2002; Jellinek and Manga, 2004;

McNamara and Zhong, 2005]. However, the thermal and chemical attributes of such

heterogeneities in the lowermost mantle are still not well constrained.

Since a mantle discontinuity is firstly documented at the top of D" region [Wright and

Lyons, 1980; Lay and Helmberger, 1983], the D" discontinuity (~100 to 450 km above

CMB) is reported at dozens of locations all over the world [for a review, see Wysession et

al., 1998]. Global existence of the D" discontinuity has, however, not been established. It

is partially due to the source-receiver geometry restriction imposed by the prevailing

method, trial-and-error based waveform modeling, and only fairly limited D" regions

have been studied [Wang et aL., 2006]. On the other hand, with inverse scattering, such as

24



GRT, it is plausible to image the fine structures on a large (potentially continental) scale

[e.g. Wang et al., 2006; van der Hilst et al., 2007; Wang et al., 2008]. The nature of the D"

discontinuity is still under debate. It could represent a thermal, mineralogical or chemical

boundary [e.g. Wysession et al., 1998; Sidorin et al., 1999; Sun et al., 2006]. Recent

studies reveal more than one seismic discontinuity within this mysterious lowermost

mantle, such as in the large low-shear-velocity province (LLSVP) beneath central Pacific

ocean [Lay et al., 2006], north Asia [Gaherty and Lay, 1992; Thomas et al., 2004b], and

central America [Thomas et al., 2004a; van der Hilst et al., 2007; Hutko et al., 2008].

The discovery of MgSiO 3 perovskite (Pv) to post-perovskite (pPv) phase transition offers

new opportunities for understanding the structures near CMB [Murakami et al., 2004;

Oganov and Ono, 2004; Shim et al., 2004]. Due to a large Clapeyron slope for Pv-pPv

phase transition and large thermal gradients expected in the D" region (presumably a

thermal boundary layer), the Pv-pPv phase boundary could be crossed twice by the

geotherm, as pPv might transfer back to Pv in the deeper location [e.g. Hernlund et al.,

2005; Lay et al., 2006; van der Hilst et al., 2007]. The existence of such a post-perovskite

lens has been proposed to explain the double layers in D" region, which if correct,

enables the estimation of the thermal structure at the lowermost mantle [see Hernlund et

al., 2005; Lay et al., 2006; van der Hilst et al., 2007]. Recent high pressure-temperature

studies, however, suggest that pPv transition is sensitive to the mantle chemical

composition [e.g. Catalli et al., 2009; Andrault et al., 2010; Grocholski et al., 2012]. The

pPv transition pressure for standard bulk composition, such as pyrolite, may be too high

to occur in the lower mantle. Candidate compositions for a seismically detectable pPv
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transition at pressures less than the CMB include mid-oceanic ridge basalt (MORB) and

harzburgite components of differentiated oceanic lithosphere transported to the

lowermost mantle by subduction. Motivated by the hypothesis above, we conduct high-

resolution and large-scale seismic images of the lowermost mantle along the circum-

Pacific region, east Asia and central America.

1.3 Thesis Outline

In Chapter II we present passive source reverse time migration, a new type of wave

equation prestack depth migration, to image crust and mantle structures. Theory and

synthetic tests are carried out to demonstrate the viability and promise of the new method.

In Chapter III we propose a semi-automatic preprocessing workflow suitable for

massive volume of teleseismic data. Synthetic and real data show the efficiency and

robustness of the workflow. This workflow is used in the real data applications of

Chapter V and VI. In Chapter IV we investigate the concept of wavefield interpolation,

which is an important preprocessing step for reverse time migration. We employ the

curvelet transform and sparsity promoting inversion to reconstruct the wavefield from

sparsely sampled dataset. In Chapter V passive source RTM is adopted to the imaging of

the lithosphere beneath south Tibet with li-Climb array data. The new method reveals

complex and rich structures in this prominent continental collision region. In Chapter VI

we apply ray theory based GRT to image the lowermost mantle beneath central America

and east Asia. The seismic images are interpreted in terms of mineral physics and
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geodynamics. In Chapter VII we summarize the key results of our studies and discuss

possible directions for the future work.
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Chapter 2

Passive Source Reverse Time Migrationt

In this chapter, we present a wave equation prestack depth migration to image crust and

mantle structures using multi-component earthquake data recorded at dense seismograph

arrays. Transmitted P and S waves recorded on the surface are back propagated using an

elastic wave equation solver. The wave modes are separated after the reverse-time

continuation of the wavefield from the surface, and subjected to a (cross-correlation type)

imaging condition forming an inverse scattering transform. Reverse time migration

(RTM) does not make assumptions about the presence or properties of interfaces -

notably, it does not assume that interfaces are (locally) horizontal. With synthetic

experiments, and different background models, we show that passive source RTM can

reconstruct dipping and vertically off-set interfaces even in the presence of complex wave

phenomena (such as caustics and point diffraction) and that its performance is superior to

t Published as: Shang, X., M. V. de Hoop and R. D. van der Hilst (2012), Beyond
receiver functions: Passive source reverse time migration and inverse scattering of
converted waves, Geophys. Res. Lett., 39, L15308.
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traditional receiver function analysis, e.g. common conversion point (CCP) stacking, in

complex geological environments.

2.1 Introduction

Increasingly dense seismographic arrays are being deployed all over the world in

attempts to constrain subsurface structures and geological processes in greater detail.

Reducing the spacing between seismograph stations will, ultimately, have diminishing

returns unless we can apply imaging methods that exploit the full complexity of the

recorded broadband wavefields and that do not rely on simplifying - but often profoundly

limiting - prior assumptions about Earth's structure.

Common conversion point (CCP) stacking techniques are now routinely applied in the

receiver function workflow to image interfaces in the crust and mantle beneath the

stations [e.g. Dueker and Sheehan, 1997; Gilbert et al., 2003; Zhu, 2000]. For smoothly

varying structures this can produce good results [e.g. Zhai and Levander, 2011], but the

horizontal interface assumption in CCP stacking prevents the accurate imaging of

geologically complex structures, such as dipping and laterally discontinuous interfaces

(e.g. strong interface topography, steep faults, steps in Moho). Moreover, stacking data

from individual stations cannot adequately suppress scattering or diffraction "artifacts"

[e.g. Chen et al., 2005; Rondenay, 2009; Sheehan et al., 2000].
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With access to data from dense arrays we can avoid stacking in the spatial domain, e.g.

over a presumed horizontal interface, and propagate scattered energy back to the

subsurface point where scattering occurs. Reverse time migration (RTM) improves

image quality remarkably. Migration is based on the single scattering approximation and

does not distinguish between refraction and reflection. Its application to refraction data,

however, is more recent than its application to reflection data; see Levander et al. [2005].

There are different types of seismic imaging method. We consider reverse time migration

[Baysal et al., 1983; McMechan, 1983; Whitmore, 1983] and the category of approaches

known under the collective names of Kirchhoff migration [Bleistein et aL., 2001] or

generalized Radon transform inversion. For example, Beylkin [1985] and Stolk and De

Hoop [2002] analyze inverse scattering using asymptotic methods and Op't Root et al.

[2012] use the full-wave equation. Applications to global seismology, with wavefonn

data from earthquakes, which (relative to active source exploration) introduces

complications due to uncertainties in hypocenter location and source signature, can be

found in Rondenay et aL. [2001], Poppeliers and Pavlis [2003], and Chen et aL. [2005].

Ray theory yields high frequency solutions of the wave equation and essentially is

applicable in sufficiently smooth background models. Solving the full wave equation

leads to robust solutions, which admit background models of limited regularity.

Brytik et al. [2012] developed a comprehensive theory for RTM-based (elastic) inverse

scattering with converted waves in anisotropic media. Building on that analysis we

present here a wave equation method for the migration of converted waves to image crust
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and mantle structures using teleseismic array data. Here, we use a bilinear imaging

operator acting on the data, which is essentially a cross-correlation operator of all

receiver pairs. Passive source RTM of converted waves differs fundamentally from single

station receiver function (RF) analysis and also in several important ways from more

traditional RF migration by, for instance, Chen et al. [2005]. Firstly, it concerns reverse-

time continuation, in which the raw data from individual earthquakes are back propagated,

whereas Chen et al. [2005] uses CCP stacked RFs, which degrades spatial resolution

because of the implicit 1D assumption in RF construction that the interfaces are (locally)

horizontal. Moreover, it solves the elastic wave equations explicitly and accounts for

wave phenomena such as the formation of caustics underneath the array.

2.2 Methodology

Teleseismic P (or S) waves impinging on an interface from below can convert to other

modes (e.g. P-to-S or S-to-P), which then propagate with different wave speeds to

seismographs at the Earth's surface (Fig. 2-1). With assumed wave propagation speeds

and angles of incidence, traditional receiver functions simply convert the arrival time

difference between transmitted and converted phases as measured at a single station

down to the depth where the conversion occurs (Fig. 2-B), and signal-to-noise is

enhanced by stacking over data with common conversion points. As is illustrated in Fig.

2-B, for single station RF analysis the points where refraction (e.g., P-P) and mode

conversion (e.g., P-S) occur are not the same, which introduces the need to assume that -

at least locally (that is, within the first Fresnel zone of the incident wave) - the interface
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is horizontal. In contrast, RTM exploits the entire wave field, as sampled by a dense

array, to locate the points where scattering (including mode conversion) occurs (Fig. 2-

IA). Noise suppression in RTM occurs through the continuity property of the underlying

inverse scattering transform on the one hand and through stacking over different sources

(or events) on the other hand. The resolution can be expressed in terms of the Rayleigh

diffraction limit (e.g. /4, X is the incident wave wavelength).

Snapshots of the wave field can be reconstructed by back propagation of the recorded

array data. Due to the difference in P and S wavespeed, the relevant parts of the

transmitted and converted wave fronts were in the same location only at the time of

conversion. While strictly correct only in the absence of multiple scattering, this

observation was used in developing the basic "imaging condition" [e.g., Claerbout, 1971]

in exploration seismology. The conversion time (and the corresponding location of the

point where conversion occurred) can be found by applying the imaging condition (here,

a cross-correlation function between different wave modes).

There are three main steps in teleseismic, passive source RTM. Firstly, for each

earthquake, using reverse-time continuation, the snapshots of the elastic wave field are

reconstructed from the recorded multicomponent array data. Secondly for each snapshot

P and S constituents are separated by polarization decomposition (detailed later). Finally

the imaging condition, derived from a cross-correlation between P and S wave

constituents, is applied. The final image is then obtained by summation of the images

from individual events.
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A major challenge for passive source RTM is the uncertainty in source signature and the

fact that all sources are different. For P (S) wave incidence we estimate the source

signature from the vertical (radial) component array data by multichannel analysis, e.g.

multichannel cross correlation (MCCC) and principle component analysis (PCA)

[Rondenay and Fischer, 2003; VanDecar and Crosson, 1990]. The elastic Green's

functions are then estimated by deconvolution of the source signature from all three

components, and the wave field is reconstructed by reverse-time continuation from the

surface boundary data [e.g. McMechan, 1983]. Here we solve the elastic wave equation

in the time domain using a staggered grid finite difference propagator [Virieux, 1986].

In 3-D (isotropic elastic media), for each time step, the reconstructed displacement

wavefield u, can be decoupled into P, SV and SH components by projection operators Q*

[Brytik et al., 2011 ]:

Urp Q* Ur Ur,s = Q*, u, and UrSH = QS*, , (2.1)

which are defined as

a21 axaQ (-A)"2 !A± / 2 axJ

SV ~ iax ax aX x3(22

1 aX aX-aX

QS*H (-A/ 1 2  a a (
= ( ax2 ax

Here, A is the Laplacian operator, A' is a2 / ax + 2 / , and i is the imaginary unit. In

2-D these operators degenerate to:
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A 1/ (2.3)

Q* = (-A')"2 K a
i ( x" ax1

After decoupling of P and SV components, the imaging condition for P wave incidence

from a single source is applied [Brytik et al., 2012]:

I(x) = T ,atU (x,t) au,(X, t)

+ V U (x,t)- ( )-/2a ,V t )f dt (2.4)

where T is the total recorded time, and f(x) is S wave velocity. For S wave incidence, one

can exchange Urp with ursv and replace fi(x) by a(x) (P wave velocity). At sufficiently

high frequencies the operator (-A) 1
1
2 , can be approximated (in the asymptotic limit) as

8(x) - or a(x) for S wave incidence.

The transmission (reflection) coefficient T, (Rp,) is an odd function of P wave incidence

angle [Aki and Richards, 2002; Balch and Erdemir, 1994]. In absence of elaborate

corrections for radiation patterns (see Brytik et al. [2012]), at least we need to correct for

the sign of converted SV waves in order to constructively sum all partial images. We

determine the sign by evaluating the Poynting vector [e.g. Cerveny, 2001; Dickens and

Winbow, 2011] to find the incidence angle of P wave and transmission angle of converted

SV wave. The sign of SV waves is then reversed, if necessary.

2.3 Numerical examples
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We demonstrate the performance of converted wave RTM with numerical experiments,

using synthetic data generated by a fourth order finite difference scheme. We also

investigate the effect of background models on image quality and compare the

performances of RTM with CCP stacks of RFs. Two models with lateral heterogeneities

are employed to generate synthetic data: a lens-kink model and a layer-kink model (Fig.

2-2C and 2-2D). Both models contain a discontinuous interface. In the lens-kink model a

Gaussian low velocity lens is used to investigate effects of wave phenomena caused by a

low velocity anomaly in the crust. Caustics can be observed in the data recorded at the

surface (two components of the particle velocity) (Fig. 2-2A, inset). Interior (explosive)

point sources are placed at the bottom of the models (Fig. 2-2C and 2-2D) and injected as

P arrivals. We use a total of 22 events, but the contribution of individual sources is also

illustrated. The central frequency of the source function is 2 Hz. The spacing between

receivers (at the surface) is 300 m, which is smaller than the "spatial" Nyquist frequency

and avoids "spatial" aliasing.

To assess the effect of background model, we use two types of model for the inversion

step (that is, the back propagation): a 1-D model with a linear increase of wave speed

with depth (Fig. 2-3A) and a 2-D smooth model with (smooth) spatial variations in wave

speed that resemble the actual structures (Fig. 2-3D). We note that the latter could be

obtained, for instance, through tomography. Comparing the RTM imaging results for the

lens-kink model (Fig. 2-3B and 2-3E), the kink structure is, as expected, better recovered

if we use the 2-D background model. Absence of the low velocity lens in the background

model introduces artificial topography on the horizontal layer between 20~40 km
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horizontal distance (Fig. 2-3E), and inclusion of the lens (Fig. 2-3D, inset) yields near

perfect recovery (Fig. 2-3E, inset). In the layer-kink model, the 2D smooth model

improves the reconstruction of the vertical structure (Fig. 2-3F) and the flat interface

below the kink. The amplitude along this flat interface is not balanced (e.g. amplitude

decrease can be observed for x>50 km range) due to illumination effects; this common

phenomenon can be corrected in angle domain [e.g. Wu et al., 2004] but that is not done

here. A partial image from one earthquake (Fig. 2-3F, inset) suggests that the main

structures can be revealed by only a few events as long as they provide good illumination.

