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Abstract

My thesis consists of three self-contained but interconnected papers. In the first
one, 'Word and Objects', I assume that it is possible to quantify over absolutely
everything, and show that certain English sentences containing collective predicates
resist paraphrase in first-order languages and even in first-order languages enriched
with plural quantifiers. To capture such sentences I develop a language containing
plural predicates.

The introduction of plural predicates leads to an extension of Quine's criterion of
ontological commitment. I argue that theories containing plural predicates can have
plural ontological commitments in addition to singular ones. In this sense, I argue
that the subject-matter of ontology is richer than one might have thought.

Plural predicates turn out to be tremendously fruitful. For example, they provide
us with natural formalizations for English plural definite descriptions and generalized
quantifiers. They also allow us to state important set theoretic propositions, and give
a formal semantics for second-order languages. Such a formal semantics is developed
in the second paper, 'Toward a Theory of Second-Order Consequence', which is a
collaboration with Gabriel Uzquiano.

In the third paper, 'Frege's Unofficial Arithmetic', I consider an application of
plural predicates to the philosophy of mathematics. By developing a suggestion of
the later Frege, I show that any arithmetical predicate can be transformed into a
plural predicate in such a way that the arithmetical predicate is true of the number
of the Fs just in case the plural predicate is true of the Fs themselves.

The transformation is important both because it can be put to use by nominalists
about arithmetic and neo-Fregeans, and because it provides the foundations for an
account of applied arithmetic.

Thesis Supervisor: Vann McGee
Title: Professor of Philosophy
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Chapter 1

Word and Objects

The aim of this essay is to show that the subject-matter of ontology is richer than

one might have thought. Our route will be indirect. We will argue that there are cir-

cumstances under which standard first-order regimentation is unacceptable, and that

more appropriate varieties of regimentation lead to unexpected kinds of ontological

commitment.

1.1 Introduction

Quine has taught us that ontological inquiry-inquiry as to what there is-can be

separated into two distinct tasks.' On the one hand, there is the problem of deter-

mining the ontological commitments of a given theory; on the other, the problem

of deciding what theories to accept. The objects whose existence we have reason to

believe in are then the ontological commitments of the theories we have reason to

accept.

Regarding the latter of these two tasks, Quine holds that our overall scientific

theory is to be accepted on the basis of its ability to fit and arrange raw experience,

together with considerations of simplicity. I will have nothing to say about such issues

here.

1See Quine (1948).
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As for the former task, Quine maintains that a first-order theory is committed

to the existence of an object satisfying a certain predicate if and only if some object

satisfying that predicate must be admitted among the values of the theory's variables

in order for the theory to be true. Quine's criterion is extremely attractive, but it

applies only to theories that are couched in first-order languages. Offhand this is

not a serious constraint, because most of our theories have straightforward first-order

regimentations. But here we shall see that there is a special kind of tension between

regimenting our discourse in a first-order language and allowing our quantifiers to

range over absolutely everything. We will proceed on the assumption that absolutely

unrestricted quantification is possible, and show that an important class of English

sentences resists first-order regimentation. This will lead us to develop alternate

languages of regimentation, languages containing plural quantifiers and predicates. It

will also lead us to set forth a more inclusive criterion of ontological commitment.

The possibility of quantifying over everything is readily challenged by anti-realists,

who believe that what there is in some way depends upon our conception of the world.

It is open for them to argue that, whenever our conception of the world specifies a

totality we might quantifier over, it necessarily yields objects that lie outside this

totality. But if one is a realist, and believes that what there is does not depend on

our conception of the world, then the idea that unrestricted quantification is possible

has considerable force. For what is there, on the realist picture, to stop our quantifiers

from encompassing everything there is? In order to deny the possibility of unrestricted

quantification, a realist would have to defend a thesis about our linguistic abilities to

the effect that we are not capable of talking about everything at once. 2

Insofar as the possibility of quantifying over everything is a tenet of realism, our

discussion will reveal realist constraints on the adequacy of first-order regimentation

and, therefore, realist constraints on ontological inquiry.

ZSee Glanzberg (unpublished). For an excellent discussion on quantifying over everything see
Cartwright (1994).
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1.2 Regimentation

I use 'regimentation' in Quine's sense.3 Ordinary discourse is plagued with unclarities

and ambiguities. Usually they are harmless. But under special circumstances-such

as the practice of scientists and philosophers-they may interfere with our goals.

When we regiment, we paraphrase the sentences of our original discourse into sen-

tences with fewer unclarities or ambiguities. There is no presupposition of synonymy,

or of sameness of 'logical form'. It is only required that, to our satisfaction, whatever

we hoped to achieve by way of our original sentences can be achieved closely enough

by way of their paraphrase. In many cases, this means that truth-conditions must

be preserved, but we needn't assume this in general. No questions about our original

sentences are settled with regimentation: the old discourse is surrendered in favor of

the new.

Regimentation is important for the purposes of ontological inquiry because our

theories are not always expressed in ways that allow us to assess their ontological

commitments. But we may be able to regiment them using languages for which some

criterion of ontological commitment is available. In doing so no light is shed on

the commitments of the original theories, but as long as we are willing to surrender

them in favor of their regimentations, we will be in a position to determine what our

ontological commitments are.

A language of regimentation needn't be a fragment of natural language. It is

sufficient that it be well understood. For instance, we may attempt to eliminate

ambiguity by adding subscripts to the pronouns of some suitable fragment of English.

The resulting language is not itself a fragment of English, but it will presumably be

well understood by any English speaker. Formalisms such as first-order logic can also

be used for regimenting. XVe may regard '3xi', 'xi = x3 ', '-- and 'A' as abbreviating

the expressions 'there is an object, such that', 'iti is identical to itj', 'it is not the

case that ... ' and 'it is both the case that ... and ... '(respectively). Not all of the

latter are part of English, but they will be well understood by any English speaker

13
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familiar with the relevant subscripting conventions.

First-order languages naturally suggest themselves as languages of regimentation.

Besides enabling the application of Quine's criterion of ontological commitment, they

provide us with grammatical simplicity, notational perspicuity and enormous expres-

sive power. So much so that there is some pull towards thinking that we should

always choose a first-order language as our language. of regimentation. Quine and

others seem to have adopted just this view. 4 Nonetheless, the choice of a language of

regimentation should be made on the basis of its ability to further our goals. And,

depending on the circumstances, first-order languages may not turn out to be the

best candidates for the job.

The adequacy of regimentation is constrained only by our needs. Not so for

the adequacy of a criterion of ontological commitment. Once we have settled upon a

language of regimentation and accepted a theory couched in that language, ontological

commitments are forced upon us. They cannot be chosen on the basis of their ability

to further our goals.

1.3 Critics

Suppose we agree that our language of regimentation is to be first-order. How might

we regiment the Geach-Kaplan sentence?

(GK) Some critics admire only one another.

One option is to introduce the first-order predicate 'P(... )' as an abbreviation for

the English '... is such that some critics admire only one another' and go on to

paraphrase (GK) as 'VxP(x)'. But normally we expect a paraphrase to preserve

some of the logical connections of the original sentence. For instance, we might want

the existence of critics to be derivable from our paraphrase of (GK). And, of course,

'3xCRITIc(x)' isn't derivable from 'VxP(x)'.

4 See, for instance, Quine (1948) and Davidson (1967).
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Is it possible to find a first-order paraphrase of (GK) which preserves all the logical

connections we might be interested in? Kaplan answered part of this question in the

negative. 5 He proved that there is no first-order sentence that is true in precisely the

same models as the following second-order sentence, which is reminiscent of (GK)

when 'Axy' is read 'x admires y' and all quantifiers are restricted to critics:

(1) 3X(3xXx A VxVy[Xx A Axy --+ x y A Xy])]).

But now suppose we were to agree that a sentence ý can only be a regimentation of

(GK) if it meets the following condition:

(*) p is true in a model just in case (1) is.

Then, by Kaplan's proof, there is no way of regimenting (GK) in a first-order language.

However, there is usually no reason to impose conditions as stringent as (*) on

our regimentations. We might, for example, paraphrase (GK) as a first-order version

of the following:

(2) There is a (non-empty) set of critics z such that, for any x and y, if x e z and

x admires y, then x $ y and y c z.

A first-order version of (2) does not meet condition (*) because there are models that

verify (1) with domains containing no sets. But it is possible for a sentence to serve

as a paraphrase even if it doesn't preserve all the original's logical properties. All

that is required is that, to our satisfaction, whatever we hoped to achieve by way of

the original can be achieved closely enough by way of the paraphrase. Thus, if not

all of (GK)'s logical properties are important for our present purposes, there needn't

be an obstacle for paraphrasing (GK) as (2). Moreover, solid intuitions about the

logical properties of (GK) run out well before forcing anything like (*) upon us, and

some of the intuitions we do have easily fade away in the presence of an otherwise

attractive paraphrase.

5 See Boolos (1984), p. 57.
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1.4 Collective Predicates

There is a well-known distinction between collective and distributive readings of En-

glish predicates. For instance, 'The children carried the piano' can be taken to mean

either that the children carried the piano together, or that each of the children is such

that she carried the piano. In the former case, the predicate '... carried the piano' is

understood collectively; in the latter, it is understood distributively. In general, we

shall say that an occurrence of the predicate '... (are) P' is understood distributively

in 'they (are) P' just in case 'they (are) P' can be paraphrased as 'each of them (is)

P'. Otherwise, we shall say that '... (are) P' is understood collectively.6

Throughout this paper it will be convenient to eliminate the sort of ambiguity

that afflicts sentences containing predicates which are open to both collective and

distributive readings. We shall do so by stipulating that predicates are to be under-

stood according to their collective readings whenever there is any risk of ambiguity.

Also, we shall sometimes speak of collective and distributive predicates instead of

collective and distributive readings of predicates.

Attention to collective predicates sheds light on the reason why finding a first-order

paraphrase for the Geach-Kaplan sentence is not entirely straightforward. Consider

the following sentence, which is presumably an uncontroversial paraphrase of (GK),

(3) There are some critics such that, for any x and y, if x is one of them and x

admires y, then x = y and y is one of them.

Note that each of the three occurrences of the predicate '... is one of ... ' in (3) must

be understood collectively with respect to its second argument-place. But there is

no direct way of paraphrasing collective English predicates into first-order languages

because first-order predicates do not admit plural arguments. In order to find a first-

order paraphrase for (3) some deviousness is required. One possibility is to replace

6 This explication can be made to encompass sentences such as 'the Fs (are) P' or 'some Fs (are)
P' by pretending that they are abbreviations for 'the Fs are such that they (are) P' and 'some Fs
are such that they (are) P' (respectively). Also, by extending our characterization in the obvious
way, we can speak of an n-adic predicate being understood distribuitively or collectively with respect
to each of its argument-places.
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plural quantification over critics with singular quantification over sets of critics, and

replace '... is one of ... ' with the set-theoretic '... e ... '; we then get:

(4) There is a set of critics z such that z has at least one member and, for any x

and y, if x E z and x admires y, then x y and y E z;

which can easily be paraphrased into a first-order language (in fact, (4) is (2) from

section 1.3).

More generally, we could replace plural quantification over critics with singular

quantification over objects that serve as surrogates for critics: sets of critics, or classes

of critics, or 'plural objects' composed of critics, or events involving critics. To ensure

firstorderizability, we shall require of our surrogates that they admit of a 'membership'

relation with the feature that s is a surrogate for the Fs just in case the Fs are all

and only the 'members' of s. 7

Thus, (3) might be paraphrased as:

(5) There is a surrogate z with only critics as members such that z has at least one

member and, for any x and y, if x is a member of z and x admires y, then x 0 y

and y is a member of z.

As one would expect, (5) is equivalent to (4) when our surrogates of choice are sets.

In many cases, the surrogate-method (as we shall call it) is an extremely effective

way of producing first-order paraphrases for sentences containing '... is one of ... '.

But George Boolos has shown that it cannot always be made to work.8 He noted that

although the following is obviously true,

(6) There are some sets such that, for any y, y is one of them just in case y ' y;

7This is an extremely weak requirement. It is equivalent to a uniqueness condition according to
which, if s is a surrogate for the Fs and the Gs are not the Fs, then s is not a surrogate for the Gs.
Yet it is not without consequences. For instance, we cannot have it that s is a surrogate for the Fs

just in case s is the mereological sum of the Fs, since the Fs and Gs might not be the same objects
but share a mereological sum. Requirements on surrogates are liberalized in section 1.7.

8See Boolos (1985b), Boolos (1984) and Boolos (1985a).
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it gets assigned a necessarily false paraphrase by the surrogate method when surro-

gates are taken to be sets:

(7) There is a set x such that, for every y, y E x just in case y is a set such that

y ý y.

The problem generalizes. For, given any non-trivial' choice of surrogates a, the

following is true:

(8) There are some or-surrogates such that, for any y, y is one of them just in case

y is a a-surrogate which is not a member of itself.

But it gets assigned a necessarily false paraphrase by the surrogate method when our

choice of surrogates is a:

(9) There is a a-surrogate x such that, for every y, y is a member of x just in case

y is a a-surrogate which is not a member of itself.

Thus, for any non-trivial choice of surrogates, we can find a sentence that cannot be

paraphrased by appeal to those surrogates.

Friends of the surrogate method have a way of avoiding this conclusion. They can

claim that the quantifier 'for every y' in (9) doesn't really range over all surrogates,

and that x is outside this range. They might add that the quantifiers in (9) are

systematically ambiguous, or that their range is indeterminate. But this move is

blocked if we are allowed to assume that the domain of (8) consists unequivocally of

everything there is.

1.5 Bernays's Principle

The conclusions of the preceding section are not as strong as one might have hoped.

We saw that, for any non-trivial choice of surrogates, there is a sentence that cannot be

90n the assumption that there are at least four individuals, say that a choice of surrogates a is
non-trivial only if every two individuals have a surrogate

18



paraphrased by appeal to those surrogates. But this is compatible with the view that

every sentence can be paraphrased by appeal to some choice of surrogates. Moreover,

a sentence might have a first-order paraphrase even if the surrogate-method fails.

Thus, (8) can be paraphrased as 'there exists a nonselfmembered a-surrogate', which

is certainly firstorderizable.

In this section we shall make a stronger case for the view that there are sentences

resisting first-order paraphrase.

Cantor's Theorem is well-known. It states that there is no functo;n from a set

onto its power-set. Less well-known is a certain kind of extension of this result.

Intuitively, the thought is that there is no function from the objects there are onto

the 'pluralities' of objects there are. This goes beyond Cantor's Theorem because

there is no set containing all objects.

So far, however, our proposition has not been properly expressed. To begin with,

we have said nothing about what a 'plurality' is supposed to be. Moreover, functions

are normally taken to be sets, so it is unclear just what one might mean by 'function'

in the present context. In order to express our proposition properly, we need a piece

of notation. If the Gs are some ordered pairs, we shall say that the Gs map x onto

the Fs if, for every y, (x, y) is one of the Gs just in case y is one of the Fs. Our

proposition is then this:

(BP) Given any ordered pairs, there are some things onto which the ordered pairs

map nothing.

A proof of (BP) is provided in the appendix. As far as I know, Paul Bernays was the

first to set-forth this kind of result,'0 so I shall refer to it as Bernays's Principle.

