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Abstract

Firms face uncertain financing conditions, which can be quite severe as exemplified
by the recent financial crisis. We capture the firm’s precautionary cash hoarding and
market timing motives in a tractable model of dynamic corporate financial manage-
ment when external financing conditions are stochastic. Firms value financial slack
and build cash reserves to mitigate financial constraints. The finitely-lived favorable
financing condition induces them to rationally time the equity market. This market
timing motive can cause investment to be decreasing (and the marginal value of cash to
be increasing) in financial slack, and can lead a financially constrained firm to gamble.
Quantitatively, we find that firms’ optimal responses to the threat of a financial crisis
can significantly smooth out the impact of financing shocks on investments, marginal
values of cash, and the risk premium over time. Thus, a firm may still appear un-
constrained based on its relatively smooth investment over time despite significant
underinvestment. This smoothing effect can be used to disentangle financing shocks
from productivity shocks empirically.
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1 Introduction

The financial crisis of 2008 and the European debt crisis of 2011 are fresh reminders that

corporations at times face substantial uncertainties about the financing conditions. Recent

studies have documented dramatic changes in firms’ financing and investment behaviors

during such crises. For example, Ivashina and Scharfstein (2010) document aggressive credit

line drawdowns by firms for precautionary reasons. Campello, Graham, and Harvey (2010)

and Campello, Giambona, Graham, and Harvey (2010) show that the financially constrained

firms planned deeper cuts in investment, spending, burned more cash, drew more credit from

banks, and also engaged in more asset sales in the crisis.

Rational firms will adapt to fluctuations in financing conditions by hoarding cash, post-

poning or bringing forward investments, timing favorable market conditions to raise more

funds than they need in good times, or hedging against unfavorable market conditions. How-

ever, there is little theoretical research that tries to answer the following questions. How

should firms change their financing, investment, and risk management policies during a pe-

riod of severe financial constraints? How should firms behave when facing the threat of

financial crisis in the future? What are the real effects of severe financing shocks when firms

prepare for future shocks through cash and risk management policies?

We address these questions by proposing a quantitative model of investment, financing,

and risk management for firms facing stochastic financing conditions. Our model builds on

the dynamic framework of a firm facing external financing costs (see Decamps, Mariotti,

Rochet, and Villeneuve (2011) and Bolton, Chen, and Wang (2011) (henceforth BCW))

by adding stochastic financing opportunities. The five main building blocks of the model

are: 1) a constant-returns-to-scale production function with independently and identically

distributed (i.i.d.) productivity shocks and convex capital adjustment costs as in Hayashi

(1982); 2) stochastic external financing costs; 3) constant cash carry costs; 4) risk premia

for productivity and financing shocks; and 5) dynamic hedging opportunities. The firm

optimally manages its cash reserves, financing, and payout decisions, by following a state-

dependent optimal double-barrier (issuance and payout) policy intertwined with continuous
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adjustments of investment, cash accumulation, and hedging in between the issuance and

endogenous payout barriers.

The main results of our analysis are as follows. First, during a financial crisis, the firm

cuts investment, delays payout, and sometimes engages in asset sales, even if the productivity

of its capital remains unaffected. This is especially true when the firm enters the crisis with

low cash reserves. These predictions are consistent with the stylized facts about firm behavior

during the recent financial crisis.

Second, during favorable market conditions (a period of low external financing costs), the

firm may time the market and issue equity even when there is no immediate need for external

funds. Such behavior is consistent with the findings in Baker and Wurgler (2002), DeAngelo,

DeAngelo, and Stulz (2010), Fama and French (2005), and Huang and Ritter (2009). We

thus explain firms’ investment, saving, and financing decisions through a combination of

stochastic variations in the supply of external financing and firms’ precautionary demand

for liquidity. The market timing option is more valuable when the firm’s cash holdings are

low, and when the firm faces fixed external financing costs it can cause firm value to become

convex in financial slack. As a result, investment can be decreasing in financial slack, and

the firm may gain by engaging in speculation so as to increase its market timing option

value. These results contradict the predictions of standard models of investment and risk

management for financially constrained firms.

Third, along with the timing of equity issues by firms with low cash holdings, our model

also predicts the timing of cash payouts and stock repurchases by firms with high cash

holdings. Just as firms with low cash holdings seek to take advantage of low costs of external

financing to raise more funds, firms with high cash holdings will be inclined to disburse

their cash through stock repurchases when financing conditions improve. This result is

consistent with the finding of Dittmar and Dittmar (2008) that aggregate equity issuances

and stock repurchases are positively correlated. They point out that the finding that increases

in stock repurchases tend to follow increases in stock market valuations contradicts the

received wisdom that firms engage in stock repurchases because of the belief that their
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shares are undervalued. Our model provides a simple and plausible explanation for their

finding: improving financing conditions can raise stock prices and lower the precautionary

demand for cash buffers, which in turn lead to stock repurchases by cash-rich firms.

Fourth, we show that anticipation of deteriorating financing conditions provides strong

cash hoarding incentives. With a higher probability of a crisis, firms invest more conser-

vatively, issue equity sooner and delay payouts to shareholders more in good times. Con-

sequently, firms’ cash inventories rise, investment becomes less sensitive to changes in cash

holdings, and the impact of financing shocks on investment ex post is much weaker. This

anticipation effect is quantitatively significant. When we raise the probability of a financial

crisis within a year from 1% to 10%, the average reduction in the firm’s investment-to-capital

ratio upon the realization of the financing shock drops from 6.59% to 1.78%. These predic-

tions are consistent with the investment and financing policies of many US non-financial

firms at the onset of the financial crisis of 2007-2008. They provide important new insight

on the transmission mechanism of financial shocks to the real sector and help us interpret

empirical measures of the real effects of financing shocks.

Fifth, due to the presence of aggregate financing shocks, the firm’s risk premium in

our model has two components: a productivity risk premium and a financing risk premium.

Both risk premia change substantially with the firm’s cash holdings, especially when external

financing conditions are poor. Quantitatively, the financing risk premium is significant for

firms with low cash holdings, in particular in a financial crisis, or when the probability of a

financial crisis is high. However, the firm’s precautionary motive also makes the financing

risk premium on average low for the majority of the firms.

Our results thus brings out the sophisticated dynamic interactions between firm savings

and investment. Typically, we expect that higher cash holdings or lower expected future

financing costs will relax a firm’s financial constraints. Hence, investment should increase

with cash (or other financial slack measures such as credit) and decrease with expected

financing costs. This is true for dynamic models without stochastic financing conditions.

However, with stochastic financing opportunities, investment is no longer monotonically
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increasing in cash, nor is it monotonically decreasing with expected financing costs. The key

to these relations lies in the optionality of market timing and the time-varying behavior of

the marginal value of cash.

Our analysis shows that first-generation static models of financial constraints are inad-

equate to explain corporate investment policy and how it responds to changing financing

opportunities. Static models, such as Fazzari, Hubbard, and Petersen (1988), Froot, Scharf-

stein, and Stein (1993), and Kaplan and Zingales (1997), cannot explain the effects of mar-

ket timing on corporate investment, since these effects cannot be captured by an exogenous

change in the cost of external financing or an exogenous change in the firm’s cash holdings in

the static setting. Market timing effects can only appear when there is a finitely-lived win-

dow of opportunity of getting access to cheaper equity financing, and such effects interact

in a complex way with the firm’s precautionary cash management and investment policies.

More recent dynamic models on investment with financial constraints include Gomes (2001),

Hennessy and Whited (2005, 2007), Riddick and Whited (2009), and Bolton, Chen, and

Wang (2011), among others. However, all these models assume that financing conditions are

time-invariant.

Our work is also related to two other sets of dynamic models of financing. First, DeMarzo,

Fishman, He, and Wang (2011) develop a dynamic contracting model of corporate invest-

ment and financing with managerial agency, by building on Bolton and Scharfstein (1990)

and using the continuous-time contracting methodology of DeMarzo and Sannikov (2006).

These models derive optimal dynamic contracts and corporate investment with capital ad-

justment costs. Second, Rampini and Viswanathan (2010, 2011) develop dynamic models of

collateralized financing, in which the firm has access to complete markets, but is subject to

endogenous collateral constraints induced by limited enforcement.

By construction, the productivity shocks in our model are i.i.d. Thus, firms that time

equity markets are ones with low cash holdings as opposed to ones having better investment

opportunities.1 DeAngelo, DeAngelo, and Stulz (2010) find that many firms issuing equity

1Time-varying investment opportunities may also play a significant role on cash accumulation and external
financing. Eisfeldt and Muir (2011) empirically document that liquidity accumulation and external financing
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look as if they are cash constrained. Our model shows that their finding is consistent with

both market timing and precautionary motives. Testing of our market timing hypothesis

would ideally look for firm behavior not only in equity issuance, but also in investment,

and hedging decisions. Under favorable equity market conditions, corporate investment for

cash-strapped firms may increase as the firm’s cash dwindles (and gets closer to the issuance

boundary).

Our paper is one of the first dynamic models of corporate investment with stochastic fi-

nancing conditions. We echo the view expressed in Baker (2010) that supply effects (of equity

in favorable equity markets) are important for corporate finance. While we treat changes

in financing conditions as exogenous in this paper, the cause of these variations could be

changes in financial intermediation costs, changes in investors’ risk attitudes, changes in mar-

ket sentiment, or changes in aggregate uncertainty and information asymmetry. Stein (1996)

develops a static model of market timing, and Baker, Stein, and Wurgler (2003) empirically

test this model. To some extent, our model can be viewed as a dynamic formulation of

Stein (1996), where a rational manager behaves in the interests of existing shareholders in

the face of a market that is subject to potentially irrational changes of investor sentiment.

The manager then simply times the market optimally and issues equity when the financing

condition is favorable. What is more, markets then tend to under-react to the manager’s

timing behavior, causing favorable financing conditions to persist as in our model.

In contemporaneous work, Hugonnier, Malamud, and Morellec (2011) also develop a

dynamic model with stochastic financing conditions. They model investment as a growth

option, while we model investment as in Hayashi’s q-theory framework. In addition, they

model stochastic financing opportunities via Poisson arrival of financing terms, which the

firm has to decide instantaneously whether to accept or not. In other words, the duration of

the financing opportunity in their model is instantaneous. In our model, the finite duration

of financing states is important for generating market timing. The two papers share the

same overall focus but differ significantly in their modeling approaches, thus complementing

are positively correlated, and argue that a cash holding based precautionary saving model to some extent
accounts for the empirical evidence.
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each other.

2 The Model

We consider a financially constrained firm facing stochastic investment and external financ-

ing conditions. Specifically, we assume that the firm can be in one of two states of the

world, denoted by st = 1, 2. In each state, the firm faces potentially different financing and

investment opportunities. The state switches from 1 to 2 (or from 2 to 1) over a short time

interval ∆ with a constant probability ζ1∆ (or ζ2∆).2

2.1 Production technology

The firm employs capital and cash as the only factors of production. We normalize the

price of capital to one and denote by K and I respectively the firm’s capital stock and gross

investment. As is standard in capital accumulation models, the capital stock K evolves

according to:

dKt = (It − δKt) dt, t ≥ 0, (1)

where δ ≥ 0 is the rate of depreciation for capital stock.

