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Abstract

The chemistry of the stratosphere, in particular the balance between ozone production and loss,
is very sensitive to transport into and out of the tropical stratosphere. There is a great deal
of evidence that tropical air remains relatively isolated from extratropical air over timescales
that are long compared to typical midlatitude mixing timescales. However, there are significant
questions regarding the extent to which the tropics may be considered isolated, the mecha-
nisms and variability of this isolation, and the implications of tropical isolation for global-scale
transport. We address some of these issues using three very different tools: a simple model of
stratospheric transport, which allows us to investigate the role of tropical transport in deter-
mining global transport timescales, satellite observations of long-lived tracers, which allow us
to diagnose the seasonal variability of the tracer gradients that mark the transition between
tropical and extratropical air, and a shallow water model, which allows us to investigate the
mechanisms of tropical isolation in the simplest relevant dynamical framework.

We first discuss the characteristics of analytical solutions for the mean age of air, a measure
of the mean timescale for transport by large-scale processes in the stratosphere, in a simple,
one-dimensional conceptual model of stratospheric transport. In this “leaky pipe” model, the
stratosphere is divided into three regions: the tropics and the Northern and Southern extra-
tropics. We examine the dependence of the mean age on advection, diffusive mixing, and
quasi-horizontal transport between the tropics and the extratropics. This work provides insight
into the role of the tropics in global chemical transport under the assumption of at least some
degree of tropical isolation.

We next examine the seasonal variability of the subtropical tracer gradients which mark
the transition between tropical and extratropical air from both a diagnostic and a mechanistic
standpoint. We use probability distribution functions of satellite measurements of long-lived
tracers to define the transition regions, which are commonly called the subtropical “edges”.
We examine six and a half years of measurements and identify the central latitude, and in
some cases the area, of these edges at eight pressure levels on quasi-monthly timescales. We
compare the seasonal variability of the subtropical edges to the variability in several transport
parameters and thus increase our understanding of the mechanisms of tropical isolation from a
diagnostic standpoint.

We then use a shallow water model, which represents many of the properties of the flow
between two isentropic surfaces, to examine the mechanisms of the formation of the subtropical



edges during each season. We include the effects of diabatic heating and cooling as well as
planetary-scale wave propagation and examine the role of these processes in the formation of
potential vorticity gradients that behave in much the same way as the observed subtropical
tracer gradients.

Our results indicate that the winter subtropical edge marks a mixing barrier. The rapid
stirring in the winter hemisphere that results from planetary-scale wave breaking is generally
confined to the midlatitudes, and the strong tracer and potential vorticity gradients in the winter
subtropics likely result from “stripping” processes, as filaments of material are occasionally
pulled out of the tropics by this midlatitude stirring. The summer subtropical edge, however,
does not mark a mixing barrier in the middle and upper stratosphere. Rather, it is likely that
the strong subtropical tracer and potential vorticity gradients in the summer hemisphere result
purely from the action of the residual circulation, which tends to increase potential vorticity and
tracer values in the tropics and decrease them at high latitudes (for tracers with tropospheric
sources and photochemical sinks) over the course of the summer. We show that the seasonal
variability of the edges can, in some cases, contribute significantly to the mass budgets in simple
“leaky pipe”-type models, but find that it is difficult to assess the role of this seasonal variability
in tracer transport.

Thesis Supervisor: R. Alan Plumb
Title: Professor of Meteorology



Results! Why, man, I have gotten a lot of results.
I know several thousand things that won’t work.

