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Abstract

Gravity and topography data provide a powerful tool for studying the interiors of rocky
planetary bodies. In this thesis I study three such bodies - Venus, Mercury and the Moon
- and I use the gravity and topography data returned by recent NASA planetary science
missions to model their structure and evolution. I calculate geoid/topography ratios on
Venus using gravity and topography data from NASA's Magellan mission. These ratios
inform models of crustal thickness and mantle density, which in turn have implications for
the formation of Venus's highland crust. I perform spatio-spectral localization of gravity
and topography on Mercury from the MErcury Surface, Space ENvironment, GEochem-
istry, and Ranging (MESSENGER) mission, and I perform analytical calculations of two
layered mantle flow in order to interpret the high low degree admittances associated with
Mercury's domical rises. Finally, I use lunar gravity from the Gravity Recovery And In-
terior Laboratory (GRAIL) mission along with topography from the Lunar Orbiter Laser
Altimeter (LOLA) to quantify the stress state in the nearside maria, thereby placing con-
straints on the Moon's thermal evolution.
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Chapter 1

Introduction

Our inner solar system contains five large rocky bodies: Mercury, Venus, the Moon, Earth

and Mars. Scores of new exoplanets are discovered every year, and as astronomers search

for Earth-like planets orbiting distant stars it is becoming increasingly important to under-

stand the diversity of Earth-like objects in our own Solar System. Beyond merely aiding in

the search for exoplanets, though, the study of terrestrial bodies in our solar system helps

us understand our own planet better. The paradigm of plate tectonics endemic to Earth has

yet to be observed on another planet, which gives motivation to re-examine exactly how the

mechanisms of plate tectonics exist on Earth. Flood volcanism on Mercury and Venus are

reminiscent of volcanic events such as the one that formed the Siberian Traps and may have

caused a mass extinction. The pristine cratering record on the Moon offers our best record

of the accretionary environment in the early solar system. Finally, the evidence concerning

dynamic evolution of these bodies offers constraints on numerical models, which, though

sophisticated, suffer from a dearth of observational data points.

The most successful tool for studying the Earth's interior has been seismic interpre-

tation. Seismologists have used tomographic inversions of time series data in a global

network of seismometers to map seismic velocities throughout the interior, which can in

turn be used to infer physical quantities such as density, composition and mineral phase.

Material interfaces in the Earth often reflect seismic waves, and prominent reflective inter-

faces have been connected to the interior structure, such as the inferred connection between

the Mohorovidi6 discontinuity and the crust-mantle boundary. Regions of complete or par-
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tial melt often result in an observable attenuation of shear waves. Finally, splitting of shear

waves inform seismologists of anisotropic mineral structure, such as may result from pro-

longed mantle flow. Unfortunately seismic data beyond the Earth are extremely limited.

Although seismometers were deployed on the Moon during the Apollo missions and on

Mars via the Viking landers, these seismometers are generations behind Earth-based seis-

mic networks in sophistication and spatial coverage, so interpretation of these seismic data

comes with a certain amount of ambiguity. A seismic lander for Mars called InSight is

currently under development by NASA, but again, a single seismometer will be limited in

its sampling of the Martian interior.

In the absence of seismic observations, there are a number of means with which to in-

terpret interior structure. Gravitational interactions between a satellite and a planetary body

(or interactions between multiple planetary bodies) gives an estimate of the planet's mass,

and estimates of volume can consequently give the mean density and bulk composition.

Observations of precession can be used to infer moment of inertia, which is determined

in part by the size of a metallic core. Along with the degree-2 shape of the body, small

changes in the rotation rate of a planetary body (called librations) can give the depth to a

liquid portion of the interior. Distortion of the body's shape due to tidal interactions can be

measured as Love numbers, and these quantities are dependent on the elastic structure of

the planet. Inductance connected with to the solar magnetic field can yield insights into the

planet's conductivity and composition.

Arguably more powerful than any of these methods is the recovery of a planetary body's

gravity field. Variations in the gravitational acceleration exterior to a planet perturb the tra-

jectory of an orbiting spacecraft, and these perturbations may be observed as Doppler shifts

in the returned telemetry. A gravity field is a function of the mass distribution in a planetary

body, and as such a gravity field may be used to non-uniquely invert for the mass distri-

bution inside a planet. A downward continuation of the gravity field to the crust-mantle

interface produces an estimate of lateral variations in crustal thickness. The constraints

on crustal volume resulting from this analysis allows for inferences of bulk composition.

Gravity anomalies may also arise from mass variations apart from the crust-mantle inter-

face, so nuanced analysis is required to separate the effects of these mass distributions.
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Another important tool for planetary geophysics is topography. Topography data alone

may be used to draw conclusions about a planetary body's evolution by identifying regional

slopes, using crater depth/diameter ratios to infer infill volumes, etc. However, topography

data becomes especially useful when analyzed in conjunction with a planetary gravity field.

Ratios of gravity to topography in the spatial and spectral domain are particularly helpful

for distinguishing between mechanisms of topographic support such as crustal compensa-

tion, dynamic flow, and elastic flexure.

In this thesis, Chapter 2 focuses on the gravity and topography of Venus returned by

NASA's Magellan mission. In Chapter 3 we perform spatio-spectral localization of gravity

and topography on Mercury using the data currently being returned by NASA's MESSEN-

GER spacecraft, and we use this analysis to interpret the mechanisms of supporting long-

wavelength topography. Chapter 4 addresses the stress state of the Moon using free-air

gravity returned by NASA's GRAIL mission. Finally, Chapter 5 addresses opportunities

for future work using the aforementioned data sets.

21



22



Chapter 2

Crustal thickness and support of

topography on Venus

2.1 Introduction

In addition to being our nearest planet, Venus is similar to Earth in both size and composi-

tion. Rocks sampled by the Venera space probes were determined to be primarily basaltic in

composition, although all the Venera landing sites were within smooth volcanic provinces

(e.g., Surkov et al., 1984). From bulk density arguments the mantle is assumed to have a

peridotite composition (Fegley, 2004), similar to Earth. In spite of the similarities between

Venus and Earth, however, the two planets have some conspicuous differences. The most

striking difference in a geological sense is the apparent absence of plate tectonics on Venus

(Kaula and Phillips, 1981; Solomon et al., 1992), although tectonic comparisons to Earth

have been made (McKenzie et al., 1992; Sandwell and Schubert, 1992) amidst some contro-

versy. Ridge spreading and ocean slab subduction are the primary sources of heat loss for

Earth, but heat loss on Venus must be facilitated by another mechanism such as volcanism

or thermal convection without lithospheric motion.

The majority of the surface consists of low-lying volcanic plains, and the regions of high

topography can be classified either as volcanic rises associated with recent hotspot activity

(Smrekar et al., 2010), or as shallowly compensated crustal highlands (i.e. crustal plateaus).

One significant exception in this classification scheme is Ishtar Terra, which, excluding

23



its boundaries, is markedly less deformed than the other highland regions (Phillips and

Hansen, 1994). The origin of the crustal highlands has been attributed to either tectonic

thickening of the crust above mantle downwellings (Bindschadler, 1992; Ivanov and Head,

1996) or massive melting associated with upwelling mantle plumes (Phillips and Hansen,

1998). Either of these scenarios represent a significant departure from the plate tectonics

paradigm endemic to Earth, and as such Venus serves as an important laboratory for testing

geodynamical models.

Because the crust contains a large portion of a terrestrial planet's incompatible ele-

ments, the volume of crust on a planet is an important parameter for understanding the

extent of melting in the mantle (cf. Rudnick and Gao, 2005). In the absence of seismic data

collection, gravity is the best geophysical tool for constraining the structure of the inte-

rior. In this paper we will use the relationship between global topography and gravity data

to model crustal thickness and other parameters in the Venusian interior, first by inferring

apparent compensation depths from geoid to topography ratios, and then by performing

a two-layered inversion of the gravity field. This two-layered inversion solves for crustal

thickness variations and a lateral distribution of mass in the mantle.

2.2 Data

Several robotic missions to Venus have collected gravity and topography data, of which

NASA's Magellan mission provides the most complete set to date. Magellan collected to-

pography data via radar altimetry and a relatively high resolution gravitational field via a

dedicated gravity acquisition phase. Magellan altimetry (Ford and Pettengill, 1992) cov-

ered 93% of the surface, but the data gaps can be filled in with altimetry data from Pi-

oneer Venus Orbiter and Venera 15/16 to produce a more complete map of topography.

The VenusTopo719 data product (Figure 2-1) provides to degree 719 the real spherical

harmonic coefficients of topography using these altimetry data (Wieczorek, 2007). For the

gravitational potential we use the degree 180 MGNP180U data product (Figure 2-2), which

was based on Magellan data and augmented with observations from Pioneer Venus Orbiter

(Konopliv et al., 1999). The power of Venusian topography as a function of spherical har-
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monic degree l is roughly proportional to 1-2 due to its approximately scale-invariant shape

(Turcotte, 1987). At intermediate wavelengths, the MGNP180U geoid power fits Kaula's

law (SNN(1) 1- , (Kaula, 1966)), which is produced by a random distribution of density

anomalies in the interior (Lambeck, 1976).

Since we are interested in the relationship between the two data sets, the topographic

data is useful only up to the resolution of the gravity data. The power spectrum of the error

in the MGNP180U data product surpasses the power of the coefficients above degree 70

(spatial block size ~270 km), so we regard this as the nominal global resolution of the data

set. The degree I terms correspond to the offset between the center of mass and the center

of figure, and we remove these from the spherical harmonic expansion of topography. The

actual spatial resolution. varies considerably, with a resolution as high as degree 100 near

the equator and as low as degree 40 elsewhere on the planet (see Konopliv et al. (1999) for

a complete resolution map).

When geoid height and topography are plotted with respect to one another (Figure 2-3)

we can see that the two data sets have a complicated relationship that is poorly fit by a

single linear trend. We will apply potential theory and models of topographic support in

order to unravel this relationship between topography and gravitational potential on Venus.

2.3 Methodology

2.3.1 The geoid and topography

It is useful to express a spherical function f(Q), where Q e (0, 4) represents position on

the surface of a sphere, as a linear combination of real spherical harmonics:

OC I

f(Q) S Y fimY1m (Q), (2.1)
1=0 m=-l

fim = f (Q)Yi,(Q) dQ (2.2)

where fl,, denotes the spherical harmonic coefficient at degree / and order m for the func-
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tion f(Q), and Yim(Q) denotes the real spherical harmonic functions:

Yim(Q) - Pm(Cos 0) cos m# M > 0 (2.3)
Pilm(COSO) sin mjq# m < 0

Here, 0 is the colatitude, # is the longitude, and Pim are 47r-normalized associated Legendre

polynomials (Kaula, 1966). The power spectrum of f is defined to be the sum of the

squared spherical harmonic coefficients at each degree 1:

Sff~) fM. (2.4)
M=-1

The height of the gravitational equipotential surface N(Q) (the "geoid") at the planetary

radius R can be calculated from the gravitational potential field, U(Q, r), using a first-order

Taylor series approximation over the radial coordinate r:

U(Q, R + 6r) = U(Q, R) + &U(Q, R) N(Q) (2.5)
Or

Equation 2-6 is sometimes called Bruns' formula, and the radial derivative of potential

is the surface gravitational acceleration g, which we will consider to be constant (dominated

by I = m = 0 term, go) over the surface. The static geoid perturbation NB(Q) produced

by an interface B(Q) at depth d with a density contrast APB can be calculated using an

upward-continuation factor in the spherical wavenumber domain:

N g(2+1 (R-)l+lAPBBm, RB R (2.6)

where the subscript "im" on N1t indicates the spherical harmonic coefficients of NB (like-

wise for Bim), G is the gravitational constant, R is the planetary radius, and the radial

position of the interface B is RB = R - d. In spherical geometries it is mathematically

succinct to work with radii rather than depths, so we use notation of this form. Some deep-

seated topographic compensation sources, such as thermal density anomalies or dynamic

support, are not associated with relief on an interface. Therefore when we characterize

mantle compensation in section 3.2, it is more physically appropriate to replace the prod-
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uct APBBlm in equation 2-6 with a load term 'Ji, signifying anomalous mass per unit

area. In the case where surface topography is supported exclusively by relief on the crust-

mantle interface W(Q) (the "Moho"), the observed geoid is equal to the sum of the geoid

contributions from planetary shape H(Q) ("topography") and from W:

N Air = NH + Nw (2.7)

where NH and Nw refer to the static contributions to the geoid at r = R from H and W,

respectively.

The ratio of geoid height N to topography H is frequently used to characterize the

compensation of topography; in the spectral domain this non-dimensional ratio is known as

the "admittance spectrum", and in the spatial domain it is called the "geoid-to-topography

ratio" (GTR). When a compensation model is assumed, a GTR can be used to calculate the

isostatic compensation depth at which the amplitude of the observed geoid is reproduced. In

the Airy crustal compensation model, the weight of topography is balanced by the buoyancy

associated with Moho relief W:

Rw
pegH = ApgwV (2.8)

R)

where Rw is the radius of the Moho, = H - N, V = W - Nr1Rw , and N'=Rw

is the local equipotential surface at r = Rw. If the gravitational acceleration does not

change with depth and if we ignore the contributions of equipotential surfaces, this reduces

to a requirement that mass is conserved in a vertical column. We note a subtle distinction

between H and R. While we have been referring to the planetary shape H as "topography",

it is common in geophysics literature to reserve the term "topography" for the planetary

shape in excess of the geoid (e.g. Smith et al. (1999)). Therefore, what we now call H is,

by some conventions, true topography.

The degree dependent ratio of geoid height to topography (the admittance spectrum,

Zj), can be found by assuming a compensation mechanism and a depth of compensation d.

We calculate the admittance spectrum for Airy isostatic compensation by inserting equa-

tions 2-6 and 2-8 into equation 2-7, neglecting the depth dependency of gravitational ac-
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celeration and the contributions of local equipotential surfaces:

ZAiry _Nl,,, 47rGRp p I R - d )1
Him r g(21 + 1) R (2.9)

The superscript label "Airy" indicates that this admittance function Z corresponds to Airy

isostatic compensation. When the depth d is inferred from the observed geoid and topog-

raphy, it is called the "apparent depth of compensation" (ADC). For crustal compensation,

d is the Moho depth R - Rw.

Since the ratios of geoid to topography resulting from Airy isostasy have a linear and

quadratic dependence on finite-amplitude topographic height (Haxby and Turcotte, 1978),

it is possible in some situations to distinguish between Airy isostatic compensation and

Pratt isostatic compensation, which assumes compensation via lateral density variations

and depends only linearly on topography. In particular, Kucinskas and Turcotte (1994)

and Kucinskas et al. (1996) systematically tested Airy and Pratt compensation models for

various Venusian highland regions. For topographic heights less than a few kilometers the

quadratic term for Airy isostasy is small, making it difficult to reliably distinguish between

the two compensation mechanisms over a majority of the planet's surface. However, we

will note that ideal Pratt compensation is unlikely on Venus: a relatively large density con-

trast of 400 kg m- 3 between the lowest and highest points on the surface would require

a global compensation depth (~mean crustal thickness) of about 100 km, but this com-

pensation depth is likely precluded by the granulite/eclogite phase transition (see section

3.4). Therefore we will not address the possibility of significant density variations within

the crust other than to say that the results of previous studies do not broadly contradict our

assumption of Airy crustal compensation.

Wieczorek and Phillips (1997) showed that if a compensation mechanism is indepen-

dent of position, the GTR associated with that mechanism can be represented by a sum of

spectrally weighted admittances:

GTR = E, SHH()ZI (2.10)
TI SHH ()

If the unknown topography resulting from a compensation mechanism is assumed to have
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a scale-invariant distribution (i.e. SHH(1) X 1-2) then the GTR can be approximated for an

arbitrary configuration of the compensating source:

GTR 1 - 2 Z (2.11)
LI1- 2

We can measure GTRs on the surface of Venus by performing minimum variance fits

of the observed geoid and topography. This requires sampling the geoid and topography

at equally spaced points over the surface of the planet; e.g. Hi = H(Qi). After sampling

the geoid and topography on an octahedrally projected mesh at about 100,000 points (i.e.

a sample spacing much finer than the resolution of the spherical harmonic data set) we

minimize the sum of the squares of the windowed residuals, denoted by 4b:

<D = wi(GTR -Hi + y - Ni)2 (2.12)

where y is the geoid offset and wi is a windowing function. We use a simple cosine-squared

window in order to provide a localized fit with a sampling radius a centered at x0 :

Cos 2 (_21 11 X, - X0 11) 11 xi - xo 11< a (.3
wj~{O 2a~I~XH -j~o< (2.13)0 11 xi - xo ||> a

where xi is the cartesian location of the ith sample. By minimizing <D with respect to GTR

and y we can solve for GTR at a point xo on the surface:

GTR = E HiNiwi E wi - E Hiwi Niwi (2.14)
E Hwi -E w2 _ (EL HWi) 2  (

where all the summations cycle through i. Note that when wi is defined to be a step function

of unit magnitude, equation 2-14 reduces to the ratio Cov(Hi, Ni)/Var(H).

An admittance function such as the one given in equation 2-9 predicts the ratio of geoid

to topography as a function of spherical harmonic degree, but doesn't accommodate infor-

mation about spatially varying compensation. On the other hand, a GTR calculated with

a spatial regression is a function of position but loses any spectral information. Both of

these mathematical tools have been used to characterize depths and mechanisms of com-
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pensation (e.g., Kiefer and Hager, 1991; Smrekar and Phillips, 1991), but there will always

be a tradeoff between spatial resolution and spectral fidelity. Spatio-spectral localization

techniques (Simons et al., 1994, 1997; Wieczorek and Simons, 2007) blur the line between

these two approaches by calculating admittance spectra within a localized taper. This ap-

proach retains some information in the wave-number domain while accepting a certain

amount of spatial ambiguity. Anderson and Smrekar (2006) used spatio-spectral localiza-

tion to test isostatic, flexural and dynamic compensation models over the surface of Venus.

These techniques necessarily exclude the longest wavelengths, which account for the bulk

of the power of the geoid and topography due to the red-shifted nature of both data sets. In

contrast, our two-layered inversion (section 3.4) incorporates all wavelengths.