The firm’s operating revenue is proportional to its capital stock Kt, and is given by

KtdAt, where dAt is the firm’s productivity shock over time increment dt. We assume that

dAt = µ (st) dt+ σ (st) dZ
A
t , (2)

where ZA
t is a standard Brownian motion and µ(st) and σ(st) denote the drift and volatility

in state st. The firm’s operating profit dYt over time increment dt is then given by:

dYt = KtdAt − Itdt− Γ(It, Kt, st)dt, t ≥ 0, (3)

2The model can be generalized to st > 2 states in a straightforward way. For an illustration of the more
general setup, see the appendix.
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where KtdAt is the firm’s operating revenue, Itdt is the investment cost over time dt and

Γ(It, Kt, st)dt is the additional adjustment cost that the firm incurs in the investment pro-

cess.3

Following the neoclassical investment literature (Hayashi (1982)), we assume that the

firm’s adjustment cost is homogeneous of degree one in I and K. In other words, the

adjustment cost takes the homogeneous form Γ(I,K, s) = gs(i)K, where i is the firm’s

investment capital ratio (i = I/K), and gs(i) is a state-dependent function that is increasing

and convex in i.4 We also assume that gs(i) is quadratic:

gs (i) =
θs(i− νs)2

2
, (4)

where θs is the adjustment cost parameter and νs is a constant parameter.5 These assump-

tions make the analysis more tractable and our main results also hold for other functional

forms of gs(i). Our model allows for state-dependent adjustment costs of investment. For

example, in bad times assets are often sold at a deep discount (see Shleifer and Vishny (1992)

and Kiyotaki and Moore (1997)), which can be captured in this model by making θs large

when financing conditions are tough.

Finally, the firm can liquidate its assets at any time and obtain a liquidation value Lt

that is also proportional to the firm’s capital stock Kt. We let the liquidation value Lt = lsKt

depend on the state st (where ls denotes the recovery value per unit of capital in state s).

2.2 Stochastic Financing Opportunities

The firm may choose to raise external equity financing at any point in time.6 When doing

so it incurs a fixed as well as a variable cost of issuing stock. The fixed cost is given by φsK,

3Note that we allow the adjustment costs to be state dependent.
4For notational convenience we use the notation xs to denote a state dependent variable x(s) whenever

there is no ambiguity.
5In the literature, common choices of νs are either zero or the rate of deprecation δ. While the former

choice implies zero adjustment cost for zero gross investment, the latter choice implies a zero adjustment
cost when net investment is zero.

6For simplicity, we only consider external equity financing as the source of external funds for the firm.
We leave the generalization of allowing the firm to also issue debt for future research.
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where φs is the fixed cost parameter in state s. We take the fixed cost to be proportional

to the firm’s capital stock K, as this ensures that the firm does not grow out of its fixed

costs of issuing equity. This assumption is also analytically convenient, as it preserves the

homogeneity of the model in the firm’s capital stock K. After paying the fixed cost φsK the

firm also pays a variable (state dependent) cost γs > 0 for each incremental dollar it raises.

We denote by:

1. H – the process for the firm’s cumulative external financing (so that dHt denotes the

incremental external funds over time dt);

2. X – the firm’s cumulative issuance costs;

3. W – the process for the firm’s cash stock;

4. U – the firm’s cumulative non-decreasing payout process to shareholders (so that dUt

is the incremental payout over time dt).

Distributing cash to shareholders may take the form of a special dividend or a share

repurchase.7 The benefit of a payout is that shareholders can invest the proceeds at the

market rate of return and avoid paying a carry cost on the firm’s retained cash holdings. We

denote the unit cost of carrying cash inside the firm by λdt ≥ 0.8

If the firm runs out of cash (Wt = 0), it needs to raise external funds to continue operating

or its assets will be liquidated. If the firm chooses to raise new external funds to continue

operating, it must pay the financing costs specified above. The firm may prefer liquidation

7We cannot distinguish between a special dividend and a share repurchase, as we do not model taxes.
Note, however, that a commitment to regular dividend payments is suboptimal in our model. We also
exclude any fixed or variable payout costs so as not to overburden the model.

8The cost of carrying cash may arise from an agency problem or from tax distortions. Cash retentions
are tax disadvantaged because the associated tax rates generally exceed those on interest income (Graham
(2000)). Since there is a cost λ of hoarding cash the firm may find it optimal to distribute cash back to
shareholders when its cash inventory grows too large. If λ = 0 the firm has no incentives to pay out cash
since keeping cash inside the firm does not have any disadvantages, but still has the benefit of relaxing
financial constraints. We could also imagine that there are settings in which λ ≤ 0. For example, if the firm
may have better investment opportunities than investors. We do not explore this case in this paper as we
are interested in a trade-off model for cash holdings.
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if the cost of financing is too high relative to the continuation value (e.g. when µ is low).

We denote by τ the firm’s stochastic liquidation time.9

We can then write the dynamics for the firm’s cash W as follows:

dWt = [KtdAt − Itdt− Γ(It, Kt, st)]dt+ (r(st)− λ)Wtdt+ dHt − dUt , (5)

where the firm term is the firm’s cash flows from operations dYt given in (3), the second

term is the return on Wt (net of the carry cost λ), the third term dHt is the cash inflow from

external financing, and the last term dUt is the cash outflow to investors.10 Note that this

is a completely general financial accounting equation, where dHt and dUt are endogenously

determined by the firm.

The homogeneity assumptions embedded in the production technology, the adjustment

cost, and the financing costs allow us to deliver our key results in a parsimonious and

analytically tractable homogeneous model. Adjustment costs may not always be convex and

the production technology may exhibit long-run decreasing returns to scale in practice, but

these functional forms substantially complicate the formal analysis.11 As will become clear

below, the homogeneity of our model in W and K allows us to reduce the dynamics to a

one-dimensional equation, which is relatively straightforward to solve.

2.3 Systematic Risk and the Pricing of Risk

There are two different sources of systematic risk in our model: a) a small and continuous

diffusion shock, and b) a large discrete shock when the economy switches from one state

to another. The diffusion shock in any given state s may be correlated with the aggregate

market, and we denote the correlation coefficient by ρ. The discrete shock can affect the

firm’s productivity and/or its external financing costs.

How are these sources of systematic risk priced? Our model can allow for either risk-

9Note that τ =∞ means that the firm never chooses to liquidate.
10Thus (dHt − dUt) denotes the net cash flow from financing.
11See Riddick and Whited (2009) for an intertemporal model of a financially constrained firm with de-

creasing returns to scale.
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neutral or risk-averse investors. If investors are risk neutral, then the prices of risk are

zero and the physical probability distribution coincides with the risk-neutral probability

distribution. If investors are risk averse, we need to distinguish between physical and risk-

neutral measures. We do so as follows.

For the diffusion risk, we assume that there is a constant market price of risk ηs in

each state s. The firm’s risk adjusted productivity shock (under the risk-neutral probability

measure Q) is then given by

dAt = µ̂ (st) dt+ σ (st) dẐ
A
t , (6)

where the mean of productivity shock accounts for the firm’s exposure to the diffusion risk:

µ̂(st) ≡ µ̂s = µs − ρηsσs, (7)

and ẐA
t is a standard Brownian motion under the risk-neutral probability measure Q.12

A risk-averse investor will also require a risk premium to compensate for the discrete risk

of the economy switching states if these discrete shocks coincide with jumps in the stochastic

discount factor. We capture this risk premium through the wedge between the transition

intensity under the physical probability measure and the transition intensity under the risk-

neutral probability measure Q. Let ζ̂1 and ζ̂2 denote the transition intensities under the

risk-neutral measure from state 1 to state 2 and from state 2 to state 1, respectively. The

risk-neutral intensities are then related to their physical intensities ζ1 and ζ2 as follows:

ζ̂1 = eκ1ζ1 , and ζ̂2 = eκ2ζ2, (8)

where the parameters κ1 and κ2 capture the risk premium required by a risk-averse investor

for the exposure to the discrete risk of state switching. A positive (negative) κs implies

that ζ̂s > (<)ζs, so that the transition intensity is higher (lower) under the risk-neutral

12In the appendix, we provide a more detailed discussion of systematic risk premia. The key observation
is that the adjustment from the physical to the risk-neutral probability measure reflects a representative
risk-averse investor’s stochastic discount factor (SDF) in a dynamic asset-pricing model.
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probability measure than under the physical measure. As we show in the appendix, κs is

positive in one state and negative in the other. Intuitively, this reflects the idea that a

risk-averse investor captures the risk premium associated with a change in the state s by

making an upward adjustment of the risk-neutral transition intensity from the good to the

bad state (with κs > 0) and a downward adjustment of the risk-neutral transition intensity

from the bad to the good state (with κs < 0). In sum, it is as if a risk-averse investor were

uniformly more ‘pessimistic’ than a risk-neutral investor: she thinks ‘good times’ are likely

to be shorter and ‘bad times’ longer.

2.4 Firm optimality

The firm chooses its investment I, cumulative payout policy U , cumulative external financing

H, and liquidation time τ to maximize firm value defined as follows (under the risk-neutral

measure):

EQ
0

[∫ τ

0

e−
∫ t
0 rudu (dUt − dHt − dXt) + e−

∫ τ
0 rudu (Lτ +Wτ )

]
, (9)

where ru denotes the interest rate at time u. The first term is the discounted value of payouts

to shareholders, and the second term is the discounted value upon liquidation. Note that

optimality may imply that the firm never liquidates. In that case, we simply have τ =∞.

3 Model Solution

Given that the firm faces external financing costs (φs > 0, γs ≥ 0), its value depends on

both its capital stock K and its cash holdings W . Thus, let P (K,W, s) denote the value of

the firm in state s. Given that the firm incurs a carry cost λ on its stock of cash one would

expect that it will choose to pay out some of its cash once its stock grows large. Accordingly,

let W s denote the (upper) payout boundary. Similarly, if the firm’s cash holdings are low,

it may choose to issue equity. We therefore let W s denote the (lower) issuance boundary.

The interior regions: W ∈ (W s,W s) for s = 1, 2. When a firm’s cash holdings W are
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in the interior regions, P (K,W, s) satisfies the following system of Hamilton-Jacobi-Bellman

(HJB) equations:

rsP (K,W, s) = max
I

[(rs − λs)W + µ̂sK − I − Γ (I,K, s)]PW (K,W, s) +
σ2
sK

2

2
PWW (K,W, s)

+ (I − δK)PK(K,W, s) + ζ̂s
(
P (K,W, s−)− P (K,W, s)

)
. (10)

The first and the second terms on the right side of the HJB equation (10) represent the

effects of the expected change in the firm’s cash holdings W and volatility of W on firm

value. Note first that the firm’s cash grows at the net return (rs − λs) and is augmented by

the firm’s expected cash flow from operations (under the risk-neutral measure) µ̂sK minus

the firm’s capital expenditure (I + Γ (I,K, s)). Second, the firm’s cash stock is volatile only

to the extent that cash flows from operations are volatile, and the volatility of the firm’s

revenues is proportional to the firm’s size as measured by its capital stock K. The third

term represents the effect of capital stock changes on firm value, and the last term is the

expected change of firm value when the state changes from s to s−.

