
MIT Open Access Articles

Lightweight Email Signatures (Extended Abstract)

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Adida, Ben, David Chau, Susan Hohenberger, and Ronald L. Rivest. "Lightweight Email
Signatures (Extended Abstract)." R. De Prisco and M. Yung (Eds.). Security and Cryptography
for Networks: 5th International Conference, SCN 2006, Maiori, Italy, September 6-8, 2006.
Proceedings. (Lecture Notes in Computer Science ; Volume 4116), 2006, pp 288-302. © Springer
2006.

As Published: http://dx.doi.org/10.1007/11832072_20

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/87551

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/87551

Lightweight Email Signatures
(Extended Abstract)

Ben Adida1, David Chau1, Susan Hohenberger2,�, and Ronald L. Rivest1

1 CSAIL, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 IBM Research, Zurich Research Laboratory, CH-8803 Rüschlikon

Abstract. We present Lightweight Email Signatures (LES), a simple
cryptographic architecture for authenticating email. LES is an extension
of DKIM, the recent IETF effort to standardize domain-based email
signatures. LES shares DKIM’s ease of deployment: they both use the
DNS to distribute a single public key for each domain. Importantly, LES
supports common uses of email that DKIM jeopardizes: multiple email
personalities, firewalled ISPs, incoming-only email forwarding services,
and other common uses that often require sending email via a third-
party SMTP server. In addition, LES does not require DKIM’s implied
intra-domain mechanism for authenticating users when they send email.

LES provides these features using identity-based signatures. Each do-
main authority generates a master keypair, publishes the public com-
ponent in the DNS, and stores the private component securely. Using
this private component, the authority delivers to each of its users, via
email, an individual secret key whose identity string corresponds to the
user’s email address. A sender then signs messages using this individual
secret key. A recipient verifies such a signature by querying the appropri-
ate master public key from the DNS, computing the sender’s public key,
and verifying the signature accordingly. As an added bonus, the wide-
spread availability of user-level public keys enables deniable authentica-
tion, such as ring signatures. Thus, LES provides email authentication
with optional repudiability.

We built a LES prototype to determine its practicality. Basic user tests
show that the system is relatively easy to use, and that cryptographic
performance, even when using deniable authentication, is well within
acceptable range.

1 Introduction

1.1 The State of Email and DKIM

Email has become a highly polluted medium. More than 75% of email volume is
spam [27], and phishing attacks – spoofed emails that trick users into revealing
private information – are on the rise, both in volume [3] and sophistication [20].
Email users are repeatedly warned that an email’s From: field cannot be trusted
[35], and that links distributed by email should not be followed [2,29]. Still, studies
show that users remain highly vulnerable, even to low-tech phishing attempts [11].
� Research performed while at the Massachusetts Institute of Technology.

R. De Prisco and M. Yung (Eds.): SCN 2006, LNCS 4116, pp. 288–302, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Lightweight Email Signatures 289

Domain Keys & Identified Mail (DKIM) is a promising proposal for providing
a foundation to solve the phishing problem: domains are made cryptographically
responsible for the email they send. Roughly, bob@foo.com sends emails via
outgoing.foo.com, which properly identifies Bob and signs the email content.
The public key is distributed via a DNS TXT record for domainkeys.foo.com.
The details of how DKIM should handle mailing lists, message canonicalization,
message forwarding, and other thorny issues, are being resolved in the context
of a recently-formed IETF Working Group [18].

1.2 Lightweight Email Signatures

We propose Lightweight Email Signatures, abbreviated LES, as an extension to
DKIM. We show how LES preserves all of the major architectural advantages of
DKIM, while offering three significant improvements:

1. Automatic Intra-Domain Authentication: DKIM assumes that server
outgoing.foo.com can tell its users bob@foo.com and carol@foo.comapart,
which is not a safe assumption in a number of settings – e.g. university cam-
puses or ISPs that authenticate only the sending IP address. By contrast, LES
authenticates users without requiring additional authentication infrastruc-
ture within foo.com.

2. Flexible Use of Email (Better End-to-End): LES allows Bob to send
email via any outgoing mail server, not just the official outgoing.foo.com
mandated by DKIM. This is particularly important when supporting ex-
isting use cases. Bob may want to alternate between using bob@foo.com
and bob@bar.com, while his ISP might only allow SMTP connections to its
outgoing mail server outgoing.isp.com. Bob may also use his university’s
alumni forwarding services to send email from bob@alum.univ.edu, though
his university might not provide outgoing mail service.

3. A Privacy Option: LES enables the use of repudiable signatures to help
protect users’ privacy. Bellovin [6] and other security experts [32,7] warn
that digitally signed emails entail serious privacy consequences. We believe
the option for repudiable signatures can alleviate these concerns.

In a nutshell, LES provides more implementation flexibility for each participating
domain – in particular flexibility that addresses existing legitimate uses of email
–, without complicating the domain’s public interface. A LES domain exposes
a single public key in the DNS, just like DKIM. A LES domain can implement
DKIM-style, server-based signatures and verifications, or user-based signatures
and verifications where each user has her own signing key.