2.3.2 Dynamic flow

We have thus far considered only isostatic compensation mechanisms, but we can gener-

alize our analysis to dynamic flow in the Venusian interior. Richards and Hager (1984)

introduced some depth-dependent kernels in their analysis of dynamic topography, three

of which are pertinent to our analysis. The first is the dynamic component of the geoid

normalized by the mantle mass load (the "geoid kernel"):

G 1M (2.15)
1 Xm

where Ndyn(Q) is the component of the geoid produced by dynamic flow and I(Q) is a

sheet mass which drives viscous flow. The second kernel we use is simply the gravitational

admittance associated with dynamic flow:

Z" =1M (2.16)

where Hdyn (Q) is the component of topography produced by dynamic flow. When consid-

ering the effects of self-gravitation, it is sometimes convenient to use an adjusted admit-

tance function:
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2d- H NIM 1
Zd" = - Nl 1" 1. (2.17)

The third kernel gives the surface displacements normalized by the mantle mass load (the

"displacement kernel"):

D dyn = " = "- (2.18)
1 irn Zf

These three kernels can be analytically calculated for a loading distribution within a

viscous sphere (see Appendix B). We have plotted the kernels in Figure 2-4 for a number

of parameters, including elastic thickness, surface boundary conditions, viscosity structure,

and loading depth. The geoid and displacement kernels are generally negative, and they ap-

proach zero at high spherical harmonic degrees. This means that a positive mass load '

is associated with a negative geoid and topography at the surface, and that shorter wave-

length mass loads have relatively subdued surface expressions. The admittance kernel is

significantly red-shifted, with higher geoid-to-topography ratios at longer wavelengths. We

can also use Figure 2-4 to qualitatively understand the effects of parameter values on the

dynamic kernels. A free-slip surface boundary condition results in a slightly reduced ad-

mittance at the lowest degrees, and a thicker elastic lithosphere decreases the admittance at

high degrees. Viscosity profiles that increase with depth result in complicated dynamic ker-

nel plots, but generally decrease the admittance spectrum. A deeper loading depth increases

the admittance spectrum across all degrees, but results in a subdued surface expression of

the geoid and topography at short to intermediate wavelengths.

Given that strain rates on Venus are likely to be small (Grimm, 1994), the surface can

be modeled as a no-slip boundary, and a free slip boundary condition approximates the

coupling between the mantle and the liquid outer core at radius r = RC. Other authors

(e.g., Phillilps, 1986; Phillips et al., 1990; Herrick and Phillips, 1992) have examined

the appropriateness of various viscosity structures and concluded that Venus lacks a low-

viscosity zone in the upper mantle. Other studies have suggested that Venus may have a

viscosity profile that increases with depth, similar to Earth's viscosity structure [Pauer et

al., 2006]. For the sake of limiting the parameter space, we assume an isoviscous mantle
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and only qualitatively consider the effects of more complicated radial viscosity profiles.

The spherical harmonic coefficients for dynamic topography are given by Hd1n -

D dy"Tim, and if the distribution of the load T is assumed to be scale-invariant then the

power of dynamic topography is proportional to 1D -2 and the observed GTR for a

dynamic model can be calculated:

E Dclyn 2 2Zyn
GTR = d n . (2.19)

Various theoretical curves quantifying the relationship between GTR and compensa-

tion depth are summarized in Figure 2-5 for dynamic and Airy isostatic compensation. The

GTR associated with Airy isostatic compensation calculated in a Cartesian coordinate sys-

tem is linear with depth, but Wieczorek and Phillips (1997) showed that this calculation

will underestimate the true compensation depth in a sphere. In contrast, the GTR associ-

ated with dynamic flow (equation 2-19) is much larger for a given loading depth. However,

these relationships assume a global sampling of geoid topography, and a windowing of

N and H such as the one given in equation 2-13 will invariably under-sample the longest

wavelengths of the admittance spectrum. The relationship between the power of windowed

data and spherical data for Slepian tapers is stated explicitly in equation 2.11 of Wieczorek

and Simons (2007). Since the dynamic flow kernel is largest at low degrees (see Figure

2-4), a windowed measurement of a dynamically compensated GTR will be smaller than a

global measurement for the same compensation mechanism. In order to quantify the effect

of window size on the observed GTR, we created synthetic data sets by randomly gen-

erating topography spectrally consistent with Venus's and calculating geoids for dynamic

compensation in the wavenumber domain according to equation 2-16. We then performed

regression fits of geoid to topography using windows with sampling radii of a = 600, 1000,

and 2000 km. The expectation values of these windowed dynamic GTRs as a function of

loading depth are listed for select compensation depths in Table 2-2, and plotted in Figure

2-5.
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2.3.3 Support of topography

The excess mass from surface topography must be supported through a combination of

crustal thickness variations, a laterally heterogeneous distribution of density, dynamic flow,

and stresses in the lithosphere. We can constrain the interior structure of Venus by requiring

that the loads provided by these mechanisms cancel the load of topography at the surface

of the planet.

Topography and the crust-mantle boundary both produce loads where they depart from

the local gravitational equipotential surface. While the surface geoid is observable, the

equipotential surface at a given depth is dependent on the planet's internal structure. This

potential field can be approximated by including contributions from topography, from relief

on the crust-mantle interface W(Q) with a density contrast Ap, and from a mantle load

I(Q) with units of kg m 2 . The resulting equipotential surface at r = Rw is calculated by

applying equation 2-9 for the three interfaces:

Nr=R 4rG (R H R i Rw, 1+1
R~ - pc Hlm + Rw ApWm + Rp - TIM.

gw (21 +1) R (Rw)
(2.20)

We neglect the contribution from relief on the core-mantle boundary (the "CMB"), as it has

a second-order effect here (an a posteriori check confirms that flow-induced CMB relief

contributes less than one meter to Nr=Rlw).

Stresses in the lithosphere can also support topography under the right conditions.

While a variety of stress distributions are possible, we will assume a simple model in which

loads are supported by flexure of a thin elastic lithosphere. The lithosphere of Venus can be

modeled as a shell of thickness Te, and we define F(Q) to be the deflection of the shell from

its undeformed configuration. Bilotti and Suppe (1999) observed a geographical correla-

tion between compressional wrinkle ridges and geoid lows, along with a similar correlation

between rift zones and geoid highs. While a number of regions are well fit by top loading

admittance models (Anderson and Smrekar, 2006), the tectonic patterns observed by Bilotti

and Suppe (1999) are broadly consistent with the stress distribution produced by bottom

loading of an elastic shell. For simplicity, we define the flexural deflection F(Q) to be the
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component of topography produced by dynamic flow:

F = 6H"f. (2.21)

In other words, we invoke an elastic lid that resists deformation of the surface by dynamic

flow. By necessity, this model assumes a globally-uniform elastic thickness T. We as-

sume T = 20 km, slightly less than the elastic thicknesses inferred at some volcanic rises

(McKenzie and Nimmo, 1997). However, is not clear if these estimates of elastic thickness

are globally representative (Anderson and Smrekar, 2006), so we acknowledge significant

uncertainty in T.

Since the magnitude of flexure is coupled to the unknown mantle load IF it must be

incorporated into the dynamic flow kernels (see Appendix B). We can then represent the

spherical harmonic coefficients of topography in excess of the geoid by assuming a normal

stress balance, with superimposed contributions from W and dynamic flow:

A p (Rw G G19
R = Aip + -dyl (2.22)

Pc ~R lm Z1 r"

where the kernels Gb"" and Zr"" come out of the dynamic flow calculation.

2.3.4 Two-layered inversion

A single-layer inversion of gravity data is performed by downward-continuing observed

gravity anomalies to an interface at some depth below the surface. Assuming that all

Bouguer gravity anomalies come from relief on the crust-mantle interface, versions of

equation 2-6 have been used to solve for crustal thickness distributions on the Moon (Zu-

ber et al., 1994; Wieczorek and Phillips, 1998), Mars (Zuber et al., 2000; Neumann et al.,

2004) and Venus (Wieczorek, 2007). However, we have argued that crustal thickness vari-

ations on Venus cannot be solely responsible for the observed geoid (cf. Figure 2-3). For

mean thicknesses of 10-50 km the GTRs associated with crustal thickness variations are

1-6 m km 1 , and with a globally sampled GTR of 26 m km 1 it is clear that the observed

geoid must be in large part produced by a deep compensation source. To isolate the portion
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of the geoid corresponding to crustal thickness, we will simultaneously invert for crustal

thickness and mantle mass anomalies.

Previous studies have similarly endeavored to remove high-GTR trends from the geoid:

two-layered gravity inversions have been performed for Venus by Banerdt (1986), to solve

for two mass sheets in the presence of an elastic lithosphere, and by Herrick and Phillips

(1992), to characterize dynamic support from mantle convection. However, these studies

did not have access to Magellan gravity models, which limited their analyses to spherical

harmonic degrees less than 10 and 18, respectively. Although a follow-up study by Herrick

(1994) did incorporate some gravity data from Magellan, resolution of the gravitational

potential had only been improved to degree 30 by that point. Since the current gravity data

has a resolution of ~70 degrees, our model provides the highest-resolution map of spatial

variations in crustal thickness.

We remove the high-GTR trends from the geoid by performing an inversion for relief

on the crust-mantle interface W(Q) and for the mantle load T(Q). This means that there

are two unknowns, WI, and TIm, for each spherical harmonic degree and order, and we

can invert uniquely for these coefficients by imposing two sets of equations. We use a

crustal density of Pc = 2800 kg m- 3 and a crust-mantle density contrast of Ap = 500 kg

m-- 3, although neither of these quantities are well-constrained due to uncertainties in the

composition of the crust and mantle.

Our first set of equations, given by 2-22, constrains topography to match the topog-

raphy produced by crustal isostasy and by dynamic flow in the presence of an elastic lid.

This is equivalent to a normal stress balance at the surface of the planet. The second set

of equations requires the observed geoid to equal the sum of the upward-continued con-

tributions from H, W, T, and the CMB. This can be posed more succinctly by invoking

kernel notation and separating the geoid into its Airy component N A'Y and its dynamic

component N dYf:

Ni A* = + NA" = -Z( (R 2 Wir - D d In"W + G d"n lm + Nf"i

(2.23)
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where Nf , 7 ite is a correction for finite amplitude relief (see Appendix A). Using equations

2-22 and 2-23 we can solve for the unknowns Wim and Jim. Nf"nt' incorporates powers

of H and W, and since the shape of the crust-mantle interface and its local equipotential

surface are not known a priori the solution is iterative. We first solve for Wim and jWim

without N=Rw or finite amplitude corrections for W or H (no finite amplitude corrections

are applied for the mantle load). Then, we calculate N=R1w and the finite amplitude terms

using the current inversion solutions. The equations are solved again with these new es-

timates for the finite amplitude corrections, and this process is repeated until convergence

(factor of < 10-6 change for all coefficients) has been reached.

2.4 Results

2.4.1 Geoid-to-topography ratios

Venusian geoid-to-topography ratios are plotted for sampling radii a = 600, 1000, and

2000 km in Figure 2-6 along with the corresponding dynamic ADCs. Smrekar and Phillips

(1991) calculated geoid-to-topography ratios and apparent depths of compensation for a

dozen features on the Venusian surface, but the quality of gravity and topography data has

improved significantly since then. In addition, we have improved the theory relating GTRs

to compensation depths, so we update previous interpretations of compensation mecha-

nisms on Venus. In particular, we have shown that the observed GTR is dependent on

the size of the sampling window, and that a windowed GTR measurement for a given dy-

namic compensation depth will be smaller than the globally sampled GTR for the same

compensation mechanism.

Mean geoid-to-topography ratios are listed in Figure 2-7 for a handful of geographic

regions. Uncertainties are given by the spread of GTR estimates within a particular region,

and the GTRs measured at the point of highest topography are given in parentheses. Since

each sampling radius produces its own measurement of the GTR, we get multiple estimates

of the compensation depth at each region. A region compensated by a single mechanism

should produce a compensation depth that is consistent across various sampling radii. It
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is interesting to note that the GTR measured at the point of highest topography within a

region tends to be lower than the mean GTR for the region. This points to a correlation

between locally high topography and a shallow compensation mechanism such as a crustal

root, and it implies that Venus topography is supported at multiple compensation depths.

As would be expected for topography that is partially compensated by a dynamic mech-

anism (cf. Table 2-2), the mean GTR increases with sampling radius. For a sampling radius

of a = 600 km the globally averaged GTR is 13 m km- 1 , but the mean global GTR increases

steadily for larger sampling radii, up to the globally sampled fit of 26 m km- 1 . This is in

contrast to the results of Wieczorek and Phillips (1997) for the lunar highlands, where the

means and standard deviations of the GTR histograms were constant. The strong depen-

dence of GTR measurements on sampling radii for Venus can be attributed to the presence

of dynamic topography, for which the value of the admittance function is strongly depen-

dent on wavelength (cf. Figure 2-4).

It should be understood that these compensation depths generally do not correspond

to thickness of the crust, as most are deeper than the granulite-eclogite phase transition

that represents a theoretical upper bound to the thickness of the crust (see the next section

for discussion). This suggests that crustal thickening alone cannot explain the observed

geoid and topography. Smrekar and Phillips (1991) reported a bimodal distribution of

compensation depths, and histograms of GTRs as a percentage of surface area show a

similar double-peaking for a > 2000 km (Figure 2-8). This motivates our two-layered

compensation model.

2.4.2 Crustal thickness and mantle mass anomalies

A two-layered inversion is non-unique insomuch as the mean crustal thickness and a rep-

resentative depth for the mantle load are unknown, and without the benefit of seismic data

from Venus it is difficult to accurately infer either of these depths. However, we can place

constraints on the depth of the crust-mantle interface. For a lower bound on the compen-

sation depth R - Rw (the mean crustal thickness), it can be noted that the solution for

the crust-mantle interface should not produce negative crustal thickness anywhere on the
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planet. This constraint was used on Mars to deduce a lower bound of 50 km for the mean

crustal thickness (Zuber et al., 2000; Neumann et al., 2004). The lowest topography on

Venus is a little more than 2 km below the mean radius, and this zero-thickness constraint

results in a lower bound of roughly 8 km for R - Rw, depending on the compensation

source (see Table 2-3). For an upper bound we refer to the granulite-eclogite phase tran-

sition under the assumption that the basaltic compositions measured by the Soviet landers

are representative of the crust as a whole (Figure 2-9). Eclogite is -500 kg m- 3 denser

than basaltic rock, so any crust beyond the eclogite phase transition would be negatively

buoyant and prone to delamination. Any eclogite material that is not delaminated will con-

tribute negligibly to the observed geoid or to topographic compensation since its density

would be close to that of mantle rock. The existence of stable crust below the solidus

depth is also unlikely, so we regard the granulite-eclogite phase transition and the solidus

as upper bounds for the thickest crust. The exact depths of these transitions rely on Venus's

geothermal gradient, another quantity that has not been directly measured. However, the

maximum depth for stable basalt crust will occur for a geothermal gradient between 5 and

10 0C km- 1. For any reasonable choice of inversion parameters the thickest crust is always

found under Maxwell Montes on Ishtar Terra, so we will consider 70 km (cf. Figure 2-9) to

be an upper bound for the thickness of the crust at Maxwell Montes. With this constraint,

upper bounds for mean crustal thickness can be determined (see Table 2-3).

It is more difficult to constrain the dynamic loading depth, especially since the driving

mass sheet is a simplification of a physical mechanism not confined to a particular depth

(e.g. distributed density anomalies; see section 5.2 for discussion). However, we can inform

our choice of loading depth by attempting to minimize the combined power spectra of Hw

and H'. A slightly more subjective criterion for choosing the loading depth R - RP

involves the correlation of crustal thickness and the loading function. If we introduce the

crustal thickness T(Q) = H(Q) - W(Q), we can define the cross power spectrum for T

and T:

STJ(i) T3 (2.24)
Mn=-1
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A correlation function for crustal thickness and dynamic loading can then be calculated:

77S(D = . (2.25)
VSTr (I)ST I (1)

This degree-dependent function will equal zero where T and XI are uncorrelated. While

it is not obvious that these two quantities should be completely uncorrelated, large positive

or negative values of the correlation function are likely characteristic of a poor choice of

model parameters: if a true compensation mechanism has an admittance spectrum signif-

icantly different from the admittances produced by both crustal thickening and dynamic

flow, a two-layered model will produce solutions for T and AP that are either correlated

or anti-correlated in an attempt to match the observations. We choose a loading depth of

R - Rp = 250 km, noting that the combined power of HAir" and Hdy" is minimized for

large mantle loading depths. A larger chosen value of R - Rp reduces the power of HAiy

and Hdy" slightly but results in a stronger anti-correlation of T and T at low spherical har-

monic degrees. This depth also corresponds to the upper end of the regional GTR spread

for a = 2000 km (cf. Figure 2-8) and to the upper cluster in the double-peaked histogram

(Figure 2-8 in conjunction with Table 2-2).

We calculated solutions to equations 2-22 and 2-23 using the parameters listed in Table

2-4. Our smoothing filter for crust-mantle relief W is modified from Wieczorek and Phillips

(1998), and is defined to have a value of 0.5 at the critical degree 1,:

= 1+ (2. + 1)2 (R (2.26)
( 21c + 1)2 Rw

We use lc = 70 for our crustal thickness solution. A similar filter is used for mapping the

mantle load T, with l = 40.

Crustal thickness is plotted in Figure 2-10 and the mantle load is plotted in Figure 2-

11; these plots emphasize crustal plateaus and volcanic rises, respectively. The addition

of bottom-loaded flexure does not appreciably change the magnitude of crustal thickness,

but finite amplitude corrections changed the calculated crustal thicknesses by as much as

6 km. A plot of the power of HAirY and H dyT (Figure 2-12) shows that dynamic loading

is responsible for most of the long wavelength (I < 27) topography and that the crustal
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thickness variations tend to support the shorter wavelengths.

In a number of highland regions (e.g. Alpha and Ovda Regiones) crustal thickness is

well correlated to topography, while in other regions (e.g. Atla and Eistla Regiones) dy-

namic loading is the dominant contributor to topography. Other regions such as Thetis

Regio appear to have superimposed contributions from crustal thickening and dynamic

loading. The center of Thetis Regio features thickened crust, while the exterior topo-

graphic swell is supported by dynamic loading and has no thickening of the crust. The

central region of crustal thickening within Thetis Regio is correlated to SAR-bright terrain

(Pettengill et al., 1991) as well as high-emissivity (Pettengill et al., 1992).

2.5 Discussion

2.5.1 Mean crustal thickness

In the process of performing our two-layered crustal thickness inversion we have con-

strained the mean thickness of the crust to be 8-25 km for a reasonable range of physical

parameters. The upper limit of this crustal thickness range is somewhat less precise than

the lower limit due to uncertainties in the geothermal gradient and the kinetics of metamor-

phism. Namiki and Solomon (1993) argue that if Maxwell Montes was formed tectonically

in the geologically recent past, a crustal root may have grown too quickly for the basalt-

eclogite phase transition to limit crustal thickness. If we therefore exempt Maxwell Montes

from our requirement that no crust should exceed 70 km thickness, the mean crustal thick-

ness can be as large as 45 km for a geothermal gradient range of 5-10 0C km- 1 .