Since firm value is homogeneous of degree one in W and K in each state, we can write

P (K,W, s) = ps(w)K. Substituting for this expression into (10) and simplifying, we obtain

the following system of ordinary differential equations (ODE) for ps(w):

rsps(w) = max
is

[(rs − λs)w + µ̂s − is − gs (is)] p
′
s (w) +

σ2
s

2
p′′s (w)

+ (is − δ) (ps (w)− wp′s (w)) + ζ̂s (ps− (w)− ps (w)) . (11)

The first-order condition (FOC) for the investment-capital ratio is(w) is then given by:

is(w) =
1

θs

(
ps(w)

p′s(w)
− w − 1

)
+ νs, (12)

where

p′s(w) = PW (K,W, s)

is the marginal value of cash in state s.
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The payout boundary W s and the payout region (W ≥ W s). The firm starts paying

out cash when the marginal value of cash held by the firm is less than the marginal value

of cash held by shareholders. The payout boundary ws = W s/K thus satisfies the following

value matching condition:

p′s(ws) = 1. (13)

When the firm chooses to pay out, the marginal value of cash p′(w) must be one. Otherwise,

the firm can always do better by changing ws. Moreover, payout optimality implies that the

following super contact condition (Dumas (1991)) holds:

p′′s(ws) = 0. (14)

We specify next the value function outside the payout boundary. If the marginal value

of cash in state s is such that p′s(w) < 1 the firm is better off reducing its cash holdings to

ws by making a lump-sum payout. Therefore, we have

ps (w) = ps (ws) + (w − ws) , w > ws . (15)

This situation could arise when the firm starts off with too much cash or when the firm’s

cash holdings in state s are such that ws > ws− and the firm suddenly moves from state s

into state s−.

The equity issuance boundary W s and region (W ≤ W s). Similarly, we must specify

the value function outside the issuance boundary. Indeed, it is possible that the firm could

suddenly transition from the state s− with the financing boundary ws− into the other state

s with a higher financing boundary (ws > ws−) and that its cash holdings lie between the

two lower financing boundaries (ws− < w < ws). What happens then?

Basically, if the firm is sufficiently valuable it then chooses to raise external funds through

an equity issue, so as to bring its cash stock back into the interior region. But how much

should the firm raise in this situation? Let Ms denote the firm’s cash level after equity
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issuance, which we refer to the “target” return level, and let ms = Ms/Ks. Similarly, let W s

denote the boundary for equity issuance in state s and ws = W s/K. Firm value per unit of

capital in state s, ps(w), when w ≤ ws then satisfies

ps(w) = ps(ms)− φs − (1 + γs) (ms − w) , w ≤ ws. (16)

We thus have the following value matching and smooth pasting conditions for ws:

ps(ws) = ps(ms)− φs − (1 + γs)(ms − ws), (17)

p′s(ms) = 1 + γs. (18)

With fixed issuance costs (φs > 0), equity issuance will thus be lumpy. The firm first pays

the issuance cost φs per unit of capital and then incurs the marginal cost γs for each unit

raised. Equation (17) states that firm value is continuous around issuance time. Additionally,

the firm optimally selects the return target ms so that the marginal benefit of issuance p′s(ms)

is equal to the marginal cost 1 + γs, which yields (18).

How does the firm determine its equity issuance boundary ws? We use the following two-

step procedure. First, suppose that the issuance boundary ws is interior (ws > 0). Then,

the standard optimality condition implies that:

p′s(ws) = 1 + γs. (19)

Intuitively, if the firm chooses to issue equity before it runs out of cash, it must be the case

that the marginal value of cash at the issuance boundary ws > 0 is equal to the marginal

issuance cost 1 + γs. If (19) fails to hold, the firm will not issue equity until it exhausts its

cash holdings, i.e. ws = 0. In that case, the option value to tap equity markets earlier than

absolutely necessary is valued at zero. Using the above two-step procedure, we characterize

the optimal issuance boundary ws ≥ 0.

We also need to determine whether equity issuance or liquidation is optimal, as the firm
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always has the option to liquidate. Under our assumptions, the firm’s capital is productive

and thus its going-concern value is higher than its liquidation value. Therefore, the firm

never voluntarily liquidates itself before it runs out of cash.

However, when it runs out of cash, liquidation may be preferred if the alternative of

accessing external financing is too costly. If the firm liquidates, we have

ps(0) = ls. (20)

The firm will prefer equity issuance to liquidation as long as the equilibrium value ps(0)

under external financing arrangement is greater than the complete liquidation value ls.

For our later discussion it is helpful to introduce the following concepts. First, enter-

prise value is often defined as firm value net of short-term liquid asset. This measure is

meant to capture the value created from productive illiquid capital. In our model, it equals

P (K,W, s) −W . Second, we define average q as the ratio between enterprise value and its

capital stock,

qs(w) =
P (K,W, s)−W

K
= ps(w)− w. (21)

Third, the sensitivity of average q to changes in cash holdings measures how much enterprise

value increases with an extra dollar of cash, and is given by

q′s(w) = p′s(w)− 1 . (22)

We also refer to q′s(w) as the (net) marginal value of cash. As w approaches the optimal

payout boundary w, w → w, qs(w)→ 0.

4 Quantitative results

Having characterized the conditions that the solution to the firm’s dynamic optimization

problem must satisfy, we can now illustrate the numerical solutions for given parameter

choices of the model. We begin by motivating our choice of parameters and then illustrate
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the model’s solutions in the good and bad states of the world, respectively.

4.1 Parameter choice and calibration

In our choice of parameters, we select plausible numbers based on existing empirical evidence

to the extent that it is available. For those parameters on which there is no empirical evidence

we make an educated guess to reflect the situation we are seeking to capture in our model.

Finally there are a few parameters we do not allow to vary across the two states so as to

better isolate the effects of changes in external financing conditions.

The capital liquidation value is set to lG = 1.0 in state G, in line with estimates provided

by Hennessy and Whited (2007).13 In the bad state the capital liquidation value is set to

lB = 0.3 to reflect the severe costs of asset fire sales during a financial crisis, when few

investors have either sufficiently deep pockets or the risk appetite to acquire assets.14 The

model solution will depend on these liquidation values only when the firm finds it optimal

to liquidate instead of raising external funds.

We set the marginal cost of issuance in both states to be γ = 6% based on estimates

reported in Altinkihc and Hansen (2000). We keep this parameter constant across the two

states for simplicity and focus only on changes in the fixed cost of equity issuance to capture

changes in the firm’s financing opportunities. The fixed cost of equity issuance in the good

state is set at φG = 0.5% of the firm’s capital stock. In the benchmark model, this value

implies that the average cost per unit of external financing raised in state G is around 10%.

This is in the ballpark with estimates for seasoned offers in Eckbo, Masulis and Norli (2007).15

As for the issuance costs in state B, we chose φB = 50%. There is no empirical study we

can rely on for the estimates of issuance costs in a financial crisis state, for the obvious

reason that there are virtually no IPOs or SEOs in a crisis. Our choice for the parameter of

13They suggest an average value for l of 0.9, so that the liquidation value in the good state should be
somewhat higher.

14See Shleifer and Vishny (1992), Acharya and Viswanathan (2011), and Campello, Graham, and Harvey
(2010).

15Eckbo, Masulis and Norli (2007) report total costs of 6.09% for firm commitment offers, excluding the
cost of the offer price discount and the value of Green Shoe options. They also report a negative average
price reaction to an SEO announcement of -2.22%.
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φB is meant to reflect the fact that raising external financing becomes extremely costly in

a financial crisis, and only firms that are desperate for cash are forced to raise new funds.

We show that even with φB = 50% firms that run out of cash in the crisis state still prefer

raising equity to liquidation.

The transition intensity out of state G is set at ζG = 0.1, which implies an average

duration of 10 years for good times. The transition intensity out of state B is ζB = 0.5, with

an implied average length of a financial crisis being 2 years. We choose the price of risk with

respect to financing shocks in state G to be κG = ln 3, which implies that the risk-adjusted

transition intensity out of state G is ζ̂G = eκGζG = 0.3. Due to symmetry, the risk-adjusted

transition intensity out of state B is then ζ̂B = e−κGζB = 0.167. These risk adjustments are

clearly significant. While we take these risk adjustments as exogenous in this paper, they

can be generated in general equilibrium when the same financing shocks also affect aggregate

investment and output (see Chen 2010).

The other parameters remain the same in the two states: the riskfree rate is r = 5%,

the volatility of the productivity shock is σ = 12%, the rate of depreciation of capital is

δ = 15%, and the adjustment cost parameter ν is set to equal the depreciation rate, so

that ν = δ = 15%. We rely on the technology parameters estimated by Eberly, Rebelo,

and Vincent (2009) for these parameter choices. The cash-carrying cost is set to λ = 1.5%.

While we do not take a firm stand on the precise interpretation of the cash-carrying cost,

it can be due to either a tax disadvantage of cash or to agency frictions. Following the tax

interpretation, with a 30% marginal tax rate and a 5% interest rate, we are in the ball park

for a 1.5% cash carrying cost. Although in reality these parameter values clearly change with

the state of nature, we keep them fixed in this model so as to isolate the effects of changes in

external financing conditions. All the parameter values are annualized whenever applicable

and summarized in Table 4.

Finally, we calibrate the expected productivity µ and the adjustment cost parameter θ

to match the median cash-capital ratio and investment-capital ratio for U.S. public firms

during the period of 1981-2010.16 We then obtain µ = 22.7% and θ = 1.8, both of which are

16For the median firm, the average cash-capital ratio is 0.29, and the average investment-capital ratio is
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within the range of empirical estimates documented in previous studies.17

4.2 Market timing in good times

When the firm is in state G, it may enter the crisis state B with probability ζG = 0.1 per

unit time. As the firm faces substantially higher external financing costs in state B, we show

that the option to time the equity market in good times has significant value and generates

rich implications for investment dynamics.

Figure 1 plots average q and investment-capital ratio for state G as well as their sensi-

tivities with respect to cash-capital ratio w. Panel A shows as expected that the average q

increases with w and is relatively stable in state G. The optimal external financing boundary

is wG = 0.027. At this point the firm still has sufficient cash to continue operating. Further

deferring external financing would help the firm save on the time value of money for financing

costs and also on subsequent cash carry costs. However, doing so would mean taking the risk

that the favorable financing opportunities disappear in the mean time and that the state of

nature switches to the bad state when financing costs are much higher. The firm trades off

these two margins and optimally exercises the equity issuance option by tapping securities

markets when w hits the lower barrier wG.

Once reaching the financing boundary, the firm issues an amount (mG−wG) = 0.128 per

unit of its capital stock. The size of issuance reflects the need to economize on the fixed cost

of issuance φG. When the firm’s cash holdings reach wG = 0.371, it pays out incremental

cash since the net marginal value of cash (that is the difference between the value of a dollar

in the hands of the firm and the value of a dollar in the hands of investors) is zero at that

point: q′G(w) = 0. See Panel B.