I submit that, when our domain consists of everything there is, Bernays's Principle

has no first-order paraphrase. Unfortunately, I have no proof that this is so. In fact, I

haven't the slightest idea what such a proof would look like. Note, for example, that

a Kaplan-style nonfirstorderizability result is not what we are looking for. The lesson

of section 1.3 is that a sentence may have an acceptable first-order paraphrase even if

19
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it is nonfirstorderizable in Kaplan's sense." The best I can do to forward my claim is

show that, when our domain consists of absolutely everything, the surrogate-method

does not succeed in firstorderizing Bernays's Principle, no matter what surrogates we

chose.

If we attempt to paraphrase Bernays's Principle in accordance with the surrogate-

method what we get is the following:

(10) Va30Vzx-Vy((x, y) is a member of a ++ y is a member of 3);

where Greek letters range over the surrogates of our choice, a-surrogates say. Let an

ordered pair be one of the Ss just in case its first component is a a-surrogate and

its second component is a member of that a-surrogate. On the assumption that our

domain consists of everything there is, it is an instance of Bernays's Principle that

there are some things onto which the Ss map nothing. If there is to be a corresponding

instance of (10), we must assume that there is a a-surrogate for the Ss--call it p.12

What we get is then:

(11) Vx-\Vy((x, y) is a member of p ++ y is a member of ~),

for some surrogate 7. But, if p exists, the following is a consequence of our definition

of the Ss:

(12) Vy((-y, y) is a member of p i-+ y is a member of y).

"In fact, a Kaplan-style result isn't available for Bernays's Principle. In order to prove such a
result, we would have to select some second-order sentence X and insist that a formula Vp can only
be a first-order paraphrase of Bernays's Principle if it meets the following condition:

(*) cp is true in a model just in case X is.

To conclude the proof we would then have to show that there is no first-order formula true in
precisely the same models as X. But presumably (*) is only plausible if we chose X to be something
along the following lines,

(1) 3XVY3buVv(X(u,v) +- Yv);

Unfortunately, (1) is a theorem of second-order logic, so there are plenty of first-order formulas which
are true in precisely the same models as (1).

12In fact, this assumption may fail, as it does when we choose sets as our surrogates.
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And, of course, (11) and (12) are in contradiction.

When our domain consists of absolutely everything, the surrogate-method does

not succeed in firstorderizing Bernays's Principle, no matter what surrogates we chose.

Perhaps it has some other first-order paraphrase. If so, I have been unable to find

it. As far as I can tell, Bernays's Principle cannot be regimented in a first-order

language.

1.6 PFO Languages

An alternative language of regimentation suggests itself. Let a plural first-order lan-

guage (PFO for short) be the result of enriching a first-order language with plural

quantifiers and variables, and a dyadic predicate '-<', which takes a singular variable

in first argument-place and a plural variable in its second. Our plural variables are

'xxa1 , 'xx2
7, etc. '3xxi' is to be interpreted as 'there are some objectsi such that',

and 'rx -< xxj' is to be interpreted as 'itt is one of themj'. Thus, for instance,

'3x,3xxj(xi -< xxj)' is to be read

(13) there is an objecti and some objectsj such that iti is one of them,.

(A formal characterization of PFO languages is provided in the appendix.)

PFO languages are an excellent means for regimenting English sentences contain-

ing the collective predicate '... is one of ... '. For instance, Bernays's Principle can

be paraphrased as:

(14) Vxxzz3yyVuv-((u, v) < xx +- v -< yy).

The Geach-Kaplan sentence also has a natural PFO paraphrase:

(15) 3zzxVyVz[(y -< zxx A ADMIRES(y, z)) -* (y # z A z -< xx)];

(where our domain of discourse consists of critics).

Our interpretation of PFO languages makes use of a convention that was intro-

duced in Boolos (1984) and is now standard in the literature. There is some pull
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towards thinking that the English 'there are some Fs such that so-and-so' is only

true if there are at least two Fs such that so-and-so. But it is by no means evident

that this should be so. One could argue, for example, that an utterance of 'there

are some Fs such that so-and-so' is pragmatically inappropriate, but true, when it is

known that there is only one F such that so-and-so, in much the same way that the

utterance of a disjunction can be pragmatically inappropriate, but true, when it is

known of one of the disjuncts that it is true. Boolos's convention is to sidestep this

controversy altogether and stipulate that 'there are some Fs such that so-and-so' is

to be true just in case there are one or more Fs such that so-and-so. I will assume

that Boolos's convention is in place throughout the remainder of this essay.

1.7 Beyond PFO

The question now arises whether PFO languages can be used to regiment English

sentences involving collective predicates other than '.. . is one of... '. In this section I

will make a case for the view that, under certain circumstances, they cannot. Consider

the following sentences,

(16) The seashells are scattered;

(17) The Peano Axioms imply Fermat's Last Theorem;

(18) The mechanics repaired the car;

(19) The musicians will perform the symphony;

(20) The philosophers mingled with the mathematicians;

(21) The soldiers are between the students and the administrators;

(22) The seashells are mixed together with the rocks.

How might one paraphrase (16)-(22) into a PFO language? A natural thing to do is

paraphrase (16) as:

22



(16') The set of seashells is scattered;

which, in turn, has an straightforward first-order paraphrase and, hence, a straight-

forward PFO paraphrase:

(23) 32(SET(x) A Vy(y e x ++ SEASHELL(y)) A SCATTERED(X)).

More generally, one might claim that there is an object which serves as a surrogate

for the seashells: a set of seashells, or a class of seashells, or a 'plural object' composed

of seashells, or an event involving seashells. When discussing first-order paraphrases

in section 1.4, we required that surrogates admit of a 'membership' relation. But now

we can be more generous. All we shall require is that 'x is a surrogate for the Fs'

have a PFO paraphrase. This allows us to treat the mereological sum of the Fs as a

surrogate for the Fs.13

With the machinery of surrogates at hand, one might hold that talk of the seashells

being scattered is not to be paraphrased by predicating something of the seashells

themselves. Rather, it is to be paraphrased by predicating something of their surro-

gate. In the case of (16) we get:

(16") The seashells' surrogate is scattered.

The surrogate-method faces an important difficulty. Suppose that our domain consists

of absolutely everything. Then it follows from Bernays's Principle that, no matter

what surrogates we chose, at least one of the following must be the case:

(a) There are some objects with no surrogate.

(3) There are some objects-the Fs-and some objects-the Gs-such that the Fs

are not the Gs but the Fs have the same surrogate as the Gs.

A couple of examples should make clear why this causes trouble for friends of the

surrogate-method.

13 0n the more restrictive conception of surrogates it cannot be done. See footnote 7.
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First, suppose we chose sets as our surrogates. That is, whenever we have some

things, we will let their surrogate be the set containing precisely those things. Then

set-extensionality guarantees that (3) will never be the case, so (a) follows from

Bernays's Principle: there must be some things with no surrogate. In particular, it

turns out that the cardinals have no surrogate (since there is no set of all cardinals).

This is a problem because, although the following sentence is intuitively true,

(24) The cardinals are scattered among the ordinals;

the surrogate-method would paraphrase it as something necessarily false:

(25) There is a set with precisely the cardinals as members and it is scattered among

the ordinals.

Second, suppose we decide to let mereological sums be our surrogates. That is,

whenever we have some things, we let their surrogate be their mereological sum.

Since any objects whatsoever have a mereological sum, (a) cannot be the case, so

(13) follows from Bernays's principle: there are some objects and some other objects

such that the former have the same mereological sum as the latter. That this is a

problem can be illustrated as follows. Suppose that there are a few scattered plies of

sand on a table. Then it is true of the piles of sand, but false of the grains of sand

which make up the piles, that they are scattered. But, if we take mereological sumns

to be our surrogates, this fact cannot be captured by the surrogate-method, since the

mereological sum of the piles is precisely the same object as the mereological sum of

the grains of sand.

Given a choice of surrogates a, let us say that the Fs are a problem case for a if

either the Fs have no a-surrogate, or there are some things which are distinct from the

Fs but have the same a-surrogate. As it turns out, problem cases are far from scarce:

it is easy to verify that there are 'more' problem cases than non-problem cases. So, no

matter what surrogates we choose, we are at risk of coming across sentences-such as

our examples-that g' the wrong truth-value when paraphrased in accordance with

the surrogate-method. Of course, we may sometimes be able chose our surrogates in
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such a way that problem cases turn out not to be important in the relevant context.

But it is not possible in general. Unless a non-trivial Reflection Principle is assumed

to hold, the formal semantics described in section 1.14.2 is an example of a case in

which it cannot be done. 14

A particularly sophisticated version of the surrogate-method, developed by James

Higginbotham and Barry Schein,' 5 deserves special attention. Their method of para-

phrase uses events as surrogates. For example, they paraphrase 'Those boys built a

boat' as:

(26) There is an event E such that (a) E is a boat-building and (b) for every x, x is

an agent of E just in case x is one of those boys.

This proposal works nicely for many special cases. But it cannot be made to work

generally, on pain of generating a version of Russell's Paradox. The problem emerges

if we predicate something collectively of the events that are not 'agents' of themselves.

For instance,

(27) The events that are not agents of themselves have little in common.

Higginbotham and Schein would have us paraphrase (27) as:

(28) There is an event E such that (a) E is a having-little-in-common, 16 and (b) for

every x, x is an agent of E just in case x is not an agent of itself.

But clause (b) of (28) implies a contradiction. 17

It might be replied that it is somehow illegitimate to speak of events that are

'agents' of other events. Unfortunately, this restriction also undermines the general-

ity of Higginbotham and Schein's proposal. For it would be unable to account for

sentences like 'Events of this magnitude are very rare'.

14For further discussion, see chapter 2 of this thesis.
15See Higginbotham (1998), Higginbotham and Schein (1989) and Schein (1993).
16A having-little-in-common is an awkward event indeed. This speaks against Higginbotham and

Schein's account, not against my argument.
'7 Byeong-Uk Yi makes a similar point in footnote 34 of Yi (1999).
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We have seen that the surrogate-view faces important difficulties. Other ways of

paraphrasing English sentences with collective predicates into PFO languages might

do better. I can only report that I have been able to find any.

1.8 Plural Predicates

There is a natural way of extending PFO languages to accommodate collective English

predicates such as those considered in the preceding section. Let PFO+ languages be

the result of extending PFO languages with plural predicates, that is, predicates taking

plural variables in some of their argument places. Plural predicates are interpreted in

terms of collective English predicates. Thus, 'Scattered(xxi)' might be interpreted

as 'theyi are scattered', and 'Surrounded(xi, xxj)' might be interpreted as 'iti is

surrounded by themj'. (A formal characterization of PFO + languages is provided

in the appendix. Byeong-Uk Yi examines languages of this kind at some length in

Yi (unpublished).)

PFO+ languages have enormous expressive power. In this section we shall see

that they provide us with a natural way of regimenting English sentences containing

plural definite descriptions, such as (16) - (22) from section 1.7.

There is a familiar procedure for regimenting sentences with singular definite

descriptions. As an example, consider 'The sailor carried John home'. If we follow

Russell's advice, this sentence can be formalized in a first-order language as:

(29) 3z[Vy(SAILOR(y) ++ x = y) A CARRIEDJ(x)]. 18

The following definitional equivalence is frequently introduced:

q5(t,[sP(x)]) E-def ]x[Vv(cp(U) -+ T = v) A 'Pb(2)].19

Thus, (29) is equivalent to:

'sHere and elsewhere, I assume that the context makes clear what the variables should be taken
to range over and how the non-logical predicates should be interpreted.

19In this and other definitions I ignore differences of scope for the sake of simplicity.
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(30) CARRIEDJ(t. [SALIOR(X)]).

Something similar can be done for plural definite descriptions. Here we shall focus

on the simplest case: sentences of the form 'the Fs are G', where 'F' is a count noun.

Richard Sharvy has set forth a general account of plural definite descriptions which

can be naturally framed in a PFO+ language. 20

Consider 'The sailors carried John home'. When '. . carried John home' is under-

stood collectively, it might be paraphrased as:

(31) 3yy[Vx(x -< yy ++ SAILOR(X)) A CarriedJ(yy)];

where 'CarriedJ(...)' abbreviates the collective reading of '...carried John home'.

This suggests the following notation:

Q(ir [p(x)]) df 3yy[Vx(x -< yy ++ cpr)) A #(yy)I].

Thus, (31) is equivalent to

(32) CarriedJ(7r [SAILOR(x)]).

When '. . . carried John home' is understood distributively in 'The sailors carried John

home', a slightly different paraphrase suggests itself:

(33) Vy(y -<7r,[SAILOR(x)]) -+ CARRIEDJ(y));

where 'CARRIEDJ(.. .)' is the singular counterpart of 'CarriedJ(.. .)'.21 It is easy to

verify that (33) amounts to nothing more than:

(34) Vx(SAILOR(x) -* CARRIEDJ(x)).

Nonetheless, we may introduce the following piece of notation:

(35) CarriedJD(zz) -df Vy(y -< XX -+ CARRIEDJ(y));

20See Sharvy (1980).
21See section 1.8. When singular and plural PFO+ predicates are spelled the same, I shall assume

that they are counterparts.
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(and similarly for other predicates). Thus, (33) may be rewritten as:

(36) CarriedJD ( [SAILOR(x)]).

The machinery we have set forth allows us to give PFO+ paraphrases for a substantial

class of English sentences containing plural definite descriptions. For instance, 'The

seashells are scattered' can be paraphrased as:

(37) Scattered(Q7r [SEASHELL(x)]);

and 'The fugitives crossed the border' can be paraphrased as:

(38) CrossedBorderD"(ir , [F UGITIVE(x)]).

1.9 Generalized Quantifiers

PFO+ languages also provide us with the rasources for regimenting English sentences

with generalized quantifiers. Consider the following examples:

(a) Almost half of the monkeys became infected;

(b) Many of the bills are counterfeit;

(c) Few of the students have any patience left.

They can be paraphrased as:

(a') The monkeys who became infected are almost half of the monkeys;

(b') The counterfeit bills are many of the bills;

(c') The students who have any patience left are few of the students.

Accordingly, (a)-(c) can be formalized in a suitable PFO+ language as:

(a") AlmostHalfOf(·r [MONKEY(X)A INF(x)], rz [MONKEY(x)1);
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(b") ManyOf(ir [BILL(x)A COUNTERFEIT(X)], ~r [BILL(x)]);

(c") FewOf(IrX[STUDENT(x)A PATIENCE(X)], 7r [STUDENT(x)]);

where all the non-logical predicates in (a")-(c") are to be understood in the obvi-

ous way; in particular, 'AlmostHalfOf(xxi, xxj)' is interpreted as 'theyi are almost

half of themj', 'ManyOf(xxi, xx)' is interpreted as 'they are many of them,', and

:FewOf(xx,, xxj)' is interpreted as 'theyi are few of themj'.

The possibility of formalizing generalized quantifiers in terms of plural predicates

is to be expected. In Barwise and Cooper's influential article on the subject, a

determiner such as 'Many of' is interpreted as a binary relation taking a set S as its

first argument and one of S's subsets as its second. 22 Thus, 'Many of the Fs are G' is

true just in case 'Many of' holds between the set of Fs and its subset consisting of the

F-and-Gs. But Barwise and Cooper's assumption that the Fs form a set is uncalled

for. It would be better to think of 'Many of' as a two-place plural predicate, and say

that 'Many of the Fs are G' is true just in case 'Many of' holds between the Fs and

the F-and-Gs. That is what the present proposal amounts to. 23

So far we have only considered quantifiers of the form 'Q of the Fs', whose definite

description ensures the existence of Fs. What about quantifiers of the form 'Q Fs' ?