Previous measurements of mean crustal thickness have been made using observations

of crater relaxation states, characteristic spacing of tectonic features, and spectral gravity

arguments. Noting that craters on Venus are relatively unrelaxed, Grimm and Solomon

(1988) used viscous relaxation models to argue that the mean thickness of the crust should

be less than 20 km for a geothermal gradient dT/dz = 10 C km- 1 . These conclusions

were made under the assumption that the lower crust is very weak, but the experiments by

Mackwell et al. (1998) have since shown that a dry lower crust can maintain relatively high
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differential stresses. New relaxation calculations are needed, and the updated constraints

on crustal thickness may be somewhat looser than those proposed by Grimm and Solomon

(1988).

Zuber (1987) also constrained the mean crustal thickness to a range of 5-30 km by

noting that the surface expressions of tectonic deformation often have two characteristic

wavelengths. If these features can be interpreted as the result of a weak lower crust, the

shorter wavelength may correspond to deformation of the upper crust while the longer

wavelength would correspond to deformation of the rigid upper mantle. As with the con-

straints from crater relaxation, the Zuber (1987) models will need to be updated with the

dry crust rheology of Mackwell et al. (1998), which is less distinguishable from ultramafic

rheologies.

Previous gravity studies have provided estimates for the thickness of the crust by pro-

ducing a fit to the observed admittance spectrum. Konopliv et al. (1999) notes that at high

degrees the global admittance function is best fit by an Airy compensation model with 25

< R- Rw < 50 km, and Grimm (1997) use the Konopliv et al. (1999) type of analysis to in-

form a choice of 30 km for the mean crustal thickness. Estimates of mean crustal thickness

from the global admittance function are premised on the assumption that all high-degree

topography is supported by crustal compensation. While this assumption may be true in

many cases, we note that most exceptions involve mechanisms with higher GTRs (in par-

ticular, shallow mantle heterogeneities and flexurally-supported topography). Therefore we

believe it is possible for a crustal thickness estimate produced by global admittance analysis

to be an over-estimation. Regional crustal thickness estimates can similarly be made for lo-

calized spectral analysis (see Table 2-5 for a comparison of our crustal thicknesses with the

results of Anderson and Smrekar (2006)), although spatio-spectral techniques do not pro-

duce global estimates for the mean crustal thickness. Our crustal thicknesses match those

of the Anderson and Smrekar study at the crustal plateaus (where their crustal thickness

estimates are most reliable) if we choose a global mean thickness of about 15 km.
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2.5.2 Interpretation of the mantle load function

The function IF (Q) represents anomalous mass in the mantle that drives flow, but thus far we

have not speculated on the source of anomalous mass. One potential source for the observed

mass anomalies is thermal density variations. We observe a number of roughly circular

regions of mass deficit in the mantle along with broadly interconnected downwellings,

and this distribution is consistent with models of a thermally convecting mantle (Schubert

et al., 1990; Herrick, 1994). The two largest regions of mass deficit, found at Atla and Beta

Regiones, likely represent upwelling mantle plumes (Smrekar et al., 2010). Assuming a

volume thermal expansion coefficient of a = 3 x 10-' C and a maximum temperature

contrast AT = 300 C, density variations of poaAT = 30 kg m- 3 might be reasonably

expected due to thermal variations in the mantle. With this density contrast, thermally

buoyant material would have to be distributed through -450 kilometers of the vertical

column in order to account for the mass deficits predicted at Atla and Beta Regiones.

Mass anomalies can alternatively be interpreted as compositional density anomalies,

particularly those that arise from chemical differentiation. The Mg-rich mantle residuum

left behind by fractional melting of a mantle parent rock has a reduced density due to a

depletion of iron oxides. Globally, there is a long-wavelength (I < 40) correlation between

the mantle load T and the crustal thickness T, which is consistent with a parallel production

of crustal material and Mg-rich residuum. We can test the plausibility of residuum as a

source for the mantle load T by comparing the mass of modeled crustal material to the

anomalous mass in the mantle. Following the analysis of Phillips et al. (1990), the density

of mantle residuum, pr, can be modeled as a function of the melting mass fraction f and

the density drop 6p, from a mantle parent rock, pm, to Mg-pure forsterite:

Pr = Pm - PPr. (2.27)

Consider the fractional melting of a mantle parcel with an original mass M 0 . Assuming

all of the melt is extracted, the mass and volume of the resulting residuum material are,

respectively, Mr = (1 - f)M'o and V. = AM/pr, and the extracted melt mass is equal to

f Mo. The observable mass anomaly, WM, can be calculated as the difference between the
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mass of residuum material and an equivalent volume of unmelted mantle:

6 Al = (I - f)Mo11 1 - .r (2.28)

Note that the residuum volume V, will typically be smaller than the volume of the original

parcel, and that primitive mantle material fills the space created by such a volume change.

If all of the melt recrystallizes into the crust, we can represent the ratio of crustal mass, Me,

to the observable residuum mass deficit as:

-c - - r (2.29)
6M (1 - f)6pr(

Assuming densities of 3500 kg m- 3 for primitive mantle material and 3250 kg m- 3 for

forsterite, and assuming a melt fraction f = 0.1, we would expect a ratio of crustal mass to

anomalous residuum mass of about AI/A ~ -15. Figure 2-13 plots the total accumu-

lation of crustal material in a number of regions of high topography, along with the corre-

sponding mass deficits in those regions. Error bars in Figure 2-13 represent the distribution

of mass estimates for a range of model parameters, including mean crustal thicknesses of

10-30 km, dynamic loading depths of 150-400 km, and elastic thicknesses of 0-30 km.

The ratios of crustal mass to anomalous mantle mass in a number of regions, including

Ishtar Terra and Ovda Regio, are consistent with the accumulation of mantle residuum. As

shown in Figure 2-13, this proportionality is robust for a reasonable range of parameters.

While Phoebe and Thetis Regiones also have accumulations of crust correlated with mass

deficiency in the mantle, they have greater dynamic support than would be expected for a

mantle residuum paradigm, so it is likely that they could be supported by thermal buoy-

ancy in addition to the possible accumulation of residuum. The mass deficits at Atla and

Beta Regiones are qualitatively different from the mass deficits at other locations on the

planet, with larger amplitudes and narrower lateral extents. Atla and Beta also have much

more dynamic support than would be expected in these regions from an accumulation of

residuum, so it is likely that these mass deficits are primarily thermal in origin.
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2.6 Conclusions

We have mapped the spatial variations of crustal thickness and a deep compensation mecha-

nism (Figures 2-9 and 2-10). This inversion predicts that some topographic rises correspond

to thickened crust (Ishtar Terra, Ovda Regio, Tellus Regio, Alpha Regio) while others are

primarily compensated at depth (Beta Regio, Atla Regio). Mean crustal thickness has been

constrained to a range of 8-25 km, so crustal material makes up between 0.2% and 0.7%

of the total planetary mass. Basaltic phase constraints on crustal thickness required that

the geothermal gradient be less than 15 'C km- 1 , with an ideal range of 5-10 'C km- 1 .

Assuming a temperature of ~ 1450 'C at the base of the thermal boundary layer, this range

of geothermal gradients predicts a thickness of 100-200 km for the thermal lithosphere. A

model depth of 250 km for the mantle load was shown to be ideal for a two-layered inver-

sion, but our mass sheet T is a proxy for a more complicated distribution of mass in the

mantle.

Our results allow us to separate provinces into three physiographic classes, defined

by low, intermediate, and high GTR values. Provinces of the first class (GTR < 10 m

km- 1, calculated for a sampling radius a = 2000 km) are not strongly influenced by ther-

mal convection, and high topography in these regions corresponds to thickening of the

crust. Crustal plateaus in this class (except for those with the lowest GTRs) are possibly

underlain by Mg-rich residuum in quantities that are consistent with a local melting source

for crustal material. The intermediate class (10 < GTR < 20 m km--1) may also correspond

to accumulation of crust and anomalous concentrations of residuum, but the magnitudes of

mass anomalies in the mantle are too large to be explained solely by residuum, and we

must invoke some amount of likely thermally-driven uplift. These highlands may mark

the sites of late-stage plumes, in which case they would be younger than regions of the

first class. We conclude that provinces in the third class (GTR > 20 m km- 1 ) are influ-

enced primarily by present-day dynamic flow; this class includes volcanic rises, which are

formed by mantle upwellings, and the low-lying plains, which are correlated with mantle

downwellings.

This analysis points to a paradigm in which Venus topography is supported through a
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combination of dynamic flow, melt residuum buoyancy, and thickening of the crust. While

tectonic thickening of the crust has not been excluded, highland crust volumes are consis-

tent with the accumulation of melt over upwelling mantle plumes.
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Table 2.1: Summary of the functions and labeling conventions used in this paper.

Spherical functions
H, H(Q), Him

N

NH, NW, N"'
Nr=Rw

W

'T

F
ft, WV

NAiry, Ndyfl

HAiry, H dyn

Shape of Venus (also "topography"). First two notations are interchangeable; third
notation refers to the coefficients of the spherical harmonic expansion of H
The observed gravitational equipotential surface at the planetary radius r = R (the
"geoid")
Static geoid contributions from topography, the Moho, and the mantle load
Gravitational equipotential surface at the radius of the Moho, r = Rw
Shape of the crust-mantle interface
Mantle mass sheet (units of kg m-)
Flexural displacement
Topography and Moho relief in excess of their local equipotential surfaces
The portions of the geoid generated by crustal isostatic and dynamic compensation
The portions of topography compensated by crustal isostatic and dynamic mecha-
nisms

Degree-dependent parameters and kernels
Sf f(l), Sfg (1) Power spectrum of the function f, cross-power spectrum of the functions f and g
Zyn zAiry Admittance kernels for dynamic flow and crustal isostasy

Idyn Associated dynamic admittance kernel

G dyn Geoid kernel (not to be confused with the gravitational constant, G)

Ddyn Displacement kernel (not to be confused with flexural rigidity, D)

Table 2.2: Modeled GTRs for various Airy isostatic and dynamic compensation depths.
These were empirically calculated using synthetic models of H and N, windowed using
equation 2-13 using sampling radii a, and fit with linear regression (equation 2-14).

Airy
Compensation a = 600 km a = 1000 km a = 2000 km

Depth (km)
10 1.3 1.3 1.3
15 1.9 1.9 1.9
20 2.5 2.5 2.5
30 3.6 3.7 3.7-
40 4.6 4.8 4.9
50 5.6 5.8 6.0

Dynamic
Compensation a = 600 km a = 1000 km a = 2000 km

Depth (km)
100 10 12 15
150 13 16 20
200 15 19 25
250 17 22 29
300 19 25 32
400 21 28 38
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Table 2.3: Bounds on mean
Montes)

crustal thickness (for a maximum depth of 70 km at Maxwell

Dynamic Lower bound Upper bound
Compensation Depth (kin) (km)

100 km 22 30
150 km 11 27
200 km 9 26
250 km 8 25
300 km 8 24
400 km 7 23

Table 2.4: Parameter
Parameter
Crustal density, pc
Crust-mantle density contrast, Ap
Mean crustal thickness, R - Rw
Mantle mass sheet depth, R - Rq,
Effective elastic thickness, T
Poisson's ratio, v
Young's modulus, E
Core-mantle density contrast, Apcore

values for the two-layered inversion
Value
2800 kg m-3
500 kg M-3
15 km
250 km
20 km
0.25
60 GPa
3000 kg m-3

Table 2.5: Comparison of crustal thickness estimates between this study (mean thickness
of 15 km) and the spatio-spectral localization study of Anderson and Smrekar (2006)

Region This study A & S
Alpha Regio
Atla Regio
Atalanta Planitia
Beta Regio
Eistla Regio
Fortuna Tessera
Lakshmi Planum
Ovda Regio
Phoebe Regio
Tellus Regio
Thetis Regio

23
24
15
26
17
31
41
37
25
23
31

25
25
25
65
95
25
45
35
45
25
25
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Figure 2-1: Venus topography (scale in km), rendered out to spherical harmonic degree
719. Spherical harmonic topography coefficients from VenusTopo719.
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Figure 2-2: Venus geoid (scale in meters) rendered out to spherical harmonic degree 90.
Contour spacing is 20 m. Spherical harmonic gravitational potential coefficients from
MGNP180U.
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Figure 2-3: Scatter plot of the geoid and topography sampled at 100,000 points on the
surface, with two reference slopes. Compensation of topography at the Moho will result
in a geoid-to-topography ratio of about 3 m km-' (green line in the plot), and dynamically
compensated topography will correspond to higher GTRs.
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Figure 2-4: Dynamic kernels for five flow scenarios. Unless stated otherwise, models
assume an isoviscous mantle loaded at Rp = R - 250 km with Te = 20 km and a no-slip
surface boundary condition. Viscosity model A incorporates a lOx viscosity increase at a
depth of 200 kin, and viscosity model B incorporates a lOx viscosity increase at a depth
of 400 km.
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Figure 2-5: Various relationships between apparent depth of compensation and the geoid-
to-topography ratio. The traditional Cartesian dipole calculation for Airy isostatic compen-

sation produces the black line, and the spherically corrected calculation produces the green

curve (cf. Wieczorek and Phillips (1997)). The red curves correspond to dynamic loading
calculations, assuming a scale-invariant distribution of T (i.e. SFq(l) ~ 1 2 ): the solid
line corresponds to a global sampling of topography and the geoid (equation 2-19), and the
dotted lines correspond to synthetic models of H and N windowed by the taper in equation

2-13.
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Figure 2-6: Maps of GTRs and Airy compensation depths for various sampling radii a.
Black topography contours are overlaid for geographic reference. The poorest resolution
in the MGNP180U gravity solution is found in the vicinity of (50 S, 180 E), so the large
GTRs nearby may not have physical significance.
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Figure 2-7: Geoid to topography ratios (m km- 1) and apparent depths of compensation

(km) for nineteen geographic features on Venus. Each GTR estimate represents the average

GTR measured over the region of interest, and the corresponding uncertainty is given by the

standard deviation of GTR values within the region. The numbers in parentheses give the

GTR localized at the point of highest topography. The corresponding compensation depths

are listed for both dynamic and Airy compensation models, using the relationships plotted

in Figure 5. Colors correspond to the three physiographic classes described in section 6:

red indicates a region with a high GTR, green indicates an intermediate GTR, and blue

indicates the lowest GTR, as determined by the a = 2000 km windowing.
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Figure 2-8: Histograms of binned GTR values for different sampling radii.
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Figure 2-9: Basalt-eclogite phase diagram, adapted after Ito and Kennedy (1971) with
superimposed geothermal gradients.
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Figure 2-10: Crustal thickness map (in km) for a mean
mantle load depth of 250 km. Contour spacing is 5 km.

crustal thickness of 15 km and a

57

km
55 60

I -- j

-1800 -120* -60*



-180o -120 -60 0* 600 1200 1800

6O*

30

-30

-600

-14000000
kg m-

0 14000000

Figure 2-11: Mantle load distribution (in units of kg m- 3 ) for a mean crustal thickness of
15 km and a mantle load depth of 250 km. Warm colors indicate a mass deficit in the mantle
and positive buoyancy; cool colors indicate mass excess and negative buoyancy. Contour
spacing is 2 x 106 kg M-2
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Figure 2-12: Power spectrum for topography, along with the components of topography
compensated by crustal thickening (green) and dynamic support (red). Long-wavelength
topography is dominated by dynamic loading, while crustal thickening largely compensates
short-wavelength features.
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Figure 2-13: Total crustal mass and anomalous mantle mass for selected topographic re-

gions. Crustal mass is measured as the accumulated mass in excess of the mass of a com-

parably sized region with mean crustal thickness. Error bars represent the distribution of

mass estimates for a range of model parameters.
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Chapter 3

Support of Surface Topography on

Mercury from MESSENGER Gravity

and Topography

3.1 Introduction

As an end-member terrestrial body in terms of its composition and dynamics (Chapman

et al., 1988), Mercury is a convenient laboratory for studying the formation and evolu-

tion of Earth-like planets. Mercury's large core and small silicate portion makes it unique

among the terrestrial bodies in the solar system (Smith et al., 2012), but prior to the orbital

insertion of NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging

(MESSENGER) spacecraft (Santo et al., 2001) the evolution history of Mercury's crust

and mantle and the mechanisms of topographic support were largely unknown. The gravity

and topography data returned by MESSENGER provide a powerful tool for interrogating

Mercury's interior. A planet's gravity field is a function of the density distribution inside

a planet, and while inversion of a gravity field is non-unique (i.e. a variety of mass dis-

tributions can potentially produce the same gravity field) we can characterize a planet's

interior by making some simplifying assumptions. The topography associated with various

isostatic, dynamic, and flexural compensation scenarios can be theoretically quantified as
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well (Wieczorek, 2007). A comparison of gravity and topography, along with the length

scale dependence of this comparison, consequently improves our knowledge of Mercury's

crust and mantle.

Gravity/topography admittances and correlations have been successfully employed in

studies pertaining to the Earth (Forsyth, 1985; Watts, 2001; McKenzie, 2003), the Moon

(Wieczorek and Phillips, 1997; Wieczorek, 2013), Venus (McKenzie, 1994; Simons et al.,

1997; James et al., 2013), and Mars (McGovern et al., 2002; Wieczorek and Zuber, 2004;

Belleguic et al., 2005). In this paper we perform the first such spectral analysis of gravity

and topography on Mercury, although data limitations restrict our analysis to Mercury's

northern hemisphere. The results of our spectral analysis motivate a dual inversion of

gravity and topography in which we solve for crustal thickness and dynamic mantle flow.

Finally, we perform viscous flow calculations for a compositionally stratified mantle, and

from that analysis we will address implications for Mercury's structure and evolution, using

observations of Mercury's geology and geochemistry as additional constraints.

3.2 Data

The Mercury Laser Altimeter (MLA) (Cavanaugh et al., 2007) onboard the MESSENGER

spacecraft is collecting measurements of Mercury's topographic shape H(Q) ("topogra-

phy"), where Q E (0, 0) represents position on the surface of a sphere (figure 3-1 a). In

conjunction with images from the Mercury Dual Imaging System (MDIS), MLA topog-

raphy has allowed scientists to characterize geographical provinces (Zuber et al., 2012).

Perhaps the most distinctive physiographic feature on Mercury's surface is the Caloris

basin, the youngest large impact basin on the planet (Spudis and Guest, 1988; Head et

al., 2007; Murchie et al., 2008). The basin is filled with smooth volcanic plains, called the

Caloris interior plains (CIP), which were visible in camera images prior to MLA measure-

ments. While basin interiors typically feature low-lying topography, MLA confirmed the

existence of high long-wavelength topography in parts of the CIP; this long-wavelength

topography came as a surprise to many planetary scientists, as evidenced by the hesitancy

with which the initial stereo-derived topography results had been presented (Oberst et al.,
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2010). Caloris basin is surrounded by additional volcanic plains, the circum-Caloris plains

(CCP). Parts of the CCP are associated with a hummocky "Odin-type" formation (Denevi

et al., 2013). The origin of the CCP is unresolved: color spectra of the smooth plains and

the morphology of the Odin-type formation seem to suggest that the CCP is related to im-

pact ejecta, but size-frequency cratering distributions imply that the CCP is younger than

the Caloris impact event and therefore volcanic in origin.