When firms face external financing costs, it is optimal for them to hoard cash for precau-

tionary reasons. Firm value is thus increasing and concave in financial slack in most models

of financially constrained firms, causing these firms to be endogenously risk-averse. In our

0.17. The details of the data construction are given in Appendix B.
17See for example Eberly, Rebelo, and Vincent (2010) and Whited (1992).
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Figure 1: Firm value and investment in the normal state, state G.

model, while the precautionary motive for hoarding cash is still a key factor, stochastic fi-

nancing opportunities introduce an additional motive for the firm to issue equity: timing

equity markets in good times. This market timing option is more in the money near the

equity issuance boundary, which causes firm value to become convex in w so that the firm

actually becomes endogenously risk-loving as its cash holdings approach the lower barrier

wG.

Panel B clearly shows that firm value is not globally concave in w. For sufficiently

high w, w ≥ 0.061, qG(w) is concave. When the firm has sufficient cash, the firm’s equity

issuance need is quite distant so that the financing timing option is out of the money.

The precautionary motive to hoard cash then dominates causing the firm to behave in an

effectively risk-averse manner. In contrast, for low values of w, w ≤ 0.061, the firm is more

concerned about the risk that financing costs may increase in the future, when the state
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switches to B. A firm with low cash holdings may want to issue equity while it still has

access to relatively cheap financing opportunities, even before it runs out of cash.

Given that firms face fixed equity issuance costs it is optimal for them to raise lumpy

amounts of cash when they choose to tap equity markets. Since the issuance boundary wG

and the return target cash balance mG are optimally chosen, the marginal values of cash at

these two points must be equal:

q′G(wG) = q′G(mG) = γG . (23)

The dash-dotted line in Panel B gives the (net) marginal cost of equity issuance at wG and

mG: γG = 0.06. One immediate implication of (23) is that Tobin’s qG(w) is not globally

concave in w.

The optimal investment rule (12) implies that investment sensitivity i′s(w) satisfies the

condition

i′s(w) = − 1

θs

ps(w)p′′s(w)

p′s (w)2
. (24)

Therefore, investment increases with w if and only if firm value is concave in w. For 0.061 ≤
w ≤ 0.371, qG(w) is concave and corporate investment increases with w. In contrast, in the

region where w ≤ 0.061, qG(w) is convex in w, which implies that investment decreases with

w, contrary to conventional wisdom. This surprising result is due to the interaction effect

between stochastic external financing conditions and the fixed equity issuance costs.

As the firm approaches the financing boundary wG it may choose to accelerate investment

(and thus reduce under-investment) to take advantage of the lower costs of equity issuance

in good times. This market-timing option is more valuable for lower w, since the probability

that the firm will need to raise more funds anyway is then higher. Anticipating an equity

issuance, the firm prefers to bring the time of such an issue forward by investing more

aggressively in periods when external financing costs are low. Simply put, the firm is more

willing to invest when it expects to issue a lumpy amount of equity soon. Panels C and D of

Figure 1 highlight this non-monotonicity of investment in cash. Our model is thus able to
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account for the seemingly paradoxical behavior that the prospect of higher financing costs

in the future can cause investment to respond negatively to an increase in cash today.

Notice also from Panel C that investment at the financing boundary wG and the return

target mG are almost the same.18 That is, in the case of market timing, the firm holds onto

the cash raised and leaves its investment level unchanged. This result is quite different from

the case with time-invariant financing conditions, where investment rises together with the

cash holding following issuance.

Although there is considerable debate in the literature on corporate investment about

the sensitivity of investment to cash flow (see e.g. FHP and Kaplan and Zingales, 1997),

there is a general consensus that investment is monotonically increasing with cash reserves

or financial slack. In this context, our result that, when firms face market-timing options

the monotonic relation between investment and cash only holds in the precautionary saving

region is noteworthy, for it points to the fragility of seemingly plausible but misleading

predictions derived from simple static models about how corporate investment is affected

by financial constraints proxied by the firm’s cash holdings. Another misleading proxy for

financial constraints in our dynamic model relates to the ‘cash flow sensitivity of cash’ in

Almeida, Campello, and Weisbach (2004). In their static model there is a positive propensity

for the firm to save out of cash flow because an increase in realized cash flow is not related

to a higher productivity shock, and therefore does not lead to higher capital expenditures.

As Riddick and Whited (2009) have shown both theoretically and empirically, the corporate

propensity to save out of cash flow can be negative. They suggest that the contrasting

empirical predictions in their analysis and in Almeida, Campello, and Weisbach (2004) is

due to differences in the measurement of Tobin’s q. However, as our analysis above reveals,

a firm with low cash holdings may not necessarily save more out of cash flow in favorable

equity-market conditions, even when its investment opportunities remain unchanged. The

reason, again is that market timing can cause a firm with lower cash holdings to invest more

when external financing conditions are favorable, so that a firm with lower cash holdings

18One can show via (12) and the boundary conditions that iG(mG) − iG(wG) = φG

θ(1+γ) , which is small

when the fixed cost of financing in the good state is low.
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Figure 2: Firm value and investment: Comparing states B vs G.

could well be saving a smaller fraction of its cash flow on average.

We turn next to the derivation of investment and firm value in bad times (state B) and

compare these with those in good times (state G).

4.3 High financing costs in bad times

Figure 2 plots average q and investment for both states, and their sensitivities with respect

to w. As expected, average q in state G is higher than in state B. More remarkable is the

fact that the difference between the average q in the two states is so large especially for lower

levels of cash holdings. In our example, at w = 0, qG(0) = 1.036 and qB(0) = 0.537. This

difference in average q is purely due to differences in financing opportunities. An important

implication of this observation for a favored approach in the empirical literature on corporate
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investment is that using average q to control for investment opportunities and then testing

for the presence of financing constraints by using variables such as cash flows or cash is not

generally valid. Panel C shows that investment in state G is higher than in state B for a

given w, and again the difference is especially large when w is low. Also, investment is much

less variable with respect to w in state G. It is almost as if investment were independent of

w, which might lead one to misleaingly conclude that the firm is essentially unconstrained

in state G, if one focuses only on the investment sensitivity to cash in state G.

In state B there is no market timing and hence the firm only issues equity when it runs

out of cash, wB = 0. The amount of equity issuance is then mB = 0.219, which is much

larger than mG − wG = 0.128, the amount of issuance in good times. The significant fixed

issuance cost φB = 0.5 in bad times causes the firm to be more aggressive should it decide

to tap equity markets. The amount of issuance would of course be significantly decreased in

bad times if we were to specify a proportional issuance cost γB that is much higher than the

cost γG in good times. Note also that, since there is no market timing opportunity in state

B firm value is globally concave in bad times. The firm’s precautionary motive is stronger

in bad times, so that we should expect to see the firm hoarding more cash. This is indeed

reflected in the lower levels of investment and the higher payout boundary wB = 0.408,

which is significantly larger than wG = 0.371.

Panel B underscores the significant impact of financing constraints on the marginal value

of cash in bad times, even though state B is not permanent. In our model, as the firm runs

out of cash (w approaches 0) the net marginal value of cash q′B(w) reaches 23! Strikingly,

the firm also engages in large asset sales and divestment to avoid incurring the very costly

external financing in bad times. Despite the fact that there is a steeply increasing marginal

cost of asset sales, the firm chooses to sell up to 40% of its capital near w = 0 in bad times

(iB(0) = −0.4). Finally, unlike in good times, investment is monotonic in w because the

firm behaves in a risk-averse manner and qB(w) is globally concave in w.

Conceptually, the firm’s investment behavior and firm value are thus quite different in

bad and good times. Quantitatively, the variation of the firm’s behavior in bad times dwarfs
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Table 1: Conditional Distributions of Cash-Capital Ratio, Investment-
Capital Ratio, and Net Marginal Value of Cash

mean 1% 25% 50% 75% 99%

A. cash-capital ratio: w = W/K

G 0.283 0.088 0.240 0.300 0.341 0.370
B 0.312 0.114 0.266 0.325 0.371 0.408

B. investment-capital ratio: is(w)

G 0.170 0.112 0.166 0.176 0.179 0.180
B 0.161 0.003 0.159 0.173 0.178 0.180

C. net marginal value of cash: q′s(w)

G 0.015 0.000 0.001 0.005 0.019 0.111
B 0.031 0.000 0.001 0.008 0.028 0.351

the variation of its behavior in good times. In particular, firm value at low levels of cash

holdings is much more volatile in state B than in state G, as can be seen from Panel A. This

may be one reason why stock price volatility tends to rise sharply in downturns.

4.4 The stationary distribution

Table 1 reports the conditional stationary distributions for w, i(w), and q′(w) in both states

G and B. Panel A shows that the average cash holdings in state B (0.312) is higher than the

average cash holdings in state G (0.283) by about 10%. Understandably, firms on average

hold more cash for precautionary reasons under unfavorable financial market conditions in

order to mitigate the under-investment problem. Additionally, for a given percentile in the

distribution, the cutoff wealth level is higher in state B than in state G, meaning that

the precautionary motive is unambiguously stronger in state B than state G. Finally, it is

striking that even at the bottom 1% of the cash holding, the firm’s cash-capital ratio is still

reasonably high, 0.088 for state G and 0.114 for state B, which reflects the firm’s strong

incentive to avoid running out of cash.
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Panel B illustrates the conditional distribution of investment in states G and B. The

average investment-capital ratio i(w) is lower in state B (16.1%) than in state G (17%),

as cash is more valuable on average in state B than in state G. Naturally, the under-

investment problem is more significant for firms with low cash holdings (at the bottom of

the distribution) in state B compared to state G. For example, the firm that ranks at the

bottom 1% in state B invests only 0.3% of its capital stock, while the firm that ranks at

the bottom 1% in state G invests 11.2%, which is about 38 times the investment level for

the firm that ranks at the bottom 1% in state B. Thus, firms substantially cut investment

in order to decrease the likelihood of expensive external equity issuance in bad times. As

soon as the firm piles up a moderate amount of cash, the under-investment wedge between

the two states disappears. In fact, the top half of the distributions of investments in the

two states are almost identical. This result is in sharp contrast to the large gap between the

investment-capital ratios iG(w) and iB(w) in Panel C of Figure 2. It again illustrates the

firm’s ability to smooth out the impact of financing constraint on real activities.

Panel C reports the net marginal value of cash q′(w) in states G and B. As one might

expect, the marginal value of cash is higher in state B than in state G on average. However,

quantitatively, the difference is small (0.015 versus 0.031). Firms optimally manage their

cash reserves in anticipation of unfavorable market conditions and therefore firms spend little

time around the issuance boundary. The difference between the net marginal value of cash

in states G and B is indeed substantial for the 99th percentile firms (0.11 versus 0.35), but

still much less than the extreme cases we observe in Panel B of Figure 2.