These come in two different flavors, depending on whether the absence of Fs makes

'Q Fs are G' true or false. If the latter, 'Q Fs are G' may be paraphrased as 'Q of

the Fs are G'. (For instance, 'Many Fs are G' can be paraphrased as 'Many of the

Fs are G'.) If the former, 'Q Fs are G' may be paraphrased as 'Either there are no

Fs, or Q of the Fs are G'. (For instance, 'All Fs are G' can be paraphrased as 'either

22 See Barwise and Cooper (1981). In fact, Barwise and Cooper say that determiners are to be
interpreted as functions that take a set S as an argument and deliver a subset of the power-set of
S, but the two formulations are equivalent.

23I am ignoring a complication. Note that 'Not all of the Fs are G' is true when none of the
Fs are G. On Barwise and Cooper's proposal, this is accounted for by letting the determiner 'not
all', understood as a two-place singular predicate, hold between the set of Fs and the empty set.
But a similar move is not available when 'not all' is formalized as a plural predicate, because plural
predicates do not admit of 'empty' arguments. Instead, one might formalize 'Not all of the Fs are
Gs' as a PFO+ version of 'Either there are Fs but no F-and-Gs, or the F-and-Gs are not all of the
Fs'. A limit case is 'None of the Fs are G', which is true only when no Fs are G. It can still be
formalized as 'either there are Fs but no F-and-Gs, or the F-and-Gs are none of the Fs', but the
second clause is redundant.
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there are no Fs, or all of the Fs are G'.) In any case, quantifiers of the form 'Q Fs'

reduce to quantifiers of the form 'Q of the Fs'. They may therefore be ignored with

no loss of generality.

If our account is along the right lines, then every formula of a first-order language

with generalized quantifiers can be transformed into an equivalent PFO+ formula.

The relevant transformation is stated formally in the appendix. For illustration,

consider 'Many of the bills are counterfeit'. In a first-order language with generalized

quantifiers it may be formalized as:

[MANYOF x : BILL(Z)] (COUNTERFEIT(Z)),

for which our transformation yields

Many0Of(rx [BILL(x) A COUNTERFEIT(x)], 7rxfBILL(x)J).

Our transformation also works for sentences with iterated generalized quantifiers.

Consider, for instance, 'Most of the candidates alienate many of the voters':

[MOSTOF x : CANDIDATE(X)] [MANYOF y : VOTER(y)] (ALIENATE(z, y));

it is transformed into:

MostOf(rx [CANDIDATE(x) A A(x)], i r[CANDIDATE(Z)]),

where A(x) is:

ManyOf(7ry [VOTER(y)AALIENATE(x, y)], ry [VOTER(y)]).

1.10 Truth and Satisfaction

In this section we will set forth definitions of truth and satisfaction for PFO+ lan-

guages.

The most natural way to proceed is to expand upon the standard definition of

satisfaction for first-order languages. As before, we let variable assignments associate

an object in our domain with each singular variable, but we also let variable assign-
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ments associate multiple objects in our domain with each plural variable. Variable

assignments are therefore treated as relations rather than functions. If a is an as-

signment and 'vv' a plural variable, 'a('vv', x)' and 'a('vv', y)' may be true even if

x 0 y (though, of course, if 'v' is a singular variable, a behaves like a total function,

so that 'a('v', x)' holds for precisely one x).

Relations are standardly taken to be sets of ordered pairs. But this will not do

for our purposes. Problems arise when our domain of discourse consists of too many

objects to form a set. Since we want the sentence '3xxVy(y -. xx)' to turn out to

be true, we need a variable assignment that associates every object in our domain

with the plural variable 'xx'. But such an assignment would contain an ordered

pair ('xx', y) for every object y in our domain, and would therefore have too many

members to be a set.

Fortunately, Boolos has found a way out of this difficulty.24 Instead of taking a

variable assignment to be a certain set of ordered pairs, we shall consider the ordered-

pairs themselves, and have them play the role of assigning values to our variables.

Thus, we shall say of some ordered pairs that they form a plural variable assignment

just in case a certain plural predicate 'Assignment(xx)' is true of them. And, instead

of treating the satisfaction relation as a first-order predicate 'Sat(y, a)', which holds

between a formula and a set of ordered-pairs, we shall take satisfaction to be a two-

place plural predicate, 'Sat(c, xx)', which holds between a formula and the ordered

pairs forming a plural variable assignment. Once Boolos's modification is in place,

the definitions of truth and satisfaction proceed along familiar lines (see appendix for

details).

Our formal semantics yields an important stability result: the satisfaction pred-

icate for a PFO+ language can always be defined within another PFO+ language.

First-order languages are also stable in this sense, but PFO languages are not. In

general, the satisfaction predicate for a PFO language can only be defined within a

PFO+ language. 25 This suggests that if the realm of first-order regimentation is to

24 See Boolos (1985a).
2 5Matters would be otherwise if there existed a set w with the feature that an arbitrary set of
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be left behind, PFO+ languages are a more natural stopping point than their PFO

counterparts.

1.11 Ontological Commitment

The goal of ontology may be regarded as more or less ambitious. The less ambitious

goal is to discover, of each predicate, whether there are objects it is true of. The

more ambitious goal requires us to start by dividing our predicates into those that

pick out 'basic' ontological properties and those that do not. It might be argued,

for instance, that '... is an abstract object' and '...is an electron' pick out basic

ontological properties, but that '... is owned by my uncle Hector' and '... is such that

all whales are mammals' do not. We must then discover which of the elite predicates

are instantiated and, if possible, go on to give an account of how they are related to

their non-elite counterparts.

In what follows we will conceive of ontology in the more modest sense. When we

speak of a theory's being ontologically committed to objects satisfying a certain pred-

icate, there will be no presupposition that the predicate expresses a basic ontological

property.

The formal semantics we set forth in the preceding section allows us to introduce

a useful piece of notation. Let us say that x is the possible value of a singular

PFO+ variable v just in case x is the object which the ordered-pairs forming some

plural variable assignment associate with v. Similarly, we shall say that the Fs are

the possible values of a plural PFO+ variable vv just in case the Fs are the objects

which the ordered-pairs forming some plural variable assignment associate with vv.

PFO formulas is satisfied by the ordered-pairs of a given plural variable assignment just in case
it is satisfied by the restriction of that assignment to w. This would allow us to regard variable
assignments as sets of ordered pairs, and to frame our definition of satisfaction in a first-order
language. Unfortunately, the existence of w is provably inconsistent with the axtoms of second-order
ZFC. A partial result holds if, given the ordered pairs of a plural variable assignment, there is always
a set w' with the feature that an arbitrary set of PFO formulas is satisfied by the ordered-pairs of a
plural variable assignment differing from the former in at most the values of singular variables just in
case it is satisfied by the restriction of the latter assignment to w'. This would require the existence
of a Lli indescribable cardinal, which is independent from the axioms of set-theory (if consistent
with them). For an excellent discussion of these issues see Shapiro (1987).

32



To forestall any ambiguities, we shall always use 'the Fs are the possible values of a

variable' to mean that the Fs are together the possible values of a variable.

With this machinery on board, we may set forth a criterion of ontological com-

mitment for PFO+ languages. We begin by emulating Quine's original proposal:

A theory couched in a PFO+ language is committed to the existence of an

object satisfying a certain singular predicate if and only if, some object

satisfying that predicate must be admitted as a possible value of one of

the theory's singular variables in order for the theory to be true;

but to this we add:

the theory is committed to the existence of objects satisfying a plural

predicate if and only if some objects satisfying that predicate must be

admitted as the possible values of one of the theory's plural variables in

order for the theory to be true.

A PFO+ theory might be committed to the existence of elephants. This will be the

case whenever some object satisfying the singular predicate 'ELEPHANT(X)' must be

admitted as the possible value of a singular variable in order for the theory to be true.

But it could also be committed to the existence of children who together carried the

piano. This will be the case whenever some objects satisfying the plural predicate

'CarriedPiano(xx)' must be admitted as the possible values of a plural variable in

order for the theory to be true.

An especially interesting case of plural ontological commitment is cardinality. For

instance, a theory is committed to the existence of infinitely many things if some

objects satisfying the plural predicate 'InfinitelinNurmber(xx)' must be admitted

as the possible values of a plural variable in order for the theory to be true.26

26For more on the use of plural predicates to describe cardinality see chapter 3 of this thesis.
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1.12 A One-Sorted Language

The predicates of PFO+ languages are sharply divided into those which are plural and

those which are not. In this respect, PFO+ languages are a poor mirror of English.

For consider the following sentences,

(39) The children carried the piano;

(40) John carried the piano

Intuitively, we are employing the same English predicate in (39) and (40), first to say

something about the children (collectively) and then to say something about John.

For instance, we expect it to follow logically from both (39) and (40) that the piano

was carried. This intuition is not preserved when we paraphrase (39) and (40) into a

PFO+ language as

(39') 3xx(Vy(y < xx <- CHILD(y)) A CarriedPiano(xx)); and

(40') CARRIEDPIANO(John).

For 'CarriedPiano(xx)' and 'CARRIEDPIANO(x)' are two different PFO+ predi-

cates: the former is plural and the latter is not.

In order to do better justice to the intuition that (39) and (40) have a predicate

in common we may appeal to Boolos's convention,27 and paraphrase (40) as:

(40") 3xxVy((y -< zz ++ y = John) A CarriedPiano(xx));

Now we get what we wanted because (40") shares the plural predicate 'Carried-

Piano(xx)' with (39').

This sort of move can be carried out quite generally. Whenever we have singular

and a plural PFO+ predicates which correspond to the same English predicate, we

can eliminate the former and have the latter do the work of both. In fact, singular

predicates with no corresponding plural can also be eliminated. If'P(x)' is a singular

predicate, we may introduce a plural predicate 'P*(xx)' to play its role. All we need

to do is pick 'P*(zzxx)' so that the following is true:

27 See section 1.6.
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(41) VxVyy[Vz(z -< yy +- z = ) --- (P*(yy) +-P(x))]."

Whenever (41) holds, we shall say that 'P*(xx)' is a plural counterpart of 'P(x)', and

that 'P(x)' is the singular counterpart of 'P*(xx)'.

By bringing in plural counterparts, we have the option of eliminating all singu-

lar variables and predicates from the language. We introduce the plural predicate

'xxi zxx,' as an abbreviation for 'theyi are some of themj', and set forth the

following definition:

l(Xz) --df Vyy(yy xx -+ xx yy).

This guarantees that '1(...)' is true of some objects just in case there is only one of

them-recall Boolos's convention! We then apply the following transformation:

* Trr(y() = Tr ( ));

* Tr(Qp A 4) = Tr(p) A Tr(Q);

* Tr(sxxi('p)) = 3xx2i Tr(p)

* Tr(xi(Qp)) = Hxx 2,+1 (1(xx 2i+1)ATr(p));

STr(Xi -< zzr)) = (zz2+1 2)

* Tr(xi = xi) = (Z2i+l 2j+1) A (X2j+1 2i+l)

* if P" is the plural counterpart of P, Tr(P(x, .. . Zim, xx, .. ., xx,)) =

P*(XX2i+1, • • ,XX2im+l, XX2ji .--,xx 2j,1 ).

It is therefore possible to formulate PFO+ languages as one-sorted languages consist-

ing solely of logical connectives, parenthesis, and plural variables and predicates. But

one can continue to use singular variables and predicates by employing the definitional

equivalences induced by our transformation:

2 8Besides requiring that it satisfy (41), we may let 'P*(xx)' behave as we please, but the following
seems like a natural further constraint:

(42) Vxx[(P*(xx) ++ Vy(y -< xx -+ P(y))].
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o 3xs(W) =_ 3xx (1(xxi) A p);

*i x~ - j =<fxx (xxi 52j);

X Xi = Xj df (xxi - xxj) A (xxj xxi);

* if P* is the plural counterpart of P,

P(Xil),..,0 Z j,, .... XXj..,xxj,) s=f P*(,i)xxt,=- , ,XXtm ...7 XX'ij .

In English, it is natural to think of 'something' as a generic quantifier, and of 'someone'

as specialized: 'someone' is a variant of 'something' which we use to indicate that the

objects we are quantifying over are persons. In a one-sorted PFO+ language, we treat

plural quantifiers as generic and singular quantifiers as specialized in much the same

way. Singular quantifiers are variants of plural quantifiers which we use to indicate

that the possible values of a variable are always a single object. Similarly, in a one-

sorted PFO+ language we treat plural predicates as generic and singular predicates

as specialized. Singular predicates are variants of plural predicates which are used to

indicate that the possible values of admissible arguments are always a single object.

Thinking of PFO+ languages as one-sorted therefore eliminates the need for an

account of the relation between singular quantification and predication and plural

quantification and predication. The former are simply a special case of the latter. It

also eliminates the need for separating the ontological commitments of PFO+ theories

in two. Our criterion reduces to the following:

A theory couched in a PFO+ language is committed to the existence of

objects satisfying a plural predicate if and only if some objects satisfy-

ing that predicate must be admitted as the possible values of one of the

theory's plural variables in order for the theory to be true.

Singular ontological commitments are now a special case of plural ontological com-

mitments: a one-sorted PFO+ theory is committed to the existence of an elephant if

objects satisfying the plural predicate 'l(xxzz) A Elephants(zxx)' must be admitted as

the possible values of a plural variable in order for the theory to be true.
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1.13 Back to First-Order Languages

In this section we will see that, by making a certain conceptual leap, it is possible to

treat one-sorted PFO+ languages as first-order languages. 29

Syntactically, one-sorted PFO+ languages are no different than their first-order

counterparts-the fact that bold fonts are used for predicates and double letters for

variables is of no importance whatsoever. But there are semantic differences. Whereas

a plural variable assignment may associate several values with a PFO+ variable, a first-

order variable assignment always associates a single value with a first-order variable.

In order to treat one-sorted PFO+ languages as first-order languages, we shall

therefore modify our formal semantics so that, with respect to an assignment, each

variable is associated with precisely one 'plurality'. This is the easy part. The hard

part will be to elucidate the status of 'pluralities'.

We begin by imposing a structural constraint. If pluralities are to serve their

purpose, they must form an atomic mereology over some dyadic relation <, in which

the atoms consist of everything there is. 30 Accordingly, the role played by the Fs

on our original semantics will be played on the new semantics by the plurality with

precisely the Fs as atoms. (This is true, in particular, when there is only one F:

the role played by an object x on the original semantics will be played on the new

semantics by the plurality with x as its unique atom-that is, x itself.) And, on the

new semantics, '-' will be interpreted as <.

Our structural constraint on pluralities gives rise to a serious difficulty. Any

atomic mereology with more than one atom includes non-atoms, so there must be

non-atomic pluralities. But since everything there is is an atomic plurality, there can

be no non-atomic pluralities after all. Contradiction!

In order to make sense of non-atomic pluralities we have to take a conceptual

29The basic insight is due to Vann McGee.
30In other words, we shall demand (a) that c be transitive over pluralities, (b) that everything

there is be an atomic plurality (that is, a plurality satisfying 'Vy(y c x -- x c y)'), (c) that every
plurality x be such that some atomic plurality bears C to x, and (d) that, if each of the As is an
atomic plurality, then the As have a unique c-fusion (that is, there is a unique plurality ax such that
each of the As bears c to x and any plurality y which bears c to x is such that some A bears c to y).
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leap. We need to allow for the idea that the subject-matter of ontology is richer than

expected. Our starting-point is the platitude that everything there is is an individual.