In Fig. 2-4 we compare converted wave RTM with CCP stacking results. The models

used to generate the synthetic wavefields are the same as in Fig. 2-3 except the edges of

the kink discontinuity are smoothed to suppress the corner diffraction that would

otherwise overwhelm the CCP stacks even more. Three localized plane waves (plane

waves tapered by a Gaussian window) with different position and incident angles are

used as incident waves (Fig. 2-4A and 2-4D). For this comparison, we use the same 1-D

background model for CCP stacking and RTM. Even for this relatively simple model, the

wave field appears to be too complicated for CCP stacking to reconstruct the input model

(Fig. 2-4B and 2-4E). Indeed, the horizontal interfaces can barely be discerned among the

image artifacts, and the vertical structure is not recovered at all. In contrast, despite the

complexity of the wavefield, the RTM images reveal clearly the interfaces, even with

data from only three sources.

2.4 Discussion

45



Linearized imaging methods, either ray-based or wave equation based, are sensitive to the

background model. We demonstrate here that a background model with lateral

heterogeneity can greatly improve the image quality, especially near vertical structures. A

smooth background model can be estimated from geological models, from travel time or

surface wave tomography - either in active or passive (e.g., ambient noise) studies, or by

wave equation (WE) reflection tomography [Burdick et al., 2013]. Indeed, in the future

we aim to combine passive source RTM and WE reflection tomography in an explicit

(non-linear) joint inversion of teleseismic wavefields for wavespeed and interface

location.

With the simple models used here, the kinked interface violates the flat layer assumption

in CCP stacking and the low velocity lens causes the formation of caustics that cannot be

accounted for with CCP stacking. The diffraction artifacts in the CCP stacking image can

be suppressed somewhat if more events are included, but breakdown of (translational)

symmetry assumptions cannot be avoided. In contrast, RTM - a wave equation method

based on an artifact-free imaging condition - accounts for wavefield complexity and

effectively migrates corner diffraction energy back to the proper position in the final

image (Fig. 2-4C and 2-4F). Another indication of the promise of passive source RTM is

that only a few earthquakes with good illumination coverage and high signal-to-noise

ratio are sufficient, even in geological environments that render CCP stacking ineffective.

Given the irregular distribution of naturally occurring earthquakes, our method can

improve seismic imaging in large areas, provided, of course, that data from dense

seismograph arrays are available.
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In our demonstration of the concept and promise of passive source RTM we suppressed

several practical challenges. Firstly, RTM has stringent sampling requirements. The

sampling theorem suggests that the spatial interval Ax, in principle, should be less than

(,a)min/ 2 , where (2 a)min is the minimum horizontal apparent wavelength for a given depth.

For a typical teleseismic study, with frequencies around or above 1Hz, a station interval

of 5 km should be sufficient [see Chen et al., 2005 for details]. In the real acquisition,

irregular and sparse (aliased) sampled data can introduce significant "noise" in RTM.

Such problems can be partially mitigated by interpolation in frequency-wavenumber

[Spitz, 1991; Zwartjes and Sacchi, 2007] or curvelet domain [Naghizadeh and Sacchi,

2010]. Secondly, the effect of limited illumination needs to be compensated in passive

source RTM. In our experiments, the 22 point sources at the bottom provide near full

illumination coverage. In real data, the incident angle of teleseismic wave is constrained

in a narrow range (~ 15 - 40 ) due to the sparsity and irregularity of the earthquake

distribution. This means that geological structures can only be partially imaged. The

illumination (aperture) effect can be corrected by computing the (diagonal of) normal

operator and its approximate inverse [e.g. De Hoop et al., 2009]. Another problem is the

presence of multiples, for instance the reverberation in shallow sedimentary layers.

Certain techniques from exploration seismology can to some extent suppress the

multiples [e.g. Berkhout and Verschuur, 1997]. These challenges are not unique to RTM,

however, and thus beyond the scope of this paper.

2.5 Summary
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We present a method for subsurface imaging with multi-component data from dense

seismograph arrays that does not rely on simplifying (e.g., l-D) assumptions about the

geometry of the geological structures of interest. The array data are backward propagated

by solving the elastic wave equation directly. After polarization separation, a modified

cross correlation imaging condition between P and S wave constitutes is applied to obtain

an inverse scattering transform. From synthetic experiments, it is evident that for

complex geological structures the new method is superior to the traditional CCP receiver

function stacking, provided that data from dense seismograph arrays are available. At

present, few arrays are suitable for applications of teleseismic RTM without substantial

preprocessing (including interpolation), but in view of the trend to deploy increasingly

dense arrays we expect that passive source RTM will become feasible - and even routine

- in the near future.
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Passive Source RTM

_E

Traditional Receiver Functions
b5-

At

P
--S

Figure 2-1 Schematic illustration of (A) passive-source reverse time migration and (B)
common conversion point (CCP) stacking of traditional receiver functions. (A) Bottom: P
waves impinging on a contrast produces direct P and converted S waves, which can be
recorded at an array of seismograph stations at the surface (black triangles). Top: P and S
energy due to scattering at, say, point i arrives at different times (blue and red boxes,
respectively). In inverse sense, the location point i can be reconstructed by optimization
of the correlation between the back projected P and S wavefields. (B) Bottom: in
traditional receiver functions, the P-SV conversion is assumed to occur at an interface that
is (locally) horizontal. Top: The travel time difference At between transmitted P and
converted S is a measure of interface depth, and data redundancy is obtained by stacking
over common conversion points (CCP), shown as a red oval.
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Figure 2-2 Synthetic data (A, B) computed for two test models - a lens-kink model (C)
and a layer-kink model (D) - with v,, and v, the horizontal and vertical components,
respectively, of particle velocity. The dimension of the models is 90 km by 60 km.
Receivers are at the surface and up to 22 (explosive) sources are located at the bottom of
the models, shown as white stars in (C) and (D). The source central frequency is 2 Hz,
and a Ricker wavelet is chosen as the source time ftmction. In the lens-kink model, a 7%
low velocity Gaussian lens forms a crustal low velocity anomaly; the caustics produced
by this lens are visible in the inset of (A). Corresponding S and mass density models are
obtained through scaling of the P models shown here.
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Figure 2-3 Background models (A, D) and converted wave RTM imaging results (B, C and E, F). (A) Gradual
increase of wavespeed with depth. (B, C) Recovery of the lens-kink model (data shown in Fig. 2-2A) and layer-kink
model (data in Fig. 2-2B) using the 1 -D background model shown in (A). (D) Smooth 2-D background (inset: with
low velocity lens). (E) Recovery of the lens-kink model with the 2-D background model (inset: recovery using 2-D
model that includes the low velocity lens). (F) Recovery of the layer-kink model with the 2-D background model
(inset: partial image obtained with data from a single source, red star).
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Figure 2-4 Comparison between CCP stacking and RTM. (A) Lens-kink model. Three localized P plane waves are used as
incident sources to generate synthetic data. The localized plane waves with different incident angles are shown in the bottom
layer. (B) CCP stacking results using ID linearly increased model. (C) RTM result based on the same ID model as in (B).
(D) Layer-kink model. The same localized P plane waves as of (A) are used for the generation of synthetic data. (E) CCP
stacking results using ID linearly increased model. (F) RTM result based on the same ID model as in (E). The dashed lines
in (B), (C), (E) and (F) show the interfaces in true models (A) and (D).



Chapter 3

Teleseismic Data Preprocessing for Inverse

Scattering Applications

In this chapter, we describe in detail the preprocessing of raw seismic data and retrieval of

the Earth's impulse response (Green's function) for our inverse scattering applications. There

are three main steps: instrument response removal, source signature estimation, and source

deconvolution. Furthennore, noisy and dead traces need to be discarded. We propose a semi-

automatic workflow that is suitable for applications to large datasets. Firstly, the instrument

response is removed. The traces are then aligned with a reference phase by multi-channel

cross-correlation. The noisy traces are marked and removed automatically at the same time.

The polarity of traces is corrected according to the sign of cross-correlation coefficients.

After alignment, the source signature is estimated by principle component analysis. Finally,

the source signature is deconvolved by a Wiener inverse filter, which is optimal, data-

adaptive, and, therefore, superior to traditional water level deconvolution.
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3.1 Introduction

With rapidly increasing broadband seismic data, especially deployment of dense arrays, an

efficient and robust preprocessing workflow is necessary for teleseismic imaging. The

recorded raw data are a convolution of earthquake source, Earth's impulse response (Green's

function), and instrument response. The main purpose of data preprocessing is to extract the

Green's function and increase single-to-noise (SNR) ratio. Normally the workflow includes

removal of bad (or dead) traces, suppression of random noise, and deconvolution of the

instrument response and source terms. Compared with the controlled seismic experiments,

one essential challenge is that the source mechanism of natural earthquakes is highly non-

uniform and usually not well known. Therefore, a key step in the preprocessing workflow is

source normalization, involving source magnitudes, unknown source time functions, and

intrinsic source radiation patterns [Zheng, 2007].

Multiple earthquakes illuminate the target region from different directions. The final seismic

image is obtained by stacking all of the partial images from individual events. If the source

magnitude were not taken into account, large earthquakes would dominate the final image.

Such a problem can be solved by introducing reference phases, which are easily identified in

the data, e.g. direct S wave [Wang et al., 2006], surface multiple SS wave [Cao et al., 2010],

and depth phase pP [Zheng, 2007]. The traces then can be normalized with respect to the

reference phase. The precursors or coda of the reference phase can be used for fine structure

imaging.
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The earthquake mechanism (source time function and radiation pattern) varies across events.

It can be estimated by long-period waveform inversion [e.g. Dziewon'ski et al., 1981; Sipkin,

1982; Ndblek, 1984]. The centroid-moment-tensor (CMT) solution for M, ;> 5.0 events can

be retrieved from the Internet website www.globalcmt.org [Ekstrom et al., 2012]. With

recordings from dense arrays, for instance USArray and dense arrays in Europe and China,

the source signature can be estimated by multi-channel techniques, e.g. multi-channel cross-

correlation (MCCC), and principle component analysis (PCA) [e.g. Rondenay et al., 2005;

VanDecar and Crosson, 1990].

In the following sections, we introduce an efficient and robust workflow combining source

normalization and data selection. There are three main steps: (i) align the data with respect to

the incident wavefield. Meanwhile, the polarity of particle motion is corrected and bad traces

are removed automatically; (ii) estimate the source signature; (iii) deconvolve the source

signature.

3.2 Source Estimator and Data Selector

3.2.1 Shift and Sum

The coherency of teleseismic waveforms leads naturally to the use of correlation methods.

We assume that for a given earthquake each receiver in a seismic array contains a time-

shifted signal as well as noise. Receiver i records the data as,

dj(t)= f(t - t)+nj(t) , (3.1)
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where ti is relative delay time and n (t) is the noise term. One can consider the coherent signal

f(t) as an effective source wavelet (or source signature). Note that the source signature may

include source side reverberations that have similar moveout curves as the incident wave,

while the scattered wavefield with distinct moveout is regarded as noise [e.g. Rost and

Thomas, 2002; Rondenay, 2009].

We follow Rost and Thomas [2002] but proceed in the frequency domain. Eq. (3.1) then

becomes:

d,(w)= f (co)ejc't + n1(0) (3.2)

or

f(o)= di(w)e- "" - ni(W)e-j) t . (3.3)

The source signature can be estimated by "shift and sum" as

1 M
f(W) = -Id,(o)e-1' (3.4)

where Mis the number of receivers. It is an unbiased estimator off(co), given the noise term

(including white noise and correlated noise with distinct moveout) is stacked out

I ni(o)e-jWti = 0 . (3.5)

One can also use principle component analysis to better separate incident and scattered

wavefields, see Rondenay et al. [2005] for more details.

3.2.2 Multi-Channel Cross-Correlation
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Multi-channel cross-correlation technique is widely used to measure the differential travel

time [ VanDecar and Crosson, 1990]. Here we carefully tailor it to estimate the relative delay

time t in Eq. (3.1), identify and correct for opposite polarities, and to conduct data quality

control.

For a given teleseismic event, a preliminary travel time t[ is calculated for receiver i based

on a reference model, e.g. PREM [Dziewonski and Anderson, 1981]. The cross-correlation

function between the ith andjth receiver can be defined as

to+
pj(r)= T di(t+t[)dj(t+tp+r)dt (3.6)

where -r is the lag time between two traces; to is the time between the preliminary arrival time

and the starting time of correlation window; T is the length of correlation window, which can

be chosen 2-3 cycles of the dominant frequency.

The relative delay time between two traces is

Atj =ti -tj =ti-t Ti j Max, (3.7)

where rTax is the lag time between two traces when the absolute value of Oi reaches the

maximum. In practice, one can constrain the range of r, ax in order to avoid cycle skips.

For M stations, Eq. (3.7) generates M(M- 1)/2 overdetermined equations, and the following

constraint equation can be added to remove the systematic error [VanDecar and Crosson,

1990]:

Y At 3 = 0 . (3.8)
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Combing Eq. (3.7) and (3.8), the relative time delay for ith receiver t, can be calculated by a

least-square fitting.

The cross-correlation coefficient for two traces can be expressed as

6, = , (3.9)

where au is the variance of ith trace in the correlation time window. Note the cross-

correlation coefficient in Eq. (3.9) is normalized and -1! j !1. So it is an important

indicator for data quality control. For a dead or highly distorted trace, the cross-correlation

coefficient is consistently low (with a small variance). For a good trace with opposite

polarity, it would produce high value but negative correlation coefficients.

3.2.3 Polarity Corrections and Data Selection

For true amplitude seismic imaging, it is important to take the intrinsic radiation patterns of

earthquakes into account, both the polarity (sign) and amplitude of traces. In practice, the

trace can be normalized with respect to a reference phase to compensate the amplitude effect.

The polarity of the trace needs to be corrected if necessary, otherwise the data would be

destructively stacked and produce degenerated migration image.

In a double-couple fault model, the radiation pattern for P, SV, and SH modes can be

expressed as
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FP= cos Asin 5sin2 i4 sin2(0-0,)-cos Acos5 sin2ig cos(0-0,)

+sin usin25(cos 2 i, -sin 2 i4 sin 2 (-0,)) (3.10)

+ sin Acos26sin 2i, sin(O-$,)

Fsv = sin A cos26 cos2i, sin(O - ,) - cos ) cos6 cos2i, cos( -$,)

1
+ -cos.A sin3 sin2i, sin2(0 - , (3.11)

2

- - sin A. sin 26 sin 2i, (1+ sin 2 (0 -

2

Fs" = cos. cos 3cos i, sin(4- ,)+cos A sino sin i, cos 2(0-0)

+sin, ucos28cosi, cos( -0,) (3.12)

1.
-- sin A sin 26 sin iL sin 2(0-0,)

where 0, 5, and A are fault strike, dip, and rake angle respectively; i is takeoff angle of the

outgoing ray and 4 is source-receiver azimuth [Aki and Richards, 2002].