4.5 Timing of Stock Repurchases

One can also see from Panel A in Figure 2 that the payout boundary in state B is significantly

larger than the payout boundary in state G: wB = 0.408 > wG = 0.371. This implies that

a firm in state B with cash holdings w ∈ (0.371, 0.408) will time the favorable market

conditions by paying out a lump sum amount of (w − wG) as the state switches from B to

G. To the extent that the payout is performed through a stock repurchase (as is common

25



for non-recurrent corporate payouts), our model thus provides a simple explanation for why

stock repurchase waves tend to occur in favorable market conditions. Just as firms with low

cash holdings seek to take advantage of low costs of external financing to raise more funds,

firms with high cash holdings disburse their cash (through stock repurchases) when financing

conditions improve.

This result provides a plausible explanation for Dittmar and Dittmar’s (2008) finding

that equity issuance waves coincide with stock repurchase waves: as financing conditions

improve, firms’ precautionary demand for cash is reduced, which translates into stock re-

purchases by cash-rich firms. Note that, our model does not predict repurchases when firms

are undervalued, the standard explanation for repurchases in the literature. As Dittmar and

Dittmar (2008) point out, this theory of stock repurchases is inconsistent with the evidence

on repurchase waves. They also imply that the market timing explanations by Loughran and

Ritter (1995) and Baker and Wurgler (2000) are rejected by their evidence on repurchase

waves. However, as our model shows, this is not the case. It is possible to have at the same

time market timing through equity issues by cash-poor firms and market timing through

repurchases by cash-rich firms. These two very different market timing behaviors can actu-

ally be driven by the same external financing conditions. The difference in behavior is only

driven by differences in internal financing conditions, the amount of cash held by firms.

4.6 Comparative analysis

The effect of changes in the duration of state G. How does the transition intensity

ζG out of state G, which implies a duration of 1/ζG for state G, affect firms’ market timing

behavior? Consider first the case when state G has a very high average duration of 100

years (ζG = 0.01). In this case, the firm taps equity markets only when it runs out of cash

(wG = 0), and to economize the fixed cost of issuance, the firm issues a lumpy amount

mG = 0.118. Firm value qG(w) is then globally concave in w and iG(w) increases with w

everywhere. Essentially, the expected duration of favorable market conditions is so long that

the market timing option has no value for the firm.

26



0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
A. net marginal value of cash: q′

G(w)

cash-capital ratio: w = W/K
0 0.1 0.2 0.3 0.4 0.5

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
B. investment-capital ratio: iG(w)

cash-capital ratio: w = W/K

 

 

ζG = 0.01
ζG = 0.1
ζG = 0.5

Figure 3: The effect of duration in state G on q′G(w) and iG(w). This figure plots the

net marginal value of cash q′G(w) and investment-capital ratio iG(w) for three values of transition

intensity, ζG = 0.01, 0.1, 0.5. All other parameter values are given in Table 4.

With a sufficiently high transition intensity ζG, however, the firm may time the market by

selecting an interior equity issuance boundary wG > 0. In that case the firm also equates the

net marginal value of cash at wG with the proportional financing cost γ, q′G(wG) = γ = 6%,

as can be seen from Panel A. Since the net marginal value of cash at the return cash-capital

ratio, mG, also satisfies q′G(mG) = 6%, it must be the case that for wG ≤ w ≤ mG, the net

marginal value of cash q′G(w) first increases with w and then decreases, as Panel A again

illustrates.

When ζG increases from 0.1 to 0.5, the firm taps the equity market even earlier (wG in-

creases from 0.027 to 0.071) and holds onto cash longer (the payout boundary wG increases

from 0.370 to 0.400) for fear that favorable financial market conditions may be disappearing

faster. For sufficiently high w, the firm facing a shorter duration of favorable market con-

ditions (higher ζG) values cash more at the margin (higher qG(w)) and invests less (lower

iG(w)). However, for sufficiently low w, the opposite holds because the firm with a shorter

lived market timing option taps equity markets sooner, so that the net marginal value of cash

is lower. Consequently and somewhat surprisingly, the incentive to under-invest is smaller

for a firm with shorter-lived timing options and its investment is actually higher, as Panel
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Table 2: Fixed Cost of Equity Issuance

φG mG − wG average cost wG wG

0 0.000 0.060 0.092 0.357
0.5% 0.128 0.099 0.027 0.370
1.0% 0.153 0.126 0.013 0.375
2.0% 0.176 0.174 0 0.380
5.0% 0.189 0.324 0 0.388

10.0% 0.199 0.563 0 0.394

B illustrates.

We note that both investment and the net marginal value of cash are highly nonlinear and

non-monotonic in cash despite the fact that the real side of our model is time invariant. Our

model, thus, suggests that the typical empirical practice of detecting financial constraints

is conceptually flawed. Using average q to control for investment opportunities and then

testing for the presence of financing constraints by using variables such as cash flows or

cash (which is often done in the empirical literature) would be misleading and miss the rich

dynamic adjustment that the firm engages in order to balance the firm’s market timing and

precautionary saving motives.

The effect of changes in issuance cost φG. Table 2 reports the effects of changing the

issuance cost parameter φG on the issuance boundary wG, the issuance amount mG − wG,

the average issuance cost, and the payout boundary wG.

As the issuance cost φG increases, the issuance boundary wG decreases, the payout bound-

ary wG increases, the amount of issuance mG−wG increases, and the average cost of issuance

increases. As expected, the more costly it is to issue equity, the less willing the firm is to

issue and hence the lower the issuance boundary wG, the longer the firm holds onto cash

(higher payout boundary wG), and the more the firm issues (larger mG − wG) when it taps

the equity market. While a firm with a larger fixed cost issues more, the average issuance
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cost is still higher. Without the fixed cost (φG = 0), the firm issues just enough equity to stay

away from its optimally chosen financing boundary wG = 0.092, and the net marginal value

of cash at issuance equals q′G(w) = γ = 6%, so that the average issuance cost is precisely

6%. In this extreme case, the marginal value of cash q′G(w) is monotonically decreasing in

w, and firm value is globally concave in w even under market timing.

When the fixed cost of issuing equity is positive but not very high (consider φG = 1%),

the firm times equity markets at the optimally chosen issuance boundary of wG = 0.013, and

issues the amount mG − wG = 0.153. Neither the marginal value of cash nor investment is

then monotonic in w in the region wG ≤ w ≤ mG, as we have discussed earlier. Moreover,

higher fixed costs lead firms to choose larger issuance sizes (mG − wG). Notice also that

wG = 0 when φG = 2%. This result shows that market timing does not necessarily lead to

a violation of the pecking order between internal cash and external equity financing, and

importantly that wG > 0 is not necessary for the convexity of the value function. Finally,

when the fixed cost of issuing equity is very high (not shown in the graph), the market timing

effect is so weak that the precautionary motive dominates again, so that the net marginal

value of cash is monotonically decreasing in w.

Having determined why the value function may be locally convex, we next explore the

implications of convexity for investment. Recall from equation (24) that the sign of the

investment-cash sensitivity i′s(w) depends on p′′s(w). Thus, in the region where pG(w) is

convex, investment is decreasing in cash holdings w.

There may be other ways of generating a negative correlation between changes in invest-

ment and cash holdings. First, when the firm moves from state G to B, this not only results

in a drop in investment, especially when w is low (see Panel C in Figure 2), but also in an

increase in the payout boundary, which may explain why firms during the recent financial

crisis have increased their cash reserves and cut back on capital expenditures, as Acharya,

Almeida, and Campello (2010) have documented. Second, in a model with persistent pro-

ductivity shocks (as in Riddick and Whited (2009)), when expected future productivity falls,

the firm will cut investment and the cash saved could also result in a rise in its cash holding.19

19This mechanism is captured in our model with the two states corresponding to two different values for
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Is it possible to distinguish empirically between these two mechanisms? In the case of

a negative productivity shock, the firm has no incentive to significantly raise its payout

boundary, as lower productivity lowers the costs of underinvestment, hence reducing the

precautionary motive for holding cash. This prediction is opposite to the prediction related

to a negative financing shock. Thus, following negative technology shocks we will not see

firms aggressively increasing cash reserves. In fact, firms that already have high cash holdings

will likely pay out cash after a negative productivity shock, but hold on to even more cash

after a negative financing shock.

Another empirical prediction which differentiates our model from other market timing

models concerns the link between equity issuance and corporate investment. Our model

predicts that underinvestment is substantially mitigated when the firm is close to the eq-

uity financing boundary. Moreover, the positive correlation between investment and equity

issuance in our model is not driven by better investment opportunities (as the real side of

the economy is held constant across the two states); it is driven solely by the market timing

and precautionary demand for cash.

5 Real Effects of Financing Shocks

Several empirical studies have attempted to measure the impact of financing shocks on

corporate investment by exploiting the recent financial crisis as a natural experiment20 A

central challenge for any such study is to determine the degree to which the financial crisis

has been anticipated by corporations. Indeed, to the extent that corporations had forecasted

an impending crisis, the real effects of the financing shock would already be present before

the realization of the shock. And any real response after the shock has occurred would only

be a ‘residual response’. Our model is naturally suited to contrast the impact of anticipated

versus unanticipated financing shocks on investment and firm value.

the return on capital µs.
20See Campello, Graham, and Harvey (2010), Campello, Giambona, Graham, and Harvey (2010), Duchin,

Ozbas, and Sensoy (2010), and Almeida, Campello, Laranjeira, and Weisbenner (2012).

30



A scenario where shocks are anticipated does not necessarily mean that the firm knows

exactly when a financial crisis will occur. It simply means that the firm (and everyone else

in the economy) attaches a certain probability to the crisis. We contrast this scenario with

one where shocks are “unanticipated”, meaning that the firm is effectively blind to the risk

of an impending crisis. That is, in this latter scenario the firm takes the probability of a

change in financing condition to be close to zero. In our benchmark model the firm solves

the value maximization problem in the good state, assuming that ζG = 0.1. We refer to

this benchmark as the scenario where the firm “anticipates” the negative financing shock.

In contrast, under the “unanticipated” shocks scenario, the firm assumes that ζG = 0.01.21

As one might expect, a fully anticipated shock would lead firms to endogenously respond

to the threat of a crisis by adjusting their real and financial policies. For instance, firms might

choose to hold more cash, adopt more conservative investment policies, and raise external

financing sooner, etc. As a result, the ex-post impact of “anticipated” financing shock on

investment and other real decisions can appear to be small due to the fact that the shocks

have already been partially “smoothed out”through risk management.

Figure 4 illustrates this idea. The two solid lines plot the investment-capital ratio in the

case of “anticipated shocks,” with ζG = 0.1. Under these parameter choices the firm factors

in a 10% probability that a financial crisis will occur within a year. We contrast this to the

case of “unanticipated shocks,” where ζG = 0.01 (dotted lines).

A comparison of these two scenarios demonstrates that risk management smoothes out

financing shocks in two ways. First, a heightened concern about the incidence of a financial

crisis pushes firms to invest more conservatively in state G most of the time. Second, a firm

anticipating a higher probability of crisis also holds more cash on average, which further

reduces the impact of financial shocks on investment.22 Figure 4 illustrates the size of the

investment response to a financing shock at the average cash holdings in state G. With

21To have the crisis be fully unanticipated, we ought to set ζG = 0. However, our numerical solution
technique requires us to choose a positive ζG. This approximation has no significant effects on the substance
of our analysis. Moreover setting ζG = 0 is less realistic. In both the “anticipated” and “unanticipated”
scenarios, we fix the transition intensity in the bad state at ζB = 0.5.