After the conceptual leap, we take the position that, in discovering what individuals

there are, we have not fully answered the question of what there is. We have only

addressed the small parcel of our ontology that consists of atomic pluralities. To fully

answer the question of what there is we must give an account of what pluralities there

are, both atomic and non-atomic.

On the new conception, not everything is an individual. But this is not because

the extension of 'individual' has changed: at the beginning of the inquiry we took

everything-absolutely everything-to be an individual, and whatever we counted

as an individual then we count as an individual now. Nor, of course, is it because

the world has changed. Instead, we have changed our conception of 'everything', by

forcing the singular quantifier 'there is a plurality such that it is so-and-so' to behave

like the plural quantifier 'there are some individuals such that they are so-and-so'.

Admittedly, this is not an easy leap to take. But to a certain extent it is encouraged

by the conclusions we have reached in preceding sections. We have seen that there

is more to the task of assessing the ontological commitments of a PFO+ theory than

the question of what singular predicates must be satisfied in order for a the theory

to be true: there is also the question of what plural predicates must be satisfied in

order for the theory to be true. In this sense, we have found that the subject-matter

of ontology is richer than expected.

When we take one-sorted PFO+ theories to be first-order theories, and admit non-

atomic pluralities as a part of our ontology, what we do is transfer the unexpected

richness in the subject-matter of ontology from one place to another. Instead of

countenancing a new (plural) kind of commitment to the inhabitants of a familiar

part of our ontology-the realm of individuals-we countenance a familiar (singular)

kind of commitment to the inhabitants of a new part of our ontology-the realm of

non-atomic pluralities.

Those who endorse the view that if something looks like a first-order language,

then it is a first-order language will certainly welcome the idea of treating one-sorted
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PFO+ languages as first-order languages. And I do not think there is anything to

prevent them from doing so. But I also think there is nothing to force such a move.

It seems to me that our conception of ontology does not constrain things one way

or the other. The question whether PFO + languages should be treated as first-order

languages does not give rise to a substantial dispute.

Before bringing this section to a close, there are a few points that deserve mention.

First, the fact that pluralities have a mereological structure should not be taken to

mean that a non-atomic plurality is a mereological sum. For, in the traditional philo-

sophical sense, a mereological sum is an individual.3" Since only atomic pluralities

are individuals, it follows that every mereological sum must be an atomic plurality.

Second, our treatment of one-sorted PFO+ languages as first order languages

does not, by itself, license the use of plural quantification over non-atomic pluralities.

Singular quantification over non-atomic pluralities is justified by a reinterpretation

of English plural quantification. What a parallel defense of plural quantification

over non-atomic pluralities would call for is a reinterpretation of super-plural English

quantification, and no reason has been given here to think that super-plural English

quantifiers exist. It would be a mistake to protest that, once non-atomic pluralities

are on board, our grasp of ordinary English plural quantification automatically yields

plural quantification over non-atomic pluralities. For English plural quantification

over individuals--that is, English plural quantification over atomic pluralities-is

the only kind of English plural quantification there is. Perhaps there is a way of

enriching our current use of plural quantification so as to have it encompass non-

atomic pluralities, but such a move has not been justified by anything in the present

discussion.

Finally, it is worth noting that we must modify the standard model theory for

first-order languages if our novel interpretation is to preserve the logical properties

of PFO+ sentences. Specifically, we must require that every model form an atomic

mereology over '-<'.

Throughout the remainder of this essay we will consider a family of applications
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for PFO+ languages. Our discussion will not depend on whether they receive a plural

two-sorted interpretation (as in section 1.8), a plural one-sorted interpretation (as in

section 1.12), or a first-order interpretation (as in the present section). We assume

the former for the sake of concreteness.

1.14 Applications

1.14.1 Second-Order Logic

A second-order formulation of standard (Zermelo-Fraenkel) set theory is highly desir-

able. It enables us to express the general principles underlying the first-order schemes

of separation and replacement." In addition, Vann McGee has shown that, when our

domain of discourse consists of absolutely everything, there is an extension of second-

order set theory that characterizes the set-theoretic universe tip to isomorphism.33

Yet there is some debate as to whether it is legitimate to use second-order languages

for the study of set theory. The reason is that, on one standard interpretation-

Quine's interpretation-second-order languages are nothing but 'set-theory in sheep's

clothing'.3 4 More precisely, they are two-sorted first-order languages in which vari-

ables of the first sort range over the elements of a certain set S, and variables of the

second sort range over the subsets of S.35 Second-order languages are therefore useless

when our variables range over objects which are too many to form a set. And this is

certainly the case in the intended interpretation of set theory.

It is tempting to overcome this difficulty by taking second-order languages to

be class-theory in sheep's clothing, that is, by understanding them as two-sorted

first-order languages in which variables of the first sort range over the elements of a

certain class C, and variables of the second sort range over the sub-classes of C. Doing

3 2For more on the expressive limitations of first-order languages and the role of second-order
languages in overcoming them, see chapter 5 of Shapiro (1991).

3 3See McGee (1997)
3 4See Quine (1986).
3 5However, the model-theory for second-order languages must differ from that of two-sorted first-

order languages. I owe this observation to Gabriel Uzquiano.
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so, however, only postpones our difficulties. For, in making second-order languages

available for the study of set-theory, we have made them unavailable for the study of

class-theory, which now takes center-stage.

Fortunately, Boolos has given us a new way of interpreting second-order logic,

one which does not run into trouble when our variables range over objects which are

too many to form a set. Boolos's original proposal involves a translation method

from second-order formulas into English,3 6 but we may obtain identical results by

introducing the following definitional equivalences into PFO languages:

* Xi(x X) f Zj -< xxi;

* 3X (W) -df 3xxi(Qp)V<ý*,

where /* is the result of substituting "xj xj- everywhere for rXi(xj)f (or its

notational variants).

The complication in our second definition is needed to accommodate the fact that,

although '3XVy-'X(y)' is a theorem of second-order logic, '3zxVy-'y - :xx' is neces-

sarily false (since it is impossible for there to be somne objects such that no object is

one of them).

On this interpretation, second-order formulas are definitional variants of PFO

formulas. Hence, in contexts where the expressive power of second-order ZFC is

important, PFO languages turn out to be excellent languages of regimentation.

A point is worth mentioning. So far we have accounted only for monadic second-

order variables. But, as Boolos points out, relation variables can be incorporated into

his scheme by appealing to ordered pairs.37

1.14.2 Model Theory for Second-Order Languages

A standard model for the first- or second-order language of set theory is an ordered

pair (D, I). Its domain, D, is a non-empty set, and its interpretation function, I,

3 6See Boolos (1984).
37Treat r3R"-I as a notational variant for rXicp, and FRL(x1, . ..,Jn) as a notational variant

for rXi((x1 , . ..,x)) (where '(...)' is the ordered n-tuple function). For more on polyadic second-

order logic, see Rayo and Yablo (forthcoming).
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assigns a binary relation on D to the two-place predicate letter 'E'. A sentence is then

said to be valid if it is true in all standard models.

It is a familiar point that this does not correspond to our intuitive notion of

validity. What we would like to say is, roughly, that a sentence is valid if it is true no

matter what its domain of discourse is, and no matter how its non-logical vocabulary

is interpreted. But there are no standard models corresponding to certain domains of

discourse and interpretations of 'E'. For instance, there is no model (D, I) such that

D contains all sets and I assigns to 'E' the set of all pairs (x, y) for x a member of y,

because it is a theorem of ZFC that there is no set of all sets and that there is no set

of all pairs (x, y) for x a member of y. Among other tbings, this opens the alarming

possibility of a false sentence which is true in all standard models.

There is therefore no immediate guarantee of the adequacy of standard model

theory. If it does turn out to be adequate it will be in virtue of non-trivial set-

theoretic principles, not merely in virtue of our definitions.

In fact, it is possible to improve upon the standard model theory. By building upon

Boolos's work,3 8 Gabriel Uzquiano and I have set forth a formal semantics for second-

order set theory that is intuitively adequate.3 9 We proceed by rejecting the idea that

the domain of a model must be a set of objectss. Instead we focus attention on the

objects themselves, and let them function as our domain. Accordingly, we reject the

idea that the interpretation function of a model must be a set of ordered-pairs. We let

the ordered-pairs themselves provide an interpretation for 'C'. To accommodate these

changes, we take the satisfaction predicate to be a plural predicate 'Sat(x, yy, zz)'.40

Thus, although our formal semantics cannot be formulated within a PFO language,

it can easily be captured within a PFO+ language.

With an intuitively adequate model theory at hand, it is natural to ask whether

every intuitively satisfiable set of second-order formulas is satisfied by some standard

model. A version of this proposition was first set forth by Georg Kreisel, so we shall

3"See Boolos (1985a).
3"See chapter 2 of this thesis. Similar ideas have been set forth in unpublished manuscripts by

Josep Macik Fabrega and Byeong-Uk Yi.
40Variable assignments are dealt with as in section 1.10.
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call it Kreisel's Principle.41

Alternative formulations of Kreisel's Principle-often under the guise of Reflection

Principles-have played a significant role in the development of set theory. Nonethe-

less, the literature suggests that (without the aid of proper classes) there is no way

of expressing Kreisel's Principle within a PFO (or second-order) language.4 2 On the

other hand, it is easily captured within PFO+ languages. All we need is the plural

predicate 'Sat(x, yy, zz)', from our novel formal semantics.

If true, Kreisel's Principle guarantees the adequacy of standard model theory. But

only its restriction to first-order formulas is provable within standard set theory. In

its unrestricted second-order form, it is demonstrably independent from the axioms

of set theory (if consistent with them). 4 3

We may therefore rest assured that standard first-order-model theory is adequate.

In particular, the first-order version of Kreisel's Principle guarantees that every first-

order sentence which is true in all standard models is true.44 However, without the

unrestricted version of Kreisel's Principle, we have no assurance that standard second-

order model theory is adequate. For all we know, there is a false second-order sentence

which is true in all standard models. Because of this, our novel formal semantics is a

significant improvement over standard second-order model theory.

Without further logical resources, it is not possible to extend our formal semantics

to encompass PFO+ languages. 45 Intuitively, the problem is that there are 'too many'

possible semantic values for plural predicates.

PFO+ regimentation might therefore turn out to be unstable in the strong sense

that it may not be generally possible to formulate the notion of truth-in-a-model for

a given PFO+ language in another PFO+ language. 46 In contrast, we know that

4'See Kreisel (1967) pp. 152-7.
42Shapiro provides an excellent discussion in chapter 6.3 of Shapiro (1991).
43See Shapiro (1991), chapter 6.3.
44This also follows from the first-order Completeness Theorem, which is not available in the

second-order case.
45yi (unpublished) provides a formal semantics for PFO+ languages. Unfortunately, Yi appeals

to an 'interpretation function' that exceeds the resources of PFO+ languages.
46This is not to be confused with the fact that a (sufficiently strong) PFO+ language cannot be

used to formulate its own formal semantics.
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first-order languages are stable in this respect. We have just seen that the first-order

version of Kreisel's Principle legitimizes the use of standard first-order model the-

ory, which can be formalized in a first-order language. To attain strong stability,

a friend of PFO+ regimentation might be tempted to postulate a strengthened ver-

sion of Kreisel's Principle. But such a move would presumably require some sort of

independent motivation.

Fortunately, we have seen in section 1.10 that PFO+ languages turn out to be sta-

ble in the weaker sense that a Tarskian definition of truth for a given PFO+ language

can be defined in another PFO+ language.

1.15 Conclusions

We have assumed that it is possible to quantify over absolutely everything, and found

that certain English sentences containing collective predicates resist both first-order

and PFO paraphrase. To capture such sentences we introduced PFO+ languages,

which may contain arbitrary plural predicates.

PFO+ languages turn out to be tremendously fruitful. They allow us to give a

formal semantics for second-order languages and state important set theoretic propo-

sitions; they also provide us with natural formalizations for English plural definite

descriptions and generalized quantifiers. I believe this makes a solid case for the use

of PFO+ languages as languages of regimentation.

In leaving first-order regimentation behind, we were led to enrich Quine's criterion

of ontological commitment. It emerged that PFO+ theories can have plural ontological

commitments in addition to singular ones. In this sense, we discovered that the

subject-matter of ontology is richer than one might have thought.

We noted that this unexpected ontological richness can be accounted for in differ-

ent ways. On one construal, the singular is regarded as a special case of a plural and,

accordingly, plural ontological commitments are taken to be the only kind of ontolog-

ical commitments a PFO+ theory can have. On a more radical view, the unexpected

ontological richness is accommodated by interpreting PFO+ variables as first-order

44



variables ranging over 'pluralities', not all of which should be counted as individuals.
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Chapter 2

Toward a Theory of Second-Order

Consequence

(with Gabriel Uzquiano)

There is little doubt that a second-order axiomatization of Zermelo-Fraenkel set the-

ory plus the axiom of choice (ZFC) is desirable. One advantage of such an axiom-

atization is that it permits us to express the principles underlying the first-order

schemata of separation and replacement. Another is its almost-categoricity: M is

a model of second-order ZFC if and only if it is isomorphic to a model of the form

(V,, E n (V, x V,)), for K a strongly inaccessible ordinal.

We obtain similar benefits when we allow for the existence of Urelemente. The

axioms of second-order ZFC with Urelemente (ZFCU) are not able to specify the

structure of the universe up to isomorphism, but Vann McGee has recently shown

that, provided one takes the range of its quantifiers to be unrestricted, the addition

of an axiom that states that the Urelemente form a set to the axioms of ZFCU will

characterize the structure of the universe of pure sets up to isomorphism.i In sum,

there is much to be gained from the ability to employ second-order quantification in

1This categoricity result is stated and proved in McGee (1997). A little inspection of the proof
reveals that what is required for the result to be provable is that one can prove that there is a 1-1
correspondence between the universe of pure sets and the universe of discourse.
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the context of set theory.

What is much more controversial is that we can, with a clear conscience, develop

set theory within a second-order language. The standard interpretation of second-

order quantification takes second-order variables to range over the sets of individuals

which first-order variables range over. This interpretation may be convenient for

the development of second-order arithmetic, but it will not do for the purpose of

developing set theory in a second-order language. The reason is not difficult to state.

When we do set theory, we take our first-order variables to range over all sets. But

if we take our second-order variables to range over sets of sets in the range of the

first-order variables, then second-order comprehension will fail. A simple instance of

second-order comprehension such as 3XVy (Xy +-* y ý y) will be false on account of

Russell's paradox, according to which no set contains all and only those sets that are

not members of themselves.

A different approach would be to take the second-order variables of the language

to range not over sets, but rather over classes. An instance of comprehension such as

3XVy (Xy +- y 0 y) would then be taken to amount to the existence of a class of

all and only those sets that are not members of themselves. One difficulty with this

approach is that it would be in tension with the attitude of most set theorists, who

seem to regard their subject as the most comprehensive theory of collections. There

are no collections other than sets, and even if it is, on occasion, convenient to speak

of proper classes, i.e., collections that are 'too big' to form sets, such talk is not to

be taken literally.

An interpretation of second-order quantification that avoids commitment to proper

classes, and still makes second-order logic available for the development of set theory,

is therefore preferable to one that takes second-order variables to range over classes.