The Harvard CMT solution for the source mechanism can be used as a reference for trace

polarity correction. However, it is estimated from long period seismograms recorded on

globally distributed seismographic stations [see Ekstr5m et aL., 2012 and references therein],

and not very accurate for short period body waves. We show in Fig. 3-1 the discrepancies

between the polarity prediction from the CMT solution and real data measurements. The

trace polarity is calculated from the CMT solution for direct P arrivals (Fig. 3-A) and SH

arrivals (Fig. 3-1B) with Eq. (3.10) and Eq. (3.12) respectively. The beach balls depict the

CMT solution and triangles are seismic stations. The green triangles are stations that agree

with the real data measurements. The red ones are those with opposite polarity to the CMT

prediction, and the black indicate unclear polarity picks. This comparison suggests that there

are quite a few outliners in both P and S polarity prediction from CMT solutions.
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Here we use a data quality indicator to correct the trace polarity based on multi-channel

cross-correlation. As mentioned above, the cross-correlation coefficient in Eq. (3.9) is a

useful indicator for the data quality. An average cross-correlation coefficient Yj for ith trace

can be introduced as

1 M
i = . (3.13)

M -j=1,ji

Those traces with - below a given threshold are considered as noisy (or dead) data, and

discarded for further processing. The trace with the maximum value of Tj is then used as a

reference trace. The polarity of all other traces is corrected accordingly,

sign(di) = sign(rgrf) , (3.14)

where 1 ,rf is the cross-correlation coefficient between ith trace and the reference trace. It is

possible that after polarity correction the sign for one earthquake may differ from another

event (e.g. all first arrivals are negative for one event, but positive for another). However,

after the source deconvolution, all events are considered as isotropic explosive point sources

consistently.

3.2.4 Synthetic and Real Data Examples

In this section, we present two examples of polarity correction and data selection, one of

which is synthetic data and another is from real data. We firstly generate 20 traces with

Ricker wavelets to mimic first arrivals, shown in Fig. 3-2A. The amplitudes of Ricker

wavelets are modulated by a cosine function, while the polarity and time delay are chosen

randomly. In addition, 25% Gaussian noise is superposed for each trace. All the traces are
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then aligned by multi-channel cross-correlation (Fig. 3-2B) with Eq. (3.6)-(3.8). The cross-

correlation coefficient matrix (Fig. 3-3A) and average cross-correlation coefficients (Fig. 3-

3B) are calculated as well. Note the 3rd trace and 19th trace are removed automatically due to

low cross-correlation coefficients (below our threshold 0.5). After alignment, the 17 th trace

with maximum average cross-correlation coefficient is selected as the reference trace, and the

polarity of all other traces is corrected accordingly with Eq. (3.14). The final result is

demonstrated in Fig. 3-2C.

We apply this procedure to a real dataset. One event recorded by USArray is shown in Fig. 3-

4. There are four clear phases in the data, direct S wave, ScS, and their depth phases. The raw

data is aligned with a preliminary S wave arrival time based on ak135 model [Kennett et aL.,

1995] (Fig. 3-4A). The traces are further aligned with MCCC (Fig. 3-4B), and some bad

traces are removed at the same time (the threshold is 0.4, see Fig. 3-5). The polarity is then

flipped if necessary. The surviving traces (Fig. 3-4C) are the input of next preprocessing step,

source signature deconvolution.

3.3 Wiener Deconvolution

The observed signal d(t) can be expressed as the convolution of a source wavelet (or

signature) with the Earth's impulse response as well as noise,

d(t)= s(t))* g(t) + n(t) , (3.15)

where s(t) is the source signature and n(t) represents noise.
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The deconvolution process, which tries to retrieve the Earth's impulse response g(t) from the

data given the source wavelet s(t), is in general an ill-posed problem because of the existence

of random noise n(t), limited frequency bandwidth and inaccurate source signature estimation

[see Chen et al., 2010]. Such an inversion problem can be stabilized by a water level term,

and an approximate solution of g(t) in the frequency domain [e.g. Wiggins and Ralph, 1976]

is

g d(co) , (3.16)
Is(o)|2 + 3

where 5 is the water level, representing the expected noise power. The asterisk superscript

denotes the complex conjugate. o is angular frequency. Normally the value of water level 8

is independent of frequency, which implicitly assumes that the noise is white.

Haldorsen et al. [1994] obtained an optimal deconvolution filter by using the data

redundancy in a seismic array, without white noise assumption. It is successfully applied in

vertical seismic profiling (VSP) [e.g. Haldorsen et al., 1994] and teleseismic data studies

[e.g. Chen et al., 2010]. Here we summarize the method for the purpose of self-containment.

Suppose the observed array data dm(t), with totally M traces, have a common source

signature s(t) with a variable noise n. (t):

d. (t)= s(t)+fn,(t) . (3.17)

In the frequency domain, Eq. (3.17) can be written as:

d((o)= s(0o))+n ) . (3.18)
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Here the source signature s(o) consists of all aligned signals contributing to the source

estimation, whereas the noise term n,,, (o) represents both uncorrelated random noise and

coherent signal with the source but with a different moveout across the array.

The deconvolution filter S(o) can be determined as the solution to Eq. (3.18) with the

spectral whitening constraint:

S(o)d, (0))=I . (3.19)

The least-square solution of Eq. (3.18) and (3.19) is expressed as

S(O))= s*-(CO) ,(3.20)
ET (a)(

where E, (o) is the average total energy of the raw traces,

Er(c)= 1 dM ()12 (3.21)
M n=1

Plugging Eq. (3.18) and (3.21) into Eq. (3.20), we obtain

s*(o)
S(w)= S(2)1 +(0,)( (3.22)

s)12|+EN 0j

where EN(w) is the average noise energy,

EN(W) = I d. (w) - s(w)2 . (3.23)

Therefore, the estimated Green's function can be written as,

9",(0)= di (a) (3.24)
s()1 2 + E(CO)

or
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s*(w)g", (C) = ,,(w) . (3.25)

Comparing Eq. (3.24) with Eq. (3.16), the constant water level is replaced with a noise

adaptive regularization term. The optimal deconvolution filter (in the least-square sense) acts

as a data-adaptive, band-limiting filter attenuating frequencies where the signal-to-noise ratio

is small, and will preserve the part of noise that is spectrally coherent with the source

[Haldorsen et al., 1994].

In traditional water level deconvolution, it is crucial to find the most proper parameter 6,

which is usually done by trail and error. This is subjective and tedious, however, and not

suitable for massive data processing. On the other hand, Wiener deconvolution adaptively

estimates the noise spectrum and is an optimal inverse filter. The overhead computational

cost is neglectable compared with the water level deconvolution. Two examples of real data

are given in Fig. 3-6, 3-7. The raw data are aligned with the direct S wave (Fig. 3-6A and 3-

7A). The source signatures are estimated by PCA (Fig. 3-6B and 3-7B). We compare the

Wiener deconvolution (Fig. 3-6C and 3-7C) with the water level method (Fig. 3-6D and 3-

7D). The water level 6 is selected as 1% of the maximum value of the source amplitude

spectrum. The random (but may not white) noise is suppressed much better by Wiener

inverse filter than by the water level method both in high SNR data (Fig. 3-6) and noisy data

(Fig. 3-7).

It is straightforward to generalize Eq. (3.24)-(3.25) to multi-component data. In P wave

receiver function studies, for instance, the source signature is estimated from the vertical

component. The vertical and radial receiver functions are retrieved by source deconvolution
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from vertical and radial components respectively. We demonstrate this using two events

recorded by Hi-Climb array in Tibet (Fig. 3-8, 3-10). For comparison, different values for the

water level a are chosen from 0.01% to 1%. The (radial) receiver functions vary with the

parameter a in water level deconvolution (Fig. 3-9, 3-11). For the first earthquake, a

comparable result is achieved with 0.01% as the water level (Fig. 3-8D and Fig. 3-9B).

However, there is no acceptable result in the second case, even though a grid search for water

level is performed (Fig. 3-11), which suggests that white noise assumption is not always

proper in the real data.

3.4 Summary

In this chapter we propose a semi-automatic workflow for the preprocessing of large data

sets. We mainly focus on the source normalization. Through multi-channel cross-correlation

technique the polarity and relative delay time of traces are corrected, and noisy traces are

discarded as well. The source signature is then estimated by principle component analysis

and deconvolved by means of a Wiener inverse filter. Examples show that such a workflow

is less subjective and more efficient than alternative schemes. Moreover, it is designed to be

suitable for massive data processing, especially for dense array data.
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Figure 3-1 Comparison between the polarity predicted from the CMT soltuion and real data
measurements for (A) direct P arrivals and (B) SH arrivals. The beach balls depict the CMT
solutions and the triangles are seismic stations. The green triangles are stations whose
polarity picks agree with the CMT predictions. The red ones are those with the opposite
polarity to the CMT predictions, and the black indicate unclear polarity picks from the data.
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Figure 3-2 A synthetic example of data selection and polarity correction. (A) Raw data. The
amplitudes of Ricker wavelets are modulated by a cosine function. The polarity and relative
delay time are generated randomly. About 25% Gaussian noise is added to the traces. (B)
Alignment of the traces by multi-channel cross-correlation. Trace 3 and 19 are removed due
to low average correlation coefficients (threshold value is 0.5). (C) Aligned traces after
polarity correction.
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Figure 3-3 (A) The cross-correlation coefficient matrix of the synthetic data in Fig. 3-2A.
(B) Average cross-correlation coefficients for the data in Fig. 3-2A. The threshold value for
data selection is 0.5.
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aligned with the direct S wave (predicted on ak135 model). The following phases are ScS and
the depth phases of S and ScS. (B) Alignment of traces by multi-channel cross-correlation.
The threshold value is chosen as 0.4 for the data selection. (C) Aligned traces after polarity
correction.
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km. (B) Source signature calculated by principle component analysis. Only the largest
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Chapter 4

Wavefield Interpolation in Curvelet

Domain with Sparsity Promotion

In this chapter we apply curvelet-based wavefield recovery algorithm to teleseismic

datasets. Irregularly and sparsely sampled data are interpolated to regular acquisition

grids, which is crucial for wave equation based migration. The underdetermined problem

with sparsity-promoting t, -norm regularization is solved by a spectral projected-gradient

method, which is more efficient than the often used "cooling" method [Figueiredo et aL.,

2007]. We investigate the effect of the undersampling ratio, from 0.5 to 0.15, on the

teleseismic wavefield recovery. A simple mask function is applied to reduce the model

space in severely undersampling scenarios. In the presence of noise, the Pareto curve can

be explored by solving a series of so-called Lasso problems to find the optimal trade-off

between the data fit and sparsity of the solution. Both synthetic and real data examples
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demonstrate that curvelet-based interpolation with sparsity promotion works remarkably

well on teleseismic data.

4.1 Introduction

In seismic acquisition, the continuous wavefield is recorded by a finite number of

receivers. To avoid aliasing and loss of information, seismic data should be sampled

according to the Shannon-Nyquist criterion, that is, at least two sample points in each

period or wavelength in the sense of Fourier. Due to the limitation of logistics and cost,

however, this cannot always be achieved in practice, and the wavefield is often sparsely

and insufficiently sampled along the spatial coordinates. On the other hand, many

important and advanced techniques, for instance, denoising and wave equation migration,

have stringent sampling requirement [Liu and Sacchi, 2004; Xu et al., 2005]. So the

recovery of missing traces is an important preprocessing step and the quality of

reconstruction will impact the subsequent seismic data analysis.

There are two main classes of data interpolation algorithms: wave-equation methods and

signal-processing methods. Wave-equation based methods simulate the wave propagation

and can reconstruct the missing traces accurately, provided the information about wave

speeds is available [e.g. Ronen, 1987; Stolt, 2002]. Signal processing methods usually

exploit sparse transforms to map the recorded data into other domains to compress the

redundant data and require no information about the medium property. Popular

transforms include the Fourier transform [e.g. Spitz, 1991; Sacchi et al., 1998; Xu et al.,
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2005; Zwartjes and Sacchi, 2007], the Radon transform [e.g. Kabir and Verschuur, 1995;

Trad et aL., 2002] and the curvelet transform [e.g. Herrmann and Hennenfent, 2008;

Naghizadeh and Sacchi, 201 Oa].

Curvelets are optimally sparse representations of the wave propagator [Candes and

Demanet, 2005]. The wave front (or the seismic data) can be sparsely represented by

those curvelets aligned with the wave front (or the moveout curves). Herrmann and

Hennenfent [2008] applied curvelet reconstruction with sparsity-promoting inversion

(CRSI) for seismic data interpolation. The missing data can be efficiently reconstructed

even for sub-Nyquist sampling. Such is especially attractive for teleseismic observations,

in which the wavefield is severely undersampled. Dense seismographic arrays are

commonly deployed with station spacing of 5-10 kin, but high-resolution seismic

imaging methods, for instance wave-equation migration, require even denser sampling (~

2 km).

In this study, we focus on the recovery quality of curvelet interpolation for typical

teleseismic scenarios. We first investigate the effect of sampling ratio on the quality of

data reconstruction. A simple mask matrix in the curvelet domain is introduced for

severely under-sampled scenarios. The Pareto curve (L-curve) is then exploited by

solving so called Lasso problems in the presence of noise. The new method is

demonstrated both on synthetic and real data examples.

4.2 Curvelet Transform
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In the past decades, intense research has focused on the multi-scale (multi-resolution)

analysis, e.g. wavelets, curvelets, and beamlets [e.g. Daubechies, 1990; Candes and

Donoho, 2004; Wu and Chen, 2006]. Compared with wavelets, curvelets are anisotropic

elements with support obeying the parabolic principle (width length 2), and are

optimally sparse representations of the wave propagator [Candes and Demanet, 2005].

Analogous to the wavelets, the curvelet family can be constructed by scaling, rotating and

translating of a mother function. Fig. 4-1 shows some examples of curvelets in both space

domain (left) and frequency domain (right). In the space domain, the curvelet is smooth

along the wave front direction but oscillatory and rapidly decay in the other direction. An

intuitive explanation is that it behaves like a localized wave front with different

orientation and scale. In the frequency domain, the curvelets tile the frequency plane into

multi-scale and multi-angular wedges. The angular sampling doubles every other scale,

so the curvelets become more anisotropic on finer scales, thus providing higher

directional resolution. The mathematical basics and numerical implementation of the

curvelet transform are fully developed and discussed in literatures [e.g. Candes and

Donoho, 2004; Candes et al., 2006; Hennenfent et al., 2010]. Here we use the discrete

curvelet transform developed by Candes et al. [2006], which is available at

http://www.curvelet.org.

Due to the anisotropic, dual-domain localized and oscillatory nature, curvelets provide an

optimally sparse representation of seismic data [e.g. Candes and Demanet, 2005; Douma

and de Hoop, 2007]. Intuitively speaking, only a few curvelets that align with the wave

front are required to represent one seismic event. We compare sparse reconstruction in
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different transform domains, shown in Fig. 4-2. The original shot gather is transformed to

the Fourier, wavelet, and curvelet domains, and only the 1% coefficients with the largest

amplitude are kept before inverse transformation back. It is clear that the curvelet

transform gives the best result (Fig. 4-2D), while the Fourier and wavelet methods suffer

from significant artifacts. The Fourier transform consists of an orthogonal but global

basis, so it is not competent to approximate localized wave fronts by superposition of

monochromatic plane waves. The "blob-like" wavelet frame is localized but isotropic,

and is less efficient to fit "wavefront-like" seismic events. The performance in Fig. 4-2 is

also supported by the decay rate of the Fourier, wavelet, and curvelet coefficients, plotted

in Fig. 4-3. It is proved that for 2-D functions that are twice-differentiable and contain

singularities along piecewise twice differentiable curves, the Fourier transform attains an

asymptotic decay of the k-term approximation error of O(k -/), while wavelet is O(k ')

and curvelet is O(k -2) [Herrmann and Hennenfent, 2008].