The other major volcanic province on Mercury is the northern volcanic plains (NVP).

These smooth plains contain a number of wrinkle ridges, which indicate a compressional

tectonic environment (Head et al., 2011). The NVP consists mostly of low-lying terrain,

but it contains one domical topographic swell at 68 N, 32 E, informally known as the

"northern rise". The northern rise is not associated with substantially thickened crust or fold

and thrust belts (Smith et al., 2012). MLA profiles reveal that ghost craters on the flanks of

the northern rise have tilts that roughly match regional topographic slopes, indicating that

the northern rise was uplifted at some point after the formation of the NVP (Klimczak et

al., 2012; Zuber et al., 2012).

The remainder of the planet is largely characterized by heavily cratered terrain (HCT),

and is generally older than the smooth volcanic plains (Spudis and Guest, 1988). What

we are calling "HCT" contains in reality a diversity of landforms including pockets of

smooth volcanic plains, low-reflectance material, and intermediate terrain (Denevi et al.,

2009), although most of these features exist at length scales too small for spatio-spectral

analysis given the current gravity field resolution. Long-wavelength topography in the HCT

is dominated by a number of quasi-linear rises that are associated with thickened crust and

are bordered in places by fold and thrust belts (Zuber et al., 2012). However, at least

one rise on the periphery of the HCT, the Budh-Sobkou rise at 130 W, 30 N, has a more

circular shape, similar to the northern rise.

Radio tracking (Srinivasan et al., 2007) is providing information on the free-air gravity

anomaly G(Q) (figure 3-1b). These data are mostly limited to the northern hemisphere

because of MESSENGER's highly eccentric orbit and mid-latitude northern hemisphere

periapsis. The grt'fld.MSGR130802.L50 gravity field of Mercury includes spherical har-

monic coefficients out to degree and order 50, but the power of the error surpasses the
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signal power above 1=48, so we regard this as the nominal resolution of the gravity field.

The topography coefficients fitswp2013_125 from MLA are known to a much greater pre-

cision, and the topography uncertainty in the northern hemisphere is considered negligible

relative to gravity uncertainty. We neglect the degree-I coefficients of topography (which

give the center of mass, center of figure offset) and the degree-2 coefficients of both gravity

and topography, since Mercury's tides and possible history of despinning complicate the

interpretation of these terms.

Since gravity/topography comparisons on Mercury are limited by the precision of the

gravity field, it is imperative to thoroughly quantify the uncertainties in the gravity field

using the associated covariance matrix (see Appendix A). We performed eigenvalue de-

composition on the full gravity covariance matrix, and we used the first one hundred eigen-

vectors to produce many random realizations of error (we assumed no error in topography).

These random errors were applied to the nominal gravity data and localized with Slepian

tapers in order to find the resulting distribution of admittances. We multiplied the nominal

errors by a factor of ten to ensure that we do not underestimate the true error.

3.3 Constraints on interior structure

Flyby encounters of Mercury by the Mariner 10 spacecraft revealed a high bulk density

and moment of inertia (Anderson et al., 1987) that indicate the presence of a large metal-

lic core (Solomon, 1976). Mercury's distance from Earth and proximity to the Sun limit

the effectiveness of Earth-based observation, but radar measurements of the forced physi-

cal libration in longitude have constrained the moment of inertia of Mercury's solid outer

shell (Margot et al., 2007, 2012). The C 20 and C22 components of the gravity field recov-

ered by MESSENGER complemented the existing libration data to constrain the depth of

Mercury's liquid core boundary to about 400 km (Smith et al., 2012).

Mercury's surface displays pervasive volcanism, particularly in the northern hemi-

sphere (Denevi et al., 2009). Diffuse flood volcanism, eroded flow channels and a dearth

of volcanic edifices point to low magma viscosities (Byrne et al., 2013), which likely result

from high degrees of partial melting of the mantle at high temperatures. Major element
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abundances inferred from MESSENGERs X-Ray Spectrometer (XRS) and Gamma-Ray

Spectrometer (GRS) (Peplowski et al., 2012; Evans et al., 2012) are intermediate between

low-Fe basaltic and komatiitic compositions (Nittler et al., 2011; Charlier et al., 2013;

Weider and Nittler, 2013). These compositions are largely comparable to that of a high-

degree melt of enstatite chondrite material, albeit with higher Fe/Si (Weider et al., 2012).

Mercury's surface as a whole has lower Al and Ca concentrations than are observed on the

Moon, which indicate that Mercury has not retained a flotation crust (Weider and Nittler,

2013), but rather has experienced multiple stages of melting and differentiation (Brown and

Elkins-Tanton, 2009; Charlier et al., 2013).

Mercury's HCT generally has higher Mg/Si, S/Si, and Ca/Si, and lower Al/Si than the

younger volcanic plains (Weider et al., 2012). The CIP and the NVP have similar elemental

abundances, but the CCP are more similar to the HCT than to the smooth volcanic plains

(Weider and Nittler, 2013). The CIP and NVP likely crystalized from a mantle source that

was more evolved than the source of the HCT, consistent with the relative ages of these

terrains (Weider et al., 2012). However, the mantle from which melts were derived cannot

have been globally homogeneous, and must have been comprised of at least two different

compositional groups (Charlier et al., 2013).

Sulfur abundance 10 times higher that of Earth or the Moon and relatively low Fe

abundance indicate that Mercury likely formed in a highly reducing environment (Nittler

et al., 2011), which may have allowed for partitioning of S and Si into Mercury's core.

In a core of Fe-S-Si composition, a solid FeS layer may form at the top of the core under

the right conditions. Orbital parameters are also consistent with but do not demand the

existence of such a high-density, solid FeS layer underneath the mantle (Smith et al., 2012;

Hauck et al., 2013). With or without this layer the silicate portion of Mercury is thinner

than was thought prior to MESSENGER.
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3.4 Spatio-spectral localization of gravity and topography

3.4.1 Single Slepian tapers

For the sake of mathematical convenience, topography and gravity were analyzed using

their respective spherical harmonic coefficients. For example, Mercury's topography H(Q)

can be decomposed into weighted a sum of spherical harmonic functions:

H(Q) = 1: HimYm(Q), (3.1)
1=0 M=-l

and conversely,

Him jH (Q )Yn(Q) dQ, (3.2)

where Yim is the 47r normalized spherical harmonic function at degree I and order m, and

where negative orders correspond to sine terms.

The free-air gravity anomaly G(Q) can be similarly decomposed into its spherical har-

monic coefficients Gm. The cross-power spectrum of H and G is defined as the degree-

wise sum over the product of Him and Gin:

SIHG = HimGim. (3.3)

Similarly, the power spectra of H and G are, respectively:

SH H = H12 4

and

SrGG >3 Cn. (3.5)

The wavelength-dependent ratio of gravity over topography, called the admittance spec-

trum Z1, is a diagnostic tool for studying the subsurface of a planet. The observed admit-

tance function can be expressed in terms of power and cross-power spectra:
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S HG
S/I1CH (3.6)

Another useful quantity is the correlation of gravity and topography, 'yl:

71 = .G (3.7)
V/ SiH HSIGG

Admittances and correlations can be used to distinguish between different mechanisms

of supporting surface topography, such as crustal thickness variations, dynamic flow or

elastic stresses (e.g., Forsyth, 1985; Richards and Hager, 1984; McGovern et al., 2002). We

want to calculate spectra rather than scalar quantities because these compensation mecha-

nisms often operate at different length scales. We also want to study the spatial variation of

these mechanisms, so it is necessary to restrict analysis to a subsection of the sphere. Such

localization can be accomplished using Slepian tapers, which maximize the concentration

of a spherical function's energy within a region while minimizing the extent to which data

at a particular degree is contaminated by data at other degrees (aka "spectral leakage") (cf.

Dahlen and Simons, 2008).

There is a fundamental tradeoff between spatial localization and spectral fidelity, which

depends on the chosen taper bandwidth; a larger bandwidth allows for a more narrowly-

windowed data taper, but a smaller bandwidth reduces spectral leakage. Slepian tapers

restrict spectral leakage to plus or minus the size of the bandwidth. For our analyses we

chose tapers with an 8-degree bandwidth, since this allows us to study the topographic

swells that roughly correspond to spherical harmonic degree 10. The resulting localization

is imperfect: the first zonal taper for a polar cap concentrates 41 % of the total energy within

10 of the center and 90% of the energy within 20 of the center.

In order to get an initial sense for the spatial variation in admittance and coherence,

we apply a single zonal taper to the topography and gravity field of Mercury over a lati-

tude/longitude grid. The results are shown in figure 3-2 for spherical harmonic degrees 10,

15 and 20. The hue of the color map represents the localized admittance, while the light-

ness represents the correlation of gravity and topography. The two most prominent regions

of high admittance appear to coincide with domical topographic rises: the northern rise at
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(68 N, 32 E), and the Budh-Sobkou rise at (130 W, 30 N). High admittances are also

observed at the north end of the Caloris swell (160 E, 40 N), albeit with poor correlation.

Large sections of Caloris basin have poor correlations of gravity and topography and/or

negative admittances.

3.4.2 Arbitrarily-shaped regions

In order to study geographical regions of arbitrary shape and to quantify uncertainty, we

perform multi-taper analysis of gravity and topography. Following the theory of Dahlen

and Simons (2008), a series of orthogonal Slepian tapers can be calculated so as to max-

imize energy within in a desired region. We retain only the tapers that localize >80% of

their energy within the region.

We partition the northern hemisphere of Mercury into three physiographic regions: the

NVP, the Caloris plains (including both the interior and exterior plains), and the HCT,

which we define as the remaining area north of 300S. The normalized taper energy for

each region is plotted in figure 3-3. For a taper bandwidth of 8 degrees, there are 2 ta-

pers well localized to the NVP, 7 tapers well localized to the Caloris plains, and 32 well

localized to the HCT. Since the NVP and Caloris plains are not very large relative to the

size of the degree 8 tapers, the chosen tapers do not perfectly follow the boundaries of

the provinces. The spatio-spectral tapers covering the NVP are relatively insensitive to the

northeast section of the plains. In each region the taper is most sensitive to data at the center

of the regions, and consequently our analysis of Caloris is more sensitive to the CIP than it

is to the CCP.

3.4.3 Uncertainty quantification

We calculate uncertainties in an admittance spectrum as a combination of measurement

error and variance among tapered admittances. We produce noisy realizations of the ad-

mittance using the gravity covariance matrix from a previous gravity solution (Appendix

A), and the variance of these noisy spectra gives us the associated admittance uncertainty.

The other source of uncertainty arises from the fact that we have only a single realization
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of gravity and topography in a given region. Wieczorek and Phillips (1997) show that grav-

ity/topography ratios can be interpreted as a sum of spectrally-weighted admittances, and

tapered admittance estimates are similarly a convolution of admittances within the band-

width of the taper due to spectral leakage. Since theoretical admittances typically vary with

spherical harmonic degree the observed admittance spectrum is dependent on the amplitude

of topography at different length scales, and any data taper will variably sample a function

at different spherical harmonic degrees. Orthogonal Slepian tapers offer nearly indepen-

dent estimates of gravity and topography spectra within a desired region, so the tapered

variance can be estimated with the variance among tapers divided by the total number of

tapers (Wieczorek and Simons, 2007). Quantifying the effect of this variance for a single

taper is more tedious: we estimated single-taper variance by generating many synthetic to-

pography fields with power spectra matching Mercury's power spectrum. We then created

synthetic gravity fields by multiplying a range of admittance spectra proportional to 1--.

with topography. We applied single Slepian tapers to the north poles of these synthetic to-

pography and gravity fields and calculated the resulting admittances. We then determined

the range of admittances that could produce the observed localized admittance within a

confidence interval.

Admittances for the NVP, the Caloris plains, the HCT, and the northern rise are plotted

in figures 3-4, 3-5 and 3-6. Theoretical admittance curves from the theory in Appendix B

are plotted in blue over the observed spectra. Figure 3-4 compares the admittances spec-

tra for apparent compensation depths, assuming an Airy compensation model. Figure 3-5

shows flexural top-loading admittances for various elastic thicknesses Te, and figure 3-6

shows admittances for flexural bottom loading. None of these models fit a compensation

mechanism well at all wavelengths, but the lower degrees (1<15) have relatively high ad-

mittances, which correspond to either greater compensation depths or larger values of T.

Correlations of gravity and topography (figure 3-7) are significantly less than one almost

everywhere on the planet, although the northern rise at low degrees is a notable exception.
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3.5 Deep compensation of topography

3.5.1 Viscous flow in a chemically-homogeneous mantle

We have considered case of bottom loading in the context of Airy isostatic compensation,

but at depths sufficiently greater than the brittle-ductile transition it is more physically

appropriate to consider dynamic flow than Airy isostasy. Incompressible Newtonian flow in

a viscous shell can be analytically determined by propagating velocity and stress boundary

conditions through the interior of the body (Hager and Clayton, 1989). A no-slip boundary

condition is appropriate under the assumption that the surface does not participate in mantle

flow. We chose a free-slip boundary condition at the liquid core boundary, although other

authors have investigated flow with a fixed lower boundary condition (e.g., Michel et al.,

2013). The effect of a fixed lower core boundary is to restrict flow and increase relaxation

times.

Our model predicts the distribution of flow that results from a mass sheet perturbation

T at a radial position Rp in the interior (see appendices B and C of James et al. (2013)).

A step-wise viscosity structure can be incorporated into the model by combining the ap-

propriate propagator matrices. The amplitude of the mass anomaly can be used along with

solutions for the displacements on the upper and lower flow boundaries to forward model

the surface geoid and gravity. The degree-dependent admittance spectrum can then be

found by dividing surface gravity by the upper boundary perturbation amplitude. The ref-

erence viscosity that we choose for our model affects only the velocity solutions, and does

not change the interface displacements. Admittance solutions are therefore only dependent

on the relative changes in viscosity. The viscosity profiles used in our models are given in

Table 3-1.

The 1=10 admittance kernels in figure 3-8 show the ratio of gravity over topography

as a function of the loading depth R - Rq, and the displacement kernel gives the ampli-

tude of surface displacement scaled by T/pc. In order to match the 1=10 admittance at the

northern rise, a dynamic loading depth of R - R, = 300 km would be required for an iso-

viscous profile. The existence of a high-viscosity lithosphere does not appreciably change

the modeled admittance spectrum. The presence of an asthenosphere (taken here to mean a
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low-viscosity zone in the mid-mantle) can serve to decouple flow from the surface, and re-

duces the admittances. The effect of a lithosphere or asthenosphere is most pronounced at

high degrees, when the length scale of flow is comparable to the thickness of the anomalous

viscosity layer. The presence of a high viscosity layer at the base of the mantle decreases

the admittances dramatically. For a viscosity more than a factor of two higher than the

overlying mantle, a 100 mGal km' admittance at 1=10 cannot be reproduced. A deep high

viscosity layer effectively couples the driving load T to the lower boundary rather than the

surface, which allows the gravity from T to counteract the gravity from topography. If

the viscosity of the deep layer is decreased, on the other hand, admittances are increased

slightly over the isoviscous case.

The range of admittance values and the imperfect correlation of gravity and topogra-

phy over much of the surface (figure 3-2) indicate that the topography of Mercury cannot

be compensated by a single mechanism; the observed gravity and topography can be bet-

ter fit by assuming the existence of at least two superimposed compensation mechanisms

(Banerdt, 1986; Herrick and Phillips, 1992; James et al., 2013). This type of dual in-

version has two constraints at each spherical harmonic degree and order: the model must

match the observed gravity, and the radial stress on the surface must counteract the weight

of topography. There are also two unknowns at each spherical harmonic degree and order:

the coefficients for Moho relief and the coefficients for a dynamic load. The dual inversion

for crustal thickness and dynamic flow pressure is shown in figure 3-9 for a crustal density

Pc=3 20 0 kg m- , a crust-mantle density contrast Ap=200 kg m-3 , a mean crustal thickness

of 40 km, and a mantle load depth of 350 km. Since dynamic topography is associated

with larger gravity anomalies than crustal isostasy, the inverted solution for dynamic flow

pressure looks similar to Mercury's geoid. In contrast, the crustal thickness variations con-

tribute more to topographic relief than to the gravity field, so the crustal thickness solution

looks similar to Mercury's topography.
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3.5.2 Two-layered viscous relaxation

Although the viscous flow models described previously are instructive, the nature of vis-

cous flow inside Mercury will be different if compositional layering exists above the 400-

km-deep liquid core boundary: any flow across a boundary with an intrinsic density dif-

ference will produce an additional load driving flow (see Appendix C). We will look at

one particular scenario in which flow is driven by the relaxation of a perturbed FeS/silicate

boundary (illustrated in figure 3-10). We assume a 100-km-thick layer of solid FeS below

300-km depth with a mantle/FeS density contrast of 1000 kg m- 3 and an FeS/liquid core

density contrast of 1300 kg m-3 . We assume a rigid lithosphere thickness of 200 km (in

which viscosities are one hundredfold larger than lower mantle viscosities), and we use

the Smith et al. (2012) uniform crust and mantle densities of 3200 kg m- 3 and 3400 kg

m- 3, respectively. The viscous relaxation of a single layer may be simply characterized

as an exponential function with time, due to the fact that flow velocity is proportional to

the interface displacements. Two-layered relaxation is more complicated, but the theory

in Appendix C allows us to calculate the instantaneous radial velocities of the surface, the

compositional layer, and the liquid core boundary. We use discrete time steps to calcu-

late new interface amplitudes using these velocity solutions, and we use an adaptive time

stepping algorithm to propagate the solution forward in time.

Our semi-analytical calculation begins with no surface topography and an FeS layer

of laterally-varying thickness. We do this by prescribing harmonic relief at the mantle-

FeS interface, along with similar relief of opposite sign at the FeS-liquid core interface

(i.e. the interior is initially in a state of isostasy). When an initial FeS/silicate perturbation

starts to relax, it causes surface topography to grow over regions of thickening FeS and

to subside over regions of thinning FeS. After surface relief reaches maximum amplitude,

continued flow will cause the topography to viscously relax. The duration of topographic

uplift and the characteristic time of decay (defined to be the time at which topography

relaxes to one tenth of its maximum height) are dependent on the viscosities of the FeS

layer and the silicate lower mantle. The admittance and displacement kernels associated

with two-layered relaxation vary with time, but these kernels eventually converge to the
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values associated with chemically homogeneous models (figure 3-8), where the loading

depth R - Rp equals the depth of the mantle-FeS interface.