In Boolos (1984), George Boolos offered just such an interpretation. He proposed

to understand second-order quantification in terms of English plural quantification. 2

2Boolos (1984) and Boolos (1985a) make use of English plural quantification to interpret monadic
second-order quantification, but rely on the availability of ordered pairs to interpret polyadic second-
order quantification. A more direct interpretation of polyadic quantification is given in Rayo and
Yablo (forthcoming).
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Accordingly, he read an instance of comprehension such as 3XVy (Xy ++ y V y) as

the truism that there are some sets such that a set is one of them just in case it is

not a member of itself.3 The advantage of Boolos' plural interpretation is that, as he

argued, it verifies verifies all instances of second-order comprehension, and legitimizes

the development of second-order set theory.

In a later article, Boolos (1985a), he made use of the apparatus of plurals to give

an account of the truth- and validity-conditions of second-order formulas of set theory.

He provided definitions of truth and of a notion of validity he called 'supervalidity,'

which were aimed to show that commitment to classes is not necessary to develop

a rigorous semantics for the language of second-order set theory. But there was an

important drawback: Boolos' definitions of truth and validity didn't generalize to a

definition of logical consequence.

The purpose of this note is to present an account of the truth- and validity-

conditions of second-order formulas which can be generalized to an account of the

conditions under which a second-order formula is a logical consequence of a set of

second-order formulas.

There are two desiderata our semantics should satisfy. First, in the spirit of the

plural interpretation of second-order set theory, it should commit us to no entities

other than sets, which are the objects in the range of the first-order variables of the

language. The second desideratum concerns the connection between truth, satisfac-

tion and validity, and will require some explanation.4

A standard model for the langnuage of first-order set theory is an ordered pair

(D, I). Its domain, D, is a non-empty set, and its interpretation function, I, assigns

a set of ordered pairs to the two-place predicate 'e.' A sentence is true in (D, I) just

in case it is satisfied by all assignments of first-order variables to members of D and

second-order variables to subsets of D; a sentence is satisfiable just in case it is true in

3More precisely, Boolos' reading is 'Either there are no sets that are not self-identical, or there
are some sets such that a set is one of them just in case it is not a member of itself'.

4The classical discussion of the connection between truth and second-order validity can be found
in Kreisel (1967). Shapiro (1991) (Sections 6.1 and 6.3), and Etchemendy (1990) (Chapter 11)
discuss some of the issues raised by Kreisel.
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some standard model; finally, a sentence is valid just in case it is true in all standard

models.

The stipulation that D and I be sets is not without consequence. An immediate

effect of this stipulation is that no standard model provides the language of set theory

with its intended interpretation. In other words, there is no standard model (D, I)

in which D consists of all sets and I assigns the standard element-set relation to 'E.'

For it is a theorem of ZFC, that there is no set of all sets, and that there is no set of

ordered-pairs (x, y), for 2 an element of y.

Therefore, on the standard definition of model, it is not at all obvious that the

validity of a sentence is a guarantee of its truth; similarly, it is far from evident that

the truth of a sentence is a guarantee of its satisfiability in some standard model. If

there is a connection between satisfiability, truth, and validity, it is not one that can

be 'read off' standard model theory.

This is not a problem in the first-order case, since set theory provides us with two

reassuring results for the language of first-order set theory. One result is the first-order

completeness theorem, according to which first-order sentences are provable, if true

in all models. Granted the truth of the axioms of the first-order predicate calculus

and the truth preserving character of its rules of inference, we know that a sentence

of the first-crler language of set theory is true, if it is provable. Thus, since valid

sentences are provable and provable sentences are true, we know that valid sentences

are true. The connection between truth and satisfiability immediately follows: if q is

unsatisfiable, then -4, its negation, is true in all models, and hence valid. Therefore,

-10 is true, and 0 is false.5

The other comforting result is a principle of reflection, provable within first-order

ZFC. According to this principle, ,for each sentence 0 of first-order set theory, there is

a standard model of the form (V1, E n (VK x 1K)), for some ordinal t, such that 4 is
true if and only ¢ is true in that model. Thus, suppose a sentence ¢ of first-order set

theory is false. Then -4 will be true, and, by the reflection principle, true in some

5See Kreisel (1967) (pp. 89-93), Boolos (1985b) (p. 84), and Cartwright (1994). The argument
is discussed in Shapiro (1991) and Shapiro (1987), (Section 6.3).
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standard model of the form (V,, E n (V, x V,)), for some ordinal r. q will be false

in that model, and hence not valid.

The situation changes drastically when we venture into a second-order language.

There is no completeness theorem for second-order logic. Nor do the axioms of second-

order ZFC imply a reflection principle which ensures that if a sentence of second-order

set theory is true, then it is true in some standard model. Thus there may be sentences

of the language of second-order set theory that are true but unsatisfiable, or sentences

that are valid, but false. To make this possibility vivid, let Z be the conjunction of

all the axioms of second-order ZFC. Z is surely true. But the existence of a model

for Z requires the existence of strongly inaccessible cardinals. The axioms of second-

order ZFC doesn't entail the existence of strongly inaccessible cardinals, and hence

the satisfiability of Z is independent of second-order ZFC. Thus, Z is true, but its

unsatisfiability is consistent with second-order ZFC.6

One could be tempted to opt for the advantages of theft over honest toil and

postulate a second-order reflection principle. But it would be somewhat disappointing

if we had to rely on a non-trivial hypothesis which-no matter how plausible--is not

susceptible of a proof from currently accepted axioms in order to establish what ought

to be obvious: that a sentence is true if it is valid and that it is satisfiable, if it is

true.

The second desideratum of our theory is therefore this: it should make plain the

connection between validity, satisfiability and truth.

Boolos' semantics satisfies this desideratum. On his definition of supervalidity,

a sentence of second-order set theory is supervalid if it is true no matter what sets

we take its quantifiers to range over and no matter what ordered pairs of sets we

take 'E' to denote. The definition, however, is schematic: to each sentence of set

theory 4 he associated a second-order sentence ¢* such that q is supervalid just in

6 For those who view the existence of strongly inaccessible cardinals as a very plausible hypothesis
and are thus not persuaded by the example, Vann McGee described in McGee (1992) another
candidate to be a second-order sentence which is true, yet unsatisfiable. Very roughly, McGee's
sentence is the result of conjoining Z with an axiom to the effect that the set-theoretic universe can't
be embedded into a strictly larger universe.
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case r* is true. It takes very little--universal instantiation and substitution-to show

that a sentence 0 is true if 0* is true. This yields an immediate connection between

validity and truth. Unfortunately, as Boolos put it, "it would seem that there is no

obvious way to generalize the notion of supervalidity to a notion of superconsequence

or supersatisfiability.'7

We shall now present our alternative account of second-order validity, which can

be extended to an account of logical consequence while satisfying the two desiderata

we just laid down. Like Boolos, we shall understand second-order quantification in

terms of plural quantification. Moreover, we will make use of a primitive satisfaction

predicate which takes predicates in some of its argument places. In this respect, our

definitions will not be unlike Boolos' definition of truth for the language of second-

order ZFC, as he himself made use of a satisfaction predicate which took predicates

in some of its argument places in his definition.

To a large extent, the success of our proposal depends on whether it is possible

to give an adequate account of the new sort of predicate it requires. Boolos made

a convincing case for the view that plural quantification can be used to understand

second-order quantification, but it is not obvious that English provides us with the re-

sources to make sense of predicates which take first-order predicates in their argument

places. We propose to understand them in terms of collective English predicates. In

'The rocks rained down,' for example, 'rained down' is not predicated of a particular

object such as this rock or that rock. Nor is it predicated of some peculiar complex

object made up by these rocks or those. Rather, it is predicated of these rocks or

those.8 Similarly, with 'The ordinals do not outnumber the cardinals' or 'The sets

possessing a rank exhaust the universe.' 9

An adequate justification of such predicates would take us far beyond the scope

of this paper, but has been taken up elsewhere by one of us.10 A similar position has

7 Boolos (1985a) (pp. 86-87).
sThis is Boolos' example. In Boolos (1985b) he hinted at the possibility of plural predication.
9 Another Boolosian example.

'0 See chapter 1.
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been developed in print by Byeong-Uk Yi.11

Stewart Shapiro has developed a semantics for the language of ZFC in a language

augmented with the primitive satisfaction predicate 'sat(P, q, R, m),' which takes

class-variables in some of its argument places.12 Our proposal will be equivalent to

Shapiro's when his quantification over classes is interpreted as plural quantification

over sets, and his predicate 'sat(P, q, R, m)' is interpreted as a collective plural pred-

icate.

It is now time to explain the thought underlying our proposal. Even from the

standpoint of the standard model-theoretic semantics, this much is uncontroversial:

A standard model for the language of set-theory is determined by the individuals that

constitute its domain, and by the ordered pairs of individuals that its interpretation

function assigns to 'E.' To require, in addition, that the individuals over which our

variables range (or that the ordered pairs assigned to 'E') form a set strikes us as

a somewhat artificial feature of the standard definition of a model. The core of our

proposal is that we conceive of a model, not as a single set-theoretic object, but

rather as given by the values of a second-order variable 'M.' Accordingly, we take

satisfaction to be a relation that a formula 4 bears, not to a certain structured set,

but to the values of 'M'. These objects will encode a specification of the individuals

over which our first-order quantifiers are to range and a specification of the ordered

pairs that are to be assigned to 'E. '1"

There are several ways in which the proposal can be implemented. The option we

favor takes a model to be given by ordered pairs of two different types: (1) ordered

pairs of the form ('V', x), which are taken to encode the fact that x is to be within

the range of our quantifiers, and (2) ordered pairs of the form ('E', (x, y)), which are

taken encode the fact that (x, y) is part of the interpretation of 'E.' We impose the

requirement that if a model is given by some ordered pairs which include ('e', (x, y)),

WYi (1999).
12 He develops this semantics in section 6.1 of his Shapiro (1991).
3This is an extremely natural move to make. In fact, similar ideas have been set forth indepen-

dently by two other philosophers concerned with English plurals and their relation to standard logic:

Josep Macih Fabrega and Byeong-Uk Yi. Their unpublished manuscripts are 'Plural Quantification
and Second-Order Quantification,' and 'The Language and Logic of Plurals,' respectively.
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then ('V', x) and ('V', y) must also be among these ordered pairs. Formally, we take

'M iL a model,' where 'M' is a monadic second-order variable, to abbreviate the

following formula of second-order set theory:

3x M ('V', x) A

Vx (Mx -+ (3y x = ('V', y) V 3w3z x = ('e', (w, z)) )) A
VwVz (M ('E', (w, z)) -+ M ('V', w) A ('V', z))

Recall that, for us, a second-order variable such as 'M' is a plural variable. Thus,
when we speak of a model M, we are not to be taken to speak of an object of some

sort or another. Rather, we should be taken to speak of some sets (the values of the

variable 'M'), which happen to satisfy the above formula. In a similar vein, we will

sometimes we. say that the domain of a model M consists of the Fs; this should be

read: 'for every x, ('V', x) is one of the values of 'M' if and only if x is one of the Fs'.

Finally, when we say a model M assigns interpretation R to 'E ', this locution should

be read: 'For every x and y, ('E', (x, y)) is one of the values of 'M' if and only if x

bears R to y'.

According to our definition, there is a model whose domain consists of all sets and

which assigns the standard element-set relation to 'E'. It is given by a second-order

variable whose values are the ordered pairs with 'V' as their first-component and a set

as their second component, and the ordered pairs with 'E' as their first component

and an ordered pair (x, y) for x an element of y as their second component.

Although it is in the second-order case that the proposal deserves the most interest,
it is best for expository purposes to begin by giving definitions of first-order truth,
validity, and logical consequence, and later extend the proposal to the second-order

case.

A first-order variable assignment is a map from the first-order variables of t;he

language into the domain of a model. Since there are denumerably many first-order

variablks in the language, the axioms of infinity and replacement guarantee that such

maps are sets. Accordingly, we may use a first-order variable to range cver variable

assignments. Let us take 's is a variable assignment with respect to model M' to
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abbreviate the formula:

Vvj (vj is a variable -+ 3!x (vj, x) E s) A

Vx (x E s --+ 3vi3y(vi is a variable A x = (vi, y) A M ('V',y) ))

Since variable assignments are functions, we shall say that 's(vi) = x' holds whenever

it is the case that (vi, x) E s. A vi-variant of a variable assignment s is a variable

assignment t that agrees with s except perhaps in the value it assigns to vi. Thus,

we will take 't is a vi-variant of s' to abbreviate the first-order formula:

s is a variable assignment A t is a variable assignment A

Vvj ((vj is a first-order variable A vj $ vi) -+ t(vj) = s(vj))

We are now in a position to introduce the predicate: ', satisfies 0 with respect to M.'

Note that this predicate takes first-order variables in two of its argument places, and

a second-order variable in its third. Our satisfaction predicate is implicitly defined

by the following axioms:

(0) s is a variable assignment with respect to M,

(1) if q is v, = vj, then s satisfies k with respect to M iff: s(vi) = s(vy),

(2) if 0 is vi E vj, then s satisfies q with respect to M iff: M ('E', (s(vi), s(vj))),

(3) if 0 is -4,, then s satisfies q with respect to M iff: s does not satisfy 4 with

respect to M,

(4) if 0 is (4 A y), then s satisfies q with respect to Al iff: s satisfies 4 with respect

to M and s satisfies X with respect to M,

(5) if 4 is 3v,4', then s satisfies b with respect to M iff: 3t (t is a vi-variant of s A t

satisfies ' with respect to M).

With our implicit definition of satisfaction in place, we can provide an explicit defi-

nition for the predicate ' is true in M':

q is true in M iff:

Vs (s is a variable assignment with respect to M -+

s satisfies q with respect to M)
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Truth is a special case of truth in a model: a sentence is true just in case it is true in

the model whose domain consists of all sets and whose interpretation function assigns

the standard element-set relatioxn to 'E'. Finally, we provide explicit definitions of

validity and logical consequence:

0 is valid iff:

VM (M is a model --+ 4 is true in M)

€ is a logical consequence of F iff:

VM[M is a model -- VyV E (r4 is true in M -+ 4 is true in M)]

We now extend the proposal to encompass second-order languages. Since the values

assigned to second-order variables may encompass too many sets to form a set, second-

order variable assignments cannot be sets. Instead, we will use a second-order variable

S. The values of S will be ordered pairs with a variable in their first component and

a member of the domain in their second component. If vk is a first-order variable,

we stipulate that S is to be true of exactly one pair of the form (vk, x); if Vk is a

second-order variable S may be true of several pairs (Vk, x) (or none). We shall say

that x is the assignment of vk with respect to S if (vk, x) is among the values of S,

and that x is an assignment of Vk with respect to S if (Vk, x) is among the values

of S. Formally, we let 'S is a variable assignment with respect to M' abbreviate a

second-order formula:

Vvi (v, is a first-order variable --+ 3!y S (vjy)) A

VX (Sx -+

[3vi(vi is a first-order varit..le A 3y (M ('V', y) A x == (vi, y) )) V

3Vi (V½ is a second-order variable A 3y (M ('V', y) A x = (V½, y) ))]

Thus, when we say 'S is a variable assignment with respect to M' we are not speaking

of an object of some sort, as grammatical form would suggest. What we mean is

that the values of the second-order variable 'S' satisfy the above formula. We let,

'S(vi) = x' abbreviate 'S (vi, x).' Moreover, we let 'x is the value of vi with respect to

S' abbreviate 'S (vi, x),' and 'x is a value of Vi with respect to S' abbreviate 'S (½, x).'