1.3 The LES Architecture

We now describe the LES architecture as diagrammed in figure 1.

The DKIM Baseline. A LES-signed email contains an extra SMTP header,
X-LES-Signature, which encodes a signature of a canonicalized version of the

290 B. Adida et al.

Wonderland.com
Network

wonderland.com

key server

PUBLISH

DNS

wonderland.com

foo.com

foo.com
Network

foo.com

key server

PUBLISH

Bob

MPKfoo

Alice

SKA

From: Alice
To: Bob
Subject: Coffee

Let's meet up for
coffee tomorrow?

Signed:

Alice or Bob

MPKfoo

1

2

3

4

1

5

6

7

"bob@foo.com"
PKB

PKA

8

9

“alice@wonderland.com”

MPKwonderland

MPKwonderland

Fig. 1. LES: (1) The domain keyservers for Alice and Bob publish their MPKs in
the DNS (2) Alice’s domain sends Alice her secret key SKA, via email (3) Alice ob-
tains the MPK for Bob’s domain, foo.com (4) Alice computes Bob’s public key PKB

(5) Alice signs her email with a ring signature and sends it to Bob (6) Bob obtains
the MPK for Alice’s domain, from the DNS (7) Bob extracts the From: field value,
alice@wonderland.com, from the email (8) Bob computes Alice’s public key PKA, us-
ing the claimed identity string “alice@wonderland.com” (9) Bob verifies the signature
against the message and PKA

message. We leave to the DKIM Working Group the details of this canonical-
ization – which includes the From: field, the subject and body of the message,
and a timestamp –, as they do not impact the specifics of LES. Verification of
a LES-signed email is also quite similar to the DKIM solution: the recipient re-
trieves the sender domain’s public key from a specially crafted DNS record, and
uses it to verify the claimed signature on the canonicalized message.

Limitations of DKIM. A DKIM domain uses a single key to sign all of its
emails. This simple architecture is what makes DKIM so appealing and easy
to deploy. Not surprisingly, it is also the source of DKIM’s limitations: users
must send email via their approved outgoing mail server, and this outgoing mail
server must have some internal method of robustly distinguishing one user from
another to prevent bob@foo.com from spoofing carol@foo.com. LES aims to
overcome these limitations while retaining DKIM’s deployment simplicity.

User Secret Keys with Identity-Based Signatures. LES assigns an indi-
vidual secret key to each user, so that bob@foo.com can sign his own emails. This

Lightweight Email Signatures 291

means Bob can use any outgoing server he chooses, and outgoing.foo.com does
not need to authenticate individual users (though it may, of course, continue to
use any mechanism it chooses to curb abusive mail relaying.)

To maintain a single domain-level key in the DNS, LES uses identity-based sig-
natures, a type of scheme first conceptualized and implemented in 1984 by Shamir
[36]. A LES domain publishes (in the DNS) a master public key MPK and retains
the counterpart master secret key MSK. Bob’s public key, PKBob, can be com-
puted using MPK and an identification string for Bob, usually his email address
“bob@foo.com”. The corresponding secret key, SKBob, is computed by Bob’s do-
main using MSK and the same identification string. Note that, contrary to certain
widespread misconceptions, identity-based signatures are well tested and efficient.
Shamir and Guillou-Quisquater signatures, for example, rely on the widely-used
RSA assumption and are roughly as efficient as normal RSA signatures.

One might argue that a typical hierarchical certificate mechanism, where the
domain certifies user-generated keypairs, would be just as appropriate here.
There are some problems with this approach. First, a user’s public-key certifi-
cate would need to be sent along with every signed message and would require
verifying a chain of two signatures, where the identity-based solution requires
only one signature and one verification operation. Second, with user-generated
keypairs, it is much more difficult to use ring signatures (or any of the known
deniable authentication methods) between a sender and a receiver who has not
yet generated his public key. The identity-based solution ensures the availability
of any user’s public key.

Distributing User Secret Keys via Email. LES delivers the secret key
SKBob by sending it via email to bob@foo.com [14], using SMTP/TLS [17] where
available. Thus, quite naturally, only someone with the credentials to read Bob’s
email can send signed emails with bob@foo.com as From address. Most impor-
tantly, as every domain already has some mechanism for authenticating access
to incoming email inboxes, this secret-key delivery mechanism requires no addi-
tional infrastructure or protocol.

Privacy with Deniable Signatures. Privacy advocates have long noted that
digital signatures present a double-edged sword [6,32,7]: signatures may make
a private conversation publicly-verifiable. The LES framework supports many
forms of deniable authentication [8] through its use of identity-based keys: Alice
can create a deniable signature using her secret key SKAlice and Bob’s public
key PKBob. Only Bob can meaningfully verify such a signature. We note that
this approach does not provide anonymity beyond that of a normal, unsigned
email. However, unlike DKIM and other signature proposals, LES does not make
the signature publicly-verifiable: only the email recipient will be convinced.