4. 3 Wavefield Reconstruction with Sparsity Promotion

In the seismic data reconstruction, we consider the observed data d as a subset of the

desired interpolated data m. It can be represented as

d=Gm+n , (4.1)

where G is a sampling operator and n is additive noise [Naghizadeh and Sacchi, 2010b].

Obviously Eq. (4.1) is an underdetermined problem, and some prior information must be

introduced as a regularization term to constrain the solution. We follow the strategy

proposed by Herrmann and Hennenfent [2008] to reconstruct the wavefield with sparsity
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promotion in curvelet domain. In this study, a spectral projected-gradient algorithm (SPG

t,) [Figueiredo et al., 2007; van den Berg and Friedlander, 2008] is adopted as the one-

norm solver instead of iterative soft thresholding with cooling (ISTc) method

[Daubechies et al., 2004; Herrmann and Hennenfent, 2008].

The curvelet analysis operator C decomposes desired data m to curvelet coefficients x as:

x=Cm , (4.2)

and m can be synthesized as

m= C'x , (4.3)

where CT is the adjoint operator of curvelet transform, which is equivalent to the inverse

of C since the discrete curvelet frame is a tight frame [Candes and Donoho, 2004].

Plugging Eq. (4.3) into Eq. (4.1), the curvelet coefficients x of the desired data can be

found by minimizing the following cost function:

2

where A=GCT, and the positive parameter ) is the Lagrange multiplier indicating the

trade-off between the data misfit and one-norm of the solution. The desired interpolated

data m then can be estimated by Eq. (4.3). The best damping parameter . in Eq. (4.4) is

generally unknown. The Pareto curve (or L-curve) is usually exploited to find the optimal

damping parameter. Van den Berg and Friedlander [2008] proved that this curve is

convex and continuously differentiable, and gave an explicit relationship to two other

closely related optimization problems stated in the following, basis pursuit denoise

(BPDN) and Lasso. Basis pursuit denoise problem is described as
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minimize 1xJ|,, subject to |lAx - d112  -.
X

(4.5)

Lasso problem is

minimize IAx - dl,, subject to ||x 1l, 'r . (4.6)
x

These three problems are equivalent in some sense, and for some appropriate parameters

of 2, r, and a, the solutions of Eq. (4.4), (4.5) and (4.6) coincide. In practice, Eq. (4.5) is

preferred if the noise level a in the data is known, and Eq. (4.6) can be used if the upper

bound of one-norm of the curvelets can be estimated.

Since curvelets are direction selective, one can choose a weighting function, e.g. using a

vector of Lagrange multipliers rather than a scalar in Eq. (4.4), to penalize nearly vertical

curvelets that are not likely true in the seismic data gather in t-x domain. However,

subjective selection of multiple parameters would complicate the inversion process. A

simple way to mute the vertical curvelets is to add a mask matrix M as A=GCTM in the

curvelet domain [Herrmann and Hennenfent, 2008]. One can taper out nearly vertical

curvelets only on fine scales, as illustrated in Fig. 5-4. The dip (or slope) of the mask

function is analogous to that of a dip filter in the f-k domain. For simplicity but without

loss of generality, we consider for a band-limited shot gather in 2D case the horizontal

wavenumber can be expressed as

27rf
k=kcos6 = 27fcosO , (4.7)

V

where v is the medium velocity;f is the frequency and 6 is the horizontal direction angle

of the wavenumber vector. Assuming no evanescent waves recorded in the data, which

means Icosl 1, the maximum slope in thef k domain is

89



= (k_ 2,4ma f - a (4.8)

where vmm is the minimum medium velocity or apparent velocity. The mask matrix M can

be designed according to Eq. (4.8). In the following section, a mask matrix is applied in

the wavefield interpolation for severely undersampled datasets, which reduces the

number of unknowns and improves the data recovery quality.

4.4 Numerical Examples

Since the compressive sampling recovery depends on factors such as acquisition footprint

and signal characteristics [Herrmann and Hennenfent, 2008], it is difficult to predict the

curvelet interpolation quality accurately. In this section, we investigate the effects of

undersampling ratio and random noise on typical synthetic teleseismic data, which can

give guidelines for the real data applications.

4.4.1 Noise-free Synthetic Examples

We first create a synthetic teleseismic section, shown in Fig. 4-5A. The first arrival is

approximately a plane wave, and later arrivals are converted waves and multiples. Notice

that polarity changes, conflicting dips and caustics can be observed in the later events.

The spectrum is illustrated in Fig. 4-6A, which is band-limited in the wavenumber-

frequency domain. This original dataset mo is used as a ground-truth solution to evaluate

the quality of curvelet interpolation. The reconstruction quality is evaluated in decibels

(dB) by the measure [Hennenfent and Herrmann, 2008]
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Q = -20 logio IM0 42 ,(4.9)

where Mn is the reconstructed data.

In the first experiment, 50% of original traces are randomly removed, as in Fig. 4-5B (the

missing traces are replaced by zero traces). The f-k amplitude spectrum after the trace

removal is plotted in Fig. 4-6B. In contrast to regularly undersampled data, there is no

clear wraparound (replica) alias but random noise in the f-k spectrum, which is

characterized by the random sampling function [Oppenheim et al., 1999]. Since it is noise

free, we solve the basis pursuit denoise problem in the curvelet domain with a -+ 0 (here

( = 0.00 1I|dI, is used) in Eq. (4.5), and the interpolated data m is then obtained by

applying the adjoint curvelet transform in Eq. (4.3). The recovered data is shown in Fig.

4-5C, and the corresponding f-k amplitude spectrum is depicted in Fig. 4-6C. The

difference between the recovered data and the ground-truth solution is illustrated in Fig.

4-5D. The recovery quality Q measured by Eq. (4.9) is 34.60 dB. It is clear that wavefield

interpolation works excellently and that the missing traces are recovered almost perfectly.

In the next experiment, we remove randomly 85% traces in the original dataset, plotted in

Fig. 4-7A (amplitude spectrum in Fig. 4-8A). This scenario is typical in the teleseismic

studies. The wavefield recorded by an array with 10 km spacing, for instance, needs to be

interpolated into 2 km spacing grids to meet the requirement of the wave-equation

migration. In this example, we examine the performance of mask matrix M in operator A

in Eq. (4.5). The basis pursuit denoise problem is first solved with the same parameters as
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above. The interpolated data is plotted in Fig. 4-7B with the amplitude spectrum in Fig.

4-8B. Major features including caustics are recovered and the recovery quality is 11.0 dB.

Some artificial localized events and oscillations (e.g. around the first arrival) can be

observed in Fig. 4-7B, especially in the large gap fillings. Spectral leakage is noticeable

after the curvelet interpolation (Fig. 4-8B). For a comparison, a mask matrix with an

apparent velocity 4 km/s (roughly the minimum S wave velocity here) is applied in the

data interpolation, and the recovery quality increases to 18.37 dB, shown in Fig. 4-7C

(Fig. 4-8C for the spectrum). Compared with Fig. 4-7B, the artifacts in the interpolation

are efficiently suppressed. Spectral leakage (Fig. 4-8C) is mitigated as well. The recovery

with a simple mask function is remarkable given the sparsity of spatial samplings. One

can choose a larger apparent velocity to squeeze the model space if more prior

information about the medium and wavefield is known.

4.4.2 Synthetic Examples with Noise

In the reality, there is always noise in the recorded data. In this section, the effect of

random noise on the curvelet interpolation is investigated. For simplicity only white

Gaussian noise is used in the synthetic experiments. The Pareto curve is explored to find

the best trade-off parameters -and r in Eq. (4.5) and (4.6) respectively. Here we sample

the Pareto curve by a series of Lasso problems in Eq. (4.6). The upper bound r of one-

norm of curvelets is estimated in the following way. For the recorded data in t-x domain,

in each row (fix the time) we replace each missing sample with the mean value of its

horizontal neighbors. Such a process is conducted iteratively to fill the gaps from both

sides. This simple method gives a low quality interpolation, but provides a good
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reference for the upper bound of T. The norm of curvelets from the neighborhood

interpolation above is similar to that of the ground true solution, and the difference is

marginal.

Similar to the noise-free examples above, we provide two scenarios with 50% and 85%

missing data, respectively. In each case, 30% white Gaussian noise is added to the

recorded data. We first remove 50% traces and add random noise, depicted in Fig. 4-9A

(spectrum in Fig. 4-10A). A series of parameter r are used to sample the Pareto curve,

plotted in Fig. 4-1 lA. The recovery quality varies with respect to the parameter r as well

(Fig. 4-11 B). To understand better the effect of parameter T, three points on the Pareto

curve are selected (colored circles in Fig. 4-11), and the corresponding interpolated

results are illustrated in Fig. 4-9(B-D), as well as the amplitude spectra in Fig. 4-1 0(B-D).

It is noticed that with a small T, the first arrival and some of the following converted

phases are recovered (Fig. 4-9B). More subtle features as multiples can be observed as T

increases (Fig. 4-9C). Above some certain point, however, there is no more improvement

in the data recovery. Fine and nearly vertical curvelets are introduced to over-fit the noisy

data (Fig. 4-9D). The recovery quality even decreases though the residual of data fitting

decreases as well (Fig. 4-11). The best recovery quality is 16.55 dB in this example (the

red circle in Fig. 4-11). After interpolation, one can further denoise the interpolated data

(remove the artificial curvelets) by a threshold algorithm [e.g. Starck et al., 2002; Ali et

al., 2010], which is beyond the scope of this paper.
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Next, we remove 85% of traces and add 30% noise to the data, shown in Fig. 4-12A with

the amplitude spectrum in Fig. 4-13A. Similar to the noise-free case, the influence of the

mask matrix M is probed. The Pareto curves with and without the mask matrix are

plotted as red and blue lines in Fig. 4-14A respectively. The recovery quality curves are

in Fig. 4-14B. Here the apparent velocity is 4 km/s. The best parameter T (marked as

circles in Fig. 4-14) yields 9.09 dB recovery quality in the absence of the mask matrix,

and it increases to 12.54 dB with the mask matrix. The corresponding interpolated data

are shown in Fig. 4-12B and 4-12C respectively (for spectra, see Fig. 4-13(B-C)). After

applying a simple mask in the curvelet domain, some fine scale artifacts are notably

suppressed in the interpolated result. Compared with the noise-free case (Fig. 4-7C),

some subtle events in Fig. 4-12C, e.g. multiples after 50 seconds, are not observable. The

recovery for the direct wave and primary converted waves is acceptable, though there are

artificial oscillations around the first arrival.

4.4.3 A Real Data Example

In this section, we apply the algorithm in a real dataset. The vertical component of the

raw data for one earthquake, recorded by a broadband seismographic array in Tibet, is

aligned with the first P-arrival, shown in Fig. 4-15A. There are 58 stations with spacing

varying from 2 km to 26 km. The temporal frequency is 0.05 Hz to 1 Hz. We try to

interpolate the randomly distributed data into regularly sampled traces with spatial

sampling of 2 km, which means to recover 80% missing traces. As in the synthetic

examples, a Pareto curve is explored by solving a series of Lasso problems, depicted in

Fig. 4-15B. The apparent velocity for the mask matrix is chosen as 6 km/s. The best
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parameter r is selected along the Pareto curve as a red circle (Fig. 4-15B). The

corresponding interpolated result is shown in Fig. 4-15C. The amplitudes along the

horizontal and slanting (e.g. around 120 second) events vary smoothly. There are no

significant artifacts in the interpolated data. A zoomed-in comparison with the raw traces

is plotted in Fig. 4-15D. Major events agree well, while some subtle wiggles in the raw

data are considered as uncorrelated noise and dimmed out in the recovery.

4.5 Summary

In this chapter, we focus on the teleseismic data interpolation via curvelet domain with

sparsity promotion. We solve the underdetermined problem with a spectral projected-

gradient method. A simple mask function is applied for interpolations in severely

undersampled scenarios. For real data applications with noise, we explore the Pareto

curve by solving Lasso problems to find the optimal trade-off between the data fit and

sparsity of the solution. For typical teleseismic acquisition geometry with 50% to 85%

missing traces, both synthetic and real data demonstrate that the curvelet-based

interpolation works remarkably well.
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Figure 4-1 Examples of curvelets in the spatial domain and frequency domain. (A) Five
curvelets in the spatial domain with different scales and orientations. (B) The
corresponding wedges in the frequency domain. Each pair of the opposing wedges,
denoted by arrows in different colors, represents a curvelet in the spatial domain. Note
the finer scale curvelets occupy outer tiles in the frequency plane, and more anisotropic.
This figure is modified from Herrmann and Hennenfent [2008].
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Figure 4-2 Sparse reconstruction in different domains. (A) The original shot gather
generated by a finite difference method. We reconstruct the data by keeping only the 1%
of the largest amplitude coefficients in the (B) Fourier domain, (C) wavelet domain with
Daubechies frames, and (D) curvelet domain.
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Figure 4-3 The decay rate of the coefficients in the Fourier domain (red
wavelet domain (green dashed line), and the curvelet domain (blue
coefficients are calculated based on the synthetic data in Fig. 4-2A.