In analytical solutions of viscous relaxation in an infinite halfspace, the longest wave-

lengths of surface relief relax most quickly (Haskell, 1936). On a sphere with a thin mantle,

however, large aspect ratios of flow may allow viscous relaxation to persist over geological

time even at the longest wavelengths (as shown in figure 3-11 for 1=6). A viscosity of 1024

Pa-s in the lower mantle results in an uplift time of hundreds of millions of years and a

relaxation time in the billions of years. It should be noted that this viscosity is still larger

than the viscosity range of 1019-1021 assumed by Michel et al. (2013). As discussed later

in section 5.5, for the range of viscosity assumed by Michel et al. (2013), 1=6 topographic

features would effectively relax on timescales of 0.1-10 million years.

3.6 Discussion

3.6.1 Deep compensation of topography

The weight of topography on Mercury is likely supported by some combination of four

compensation mechanisms: Moho relief, dynamic flow, flexure, and lateral density varia-

tions. The relative importance of the first three mechanisms is illustrated in figure 3-12,

which shows ranges of topographic power plausibly produced by each mechanism. If HC

is the portion of topography compensated by Moho relief ("crustally-compensated topog-

raphy"), we can define the power of crustally-compensated topography:

IC (Hm) 2  (3.8)

Similarly, if Hd is the portion of topography compensated by dynamic flow ("dynamic

topography") and Hf is the portion of topography supported by elastic flexure ("flexural

topography"), then the respective power spectra are Sjdd and SHf. We can determine the

expected ranges of these power spectra for reasonable parameter ranges, along with the

power spectra for the associated geoids (figure 3-12). Topography compensated by the

Moho is assumed to be between 0.5 and 1.1 times the power of topography; the magnitude
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of dynamic loading is assumed to be between 0.01 and 1.0 times the load of topography,

with a loading depth of 300 km; and the power range for flexurally-supported topography

assumes top loading with A= 1.5-5 (as defined in Appendix B) on a plate of thickness 20 <

Te < 100km.

We see in figure 3-12 that crustal compensation of topography is expected to be promi-

nent for almost all degrees less than 1=30. However, the highest admittances shown in figure

3-4 are too large to plausibly result from crustal thickness variations (some apparent com-

pensation depths are greater than 100 km). While flexural support and deep-seated flow are

associated with high admittances, flexure does not contribute substantially to topography

at the lowest spherical harmonic degrees for the parameter ranges given above. This leaves

dynamic flow as the most likely compensation mechanism of the domical, high-admittance

topographic swells.

3.6.2 Crustal thickness

The crustal thickness map in figure 3-9a marks an improvement over the crustal thickness

map of Smith et al. (2012) in that it goes out to spherical harmonic degree 50 (Smith et

al. used a degree and order 20 gravity field). The power of Mercury's crustal thickness

(roughly proportional to SC, which is plotted in figure 3-12) is spectrally quite flat: while

topography and crustal thickness on planets are typically red-shifted (Turcotte, 1987; Wiec-

zorek, 2007) the power spectrum of SCC has a relatively shallow exponential fit of 1-0-8.

The cause of this shallow spectral slope remains an open question; since most of Mercury's

crustal thickness variations result from volcanism and cratering, it is possible that the man-

ifestation of these processes are somehow biased towards short length scales relative to

similar processes on Venus, the Earth and Mars. Alternatively, subdued crustal thickness

variations at long wavelengths may possibly result from lower crustal flow, although more

work is needed to quantify this scenario.. A non-negativity constraint requires that the mean

thickness be larger than 38 km. For a mantle that extends to 300-km depth, this means that

the volume of crustal material is at least 14% of Mercury's silicate volume.

The quasi-linear rises are associated with crustal thickening, and are often sub-isostatic,
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with crustal roots deeper than is necessary to support the weight of topography. In many

cases the crust under these rises is more than twice as thick as crust in the surrounding

terrain. The origin of the thickened crust is uncertain but may plausibly correspond to

either tectonic shortening, high degrees of mantle melting, or ancient basin rims. Crustal

thicknesses under the rises are much too large to be explained by radial contraction of no

more than a few kilometers, so a tectonic origin of the rises may instead result from surface

tractions over a convective downwelling. Alternatively, large volumes of melt may have

resulted from the linear upwellings that are predicted by convection models (King, 2008;

Michel et al., 2013). Active upwellings would impose upward pressure on the surface and

low-density residuum would be expected at the location of an extinct upwelling due to

the high degrees of melting, so in any case we would expect to observe large admittances

and good correlation of gravity and topography at the site of an upwelling (this does not

generally appear to be the case in figure 3-2.) Finally, it is reasonable to assume that some

long-wavelength structures are remnants of ancient impact basins given the ubiquity of

large impacts during the period of heavy bombardment. Such an ancient origin for the

quasi-linear rises may be confirmed or rejected by future measurements of crater floor tilts

(cf. Balcerski et al., 2012).

The thinnest crust is found at the center of Caloris basin, which is consistent with mantle

excavation during the Caloris impact event. We also observe a "collar" of thickened crust

surrounding the central thinned crust, a feature that is common in lunar basins (Neumann et

al., 1996). Crustal collars in impact basins are thought to form through the inward collapse

of the transient cavity (Melosh et al., 2013), so the 1000-km diameter of the collar in Caloris

basin can be considered a lower bound on the transient cavity diameter.

3.6.3 Interpretation of admittance and coherence

We can quantitatively interpret the localized admittance and coherence spectra in terms

of shallow and deep topographic compensation. If we represent the observed planetary

shape as a superposition of crustally-compensated topography H' and deeply-compensated

topography Hd, the total topographic power can be expressed in terms of the power of Hc,
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the power of Hd, and the cross-power of H' and Hd:

SHH = (H +H + d. (3.9)

Gravity power and cross-power spectra can be represented similarly if the crustal ad-

mittance spectrum ZC and the admittances for dynamic flow Zd are known:

SrG = (Z H , + Z+ HI M)2 = (Zf s - - (Zf22 S + 2ZTZdSid (3.10)
m

and

S/IG = (HHi+ H|T) (ZH H + Z ) + Z Sd. (3.11)
m

Equations 3-7, 3-8 and 3-9 can, along with the observed admittance spectrum and grav-

ity/topography correlations, be used to find the power and cross-power of H' and Hd:

SC 1 1 2 1

SHEsd (Zfl2  (Zfl 2  2ZfZf' (3.12)

We can then calculate the ratio of deep topography power over crustal topography

power, Sldd/Slc, and the correlation of compensation sources, Sfd(Sfc Sid)1/ 2 (see Table

3-2).

A majority of long-wavelength topography in the NVP is deeply supported. Ratios of

Sdd/ Sc are lower but non-negligible in the Caloris plains and the HCT, suggesting that

dynamic topography is present and partially obscured by crustal thickness variations. The

spherical functions H' and Hd are relatively uncorrelated in the NVP, but are negatively

correlated in the Caloris plains and the HCT; in other words, thick crust is more likely to be

associated with negative (downward) buoyancy in the mantle, and vice versa. The existence

of positive mantle mass anomalies under the quasi-linear topographic rises is particularly
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intriguing, and as explained in section 5.2 it is opposite of what would have been expected

if the rises had formed over a convective upwelling.

3.6.4 What exactly is the deep mass anomaly?

As shown in figure 3-13, dynamic topography may be similar in amplitude to crustally-

supported topography at low spherical harmonic degrees. The power of dynamic topogra-

phy drops considerably at degrees higher than 1=13,, so dynamic flow (or at least the surface

expression thereof) exists mostly at Cartesian wavelengths larger than 27rR/ 1(1 + 1) ~1 100

km. The large amplitudes of dynamic topography as well as the bias of dynamic topography

towards long wavelengths validates, in retrospect, our assumption that the high admittance

topography results from dynamic flow rather than flexural support.

Although dynamic flow apparently exists and produces significant surface topogra-

phy, we have not specified the source of the driving mass load '. There are two likely

possibilities: perturbations of an interface between layers of different density, or lateral

density variations. In the two-layered flow scenario explored in section 4.2, this excess

mass comes from relief on the interface between the mantle and the solid FeS layer, and

about 5 km of interface relief is required to produce one kilometer of surface topography.

We haven't identified the cause of this initial perturbation, but impact events and deposi-

tion/delamination of FeS are possibilities.

An alternative source of mass anomalies in Mercury's deep interior is lateral density

variations that can result either from thermal expansion/contraction or from compositional

variations. For lateral temperature variations of up to 300 C, thermal density anomalies in

the mantle may be expected to be on the order of Ap = aATpo = 30 kg m- 3 . Compositional

variations may be of similar magnitude: if a primitive upper mantle is approximated as an

assemblage of 90% forsterite (p = 3220 kg m-3) and 10% pyrope (p = 3600 kg m- 3), a

chemically depleted residuum of pure forsterite would have a density 38 kg m-3 lower

than the primitive mantle. Jordan (1978) similarly concluded that density variations due to

differing degrees of partial melting might be about +1 % in the Earth. We can approximate

the dynamic flow field due to a density anomaly distributed through the mantle by the
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integrating the flow solutions for a range of loading depths, and this flow field can be

incorporated into a dual inversion similar to the one shown in figure 3-9. Low mantle

densities correlate well with the CIP (figure 3-14), which could signify chemical depletion

associated with the basin-forming impact event or the subsequent volcanism (Watters et

al., 2009). The differential density of 40 kg m- over the entire depth of the mantle is at

the high end of plausible density contrasts that might be expected due to either thermal or

chemical heterogeneity, so we consider deep interface perturbation to be the most likely

source of dynamic flow.

3.6.5 Timescales of relaxation

Figure 3-11 gives the relaxation timescales associated with mantle and FeS viscosities, and

we see that a viscosity of more than 1023 Pa-s in the lower mantle is required in order

to maintain surface topography over billions of years. If the actual mantle viscosities are

lower, we may be confronted with a paradox: we observe long-lived, deeply-supported to-

pography on Mercury even though relaxation of such topography should be relatively rapid.

Mantle convection may be possible on Mercury at lower viscosities (Michel et al., 2013),

and such convection can produce significant amplitudes of dynamic topography under the

right conditions, but it may not be reasonable to assume that mantle convection patterns can

be stationary for billions of years. Additionally, the length scales of thermally-driven con-

vection do not match the observed length scales of dynamic topography: convection cells

in a 366-km-thick mantle have Cartesian wavelengths of 650-750 km, which correspond to

spherical harmonic degrees 20-23 (Michel et al., 2013).

As an alternative explanation for prolonged support of topography, we note that large

aspect ratios of flow (i.e. a narrower range of depths over which flow occurs) and/or com-

positional layering in the mantle may significantly increase the timescales of viscous flow.

Our flow calculations include an elastic shell that can grow with time, but the effect of a

time-evolving elastic lithosphere had very little effect on the final topography (supporting

<1% of final topography in all cases). A potentially more important effect, which we did

not adequately model, was the effect of a growing lithosphere on the nature of mantle flow
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in Mercury. The rigid lithosphere does not participate in viscous flow due to its high yield

strength, and a young lithosphere will grow as it cools from above. This narrowing of

depths over which flow occurs will restrict relaxation. Thus, it may be possible to "freeze"

topographic swells in place (although this word is a misnomer: all flow is in the solid state,

and no phase transitions occur). In a 1-D thermal diffusion problem with a diffusivity of r

= 10-6 m2 s- 1, the characteristic length scale of thermal diffusion 2v/iFt reaches 200 km at

about 100 My. This timescale may be consistent with the time at which a long-wavelength

topographic swell may have begun to subside (cf. figure 3-11).

Finally, we note that Mercury's viscosity profile is a function of mantle temperature and

composition, both of which have likely changed over the course of Mercury's history. Sec-

ular cooling of Mercury is evidenced by the contractional faulting associated with a shrink-

ing planetary radius (Solomon, 1976). The large volume of crustal material on Mercury (at

least 14% of Mercury's silicate volume by our analysis) indicates extensive chemical deple-

tion of the underlying mantle. The effect of such changes in temperature and composition

depend on knowledge of Mercury's mantle composition, but these factors may plausibly

cause an increase in mantle viscosity over Mercury's history. While our semi-analytical

two-layered flow calculation successfully incorporates a time-varying elastic lithosphere,

models with time-varying viscosity profiles were numerically unstable. Future studies of

viscous flow under evolving conditions may require revised computational methods.

3.7 Conclusions

The large admittances (figures 3-4, 3-5, and 3-6) and the good correlation of gravity and

topography (figure 3-7) associated with Mercury's northern rise and Budh-Sobkou rise

below spherical harmonic degree 15 point to the existence of deep-seated dynamic flow

and/or flexural top-loading. The large amplitudes of high-admittance topography as well as

the tendency of such topography to be most pronounced at length scales greater than 1 100

km favors the prominence of dynamic topography over flexurally-supported topography.

Dynamic flow beneath the domical topographic swells is driven by mass deficits at 300-

400-km depth that may result from either lateral density variations or from relief on a
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compositional boundary, such as the interface between the mantle and the proposed solid

FeS layer. We favor the latter interpretation given the amplitudes of the inferred anomalies.

Our two-layered flow model demonstrates a process by which topography can grow

and be sustained over geological time scales, roughly matching the timeline inferred from

ghost crater tilts. The duration of two-layered dynamic flow is only marginally sensitive

to the viscosity of the lower FeS layer. A lower mantle viscosity of more than 10" Pa-s

is required in order to maintain long wavelength topography for billions of years, although

the requisite viscosity may be lower if Mercury's silicate shell is compositionally stratified.

A dual inversion of gravity and topography produces a crustal thickness map, and this

analysis places a lower bound of 38 km on the mean thickness. Quasi-linear rises are

found to be associated with thickened crust, often more than double the crustal thickness

in the surrounding terrain. Crustal thickness in the HCT is correlated with positive mass

anomalies in the mantle, contrary to what may have been expected if the topographic rises

had formed via extensive mantle melting. An analysis of regionally-localized admittance

and coherence reveals that dynamic topography accounts for most of the I=10 topography

in the NVP. Dynamic topography elsewhere on the planet is largely obscured by crustal

thickness variations.
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Table 3.1: Profiles of relative viscosity. Case #1: High viscosity at depth; Case #2: Isovis-
cous; Case #3: Low viscosity at depth.

Depths Case #1 Case #2 Case #3
0 - 50km 1 1 10

50 - 300 km I 1 1
300 - 400 km 10 1 0.1

Table 3.2: Ratios and correlations of crustally-supported topography vs. deeply -supported
topography.

NVP

Caloris Plains

Spherical
harmonic degree

10
15
10
15
10
15

S id/Sjc
1.74
0.62
0.56
0.26
0.32
0.19

Correlation of
HC and Hd

-0.34
0.09
-0.55
-0.39
-0.22
-0.31
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Figure 3-1: a) MLA topography and b) free air gravity recovered by MESSENGER. La-
beled regions are: heavily cratered terrain (HCT), northern volcanic plains (NVP), the
northern rise, Caloris interior plains (CIP), and circum-Caloris plains (CCP)
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Figure 3-4: Observed admittances (black) with error ranges and theoretical admittances for

Airy compensation depths (blue).
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Figure 3-5: Observed admittances (black) with error ranges and theoretical top-loading

admittances for various elastic plate thicknesses (blue).
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Viscosity Structure
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Figure 3-8: Admittance and surface displacement kernels for different viscosity profiles.
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Figure 3-10: Cartoon of the layered relaxation problem in cross-section.
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Figure 3-11: (a) Time of maximum topographic height, and (b) timescale of topographic
relaxation.
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Chapter 4

Insights into Lunar Mare Stress States

from GRAIL

4.1 Introduction

The type, orientation, spatial distribution and relative timing of tectonic faults reflect the

evolution of stresses on the Moon. The state of stress on the Moon at a given time is

determined by the physical properties of the elastic lithosphere and by the distribution of

loads. Physical properties of the lithosphere are, in turn, dependent on the composition and

thermal profile of the lunar interior, and either erupted volcanic material on the surface or

relief on the crust-mantle interface can serve as an elastic load. All of these quantities are

inter-related; efforts to understand the evolution of the Moon can approach lunar science

from multiple angles. Geologic mapping efforts have identified sequences of mare flooding

events (Wilhelms and McCauley, 1971; Head et al., 1978; Solomon and Head, 1980) as

well as faulting patterns (Maxwell et al., 1975; Watters and Johnson, 2010; Watters et al.,

2012). Theoretical models can be constructed to predict stress distributions for a given load

(Brotchie and Sylvester, 1969; Solomon and Head, 1979; Banerdt et al., 1982; Banerdt,

1986).

Regions of elevated free-air gravity anomaly, as recovered by the Gravity Recovery

and Interior Laboratory (GRAIL) (Zuber et al., 2013a), are common in large lunar basins.

Much of the lunar nearside is covered with dense volcanic flows (Head, 1976). These
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optically dark regions, visible from Earth, are called "maria", the Latin word for "seas"

(singular: mare; cf. Figure 1 of Hiesinger et al. (2011) for a map of mare extent). Sam-

ples returned from the maria by Apollo 11, 12, 14, 15 and 17, as well as by Luna 16, 20

and 24, were basaltic in composition (e.g., Turkevich, 1973), in contrast with the largely

anorthositic highland crust (Wood et al., 1970; Metzger et al., 1974). Mass concentra-

tions, or "mascons", were observed under several of the nearside maria prior to the Apollo

missions (Muller and Sjogren, 1968). The gravity anomalies in the vicinity of these mas-

cons typically have a bulls-eye pattern, with rings of low free-air gravity surrounding the

high free-air gravity anomalies at the center of the basin. These negative gravity anomaly

rings are interpreted to be sub-isostatic crust that helps to support the super-isostatic cen-

tral region (Neumann et al., 1996; Andrews-Hanna et al., 2013a). The mascons likely

form through the viscous and thermal evolution of an impact basin structure (Melosh et al.,

2013). After a large impact excavates crust from the basin, inward collapse of a transient

cavity creates one or more collars of relatively thickened crust around the basin periphery.

Through a combination of isostatic adjustment and thermal contraction, the center of the

basin evolves into a state of super-isostasy, characterized by a mantle plug near the sur-

face (Neumann et al., 1996). A later crustal thickness model using gravity from discrete

polyhedra had the same interpretation (Hikida and Wieczorek, 2007).

Although the Moon is largely tectonically inactive today, a number of compressional

and extensional faults are preserved on the surface from early lunar history. Faulting occurs

predominantly in the lunar maria, in part due to the connection between mare flooding and

local stress states (Watters and Johnson, 2010). A number of events have affected stress

states in the history of the large lunar maria, including: 1) the preexisting stress state asso-

ciated with the basin-forming impact event, 2) successive stages of mare eruption, 3) stress

release through fault slip, and 4) the thermal and viscous evolution of the lunar lithosphere.

