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Abstract

We present a general framework for Bayesian case-based reasoning and prototype
classification and clustering — Latent Case Model (LCM). LCM learns the most
representative prototype observations of a dataset by performing joint inference on
cluster prototypes and features. Simultaneously, LCM pursues sparsity by learn-
ing subspaces, the sets of few features that play important roles in characterizing
the prototypes. The prototype and subspace representation preserves interpretabil-
ity in high dimensional data. We validate the approach preserves classification ac-
curacy on standard data sets, and verify through human subject experiments that
the output of LCM produces statistically significant improvements in participants’
performance on a task requiring an understanding of clusters within a dataset.

1 Introduction

People like to look at examples. Marketers show us examples of people we might want to emulate in
order to lure us into a purchase. We might ignore Amazon.com’s recommendations and look instead
at an Amazon customer’s Listmania to find an example of a customer like us. We might ignore
medical charts computed from lots of patients in favor of medical blogs where we can get examples
of real patients’ experiences.

Numerous studies demonstrate that this type of exemplar-based reasoning, involving various forms
of matching and prototyping, is also fundamental to our most effective strategies for tactical
decision-making ([31, 29, 8, 10, 23, 27, 32]). For example, naturalistic studies show that skilled
decision-makers in the fire service use recognition-primed decision making, in which new situ-
ations are matched to typical cases where certain actions are appropriate and usually successful
[23]. To assist humans in leveraging large data sources to make better decisions, we desire that ma-
chine learning algorithms provide their outputs in forms that are easily incorporated into the human
decision-making process.

These studies of human decision-making and cognition provided the key inspiration for artificial
intelligence Case-Based Reasoning (CBR) approaches [2, 35, 36, 24]. CBR relied on the idea that
a new situation can be well-represented by the summarized experience of previously solved prob-
lems [24]. CBR has been applied to important real world applications [22, 26, 5], but is fundamen-
tally limited in that it does not learn the underlying structure of data in an unsupervised fashion, and
may not scale to datasets with high-dimensional feature spaces (as discussed in [37]).
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In this work we introduce a new Bayesian model, called the Latent Case Model (LCM), for prototype
clustering and subspace learning. The prototype is the exemplar that is most representative of the
cluster. The subspace representation is a powerful output of the model because we do not need (nor
would we want) the best exemplar to be similar to the current situation in all possible ways: for
instance, a moviegoer who likes the same horror films as we do might be useful for identifying good
horror films, regardless of their cartoon preferences. We model the underlying data as a mixture
model and infer set of features that are important within each cluster (i.e., subspace). This type of
model can help to bridge the gap between machine learning methods and humans, who use examples
as a fundamental part of their decision-making strategy.

We show that LCM produces comparable or better prediction accuracy than prior art for standard
datasets. We also verify through human subject experiments that the prototypes and subspaces
present as meaningful feedback for characterizing the important aspects of a dataset. The exemplar-
based output of LCM produced statistically significant improvements in participants’ performance
on a task requiring an understanding of clusters within a dataset, as compared to outputs produced
by prior art [7].

2 Background and Related Work

People organize and interpret information through exemplar-based reasoning, particularly when they
are solving problems ([31, 29, 8, 10, 23, 27, 32]). AI Cased-Based Reasoning approaches are moti-
vated by this insight, and provide examples cases along with the machine-learned solution. Studies
show that example cases significantly improve user confidence in the solutions, as compared to
showing only the solution or by also displaying a rule that was used in finding the solution [12].
CBR requires solutions (i.e. labels) for previous cases and therefore does not learn the underlying
structure of the data in an unsupervised fashion. Maintaining transparency in complex situations
also remains a challenge [37]. CBR models designed explicitly to produce explanations [1] rely
on backward chaining the causal relation from a solution, which does not scale as the complexity
increases. The cognitive load of the user also increases with the complexity of similarity measure
for comparing cases [16]. Other CBR models for explanations require the model to be manually
crafted in advance by experts [30].