dashed line), the
solid line). The
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Figure 4-4 Illustration of angular discrimination in the curvelet domain. Due to the
mutual coherence between the nearly vertical-oriented curvelets and the sampling gaps,
the curvelets within the mask (gray regions) can be tapered out in the wavefield
interpolation.
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Figure 4-5 A synthetic example of curvelet interpolation. (A) The original data. (B) Data
after removing 50% of the original traces randomly. (C) Recovered data by curvelet
interpolation with sparsity promotion. (D) The difference between the interpolated data
and the original data. All figures are displayed on the same color scale, clipped by ±5%
of the maximum value of the original data.
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Figure 4-6 Thef-k spectra of the data in Fig. 4-5 (A-C), respectively.
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Figure 4-8 Thef-k spectra of the data in Fig. 4-7 (A-C), respectively.
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red and green circles in Fig. 4-1 IA, respectively.
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Figure 4-10 Thefk spectra of the data in Fig. 4-9 (A-D), respectively
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Figure 4-11 (A) The Pareto curve for the data recovery with noise. The original data is
shown in Fig. 4-9A. The horizontal axis is one-norm of the curvelets, and the vertical axis
is two-norm of the residual of data fitting (normalized by the norm of the data). The star
symbols are those numerical sampling points along the Pareto curve by solving a series of
Lasso problems. Three points depicted as colored circles are selected to investigate the
influence of parameter r on the curvelet interpolation. The corresponding interpolated
results are shown in Fig. 4-9(B-D). (B) The recovery quality (measured in dB) varies
with parameter r sampled along the Pareto curve in the left panel.
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Figure 4-12 (A) Noisy data constructed by randomly removing 85% of the original traces
in Fig. 4-5A, and then adding 30% white Gaussian noise. (B) Interpolated data without a
mask matrix. The parameter r used in the Lasso problem is depicted as a black circle
along the blue Pareto curve in Fig. 4-14A. (C) Interpolated data with a mask matrix. The
apparent velocity is 4km/s and the parameter r is shown as a black circle on the red curve
in Fig. 4-14A.
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Figure 4-13 Thef-k spectra of the data in Fig. 4-12 (A-C), respectively.
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Figure 4-14 (A) The Pareto curves for data recovery with noise. The original data is
shown in Fig. 4-12A. The horizontal axis is one-norm of the curvelets, and vertical axis is
two-norm of the residual of data fitting (normalized by the norm of the data). The blue
curve is calculated without an angular mask matrix in the interpolation, while a mask
matrix with the apparent velocity 4 kmls is applied for the red curve. The star and triangle
symbols are those numerical sampling points along the Pareto curves. (B) The
corresponding recovery quality (measured in dB) along the Pareto curves in the left
panel. The circles indicate the optimal trade-off between two-norm of data fitting and
one-norm of curvelets. The corresponding interpolated data are shown in Fig. 4-12B and
4-12C, respectively.
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Figure 4-15 A real data example of wavefield interpolation. (A) The recorded data
aligned with the first P-wave arrival. (B) The Pareto curve of the curvelet interpolation
with a mask matrix, and the apparent velocity is chosen as 6 km/s. (C) Interpolated data
with the parameter T marked as a red circle in panel (B). (D) Zoomed-in comparison
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are plotted in red.
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Chapter 5

Application of Passive Source Reverse

Time Migration to Sparsely Sampled

Teleseismic Data

In this chapter, we apply passive source reverse time migration (RTM) to sparsely

sampled teleseismic data. RTM requires densely and regularly sampled data, which with

present-day deployments can rarely be met in teleseismic observations. Therefore,

wavefield interpolation in curvelet domain is introduced as an important preprocessing

step for RTM. We first review the theory of passive source RTM and curvelet

interpolation. Synthetic examples then demonstrate that RTM image is superior to

traditional CCP stacking if dense array data is available. With the aid of wavefield

interpolation, about 6 km station spacing can satisfy the stringent sampling requirement
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of RTM for teleseismic imaging. Application to Hi-CLIMB data in Tibet reveals a clear

and continuous Moho as well as fine structures in the crust.

5.1 Introduction

Increasingly dense seismographic arrays are being deployed recently to explore finer

structures in the crust and upper mantle. For teleseismic imaging, common conversion

point (CCP) stacking is routinely and successfully applied in the receiver function studies

[e.g. Dueker and Sheehan, 1997; Zhu, 2000; Gilbert et al., 2003]. The simple assumption

in CCP stacking (horizontal interface), however, hinders accurate imaging of geologically

complex structures, such as steep faults and laterally discontinuous interfaces, and will

diminish the scientific return on the investment in increasingly dense array deployments.

Novel imaging methods, such as seismic migration, are required, which can exploit full

complexity of recorded wavefields and rely on less prior information about the Earth's

structures.

As in reflection seismology, different types of migration methods can be applied to

teleseismic studies, such as ray-based Kirchhoff migration [e.g. Ryberg and Weber, 2000;

Rondenay et al., 2001; Poppeliers and Pavlis, 2003] and wave equation based migration

[e.g. Chen et al., 2005; Shang et al., 2012]. Ray-based methods rely on the asymptotic

solution (the high-frequency limit) of the wave equation, and fail in the presence of

caustics, multiple arrivals, and other complex wave phenomena. In contrast, wave

equation migration solves the wave equation directly and takes the wavefield complexity
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into account automatically. In particular, passive source reverse time migration (RTM)

proposed by Shang et al. [2012] has several distinct advantages over previous methods.

Firstly, multi-component raw data (subject to source signature removal) from individual

earthquakes are used as the boundary condition for wavefield time reverse continuation,

rather than stacked receiver functions that would degrade spatial resolution due to the

implicit ID velocity assumption. Furthermore, the two-way elastic wave equation is

explicitly solved and can easily handle strong medium complexity.

RTM requires regularly and densely sampled data, that is, in principle at least two sample

points in each temporal and spatial cycle according to Shannon-Nyquist sampling

theorem [e.g. Liu and Sacchi, 2004; Xu et al., 2005]. In seismic acquisitions, however,

and especially in case of teleseismic observations, the continuous wavefield is often

sparsely (aliased) and irregularly sampled along spatial coordinates. Such a limited

acquisition footprint can introduce significant "noise" in the RTM images. Therefore

seismic data regularization is one of the key preprocessing steps in RTM applications.

The seismic traces need to be interpolated (or extrapolated) from acquired data on sparse

and irregular locations to dense and regular grids.

Wavefield interpolation algorithms usually exploit sparse transforms to compress the data

redundancy in other domains, such as the Fourier transform [e.g. Spitz, 1991; Sacchi et

al.. 1998; Zwartjes and Sacchi, 20071, the Radon transform [e.g. Kabir and Verschuur,

1995; Trad et al., 2002], and the curvelet transform [e.g. Herrmann and Hennenfent,

2008; Naghizadeh and Sacchi, 2010a]. Among them, the curvelet transform is especially
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favorable in teleseismic study, because curvelets are optimally sparse representations of

the wave propagator and can efficiently represent seismic data [Candes and Demanet,

2005]. Herrmann and Hennenfent [2008] interpolated seismic data by curvelet

reconstruction with sparsity-promoting inversion (CRSI). The missing traces can be

efficiently reconstructed even the sampling ratio is below Nyquist frequency. In other

words, with the aid of compressive sampling, an optimally sparse acquisition can be

designed without losses of wavefield information.

As an example of our passive source RTM application, we use data recorded by Hi-

CLIMB (Himalayan-Tibetan Continental Lithosphere during Mountain Building)

broadband seismographic array in Tibet. With station spacing of 5-15 km and an aperture

of over 500 kin, Hi-CLIMB array provides an excellent opportunity to delineate the

geometry of tectonic plates beneath the Tibet plateau, especially the north limit of

underthrusting Indian crust and lithosphere, which is vital to understand the uplift

mechanism in the continental collision zone [Ndbilek et al., 2005; Ndbilek et al., 2009;

Nowack et al., 2010].

In this paper, we first review the theory of passive source RTM and curvelet

interpolation. Synthetic experiments are then performed to demonstrate the workflow on

teleseismic imaging. Finally passive source RTM is applied to Hi-CLIMB data for

lithosphere imaging.

5.2 Passive Source Reverse Time Migration
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The principle of passive source RTM is simple, and mainly utilizes the wave mode

conversion in the elastic wave propagation. Teleseismic P (or S) waves can convert to

other modes (P-to-S or S-to-P) when impinging on an interface or scatterer from below.

The transmitted and converted waves then propagate with different wave speeds to

receivers on the Earth's surface. By time reversal, due to the wavespeed difference for P

and S waves, the relevant parts of the transmitted wave front coincide with the converted

wave only at the time of mode conversion. The conversion time (and conversion location

given a reference velocity model) can be determined by applying a cross-correlation like

imaging condition.

In teleseismic applications there are three main steps: First, the snapshots of the elastic

wavefield are reconstructed from the recorded multicomponent array data, using reverse-

time continuation. Second, P and S components for each snapshot are separated by

polarization decomposition. Finally, a cross-correlation imaging condition between P and

S waves is applied. The final image is then obtained by summation of partial images from

individual events. Note that in active source RTM both forward simulation from source

side and backward propagation from receiver side are required, while only one back-

propagation from receiver side is necessary for passive source RTM. This eliminates the

uncertainty of source location and source time function. We present here the main

equations of passive source RTM for the purpose of self-containment. For detailed

derivation and implementation, we refer to Shang et al. [2012], that is Chapter 2 of this

thesis, and references therein.
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In 3-D isotropic elastic media, the back-propagated displacement wavefield from receiver

side ur can be decoupled into P, SV and SH components by projection operators Q*

[Brytik et al., 2011 ]:

UrP =Q* u r U = Q* U,. and urSH = Q*H U, , (5.1)

which are defined as

Q*= (-A~12
Sax ax2 ax3

Q*= (-A)-1 2( _ -A 2  a2 a2

SV ( axi aXax 2 ax 3

Q* = (-A')1
2 1 a a

SH 
( 2

a
ax,

a2  a2

-ax - ax 2

01

Here, A is the Laplacian operator, A' is a 2 / ax7 + a 2 / ax~, and i is the imaginary unit. In

2-D case the projection operators degenerate to:

Q*= (-A)-
1 2 . a

i ( axi a2
(5.3)

Q*= (-A')/ 2  a xI

1( i ax2 x

The imaging condition for P wave incidence from a single source is [Brytik et al., 2012]:

I(x)= aturp (x,t) at

+ V Urp(Xt)- (x)(-A)-1 /2 3 V

where T is the total recorded time, and fi(x) is S wave velocity. For S wave incidence, one

can exchange Urp with urs,, and replace 8(x) by a(x) (P wave velocity). At sufficiently
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high frequencies the operator (-A)-1 1 2 , can be approximated (in the asymptotic limit) as

p(x) - or a(x) for S wave incidence.

5.3 Curvelet Interpolation with Sparsity Promotion

Following the analysis in Chapter 4, we consider the observed data d as a subset of the

desired interpolated data m. This relationship can be represented as

d=Gm+n , (5.5)

where G is a sampling operator and n is additive noise [Naghizadeh and Sacchi, 2010b].

We can solve this underdetermined problem by finding curvelets x that minimizes

IId - AxI1 + A I|xI , (5.6)
2 2

where A=GCT, CT the adjoint of the curvelet transform operator, and k a Lagrange

multiplier that can be used to control the trade-off between the data misfit and the

sparsity (one-norm) of the solution. The desired interpolated data m then can be

calculated from m = Cx.

The optimal damping parameter A can be determined from L- (or Pareto) curves by

solving either a series of basis pursuit denoising (BPDN) or Lasso problems. The basis

pursuit denoising problem is described as:

minimize |1x1|,, subject to |lAx - dl| - , (5.7)

whereas the Lasso problem is defined as:

minimize I|Ax-d|2, subject to l|x1, 'r . (5.8)
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As described in Chapter 4, we can choose a weighting function, that is, a mask matrix M

in operator A, so that A=GCTM in the curvelet domain [Herrmann and Hennenfent,

2008], to penalize (or mute) nearly vertical curvelets (horizontally propagated wave

packets) that are not likely true in t-x domain.

5.4 Synthetic Examples

In this section, we apply passive source RTM with curvelet interpolation to data

simulated (by a finite difference code) from a known velocity model. RTM is first

applied without wavefield interpolation, and compared with the results from traditional

CCP stacking method. Curvelet interpolation is then performed as a preprocessing step of

RTM, which would improve the image quality remarkably.

5.4.1 Synthetic Models and Data

The test model, depicted in Fig. 5.1, is designed with in mind the application to data from

the Hi-CLIMB project in southern Tibet. For simplicity, we include two main layers in

the model, which could represent crust and mantle, separated from each other by an

interface, say the "Moho". In the middle part of this section the synthetic Moho is

disrupted and the velocity increases gradually from the shallow to deep layer.

Furthermore, the shallow layer consists of two blocks (with boundary at 450 km

horizontal distance) in order to represent different geological units in Tibet, and depth

offset (of 20 km) of the synthetic Moho is introduced at 150 km horizontal distance.
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The synthetic data are generated by a finite difference method. Ten plane P waves are

injected in the mantle as incident waves, five of which are from the left side and others

are from the right side (Fig. 5-1A). The incident angle with vertical axis is from 200 to

40' with 5' increment. The corresponding epicentral-distance varies from 30' to 90',

which is typical for teleseismic studies. A Ricker wavelet is used as the source time

function, and the central frequency is 0.5 Hz (~I Hz for the maximum frequency). For

simplicity but without loss of generality, no free surface condition is applied in the

forward simulation. There are only direct P wave and converted waves in the data, shown

in Fig. 5-2 as examples. The free surface condition would introduce surface related

multiples and affect the final images, but that is beyond the scope of this study. In order

to investigate the effect of receiver spacing, the recorded wavefield, e.g. in Fig. 5-2, is

randomly sampled along the spatial coordinate with an average interval of 2 km, 6 km, 10

km and 20 km.

5.4.2 Comparison with CCP Stacking

CCP stacks of data from ten events with different station spacing (from 2 km to 20 km)

are shown in Fig. 5-3. Average ID wavespeed models are used as the background models

for ray tracing. The relatively flat part of the synthetic Moho (that is, at 0-100 km and

500-600 km horizontal distance) is well imaged even with 20 km spacing samplings (Fig.

5-3D). The image quality of the dipping Moho (100-300 km and 400-500 km) improves

as the receiver spacing decreases; see, for instance, the diminishing staircases from Fig.

5-3D to 5-3C to 5-3B. However, the improvement becomes trivial at certain point, and
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Fig. 5-3A and Fig. 5-3B are almost identical. The vertical or steeply dipping structures

are not resolved at all. The details of the disrupted Moho are not well recovered.

We then conduct passive source RTM without wavefield interpolation on the same

datasets. For a fair comparison, the background velocity models are the same as above.

The images from differently spaced data are shown in Fig. 5-4. For coarse sampling, e.g.

20 km in Fig. 5-4D, there are many circle-like artifacts due to the spatial aliasing, and the

Moho is barely seen in the image. With increasing number of stations, such artifacts are

gradually suppressed. The kink at 150 km horizontal distance starts to show up after the

station interval is less than 10 km (Fig. 5-4C). The topography of the gradual Moho in the

middle is observable in the case of 6 km (Fig. 5-4B). For an array with 2 km interval

(Fig. 5-4A), the Moho is delineated remarkably well with the absence of spatial alias. The

Moho kink, weak disrupted Moho, and even the vertical suture are imaged with high

clarity.

5.4.3 Passive Source RTM with Wavefield Interpolation

In next experiment, curvelet interpolation is employed as a preprocessing step of RTM.

The randomly sampled data with average interval of 6 km, 10 km, and 20 km (as used in

Fig. 5-4(B-D)) are interpolated to regular grids with 2 km increment before applying

RTM. Examples are shown in Fig. 5-5 (6 km interval), Fig 5-6 (10 km) and Fig. 5-7 (20

km) for one event. In each scenario, two components of the sparse data are plotted in the

upper panels and interpolated data are in the bottom respectively. Since it is noise free,

we use the basis pursuit problem to recover the missing traces for each component. A
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mask matrix M with minimum apparent velocity 4 km/s is applied in the inversion. The

complete dense datasets (2 km interval) are depicted in Fig. 5-2(A-B), and are considered

as the ground-truth solution. The recovery quality can be evaluated in decibels (dB) by

the measure Q = -20 loglo(IlmO - IiII12/11m 112), where mo is the ground-truth solution and

m is the interpolated data [Hennenfent and Herrmann, 2008].