The type and spatial distribution of mare faulting provides a record of the stress states at

various times in the Moon's history, and as such an analysis of lunar maria stress states

constrains the chronology of lunar basin evolution. Of particular use in constraining the

interior structure of the Moon is gravity data in conjunction with topography and composi-

tional information. In this paper we use new GRAIL gravity data and LOLA altimetry data
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to estimate the magnitude of elastic loads, and we use semi-analytical modeling to calcu-

late the distribution of stresses resulting from these loads. We focus primarily on the maria

associated with lunar near-side basins, since these surfaces are generally younger than the

highlands (Wihelms, 1987) and roughly correspond to simple axisymmetric loads. We

compare the resulting stress distributions to the placement and orientation of lunar faults.

4.2 Gravity and topography

The gravity field of a planetary body affects the trajectory of an orbiting spacecraft, and the

line-of-sight spacecraft accelerations measured by radio tracking can be used for the recov-

ery of the gravity field. Lunar gravity fields were recovered using tracking data from some

of the earliest orbital spacecraft, including Lunar Orbiter 1-5 (Lorell and Sjogren, 1968)

and the Apollo 15 and 16 subsatellites (Sjogren et al., 1974). These early lunar gravity data

were combined with Clementine tracking data to produce the GLGM-2 field (Lemoine et

al., 1997), and all of these data were combined with tracking of the Lunar Prospector space-

craft to produce the LP100 gravity field (Konopliv et al., 2001). These tracking data relied

on a direct line of sight to the Earth, and consequently the modeled gravity fields from these

spacecraft were poorly determined on the far side of the Moon. JAXA's Selenological and

Engineering Explorer (SELENE) mission was able to reliably collect far-side gravity data

using a relay satellite (Namiki et al., 2009), and the SGM100h gravity field produced by

this mission improved the correlation of gravity and topography over the previous grav-

ity models (Matsumoto et al., 2010). The recently concluded GRAIL mission used ranging

measurements between twin satellites along with ranging from the Earth-based Deep Space

Network to recover a gravity field of unprecedented resolution (Zuber et al., 2013b). We

use the GRGM660PRIM dataset, which used primary mission data from a 55-km mean or-

bital altitude to produce spherical harmonic coefficients out to spherical harmonic degree

and order 660 (an effective block size of 7R/ 1(1 + 1) = 8.2 km) (Lemoine et al., 2013).

Power of the error coefficients surpasses the signal power above spherical harmonic de-

gree 471, and the near-perfect correlation of gravity and topography at spherical harmonic

degrees 150-350 speaks to the quality of the data up to these wavelengths. For the length-
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scales relevant to lunar basins (wavelength ~ 150-600 km), the ratio of signal power to

error power is more than 10'. Forthcoming gravity models that incorporate extended mis-

sion tracking at a mean altitude of 23 km will increase the gravity field resolution further,

but primary mission data is of sufficient precision and resolution for the present study.

Some of the best constraints on lunar shape ("topography") come from orbital laser

altimetry measurements. The laser altimeters on the payloads of the Apollo 15, 16 and 17

command modules (Sjogren and Wollenhaupt, 1973; Kaula et al., 1974) measured space-

craft altitudes above the surface of the Moon over several dozen orbital tracks in the equa-

torial regions (latitudes inside ±30 ). Laser shots during these missions had 30-43 km

along-track ground spacings and 30 m surface spot sizes. Lunar topography determined by

these data had absolute radial uncertainties of over 100 meters due to orbital determination

and gravity field uncertainty. Near-global altimetry measurements of the Moon (excluding

the poles) were first collected by the Laser Image Detection and Ranging (LIDAR) system

onboard the Clementine spacecraft (Zuber et al., 1994). Similar laser altimetry campaigns

by the Indian Space Research Organization's Chandrayaan-I mission (Kamalakar et al.,

2005), the SELENE spacecraft (Araki et al., 2009) and the Chinese National Space Admin-

istration's Chang'E- 1 mission (Li et al., 2010) improved the global coverage of topography.

Lunar topography data is currently being collected by the Lunar Orbiter Laser Altimeter

(LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) (Smith et al., 2010a), which

has thus far accumulated more than six billion laser altimetry measurements in a five-spot

pattern. Altimetry measurements by LOLA have an absolute horizontal position accuracy

better than 100 meters, and ground-track crossovers (Mazarico et al., 2012) have reduced

radial position errors to less than one meter, approaching the nominal instrument precision

of 10 cm (Smith et al., 2010b). The LOLA 720-PA lunar topography model, which we use

in this paper, is based primarily on the LOLA altimetry measurements and gives spherical

harmonic coefficients out to degree and order 720.

A visual comparison of gravity and topography shows that a number of mascons are

bordered by topographic ridges in the maria, which we refer to as "circumferfential ridges"

(the traced lines in Figure 4-1). Neumann et al. (2013) noted that these ridges are also

border the regions of thin crust and uplifted mantle at basin interiors. The circumferential
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ridges are interpreted to be contractional tectonic features (Watters and Johnson, 2010).

While wrinkle ridges and extensional grabens are expected to arise as a result of flexural

mare loading, the striking correlation of gravity and tectonics suggests that the mascons are

directly or indirectly related to the stress state that caused these tectonic features.

4.3 Geological context

Theoretical models of stress distribution rely on the observable constraints provided by sur-

face tectonics. A number of types of tectonic structures have been classified in the lunar

maria (cf. Watters and Johnson (2010)). Contractional tectonic features are most com-

monly manifested in the maria as morphologically complex wrinkle ridges, which form

through folding and thrust faulting of stratigraphic layers. Extension in the maria is ac-

commodated through linear and arcuate rilles, which are long narrow depressions typically

bounded on two sides by normal faults. Sinuous rilles found in the maria feature similar

depressions but are likely to have formed from the collapse of ancient lava channels, and

thus are not connected to the local stress state. In order to characterize the evolution of the

stress state around a basin, we also need to determine how much of the elastic loading is

associated with subsurface loading and how much is associated with mare fill. We there-

fore would like to know the thickness of the maria at the mascon basins. While gravity is a

powerful tool for studying a planet's interior, interpretation of a gravity field is non-unique:

a given gravity anomaly can be reproduced by any number of interior mass distributions

(Wieczorek, 2007). This poses a problem particularly for interpreting the structure of mas-

con basins, as a high free-air gravity anomaly can be interchangeably modeled as a thick

layer of dense mare, a super-isostatic mantle plug, or some combination thereof. In or-

der to separate the effects of mare fill versus a mantle plug, we must rely on additional

information from the geological context.

A number of studies have used crater populations to estimate the thickness of basalt

flows in the maria. Hiesinger et al. (2002) points out that the rims of craters predating a

mare flooding event may extrude at the surface if the craters diameters are large relative

to the mare flow thickness, and they consequently used kinks in crater size-frequency dis-
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tributions to infer representative values for basalt thickness in various maria. In such an

analysis there is ambiguity as to whether the depth to the pre-mare basement or merely

the depth to a previous basalt layer is being inferred. Other studies have constrained the

thickness of the maria using craters that did or did not excavate basement rock beneath

the basalt, such as the measurements of basalt thickness at Mare Humorum by Budney and

Lucey (1998). Thomson et al. (2009) took this analysis one step further and investigated the

distribution of low-Fe basement material in crater ejecta blankets at Mare Imbrium. The

spatial extent of low-Fe material was used to estimate mare thickness relative to the crater

depth, and thus Thomson et al. (2009) provided a number of precise thickness estimates

along with upper bounds and lower bounds. Unfortunately, sparse data is a limitation for

crater excavation analysis. Most of the data points provided for Mare Imbrium are located

on the basin periphery, and only lower bounds on basalt thickness exist in the central and

northern parts of the basin.

The final constraint we have on subsurface stratigraphy comes from the Apollo Lu-

nar Sounder Experiment (ALSE) onboard the Apollo 17 orbital module (Phillips et al.,

1973). ALSE used the backscatter arrivals from 60-meter wavelength sounding to iden-

tify subsurface reflectors in Mare Serenitatis and Mare Crisium, which were interpreted to

be interfaces between basalt layers (Peeples et al., 1978). The ALSE track through Mare

Serenitatis and the corresponding reflection profile is shown in Figure 4-2. Sharpton and

Head (1982) reinterpreted the results of (Peeples et al., 1978) and concluded that the lower-

most horizon detected under Mare Serenitatis is the interface between the lowermost mare

unit and the underlying basement material. The Lunar Radar Sounder (LRS) onboard SE-

LENE performed a second round of radar-probing experiments in the lunar maria. The

higher resolution of LRS measurements made it more sensitive to shallow crustal structure,

and two subsurface reflectors were identified at 0.9 and 1.6 km depth in Mare Serenitatis.

Detection of these stratigraphic boundaries via radar requires at least two meters of regolith,

so periods of quiescence between successive flooding events must have been long enough

for space weathering processes to produce this much regolith. This is consistent with the

spread of 700 million years in the emplacement ages of these stratigraphic units (Hiesinger

et al., 2002).
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4.4 Lunar stress states

4.4.1 Regimes of lunar faulting

According to theory by Anderson (Anderson, 1951), the style and orientation of faulting is

dependent on the principal stress orientation. The principal stresses orientation is the ref-

erence frame in which no shear stresses, and the three principal stresses in this orientation

are labeled a,, 0 2 , and 93 from most positive to most negative (i.e. 01 is most tensile and

( 3 is most compressive). On the surface of a planet, the shear stresses (ro and 0,4 are zero,

so one principal stress axis must be oriented in the vertical direction and the other two must

lie in the plane perpendicular to the first. The vertical stress 0r, is also equal to zero at the

surface of the Moon, which has negligible atmospheric overburden.

Therefore, three basic scenarios may characterize the stress tensor at the surface of a

planetary body. First, if both of the surface coplanar principal stresses are compressive

(i.e. 0 2 , a 3 < 0), the predominant fault type is thrust faulting, which is characterized

by convergent strain in the direction of 0s and a fault strike in the direction of g2 . Thrust

faulting on the Moon exists predominantly in the form of morphologically complex wrinkle

ridges or in the form of lobate scarps. If both of the surface coplanar stresses are tensile (i.e.

o1, a2 > 0), extensional faulting occurs. Extension is typically accommodated by normal

faults, and these faults often occur in pairs so as to produce long linear or arcuate rilles. The

remaining scenario, in which the surface coplanar principal stresses have opposing signs,

is strike-slip faulting. While strike slip faults are common on the Earth, with prolific strike-

slip faults such as the San Andreas Fault in California, strike slip faulting is noticeably

absent on the Moon. This has been attributed to an oversimplification of the Anderson

theory of faulting, and the greater surface curvature on the relatively smaller Moon (Freed

et al., 2001).

The fact that fault strikes indicate the orientation of principal stresses provides another

clue with which we can investigate the history of the lunar stress state. For rotationally sym-

metric impact basins, we can further simplify the interpretation of the stress state by defin-

ing hoop stresses, which are oriented concentrically around the basin, and radial stresses,

which are oriented in line with the center of the basin. Radial wrinkle ridges, concen-
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tric wrinkle ridges, radial rilles and concentric rilles can be seen in many lunar basins, as

shown in Figure 4-2 for southern Mare Serenitatis. While both radial and concentric wrin-

kle ridges point to a compressive environment, concentric wrinkle ridges result when radial

stresses are most compressive, and radial wrinkle ridges indicate that hoop stresses were

most compressive. The same applies for the tensile environment inferred from radial and

concentric rilles.

4.4.2 Coulomb stress changes

The Mohr-Coulomb failure criterion for a given fault plane dictates that failure will occur

when shear stress on the plane is sufficiently large:

' ;> s - f . o-, (4.1)

where s is the intrinsic strength, a is the normal stress on the fault plane, and f is the

coefficient of friction. Coulomb stress change is a metric commonly used by the earthquake

seismology community to provide information about the likelihood of fault slip associated

with an evolving stress state (Stein, 1999). It is defined as the change in shear stress plus

the coefficient of friction times the normal stress on a fault plane:

AO-c = A7 + f . Ag,. (4.2)

Positive normal stress here indicates compression, and a positive Coulomb stress change

indicates that the fault has moved closer to satisfying the inequality in equation 4.1 (i.e.,

failure on the fault). Coulomb stress changes are most commonly used to quantify the

change in stress state associated with earthquakes, and have proven to be a useful tool for

predicting earthquake aftershocks (Stein et al., 1997; Freed, 2005). On the Moon, we can

use the Coulomb stress changes associated with incremental changes in the stress field as a

tool for assessing the plausibility of faulting associated with an elastic load on the surface.

All told, the present-day stress state can be represented as an incremental superposition of

98



stress contributions from many different events:

presen = bsin +Aornmare, 1 mare,n + A,,therral Af aultitg(7j Atui~ ± j Oi ijk +Aijk (4.3)

While we may be able to estimate one or more of these stress tensors, the stress state of the

lunar surface ultimately depends on the cumulative history represented by all of the terms

in this equation.

4.5 Stress calculations

4.5.1 Elastic load inferred from free-air gravity

We can infer the magnitude of an uncompensated load by comparing the observed free-air

gravity anomaly to that produced by a state of crustal compensation (Appendix G). The

inferred load, given by equation G.7, is a function of free-air gravity g, topography H,

and spherical harmonic degree 1. Equation G.7 is also dependent on knowledge of internal

parameters, including the mean crustal thickness R - Rw, the crustal density pc, and the

crust-mantle density contrast Ap. The problem setup in Appendix A assumes a constant

crustal density, and thus the uncompensated load is effectively located at the depth of the

crust-mantle boundary (i.e. the depth of a super-isostatic mantle plug). This is in contrast

to a load caused by dense mare fill, which would be primarily at the surface of the planet.

As shown in Figure 4-3 for loading depths of 0, 10 and 30 km (black lines), the inferred

amplitude of elastic loading is moderately dependent on the depth of loading, resulting

in a factor of <2 ambiguity for a range of depths less than 30 km. A 10-km downward

continuation of the gravity field from the surface to the crust-mantle interface increases the

inferred mass load by 42% relative to a surface load at spherical harmonic degree 30. For

the sake of simplicity we calculate the amplitude of elastic loading by interpreting gravity

as a load acting at an intermediate depth of 10 km, regardless of whether the load originates

from mare fill or from super-isostatic Moho relief.

As a first order approximation, the magnitude of an uncompensated load is proportional

to the free-air gravity anomaly in the spatial domain (equation G.8). This approximation
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is plotted in Figure 4-3 (sky-blue line), along with loads calculated using the more thor-

ough expression given by equation G.7. In some applications it may be desirable to use

equation G.8; in particular, it does not require a spherical harmonic transform, and it does

not require assumptions about parameter values. However, we can see in Figure 4-3 that,

due to self-gravitational effects, an elastic load calculated by simple scaling of the free-air

gravity anomaly will overestimate the true amplitude of the load at low spherical harmonic

degrees. Additionally, if the loading depth is greater than about 20 km, the true load will

be underestimated at higher spherical harmonic degrees (20<1<60) by a Cartesian approx-

imation.

Because of the upward continuation term, errors will become magnified in the solution

at short wavelengths. As a result, estimates of deep loading using equation G.7 begin to

diverge above spherical harmonic degree 90, about the same resolution to which a crustal

thickness map can be reliably produced by gravity inversion (Wieczorek, 2013). Since we

have also neglected finite-amplitude corrections for gravity (Wieczorek and Phillips, 1998),

this will also cause interpretation of this analysis to become unreliable above spherical

harmonic degree 90. Another caveat for inferring elastic loads from gravity is that the

isostatic residual may not completely result from uncompensated topography alone. For

example, the gravity anomaly associated with a deep mantle density anomaly in the lunar

interior, such as that associated with depleted mantle residuum (e.g., Phillips et al., 1990),

may be mistakenly interpreted as evidence of a flexural load. The interpretation of free-air

gravity will be especially tricky if deep mantle heterogeneities are associated with basin-

forming impact events (e.g., Watters et al., 2009)).

Figure 4-4 plots the azimuthally-averaged uncompensated loads associated with eight

mascon basins, calculated using equation G.7 with pc = 2800 kg m- and Ap = 500 kg m- 3 .

All of the mascon basins have positive central loads, indicating super-isostasy. The super-

isostatic centers are surrounded by regions of sub-isostasy, typically at radial distances of

around 200-400 km. Orientale basin stands out from the other basins, with a more strongly

negative (i.e. upward buoyant) annular load around the basin periphery. This reflects the

relatively low volume of mare infill, which contributes to the large, positive free-air gravity

in other basins (Melosh et al., 2013).
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4.5.2 Axisymmetric profiles

The analysis of stress states in lunar basins is greatly simplified by assuming axisymmet-

ric loads on a homogeneous elastic plate, which result in axisymmetric hoop and radial

stresses. A pair of studies by Solomon and Head (1979, 1980) calculated stresses in this

way using the elastic flexure formulation of Brotchie and Sylvester (1969). Elastic loads in

the Solomon and Head (1979, 1980) studies were estimated using the geologically mapped

distributions of as many as three mare units per basin. Mare thicknesses were estimated so

as to match mascon amplitudes (e.g., Sjogren et al., 1974) in a completely uncompensated

loading scenario (c.f. equation I of Brotchie and Sylvester (1969)). We are in a position

to improve on the results of Solomon and Head (1979, 1980) in a couple of ways. First,

the Brotchie and Sylvester (1969) formulation is only valid when the width of an elastic

load is much smaller than the radius of the sphere; the alternative formulations of Turcotte

et al. (1981) and Banerdt (1986) are more suitable for the broad loads associated with lunar

impact basins, and the numerical solutions produced therein more closely match the results

of finite element studies (Freed et al., 2001). Secondly, while Solomon and Head (1979,

1980) were only able to estimate incremental changes in loading associated with stages

of mare infill, free-air gravity from GRAIL allows us to infer the distribution of actual

present-day loads. Finally, the ages, stratigraphy and thicknesses of the maria have been

more thoroughly characterized in the past few decades by various geological studies (e.g.,

Budney and Lucey, 1998; Hiesinger et al., 2002; Thomson et al., 2009; Hiesinger et al.,

2011).

The vertical flexural displacement of a spherical surface may be related to the applied

load via a transform function (Turcotte et al., 1981). The resulting vertical displacement

of the elastic lithosphere can then be used to calculate the stresses resulting from mascon

loading by using the theory in the appendices of Banerdt (1986). Although we will only

show results for axisymmetric loads, this calculation applies for arbitrary loading distribu-

tions on a spherical surface. Using the basin loads shown in Figure 4-4, we can calculate

the surficial radial and hoop stresses associated with the present-day load (plotted in Figure

4-5 for the mascon in Mare Serenitatis). The large stress amplitudes are not to be inter-
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preted at face value, as much of the stress at the surface associated with bending will be

relieved through fault slip (McNutt, 1984).