Alternatively, mixture models are a powerful tool for discovering cluster distributions in an unsu-
pervised fashion. However, this approach does not provide intuitive explanations for the learned
clusters, as pointed out in [9]. Sparse topic models are designed to improve interpretability by re-
ducing the number of words per topic [3, 39, 14]. However, using the number of features as a proxy
for interpretability is problematic, as the metric is independent of the contents of the model or the
data [16]. Explanations produced by mixture models are typically presented as distributions over
word features. Even users with technical expertise in machine learning may have a hard time inter-
preting this output, especially when the cluster distribution is over a large number of features [9].

Our approach, the Latent Case Model (LCM) simultaneously performs unsupervised clustering, and
learns the most representative case (i.e., prototype) and the important features (i.e., subspaces). In
this work we use the standard discrete mixture model to learn the underlying structure, and this can
be generalized to other unsupervised clustering techniques. The LCM preserves the power of CBR
in generating interpretable output. In our view, there are at least three widely known types of inter-
pretable models: sparse linear classifiers (e.g., the lasso [38], also see [9]), discretization methods
such as decision trees and decision lists (e.g., [13, 34, 3, 39, 14]), and prototype or case-based classi-
fiers (e.g., nearest neighbors [11] or a supervised optimization-based method [6]). Extensive review
on interpretable classification methods is found from [16]. LCM aims at the third type, but through
unsupervised generative mechanisms for explaining clusters, rather than supervised optimization-
based approaches or by focusing on local points in the data space [4].

3 Latent Case Model

We formally describe the Latent Case Model (LCM) in this section. Intuitively, the goal is to have
each observation be generated from the important pieces of related prototypes. For instance, it might
generate horror and action movie suggestions from one person with similar tastes in those genres,
and cartoon suggestions from some else’s example.
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Figure 1: Latent Case Model

Our model starts with a standard discrete mixture model [19, 7] to represent the underlying struc-
ture of the observations. LCM augments the standard mixture model with prototypes and subspace
feature indicators that characterize the clusters. We show in Sections 4.3 that prototypes and sub-
space feature indicators improve human interpretability as compared to the standard mixture model
output. The graphical model for LCM is shown in Figure 1.

We start with N observations denoted by x = {x1, x2, . . . , xN}, and each xi is represented as a
random mixture over clusters. There are S clusters, where S is assumed to be known in advance.
(This assumption can easily be relaxed through extension to a non-parametric mixture model if
desired.) Vector πi are the mixture weights over these clusters for the ith observation xi, πi ∈ RS+.
Each observation has P features, and we denote the jth feature of the ith observation as xij . Each
feature j of the observation xi comes from one of the clusters, the index of the cluster for xij is
denoted by zij , and the full set of cluster assignments for observation-feature pairs is denoted by z.
Each zij takes on a value that is a cluster index between 1 and S. Hyperparameters q, λ and α are
assumed to be fixed.

The explanatory power of LCM is in how the clusters are characterized. While a standard mixture
model assumes that each cluster take the form of a predefined parametric distribution (e.g., normal),
LCM characterizes each cluster by a prototype, ps, and subspace feature indicator, ωs. Intuitively,
the subspace feature indicator selects only a few features that play an important role in identifying
the cluster and prototype (hence LCM clusters are subspace clusters). Below we intuitively define
these latent variables.

Prototype, ps: The prototype ps for subspace s is defined as one observation in x that maximizes
p(ps|ωs, z,x), where the probability density and ωs are defined below. Our notation for element
j of ps is psj , and since ps is a prototype, it is equal to one of the observations, so psj = xij for
some i. Note that there may exist more than one prototype per subspace cluster; in this case one is
arbitrarily chosen. Intuitively, the prototype is the “quintessential” observation that best represents
the subspace cluster.

Subspace feature indicator ωs: Intuitively, ωs ‘turns on’ the features that are important in character-
izing subspace cluster s and choosing the prototype, ps. Here ωs ∈ {0, 1}P is an indicator variable
that is 1 on the subset of features that maximizes p(ωs|ps, z,x), where the probability for ωs is
defined below. Here ωs is a binary vector of size P , where each element is an indicator for whether
feature j belongs to subspace s.