22Note that the investment response in state B is similar when shocks are anticipated and when not.
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Figure 4: Impact of Financing Shocks on Investment. This figure plots the response in

investment when the financing shock occurs.

“unanticipated”shocks (ζG = 0.01), the average cash holdings in state G is 0.224, at which

point investment drops by 4.03% following the shock. In contrast, when financing shocks

are anticipated (ζG = 10%), average cash holdings in state G rises to 0.283, and the drop in

investment reduces to 0.96% at this level of cash holding.

Importantly, a small observed response to a financing shock does not imply that financing

shocks are unimportant for the real economy. As Figure 4 illustrates, when a higher risk

of a crisis is anticipated the firm responds by taking actions ahead of the realization of the

shock. Thus, the firm substantially scales back its investment in state G when the transition

intensity ζG rises from 1% to 10%, which is a main contributor to the overall reduction in

the firm’s investment response. The ex-ante responses of the firm in state G, such as lower

levels of investment, higher (costly) cash holdings, earlier use of costly external financing,

are all reflections of the impending threat of a negative financing shock and are all costs

incurred as a result of the deterioration in financing opportunities.

Panel A of Table 3 provides information about the entire distribution of investment
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responses to financing shocks in the two cases. The average investment reduction following

a severe financing shock is 1.78% when ζG = 10%, compared to 6.59% when shocks are

effectively unanticipated (ζG = 1%). The median investment decline is 0.76% for ζG = 10%,

which is much lower than 3.66%, the median investment drop when ζG = 1%. Moreover, in

the scenario where the financing shock comes as a big surprise, the distribution of investment

responses also has significantly fatter left tails. For example, at the 5th percentile, the

investment decline is 23.66% when financing shocks are unanticipated (ζG = 1%), which is

much larger than the drop of 6.49% when shocks are anticipated (ζG = 10%). Intuitively,

when a financial crisis strikes, firms that happen to have low cash holdings will have to cut

investment dramatically.

This result is consistent with the findings of Campello, Graham, and Harvey (2010).

They report that during the financial crisis in 2008 the CFOs they surveyed planned to cut

capital expenditures by 9.1% on average when their firm was financially constrained, while

for unconstrained firms they planned to keep capital expenditures essentially unchanged (on

average, CFOs of these firms reported a cutback of investment of only 0.6%). In addition, our

scenario with anticipated shocks matches the average investment response observed in the

recent financial crisis. As Duchin et al. (2010) have found, corporate investment on average

declined by 6.4% from its unconditional mean level before the crisis, which translates into

a 1% decline in the investment-capital ratio for our model (the average investment-capital

ratio in our model is 17%).

Our results further demonstrate that the fraction of firms that have to significantly cut

investment (e.g., by over 5%) following a severe financing shock decreases significantly as

the probability that firms assign to a financial crisis shock rises.

While firms can effectively shield investment from financing shocks by hoarding more

cash, there is little they can do to avoid cuts in investment when they are hit by shocks to

expected productivity. To illustrate and contrast the effects of shocks to expected productiv-

ity with the effects of financing shocks, we carry out the following experiment. Holding the

financing cost constant (φG = φB = 0.5% and γG = γB = 6%), we instead assume that the
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Table 3: Distribution of Investment Responses

mean 1% 5% 25% 50% 75%

A. financing shock

ζG = 1% -6.59 -43.17 -23.66 -7.06 -3.66 -2.23
ζG = 10% -1.78 -18.11 -6.49 -1.67 -0.76 -0.39

B. shock to expected productivity

ζG = 1% -6.59 -6.84 -6.84 -6.81 -6.67 -6.40
ζG = 10% -3.15 -3.17 -3.17 -3.17 -3.16 -3.15

conditional mean return on capital (productivity) is higher in state G than B. Specifically,

we hold µG at 22.7% as in the benchmark model but calibrate µB = 19.25% such that the

average drop in investment following a productivity shock is 6.59% when ζG = 1%, the same

as in the scenario with financing shocks. Again, we consider the two scenarios with ζG = 1%

and ζG = 10% respectively, while holding ζB at 0.5. The results for the distribution of

investment responses in the wake of a productivity shock are reported in Panel B of Table 3.

A higher transition intensity ζG means that the high-productivity state is expected to

end sooner on average, and that the firm will invest less aggressively in state G as a result.

This is why the average decline in investment following a productivity shock is smaller when

ζG = 10% than when ζG = 1%, although the impact of the rise in transition intensity ζG

for productivity shocks is smaller than that for financing shocks. Even more striking is the

finding that, unlike the effects of financing shocks, for which there is significant heterogeneity

in investment responses across different levels of cash-capital ratios, the investment responses

following a productivity shock are essentially the same across all levels of cash holdings. The

contrast of investment responses to financing shocks and shocks to expected productivity

in our calibrated model suggests that financing and productivity shocks have significantly

different implications for investment responses.

In summary, the effects of financing shocks on a firm’s investment policy crucially depend

34



on two variables: (1) the probability that the firm attaches to the financing shock, and (2)

the firm’s cash holding. A relatively small rise in the probability of a financing shock can

already cause firms to behave more conservatively in good times. The result is that the

average impact of financing shocks ex post is small. However, it will vary significantly across

firms with different cash holdings. In contrast, there is little risk management that a firm

can do in anticipation of a sudden shock to expected productivity, which is why there will

be little heterogeneity in how firms adjust their investment policies following such shocks.

6 Financial Constraints and the Risk Premium

In this section, we explore how aggregate financing shocks affect the risk premium for a

financially constrained firm. Without financing constraint, the firm in our model will have a

constant risk premium. When the firm’s financing conditions remain the same over time, a

conditional CAPM (capital asset pricing model) holds in our model, where the conditional

Beta is monotonically decreasing in the firm’s cash-capital ratio. In the presence of aggregate

financing shocks, however, the volatility in stock returns tends to rise sharply in state B,

as can be inferred from Figure 2. This suggests that the conditional risk premium will be

determined by a two-factor model, which prices both the aggregate shocks to profitability

and the shocks to financing conditions.2324

A heuristic derivation of the firm’s (risk-adjusted) expected return involves a comparison

23Livdan, Sapriza, and Zhang (2009) also study the effect of financing constraints on stock returns. Their
model, however, does not allow for stochastic financing conditions or cash accumulation.

24One interpretation of the pricing model in this section is that all investors are rational risk-averse
investors who anticipate shocks to a firm’s financing opportunities, which may be driven by (unmodeled)
shocks to financial intermediation costs or changes in the opaqueness of the firm’s balance sheets. An
alternative interpretation is that the firm’s external financing costs are driven by (unmodeled) changes in
market sentiment. This behavioral interpretation is still consistent with the view that investors require
compensation for the risk with respect to changes in the firm’s financing opportunities if one takes the
approach based on differences of opinion à la Scheinkman and Xiong (2003). The point is that in the
differences of opinion model investors are aware that at any moment in time there may be more optimistic
or pessimistic other investors. Each investor is not always the marginal investor and to the extent that each
investor is aware of this (as is assumed in the differences of opinion model) he faces risk with respect to other
investors’ optimism (which here takes the form or risk with respect to the firm’s financing opportunities) for
which he requires compensation.
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of the HJB equations under the physical and risk-neutral measures P and Q. Let the firm’s

conditional risk premium in state s be µRs (w). We may then write the HJB equation under

the physical measure as follows:

(
rs + µRs (w)

)
ps(w) = max

is
[(rs − λs)w + µs − is − gs (is)] p

′
s (w) +

σ2
s

2
p′′s (w)

+ (is − δ) (ps (w)− wp′s (w)) + ζs (ps− (w)− ps (w)) , (25)

where µs and ζs respectively denote the expected return on capital and the transition inten-

sity from state s to s− under the physical probability measure. By matching terms in the

HJB equations (11) and (25), and using the risk adjustments specified in (7) and (8), we

then obtain the following expression for the conditional risk premium:25

µRs (w) = ηsρsσs
p′s (w)

ps (w)
− (eκs − 1) ζs

(ps− (w)− ps (w))

ps (w)
. (26)

The first term in (26) is the productivity risk premium, which is the product of the

firm’s exposure to aggregate (Brownian) productivity shocks ρsσsp
′
s(w)/ps(w) and the price

of Brownian risk ηs (where ρs is the conditional correlation between the firm’s productivity

shock dA and the stochastic discount factor in state s). This term is positive for firms whose

productivity shocks are positively correlated with the aggregate market.

The second term is the financing risk premium, which compensates risk-averse investors

for the firm’s exposure to aggregate financing shocks. Financing shocks will be priced when

their arrival corresponds to changes in the stochastic discount factor. As seems empirically

plausible, we suppose that the stochastic discount factor jumps up when aggregate financing

conditions deteriorate, that is, κG = −κB > 0 in our two state model. In other words,

investors will demand an extra premium for investing in firms whose values drop (rise)

during times when external financing condition worsens (improves) (pG(w) > pB(w)).

In the first-best setting where a firm has free access to external financing, its risk premium

25The same expression can also be obtained via the standard covariance between return and stochastic
discount factor derivation. See Appendix B for details.
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is constant and can be recovered from (26) by setting η, ρ, and σ to constants and dropping

the second term. We then obtain the standard CAPM formula:

µFB = ηρσ
1

qFB
. (27)

The comparison between µRs (w) and µFB highlights the impact of external financing frictions

on the firm’s cost of capital.

Constant equity issuance costs: When financing opportunities are constant over time,

financial constraints only affect the cost of capital by amplifying (or dampening) a

firm’s exposure to productivity shocks. This effect is captured by the productivity

(diffusion) risk premium in (26). As the cash-capital ratio w increases, the firm tends

to become less risky for two reasons. First, if a greater fraction of its assets is cash,

the firm beta is automatically lower due to a simple portfolio composition effect. As

a financially constrained firm hoards more cash to reduce its dependence on costly

external financing, the firm beta becomes a weighted average of its asset beta and the

beta of cash, which is equal to zero.26 Second, an increase in w effectively relaxes the

firm’s financing constraint and therefore reduces the sensitivity of firm value to cash

flow, which also tends to reduce the risk of holding the firm.

Time-varying equity issuance costs: Time-varying equity issuance costs affect the cost

of capital for a financially constrained firm in two ways. First, the firm’s exposure to

productivity shocks changes as financing conditions change, as the marginal value of

cash p′s(w) and firm value ps(w) both depend on the state s. Second, when external

financing shocks are priced, investors demand an extra premium for investing in firms

that do poorly when financing conditions worsen. These firms expose investors to

higher stock-return volatility in state B. This effect is captured by the second term in

(26). Note that (ps− (w)− ps (w)) /ps (w) gives the percentage change of firm value if

financing conditions change, and this term measures the sensitivity of firm value with

26In particular, with a large enough buffer stock of cash relative to its assets, this firm may be even safer
than a firm facing no external financing costs and therefore holding no cash.
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Figure 5: The effects of stochastic financing conditions on the cost of capital. This

figure plots firm risk premium in state G and B for the case where G is transitory. We consider

three levels of transition intensity from G to B: ζG = 0.01, 0.1, 0.5.

respect to changes in w. Intuitively, the financing risk premium is larger the bigger

the relative change in firm value due to a change in external financing conditions.