1.4 A Prototype Implementation

To determine the practical feasibility of deploying LES, we built a basic proto-
type, including a key server and a plugin to the Apple Mail client. We deployed
a real MPK in the DNS for csail.mit.edu, using the Guillou-Quisquater

292 B. Adida et al.

identity-based scheme [15] for its simplicity, and ring signatures for deniabil-
ity. We then conducted a small test with nine users. Though our test was too
small to provide complete, statistically significant usability results, we note that
most participants were able to quickly install and use the plugin with no user-
noticeable effect on performance.

Detailed performance numbers, in section 6, show that basic ring signature
and verification operations perform well within acceptable limits – under 40ms on
an average desktop computer –, even before serious cryptographic optimizations.
A small keyserver can easily compute and distribute keys for more than 50,000
users, even when configured to renew keys on a daily basis.

The complete prototype’s source code is available for download at
http://crypto.csail.mit.edu/projects/antiphishing/.

1.5 Previous and Related Work

The email authentication problem has motivated a large number of proposed
solutions. End-to-end digital signatures for email have repeatedly been proposed
[4,39] as a mechanism for making email more trustworthy and thereby preventing
spoofing attacks such as phishing. One proposal suggests labeling email content
and digitally signing the label [16]. Apart from DKIM, all of these past proposals
require some form of Public-Key Infrastructure, e.g. X.509 [13], although the idea
of using the DNS for identity-based master key distribution has appeared once
before in the context of email encryption and IPSEC [37]. Alternatively, path-
based verification has been proposed in a plethora of initiatives. Those which
rely on DNS-based verification of host IP addresses were reviewed by the IETF
MARID working group [19,24,23]. The latest proposal in this line of work is
SIDF [30].

A number of spam-related solutions have been suggested to fight phishing.
Blacklists of phishing mail servers are sometimes used [38,25], as is content filter-
ing, where statistical machine learning methods are used to detect likely attacks
[34,26,28]. Collaborative methods [12] that enable users to help one another have
also been proposed. LES can help complement these approaches.

1.6 This Paper

In section 2, we review the necessary cryptographic and systems building blocks.
In section 3, we detail the LES system based on these building blocks, specifically
the identity-based key distribution infrastructure and the repudiability option.
We then briefly explore the issue of technology adoption in section 4, discuss the
threats model for LES in section 5, and describe our prototype and performance
results in section 6. More detailed comments on these three issues appear in the
appendix. Finally, we conclude in section 7.

2 Cryptographic and System Preliminaries

We now review and present new extensions to cryptographic and system building
blocks involved in LES.

http://crypto.csail.mit.edu/projects/antiphishing/

Lightweight Email Signatures 293

2.1 Identity-Based Signatures

In 1984, Shamir proposed the concept of identity-based signatures (IBS) [36].
Since then over a dozen schemes have been realized based on factoring, RSA,
discrete logarithm, and pairings. (See [5] for an overview, plus a few more in
[1].) Most IBS signatures can be computed roughly as fast as RSA signatures,
and those based on pairings can be 200 bits long for the equivalent security of a
1024 bit RSA signature.

IBS schemes were introduced to help simplify the key management problem.
Here, a single master authority publishes a master public key MPK and stores
the corresponding master secret key MSK. Users are identified by a character
string id string, which is typically the user’s email address. A user’s public key
PK can be publicly computed from MPK and id string , while a user’s secret
key SK is computed by the master authority using MSK and the same id string ,
then delivered to the user.

2.2 Ring Signatures from Any Keypairs

Ring signatures [9,33] allow an individual to sign on behalf of a group of indi-
viduals without requiring any prior group setup or coordination. Although rings
can be of any size, consider the two party case. Suppose Alice and Bob have
keypairs (PKAlice, SKAlice) and (PKBob, SKBob) respectively. Alice can sign on
behalf of the group “Alice or Bob” using her secret key SKAlice and Bob’s public
key PKBob. Anyone can verify this signature using both of their public keys. We
require the property of signer-ambiguity [1]; that is, even if Alice and Bob reveal
their secret keys, no one can distinguish the actual signer.

In the full version of this paper, we describe a compiler for creating signer-
ambiguous ring signatures using keypairs of almost any type. That is, Alice may
have a PGP RSA-based keypair and Bob may have a pairing-based identity-
based keypair, yet Alice can still create a ring signature from these keys! For
our purposes here, it does not matter how this compiler works. It is enough to
know that: (1) the security of the resulting ring signature is equivalent to the
security of the weakest scheme involved, and (2) the time to sign (or verify) a
ring signature produced by our compiler is roughly the sum of the time to sign
(or verify) individually for each key involved, plus an additional hash. See [1] for
the technical details.

Using ring signatures for deniable authentication is not a new concept [33,7].
The idea is that, if Bob receives an email signed by “Alice or Bob,” he knows
Alice must have created it. However, Bob cannot prove this fact to anyone, since
he could have created the signature himself. In section 3.4, we describe how ring
signatures are used to protect a user’s privacy in LES.

2.3 Email Secret-Key Distribution

Web password reminders, mailing list subscription confirmations, and e-commerce
notifications all use email as a semi-trusted messaging mechanism. This approach,
called Email-Based Identity and Authentication [14], delivers semi-sensitive data

294 B. Adida et al.

to a user by simply sending the user an email. The user gains access to this data
by authenticating to his incoming mail server in the usual way, via account login
to an access-controlled filesystem, webmail, POP3 [31], or IMAP4 [10]. For added
security, one can use SMTP/TLS [17] for the transmission.