-Thomas Edison
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Chapter 1

Introduction

Much of the research on chemical transport in the stratosphere in recent years has focused on the
tropics, where most air enters the stratosphere through the upwelling branch of the large-scale
residual circulation (Brewer, 1949; Dobson, 1956). There is an abundance of evidence that the
air in the tropics remains relatively isolated from midlatitude air as it travels upward, but there
are still significant questions regarding the details of the timescales and mechanisms of horizontal
transport into and out of the tropics. The accurate representation of tropical transport in
large-scale models of the stratosphere is particularly important because photochemistry acts
very efficiently in the tropics both to produce ozone and to convert anthropogenic gases into the
reactive compounds that destroy ozone (Ko et al., 1989), so that ozone chemistry throughout
the stratosphere is particularly dependent on tropical transport. For example, the response
of stratospheric ozone to anthropogenic chemicals produced by aircraft exhaust in the lower
midlatitude stratosphere depends critically on the rate at which these chemicals are transported
from the midlatitudes into the tropics, upward, and back out into the midlatitudes of the middle
and upper stratosphere, where they can have the greatest impact on ozone chemistry (e.g.
AESA, 1994). This thesis addresses two issues related to transport in the tropical stratosphere.
The first is the dependence of the “mean age”, which is a measure of the mean timescale
for transport by large-scale processes in the stratosphere, on various transport parameters,
including transport rates into and out of the tropics, under the assumption of at least some
degree of tropical isolation. The second is the seasonal variability of the subtropical “edges”,

which mark the transition between tropical air and midlatitude air, including an extensive
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diagnosis of this variability using satellite measurements of long-lived chemical tracers and an
examination of the mechanisms that lead to the formation of these edges during each season in

a shallow water model.

1.1 Evidence for Tropical Isolation

Some of the first evidence that the air in the tropics is relatively isolated came from obser-
vations of radioactive debris from nuclear explosions in the tropics as well as aerosols from
tropical volcanic eruptions (e.g. Feely and Spar, 1960; Trepte and Hitchman, 1992; McCormick
and Vega, 1992; Grant et al., 1996). These observations showed that once material is injected
into the tropical stratosphere, the maximum concentrations remain in the tropics for several
years, with transport into the midlatitudes occurring mainly through episodic “wave breaking”
events (McIntyre and Palmer, 1983) during the winter, in which filaments of tropical air are
pulled into the midlatitudes (McCormick and Vega, 1992; Trepte et al., 1993). Measurements
of water vapor mixing ratios also indicate a lack of rapid communication between the tropics
and midlatitudes. Mote et al. (1996) presented an analysis of water vapor and “total hydro-
gen” (2CH4+H20) mixing ratios in the tropics as measured by the Microwave Limb Sounder
(MLS) and Halogen Occultation Experiment (HALOE) instruments on the Upper Atmosphere
Research Sounder (UARS) satellite. There is an annual cycle in water vapor mixing ratios at
the tropical tropopause because of the annual cycle in tropopause temperature. Mote et al.
(1996) showed that the annual cycle in both water vapor and total hydrogen is damped some-
what in the region just above the tropopause, but then propagates upward through the tropics
with very little attenuation over periods of 18 months or more. No annual cycle in water vapor
is observed in the midlatitudes, except in the lowest few kilometers of the stratosphere (Hyson,
1983). Thus, mixing in the midlatitudes must be rapid enough to homogenize the signal, which
implies mixing timescales of one to two months (Boering et al., 1996), but mixing across the
subtropics must be slow enough to prevent homogenization of the tropical signal.

As further evidence of inhibited mixing between the tropics and midlatitudes, we can look at
the shape of the mixing ratio isopleths of long-lived chemical species in the stratosphere, which