The generative process for the Latent Case Model (LCM) is as follows. First, we start by generating
the subspace clusters. A subspace cluster can be fully described by three components 1) a prototype,
ps, which is generated by sampling uniformly over all observations, 1 . . . N ; 2) a feature indicator
vector, ωs, that indicates important features for that subspace cluster, where each element of the
feature indicator (ωsj) is generated according to a Bernoulli distribution with hyperparameter q; 3)
the distribution of feature outcomes for each feature, φs for subspace s that we now describe.

Distribution of feature outcomes φs for cluster s: Here φs is a data structure where each “row” φsj
is a discrete probability distribution of possible outcomes for feature j. Explicitly, φsj is a vector of
length Vj , where Vj is the number of possible outcomes of feature j. Let us define Θ to be a vector
of the possible outcomes of feature j (e.g., for feature ‘color’, Θ = [red, blue, yellow]), where Θv

represents a particular outcome for the feature (e.g., Θv = blue). We will generate φs so that it
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mostly takes outcomes from the prototype ps for the important dimensions of the subspace cluster.
We do this by considering the vector g, indexed by possible outcomes v, as follows:

gpsj ,ωsj ,λ(v) = λ(1 + c1[wsj=1 and psj=Θv ])

where c and λ are constant hyperparameters that indicate how much we will copy the prototype
in order to generate the observations. The distribution of feature outcomes will be determined by
g through φsj ∼ Dirichlet(gpsj ,ωsj ,λ). To explain at the intuitive level, start by considering the
irrelevant dimensions j in subspace s, which have wsj = 0. In that case, φsj will look like a
uniform distribution over all possible outcomes for features j; the feature values for the unimportant
dimensions are generated arbitrarily according to the prior. Now consider relevant dimensions where
wsj = 1. In that case, φsj will generally take on a larger value λ + c for the feature value that
prototype ps has on feature j, which is called Θv . All of the other possible outcomes are taken with
lower probability λ. This means we will be more likely to choose the outcome Θv that agrees with
the prototype ps.

In the extreme case where c is very large, we can think of copying the cluster’s prototype directly
within the cluster’s relevant subspace, and assigning the rest of the feature values randomly. An
observation is then a mix of different prototypes, where we take the important pieces of each pro-
totype. Specifically, we generate the observations as follows. For element j of observation i, we
select a cluster, according to its subspace cluster distribution πi. Here, πi is generated according to
a Dirichlet distribution, parameterized by hyperparameter α. From there, to obtain the cluster index
zij for each xij , we sample from a multinomial distribution with parameters πi. Finally, each fea-
ture for an observation, xij is sampled from the feature distribution of the assigned subspace cluster
(φzij

). Note that this part of our model is the standard mixture model formulation. LDA also starts
with a standard mixture model, though our feature values lie in a discrete set that is not necessarily
binary. Here is the full model, with hyper parameters c, λ, q, and α:

ωsj ∼ Bernoulli(q) ∀s, j ps ∼ Uniform(1, N) ∀s
φsj ∼ Dirichlet(gpsj ,ωsj ,λ) ∀s, j where gpsj ,ωsj ,λ(v) = λ(1 + c1[wsj=1 and psj=Θv])

πi ∼ Dirichlet(α) ∀i zij ∼ Multinomial(πi) ∀i, j xij ∼ Multinomial(φzijj) ∀i, j.

Our model can be readily extended to different similarity measures, such as standard kernel methods
or domain specific similarity measures, by modifying the function g. For example, we can use the
least squares loss i.e., for fixed threshold ε, gpsj ,ωsj ,λ(v) = λ(1 + c1[wsj=1 and (psj−Θv)2≤ε]), or
more generally, gpsj ,ωsj ,λ(v) = λ(1 + c1[wsj=1 and `(psj ,Θv)≤ε]).

In terms of setting hyperparameters, there are natural settings for alpha (all entries being 1). This
means there are three real-valued parameters to set, which can be set through cross validation, an-
other layer of hierarchy with more diffuse hyperparameters, or plain intuition.