In order to interpret these stress calculations, we use the distributions of wrinkle ridges

and concentric rilles mapped by Solomon and Head (1980). For basins with identifiable

graben structures, constraints on elastic thickness are then determined by finding the range

of stress models for which radial stresses are positive over the entire extent of graben forma-

tions. Five basins with basin-localized graben structures are listed in Table 4-1 along with

the associated elastic thickness bounds. Elastic lithosphere thickness is not expected to re-

main uniform throughout lunar history: the thermal gradient under an impact basin grows

shallower as both the basin and the Moon as a whole cool, and this causes the effective elas-

tic lithosphere to thicken with time (McNutt, 1984). The timing of faulting constrains the

evolution of the lunar stress state and the evolution of the elastic lithosphere. The ages of

mare units modified by graben formation provides an upper bound on the associated graben

ages. The mare age ranges as determined by crater size-frequency distributions (Hiesinger

et al., 2011) are listed in Table 4-1, along with the relative stratigraphic ages of the basins

from Wilhelms (1987). Similar estimates of elastic thickness and timing associated with

wrinkle ridge formations are listed in Table 4-2, and the ages of mare units modified by

wrinkle ridges provide an upper bound on the age of the associated wrinkle ridges.

4.6 Discussion

4.6.1 Constraints on elastic lithosphere thickness

The upper bounds on elastic thickness in Table 4-1 for Imbrium, Serenitatis and Grimaldi

basins are smaller than the associated lower bounds on elastic thickness provided in Ta-

ble 4-2. These conflicting estimates can be resolved by invoking time-evolution of the

elastic lithosphere thickness at these three basins, if not other basins. This is consistent

with the observation that wrinkle ridges and late mare flooding events often modify graben

structures in the basin maria (Solomon and Head, 1980). The relative predominance of

concentric rilles early in lunar history and the relative abundance of wrinkle ridges formed
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after -3.6 Gya are also consistent with the development of a globally compressive stress

environment from a volumetrically contracting Moon (Solomon, 1977; Andrews-Hanna et

al., 2013b) which may have suppressed extensional tectonics. Thus, the elastic thickness

estimates provided by concentric rille distributions typically correspond to an earlier point

in lunar history, while estimates from the distribution of wrinkle ridges are closer to the

present-day elastic thickness.

The elastic thickness constraints given in Tables 4-1 and 4-2 are generally lower than

the constraints given by Solomon and Head (1979, 1980), partly due to their use of a

different numerical formulation and partly due to a different assumed load (we inferred

a distribution of loading from GRAIL gravity while they assumed a load based on the

lateral extent of mare deposits). Additionally, extensional stresses around the periphery

of a load are larger when calculated using the formalism of Brotchie and Sylvester (1969)

rather than that of Banerdt (1986): a calculation for Mare Serenitatis using the equations

of Brotchie and Sylvester (1969) with a 50-km-thick lithosphere produced a maximum

extensional stress of 150 MPa (which, again, assumes no stress relief via fault slip), while

a similar calculation using the equations of Banerdt (1986) produced 50 MPa extensional

stress. This reduction of modeled extensional stresses at basin peripheries means that the

global compressional overprint required to suppress concentric rille formation is generally

smaller than previously reported. The extent of global contraction has also been called

into doubt by Watters et al. (2012), which used the Lunar Reconnaissance Orbiter Camera

(LROC) to identify small extensional graben less than 50-My old at the northern end of

Mare Nectaris and elsewhere. Such an example of extensional faulting is likely the result

of local regional stresses overcoming the globally compressive stress environment.

Elastic thickness constraints from Tables 4-1 and 4-2 are visualized in Figure 4-6 for

extensional tectonics (red) and contractional tectonics (green). It is clear in this Figure

that a globally extensional stress environment began transitioning into a compressional

environment before -3.6 Gya, consistent with the estimate from Solomon (1977). There is

a wide range of inferred elastic thicknesses, indicating that the lithosphere may have been

significantly heterogeneous at the time of mare deposition. A general increase in elastic

lithosphere thickness is also observed over the period of 3.9 to 2.2 billion years before the

103



present. This trend of lithospheric thickening is consistent with a cooling of the lithosphere

under basins and across the Moon as a whole (Kohlstedt et al., 1995; Turcotte and Schubert,

2002).

Before we can take historical elastic thickness estimates at face value, we must realize

that a number of incremental contributions to the lunar surface stress state (as described

in equation 4.3) remain largely unquantified. Consequently, present day stress states and

loads determined by GRAIL may not be comparable to the loads at earlier points in the

Moon's history. Successive stages of mare flooding may change the relative distribution

of loading in a given basin, and Solomon and Head (1979, 1980) concluded that the early

stages of mare fill in Serenitatis basin were more centrally concentrated than the present

day fill. A more centrally-concentrated load would cause the stress curves in Figure 4-5 to

shift closer to the axis of symmetry, which would result in larger estimates of elastic thick-

ness at the times of concentric rille and wrinkle ridge formation. However, a thickening

of the lithosphere with time at Serenitatis basin is observed even when we use the unit I

and unit III mare loads from Solomon and Head (1980) to interpret concentric rilles and

wrinkle ridges, respectively. We also do not know how fault slip may have relieved stresses

in the large impact basins over time. If the amount of fault slip is known, the associated

stress change can be theoretically calculated (Okada, 1985). Some faults pre-dating mare

infill may not have a surface expression, but comparisons of stratigraphic layer variations

can constrain the age of faulting relative to the timing of mare flooding events (Ono et al.,

2009). Finally, the global stress overprint associated with the late volumetric contraction

of the Moon (Solomon, 1977) may cause us to overestimate elastic thicknesses after -3.6

Gya, because a downward shift of the stress curves in Figure 4-5 would result in compres-

sive stresses at greater radial distances from a given basin center. We will postpone a full

analysis of elastic thickness evolution at the mascon basins for a future paper in which all

contributions to the temporal variability of loading are quantified.
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4.6.2 Coulomb stress changes from mare infill

We can quantify the change in stress state associated with the incremental infilling of mare

by using equation 4.2 with estimates of mare fill thickness. ALSE profiles are interpreted

by Sharpton and Head (1982) to imply a thinning of the mare under the circumferential

wrinkle ridges, associated with a pre-mare basin ring. Taking this to be the case, we plot the

Coulomb stress change for Mare Serenitatis associated with the mare infill load in Figure

4-7. For all elastic thicknesses considered, the Coulomb stress change has a local maximum

at the buried basin rim, and the absolute maximum Coulomb stress change occurs at the

center of the basin for Te <100 km. More comprehensive maps of mare thickness have been

made, and we can use these to make maps of maximum Coulomb stress change as well.

One such map is the Mare Imbrium basalt isopach estimated by Thomson et al. (2009),

plotted in Figure 4-8a. Faults in our analysis are assumed to have a dip of 30 degrees and

are assumed to slip in a reverse sense. Since fault strike also matters for the calculation,

we find the fault strike that maximizes Coulomb stress change at each point on the map.

Coulomb stress change above a threshold of 20 MPa for Te=150 km is plotted in Figure

4-8b in pink, along with wrinkle ridge locations plotted in green (bold green indicate high-

relief wrinkle ridges). A partial ring of high Coulomb stress change is roughly correlated

with the circumferential ring of high-relief wrinkle ridges, although the calculated ring

is much thicker than the observed fault distribution, and high Coulomb stress change is

calculated at the center of the basin where faulting is not prevalent. Finally, we plot the

Coulomb stress change associated with the GRAIL-inferred loading in Figure 4-8d, with

GRAIL Bouguer gravity plotted in Figure 4-8c for comparison. The calculated ring of

high Coulomb stress change matches the pattern of observed faulting very well in this case,

although it falls slightly exterior to the high-relief ridges.

The Coulomb stress distributions plotted in Figures 4-7 and 4-8 indicate that if a pre-

mare basin surface is unstressed or homogeneously stressed, we should expect the first

mare faulting to occur in a narrow annulus above a buried basin ring and at the basin cen-

ter. While we do observe faulting at the proposed locations of buried basin rings in Mare

Imbrium and Mare Serenitatis (i.e. the circumferential ridges), the centers of these two
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basins have a relatively small number wrinkle ridges. In order to understand this observa-

tion, it is important to remember that Coulomb stress change refers only to the incremental

change in the stress state. The dearth of compressional tectonics may therefore result from a

pre-mare stress state that is less compressional at the basin center than at the buried ring. If

the post-mare stress state at the basin center was comparable to the stress state immediately

to the interior of the buried basin ring, radial surface stresses may have been 15-30 MPa

less compressive in the basin center than at the buried ring prior to mare loading (cf. Figure

4-7). Figure 4-5 ostensibly suggests that the radial stresses should be more compressive

at basin centers, but the actual surface stresses will be much less than those suggested by

Figure 4-5, which assumes an unfractured plate. Pre-mare faulting may be partially respon-

sible for relieving surface stress in the pre-mare basement material, and these faults may be

observable at Mare Imbrium with future GRAIL gradiometry analysis (cf. Andrews-Hanna

et al. (2013b)).

Another ostensible incongruity is that hoop stresses should be more compressive than

radial stresses almost everywhere in a basin (e.g., Figure 4-5). This would imply that we

should primarily observe concentric rilles and radial wrinkle ridges (along with strike-slip

faulting in some cases). Extensional rilles do in fact tend to have a concentric orientation

around the basin, but many high-relief wrinkle ridges in the maria are concentric rather than

radial. Freed et al. (2001) addressed this incongruity by showing that mare deposits with

broadly uniform depth can produce radial stresses that are marginally more compressive

than hoop stresses in places. However, our Coulomb stress change analysis shows that

some of the first thrust faulting in the maria should occur in a narrow annulus over a buried

basin ring, and if we except these circumferential wrinkle ridges in Mare Imbrium and Mare

Serenitatis, concentric wrinkle ridges are no longer more prominent than radial ridges.

The region of uplifted mantle is approximately demarcated by high positive Bouguer

gravity, which also roughly corresponds to the free-air gravity mascon due to the modest

topographic variation in the maria. Neumann et al. (2013) noted that crustal thickness varia-

tions in multi-ringed basins appear to correspond to ring locations, which in turn correspond

to higher Coulomb stress changes from mare loading. Therefore the circumferential wrin-

kle ridges are likely indirectly correlated with GRAIL gravity, as both the basin-localized
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tectonics and the gravity anomalies are apparently connected to basin structure.

4.7 Conclusions

By expressing the GRAIL gravity dataset in terms of an uncompensated flexural load, we

have characterized the stress states associated with present-day mascon loading. We revis-

ited the calculations of Solomon and Head (1979, 1980) and found that their mathematical

methodology caused them to modestly overestimate elastic thicknesses while also overesti-

mating extensional stresses at basin peripheries. We also used published estimates of mare

fill distribution to calculate the Coulomb stress change associated with mare loading. A lo-

cal maximum Coulomb stress change occurs over the presumed location of an inner basin

ring structure. The effect of such a structure is to localize faulting in a narrow annulus, and

this type of faulting is especially apparent in the cirfumferential ridges of Mare Imbrium

and Mare Serenitatis. If we ignore these circumferential wrinkle ridges, concentric faulting

is no longer more prominent than radial faulting, and it is consequently not imperative for

a loading model to produce radial stresses greater than the associated hoop stresses. This

eliminates a minor paradox noted by previous lunar stress studies. Calculations based on

existing basalt isopach maps only approximately predict the locations of faulting, and these

mare thickness maps would be improved by including a more defined basin rim structure.

This study has placed constraints on the thermal and tectonic histories of the lunar

nearside basins and maria. The chronologies for Mare Imbrium and Mare Serenitatis are

roughly summarized as follows: 1) after the basin forming impact event, inward collapse

of the transient cavity forms the major basin rims. 2) Mare basalt floods the basin in

stages, spanning several hundreds of millions of years (Ono et al., 2009). 3) Wrinkle ridges

develop over buried basin rims, perhaps concurrently with concentric rilles at the basin

exterior. 4) As the Moon volumetrically contracts (beginning sometime prior to 3.6 Gya),

a compressive stress environment increasingly suppresses extensional tectonics. Wrinkle

ridges form in the maria with orientations that are neither predominantly concentric nor

predominantly radial. 5) Faults forming between 3.0 Gya and the present day are smaller

(tens of kilometers), and correspond to local stress fields.
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Table 4.1: Elastic lithosphere thickness estimates from radial distributions of linear and
arcuate rilles. Mare age ranges are determined using crater size-frequency distributions
(Hiesinger et al., 2011).

Basin Rille extent Elastic thickness Associated mare Basi
(km) constraint (kim) ages (Gy) (Wilhel

n age
us, 1987)

Orientale 200 - 300 None N/A Imbrian
Imbrium 400 - 640 0 - 50 2.4 - 3.6 Imbrian

Serenitatis 250 - 400 0 - 20 2.8 - 3.6 Nectarian
Humorum 200 - 400 0 - 18 3.0 - 3.5 Nectarian
Grimaldi 60- 180 0- 15 3.0- 3.1 Pre-Nectarian

Table 4.2: Elastic lithosphere thickness estimates from radial distributions of wrinkle
ridges. Mare age ranges are determined using crater size-frequency distributions (Hiesinger
et al., 2011), except for Mare Nectaris, which is dated using crater degradation states
(Boyce and Johnson, 1978).

Basin Wrinkle ridge Elastic thickness Associated mare Basin age
extent (km) constraint (km) ages (Gy) (Wilhelms, 1987)

Imbrium 0 - 450 >80 2.4 - 3.6 Imbrian
Serenitatis 0 - 300 >30 2.8 - 3.6 Nectarian
Humorum 30- 180 >10 3.0- 3.5 Nectarian
Nectaris 0 - 160 None 3.6 - 3.7* Nectarian
Crisium 0 - 220 >25 3.5 - 3.7 Nectarian
Smythii 40 - 120 >10 N/A Pre-Nectarian
Grimaldi 30- 80 >30 3.0- 3.1 Pre-Nectarian
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Figure 4-1: An equal-area Mollweide projection of the GRGM660PRIM free-air gravity

anomaly as measured by GRAIL, with 0.25 spatial resolution. The left side of the map

corresponds to the lunar far-side, and the right side corresponds to the near-side (longitudes

span from -270' to 900). Bold black lines mark the location of high-relief wrinkle ridges

within Imbrium, Serenitatis, and Crisium maria.
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Figure 4-2: a) Faults in the southern portion of Mare Serenitatis, and b) an ALSE profile.
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Figure 4-3: Global power of elastic loading as inferred from free-air gravity.
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Figure 4-4: Azimuthally-averaged elastic loads for eight nearside basins.
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Chapter 5

Conclusions and Future Work

The analysis of elastic loads in chapter 4 utilized the free-air gravity anomaly from GRAIL,

but it did not fully take advantage of the gravity field at its highest resolution. At spherical

harmonic degrees higher than about 100, the observed gravity field primarily samples the

distribution of mass shallower than the crust-mantle interface (Wieczorek, 2013). At the

highest spherical harmonic degrees (greater than about 1=200), the observed admittance

function can be used to infer crustal density (cf. Figures 5-8 and 5-9 of Evans (2013)).

This analysis requires corrections for finite-amplitude topographic relief (Wieczorek and

Phillips, 1998).

Figure 1 shows the first four Slepian tapers with L=60 bandwidth (Dahlen and Simons,

2008), localized to Mare Crisium (the outline of Mare Crisium is defined by the basalt unit

in the geological map of Wilhelms and McCauley (1971)). For the given bandwidth, only

these four tapers have better than 99% localization within the desired region. Given that

the amplitude of topography immediately exterior to the mare is much larger than the to-

pographic variation within the mare, any spatial leakage of the Slepian taper may bias the

admittance analysis, even for 99% localization. Therefore it will be useful to calculate ad-

mittances and correlations of gravity and topography with spatio-spectral tapers of higher

bandwidth. However, this will be computationally intensive: the eigenvalue/eigenvector

analysis required to create Figure 5-1 took about 16 hours to run on a laptop. With higher

Slepian bandwidths, we may be able to localize gravity and topography to individual vol-

canic units (such as those mapped by Wilhelms and McCauley (1971). These observations
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of mare density could be compared with elemental abundances from Lunar Prospector to

constrain the compositions of the mare units, which would give us information about the

source regions from which the magmas were derived.

Further analysis of basin-localized tectonics and stress states remains to be done. The

stress calculations of Chapter 4 used a thin-shell approximation for the Moon's elastic

lithosphere (Banerdt, 1986), but stresses in a moderately thick elastic lithosphere may also

be calculated with semi-analytical theory (Banerdt et al., 1982). Such an analysis may

allow us to further distinguish between loads associated with the crust-mantle interface and

the loads from mare infill.

Finally, future work related to lunar stress states will incorporate geological observa-

tions to quantify the time-varying elastic load associated with mare loading. As a result

of the breadth of available lunar data and the sophistication of mathematical techniques

that have been developed over the past several decades, there is more analysis that can be

done. Some of our plans for future work include: estimating the geological strain across

lunar faults from Apollo and LROC camera imagery; considering how the stress relaxation

associated with fault slip affects regional stress distributions and radial vs. concentric ori-

entations of faulting (this can be analytically calculated using the theory of Okada (1985));

incorporating the outputs of hydrocode basin simulations; and including arbitrary stress

states (including shearing loads,.which may arise from fully 3D models of impact basin

formation). Mapping of mare thickness and density will improve the interpretation of the

Moon's thermal evolution as well, by more thoroughly quantifying the size and shape of

temporal loads. Finally, the question of whether interior basin faults are obscured by mare

flooding may be addressed by GRAIL gradiometry, which has been moderately successful

at identifying subsurface fault structures (Andrews-Hanna et al., 2013b). Each new analy-

sis of the Moon's tectonic and gravity structure gives us an ever-improving picture of how

this planetary body formed and evolved to the present day.
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Appendix A

Gravitational potentials from

finite-amplitude interface relief

Wieczorek and Phillips

at radius r produced by

(1998) derived the static potential perturbations U(Q) in a sphere

an interface B(Q) with a density contrast APB at radius RB:

47rGR 2

U1m(r) = 21+147rGRB
21+1

( R 1) + I ,l = 3  "B I 1, pB F Jn i(1+ 4- i)
r! dn=1 RBn! 1+3

(r :\OC n APR, H'- 1 (1±j-3)
\7RBJZ nr=1 R'n! 1-2

r> RB + max(B)

r < RB min(B)

Equation (Al) accounts for finite amplitude relief on B by

topography, which must be numerically calculated:

"n = _JJ Bn(Q) -Ym(Q)dQ

incorporating powers of

(A.2)

The higher order summation terms in equation (Al) fall off rapidly with increasing n.