A vi-variant of a variable assignment S is a variable assignment that agrees with S
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except perhaps in the value it assigns to vi. Thus, we take 'T is a vt-variant of S' to

abbreviate the second-order formula:

S is a variable assignment A T is a variable assignment A

Vvj ((vj is a first-order variable A vj vi) -+ T(vj ) = S(vj)) A

VVI (Vi is a second-order variable -+ Vx (T (Vi, x) ++ S (Vi, x) ))

In a similar fashion, a Vi-variant of a variable assignment S is a variable assignment

that agrees with S except perhaps in the values it assigns to ½ý. Thus, we take 'T is

a ½V-variant of S' to abbreviate the second-order formula:

S is a variable assignment A T is a variable assignment A

Vvj (vi is a first-order variable -+ T(vi) = S(vi)) A

VV5 ((V, is a second-order variable A Vj $ V) -+

Vx (T (V3, x) +- S (Vj, x) ))

We are now in a position to define satisfaction for the language of second-order set

theory. The new satisfaction predicate, 'S satisfies q with respect to M,' differs from

its first-order counterpart in that it takes two second-order variables as arguments

instead of one. It is implicitly defined by axioms analogous to (0)-(5):

(0') S is a variable assignment with respect to M,

(1') if q is v, = vj, then S satisfies 0 with respect to M iff: S(vi) = S(v,),

(2') if 0 is v, e vj, then S satisfies 0 with respect to M iff: M ('e', (S(v,), S(vj))),

(3') if 0 is -n4, then S satisfies 0 with respect to M iff: S does not satisfy 0 with

respect to M,

(4') if 0 is (0 A X), then S satisfies 4 with respect to M iff: S satisfies ' with respect

to M and S satisfies X with respect to M,

(5') if 4 is ]vi/, then S satisfies 4 with respect to M iff: BT (T is a vi-variant of

S A T satisfies ' with respect to M).

Two further axioms have no first-order analogues:

57



(6') If q is Vivj, then S satisfies 4 with respect to M iff: S (Vi, S(vj)),

(7') if q is 3VI 0, then S satisfies q with respect to M iff: 3T (T is a 1V-variant of

S A T satisfies b with respect to M).

With our implicit definition of satisfaction in place, we may explicitly define truth in a

model and truth as before. And our definitions of consequence and validity carry over

to the second-order case without incident. Since the result of extending second-order

ZFC with axioms (0')-(7') allows us to define a truth predicate for second-order ZFC,

it follows from Tarski's Theorem on the undefinability of truth that axioms (0')-(7')

yield a genuine extension of second-order ZFC.

We have managed to give a formal semantics for the second-order language of

set theory without expanding our ontology to include classes that are not sets. The

obvious alternative is to invoke the existence of proper classes. One can then tinker

with the definition of a standard model so as to allow for a model with the (proper)

class of all sets as its domain and the class of all ordered-pairs (x, y) (for x an element

of y) as its interpretation function.'" The existence of such a model is in fact all it

takes to render the truth of a sentence of the language of set theory an immediate

consequence of its validity.

One difficulty with this move is that it requires us to countenance the existence of

proper classes. 5i Another concerns the instability of the semantics that results. For

once one takes the existence of proper classes at face value, class theory takes center

stage, and one must acknowledge that there is as much reason to provide a semantics

for the language of class theory as there is for the language of second-order set theory.

One may be tempted to postulate the existence of collections more encompassing than

classes. One could then use 'superclasses' to give a model theory for the first-order

14This sort of account is developed in Shapiro (1991), Section 6.1. See also Shapiro (1987). Shapiro
leaves open the question of whether talk of classes is to be taken literally.

'5 This is provided that one takes talk of proper classes literally; that is, one takes it to involve
singular reference to set-like entities other than sets. An alternative to this would be, for example, to
understand talk of classes in terms of plural reference to sets in which case the move just described
would collapse into a version of our own proposal. The view that talk of classes is best understood
in terms of plural reference to sets is defended in Uzquiano, 'A No-Class Theory of Classes.'
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theory of classes. But this is only to postpone the problem. It will arise again as soon

as one tries to give a model theory for the language of superclass theory.

What is worse, this sort of move is of no help at all if one tries to give a semantics

for a language whose variables range over all the class-like entities there are, not just

those lying below some level or other of a hierarchy of more and more encompassing

collections.

The semantics we have developed faces an analogous instability. The cost of avoid-

ing ontological expansion is 'ideological' expansion. In order to obtain a semantics for

the language of second-order ZFC we had to move into the realm of third-order logic,

by introducing a satisfaction predicate that takes first-order predicates as arguments.

In a similar way, we would be forced to resort to an even higher-order satisfaction

predicate in order to give a semantics for a language augmented with a predicate

that takes first-order predicates as arguments. The situation is quite general. When

ontological expansion is avoided and reflection principles are absent, the logical re-

sources that are needed to produce a model theory for a given language are strictly

greater than the logical resources of that language. This is problematic because there

is no guarantee that the use of such logical resources can be made legitimate. In

particular, it is doubtful that they can be interpreted in terms of English locutions

we antecedently understand.

It is a fart of life that higher-order languages are unstable in the above sense.

The present proposal does not tell us how to address this situation. But it does

show how much can be done with the logical resources that the apparatus of plural

quantification and plural predication makes available.' 6

We have stressed the implicit character of our definition of satisfaction. But it

should be mentioned that our implicit definition of satisfaction can be transformed

into an explicit one if we help ourselves to quantification over predicates that take first-

order predicates as arguments, that is, if we help ourselves to third-order quantifiers.

Let E(R) be the result of conjoining axioms (0')-(7') and replacing the satisfaction

'"For an interesting discussion of issues relating to instability, see Weir (1998), section 5.

59



predicate by a suitable third-order variable 'R'.17 We may then say that S satisfies 4
with respect to M iff VR[E(R) -+ R(S, 4, M)] holds. Unfortunately, the apparatus

of plurals does not seem to provide us with the resources necessary to understand

third-order quantification. An interpretation of third-order quantification in terms of

English non-nominal quantification is set forth in Rayo and Yablo (forthcoming), but

it is sure to be somewhat controversial.

We should like to conclude by reporting three comforting results concerning our

implicit definition of satisfaction.

The first result shows that the axioms that implicitly define satisfaction uniquely

pin down its extension. Suppose that suitable versions of axioms (0')-(7') hold of

the predicates 'S satisfies1 4 with respect to M' and 'S satisfies 2 4 with respect to

M'. Then, for every formula 4, every model M, and every variable assignment S, S

satisfies1 4 with respect to M just in case S satisfies 2 4 with respect to M. The proof

of this result is a straightforward induction on the complexity of formulas.

The second result is the derivability of all instances of Tarski's schema T. A little

symbol manipulation should convince the reader that if 4 is a sentence of the language

of second-order set theory and 'p' is a translation of 4 into the metalanguage, then

0 is true ++ p

is a derivable consequence of our definitions.

The third and last result is just that our semantics sanctions common deductive

systems for second-order languages. More precisely, given a standard axiomatic sys-

tem for second-order logic (e.g., the system indicated in Frege's Begriffsschrift), it

can be shown that if 4 is a sentence of the language of second-order set theory and
F is a set of such sentences, then 4 is a superconsequence of P if it is a deductive

consequence of F. The proof proceeds by verifying the supervalidity of the deductive

axioms and the fact that the rules of inference preserve supervalidity.

17 Since 'R' is to take the place of the satisfaction predicate, it must be a three-place third-order
variable taking second-order variables in its first and third argument places and a first-order variable
in its second argument place.
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It is a consequence of Gddel's Incompleteness Theorem that we cannot hope for

a converse of this proposition. Given any recursively axiomatizable axiom system for

second-order logic, we know how to construct second-order sentences that are super-

valid but not provable. The proof of this result is analogous to the incompleteness

proof for full second-order logic.'I

'sFor a proof of the incompleteness of full second-order logic see section 4.2 of Shapiro (1991)
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Chapter 3

Frege's Unofficial Arithmetic

In The Foundations of Arithmetic, Frege held the view that number-terms refer to

objects.' Later in his life, however, he seems to have been open to other possibilities:

Since a statement of number based on counting contains an assertion

about a concept, in a logically perfect language a sentence used to make

such a statement must contain two parts, first a sign for the concept

about which the statement is made, and secondly a sign for a second-order

concept. These second-order concepts form a series and there is a rule in

accordance with which, if one of these concepts is given, we can specify

the next. But still we do not have in them the numbers of arithmetic; we

do not have objects, but concepts. How can we get from these concepts to

the numbers of arithmetic in a way that cannot be faulted? Or are there

simply no numbers in arithmetic? Could the numbers help to form signs

for these second-order concepts, and yet not be signs in their own right?2

To illustrate Frege's point, let us consider the statement of number 'there are three

cats'. It might be paraphrased in a first-order language as:3

(1) (33X) [CAT(X)].

1This is reflected in his definition of number. See, for instance §67.
2Notes for Ludwig Darmstaedter, pp. 366-7. I have substituted 'second-order' for 'second-level'.
3 As usual, '(31x)"p()]' is defined as '3x(Q(x) AVy(p(y) --+ x = y))', and (for n > 1) '(3xz)[p(x)]'

is defined as '3x(p(x) A (3n-1..y)[p(Y) A y # xl)'.

63



If its logical form is to be taken at face value, (1) can be divided into two main logical

components: first, the predicate 'CAT(...)', which for Frege refers to the (first-order)

concept cat; and, second, the quantifier-expression '(3 3 x)[... (z)]', which for Frege

refers to a second-order concept (specifically, the second-order concept which is true

of the first-order concepts under which precisely 3 objects fall). 4 Significantly, Frege

would regard neither of these components as referring to an object.

Let us now consider a close cousin of 'there are three cats', namely, 'the number

of the cats is three'. This sentence might be paraphrased as:

(2) the number of the cats = 3.

If its logical form is to be taken at face value, (2) cannot be divided into a predicate

and a quantifier-expression, like (1). Instead, Frege would take 'the numnber of the

cats' and '3' to be names, referring to numbers (which he regarded as objects).

Frege saw a deep connectio ' between sentences like (1)-in which something is

predicated of a concept-and sentences like (2)-in which something is predicated of

the number associated with that concept. An effort to account for this connection

was a main theme in his philosophy of arithmetic. But, after the discovery that

Basic Law V leads to inconsistency, he found much reason for dissatisfaction with his

original proposal. As evidenced by the quoted passage, he no longer felt confident

about the possibility of getting from concepts to their numbers 'in a way that cannot

be faulted'.

Towards the end of the passage, Frege considers an alternative: the view that

there really are no numbers in arithmetic, and that-appearances to the contrary-

numerals are not names of objects. They do not even instantiate a legitimate logical

category, they are merely orthographic components of expressions standing for second-

order concepts. The grammatical form of a sentence like (2) is therefore not indicative

of its logical form. Presumably, 'the number of the cats = 3' is to be divided into two

main logical components. First, the expression '...cats', which refers to the (first-

4For Frege, a first-order concept is a concept that takes objects as arguments, and an (n + 1)th-
order concept is a concept that takes nth-order concepts as arguments. See Frege (1964), §21. Unless
otherwise noted, we shall use 'concept' to mean 'first-order concept'.
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order) concept cat; and, second, the expression 'the number of the ... = 3', which

refers to a second-order concept (specifically, the second-order concept which is true

of the first-order concepts under which precisely 3 objects fall). The numeral '3' is

merely an orthographic component of 'the number of the ... = 3', in much the same

way that 'cat' is an orthographic component of 'caterpillar'. The outermost logical

form of (2) is therefore identical to that of (1). If, in addition, it turns out that

the logical form of 'the number of the ... = 3' corresponds to that of '(3 3x)[... (X),

then the logical form of (1) is identical to that of (2).

It is unfortunate that Frege never spelled out his unofficial proposal (as we shall

call it) in any detail. In particular, he said nothing about how first-order arith-

metic might be understood. Luckily, Harold Hodes has developed and defended a

version of the Unofficial Proposal. 5 On Hodes's reconstruction, a sentence 'F(n)'

of the language of first-order arithmetic is to be regarded as abbreviating a higher-

order sentence '(FX) ((3,x) [Xx])', where '(3x) [... x]' is a quantifier-expression, and

'(FX) (... X ... )' refers to a third-order concept. For instance, the first-order sentence

'PRIME(19)' abbreviates a certain higher-order sentence '(Prime X)((31x9x)[Xx])'.

Hodes does not explicitly tell us how to deal with quantified sentences. But

he makes it sound as though they would involve quantification over second-order

concepts." More specifically, they would involve quantification over finite cardinal-

ity object-quantifiers: the referents of quantifier-expressions of the form '(3x)[.. .x]'.

Thus, the first-order '3zPRIME(z)' would abbreviate the result of replacing the posi-

tion occupied by '(319x)[... x]' in '(Prime X)((3 19 x)[Xx])' by a variable ranging over

finite cardinality object-quantifiers, and binding the new variable with an initial ex-

istential quantifier.

If this is right, Hodes's account of first-order arithmetic requires third-order quan-

tification. And the obvious extension to second-order arithmetic would call for fourth-

5 See his Hodes (1984)
0He says, for instance, "In making what appears to be a statement about numbers one is really

making a statement primarily about cardinality object-quantifiers; what appears to be a first-order
theory about objects of a distinctive sort really is an encoding of a fragment of third-order logic."
See Hodes (1984) p. 143.
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order quantification. These are pretty extravagant logical resources.

Here we shall see that more modest resources will do. We will develop a version

of the Unofficial Proposal within second-order logic, and show that it can be used to

account for first- and second-order arithmetic. This, in itself, is a surprising result.

But it is especially important in light of the fact that, although the use of higher-

order languages is often considered problematic, recent work has done much to assuage

concerns about certain second-order resources.7

3.1 A Transformation

To simplify our presentation, we will proceed on the assumption that the positive

integers exist. (In section 3.4 we drop this assumption.) It will also be convenient to

begin by taking second-order quantifiers to range over (first-order) concepts, as Frege

did.

We will work within a second-order language L, with a suitably unrestricted

domain (such as our current domain of discourse). In particular, we assume that

the domain of L includes the positive integers. Besides the standard variables and

predicates, 8 we take L to contain a specialized arithmetical vocabulary. It is to include

the first-order arithmetical variables 'mi', 'm 2 ', etc., whose range is restricted to the

7 See especially Boolos (1984), Boolos (1985a) and Boolos (1985b). See also McGee (2000) and
Rayo and Yablo (forthcoming).

8 We take L to contain first-order variables 'x ', ' 2 ', ... and, for n a positive integer, n-place
second-order variables 'Vx', 'V1/', .... As a precaution against variable clashes, we divide our mo-
nadic second-order variables in two: the 'V21_-'-which we abbreviate 'Z,'-will be paired with
first-order arithmetical variables; the 'V2A'-which we abbreviate 'Xi'-will be used for more gen-
eral purposes. Similarly, we divide our dyadic second-order variables in two: the 'Vz,_ '-which
we abbreviate 'R,'-will be paired with second-order arithmetical variables; the 'V2 '-which we
abbreviate 'R '-will be used for more general purposes. Finally, when n > 2 we use to 'R~ abbre-
viate 'V,"'. Also to avoid variable clashes, we will sometimes appeal to the introduction of unused
variables. We employ 'w', "v' and 'u' as unused first-order variables, 'W', '1V' and 'U' as unused
monadic second-order variables, and, for each n (to be determined by context), we employ 'R' as
an unused n-place relation variable. (It is worth noting that appeal to unused variables could be
avoided by renumbering subscripts.) It will often be convenient regard 'x', 'y', and 'z' as arbitrary
first-order variables and 'X', 'Y' and 'Z' as arbitrary (monadic) second-order variables.