Figure 5 Panel A plots the productivity risk premium (the first term in 26) in state

G as a function of the cash-capital ratio w. This premium is generally decreasing in the

cash-capital ratio, except near the financing boundary. In the benchmark case (ζG = 0.1),

the risk with respect to higher future financing costs generates market timing behavior

and non-monotonicity in the marginal value of cash (Figure 1, Panel B), which in turn

may cause the productivity risk premium to be locally increasing in w for low levels of

w. As the non-monotonicity in the marginal value of cash is partially offset by the asset

composition effect, the non-monotonicity in the productivity risk premium is relatively weak.
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Similarly, holding w fixed at a low level, market timing can lower p′G(w) as the transition

intensity ζG increases. This explains why the productivity risk premium may be decreasing

in the transition intensity for low w. When the transition intensity is sufficiently low (e.g.,

ζG = 0.01), the non-monotonicity in the productivity risk premium disappears.

Second, Panel B plots the financing risk premium. The size of this premium depends on

the relative change in firm value when external financing conditions change. It is increasing

in the transition intensity ζG, but decreasing in w. Intuitively, when cash holdings are low,

a sudden worsening in external financing conditions is particularly costly; but when cash

holdings are high, the firm is able to avoid costly external financing by cutting investment,

engaging in asset sales, and deferring payout, all of which mitigate the impact of the financing

shock.

In Panel C and D, both the productivity risk premium and financing risk premium in

state B are monotonically and rapidly decreasing in the firm’s cash holding. When w is

close to 0, the annualized conditional productivity risk premium can exceed 80%. The high

premium and sharp decline with w mirror the rapid decline in the marginal value of cash (see

Figure 2, Panel B): high marginal value of cash in the low w region can dramatically amplify

the firm’s sensitivity to productivity shocks. The productivity risk premium eventually falls

below 2% when the firm is near the payout boundary. Similarly, the conditional financing

premium can exceed 30% when w is close to 0; this is due to the large jump in firm value

when the financing state changes (see Figure 2, Panel A).

Quantitatively, the level and variation of the conditional risk premium generated by

financing constraint should be interpreted in conjunction with the stationary distributions

of cash holdings in Section 4.4. Because the firm’s cash holdings will rarely drop to very low

levels, its risk premium will be small and smooth most of the time in our model.

Our model has several implications for expected returns of financially constrained firms.

Controlling for productivity and financing costs, the model predicts an inverse relation be-

tween returns and corporate cash holdings, which has been documented by Dittmar and

Mahrt-Smith (2007) among others. Our analysis points out that this negative relation may
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not be due to agency problems, as they emphasize, but may be driven by relaxed financing

constraints and a changing asset composition of the firm.27

A related prediction is that firms that are more financially constrained are not necessarily

more risky. The risk premium for a relatively more constrained firm can be lower than that

for a less constrained firm if the more constrained firm also holds more cash. This observation

may shed light on the recent studies by Ang, Hodrick, Xing, and Zhang (2006) documenting

that stocks with high idiosyncratic volatility have low average returns. In our model, firms

that face higher idiosyncratic risk will optimally hold more cash on average, which could

explain their lower risk premium.

With time-varying financing conditions, our model can be seen as a conditional two-

factor model to explain the cross section of returns (we provide details of the derivation

in the Appendix). A firm’s risk premium is determined by its productivity beta and its

financing beta. Other things equal, a firm whose financing costs move closely with aggregate

financing conditions will have a larger financing beta and earn higher returns than one with

financing costs independent of aggregate conditions. Empirically, this two-factor model can

be implemented using the standard market beta plus a beta with respect to a portfolio that

is sensitive to financing shocks (e.g. a banking portfolio). This model, in particular, shows

how a firm’s conditional beta depends on the firm’s cash holdings.

7 Market Timing and Dynamic Hedging

We have thus far restricted the firm’s financing choices to only internal funds and external

equity financing. In this section, we extend the model to allow the firm to engage in dynamic

hedging via derivatives such as market-index futures. How does market timing behavior

interact with dynamic hedging? And, how does the firm’s dynamic hedging strategy affect

27When heterogeneity in productivity and financing costs is difficult to measure, it is important to take
into account the endogeneity of cash holdings when comparing firms with different cash holdings empirically.
A firm with higher external financing costs will tend to hold more cash, however its risk premium may still
be higher than for a firm with lower financing costs and consequently lower cash holdings. Thus, a positive
relation between returns and corporate cash holdings across firms may still be consistent with our model
(see Palazzo (2008) for a related model and supporting empirical evidence).
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its market timing behavior? These are the questions we address in this section. We denote

by F the index futures price for a market portfolio that is already completely hedged against

financing shocks. Under the risk-neutral probability measure, the futures price F then

evolves according to:

dFt = σmFtdẐ
M
t , (28)

where σm is the volatility of the market index portfolio, and {ẐM
t : t ≥ 0} is a standard

Brownian motion that is correlated with the firm’s productivity shock {ZA
t : t ≥ 0} with a

constant correlation coefficient ρ.28

We denote by ψt the fraction of the firm’s total cash Wt that it invests in the futures

contract. Futures contracts require that investors hold cash in a margin account. Thus, let

αt ∈ [0, 1] denote the fraction of the firm’s total cash Wt held in the margin account. Cash

held in this margin account incurs a flow unit cost ε ≥ 0. Futures market regulations typically

require that an investor’s futures position (in absolute value) cannot exceed a multiple π of

the amount of cash αtWt held in the margin account. We let this multiple be state dependent

and denote it by π(st). The margin requirement in state s then imposes the following limit

on the firm’s futures position: |ψt| ≤ π(st)αt. As the firm can costlessly reallocate cash

between the margin account and its regular interest-bearing account, it optimally holds the

minimum amount of cash necessary in the margin account when ε > 0. Without much loss of

generality, we shall ignore this haircut on the margin account and assume that ε = 0. Under

this assumption, we do not need to keep track of cash allocations in the margin account and

outside the account. We can then simply set αt = 1. We provide a detailed derivation of

firm value and optimal hedging policy in the Appendix D, where we establish that:

1. in state B, the optimal futures position is given by

ψ∗B(w) = max

{−ρσB
wσm

, −πB
}
.

28Note that the futures price F follows a martingale after risk adjustment. The interesting case to consider
is when the index futures is imperfectly correlated with the firm’s productivity shock.
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Figure 6: Optimal hedge ratios ψ∗(w) in states G and B when state B is absorbing.
The parameter values are: market volatility σm = 20%, correlation coefficient ρ = 0.4, margin

requirements πG = 5 and πB = 2. All other parameter values are given in Table 4.

2. in state G, the optimal futures position is given by

ψ∗G(w) =

 max {−ρσGσm−1/w, −πG} , for w ≥ ŵG ,

πG , for wG ≤ w ≤ ŵG .

We choose the correlation between index futures and the firm’s productivity shock to be

ρ = 0.4 and a market return volatility of σm = 20%. The margin requirements in states G

and B are set at πG = 5 and πB = 2, respectively. All other parameter values are the same

as in the previous sections.

Optimal hedge ratios ψ∗s(w). Figure 6 plots the optimal hedge ratios in both states:

ψ∗G(w) and ψ∗B(w). First, we note that for sufficiently high w, the firm hedges in the same

way in both states. Hedging is then unconstrained by the firm’s cash holdings and costless.

The firm then chooses its hedge ratio to be equal to −ρσσ−1m /w so as to eliminate its exposure
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to systematic volatility of the productivity shock. This explains the concave and overlapping

parts of the hedging policies in Figure 6.

Second, for low w hedging strategies differ in the two states as follows: in state B the

hedge ratio hits the constraint ψ∗B(w) = −πB = −2 for w ≤ 0.12. In state G on the other

hand, the firm issues equity at wG = 0.0219 and firm value is convex in w (due to market

timing) for w ≤ w̃G = 0.0593 (where p′′(w̃G) = 0). In other words, for w ∈ (wG, w̃G) firm

value is convex in w and the firm does the opposite of hedging and engages in maximally

allowed risk taking by setting ψ∗G(w) = πG = 5 for w ∈ (0.0219, 0.0593).

When cash holdings w are sufficiently high, hedging lowers the firm’s precautionary hold-

ings of cash and hence lowers its payout boundary wG from 0.3703 (no hedging benchmark)

to 0.3548. For sufficiently low cash holdings, the ability to speculate lowers the firm’s is-

suance boundary wG because the marginal value of cash for a firm with speculation/hedging

opportunity is higher. The ability to increase the volatility of the cash accumulation process

makes the equity issuance option more valuable and hence causes the issuance boundary wG

to be lowered from 0.0268 (no hedging/speculation benchmark) to 0.0219.

Froot, Scharfstein, and Stein (1993) argue that hedging increases firm value by mitigating

its underinvestment problem. However, we show that this result does not hold generally in

a dynamic setting. For sufficiently high cash holdings, hedging indeed mitigates the firm’s

under-investment problem by reducing exposure to systemic volatility. However, when the

firm’s cash holdings are sufficiently low, the firm optimally engages in speculation to take

advantage of its market timing option.

Rampini and Viswanathan (2010) show that more financially constrained firms hedge

less and may not engage in any form of risk management at all. The reason in their model

is that the firm’s financing needs for investment override hedging concerns. There is thus

an important link between firm financing constraints and risk management: both involve

promises to pay by the firm that are limited by collateral.
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8 Conclusion

There is mounting evidence of large market-wide swings in the valuation of stocks. What is

more, in rare episodes of financial crises primary markets essentially shut down. In addition,

firms have become increasingly aware of the risks and opportunities they face with respect

to these external financing costs, and they do appear to ‘time equity markets’ as Baker

and Wurgler (2002) have shown. However, despite the rapid growth in empirical research

on the effects of shocks to the supply of capital on firms’ corporate policies (see Baker and

Wurgler, 2011, for a survey of the literature), very few theoretical analyses are available on the

implications of changing external financing costs for the dynamics of corporate investment

and financing. This study aims to close this gap by taking the perspective of a rational

firm manager seeking to maximize shareholder value by both timing favorable equity market

conditions, and shielding the firm against crisis episodes through precautionary cash holdings.

We have proposed a simple integrated analytical framework based on the classical q-

theory of investment, but for a financially constrained firm facing stochastic financial market

conditions. We have shown that firms optimally hold cash buffer stocks and issue equity

in favorable market conditions even when they do not have immediate funding needs. This

dynamic behavior is broadly in line with existing empirical evidence. As simple as this market

timing behavior by the firm appears to be, we have shown that it has subtle implications

for the dynamics of corporate investment and for the stock returns. The key driver of

these surprising dynamic implications is the finite duration of favorable financing conditions

combined with the fixed issuance costs firms incur when they tap equity markets. Finally,

we have highlighted how much a firm that optimally times equity markets and holds optimal

precautionary cash buffers is able to shield itself against large external financing costs. A

firm entering a crisis state with an optimally replenished cash buffer in good times is able to

maintain its investment policy almost unaltered, and thus substantially smooth out adverse

external financing shocks.