3 Lightweight Email Signatures

We now present the complete design of LES, as previously illustrated in Figure 1.

3.1 Email Domain Setup

Each email domain is responsible for establishing the cryptographic keys to au-
thenticate the email of its users. The setup procedure for that master authority
run by wonderland.com is defined as follows:

1. select one of the identity-based signatures (IBS) discussed in section 2.1.
(For our section 6 experiment, we chose the RSA-based Guillou-Quisquater
IBS [15] because of its speed and simplicity.)

2. generate a master keypair (MPKwonderland, MSKwonderland) for this scheme.
3. define key issuance policy Policy , which defines if and how emails from this

domain should be signed. (Details of this policy are defined in the full version
of this paper.)

4. publish MPKwonderland and Policy in the DNS as defined by the DKIM
specifications.

3.2 User Identities

Per the identity-based construction, a user’s public key PK can be derived from
any character string id string that represents the user’s identity. We propose a
standard format for id string.

Master Domain. In most cases, bob@foo.com obtains a secret key derived
from a master keypair whose public component is found in the DNS record for
the expected domain, foo.com. However, in cases related to bootstrapping (see
section 4), Bob might obtain a secret key from a domain other than foo.com.

For this purpose, we build a issuing domain parameter into the user identity
character string. Note that foo.com should always refuse to issue secret keys for
identity strings whose issuing domain is not foo.com. However, foo.com may
choose to issue a key for alice@wonderland.com, as long as the issuing domain
within the identity string is foo.com. We provide a clarifying example shortly.

Key Types. The LES infrastructure may be expanded to other applications in
the future, such as encryption. To ensure that a key is used only for its intended
purpose, we include type information in id string. Consider type, a character
string composed only of lowercase ASCII characters. This type becomes part of
the overall identity string. For the purposes of our application, we define a single
type: lightsig.

Lightweight Email Signatures 295

Key Expiration. In order to provide key revocation capabilities, the user iden-
tity string includes expiration information. Specifically, id string includes the
last date on which the key is valid: expiration date, a character string formatted
according to ISO-8601, which include an indication for the timezone. For now,
we default to UTC for timezone disambiguation.

Constructing Identity Character Strings. An id string is thus constructed
as: 〈issuing domain〉, 〈email 〉, 〈expiration date〉, 〈type〉. For example, a 2006 LES
identity string for email address bob@foo.com would be: foo.com,bob@foo.com,
2006-12-31,lightsig.

If Bob obtains his secret key from a master authority different than his do-
main, e.g. lightsig.org, his public key would necessarily be derived from a
different id string: lightsig.org,bob@foo.com,2006-12-31,lightsig. Here
lightsig.org happily issues a secret key for Bob, even though his email ad-
dress is not within the lightsig.org domain. This is legitimate, as long as the
issuing domain in the id string matches the issuing keyserver.

3.3 Delivering User Secret Keys

Each domain keyserver will choose its own interval for regular user secret key
issuance, possibly daily, weekly or monthly. These secret keys are delivered by
email, with a well-defined format – e.g. XML with base64-encoded key, including
a special mail header – that the mail client will recognize. The most recent key-
delivery email is kept in the user’s inbox for all mail clients to access, in case the
user checks his email from different computers. The mail client may check the
correctness of the secret key it receives against its domain’s master public key,
either using an algorithm specific to the chosen IBS scheme (most schemes have
such an algorithm), or by attempting to sign a few messages with the new key
and then verifying those results. (For more details, see section 2.3.)

3.4 The Repudiability Option

The downside of signing email is that it makes a large portion of digital com-
munication undeniable [6,32,7]. An off-the-record opinion confided over email
to a once-trusted friend may turn into a publicly verifiable message on a blog!
We believe that repudiable signatures should be the default to protect a user’s
privacy as much as possible, and that non-repudiable signatures should be an
option for the user to choose.

Numerous approaches exist for realizing repudiable authentication: designated-
verifier signatures [21], chameleon signatures [22], ring signatures [33], and more
(see [8] for an overview of deniable authentication with RSA). In theory, any of
these approaches can be used. We chose the ring signature approach for two rea-
sons: (1) it fits seamlessly into our identity-based framework without creating new
key management problems, and (2) our ring signature compiler can create ring
signatures using keys from different schemes, as discussed in section 2.2. Thus, no
domain is obligated to use a single (perhaps patented) IBS scheme.

296 B. Adida et al.

Let us explore why ring signatures are an ideal choice for adding repudiability
to LES. Most repudiation options require the sender to know something about
the recipient; in ring signatures, the sender need only know the receiver’s public
key. In an identity-based setting, the sender Alice can easily derive Bob’s public
key using the MPKfoo.com for foo.com in the DNS and Bob’s id string . Setting
the issuing domain to foo.com, the type to lightsig, and the email field to
bob@foo.com for Bob’s id string is straight-forward. For expiration date, Alice
simply selects the current date. We then require that domains be willing to
distribute back-dated secret keys (to match the incoming public key) on request
to any of their members. Few users will take this opportunity, but the fact that
they could yields repudiability. Such requests for back-dated keys can simply be
handled by signed email to the keyserver.