L also contains the following: (a) the identity symbol '='; (b) predicate-letters 'Pn,; (c) logical
connective-symbols '-' and 'A' (with 'V', '-+' and 'i-' defined in the usual way); (d) the quantifier-
symbol '3' (with 'V' defined in the usual way); and (e) parenthesis.
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positive integers, together with the arithmetical predicates '1N(m,) ' , 'SN(m, mj)',

'+N(mi, m j, mk)' and 'xN(mi, mj, mk)', interpreted in the obvious way.9 We shall

say that a formula is part of the first-order arithmetical fragment of L, A1, just in

case it contains no non-arithmetical predicates and all of its variables are first-order

arithmetical variables. (It is easy to verify that A' is a notational variant of the

language of first-order arithmetic.)

Finally, we introduce some definitions, all of which are couched in purely logical

vocabulary:

(D1) X r Y --df 3R [Vw(Xw -+ 3!v(Yv A Rwv)) A Vw(Yw -+ 3!v(Xv A Rvw))];

(The objects falling under X are as many as the objects falling under Y)

(D2) E(X, Y) -df 3w[-nXw A Vv(Yv +* (Xv V v = w))];

(The objects falling under Y are the objects falling under X and one more)

(D3) F(X) =df 3w (Xw) A -3W(E(W, X) A W - X);

(There are finitely many objects falling under X)

(D4) 3FX (...) -Ea X (F(X) A ... );

(There is a concept X such that there are finitely many objects falling under X

and...)

(D5) 1(X) =df 3!w(Xw);

(There is precisely one object falling under X)

(D6) S(X, Y) -df VW(E(X, W) -+ Y m W)"

(The objects falling under Y succeed the objects falling under X in number)

(D7) +(X, Y, Z) =df VW[(W • Y A Vu(Wu -+ -'-Xu)) -4

Vvvu(Vu +- (Xu V w/u)) -4 V • Z)I;

9On the intended interpretation, '1N (m,)' is true iffmi is the number 1, 'SN(mrni, m,)' is true iff the
successor of m, is my, '+N(mni, mj, ink)' is true iff the sum of mi and my is ink, and 'x N (m, m,, mnk)'
is true iff the product of mi and mi is ink.
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(D8) x (X, Y, Z) -df 3R [VwVv((Xw A Yv) --+ !u(Zu A Rwvu)) A

Vu(Zu -+ 3!w3!v(Xw A Yv A Rwvu))],

Our simplified version of the Unofficial Proposal is based on the observation that

every formula of A' can be transformed into a purely logical formula of L, as follows:

* Tr(-sb) =-Tr(b);

* Tr(' A 0) = (Tr(zb) A Tr(O));

* Tr(]mi (i)) = 3FZi (Tr(b));

* Tr(m, = m,) = Z A Zj;

* Tr(1N(mi)) = 1(Z);

* Tr(SN(mi, mj)) = S(Z,, Zj);

* Tr(+N(m., m3, mk)) = +(Zi, Z, ZZk);

* Tr(XN(m, m3,, mk)) = x(Zi, ZJ, Zk).

As an example, consider 'VnVm(n + m = m + n)'. It can be expressed in A' as:

Vm, Vm 2 Vm 3 im4 (+N(ml, m 2 , m 3) A +N(m 2, ml, ,n 4) --+ M3 = M 4 );

and the result of applying our transformation is:

VFZV'FZ 2 VFZ3 VFZ 4 (+(ZI Z2 , Z3 ) A +(Z 2 7Z, ,Z 4) -+ Z3  AZ4)).o 0

In general, the connection between y and Tr(V) can be characterized as follows:

[Con] Suppose p(m,) is a formula of A' and let i(Zi) be Tr(p(mi)). If

there are finitely many Fs, then p(m,) is true of the number of the Fs just

in case t/(Z,) is true of the Fs."

0lI assume that 'V'FZ, (p)' abbreviates '- 3FZ, (- p)'.
11More generally, suppose p(m,1 ,...,m,,) is a formula of A I and let 4(Z,, ... .,Zi,,) be

Tr(P(m2 ,,... ,m1 ,)); suppose, moreover, that there are finitely many Fls, finitely many F 2s, ... ,
and finitely many Fas. Then yp(m,,,..., mz,,) is true when m, is the number of the Fs, m,2 is the
number of the F2s, ... , and m,, is the number of the Fas just in case 4(Z,,..., Z,,) is true when
the Zi,s are the Fls, the Z,2s are the F 2 s, ... , and the Z,,s are the Fas.
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The proof of this result is a straightforward induction on the complexity of formulas,

and relies on the following three assumptions:

* Hume's Principle: if there are finitely many Fs and finitely many Gs, then

'mi = mi' is true of the number of the Fs and the number of the Gs just in case

'Zi ̂  Zj' is true of the Fs and the Gs;

* if there are finitely many Fs, then '1N(mi)' is true of the number of the Fs just

in case '1(Zi)' is true of the Fs;

* if there are finitely many Fs and finitely many Gs, then 'Sl(mi, my)' is true of

the number of the Fs and the number of the Gs just in case 'S'(Zi, Zj)' is true

of the Fs and the Gs.

It is essential that the domain of L include infinitely many objects. 12 Because of this,

Tr does not reduce first-order arithmetic to pure second-order logic. But it comes

close: to every truth of first-order arithmetic it maps a second-order consequence of

the axiom of infinity.

It is possible to extend Tr so that it encompasses second-order arithmetic, by mak-

ing use of a certain kind of coding."3 Let us enrich L with second-order arithmetical

variables 'Mi', 'M 2', etc. We shall say that a formula is part of the second-order

arithmetical fragment of L, A2 , just in case it contains no non-arithmetical predicates

and all of its variables are first- or second-order arithmetical variables. (It is easy to

verify that A2 is a notational variant of the language of second-order arithmetic.) Our

transformation can be made to encompass A2 by way of the following two clauses:'14

* Tr(3M, (cp))= B3P, (Tr(c));

"2Suppose, for instance, that the domain of L contained only one object. Then it will be true that

vFZ 1 VFZ 2 (1(Z 1)AS(Z 1 ,Z2 ) -- Z1 = Z2),

even though this is the result of applying our transformation method to a version of '1 = 2' in A'.

Clearly, analogous problems arise when the domain of L contains any finite number of objects.

13Thanks to Vann McGee for pointing this out to me.
'4 Polyadic second-order quantification can be defined as monadic second-order qiantification over

sequences, which can be simulated within first-order arithmetic.
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* Tr(Mim) = 3W[Zj MWA W vVu(R(v, u) +< Wu)].

Our coding works by representing each arithmetical concept Mi by a dyadic relation

R1. Specifically, we represent the fact that a number mj falls under Mi by having it

be the case that some concept W under which precisely mj objects fall be such that

some individual v bears R, to all and only the individuals falling under W. As one

might expect, the extended transformation yields a suitable strengthening of [Con]

for A 2.

We are finally in a position to state our simplified version of the Unofficial Pro-

posal: every formula of A2 is to be eliminated in favor of its transformation.

3.2 Impure Arithmetic

In section 3.4 we will have more to say about what the status of this 'elimination'

might be. For now, let us return to Frege's starting point and focus our attention on

impure arithmetic. Consider, for example, 'the cats are as many as the dogs'. The

Frege of the Foundations would have us paraphrase it as

The number belonging to the concept cat is the number belonging to the

concept dog;

where 'the number belonging to the concept cat' and 'the number belonging to the

concept dog' refer to numbers. On the Unofficial Proposal, this sentence should be

eliminated in favor of 'The objects falling under the concept cat are as many as objects

falling under the concept dog', or:

± [CAT(x)] X [DOG(Z)].

Syntactically, an expression of the form 'X [p(x)]' takes the place of a monadic second-

order variable. But the result of substituting 'I [~p(x)]' for 'Y' in a formula '4(Y)' is

to be understood as shorthand for:

3W (Vx(Wx + p(x)) -> P(W)).
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Consider now the mixed sentence 'the number of the cacs is 3'. From the perspective

of the Foundations, it might be paraphrased as:

The number belonging to the concept cat is three.

But, on the Unofficial Proposal, this sentence should be eliminated in favor of:

3(± [CAT(x)]);

where numeral-predicates are defined in the obvious way:

* 2(X) -d VFY(S(Y, X) - 1(Y));

* 3(X) df VFY(S(Y, ) - 2(Y));

* etc.

This sort of approach towards impure arithmetic can easily be generalized. Let us

enrich L with a predicate 'N(X,, mj)' which takes a standard second-order variable in

its first argument-place and an arithmetical first-order variable in its second argument-

place. On its intended interpretation, 'N(Xi, mj)' is true just in case mr is the number

of the objects falling under Xi. Consider 'The number belonging to the concept cat

is three' as an example. It can now be formalized in L as:15

(3) 3m 1(N(ti [CAT(xi)], mi) A 3N(ml)).

We can make our transformation encompass impure arithmetic by extending it with

the following clauses:

* Tr(N(Xi, m,)) = Xi ^ Zj ;

* Tr(Bx, (p))= 3]x (Tr(y));

1 5In analogy with the above, we let '3N(ml) ' be shorthand for:

VmitVm, ((1N(mi) A SN(m1, my)) -4 S"(m, m )),

for 'mi' and 'mj' unused arithmetical variables. Other numeral-predicates in the arithmetical frag-
ment of L are to be given a similar treatment.
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o Tr(3X (W)) = 9X4 (Tr(p));

* Tr(Xi xj) = X, xj ;

* Tr(3R (92)) = 3R' (Tr(y));

* Tr(Ri(x4,,..., y,•jn, ) = Rn(x,,..., x,+,j);

STr(x, = xj) = i = j ;

* Tr(Pn(xi,,...,x ))= P (x,..., .).

As an example of the extended transformation, note that Tr converts (3) to:

3FzI(±X [CAT(x 1)] ; Z1 A 3(ZI));

or, equivalently:

3(X"1 [CAT(Zx)]).

For further illustration, note that 'the number belonging to the concept cat is the

number belonging to the concept dog' can be formalized in L as:

3ml [N(XI [CAT(xi)], i 1 ) A (N(Q1 [DOG(xi)], mi)].

which Tr converts to:

3 Fz [±X [CAT(xl)] Z1 A ±x [DOG(x)]J Zl,

or, equivalently:

i1 [CAT(ZXl)] X [DOG(Zxi)].

As one would expect, the extension of Tr yields a suitable strengthening of [Con].
It is worth emphasizing that our transformation is not defined for every formula

of L. Notably, it is undefined for mixed identity statements 'x, = mj'. This is as

it should be. The view that numbers are objects lead Frege to the uncomfortable

question of whether the number belonging to the concept cat is, for instance, Julius
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Caesar. But on the Unofficial Proposal, such questions never arise, because number-

terms do not refer to objects. 'The number belonging to the concept cat is the

number belonging to the concept dog' is to be eliminated in favor of 'the concept cat

is equinumerous with the concept dog', and 'the number belonging to the concept cat

is 3' is to be eliminated in favor of 'the concept cat is equinumerous with any concept

under which three objects fall'.

The question whether Julius Caesar is the number belonging to the concept cat

isn't only uncomfortable because it appears to be nonsensical. It also underscores a

problem Paul Benacerraf made famous, that if mathematical terms refer to objects,

then nothing in our mathematical practice determines which objects they refer to.16

A remarkable feature of the Unofficial Proposal is that it avoids Benacerraf's Problem

altogether. It would, however, be a mistake to conclude from this that the Unofficial

Proposal is the last word on Benacerraf's Problem, since the inscrutability of reference

pervades far beyond arithmetic.

One would like to be able to count cats. For that purpose we introduced the

formula 'N(±' [CAT(x,)], mj)' of L. We have seen that our transformation is defined

for this formula, and that it can be eliminated on the Unofficial Proposal. But one

would also like to be able to count numbers. One would like to say, for example,

that the number of numbers falling under the concept prime smaller than ten is

four. And, unfortunately, our transformation is not defined for a formula such as

'N(rh, [PRIME-LESS-THAN-10(m,)], m,)'. 17 To make up for the loss, we introduce a

new predicate 'NN(Mi, mY)', by appealing to the same sort of coding that allowed

our transformation to encompass second-order arithmetical quantifiers.'8 Informally,

'NN(MAI,, mj)' is to abbreviate a formula of L to the effect that there is a binary

relation R with the following properties:

'6 See Benacerraf (1965).
'f7In analogy with the above, we let the result of substituting 'ihz [~p(m,)]' for 'M,' in a formula

'< (M3 ) ' be shorthand for

3Mk (Vm,(Mk m, &* p(mi)) + (M,)).

for 'Mk' an unused variable.
' 8 Thanks to Vann McGee for pointing this out to me.
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* For any number n, AMin holds just in case some member of the domain of R is

paired with exactly n objects;

* every member of the domain of R is paired with finitely many objects;

* for any x and y in the domain of R, if the objects paired with x are as many as

the objects paired with y, then x = y;

* the domain of R contains exactly mj objects. 19

The new predicate allows us to say that the number of numbers falling under the

concept prime smaller than ten is four. It also allows us to say that the number of

numbers falling under the concept prime smaller than six is the number of objects

falling under the concept cat:

3m 2 (NN(rL [PRJMiE-LESS-THAN-6(mi)], m 2 ) A N(X1 [CAT(Xl)], m 2))

And, as desired, our transformation is defined for any formula 'NN(M1 , mj)'.

We are now in a position to state a more general version of the Unofficial Pro-

posal: every formula of L for which Tr is defined should be eliminated in favor of its

transformation.

3.3 Interpreting Second-Order Languages

There is a steep price to be paid for the Unofficial Proposal in its present form: one

is driven into the mysterious realm of Fregean Concepts. Fortunately, we have taken

care to ensure that the outputs of our transformation are always formulas of L. So

'"9 More precisely, 'NN(MZ, m,)' is to abbreviate:

3R [Vmk (Mmk wt (VwUv v (Wv i Rwv) A N(IW, m3))) A

VwVv (Rwv -, 3FWVu (Wu + Rwu)) A
VwVvVWVV ((3u (Rwu) A Vu (Wiu +- Rwun) A Vu (Vu +- RTiu) A W V) -- w = v) A
3W (v (Wv -+ 3Bi (RvT)) A N(W, mj)) ];

for mk an unused variable.
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talk of Fregean Concepts can be avoided simply by parting company with Frege in

our interpretation of second-order logic.

Not anything will do. On Quine's interpretation, second-order logic is 'set-theory

in sheep's clothing'. So one can only succeed in the task of eliminating number-terms

from arithmetic if one has previously succeeded in the far more difficult task of elim-

inating set-terms from set-theory. Nor is any progress made by interpreting second-

order logic as Boolos has suggested. 20 Our definitions (D1) and (D8) make essential

use of polyadic second-order quantifiers, which Boolos treats as ranging (plurally)

over ordered n-tuples. But ordered-pair-terms are presumably no less problematic

than numbers-terms.

Some deviousness is needed to avoid Fregean Concepts without betraying the

spirit of the Unofficial Proposal. One way of doing so is by defining second-order

quantifiers implicitly, in terms of an open-ended schema, as in McGee's 'Everything'.