3.1 Motivating example

This section provides an illustrative example for prototypes, subspace feature indicator and subspace
clusters using a dataset composed of a mixture of smiley faces. The feature set for the smiley face is
composed of eyes and mouth types, shape and color. For the purpose of this example, assume that
the ground truth is that there are three clusters, each of which has two features that are important for
defining the cluster. In Table 1, we show the first cluster, whose subspace is defined by color (green)
and shape (square) of the face, and the rest of the features are not important for defining the cluster.
For the second cluster, color (orange) and eye shape define the subspace. We generated 240 smiley
faces from LCM’s prior with α = 0.1 for all entries, and q = 0.5, λ = 2 and c = 50.

We explain the way LCM works by contrasting it with Latent Dirichlet Allocation (LDA) [7], which
presents its output in very different form. Table 1 shows the representation of clusters in LDA
(middle column) and LCM (right column). This dataset is particularly simple, and we chose this
comparison because the two most important features that both LDA and LCM learn are identical
for each cluster; however, LDA does not learn prototypes and represents information differently.
To convey cluster information using LDA (to define a topic), we need to record several probability
distributions - one for each feature. For LCM, we need only to record a prototype (e.g., the green
face in the top row, right column of the figure), and state which features were important for the clus-
ter’s subspace (e.g., shape and color). For this reason, LCM is more succinct than LDA with what
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Data in assigned to cluster LDA LCM
Top 3 words and probabilities Prototype Subspaces

1 shape and
color are
important.

0.26 0.23 0.12

2 color and
eye are
important.

0.26 0.24 0.16

3 eye and
mouth are
important.

0.35 0.27 0.15

Table 1: Mixture of smiley faces for LDA and LCM

information needs to be recorded to define the clusters. One could define a “special” constrained
version of LDA whose topics all have uniform weights over a subset of features, and whose “word”
distributions are centered around a particular value; this would require a similar amount of memory,
however it loses information with respect to fact that LCM carries a full prototype with it for each
cluster.

A major benefit of LCM over LDA is that the “words” in each topic (the choice of feature values)
are coupled, and are not assumed to be independent; correlations can be controlled depending on the
choice of parameters. The independence assumption of LDA can be very strong, and possibly crip-
pling for many important applications; following our example of images, one could easily generate
an image with eyes and a nose that are physically not possible to occur in the same person (perhaps
overlapping). LCM can also generate this, but it would be very unlikely, as it would generally prefer
to copy the important features from a prototype.

LCM performs joint inference on prototypes, subspace feature indicators and cluster labels for obser-
vations. This encourages the inference step to achieve solutions where clusters are better represented
by prototypes. We will show that this has a benefit in terms of predictive accuracy in Section 4.1. We
also show that LCM’s succinct representation is very effective in communicating the characteristics
of clusters through a human subject experiment in Section 4.3

3.2 Inference: collapsed Gibbs sampling

We use collapsed Gibbs sampling to perform inference, as this has been observed to converge
quickly, particularly in LDA mixture models [17]. We sample ωsj and zij , and ps, where φ and
π are integrated out. Note that we can always recover φ by simply counting the number of feature
values that are assigned to each subspace.

Integrating out φ and π gives the following expression for sampling zij .

p(zij = s|zi¬j , x, p, ω, α, λ) ∝ α/S + n(s,i,¬j,·)
α+ n

× g(psj , ωsj , λ) + n(s,·,j,xij)∑
s g(psj , ωsj , λ) + n(s,·,j·)

, (1)

where n(s,i,j,v) = 1(zij = s, xij = v). In other words, if the observation xij takes feature value v
for feature j and is assigned to subspace cluster s, then n(s,i,j,v) = 1, and 0 otherwise. n(s,·,j,v) is
the number of times that the jth feature of an observation takes feature value v and that observation
is assigned to subspace cluster s (i.e., n(s,·,j,v) =

∑
i 1(zij = s, xij = v)). We use n(s,i,¬j,v) to

denote a count that does not include the feature j. The derivation follows the standard collapsed
Gibbs sampling for LDA mixture models [17].
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Similarly, intreating out φ gives the following expression for sampling ωsj .

p(ωsj = b|q, psj , λ, φ, x, z, α) ∝


q × B(g(psj , 1, λ) + n(s,·,j,·))

B(g(psj , 1, λ))
b = 1

1− q × B(g(psj , 0, λ) + n(s,·,j,·))
B(g(psj , 0, λ))

b = 0
(2)

where B is the Beta function, and comes from integrating out φ variables, which are sampled from
Dirichlet distributions.