This “Alice or Bob” authentication is valid: if Bob is confident that he did
not create it, then Alice must have. However, this signature is also repudiable,
because Bob cannot convince a third party that he did not, in fact, create it. In
the full version of this paper, we discuss what Alice should do if foo.com does
not yet support LES, and in section 4, we discuss methods for achieving more
repudiability.

3.5 Signing and Verifying Messages

Consider Alice, alice@wonderland.com, and Bob, bob@foo.com. On 2006-09-06,
Alice wants to send an email to Bob with subject 〈subject〉 and body 〈body〉.
When Alice clicks “send,” her email client performs the following actions:

1. prepare a message M to sign, using the DKIM canonicalization (which in-
cludes the From:, To:, and Subject: fields, as well as a timestamp and the
message body).

2. if Alice desires repudiability, she needs to obtain Bob’s public key:
(a) obtain MPKfoo.com, the master public key for Bob’s domain foo.com,

using DNS lookup.
(b) assemble id stringBob, an identity string for Bob using 2006-09-06 as the

expiration date: foo.com,bob@foo.com,2006-09-06,lightsig
(c) compute PKBob from MPKfoo.com and id stringBob. (We assume that

PKBob contains a cryptosystem identifier, which determines which IBS
algorithm is used here.)

3. sign the message M using SKAlice, MPKwonderland.com. Optionally, for repu-
diability, also use PKBob and MPKfoo.com with the section 2.2 compiler. The
computed signature is σ.

4. using the DKIM format for SMTP header signatures, add X-LES-Signature
containing σ, id stringAlice, and id stringBob.

Upon receipt, Bob needs to verify the signature:

1. obtain the sender’s email address, alice@wonderland.com, and the corre-
sponding domain name, wonderland.com, from the email’s From field.

2. obtain MPKwonderland.com, using DNS lookup (as specified by DKIM).

Lightweight Email Signatures 297

3. ensure that PKAlice is correctly computed from the claimed id stringAlice
and corresponding issuing domain MPKwonderland.com, and that this id string
is properly formed (includes Alice’s email address exactly as indicated in the
From field, a valid expiration date, a valid type).

4. recreate the canonical message M that was signed, using the declared From,
To, and Subject fields, the email body, and the timestamp.

5. If Alice applied an ordinary, non-repudiable signature, verify M, σ, PKAlice,
MPKwonderland.com to check that Alice’s signature is valid.

6. If Alice applied a repudiable signature, Bob must check that this signature
verifies against both Alice’s and his own public key following the proper ring
verification algorithm [1]:
(a) ensure that PKBob is correctly computed from the claimed id stringBob

and the DNS-advertised MPKfoo.com, and that this id string is properly
formed (includes Bob’s email address, a valid expiration date and type).

(b) verify M, σ, PKAlice, MPKwonderland.com, PKBob, MPKfoo.com to check
that this is a valid ring signature for “Alice or Bob.”

If all verifications succeed, Bob can be certain that this message came from
someone who is authorized to use the address alice@wonderland.com. If the
wonderland.com keyserver is behaving correctly, that person is Alice.

3.6 LES vs. Other Approaches

The LES architecture provides a number of benefits over alternative approaches
to email authentication. We consider three main competitors: SIDF [30] and
similar path-based verification mechanisms, S/MIME [40] and similar certificate-
based signature schemes, and DKIM, the system upon which LES improves. A
comparison chart is provided in table 1, with detailed explanations as follows:

Table 1. LES compared to other approaches for authenticating email. ‡: PGP and
S/MIME can be adjusted to issue keys from the server, somewhat improving scalability.

Property SIDF S/MIME DKIM LES

Logistical Scalability No No‡ No Yes
Deployable with Client Update Only No Yes No Yes
Deployable with Server Update Only Yes No‡ Yes Yes
Support for Third-Party SMTP Servers No Yes No Yes
Easy Support for Privacy Yes No No Yes
Email Alias Forwarding No Yes Yes Yes
Support for Mailing Lists that Modify Content Good Poor Fair Fair

1. Logistical Scalability: When a large organization deploys and maintains
an architecture for signing emails, it must consider the logistics of such a
deployment, in particular how well the plan scales. With SIDF or DKIM,
domain administrators must maintain an inventory of outgoing mail servers
and ensure that each is properly configured. This includes having outgoing

298 B. Adida et al.

mail servers properly authenticate individual users to prevent intra-domain
spoofing. Meanwhile, with certificate-based signature schemes, domain ad-
ministrators must provide a mechanism to issue user certificates. By contrast,
LES does not require any management of outgoing mail servers or any addi-
tional authentication mechanism. LES only requires domains to keep track
of which internal email addresses are legitimate, a task that each domain
already performs when a user’s inbox is created. Thus, LES imposes only a
small logistical burden, while DKIM, SIDF, and S/MIME all require some
new logistical tasks and potentially new authentication mechanisms. Note
that it is technically possible to use PGP in a way similar to LES, with
email-delivered certificates, though the PGP keyserver then needs to keep
track of individual user keys where LES does not.