Throughout most of our analysis, we have assumed that firm managers know the true

probability distribution of financing shocks. An interesting question for future research is to
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extend our analysis along the lines of Bloom (2009) and consider how (time-varying) uncer-

tainty about the probability distribution of financing shocks may also affect firm decisions.

In his model, Bloom (2009) allows for uncertainty shocks on productivity for a financially

unconstrained firm. It would be interesting to contrast his study with a model with un-

certainty shocks about external financing shocks and how this affects corporate policies of

financially constrained firms.
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Appendix

A A more general formulation of the model

Our analysis in the text focuses on the special case of two states of the world. However, it is

straightforward to generalize our model to a setting with more than two states, denoted by

st = 1, · · · , n. The transition matrix in the n-state Markov chain is then given by ζ = [ζ ij].

The n-state Markov chain can also capture both aggregate and firm-specific shocks, and also

productivity and financing shocks. In sum, the firm’s expected return on capital, volatility,

and financing costs may all change when the state changes in the general formulation of the

model.

A.1 Risk adjustments

To make the adjustments for systematic risk in the model, we assume that the economy is

characterized by a stochastic discount factor (SDF) Λt, which evolves as follows:

dΛt

Λt−
= −r (st−) dt− η (st−) dZM

t +
∑
st 6=st−

(
eκ(st− ,st) − 1

)
dM

(st− ,st)
t , (29)

where r(s) is the risk-free rate in state s, η(s) is the price of risk for systematic Brownian

shocks ZM
t , κ (i, j) is the relative jump size of the discount factor when the Markov chain

switches from state i to state j, and M
(i,j)
t is a compensated Poisson process with intensity

ζ ij,

dM
(i,j)
t = dN

(i,j)
t − ζ ijdt, i 6= j. (30)

In equation (29), we have made use of the result that an n-state continuous-time Markov

chain with generator [ζ ij] can be equivalently expressed as a sum of independent Poisson pro-

cesses N
(i,j)
t (i 6= j) with intensity parameters ζ ij (see e.g., Chen (2010)).29 The above SDF

29More specifically, the process s solves the following stochastic differential equation, dst =∑
k 6=st− δk (st−) dN

(st− ,k)
t , where δk (j) = j − i.

47



captures two different types of risk in the market: small systematic shocks generated by the

Brownian motion, and large systematic shocks from the Markov chain. We assume that dZM
t

is partially correlated with the firm’s productivity shock dZA
t , with instantaneous correlation

ρdt. Chen (2010) shows that the SDF in (29) can be generated from a consumption-based

asset pricing model.

The SDF defines a risk neutral probability measure Q, under which the process for the

firm’s productivity shocks becomes (6). In addition, if a change of state in the Markov chain

corresponds to a jump in the SDF, then the corresponding large shock also carries a risk

premium, which leads to an adjustment of the transition intensity under Q as folows:

ζ̂ ij = eκ(i,j)ζ ij , i 6= j.

A.2 Solution of the n-state model

Under the first best, the HJB equation for the n-state model is as follows,

rsq
FB
s = µ̂s − iFBs − 1

2
θs
(
iFBs − νs

)2
+ qFBs

(
iFBs − δ

)
+
∑
s′ 6=s

ζ̂ss′
(
qFBs′ − qFBs

)
,

where for each state s = 1, · · · , n the average q is given by:

qFBs = 1 + θs
(
iFBs − νs

)
. (31)

While there are no closed form solutions for n > 2, it is straightforward to solve the system

of nonlinear equations numerically.

With financial frictions, the HJB equation is generalized from (11) as follows:

rsP (K,W, s) = max
I

[(rs − λs)W + µ̂sK − I − Γ (I,K, s)]PW (K,W, s) +
σ2sK

2

2
PWW (K,W, s)

+ (I − δK)PK(K,W, s) +
∑
s′ 6=s

ζ̂ss′
(
P (K,W, s′)− P (K,W, s)

)
, (32)

for each state s = 1, · · · , n, and W s ≤ W ≤ W s. As before firm value is homogeneous of
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degree one in W and K in each state, so that

P (K,W, s) = ps(w)K, (33)

where ps(w) solves the following system of ODE:

rsps(w) = max
is

[(rs − λs)w + µ̂s − is − gs (is)] p
′
s (w) +

σ2
s

2
p′′s (w)

+ (is − δ) (ps (w)− wp′s (w)) +
∑
s′ 6=s

ζ̂ss′ (ps′ (w)− ps (w)) . (34)

The boundary conditions in each state s are then defined in similar ways as in Equation

(13-16).

B Calibration

We use annual data from COMPUSTAT to calculate the moments of the investment-capital

ratio and cash-capital ratio for our model calibration. The sample is from 1981 to 2010

and excludes utilities (SIC codes 4900-4999) and financial firms (SIC codes 6000-6999). We

require firms to be incorporated in the United States and have positive assets and positive

net PPE (property, plant, and equipment). In addition, since our model does not allow

for lumpy investment, mergers and acquisitions, or dramatic changes in profitability, we

eliminate firm-years for which total assets or sales grew by more than 100%, or investments

exceeded 50% of capital stock from the previous year.

Capital investment is measured using capital expenditure (CAPXt). Since our calibrated

model does not allow for short term debt, we measure cash holdings as the difference between

cash and short-term investments (CHEt) and average short-term borrowing (BASTt). Cap-

ital stock is the total net PPE (PPENTt). Then, the cash-capital ratio for year t is defined

as CHEt−BASTt
PPENTt

, while the investment-capital ratio for year t is CPAXt
PPENTt−1

. We first compute

moments for the cash-capital ratio and the investment-capital ratio at the firm level, and

then calibrate the model parameters to match the moments of the median across firms.
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C Beta Representation

As indicated by the SDF Λt in (29) with n = 2, in state s, the price of risk for the technology

shock (risk premium for a unit exposure to the shocks) is λTs = ηs, whereas the price of risk

for the financing shock is λFs = − (eκs − 1). Thus, we can rewrite the risk premium using

the Beta representation:

µRs (w) = βTs (w)λTs + βFs (w)λFs ,

where

βTs (w) = ρsσs
p′s (w)

ps (w)
(35)

βFs (w) = ζs
ps− (w)− ps (w)

ps (w)
(36)

are the technology Beta and financing Beta respectively for the firm in state s. The tech-

nology Beta will be large when the marginal value of cash relative to firm value is high; the

financing Beta will be large when the probability that financing conditions will change is

high, or when the change in financing conditions has a large impact on the firm value.

Since there are two sources of aggregate shocks in this model, the CAPM does not hold.

Instead, expected returns reflect aggregate risk driven by a two-factor model. We thus

assume that there are two diversified portfolios T and F , each only subject to one type of

aggregate shock, a technology or a financing shock. Suppose their return dynamics are given

as follows:

dRT
t = (rs + µTs )dt+ σTs dBt, (37)

dRF
t = (rs + µFs )dt+

(
eκ

F
1 − 1

)
dM1

t +
(
eκ

F
2 − 1

)
dM2

t . (38)
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Then, the stochastic discount factor (29) implies that

µTs = σTs ηs,

µFs = ζs(e
κFs − 1) (eκs − 1) . (39)

We can now rewrite the risk premium in (37) and (38) using Betas as follows:

µRs (w) = βTs (w)µTs + βFs (w)µFs ,

where

βTs (w) =
ρsσs
σTs

p′s (w)

ps (w)
(40)

βFs (w) =
ps− (w)− ps (w)

ps (w) (eκFs − 1)
(41)

are the technology Beta (Beta with respect to Portfolio T ) and financing Beta (Beta with

respect to Portfolio F ) for the firm in state s. The technology Beta will be large when the

marginal value of cash relative to firm value is high; the financing Beta will be large when

the probability that financing conditions will change is high, or when the change in financing

conditions has a large impact on firm value.

D Dynamic Hedging

We now derive the optimal hedging policy in detail for Section 7. The firm’s cash holdings

thus evolve as follows:

dWt = Kt [µ(st)dAt + σ(st)dZt]−(It + Γt) dt+dHt−dUt+[r(st))− λ(st)]Wtdt+ψtWtσmdBt , (42)

where |ψt| ≤ π(st). To avoid unnecessary repetition, we only consider the case with positive

correlation, i.e., ρ > 0. We consider first the crisis state.
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In state B. Given that firm value is always concave in cash in state B (PWW (K,W,G) <

0), the firm in state B faces the same decision problem as the firm in BCW. BCW show that

the optimal hedge ratio (with time-invariant opportunities) is given by

ψ∗B(w) = max

{−ρσB
wσm

, −πB
}
. (43)

Intuitively, the firm chooses the hedge ratio ψ so that the firm only faces idiosyncratic volatil-

ity after hedging. The hedge ratio that achieves this objective is −ρσBσ−1m /w. However, this

hedge ratio may not be attainable due to the margin requirement. In that case, the firm

chooses the maximally admissible hedge ratio ψ∗B(w) = −πB. Equation (43) captures the

effect of margin constraints on hedging. Because there is no hair cut (i.e., ε = 0), the hedge

ratio ψ given in (43) is independent of firm value and only depends on w. We next turn to

the focus of this section: hedging in state G.

In state G. Before entering the crisis state, the firm has external financing opportunities.

Moreover, the margin requirement may be different (i.e., πG > πB). In state G, the firm

chooses its investment policy I and its index futures position ψW to maximize firm value

P (K,W,G) by solving the following HJB equation:

rGP (K,W,G) = max
I,ψ

[(rG − λG)W + µGK − I − Γ (I,K,G)]PW + (I − δK)PK (44)

+
1

2

(
σ2GK

2 + ψ2σ2mW
2 + 2ρσmσGψWK

)
PWW + ζ [P (K,W,G)− P (K,W,B)] ,

subject to |ψ| ≤ πG.

When firm value is concave in cash, we have the same solution as in state B, but with

margin πG. That is,

ψ∗G(w) = max
{
−ρσGσm−1/w, −πG

}
.

However, market timing opportunities combined with fixed costs of equity issuance imply

that firm value may be convex in cash, i.e., PWW (K,W,G) > 0 for certain regions of w =

W/K. With convexity, the firm naturally speculates in derivatives markets. Given the margin
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requirement, the firm takes the maximally allowed futures position, i.e. the corner solution

ψG(w) = πG. Note that the firm is long in futures despite positive correlation between its

productivity shock and the index futures. Let ŵG denote the endogenously chosen point at

which PWW (K,W,G) = 0, or p′′G(ŵG) = 0. We now summarize the firm’s futures position in

state G as follows:

ψ∗G(w) =

 max {−ρσGσm−1/w, −πG} , for w ≥ ŵG ,

πG , for wG ≤ w ≤ ŵG .
(45)

Note the discontinuity of the hedge ratio ψ∗G(w) in w. The firm switches from a hedger to a

speculator when its cash-capital ratio w falls below ŵG.
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