4 Results

In this section we show that LCM produces comparable or better prediction accuracy than LDA
for standard datasets. Next, we visually illustrate that the learned prototypes and subspaces present
as meaningful feedback for characterizing the important aspects of the dataset. Finally, we verify
through human subject experiments the benefit of LCM using a task requiring an understanding of
clusters within a dataset. We show statistically significant improvements in objective measures of
task performance using prototypes produced by LCM, compared to output of LDA.

4.1 LCM maintains prediction accuracy.
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Figure 2: Prediction accuracy reported for the Handwritten Digit and 20 Newsgroups datasets. (a)
and (b) apply SVM for both LDA and LCM. (c) presents the unsupervised accuracy for LCM and (d)
presents the sensitivity analysis for hyperparameters. Datasets were produced by randomly sampling
10 to 70 observations of each digit for the Handwritten Digit dataset, and 100 - 450 documents per
document class for the 20 Newsgrouops dataset. The Handwritten Digit pixel values (range from 0
to 255) were rescaled into 7 bins (range from 0 to 6). Each 16 by 16 pixel picture was represented as
a 1D vector of pixels vaues with length 256. Both LCM and LDA were randomly initialized with the
same seed (half the labels were incorrect and randomly mixed), Number of iterations was set at 1000.
S = 4 for 20 Newsgroups and S = 10 for Handwritten Digit. α = 0.01, λ = 2, c = 50, q = 0.8.

We show that the LCM output produces comparable or better prediction accuracy than LDA, which
uses the same mixture model (Section 3) to learn the underlying structure but does not learn expla-
nations (i.e., prototypes and subspaces). We validate this for two standard datasets, Handwritten
Digit [20] and 20 Newsgroups [25] datasets. We use the implementation of LDA available from
[33], which uses the same inference technique (Gibbs sampling) as LCM.

Figure 2a and 2b show the ratio of correctly assigned cluster labels for LCM and LDA. Here the
learned cluster labels (z) are provided as a set of features to support vector machine (SVM), as
is often done in LDA literature for clustering [7]. The improved accuracy of LCM over LDA, as
depicted in the figures, is explained in part that LCM captures the dependencies among features
via prototypes, as described in Section 3. We also note that prediction accuracy using the full 20
Newsgroups dataset acquired by LDA (accuracy: 0.68± 0.01) matches that reported previously for
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(a) Handwritten digit dataset

Recipe
title
keyword

Prototype
(Recipe
names)

Ingredients ( Subspaces )

Pasta Herbs and
Tomato in
Pasta

pasta , salt, basil, pepper , ital-

ian seasoning, tomato , basil,
oil , garlic

Chili Generic
chili
recipe

beer , chili powder , tomato
oil, garlic, meat, onion, cumin,
salt, pepper

Brownies Microwave
brownies

baking powder , brown sugar,

chocolate vanilla, salt, eggs, but-
ter, flour, chopped pecans

Punch Spiced-
punch

lemon juice , orange juice ,

pineapple juice , water, sugar,
cinnamon stick, whole cloves

(b) Recipe dataset

Figure 3: Learned prototypes and subspaces for the Handwritten Digit and Recipe datasets.

this dataset using a combined LDA and SVM approach [40], and that results for LDA on the full
Handwritten Digit dataset (accuracy: 0.76 ± 0.017) is comparable to that produced by LCM with
the subsampled dataset (70 samples per digit, accuracy: 0.77 ± 0.03).

Figure 2c shows the unsupervised clustering accuracy for LCM (no SVM). We can compute this
measure for LCM because each cluster is characterized by a prototype, which is a particular data
point that has a label in the given datasets. Note that this is not possible to do for LDA. We assume
that all data points assigned to a cluster have the same label as cluster’s prototype. We also provide
sensitivity analysis on the set of hyperparameters introduced to learn prototypes and subspaces (i.e.,
q, λ and c) in Figure 2d.