2. Deployment Flexibility: SIDF and DKIM can only be deployed via server-
side upgrades, which means individual users must wait for their domain to
adopt the technology before their emails become authentic. PGP can only be
deployed via client-side upgrades, though one should note that many clients
already have PGP or S/MIME support built in. LES can be implemented
either at the server, like DKIM, or at the client, like PGP.

3. Support for Third-Party SMTP Servers: SIDF and DKIM mandate
the use of pre-defined outgoing mail servers. A user connected via a strict
ISP may not be able to use all of his email personalities. Incoming-mail
forwarding services – e.g. alumni address forwarding – may not be usable if
they do not also provide outgoing mail service. PGP and LES, on the other
hand, provide true end-to-end functionality for the sender: each user has
a signing key and can send email via any outgoing mail server it chooses,
regardless of the From email address.

4. Privacy: LES takes special care to enable deniable authentication for pri-
vacy purposes. SIDF, since it does not provide a cryptographic signature, is
also privacy-preserving. DKIM and S/MIME provide non-repudiable signa-
tures which may adversely affect the nature of privacy in email conversations.
(Note that is is not valid to claim that DKIM signatures are repudiable be-
cause the server signs messages instead of the user; either the server is trust-
worthy or it isn’t.) Even a hypothetical LES-S/MIME hybrid, which might
use certificates in the place of identity-based signatures, would not provide
adequate privacy, as the recipient’s current public key would often not be
available to the sender without a PKI.

5. Various Features of Email: SIDF does not support simple email alias
forwarding, while S/MIME, DKIM, and LES all support it easily. SIDF
supports mailing lists and other mechanisms that modify the email body, as
long as mailing list servers support SIDF, too. On the other hand, S/MIME,
DKIM, and LES must specify precise behavior for mailing lists: if the content
or From address changes, then the mailing list must re-sign the email, and the
recipient must trust the mailing list authority to properly identify the original
author of the message. This is particularly difficult for S/MIME, which must
assume that the mailing list has an S/MIME identity, too, that recipients
trust (this is related to the PKI requirement of S/MIME-like solutions).

Lightweight Email Signatures 299

LES provides a combination of advantages that is difficult to obtain from other
approaches. Of course, these features come at a certain price: new security
threats. We explore these LES-specific threats in section 5.

4 Technology Adoption

The most challenging aspect of cryptographic solutions is their path to adoption
and deployment. The deployment features of LES resembles those of DKIM: each
domain can adopt it independently, and those who have not yet implemented it
will simply not notice the additional header information. Like DKIM, LES allows
each domain to express a DNS-based policy about its use of signatures, letting
certain high-risk organizations – e.g. financial institutions – simply declare that
all emails should be LES-signed, while other organizations – e.g. small ISPs –
may allow both signed and unsigned emails.

LES offers two distinct advantages over DKIM in technology adoption. LES
can be deployed either at the mail server or client without altering the DNS LES
record. LES can also be deployed using alternate domain authorities to let users
adopt LES individually before their email domain has adopted it. Once again,
this can be done without changes to the DNS records.

Details about these deployment extensions are in the full version of this pa-
per, including mechanisms for deployment of the repudiability option when the
recipient hasn’t yet deployed LES or when the recipient is a mailing list.

5 Threats

LES shares enough in architectural design with DKIM that both systems face
a number of common threats. For example, both solutions can be compromised
by DNS spoofing, domain key compromise, zombie user machines, and user con-
fusion. Fortunately, the unique properties of LES help to mitigate some DKIM-
specific threats, such as the ability to keep the domain secret key offline and
allowing for recovery from user key compromise without a DNS update.

Of course, the unique properties of LES also cause certain unique threats to
emerge, such as potentially increasing user confusion and allowing for new denial
of service attacks. We examine all these threats in detail in the full version.

6 Experimental Results

We implemented a complete LES environment using Guillou-Quisquater identity-
based signatures [15] based on the RSA assumption. Ring signatures were formed
using a CDS proof of partial knowledge construction [1]. Our implementation in-
cludes a web-based key distribution server and a plugin to the Apple Mail client
that implements key storage, message signing with repudiability, and signature
verification. We used Python for the server-side components, and Objective C
with the GNU Multi-Precision Library for the client-side Apple Mail plugin.

300 B. Adida et al.

Table 2. Performance estimates for an average of 1000 runs. Time is in milliseconds.
The sizes are in bytes and do not include encoding overhead. The symbol ∗ indicates
the number includes an estimated 50 bytes for the identity string of the user.

1024-bit modulus 2048-bit modulus
Operation Machine Time Size Time Size
Master Keypair Generation server 143 200 1440 300
User Secret Key Computation server 167 178∗ 1209 316∗

User Public Key Computation client 0.03 178∗ 0.03 316∗

Ring Signature of 100K msg client 37 575∗ 210 1134∗

Ring Verification of 100K msg client 37 N/A 211 N/A

For space reasons, the details of this implementation are provided in the full
versionof this paper with a summary here. Briefly, our implementation shows
that performance of the LES architecture is quite reasonable for transparent
deployment. A small server can manage keys for tens of thousands of users, and
the average desktop computer takes only 37ms to sign or verify a message. (Even
with 2048-bit keys, signing/verification take only 210ms, before optimizations).