For the data with 6 km spacing, the recovery quality is 27.5 dB in the horizontal

component and 21.9 dB in the vertical component (Fig. 5-5(C-D)). For more sparse case

(with 10km interval), the recovery factor Q is 17.6 dB and 16.0 dB for horizontal and

vertical component respectively (Fig. 5-6(C-D)). The curvelet interpolation works

acceptable in the extreme case (with 20 km interval). The horizontal component recovery

quality is 7.5 dB and the vertical one is 8.6 dB (Fig. 5-7(C-D)). Even in the severely

undersampled case (Fig. 5-7(C-D)), major features in the data, such as converted waves

from the flat part of the Moho and diffraction from the Moho kink, are recovered

considerably well, though some artifacts are notable, e.g. oscillation around the first

arrival and fine scale curvelets.

After wavefield interpolation, passive source RTM is applied on the regular and dense

sampled data. The RTM images are shown in Fig. 5-8 (from top to bottom) for the

original data with 6 km, 10 km and 20 km spacing respectively. The spatial alias is

efficiently suppressed in the images, compared with Fig. 5-4(B-D). For the data

interpolated from 6 km grids (Fig. 5-8A), the final RTM image is almost identical to the

one from dense sampled data with 2 km interval (Fig. 5-4A). The disrupted Moho is
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clearly imaged in the case of 10 km (Fig. 5-8B), while the Moho kink is observable in the

extreme case (Fig. 5-8C). The effect of artifacts introduced in the curvelet interpolation is

not apparent for large-scale structures in the RTM images, partially due to their

localization nature.

5.5 Application to Hi-CLIMB Array Data

In this section, we apply our 2D RTM (with trace interpolation) to data from the northern

segment of Hi-CLIMB in order to image the lithosphere beneath Tibet. First, a great

circle is estimated by a least-square fitting of the locations of a total of 71 stations, shown

in Fig. 5-9. The azimuth angle is 23.10 west-of-north. The horizontal coordinate is set

along the linear profile, starting from the position of 29' N and 86' E. Note the linear

profile (x-axis hereafter) extends northwards to the center of the Qiangtang block, across

Indus-Yarlung suture (IYS) and Bangong-Nujiang suture (BNS), which are the main

collision frontiers between different tectonic blocks [Yin and Harrison, 2000].

In order to reduce the effect of 3D geometry, only earthquakes (mb> 5 .0) approximately

aligned with the x-axis are selected. The back azimuth is confined to within a 30' cone

with respect to the x-axis. The epicentral-distance range is restricted from 30' to 90', and

for each selected earthquake we require it is recorded by at least 40 stations. After careful

selections of data, two groups of seismic sources are used for RTM imaging. The

southeastern (SE) group consists of 70 earthquakes, most of which cluster around the

Java trench, while only 5 scattered events are in the northwestern (NW) group due to the
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low seismicity (Fig. 5-10A). The approximate Ps conversion points from a total of 75

events are plotted in Fig. 5-10B, assuming a Moho depth of 70 km. The half width of the

swath is less than 15 km; this is comparable to the scale of the Fresnel zone, which

suggests that small scale heterogeneities away from the x-axis form at most a limited

contribution to the final 2D image [Nowack et aL., 2010].

For each earthquake, the recorded stations are projected along the epicentral-distance

contours onto the x-axis. Two horizontal components (E-W and N-S components) of the

seismic data are rotated to the x- and its perpendicular directions. In 2D RTM, only x- and

z- (vertical) components are used for wavefield time reverse continuation. After removal

of bad data, there are a total of about 4,000 traces for each component. The gap between

adjacent traces varies from 1 km to 60 km with an average of 10 km. The histogram is

illustrated in Fig. 5-11. The distance along the x-axis is then discretized into grids with 2

km spacing, and the trace locations are rounded up to the nearest grids. The average

round-up error is about 0.5 km. The missing traces are interlaced with zeros.

Trace interpolation (into 2 km grids) is then performed component by component for

each event. Due to the presence of noise in real data, we consider the Lasso problem for

the analysis of the Pareto curve. One example is demonstrated in Fig. 5-12 to Fig. 5-14.

Two components of raw data are plotted in Fig. 5-12. The traces are aligned with the first

P arrival. Note the horizontal events are dominant features in the teleseismic data. Then,

Pareto curves are calculated for each component, and the best regularization parameter is

selected around the turning point of the Pareto curve (depicted as black circles in Fig. 5-
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13). The corresponding interpolated data for two components are shown in Fig. 5-14. The

amplitude along horizontal events varies smoothly, e.g. around 20 and 40 second. The

slanting event between 70 to 80 second is also recovered. After interpolation, the source

time function is estimated from the vertical component by principle component analysis

[e.g. Rondenay et aL, 2005] and then deconvolved from both components by Wiener

deconvolution [e.g. Chen et al., 2010a]. The deconvolved two-component data are shown

in Fig. 5-15.

Passive source RTM is then applied to the interpolated datasets. For the background

velocity models, P and S wave tomographic results from Hung et al. [2010] are

incorporated with the reference models used in Nowack et al. [2010]. The frequency band

is from 0.05 Hz to 0.8 Hz. We first stack partial images from the southeastern group (Fig.

5-16C) and the northwestern events (Fig. 5-16D) separately, and then stack these two to

enhance coherent features (Fig. 5-16B). In general the quality of the SE image (Fig. 5-

16C) is better than the NW image (Fig. 5-16D). Southeastern events mainly cluster at the

Java trench with epicentral distances between 30' and 40', whereas the northwestern

events range from 500 to 800. Due to their distinct and complementary nature, the two

images are stacked with equal weights. Otherwise, the final image would be dominated

by the SE image component. The final image clearly shows a continuous Moho at a depth

of about 70 kin, marked as a black dashed line in Fig. 5-16B. We note that for this result

we did not correct for elevation (Fig. 5-16A). The northward thinning of the crust in the

Qiangtang block is consistent with previous studies [e.g. Tseng et al., 2009]. More than
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one strong interface are present in the crust between 31 N and 32'N, suggesting complex

crustal structures in this zone.

5.6 Discussion

The current RTM imaging workflow includes several steps that could introduce

uncertainties (or artifacts) in the final image. The curvelet interpolation rounds locations

to the nearest regular grids, so that the curvelet coefficients are not accurately calculated.

This could be remedied by applying a non-equispaced curvelet transform in the sparsity

promoting inversion [e.g. Hennenfent et al., 2010]. In our Hi-CLIMB application,

however, a typical round-up error is 0.5 kin, while the dominant wavelength of S wave is

about 5 km. Moreover, horizontal events dominate in the teleseismic dataset after

alignment with the first P arrival, for instance, in Fig. 5-12. So the effect of inaccurate

trace location on curvelet coefficient estimation is negligible for our application,

especially for coarse scale curvelets.

As all other imaging methods the accuracy of RTM images depends, to some extent, on

the background models. Small fluctuations of wavespeed in the model will affect the

amplitude of RTM image, but the locations of prominent scatterers are not very sensitive

to the details of background models. Here we assume that the background models are

isotropic, so that P and S waves can be separated by polarization decomposition in Eq.

(5.3). In the presence of anisotropy qP and qS waves can be separated by solving the

Christoffel equation [e.g. Dellinger and Etgen, 1990; Yan and Sava, 2009]. Along the
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northern segment of the Hi-CLIMB array, significant shear wave splitting (~0.8 sec and

mainly east-west as the fast direction) suggests strong anisotropy in the crust and upper

mantle [Chen et al., 2010b]. Because of the nearly north-south linear geometry of sources

and receivers, however, RTM imaging with Hi-CLIMB data is not severely affected by

the azimuthal anisotropy.

In Fig. 5-17 we compare our RTM results with those obtained with Gaussian beam

migration [Nowack et al., 2010]. The RTM image reveals similar but much cleaner

lithosphere structures. In particular, the continuity of the Moho across the BNS suture

zone (between 310 to 32') is clearly delineated, while this is not well resolved by

Gaussian beam migration.

In the SE image, double layers (at 50-70 km depth) are observed between 29. 7'N and

31 N. Ndbilek et al. [2009] observed a similar feature in their CCP stacks and interpreted

the deeper one as eclogitic Indian Moho, which might subduct northward up to 31 N.

However, in view of the discrepancies between our SE and NW RTM images, such a far-

reaching conclusion may be premature. Ndbjlek et al. [2009] also used surface multiples,

such as PpPs and PpSs, and in future studies we will explore if their use in RTM can

improve the resolution.

5.7 Summary
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In this chapter, we first review the theory of passive source RTM and curvelet

interpolation with sparsity promotion. A series of synthetic experiments demonstrates

that with increasing dense seismic array, passive source RTM can exploit more about the

wavefield complexity, and is superior to CCP stacking. In practice, teleseismic array

sampling rarely meets stringent requirement of RTM. Synthetic examples show that with

curvelet interpolation as a preprocessing step, ~6 km station spacing is enough for

teleseismic imaging of the crust and lithosphere. Finally application of wavefield

interpolation and RTM to Hi-CLIMB data in Tibet clearly reveals a continuous Moho

near 70 km depth as well as fine structures in the crust.
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Figure 5-1 Synthetic models for (A) P and (B) S wave speeds. There are generally two
layers in the models, crust (red) and mantle (blue). Two blocks are presented in the crust,
separated at 450 km horizontal distance. In the middle part (from 250 km to 450 km), a
transitional zone is added between the crust and mantle, in which the velocity increases
gradually with depth. Ten events with plane wave incidence are simulated, and the
incident angle (with respect to the vertical axis) is from 20 to 40 degree with an
increment of 5. Five events are injected from the left side, and others are from the right
side (white arrows in (A)).
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Figure 5-2 Examples of synthetic data generated by a finite difference method with the
models in Fig. 5-1. Top: (A) horizontal and (B) vertical component of particle velocity
motions recorded on the surface. The plane wave is from the left side with 30-degree
incidence angle. Bottom: the same as in the top panels, but the incident wave is from the
right side. A Ricker wavelet is used as the source time function, and the central frequency
is 0.5 Hz.
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Figure 5-3 CCP stacking results with various station intervals. The stations are randomly distributed on the surface with
an average spacing of (A) 2 km, (B) 6 km, (C) 10 km and (D) 20 km. For the ray tracing, ID linear velocity models are
used.
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Figure 5-4 Passive source RTM results without wavefield interpolation. The input data and background velocity
models are the same as in CCP stacking. The average station spacing is (A) 2 km, (B) 6 km, (C) 10 km and (D) 20
km.
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Figure 5-5 Top: (A) horizontal and (B) vertical component of randomly sampled data
with an average interval of 6 km. Bottom: two components ((C) horizontal and (D)
vertical) of the data interpolated into 2 km grids. The recovery quality is 27.5 dB for the
horizontal component and 21.9 dB for the vertical one.
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Figure 5-6 The same as in Fig. 5-5, but for the 10 km case. The recovery quality is 17.6
dB and 16.0 dB for the horizontal and vertical component respectively.
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Figure 5-7 The same as in Fig. 5-5, but for the 20 km case. The recovery quality is 7.5
dB and 8.6 dB for the horizontal and vertical component respectively.
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Figure 5-8 Passive source RTM results with curvelet interpolations. The input data are
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Figure 5-9 Geometry of the north segment of Hi-CLIMB array. The seismographs are
depicted as blue triangles. A great circle (red line) is estimated by a least-square fitting of
a total of 71 stations. The great circle starts at the point of 29' N and 86' E, with an angle
of 23.10 counter-clockwise from the north. IYS stands for Indus-Yarlung suture; BNS is
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Figure 5-10 (A) Source distribution (red circles) used for the RTM imaging. Blue
triangles represent stations in the north segment of Hi-CLIMB. Black dashed line is the
great circle from a least-square fitting of station locations. (B) Ps conversion point
distribution assuming the Moho depth is 70 km. The blue triangles are Hi-CLIMB
stations. The green symbols are pierce points from southeastern events and the red are
from northwestern events.
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imaging.
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Figure 5-12 A real dataset recorded by the Hi-CLIMB array, with (A) horizontal and (B)
vertical component. The data are aligned with the first P arrival, and bandpass filtered
between 0.05 Hz and 0.8 Hz.
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Figure 5-13 Pareto curves for the curvelet interpolation. The blue line is for the
horizontal component and the red dashed line is for the vertical component. The raw data
are depicted in Fig. 5-12. Black circles indicate the optimal trade-off between the data
fitting and the sparsity of the solution.
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Figure 5-14 (A) Horizontal and (B) vertical component of the data after curvelet
interpolation with the best trade-off parameters (black circles in Fig. 5-13). The raw data
are shown in Fig. 5-12.
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Figure 5-16 Hi-CLIMB RTM image with the curvelet interpolations. (A) Surface
topography along the x-axis. The solid line is the mean elevation and the gray shading
denotes the standard deviation across a swath of about 50 km in width. (B) Stacked image
of SE and NW images. The Moho is delineated by a dashed line. (C) SE image
contributed from the southeastern events. (D) NW image contributed from the
northwestern events.
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Figure 5-17 Comparison with previous studies on Hi-CLIMB data. (A) Receiver
functions image (combination of Ps, PpPs and PpSs images) (from Ndbilek et al.
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image in this study.
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Chapter 6

Multiple Seismic Reflectors in Earth's

Lowermost Mantlet

The modem view of Earth's lowermost mantle considers a D" region of enhanced

seismologically inferred heterogeneity bounded by the core mantle boundary (CMB) and

an interface some 150-300 km above it, with the latter often attributed to the post-

perovskite phase transition (in MgSiO 3). Deep-Earth exploration with ScS and SKKS

wavefields, probing this region from above and below, respectively, suggest that this

view be modified. Inverse scattering of ScS and SKKS data reveals seismic reflectors

above the conventional D" region, beneath Central America and East Asia, two areas

known for subduction of oceanic plates deep into Earth's mantle. The occurrence of

multiple interfaces is inconsistent with expectations from a thermal response of a single

t (This chapter has been submitted as) Shang, X., S.-H. Shim, M. V. de Hoop and R. D.
van der Hilst (2013), Multiple Seismic Reflectors in Earth's Lowermost Mantle, Proc.
NatL. Acad Sci.
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isochemical post-perovskite transition but can be explained with post-perovskite

transitions in differentiated slab materials. Our results imply that the lowermost mantle is

more complex than hitherto thought and imply the presence of interfaces and

compositional heterogeneity beyond the D" region sensu stricto.