tell us a great deal about transport processes. Figures 1-1 a) and b) show zonal mean methane
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(CHy) and hydrofluoric acid (HF) mixing ratios as measured by the HALOE instrument during
the period September 21 to October 15, 1992. CHy4 has a tropospheric source and a weak
photochemical sink at high altitudes. Its lifetime ranges from centuries in the lower stratosphere
to about 90 days in the upper stratosphere. Hydrofluoric acid is a product of the photochemical
breakdown of chlorofluorocarbons (CFCs) and is extremely stable in the stratosphere. As
seen in Figure 1-1, the mixing ratio isopleths of these species share a characteristic shape:
they bulge upward in the tropics and then slope steeply downward in the subtropics. In the
Southern hemisphere, the isopleths are relatively flat in the midlatitudes and then slope steeply
again at the edge of the polar vortex. In the Northern hemisphere, the isopleths are less
steep in the subtropics than in the Southern hemisphere, and gradually flatten out at high
latitudes. Although these particular observations were taken near the equinox, the Southern
hemisphere tracer distribution is characteristic of the winter hemisphere and the Northern
hemisphere distribution is characteristic of the summer hemisphere. Similar winter and summer
distributions are observed for all long-lived tracers with weak photochemical sinks. The fact
that the isopleths of different species share the same shape indicates that their distributions
are controlled mainly by transport process. The persistence of sharp gradients in the mixing
ratios of these species is an indication of restricted mixing between regions. Figure 1-2 is a
schematic of the relationship between stratospheric transport processes and the slope of mixing
ratio isopleths. In Figure 1-2 a), the slope of the isopleths results from a balance between the
residual circulation, which carries air upward in the tropics and downward at the poles and
therefore tends to steepen the mixing ratio isopleths, and rapid quasi-horizontal mixing, which
acts to flatten out tracer isopleths. If the quasi-horizontal mixing is global and rapid compared
to the chemical and advective timescales then the slope of the mixing ratio isopleths will be
small (Plumb and Ko, 1992). In Figure 1-2 b), the rapid quasi-horizontal mixing is restricted to
the midlatitudes, where it flattens the mixing ratio isopleths, thus leading to steepened isopleths
and strong gradients at the edges of the mixed region. We shall see that the situation depicted in
Figure 1-2 b) is relevant mainly to the winter hemisphere, but strong tracer gradients could not
persist in the summer subtropics if there were rapid mixing throughout the summer hemisphere.
Thus, the summer subtropical tracer gradients are indicative at least of a lack of rapid mixing

between the summer high latitudes and the tropics (though not necessarily of rapid mixing
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within the summer high latitudes).

Tracer-tracer correlation diagrams, which are scatter plots of measurements of one chemi-
cal species versus another, provide additional evidence of tropical isolation. Measurements of
long-lived chemical species in the stratosphere tend to lie along simple, compact correlation
curves since their distributions are controlled by the same transport processes and their mixing
ratio isopleths coincide with one another, as discussed above (Plumb and Ko, 1992). However,
measurements taken in the tropics tend to lie along a different curve than those taken in the
midlatitudes (Murphy et al., 1993; Goldan et al., 1980; Michelsen et al., 1998). Paradoxically,
this indicates both a lack of rapid mixing between the tropics and midlatitudes and the presence
of some mixing between them (Waugh et al., 1997; Plumb et al., 2000). If there were rapid
mixing throughout the hemisphere, then mixing ratio isopleths would be surfaces of rapid mix-
ing, and measurements taken in the midlatitudes would be indistinguishable from those taken
in the tropics. In contrast, Figure 1-3 is a schematic which shows the impact of a subtropi-
cal mixing barrier on a tracer-tracer correlation. The bottom frame represents a correlation
diagram for two species with slightly different chemical lifetimes. For example, tracer A could
represent CHy, whose lifetime is about 90 days in the upper stratosphere, and tracer B could
represent nitrous oxide (N20), whose lifetime is about 50 days in the upper stratosphere. Since
photochemical destruction is strongly altitude dependent, the mixing ratio of both species will
decrease as air rises in the tropics, but the air will become depleted in tracer B more rapidly
than tracer A. If the air enters the stratosphere with the mixing ratios denoted by the square,
the tropical correlation will proceed downward in tracer-tracer space as the air rises. The cur-
vature of the correlation will depend on the difference in chemical lifetimes (Plumb and Ko,
1992). If there is no mixing across the subtropical barrier, and the air simply rises and then
descends in the midlatitudes, and if we assume that most photochemistry takes place in the
high altitude tropical stratosphere, then as the air descends in midlatitudes, it will lie at a single
point in tracer-tracer space, which is denoted by the circle in the bottom frame. However, if
there is some mixing across the subtropical barrier, then air with the tropical correlation will
be mixed in at each height, and the midlatitude correlation will become a “pursuit curve” from
the circle back to the square.