Experimental Setup. We ran server benchmarks on a single-processor, 3.2Ghz
Intel Pentium 4 with 2 Gigs of RAM and 512MB of L2 cache, running Fedora
Core Linux with kernel v2.6.9. We used Python v2.3.3. We instrumented the
Python code using the standard, built-in timeit module, running each opera-
tion 1000 times to obtain an average performance rating. We did not make any
overzealous attempts to cut down the number of standard background processes.

We ran client benchmarks on a 1.5Ghz Apple Powerbook G4 with 1.5Gigs of
RAM, running Mac OS X 10.4.4. We instrumented the Objective C code using the
built-in Cocoa call to Microseconds(),which returns the number of microseconds
since CPU boot. We ran each operation 1000 times to obtain an average running
time. Though we were not actively using other applications on the Powerbookdur-
ing the test, we also made no attempt to reduce the typically running background
processes and other applications running in a normal Mac OS X session.

7 Conclusion

We proposed Lightweight Email Signatures (LES), an extension to DKIM which
conserves its deployment properties while addressing a number of its limitations.
LES allows users to sign their own emails and, thus, to use any outgoing mail
server they choose. This helps to preserve a number of current uses of email
that DKIM would jeopardize: choosing from multiple email personalities with
a single outgoing mail server because of ISP restrictions, or using special mail
forwarding services, e.g. university alumni email forwarding, that do not provide
an outgoing mail server.

LES also offers better privacy protection for users. Each individual email
address is associated with a public key, which anyone can compute using only
the domain’s master public key available via DNS. With the recipient’s public

Lightweight Email Signatures 301

key available, any number of deniable authentication mechanisms can be used,
in particular the ring signature scheme we propose.

Our prototype implementation shows that LES is practical. It can be quickly
implemented using well-understood cryptographic algorithms that rely on the
same hardness assumptions as typical RSA signatures.

We are hopeful that proposals like DKIM and LES can provide the basic
authentication foundation for email that is so sorely lacking today. These cryp-
tographic proposals are not complete solutions, however, much like viewing an
SSL-enabled web site is not a reason to fully trust the site. Reputation systems
and “smart” user interfaces will likely be built on the foundation that DKIM and
LES provide. Without DKIM or LES, however, such reputation systems would
be nearly impossible.

Acknowledgments

We wish to thank Rob Miller and Min Wu for their helpful pointers to and
explanations of user-interface-related solutions to the phishing problem. We are
also grateful to Seth Gilbert and Steve Weis for their comments. We thank our
ten volunteer anonymous testers, as well as Greg Shomo and Matt McKinnon
who provided the equipment and system administration for our pilot test. Susan
Hohenberger was supported by an NDSEG Fellowship.

References

1. B. Adida, S. Hohenberger, and R. L. Rivest. Ad-hoc-group signatures from hijacked
keypairs, 2005. http://theory.lcs.mit.edu/~rivest/publications.

2. American Banking Association. Beware of Internet Scrooges this Holiday.
http://biz.yahoo.com/prnews/041209/dcth013_1.html .

3. Anti-Phishing Working Group. http://www.antiphishing.org/.
4. Anti-Phishing Working Group. Digital Signatures to Fight Phishing Attacks.

http://www.antiphishing.org/smim-dig-sig.htm .
5. M. Bellare, C. Namprempre, and G. Neven. Security proofs for identity-based

identification and signature schemes. In EUROCRYPT, pp. 268–286, 1999.
6. S. M. Bellovin. Spamming, phishing, authentication, and privacy. Inside Risks,

Communications of the ACM, 47:12, December 2004.
7. N. Borisov, I. Goldberg, and E. Brewer. Off-the-record communication, or, why

not to use PGP. In WPES ’04, pp. 77–84. ACM Press, 2004.
8. D. R. Brown. Deniable authentication with rsa and multicasting. In Cryptology

ePrint Archive, Report 2005/056, 2005.
9. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and

simplified design of witness hiding protocols. In CRYPTO, pp. 174–187, 1994.
10. M. Crispin. RFC 1730: Internet Mail Access Protocol - Version 4, Dec. 1994.
11. R. Dhamija and J. D. Tygar. Phish and hips: Human interactive proofs to detect

phishing attacks. In HIP, vol. 3517 of LNCS, pp. 127–141, 2005.
12. E. D. et. al. Spam Attacks: P2P to the Rescue. In WWW ’04, pp. 358–359, 2004.
13. M. C. et. al. Internet X.509 Public Key Infrastructure (latest draft). IETF Internet

Drafts, Jan. 2005.

http://theory.lcs.mit.edu/~rivest/publications
http://biz.yahoo.com/prnews/041209/dcth013_1.html
http://www.antiphishing.org/
http://www.antiphishing.org/smim-dig-sig.htm

302 B. Adida et al.

14. S. L. Garfinkel. Email-Based Identification and Authentication: An Alternative to
PKI? IEEE Security & Privacy, 1(6):20–26, Nov. 2003.