Key words: lowermost mantle, post-perovskite transitions, multiple seismic reflectors,

compositional heterogeneity

6.1 Introduction

The lowermost mantle, extending several hundred kilometers above the -2,900 km deep

core mantle boundary (CMB), is of considerable interest because it comprises the

boundary layer of thermo-chemical mantle convection across which heat is conducted

from the core into the mantle. Almost three decades after the detection of an interface

some 150-300 km above the CMB [Lay and Heimberger, 1983], the so-called D" region

below it is still a challenging target for cross-disciplinary research. Both the seismic

discontinuity that marks the top of the D" region [Lay and Heimberger, 1983] and the

heterogeneity below it [Wysession et al., 1998; Garnero, 2000] have been attributed to a

perovskite (Pv) to post-perovskite (pPv) transition in the dominant mantle silicate

[Murakami et al., 2004; Oganov and Ono, 2004; Shim et al., 2004; Hernlund et al., 2005;

Hutko et al., 2008], and this association has inspired estimation of temperatures above

and heat flux across the CMB [Lay et al., 2006; van der Hilst et al., 2007]. The D"

interface remains enigmatic, however, and recent high pressure-temperature experiments
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suggest that seismic observations concerning its depth and thickness are inconsistent with

those expected for a pPv transition unless the chemical composition of the regions where

they occur differs significantly from standard bulk composition models such as pyrolite

[Catalli et al., 2009; Andrault et al., 2010; Grocholski et al., 2012]. The transition

thickness can be reduced through a nonlinearity in the phase fraction profile [Catalli et

al., 2009] and lattice preferred orientation of pPv [Ammann et al., 2010], but the pPv

transition pressure in pyrolite may be too high for it to occur in the lower mantle

[Grocholski et al., 2012]. Candidate compositions for a seismically detectable pPv

transition at pressures less than the CMB include mid-oceanic ridge basalt (MORB) and

harzburgite components of differentiated oceanic lithosphere transported to the

lowermost mantle by subduction. Furthermore, silica may transform from modified

stishovite to seifertite in Si-rich parts of the lowermost mantle [Grocholski et al., 2013].

Inspired by these results, we search for multiple interfaces in and above the conventional

D" region using seismic waves that sample the lowermost mantle.

6.2 Deep Earth exploration seismology

For large scale seismic exploration of the Earth's lowermost mantle we adapted a 3-D

inverse scattering technique - a generalized Radon transform (GRT) - from its original

use in controlled-source hydrocarbon exploration to imaging with ScS and SKKS waves

emitted by naturally occurring earthquakes (Fig. 6-1, left). The GRT can extract subtle

signal from large volumes of waveform data and facilitates the discovery of hitherto

unknown structures because it does not rely on a priori assumptions about the location or
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shape of geological targets. The method applied here, an improved version of what we

used in our previous studies [Wang et aL., 2006; Wang et aL., 2008], is summarized in the

Supporting Information (SI, Text Si).

The ScS and SKKS waveform data are entirely independent in that (i) they are associated

with different source-receiver combinations, (ii) sample the mantle (and core) along

different propagation paths, (iii) arrive in different time windows, and (iv) concern

different wave polarizations and, thus, sensitivies to (radial) anisotropy. We have shown

that despite these differences they yield similar images of the first-order structural

features in the lowermost 400 km of the mantle beneath Central America [Wang et aL.,

2006; Wang et aL., 2008], where inferred depth variations of the presumed D" reflector

correlate with tomographic wave speed anomalies [van der Hilst et aL., 2007; Sidorin et

aL., 1999; Sun et aL., 2006].

We search for impedance contrasts up to 600 km above the CMB beneath two

geographical areas that are well sampled by ScS or SKKS (Fig. 6-1, left) and where

subduction has occurred for hundreds of millions of years. The first area is Central

America (Fig. 6-1, upper right; Fig. 6-2, right) which has long been a type locality for

studies of deep subduction of the Farallon plate [van der Hilst et aL., 1997; Li et aL., 2008;

Grand et aL., 1997; Grand, 2002; Ribe et aL., 2007] and D" imaging with ScS waves

[Wysession et aL., 1998; Garnero, 2000; van der Hilst et aL., 2007; Thomas et aL., 2004;

Hutko et al., 2006]. The second is East Asia, which is well sampled by SKKS waves (Fig.

6-1, lower right), and where tomography [van der Hilst et aL., 1997; Li et aL., 2008;
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Grand et al., 1997; Grand, 2002] reveals a large high-speed anomaly (Fig. 6-2, left),

presumably produced by deep subduction of the Izanagi and Pacific plates from the east

and the Tethys and Indo-Australian plates from the south [van der Hilst et al., 1997;

Grand et al., 1997].

For Central America we used (approximately) 130,000 ScS traces from 1,900 earthquakes

(mb> 5 .0 ; 1990-2009) recorded at one or more of a total of 2,700 seismograph stations

(Fig. 6-1, top center). For Asia we used 120,000 SKKS traces from 11,000 events

recorded at 1,700 stations (Fig. 6-1, bottom center). The range of epicentral distances is

0-80' for ScS and 100-180' for SKKS. The data used (~20% of all available traces)

passed selection criteria based on signal-to-noise and multi-channel cross correlation

values. Source signatures are estimated through principal component analysis (PCA) and

removed from the data through Wiener deconvolution [Chen et al., 2010; Rondenay et

aL., 2005]. With GRT we estimate (from scattered energy) elasticity contrasts at nodes of

a 3-D grid (10 km vertical, 1 lateral spacing), and spatial alignment of such contrasts

indicates the presence of an interface. We use a tomographic model [Grand, 2002] to

correct for mantle heterogeneity; other models may induce slight differences but these are

too small to be of concern here. More information about data selection and processing is

provided in SI (Text S2).

6.3 Structural complexity in the lowermost mantle

We illustrate the main structural features in the lowermost mantle beneath the regions
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under study by means of 2D (vertical) GRT sections through 3D image volumes. The

nearly 1,500 km long Central America section (Fig. 6-3A) cuts across the main

(tomographically inferred) high wavespeed anomaly (Fig. 6-2, right). This segment

parallels section A-A' in our previous study [van der Hilst et al., 2007], but it is shorter

because detection of weak structures above D" requires more stringent imaging

conditions and sampling criteria than was necessary for the imaging of CMB and D".

The first of the East Asia sections shown here (B-B'; Fig. 6-3B) also cuts mainly across

seismically fast regions, whereas the other (C-C', Fig. 6-3C) samples slow regions as

well. In these profiles, black (red) pulses indicate positive (negative) impedance contrasts

with increasing depth; their amplitudes are normalized (with respect to the CMB

reflection) and only a qualitative indicator of the reflector strength. The background

colors depict tomographic variations in shear wavespeed, which are used to construct the

images.

Both beneath Central America and East Asia, well-aligned black pulses mark the CMB as

well as a laterally continuous interface labeled 'X' (fat magenta lines, Fig. 6-3).

Consistent with previous results [Hutko et al., 2008; van der Hilst et al., 2007], 'X'

occurs some 250-300 km above the CMB beneath Central America (Fig. 6-3A), but

beneath East Asia, where such a feature has not been imaged before, it is positioned

closer to the CMB. In all sections, the data also reveal a weaker, and previously

unknown, shallower interface (hereinafter 'Y'), some 450-500 km above the CMB.

Stacking across the sections suppresses scatterers that do not form laterally coherent

structures and reveals clearly the CMB, X, and Y as the main interfaces (Fig. 6-3, right).
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Beneath Central America (Fig. 6-3A) 'Y' is laterally intermittent but clearly visible over

at least 1,000 km horizontal distance. The data reveal impedance contrasts between CMB

and 'X', as described before [Hutko et al., 2008; van der Hilst et al., 2007], and suggest

that one or more wavespeed drops (red pulses, labeled 'z') occur between 'X' and 'Y'.

Locally, 'z' may look like a sidelobes of nearby positive pulses, but in most places it

clearly appears as a separate signal. The Asia section across the fast anomaly (Fig. 6-3B)

is qualitatively similar, with a weak, laterally intermittent interface visible some 200 km

above 'X'. Also here, negative pulses appear between CMB and 'X' and between 'X'

and 'Y' (in particular around 300 km above CMB in the right half of the section). Fig. 6-

3C suggests that the character of these structures changes when moving from

(tomographically inferred) high to low wavespeeds in the lowermost mantle: interface

'Y' is laterally continuous in the easternmost 1,200 km "fast" part of Section C-C',

intermittent in the center (between 1,000 and 1,500 km horizontal distance), and absent in

the seismically 'slow' region further west. In the latter, no coherent scattering are visible

above interface 'X', located here ~200 km above CMB.

6.4 Phase transitions in differentiated subducted lithosphere?

Our application of modem imaging techniques to ever growing data sets confirms the

widespread presence of a positive impedance contrast 150-300 km above the CMB

beneath Central America and maps it for the first time beneath East Asia. Consistent with

previous results, we interpret this horizon 'X' as the top of the D" region and associate it
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with the post-perovskite (Pv-+pPv) transition. For reference, we also show (black

dashes) the hypothetical phase boundary predicted by Sidorin et al. [1999], who assumed

that (i) tomographically inferred wavespeed variations have a thermal origin, (ii) a

(pressure-induced) mineralogical boundary exists (with a positive pressure-temperature

dependence of 6 MPa/K), and (iii) this boundary can be extrapolated globally [Sidorin et

al., 1999; Sun et aL., 2006]. This prediction is hereafter referred to as the "thermal

model". Along the Central America section (A-A') and in the western part of Asia

section C-C' interface X coincides with the hypothetical phase boundary expected from

the thermal model. In contrast, it does not correlate with thermal predictions in the high

wavespeed parts of the Asia sections (e.g., B-B').

It is also beginning to discover hitherto unknown structures in the lowermost mantle. The

detection of laterally continuous scatter surfaces above the D" interface may be at the

edge of current resolution, but tests with synthetic data demonstrate that it cannot be

attributed to noise, multiple scattering near sources or receivers (such as depth phases),

reverberations within the D" layer (SI, Fig. 6-S2), or multiples of SKKS (that is, SKS,

with n>2) [Wang et aL., 2008]. If 'X' marks the top of D", the images suggest that

interfaces - and by implication compositional or phase boundaries - exist several

hundred km above the D" region.

Our first-order observations - (i) poor correlation between tomographic wave speed

variations and depths to the D" discontinuity and (ii) existence of multiple reflectors - are

inconsistent with a single (pressure induced, temperature controlled) phase transition in
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magnesium silicate (MgSiO 3) perovskite in a compositionally homogeneous mantle.

Forward (Pv-+pPv) and reverse (pPv-+Pv) transitions can produce multiple interfaces in

the steep thermal gradient near the CMB [Hernlund et al., 2005; Hutko et al., 2008; van

der Hilst et al., 2007] but not several hundreds of km above it.

With hundreds of millions of years of subduction along the eastern seaboard of Asia and

beneath Central America, it is possible that some of the multiple reflectors are due to

buckling of slabs above the CMB [Ribe et al., 2007], as has been suggested to occur

beneath Central America [Sun et al., 2006; Thomas et al., 2004]. Another explanation

involving subduction concerns the presence of material that is chemically distinct from a

pyrolitic bulk composition. Variations in mineralogy and iron and aluminum content can

influence the propagation speed of seismic waves [Kiefer et al., 2002; Jackson et al.,

2004; Tsuchiya and Tsuchiva, 2006] as well as the pPv transition depth [Catalli et al.,

2009; Grocholski et al., 2012; Tateno et al., 2005] and detectability [Grocholski et al.,

2012]. Of particular interest are predictions from experimental mineral physics that in a

heterogeneous mixture of harzburgite, basalt, and bulk mantle the Pv-+pPv transition in

the MORB fraction can occur several hundreds of kilometers above the transitions in

either the harzburgite components or pyrolite (Fig. 6-4) [Grocholski et al., 2012]. The

shallower pPv transition would be weak because MORB contains much less magnesium

silicate (30%) than harzburgite or pyrolite (60-80%) [Hirose et al., 2005] and because

the pPv transition depth interval in MORB is greater than harzburgite (but still smaller

than in pyrolite [Grocholski et al., 2012]).
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Because of complex mineralogy and phase chemistry, uncertainties in absolute pressure

in mineral physics data [Shim, 2008], controversy in seismic velocities of bulk mantle

composition (pyrolite) and (mixtures of) recycled materials (MORB, harzburgite)

[Stixrude and Lithgow-Bertelloni, 2012; Tsuchiya, 2011], and the fact that weaker

impedance contrasts are only now beginning to emerge as robust features, one-to-one

mapping of phase transitions and seismological boundaries is still premature. But

combining evidence from mineral physics and seismic imaging (Fig. 6-4), we suggest

that 'X' marks the pPv transition either in average mantle (if effects from LPO and

element partitioning decrease pPv transition thickness to within detectable limits) or in

the harzburgitic component of differentiated subducted lithosphere, and that 'Y' marks

the transition in the subducted MORB component. Negative impedance contrasts ('z' and

closer to CMB in Fig. 6-3) may reflect transformations in silica [Hirose et al., 2005],

local existence of partial melt [Liebske and Frost, 2012], or reverse pPv transformations

in basalt, harzburgite, or bulk mantle. These are exciting targets of future joint mineral

physics research and deep Earth exploration seismics and may lead to further revision of

the canonical view of a lowermost mantle with compositional and structural

heterogeneity restricted to the D" layer.

6.5 Methods

We used a generalized Radon transform (GRT) to recover unknown elastic reflectors in

the lowermost mantle from the scattered ScS and SKKS wavefields (SI Text Si, Fig. 6-

Si). In essence, the GRT maps (as in reverse time migration) the scattered seismic
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wavefield (recorded at the surface) back to sub-surface contrasts in elasticity. For each

spatial node of a 3D grid, GRT exploits data redundancy through the integration of

waveform data over a wide range of scattering angles and azimuth. In theory, point

scatterers can be resolved in the Rayleigh diffraction limit (which depends on frequency),

but in practice spatial resolution depends on how a subsurface point is illuminated (that

is, the wave slownesses and the range of scatter angles over which data are integrated),

which depends on source-receiver distribution. To ensure robustness, we require that

target points be sampled from a sufficient range of angles (> 150) around the stationary

point (specular reflection), which enables us to resolves structure at lateral scales of 500

km or larger. The GRT imaging does not rely on a priori assumptions about the location

or shape of geological targets, which facilitates discovery of hitherto unknown structures.

More details of the method and data preprocessing are given in Si Texts SI and S2. For

the mineral physics data, the absolute pressure (or depth) is uncertain by at least ±5 GPa

(or ± 100 km) [Shin, 2008] and depends on the pressure scale used. We note that the use

of the gold pressure scale by Tsuchiya [Tsuchiya, 2003], originally used in Grocholski et

al. [2012], gives depths in between those inferred from the gold scales used in Fig. 6-4B.