For the relief amplitudes encountered on Venus it is sufficient to truncate the summation

at n = 3, although with the exception of topography and Moho relief at Maxwell Montes,

finite amplitude corrections are mostly unnecessary. When interface relief is small, the

summation terms for n > 1 are negligible and we can re-write equation (Al) in terms of

the equipotential perturbation NB(Q, r) for upward- and downward-continuation:
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47rGR~ 2B ) 1+1
g,(21+1) r APBBim
47rGR

2  r
B ' BA

g,(21+1) R B APBBRm

> RB

r < RB

(A.3)

where g, is the gravitational acceleration at radius r.

If topography H and Moho relief W have finite amplitudes, we can calculate the geoid

correction Nfinite:

init 47rGR2 +3 ~Hj . Wi.Ap Rw 1+3

I g(21 +1) :R

n

(I + 3Rnn!
(A.4)
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Appendix B

Propagator Matrices and Dynamic

Response Kernels

Incompressible Newtonian flow in a spherical shell can be analytically calculated by prop-

agating velocity and stress boundary conditions through the interior of the body. Following

the methodology of Hager and Clayton (1989), we define a vector of velocity and stress

variables in terms of the reference viscosity po and radial position r:

vi,(r)

u., =(r) V (. (B. 1)
(vr (r) + prgrNi) 

Vrm(r) and vom(r) are radial and poloidal velocity coefficients, respectively. T/"(r) and

Tjg(r) are normal stress and poloidal shear stress coefficients. Other parameters are the

local density pr, the local gravitational acceleration gr, and the local gravitational equipo-

tential surface Nlm. With the introduction of a new variable v = ln(r/R), the problem of

Stokes flow in a sphere can be posed as a first-order differential equation:

du

d= Au + a (B.2)

where
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-2 1 0 0

A= -1 1 0 p 1  (B.3)
12p -61p 1 1

-6p (41 - 2)p -1 -2

and

0

0
a =1 (B.4)

0

Here, p is viscosity normalized by the reference viscosity and 6pm represents the anoma-

lous density distribution. Solutions to equation B.2 can be represented with propagator

matrices of the form:

PRgo = exp [A - ln(-Ro/R)] . (B.5)

The matrix PRRO propagates the vector u at radius RO to the planetary radius R. We

can consider the simplified case in which viscosity is a step-wise function of radius and

anomalous density is replaced by discrete sheet masses T' (with units of kg m 2 ). The

solution to equation B.2 can then be represented by equating the surface boundary condition

to the upward-propagated boundary conditions of J + 1 interior interfaces:

u(R) = PRRoU(RO) + PRRj aj (B.6)
j=1

and

0

0
a =(B.7)

0
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The formulation of propagator matrices makes it simple to construct an n-layered model

in which viscosity varies radially in a step-wise sense:

PRRo PRR 1 . PR,_1an_2 ... PR 2 R1 'PR 1 R. (B.8)

In this way we can represent an arbitrary radially symmetric distribution of viscosity in the

planet's interior.

The equations of flow must be constrained by boundary conditions at the surface and

at the core-mantle boundary. With a free slip condition for the liquid core boundary at

r = RC and a no-slip condition at the surface of the planet, we can write the system of

equations for flow driven by a single mass sheet T at r = Rp:

0 0 0

0 L v" (Rc) 0
dy dn RRC RC R MRR" -LyAi

-pmg (HQ" - N" - Pim R A poregcCi R R M

Tr/ (R) 0 0

(B.9)

where gp and gc are the gravitational accelerations at radii r = Rp and Rc. The propaga-

tor matrices PRRc and PRR, represent propagation of internal boundary conditions from

the core to the surface and from the loading depth to the surface, respectively. The sur-

face boundary condition includes a flexural term p that is reminiscent of a bottom-loading

flexure scenario (see appendix C for discussion). This system of four equations has four

unknowns: surface relief H4", surface poloidal shear stress " (R), core-mantle boundary

relief Cm, and liquid core poloidal velocity vom(Rc). Alternative boundary conditions can

also be explored; for example, a free-slip boundary condition at the surface and a no-slip

boundary condition at the CMB would be modeled by the following system of equations:
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0 0 0
v0 (R) 0 0R 1M PRRc +PRR ,

- (Hdy Ndyn) Pim c RC ApcoregcCim RqgT 1M

0 TTr (Rc) 0
(B. 10)

where surface poloidal velocity vom(R) and CMB poloidal shear stress r/ (Rc) are the new

free variables.

Once the equations of flow have been solved for the free variables, we can develop a few

degree-dependent kernels that are related to the geoid and surface topography. Following

the terminology of Richards and Hager (1984), the first kernel is defined as the total geoid

anomaly at the surface scaled by the internal mass perturbation:

Gdn N dy"
G1M =(B.11)

where the portion of geoid height produced by dynamic flow Ndyn is known implicitly via

the summed contributions of the three interfaces:

N; = 47GR PMH "" + (]q)1 im + Apcore ( Cim . (B.12)

The equivalent kernel for Airy isostatic compensation of non-finite amplitude topography

at the Moho can be calculated using equations 2.6 and 2.7:

GAiry_ 4,TGR -(Rw2( Rw)12(B13
G1 =g(21 +1) R ) R )(.3

An alternative kernel preferred by some authors (e.g. Herrick and Phillips (1992)) is the

potential kernel:

K dyn= _ " (B.14)
1 NIm
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where N"' is the static geoid contribution from the sheet mass IP:

Ndyn - 4wGR
im g(21 + 1)

R \ 1+2 M
R J

The second kernel is the gravitational admittance associated with dynamic flow:

dyn -N dyn
Z1 M (B.16)Z, H ""n

When dealing with self-gravitation, it is sometimes convenient to use an adjusted admit-

tance function for which the denominator is the topography in excess of the associated

geoid:

-Zdyn Ndyn
Zy, H Im - NI - 1M

1

Zdyn
- 1). (B.17)

The third kernel signifies surface displacements normalized by the mantle mass load:

(B.18)Dd - Zd- "

~lm Z1,~

We can use kernels to relate an unknown mantle load to the dynamic components of the

geoid and geoid-corrected topography:

S=G/"1 im, (B. 19)

and

dyn = GTm.
Him - 2 dyn (B.20)
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Appendix C

An Elastic Lithosphere that Resists

Dynamic Flow

The elastic response of a planet's lithosphere to loading can be modeled as a thin spherical

shell. A load p(Q) acting on a shell can be related to the flexure of the shell from its

undeformed configuration F(Q) (Turcotte et al., 1981):

(DV 6 + 4DV 4 + ETeR 2V 2 + ET R2 ) F(Q) = R4 (V 2 +1 - /) p(Q). (C.1)

Similar to the dynamic flow analysis of appendix B, this formulation neglects toroidal flex-

ure terms and assumes laterally homogeneous material parameters. We can write a solution

to this equation by first defining two non-dimensional parameters:

1 _13(, + 1)3 +412(l + 1)2
ci -(I + 1) + I - v

(C.2)

and

C2 -1(1 1) + 2
--_1(l + 1) + I - v

(C.3)

We can then write solutions to equation in terms of spherical harmonic coefficients:
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e PFim = Plm (C.4)

where the amplitude of flexure is linearly related to the elastic loading by a degree-dependent

term el:

D ETe2
ei=R4 + R2 1| 'C5

The first term in equation C.5 is associated with bending stresses, which are relevant at

higher degrees, and the second term is associated with membrane stresses.

If the flexural displacement F is defined to be the component of topography associated

with dynamic flow (i.e. F = Hdyn), then equation C.4 can be inserted into the dynamic

flow equations B.9. We can rearrange B.9 and solve the four equations (i = 1 : 4) using an

arbitrarily unitary mantle mass load:

pi2  PI2iO0 ) poei
PRRC RVm (RC)

SPR~cC ft- - 6i321+1 pmR (R) 1 +2] e~i Rc 
rG (Rc

+6i pMg - Rpm 2 +e H dyn (C.6)
+U3[m 21+1 ]i

+ 64Trmo R)

Rqgq 47G R 1+2
-p* R 32+1pmR (R

where the Kronecker delta, Sij, equals one if i j and equals zero otherwise. Solutions for

the four free variables can then be used to develop the kernels in appendix B.
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Appendix D

Data and uncertainty quantification

The sine and cosine coefficients for a spherical harmonic expansion can be represented in

a single vector c. The covariance matrix of c is E = QAQ- 1 , where Q is the matrix of

covariance eigenvectors and A is the diagonal matrix of covariance eigenvalues. We want

to generate a vector of random errors x associated with the spherical harmonic coefficients.

The multivariate normal distribution for a given error vector x of length k is:

1 1 -
fX = I exp xTE x (D.1)

(27r1  E 2 ( 2

For the sake of simplicity, we define a vector y related to x through a linear transformation:

y QTx. (D.2)

We can then define the multivariate normal distribution of a vector y in terms of the eigen-

value matrix:

1 (JTA 1>
I exp yT A y (D.3)

(2 r)I AI 2 Y

Since A is a diagonal matrix, we can further decompose the density function in terms of

the covariance matrix eigenvalues A,:

k

fy H fn (D.4)
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where

f=(27A)-2 exp -

The cumulative distribution function (CDF) for a single variable is:

jD n fnOYn = - 1
-oo 2 [

+ erf Y)
( 2 -A

For a series of k random CDF values selected on the interval Dn E (0, 1), the values of y,

needed to reproduce that CDF are:

yn = /2Anerf -1 (2Jb, - 1). (D.7)

The vector y can then be transformed back into the original coordinates:

x = Qy. (D.8)

This is a random realization of spherical harmonic error, and a noisy set of spherical har-

monic functions can be calculated:

Cnoisy = C + X.
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Appendix E

Theoretical admittances

We are interested in determining the gravitational perturbations caused by flexural loading

on an elastic shell, and how those perturbations scale to the height of topography. Flexural

loads can exist above the elastic lithosphere, below the elastic lithosphere, or in some com-

bination of top and bottom loading. In order to quantify the loading state, we introduce a

loading parameter A signifying the ratio of top loading to bottom loading:

R pc (Hirn- Fim)
R,) 011

The bottom load at radius R, can then be expressed in terms of the planetary radius R,

topography H, flexure F, and the loading ratio A:

=rn = (R) 2 ( Him - Fim). (E.2)

See figure E-I for an illustration of the problem setup. The equation relating a load p to an

elastic deflection F is given by Turcotte et al. (1981):

(DV 6 + 4DV 4 + ET R2V 2 + 2ETR 2) F(Q) = R4 (V 2 +1 - v) p(Q). (E.3)

This formulation neglects toroidal flexure terms and assumes laterally homogeneous ma-

terial parameters. We can write a solution to equation E.3 by first defining two non-
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dimensional parameters:

k -13(1 + 1)3 + 412(1 + 1)2

-1(1+1) + 1 -

2 -1(1+1) + 2

(E.4)

(E.5)

The parameter k' corresponds to bending stresses, and the parameter k2 corresponds to

membrane stresses. Solutions to equation E.3 can be written in terms of spherical harmonic

coefficients:

(Dk ETIk)
Da k' + E k 2 Fim = A mn (E.6)

We can alternatively write a flexure equation with a non-dimensional flexure parameter E

which relates the amplitude of flexure to the uncompensated portion of topography:

EiFim = -H "compensated (E.7)

where El is defined in terms of the flexural parameters in equations E.4 and E.5:

E = Dk + e k 2

pegR4 pegR21 (E.8)

We equate this flexural load to an Airy isostatic residual:

(Him - Nim) +
AP (B) 2 (Fm - N/rn) + o-9m =-EFm.
PC R )(R)

(E.9)

In order to account for self-gravitation, we include expressions for the local equipotential

surfaces at the surface and the crust-mantle boundary, respectively:
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N 4rR
3

im M(21 + 1)

AIr R3

N/rn AI(21 +-1)

PcHim

Rw1

R )

( Rw~ \+2
+ R 1 ApFim+

RP
pcHim + Rw ApFm+

Equation E.9 can be rearranged to find the ratio of gravity over topography, girn/Him, i.e.

the admittance function for flexural loading on a self-gravitating sphere:

= n - 4-Fp, I + 1

Hin 21+1
Rw>

R ,/
(1 - SG) Ci + (Ra/Rw)' El + BL1

(1 - SG 2) C, + AE, + BLY 2
(E.12)

This equation makes use of a parameter C1, two self-gravitational terms and two terms

associated with bottom loading:

C,=cIWol)i

SGJ- 47,rpcR 3

M(21 +1)

SG 2 47pcR
3

M(21 + 1)

+A Ap (Rw)2

1

[(
1 Ap (Rw 2

BL, =
PC R

Ap (Rw 1+21
pc \RJ

Rwi

R )

[( R~'jR 1
Rw)

and

133

and

( Ro\1+2

R ) (7 n1I (E.10)

R, 1+2 ]
Rw) O-Tn (E. 11)

(E.13)

(E.14)

(E.15)

(E.16)

+ Ap Rw
PC RI



BL 1 - Rw)I (E.17)

The bottom loading terms E. 16 and E. 17 arise when the bottom loading depth does not

equal the depth of the crust-mantle interface.

Equation E. 12 can be used for any ratio of top loading to bottom loading, but we can

quantify the special cases of pure top and bottom loading. Bottom loading corresponds to

a ratio A = 0, and the resulting admittance spectrum is found by modifying equation E. 12:

Z1(A 0) =47rpcG I+1 R 1- SG + Ei+ (Rw/Ro,)BLj1 (E.18)
21 +1 R I - SGI (R,lRw)'

Similarly, we can calculate the admittance spectrum for a pure top-loading scenario (in

which A- approaches zero):

lim Zi = 4rpcG 1 1 (E. 19)
A 21+1 R 1- SG 2 +Pc ((RRw)2E)

Considering the case El = 0 and R, = Rw, we find the admittance function for Airy

isostasy, corrected for self-gravitation:

Z, El = 0 47p, + I I Rwl I - SG'](.0Zi=4wrpcG Ii- .2 ( E.20)
R, = /w 21+ 1 R I - SG 2
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Figure E- 1: Set-up of the flexural loading problem.
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Appendix F

Two-layered dynamic flow

Dynamic flow in a viscous sphere can by analytically calculated by propagating velocity

and stress boundary conditions through the interior (Hager and Clayton, 1989). In addition

to surface topography H and liquid core boundary relief C, we can imagine that there is an

additional boundary D at radius RD with an intrinsic density contrast APD. The presence of

such an interface alters the nature of steady-state flow in Mercury's interior: each increment

of flow across D changes the radial load driving flow. Two-layered dynamic flow at a given

spherical harmonic degree is governed by a system of four equations:

*v, (R) * Vr(Rc) 0

*vo(R) * vo(Rc) 0
=PRRc + PRRD (F.1)

-*Trr (R) * rr (Rc) *7rr (RD)

-*Tro (R) *Tro Rc) 0

The propagator matrices PRRc and PRRD contain information about the viscosity profile

of Mercury (see Appendix B for more information). Spherical harmonic coefficients have

been dropped from each variable for the sake of concise notation. Additionally, all veloci-

ties and stresses are understood to be non-dimensionalized as follows:

V =V gpR2, (E.2)
PO
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T= *gpR, (F.3)

The radial stress at radius R is equal to the weight of displaced topography plus the pressure

applied by elastic flexure:

H -N p
*rr (R) R + pgR (F.4)

The radial stresses at radii Rc and RD can similarly be calculated:

*Trr(Rc) = ApcgcRc (C - Nc) (F.5)
pmgR'

*Trr(RD) ApD9DRD (D - ND) (F.6)
pmgR 2

The equipotential surfaces at radii R, Rc, and RD are, respectively:

4irGR p H (R c  1+2 ApC-i+ RD 1+2 (E7)
g( 2 l + 1) m R R ) P I

47GR Rc + RD
N =g(21 + 1) R pmH+Ap0 C+(R 1 1  (F.8)

47rGR RD RCND g( 2 l +1) RH (R) 1 C2 A PDD (.9)

Since the radial stresses are calculated in equations F.4-F.6, we are left with six unknowns

in four equations. In order to find solutions, we must first constrain two more parameters.

We chose to do this by assuming no lateral velocities at the surface and no shear stresses at

the liquid core boundary.

Radial velocity solutions are used to calculate radial displacements at each interface.

Velocities at radii R and Rc are variables in equation F. 1, and the radial velocity at RD can

be calculated with another propagator matrix:
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*Vr(RD) - PR"DR, v,r(Rc) + PRDRC*vo(Rc) + PRDRC*Trr(RC). (F.10)

We can then step the solution forward in time and modify the interface amplitudes:

AH *v,(R)At (F. 11)

AC *vr(Rc)At (F. 12)

AD *v(RD)At (F. 13)

We march forward in time using a dynamic time stepping scheme: if the maximum in-

terface change is less than 0.5% then we increase At by a factor of 2; if the maximum

interface change is larger than 10% we decrease At by a factor of 8. The incremental

elastic response at a time step is a function of the elastic thickness (Turcotte et al., 1981):

E~et)3 ETet
Ap = AH k + kt)k2) (F.14)

12R4(w - V2) 1 R2

where the parameters k0 and k 2 are defined in Appendix E.
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Appendix G

Elastic loads inferred from free-air

gravity

Since free air gravity includes contributions from both isosatically compensated topogra-

phy and uncompensated topography, we must separate these two contributions in order to

reliably infer flexural loads on the surface.

The magnitude of the downward net load o caused by uncompensated topography is

dependent on topography, on the crust-mantle interface relief, and the associated equipo-

tential reliefs:

(Him - Nim) pcgo + (Wi - N/,) Apgo .)2  (G.1)

Neglecting finite-amplitude corrections, crust-mantle interface relief W equals a downward-

continuation of the Bouguer geoid:

1 M(21 + 1) R 1+2
Ap 4wR 3  NBouguerlm (G.2)

where

NBuguerlm = NiM - 47rR 3  PHM. (G.3)
ra (21 + 1 )Ps afea

The equipotential surface at the crust-mantle interface is affected by surface topography
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and by crust-mantle interface relief:

N' 47rR
3

I =M(21 + 1)
RW pcHim + ApWiml.

Free-air gravity acceleration at the surface can be related to the geoid via spherical

harmonic transform:

91m = 0( + 1)Nim.
Rt

(G.5)

We can further simplify our analysis by defining the average planetary density:

3 Al

4 p.R
3 (G.6)

Dropping second-order terms, we can combine the preceding equations to provide an

expression for the flexural load inferred from topography and free-air gravity:

[1 (A

If we set Rw R and ignore terms with spherical harmonic degree 1, we can give a

first-order approximation for the load in the spatial domain:

(Q) -I R-pg(Q)
3
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1+1 91m - I-

()Rw]
R pcgoHimI
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