15. L. C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In CRYPTO, vol. 403, pp. 216–231, 1988.

16. A. Herzberg. Controlling spam by secure internet content selection. In 4th Security
in Communication Networks (SCN), vol. 3352 of LNCS, pp. 337–350, 2004.

17. P. Hoffman. SMTP Service Exten. for Secure SMTP over Transport Layer Security.
Internet Mail Consortium RFC. http://www.faqs.org/rfcs/rfc3207.html .

18. IETF. The DKIM Working Group. http://mipassoc.org/dkim/.
19. IETF. MTA Authorization Records in DNS (MARID), June 2004.

http://www.ietf.org/html.charters/OLD/marid-charter.html.
20. M. Jakobsson. Modeling and Preventing Phishing Attacks. In A. Patrick and

M. Yung, editors, Financial Cryptography ’05, LNCS, 2005.
21. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated verifier proofs and their

applications. In EUROCRYPT ’96, vol. 1233 of LNCS, 1996.
22. H. Krawczyk and T. Rabin. Chameleon signatures. In Network and Distributed

System Security (NDSS), 2000.
23. J. Levine, A. DeKok, and et al. Lightweight MTA Authentication Proto-

col (LMAP) Discussion and Comparison, Feb. 2004. http://www.taugh.com/
draft-irtf-asrg-lmap-discussion-01.txt.

24. J. R. Levine. A Flexible Method to Validate SMTP Senders in DNS, 2004. http:
//www1.ietf.org/proceedings_new/04nov/IDs/draft-levine-fsv-01.txt .

25. MAPS. RBL - Realtime Blackhole List, 1996.
http://www.mail-abuse.com/services/mds_rbl.html.

26. J. Mason. Filtering Spam with SpamAssassin. In HEANet Conference, 2002.
27. MessageLabs. Annual Email Security Report, Dec. 2004.

http://www.messagelabs.com/intelligence/2004report.
28. T. Meyer and B. Whateley. SpamBayes: Effective open-source, Bayesian based,

email classification system. In Conference on Email and Anti-Spam, July 2004.
29. Microsoft. Phishing Scams: 5 Ways to Help Protect Your Identity.

http://www.microsoft.com/athome/security/email/phishing.mspx.
30. Microsoft. The Sender ID Framework. http://www.microsoft.com/mscorp/

safety/technologies/senderid/default.mspx .
31. J. Myers. RFC 1939: Post Office Protocol - Version 3, May 1996.
32. Z. News. http://news.zdnet.com/2100-9595_22-519795.html?legacy=zdnn .
33. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In ASIACRYPT

’01, vol. 2248 of LNCS, pp. 552–565, 2001.
34. M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian Approach to

Filtering Junk E-Mail. In Learning for Text Categorization, May 1998.
35. B. Schneier. Safe Personal Computing. Schneier On Security Weblog, Dec. 2004.

http://www.schneier.com/blog/archives/2004/12/safe_personal_c.html.
36. A. Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO ’84,

vol. 196 of LNCS, pp. 47–53, 1985.
37. D. Smetters and G. Durfee. Domain-based administration of identity-based cryp-

tosystems for secure email and IPSEC. In USENIX Security Symposium, 2003.
38. The Spamhaus Project. The Spamhaus Block List.

http://www.spamhaus.org/sbl/.
39. Tumbleweed Communications. Digitally-Signed Emails to Protect Against Phish-

ing Attacks.
http://www.tumbleweed.com/solutions/finance/antiphishing.html.

40. P. Zimmerman. Pretty Good Privacy. http://www.pgp.com.

http://www.faqs.org/rfcs/rfc3207.html
http://mipassoc.org/dkim/
http://www.ietf.org/html.charters/OLD/marid-charter.html
http://www.taugh.com/
draft-irtf-asrg-lmap-discussion-01.txt
http:
//www1.ietf.org/proceedings_new/04nov/IDs/draft-levine-fsv-01.txt
http://www.mail-abuse.com/services/mds_rbl.html
http://www.messagelabs.com/intelligence/2004report
http://www.microsoft.com/athome/security/email/phishing.mspx
http://www.microsoft.com/mscorp/
safety/technologies/senderid/default.mspx
http://news.zdnet.com/2100-9595_22-519795.html?legacy=zdnn
http://www.schneier.com/blog/archives/2004/12/safe_personal_c.html
http://www.spamhaus.org/sbl/
http://www.tumbleweed.com/solutions/finance/antiphishing.html
http://www.pgp.com

	Introduction
	The State of Email and DKIM
	Lightweight Email Signatures
	The LES Architecture
	A Prototype Implementation
	Previous and Related Work
	This Paper

	Cryptographic and System Preliminaries
	Identity-Based Signatures
	Ring Signatures from Any Keypairs
	Email Secret-Key Distribution

	Lightweight Email Signatures
	Email Domain Setup
	User Identities
	Delivering User Secret Keys
	The Repudiability Option
	Signing and Verifying Messages
	LES vs. Other Approaches

	Technology Adoption
	Threats
	Experimental Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