The relative pressure scale (or difference in pressure or depth) is better constrained (±I

GPa), and all mineral physics data shown in Fig. 6-4B are constrained using the same

pressure scale (gold). Therefore, depth differences among the phase boundaries in Fig. 6-

4B are more reliable for comparison with seismic data than absolute depths.
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Figure 6-1 Left: Generic ray geometry of SeS (blue paths) and SKKS (red paths) phases,
which sample the lowermost mantle from above and below, respectively. Solid lines
depict SeS and SKKS reflections at the Core Mantle Boundary (CMB); dashed lines
depict possible paths of scattering at structure above the CMB, which is used to generate
the sections shown in Fig. 6-3. Center and Right: Top: Distribution of epicenters (red
circles) and stations (blue triangles) that yield the SeS data used in the construction of the
common image point gathers. The range of epicentral distances is O-8Oo. The green
rectangle depicts the study region in Central America (5-300 N; 80- 1050W). Inset: natural
logarithm of the number of ScS midpoints in 20x 2~ geographical bins. Bottom: Same,
but for SKKS in East Asia (25-550 N; 65-125"E). The range of epicentral distances for
SKKS is 10O-18Oo.
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Figure 6-2 Tomographically inferred lateral variations (in %) in shear speed at
approximately 200 km above the core mantle boundary [Grand, 2002]. Red boxes
indicate regions under study: East Asia (left) and Central America (right). Red arrows in
these boxes depict locations of cross sections A-A' (in Central America) and B-B' and C-
C' (in East Asia), for which the inverse scattering results are shown in Fig. 6-3.
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Figure 6-3 Reflectivity profiles superimposed on smooth (tomographically inferred)
variations in shear wavespeed [Grand, 2002]-scale as in Fig. 6-2. (A) Section A-A'
across Central America: [24.50N, 96.6'W] to [6.54N, -83'W]; (B) Section B-B' across
East Asia: [25'N, 123E] to [55'N, 123*E]; (C) Section C-C' across East Asia: [27'N,
700E] to [50'N, 123 E]. Black (red) pulses depict positive (negative) impedance
contrasts. The magenta lines depict coherent reflectors inferred from data (thick dashes
depict interface 'X'; thin dashes depict interface 'Y'); black dashes depict the prediction
by Sidorin et al. [1999] from purely thermal considerations. At the right: stacks (along
interface 'X') showing the main (positive) impedance contrasts CMB, 'X', and 'Y', as
well as minor negative impedance contrasts located between 'X' and 'Y' (labeled 'z'). In
these stacks, the part above 100 km above CMB (the horizontal dashed line) is amplified
by a factor of 5. Upon stacking, laterally coherent reflectors are enhanced and incoherent
scattering suppressed.
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Figure 6-4 Left: stacks along interface 'X' in sections A-A', B-B', and C-C' (shown in
Fig. 6-3). Right: depth ranges for post-perovskite transitions in mid ocean ridge basalt
(MORB), harzburgite (Harz), and pyrolite (Pyr), after Grocholski et al. [2012], and
transitions in silica from modified stishovite to seifertite (Sft), after Grocholski et al.
[2013], at -2,500 K. Plotted are the lower bounds of the pPv transition thickness. The
pressures at the phase boundaries are calculated using either a shock wave (gold) scale
from Jamieson et al. [1982], scale bar on the left of (B), or a static compression (gold)
scale from Hirose et al. [2008], on the right. Pressure was converted into depth using
PREM [Dziewonski and Anderson, 1981]. Absolute pressure (depth) is uncertain by at
least ±5 GPa (± 100 km), but pressure differences are constrained better (± 1 GPa). Given
these uncertainties, the depth difference between 'X' and 'Y' agrees remarkably well
with the difference in pPv transition depth between MORB and harzburgite.

172

M Is I .



Supporting Information

SI Text Si: Methodology

Inverse scattering in seismology refers to estimating the characteristics of an (subsurface)

object from elastic waves that scatter from it. In the generalized Radon transform (GRT)

used here we use the Born approximation (that is, single scattering) and assume that the

scatterers (including interfaces) can be represented as perturbations relative to a smooth

back ground medium [Miller et al., 1987; Beylkin, 1990; de Hoop and Bleistein, 1997].

For this purpose, the medium parameter, for instance wave speed c(x), can be

decomposed into two parts c(x)= co(x) + 6c(x), where 6c(x) is a perturbation relative to a

smoothly varying background medium co(x). Accordingly, the wave field u(x) can be

divided into two parts u(x) = uo(x) + 6u(x), where uo(x) is the direct wave due to

propagation in co(x) and 6u(x) the scattered wave due to 6c(x). The background smooth

model can be estimated from reference Earth models and seismic tomography. Inverse

scattering maps the scattered wave field 6u(x) back into images of perturbation of

medium properties 6c(x).

The scattered wavefield 6u(x) depends on the position of imaging point y, source x' and

receiver x' (Fig. 6-SI). For a given (y;xs,xr), we define the slowness vector pS(y) for the

incident ray from source to the imaging point, as well as p'(y) from the receiver side.

These two slowness vector can define migration dip v'(y) = p'(y)/1p'"(y)JJ, with p'(y)=
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p'(y) + p'(y) and scattering angle 0 and azimuth xv (Fig. 6-Si).

In order to do multi-scale analysis and avoid caustics, the recorded wavefield 6u(y; x,, Xr)

can be mapped into angle domain 6u(y; v', 0, y) [Wang et al., 2006; Wang et al., 2008;

de Hoop and Bleistein, 1997], with scatter angle 0 and azimuth V. The structural

reflectivity at y can be approximated as

I(y) = f Su(y; vm, 0, y) /pm(y) 11 dvm dy dO (6.S1)

where data 6u(x) is integrated over scatter angles 0 and azimuths A.

In practice, the spatial resolution of GRT depends on how an image point is illuminated

(integration range of Eq. 6.S1). The imaging result would be biased by uneven source-

receiver distribution (e. g. dominant earthquake direction, poor illumination coverage). In

order to ensure robustness and mitigate inversion artifacts, we regularize it by two steps.

Firstly, all image points are required to be sampled from a sufficient range of angles

around the stationary point (specular reflection). For each vertical profile in Fig. 6-3 (the

same latitude and longitude with different depth), we check the illumination coverage

using the point on core-mantle boundary (CMB). The survived points must have specular

reflected data (migration dip angle is zero) and a wide range of migration dip angle (here

we use 15 degree). Secondly, the contribution from different earthquakes is balanced by

simple ray-count normalization. After trace normalization, the ray count is proportional

to the incident wave energy. Before summing over scatter angle 0 in Eq. 6.S1, the ray

count is calculated for each angle bin (3 degree) and each partial image is normalized by

the ray count.
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SI Text S2: Preprocessing of the Data

There are several steps in the selection and preprocessing of the data. First, for all data

we remove the instrument response and rotate the data to radial and transverse

components. We use transverse component (SH wave) for ScS data and radial component

(SV wave) for SKKS data. Second, all data are band-passed between 10 and 50 seconds

with a 4-pole Butterworth filter, and then normalized with respect to the reference phase

(ScS or SKKS). Third, we discard data on the basis of a simple quality criterion obtained

from multi-channel cross-correlation [VanDecar and Crosson, 1990]. For each

earthquake, we organize the data in 100 (epicentral) distance bins, and from each seismic

record in a bin we extract a 50 s time window around the theoretical ScS (or SKKS)

arrivals. After energy normalization, we then cross correlate each trace with all others in

the bin, which yields a qualitative estimate of the average correlation coefficient for each

trace. Traces with averaged correlation coefficient lower than a set threshold (we use 0.6)

are discarded. Roughly 20% of all data meets this quality criterion. The trace polarity

can be corrected according to the sign of averaged correlation coefficient. After

multichannel cross-correlation, traces are aligned with reference phases. Fourth, principle

component analysis (PCA) is applied to estimate the source signature [Rondenay et aL.,

2005], which is then removed from the data to enhance image resolution by Wiener

deconvolution [Chen et aL., 2010]. The water level in Wiener deconvolution is selected

automatically and adaptively based on the noise spectrum of array data. Finally, travel

times are corrected for ellipticity [Kennett and Gudmundsson, 1996] and for 3D

wavespeed variations using a tomographic model for mantle shear wave speed [Grand,
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2002].

SI Text S3: Tests with Synthetic Data

Since the quality of the GRT imaging operator depends on the aperture of angles 0 and

azimuths x (SI Text S1, above) and the validity of the single-scattering approximation,

tests with synthetic data are necessary to examine the effects of uneven sampling, noise,

interfering main phases (such as depth phases), and multiple scattering (e.g., near source

or receiver scattering and internal reverberations). In all tests described below we

computed synthetic waveforms for the real source-receiver geometry (including focal

depths) and focal mechanism obtained from Global CMT catalog. All synthetic

seismograms are calculated with the WKBJ method [Chapman, 1978], using a radially

stratified wave speed model (ak 135 model [Kennett et al., 1995]), on which a 3% S wave

velocity jump is superimposed at 250 km above CMB. Before the inversion, all synthetic

data are band-pass filtered between 5 to 50 s.

Figure 6-S2 shows the effects on the SKKS image gather of random noise (100% noise

level), depth phases, and multiple reverberations. Even when the signal cannot be

identified in most individual traces, the reflector at 250 km above CMB is clearly

recovered after stacking over scattering angle (Fig. 6-S2a). The depth phase can produce

small waveform distortion (Fig. 6-S2b). However, it does not produce significant artifacts

in the image. The reverberation in the crust and D" layer can also be a potential artifact

source in that such phases could interfere with the coda wave of SKKS. Applying the

GRT to the synthetic data with such signals shows that they do not in general
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contaminate the image profile (Fig. 6-S2c,d).

SKKS multiples SKS (n>2), which reverberate within the liquid outer core, arrive later

and could interfere with the reflections from lowermost mantle interfaces in time domain.

In angle gathers, their slownesses differ from SKKS (and SKSdSKS), therefore they can be

distinguished by a clear residual moveout and suppressed by parabolic Radon transforms

[Wang et al., 2008].
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Figure 6-S1 Illustration of ray path geometry considered in the generalized Radon
transformn of ScS (blue paths) and SKKS (red paths) phases, for subsurface image point y.
Slowness vectors are given by p. The slowness of the incident ray (from source x' to y)
direction is p', pr denotes the scattered path (from y to receiver x'), and p' = p' + p'
defined the migration dip direction (which controls radial resolution). Scattering angle
and azimuth are given by 0 and V, respectively. CMB and ICB denote core-mantle
boundary and inner-core boundary, respectively.
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Figure 6-S2 Effects on the SKKS GRT image gathers of the presence of (a) white noise
(100% additive noise), (b) depth phases, (c) multiple reverberation in the crust, and (d)
multiple reverberation between D" discontinuity and CMB. In the tests, a 3% shear wave
velocity jump at 250 km above CMB is superimposed on a layered model (akl35)
[Kennett et al., 1995].
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, we develop and apply inverse scattering transforns to construct images of

the lithosphere and the lowermost mantle with broadband teleseismic data.

In Chapter II we present passive source reverse time migration (RTM), a new type of

wave equation prestack depth migration, for subsurface imaging with multi-component

data from dense arrays. In contrast to conventional methods using wave conversions,

RTM does not rely on simplifying assumptions about the geometry of the geological

structures of interest and can handle strong heterogeneities without difficulty. In passive

source RTM, multi-component array data are first propagated backward by solving the

elastic wave equation directly. After polarization separation, a modified cross correlation

imaging condition between P and S wave constitutes is applied to obtain an inverse

181



scattering transform. From synthetic experiments, it is evident that for complex

geological structures RTM is superior to the traditional CCP receiver function stacking,

provided that data from dense seismograph arrays are available.

A semi-automatic workflow of teleseismic data preprocessing for inverse scattering is

proposed in Chapter III. After instrument response removal, the traces from one event

are aligned with a reference phase by multi-channel cross-correlation. The noisy traces

are marked and removed automatically in the same time. The polarity of traces is

corrected according to the sign of cross-correlation coefficients. After alignment, the

source signature is estimated by principle component analysis. Finally, the source

signature is deconvolved by Wiener deconvolution, which is data-adaptive and superior

to traditional water level deconvolution. Synthetic and real data examples show that this

workflow is less subjective and more efficient for massive data preprocessing. Codes will

be made available to the broader community.

Due to the absence of suitable dense array data, wavefield interpolation is a necessary

step before RTM application. In Chapter IV we demonstrate the feasibility of sparsity

promoting curvelet interpolation on undersampled teleseismic datasets. We investigate

the effect of undersampling ratio, from 0.5 to 0.15, on typical teleseismic wavefield

recovery. In the presence of noise, the Pareto curve (L-curve in geophysical literatures) is

exploited to find the optimal trade-off between the data fit and sparsity of the solution.

Both synthetic and real data examples demonstrate that for typical teleseismic acquisition
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geometry with 50% to 85% missing traces, the curvelet-based interpolation works

remarkably well.

In Chapter V we apply passive source RTM to a sparsely sampled teleseismic dataset.

Synthetic examples demonstrate that for a typical teleseismic imaging of lithosphere,

dense sampling (e.g. ~2 km spacing for 1 Hz wave) is required to suppress spatial alias in

RTM image. With the aid of curvelet interpolation, passive source RTM becomes to be

feasible (e.g. 6-10 km spacing is enough for 1 Hz wave). Hi-CLIMB array in Tibet is

used as a real data example of passive source RTM with curvelet interpolation. RTM

image reveals clear and continuous Moho discontinuity across the Bangong-Nujiang

suture (BNS) at the depth of about 70 km, which is not well imaged by CCP stacking and

Gaussian beam migration in previous studies.

Due to the sparsity of seismographs globally, it is more appropriate to use a high

frequency approximation of the inverse scattering. We use a generalized Radon transform

(GRT) to probe the deep mantle structures. In Chapter VI we use about 130,000 ScS

traces and 120,000 SKKS traces to image the lowermost mantle beneath central America

and east Asia respectively, two areas known for subduction of oceanic plates deep into

Earth's mantle. Inverse scattering of ScS and SKKS data reveals seismic reflectors above

the conventional D" region beneath central America and east Asia. The occurrence of

multiple interfaces is inconsistent with expectations from a thermal response of a single

isochemical post-perovskite transition but can be explained with post-perovskite

transitions in differentiated slab materials. Our results imply that the lowermost mantle is
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more complex than hitherto thought and that the presence of interfaces and compositional

heterogeneity beyond the D" region sensu stricto.

7.2 Future Work

In this thesis, we mainly focus on the 2D application of passive source RTM. It is

straightforward but not trivial to extend to 3D cases. With 2D areal dense networks on the

surface rather than 1D linear arrays, subsurface structures can then be constrained in

more details, without resorting to cumbersome 2.5D approximations. In teleseismic

imaging, several key ingredients, such as the 3D fast curvelet transform [Ying et al.,

2005], a large-scale t -norm optimizer [e.g. van den Berg and Friedlander, 2008], and a

3D elastic wave propagator [e.g. Komatitsch and Tromp, 1999; Zhang et al., 2012] are all

available. There are no theoretical obstacles but computational cost for 3D RTM

application could be formidable.

To overcome the illumination problem in teleseismic imaging, partially due to uneven

distribution of earthquakes, multiples can be incorporated in current RTM scheme. Due

to distinct ray path and moveout signature from primary waves, multiples increase the

illumination aperture and image resolution. In reflection seismology, surface related (and

internal) multiples are employed for the imaging of the salt base and flank [e.g. Berkhout

and Verschuur, 2006; Malcolm et al., 2009]. In teleseismic study, people have begun to

use it for crust imaging [e.g. Tseng et al., 2009]. However, including sharp boundaries in

the background model is still an on-going research topic for RTM.
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Passive source RTM is suitable for scatterer detection, but the accuracy of the resulting

images is dependent on the smooth background model. On the other hand, travel time

tomography is sensitive to large-scale volumetric anomalies. In the future we aim to

combine passive source RTM and tomography in an explicit (non-linear) joint inversion

of teleseismic wavefields for wavespeed determination and interface detection and

location.
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