4.2 Learning subspaces

Figure 3a visually illustrates the learned prototypes and subspaces as a function of sampling it-
erations for the Handwritten Digit dataset. Figure 3b shows sets of ingredients learned as proto-
types and subspaces for a standard dataset of cooking recipes 1. One can see that the output of
the LCM presents as meaningful feedback for characterizing the important aspects of the dataset.
For example, in handwritten digit dataset, the subspaces learn the pixels that define the digit in the
corresponding prototype.

Due to random initialization, early iterations in learning the subspaces first identify features that are
common to observations randomly initialized in that subspace cluster. This is because ωs assigns
higher likelihood to features that are most common across observations within that cluster. For
example, most of digits ‘agree’ (i.e., have the same zero pixel value) near the borders, thus these are
the first areas that are refined as shown in Figure 3a. The sparsity of the subspaces can be customized
by the hyperparameter q.

Note that LCM makes mistakes that are similar those reported using LDA for the Handwritten Digit
dataset [4]. For example, the digits 3 and 5 (shown in the third row in Figure 3a) are usually assigned
to the same subspace cluster, as they share many pixel values in similar locations. This effect is
amplified since we represent digits as a flattened-out 1D vector rather than a 2D array. Performance
can be improved using more sophisticated features (e.g.,[18], [15] and [28]).

4.3 Verifying interpretability of LCM

Finally, we verified the benefit of LCM through human subject experiments using an experiment
task that required an understanding of clusters within a dataset. The task required each participant
to assign 16 recipes (described by a set of ingredients required to cook the recipe; recipe names and
instructions were withheld) to one of a set of 4-6 cluster representations. This experiment approach
is similar to those used previously to measure comprehensibility [21]. We chose a recipe data for

1Available for computer cooking contest: http://liris.cnrs.fr/ccc/ccc2014/
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Figure 4: Web-interface for human subject experiment

this task, as it required clusters to be well-explained for subjects to perform classifications, but did
not require special expertise or training.

Our experiment used a within-subjects design, allowing for more powerful statistical testing and
to mitigate the effects of inter-participant variability. To account for possible learning effects, we
blocked the LCM and LDA questions and balanced the assignment of participants into the two
ordering groups. Half the subjects saw all 8 LCM questions first, the other half saw the 8 LDA
questions first. Twenty-four participants (10 female, 14 males, average age 27) performed the task,
answering a total of 384 questions. Subjects were encouraged to answer the questions as quickly and
accurately as possible, and were forced to take five second break in every four questions to mitigate
fatigue effects.

Cluster representations (i.e. explanations) from LDA were presented as the set of top ingredients
for each recipe topic cluster. LCM simply presented the prototype of each cluster. For fairness,
the number of top ingredients presented from LDA was set as the number of ingredients from the
corresponding LCM prototype. Also, LCM subspaces were not presented to participants in this
experiment. We ran Gibbs sampling for LDA with different initializations until the ground truth
clusters were visually identifiable.

Using explanations from LCM, the average accuracy of classification is 85.9%, which was sta-
tistically significantly higher (c2(1, N = 24) = 12.15, p << 0.001) than that of LDA, 71.3%.
For both LDA and LCM, the each ground truth label was manually coded by two domain experts,
the first author and one independent analyst (kappa coefficient: 1). Note that these manually pro-
duced ground truth labels were identical to the labels that LDA and LCM predicted for each recipe.
There was no statistically significant different in time spent on each questions with LDA and LCM
(t(24) = 0.89, p = 0.37) — the overall average was 32 seconds per question, with 3% more time on
LCM than on LDA. Subjective evaluation using Likert-style questionnaires produced no statistically
significant differences in reported preferences for LDA versus LCM.

The experiment demonstrated that prototypes better supported participants in correctly performing
the classification task. Interesting, participants appeared to not have insight into their superior per-
formance using output of LCM versus LDA.
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