Finally, Sparling (2000) showed that the probability distribution function (PDF) of the long-
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lived tracer NoO, as measured by the Cryogenic Limb Array Etalon Spectrometer (CLAES)
satellite instrument, is tri-modal in the winter hemisphere, with modes corresponding to air
in the tropics, “surf zone” (which will be discussed below), and polar vortex, and bimodal in
the summer hemisphere, with modes corresponding to air in the tropics and the summer high
latitudes. Minima in the PDF correspond to transition regions between these air masses, and
are used in Chapter 3 to diagnose the seasonal variability of the subtropical edges. Rapid
communication between regions would destroy the multi-modal structure of the PDF, so that
the persistence of minima in the subtropics indicates that the tropics remain relatively isolated

from midlatitude air and thus retain a distinct chemical signature.

1.2 Brief Overview of Stratospheric Transport Processes

Thus far, we have discussed the effects of the residual circulation, rapid quasi-horizontal mixing,
and the confinement of that mixing on the distribution of long-lived chemical species, without
considering the mechanisms behind these transport processes. Rapid quasi-horizontal mixing
in the stratosphere occurs mainly in the winter hemisphere, where westerly winds permit the
propagation of planetary-scale waves (Charney and Drazin, 1961). Planetary-scale waves with
quasi-stationary phase speeds dominate the winter stratosphere, and they propagate upward
and equatorward along the potential vorticity (PV) gradients on isentropic surfaces until they
reach a region in which the zonal winds are weak and thus match the phase speed of the waves.
In this region, the waves “break” and are dissipated (MclIntyre and Palmer, 1983) in a highly
nonlinear process that resembles the dynamics of a nonlinear critical layer (Stewartson, 1978;
Warn and Warn, 1978; Haynes, 1985). This wave breaking results in large-scale isentropic
stirring and the stretching and folding of material contours (McIntyre and Palmer, 1983). The
cascade of enstrophy to small scales then results in mixing and the homogenization of both
potential vorticity and chemical tracers.

Wave breaking is generally confined to the winter midlatitude “surf zone”. At high latitudes
during the winter, there are large zonal wind speeds in the westerly jet, while in the tropics the
zonal winds are generally easterly (ignoring the effects of the quasi-biennial oscillation (QBO),

which will be addressed in the thesis). Most of the planetary-scale waves that propagate into
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the stratosphere have near-zero or small westerly phase speeds. Thus, they tend to break where
the winds are weak and westerly: between the polar jet and the tropical easterlies.

The dissipation of planetary-scale waves in the surf zone and the resulting drag on the flow
are largely responsible for the large-scale residual meridional circulation in the stratosphere,
which carries air upward in the tropics, poleward, and then downward at mid- and high latitudes
(Dickinson, 1971; Haynes et al., 1991). This stress-driven circulation results in diabatic heating
in the tropics and cooling at mid- and high latitudes (Brewer, 1949; Dobson, 1956). However,
if the wave drag is truly confined to the midlatitudes, then it can not be entirely responsible
for the observed tropical upwelling, which reaches into the summer subtropics, unless there is
some mechanism which allows non-conservation of angular momentum in the tropics (Plumb
and Eluszkiewicz, 1999). Even in the absence of such a mechanism, direct diabatic heating may
contribute somewhat to the tropical upwelling (Plumb and Eluszkiewicz, 1999; Semeniuk and
Shepard, 2001).

The summer stratosphere is not as well understood as the winter stratosphere. The zonal
winds in the summer stratosphere are generally easterly, though there are often very weak
westerlies in the lower stratosphere. Recent studies have shown evidence of stirring similar
to that of the winter hemisphere in the lower summer stratosphere and have attributed this
stirring to two sources: the penetration of baroclinic eddies into the lower stratosphere and the
propagation and breaking of planetary-scale waves in the weak westerly winds (Wagner and
Bowman, 1999; Haynes and Shuckburgh, 2000). There is little evidence for any such stirring in
the middle and upper stratosphere (Allen and Nakamura, 2000; Haynes and Shuckburgh, 2000).
Because the wave forcing is weak in the summer hemisphere, there is only a weak overturning

residual circulation, with maximum mass fluxes below 10 mb.

1.3 The Subtropical “Edges”

As discussed in Section 1.1, a confined region of quasi-horizontal mixing can lead to enhanced
tracer gradients at the e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>