Another is by interpreting second-order logic as in Rayo and Yablo's 'Nominalism

through De-Nominalization'. Alternatively, one might argue that second-order logic

is to be accepted as primitive, and taken at face value.

If one is skeptical towards these approaches, but endorses Boolos's work on plural

quantifiers, a slightly different strategy suggests itself. We retain monadic second-

order quantifiers, interpreted in a Boolosian fashion: '3X' is read 'there are some

objectsx such that', and 'Xy' is read 'ity is one of themx'.2 ' But we give up polyadic

second-order quantifiers. To make up for the loss, we introduce atomic plural predi-

cates: atomic predicates taking second-order variables as arguments.22

Instead of using definitions (D1) and (D8) above we now treat 'X e Y' and

'x (X, Y, Z)' as atomic plural predicates. The former is to be interpreted by appeal

to our pre-theoretic understanding of the English predicate '...are as many as .

Thus. as a first approximation, '3X3Y(X • Y)' might be read:

There are some objectsx and some objectsy such that theyx are as many

20 See Boolos (1984) and Boolos (1985a).
2 1Boolos's original proposal incorporates a complication in order to allow for second-order variables

to take 'empty' values (see Boolos (1984)). Here we shall not require this complication.
22I offer a detailed defense of plural predicates in chapter 1.
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as themy.

But this is not exactly what we want. For when there are infinitely many Fs or

infinitely many Gs, our pre-theoretic grasp of 'the Fs are as many as the Gs' is

somewhat vague. It will do, for present purposes, to interpret 'X ^ Y', not as 'theyx

are as many as themy', but as the slightly more cumbersome

either theyy are not finite in number, or theyx are as many as themy;

where '... are as many as ... ' and '...are finite in number' are understood in accor-

dance with their pre-theoretic readings.

An interpretation for 'x (X, Y, Z)' is provided implicitly, by way of the following

axioms:

(Al) V~XVFYVVZ [1(Y) -÷ (x(X, Y, Z) + Z X)]-

(A2) VFXVFYVFZVFW [S(W, Y) --+ (x (X, Y, Z)

vFV(x(X, W, v) VFU(+(V, X, U) - Z~ U)))].

We may then apply our transformation as before, and prove a suitable version of [Con].

It should be noted, however, that the present approach is unable to accommodate

the coding techniques that allc wed us to account for second-order arithmetic and to

define the predicate 'NN(M,, mn,)'.

We have seen that Frege's Unofficial Proposal can be developed with surprisingly

modest logical resources: full second-order quantification, or monadic second-order

quantification together with atomic plural predicates. Let us now turn to the question

of what it might be used to accomplish.

3.4 Applications

The Unofficial Proposal-the view that number-statements are to be eliminated in

favor of their transformations -can take several different forms, depending on the sort

of elimination one has in mind. On an approach like Hodes's, number-statements are
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taken to abbreviate their transformations. As a result, number-terms do not refer

to objects, and there is room for rejecting the existence of numbers altogether. The

Unofficial Proposal might therefore provide a basis for a nominalist philosophy of

arithmetic.

It should be noted, however, that if there are only finitely many objects, then

Tr(c) will not always have the truth-value that p receives on its standard interpre-

tation. 23 In order to avoid infinity assumptions, a nominalist might claim that a

number-statement p abbreviates 'necessarily, (4 -+ Tr(y))' (where '4' is a sentence

stating that there are infinitely many objects, such as '3X (-IF(X) A 3x Xx)'). On

the plausible condition that it is possible for there to be infinitely many objects, 'nec-

essarily, (4 -+ Tr(p))' is true if and only if p is true on its standard interpretation.24

A different approach towards the Unofficial Proposal might serve the purposes

of the Neo-Fregean Program, championed by Crispin Wright and Bob Hale. Neo-

Fregeans believe that Hume's Principle allows us to reconceptualize the state of affairs

which is described by saying that the Fs are as many as the Gs, and that, on the

reconceptualization, that same state of affairs is rightly described by saying that the

number of the Fs is the number of the Gs. 25 A version of the Unofficial Proposal might

allow Neo-Fregeans to make the more general claim that every number-statement

p describes-on the appropriate reconceptualization-the state of affairs which is

otherwise described by Tr(p).

Even if the Unofficial Proposal is to be abandoned altogether, it would be a mis-

take to neglect the connection between number-statements and their transformations.

Any account of arithunetic that takes number-terms to refer to numbers must yield

an account of how applied arithmetic is possible. Specifically, it must provide an

explanation of how our account of the natural world can bear upon our knowledge of

number-statements, and an explanation of how our knowledge of number-statements

can bear upon our account of the natural world. But [Con] provides us with just such

23 See footnote 12.
2 4For more on modal strategies, see part II of Burgess and Rosen (1997). Hodes discusses a modal

strategy in section III of Hodes (1984).
25See Wright (1997), section I.
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an explanation. The following example should make this clear.

Let us suppose that the tiles on my kitchen floor are arranged as in the diagram

below, and that I wish to know how many of them there are.

Ll 
t-F F E1

- -=7- - - -

Let us say that the rows of tiles on my kitchen floor are the Rs, that the columns of

tiles are the Cs, and that the tiles themselves are the Ts. By studying my kitchen

floor, I can put myself in a position to conclude that 'x (Z,, Z3, Zk)' holds of the Rs,

the Cs and the Ts. And, on the assumption that the relevant second-order resources

can be shown to be unproblematic, it is no mystery that this should be so. Just as

the first-order sentence 'Vx WHALE(X) -+ MAMMAL(x)' can be part of an account of

the natural world pertaining to the taxonomical characteristics of whales, the second-

order sentence 'x (i[R(x)], i[C(x)], ±[T(x)])' can be part of an account of the natural

world pertaining to the tiles on my kitchen floor.

Enter [Con] and we can make the leap to statements about numbers. For [Con]

tells us that the second-order predicate 'x (Zi, Zj, Zk)' holds of the Rs, the Cs and

the Ts just in case the number predicate ' x(mi, mj, imk)' holds of the number of the

Rs, the number of the Cs and the number Ts. So it explains how our account of the

natural world can bear upon our knowledge of number-statements: our knowledge of

the truth of 'x (i[R(x)], ±[C(x)], I[T(x)])' gives rise to knowledge that the number of

the Ts is the product of the number of the Rs and the number of the Cs.

In a similar way, our knowledge of the truth of the second-order '1(^[R(x)])' and
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'14(Q[C(x)])' gives rise to knowledge that the number of the Rs is 11 and that the

number of the Cs is 14. By applying a simple computation, we may therefore come to

know that number of the Ts is 154. But [Con] tells us that '15 4 N(mi)' is true of the

number of the Ts just in case '154(Zi)' is true of the Ts themselves. So it explains

how the knowledge of a number-statement can bear upon our account of the natural

world: our knowledge that the number of the Ts is 154 gives rise to the knowledge

that '154(Q[T(x)])' is true and, hence, to the knowledge that there are 154 tiles on

my kitchen floor.

A few points about this example deserve mention. First, it is not intended as a

description of our actual practice. It is intended as a rational reconstruction of the

ways in which the knowledge of number-statements can interact with our account

of the natural world. Second, it should not be taken to suggest that arithmetical

computations can only be carried out by appeal to numbers. In fact, the opposite

is true: [Con] makes clear that the derivation of a number-statement can always

be reproduced within the framework of second-order logic. Finally, our example

presupposes that [Con] can be known to be true. Accordingly, it presupposes that

the three assumptions upon which [Con] is based can be known to be true-Hume's

Principle in particular. Here we have remained silent on the question of how these

assumptions should be justified. Different accounts of arithmetic are likely to answer

it in different ways.

The example can easily be generalized. Suppose sp(m,) is a formula of L for which

Tr is defined, and let 4'(Z,) be its transformation. [Con] tells us that p(m,) is true

of the number of the Fs just in case 4'(Z,) is true of the Fs themselves. Thus, an

account of the natural world which implies a statement to the effect that 4(Z,) is

true of the Fs can give rise to the knowledge that p(mi) is true of the number of the

Fs and, converescly, the knowledge that p(m,) is true of the number of the Fs can

lead us to enrich our account of the natural world with a statement to the effect that

'Q(Zi) is true of the Fs.

We discussed two variants of Frege's Unofficial Proposal, and saw that they might

serve the purposes of a nominalist philosophy of arithmetic and of the Neo-Fregean
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Program. We also saw that, even if the Unofficial Proposal is ultimately rejected,

it can be used to shed light on the interaction between our knowledge of number-

statements and our account of the natural world.
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Appendix

1 Proof of (BP)

Suppose (BP) is false. Then there are some ordered-pairs, the Gs, such that, given

any Fs, the Gs map something onto the Fs. That is, given any Fs, there is an x such

that, for every y, (2, y) is one of the Gs if and only if y is one of the Fs.

Say that y is one of the Rs just in case (y, y) is not one of the Gsa. We start by

verifying that there is at least one R. Suppose for reductio that, for every y, (y, y) is

one of the Gs. By hypothesis, there is an object a such that, for every x, (a, x) is

one of the Gs. By hypothesis again, this means that there is an object ca ', such that,

for every x, (a• , x) is one of the Gs just in case x is one of the things identical to a

(i.e. just in case x = a). Since there exist at least two objects in the world, a must

be distinct from a'. Hence, by the definition of a (, (ac, a•) is not one of the Gs.

Contradiction.

Now, by hypothesis, there is an object a R , such that, for every x, (caR , x) is one

of the Gs just in case x is one of the Rs. Suppose a R is one of the Rs; then, by

our characterization of the Rs a•R is not one of the Rs. So aR is not one of the

Rs. But then, again by our characterization of the Rs, aR must be one of the Rs.

Contradiction.
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2 Formal Characterization of PFO languages

Let a PFO language (short for plural first-order) consist of these symbols: (a) logical

connectives: '3', '-' and 'A'; (b) singular variables: 'xr', 'x2', etc.; (c) plural variables:

'xxl, 'xx 2
' , etc.; (d) logical predicates '=' and '-'; (e) singular non-logical predicates:

'P1', 'Pt', ... , 'Pt', 'P2', ... , etc.; and (f) auxiliaries: '(' and ')'. The formulas of

PFO languages are defined as follows:

* r,1 = x1 ,x,' x < xxZj and rPf(x,,,... ,xj,) are formulas;

* if rp and r4 " are formulas then so are r'3x( 9p), r3xx,(p), r•n and r(ý A ')Q:

* nothing else is a formula.

If ý is a PFO formula, we shall let it abbreviate the (subscripted) English sentence

Tr((p), where Tr(...) is defined as follows:

* Tr(•--p') = 'it is not the case that' - Tr( p');

* Tr('p A 1') = 'it is both the case that' -- Tr(,p) 'and' -- Tr(r-f);

* Tr(Q3x,(yp)) = rthere is an objecti such thatn' - Tr(r'p):

* Tr(G3xx,(Qp)) = "there are some objects, such that- Tr(-cp');

* Tr(x = x3,) = 'it, is identical to it-;

* Tr(x, -< xx-) = it, is one of them>';

in addition, non-logical predicates are to be translated into English in accordance

with their intended interpretations. As it might be, Tr(rPll(x,)") = nit, is red', and

Tr(QP?(x,,zj)") = it, is bigger than itj'.

As an example, note that (4) turns out to abbreviate something equivalent to (5),

(4) 3z,3z(zi zzxx,);

(5) there is an object1 and some objectsj such that it, is one of them,.
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The expressions '-+', '+', 'V' and 'V' are defined as usual. Also, we will sometimes

use variables 'x', 'y', 'z', ... instead of 'xl', 'X2', ... , and variables 'xx', 'yy', 'zz',

.instead of 'xxz', '112', . Finally, we may use predicates such as 'RED' and

'BIGGER' in place of the non-logical predicate letters such as 'P"' or 'P2', and define

constants and non-logical function letters out of relations in the ordinary way. A

formal semantics for PFO languages is provided in section 1.14.2.

3 Formal Characterization of PFO+ languages

Let PFO+ languages be the result of extending PFO languages with plural predicate

letters: •_ m' n), rpmtn),, . .. (for 0 < m and 0 < n). We then add the following

clause to our characterization of formulas:

Srp(m,n)(xl 7 xm, 1XX,..., , xx) is a formula.

Plural predicates are to be understood as collective English predicates, in accor-

dance with their intended interpretations. As it might be, Tr(rP•°'1)(xx,)') = rthey,

are scattered-, and Tr(P•i2)(zi,x, xxk)') = riti is between themj and themk . In

practice we shall use predicates such as 'Scattered' and 'Between' (in bold font) in

place of plural predicates such as 'Pýo,)' and 1'P2)

4 Generalized Quantifiers

Let Tr(Qp) be the following transformation, from a first-order language with general-

ized quantifiers to an appropriate PFO+ language:

* Tr(rxi = xj-) = xx, xxj A xxj -< xx,;

* Tr(rP(xZ,.. ., x,)) = rP(1 , ... , z,) ;

* Tr(Q A $1) = Tr( if) A Tr(V);

* Tr(•'-W)= Tr=(');

* Tr(r•3xi(ky) = 'rr,[Tr(b)] L- 7r1,[x, = x]•;
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* Tr(Q[Qx • : ]( )() = 7Q*(r,, [Tr(6) A Tr (d)], I7,[Tr(,)]))

(where [Qx, : ]-' is the basic quantifier rQ of the thingsi that are Q-, and Q*'-

is the plural predicate corresponding to the determiner rQ').

A rather cumbersome induction on the complexity of formulas shows that, if O is

a sentence from a first-order language with generalized quantifiers, then ;i and Tr(y)

are equivalent.

5 Definitions of Tr-uth and Satisfaction for PFO+ Languages

We work within a PFO+ language. For the sake of simplicity, we assume that the

domain of discourse of the metalanguage is the same as the domain of discourse of

the object language. Let 'Assignment(xx)' abbreviate the following:

Vy(y -< xx -+ 3z(y = (v, z) for v a variable)) A

Vv(v is a singular variable -4 3!z((v, z) -< xx)) A

Vv(v is a plural variable -+ 3z((v, z) -< xx))

Next, define the satisfaction predicate 'Sat(yp, yy)' implicitly, by way of the fol-

lowing axioms:

* SatQ(4, , yy) ½+ -ySat(flV, yy);

* Sat(,Co A 9-, yy) ½+ Sat( tOr, yy) A Sat(r-'1, yy);

* Sat(r]xs,,IP, yy) ++ 3tt[Assignment(tt) A Vv((v is a variable A v :Tx,') -

Vw((v, w) -< yy + (v, w) -< tt)) A Sat(r ",t , tt)];

* Sat(-3xx.,•, yy) ++ Ett[Assignment(tt) A Vv((v is a variable Av ' Z xx,) -1)

Vw((v,w) -< yy ++ (v, w) -< tt)) A Sat(yW, tt)]:

* Sat(x, - :rxj'z, yy) +-+ Vz((xcp,, z) < yy --4 (nrzx,', z) -< yy);

* Sat(rP(x,). gyy) +½ Vz((Qx,', z) -< yy -+ Pt(2)), where 'P'(...)' is a translation

of 'P(...)' into the mctalanguage;
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* Sat(rP(xxj,) ,yy) + VzzVw((('xxz ,w) -< yy +- w -< zz) - P*(zz)), where

'P*(...)' is a translation of 'P(...)' into the metalanguage.

Finally, truth is defined in terms of satisfaction in the usual way:

TRUE(P) -=df Vyy(Assignment(yy) -4 Sat(p, yy)).
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