
MIT Open Access Articles

Cloud Computing, REST and Mashups to Simplify
RFID Application Development and Deployment

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Guinard, Dominique, Christian Floerkemeir, Sanjay Sarma. "Cloud Computing,
REST and Mashups to Simplify RFID Application Development and Deployment." WoT 2011:
proceedings of the Second International Workshop on the Web of Things, June 12, 2011, San
Francisco, USA.

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/87673

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/87673
http://creativecommons.org/licenses/by-nc-sa/4.0/

Cloud Computing, REST and Mashups to Simplify
RFID Application Development and Deployment

Dominique Guinard
Inst. for Pervasive Computing

ETH Zurich
and MIT Auto-ID Labs
Massachusetts Inst. of

Technology
dguinard@mit.edu

Christian Floerkemeier
Inst. for Pervasive Computing

ETH Zurich
and MIT Auto-ID Labs
Massachusetts Inst. of

Technology
floerkem@mit.edu

Sanjay Sarma
MIT Auto-ID Labs

Massachusetts Inst. of
Technology

sesarma@mit.edu

ABSTRACT
While of increasing importance for the real-time enterprise,
deployments of Internet of Things infrastructures such as
RFID remain complex and expensive. In this paper, we il-
lustrate these challenges by studying the applications of the
EPC Network which is an RFID standards framework that
aims to facilitate interoperability and application develop-
ment. We show how the use of blueprints that were suc-
cessful on the Web can help to make the adoption of these
standards less complex. We discuss in particular how Cloud
Computing, RESTful interfaces, Real-time Web (Websock-
ets and Comet) and Web 2.0 Mashups can simplify ap-
plication development, deployments and maintenance in a
common RFID application. Our analysis also illustrates
that RFID/EPC Network applications are an excellent play-
ground for Web of Things technologies and that further re-
search in this field can significantly contribute to making
real-world applications less complex and cost-intensive.

1. INTRODUCTION
The RFID (Radio Frequency IDentification) standards com-

munity has developed a number of air interfaces and soft-
ware standards to provide interoperability across RFID de-
ployments. This extensive standards framework, known as
the EPC (Electronic Product Code) Network, covers aspects
such as reader-to-tag communication, reader configuration
and monitoring, tag identifier translation, filtering and ag-
gregation of RFID data, and persistent storage of applica-
tion events. While there are in total fifteen standards that
make up the EPC Network framework, the air interface pro-
tocol known as EPCglobal UHF Gen2 has seen the most
adoption – both in large scale supply chain applications as
well as niche RFID deployments.

The adoption of the software standards within the EPC
Network has been significantly slower. The deployment of
RFID applications that implement the EPC Network stan-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WoT 2011, June 2011; San Francisco, CA, USA
Copyright 2011 ACM 978-1-4503-0624-9/11/06 ...$10.00.

dards often remains complex and cost-intensive mostly be-
cause they involve the deployment of often rather large and
heterogeneous distributed systems. As a consequence, these
systems are often only suitable for big corporations and large
implementations and do not fit the limited resources of small
to mid-size businesses and small scale applications both in
terms of required skill-set and costs.

While there is most likely no universally available solu-
tion to these problems, the success of the Web in bringing
complex, distributed and heterogeneous systems together
through the use of simple design patterns appears as a viable
approach to address these challenges. The contribution of
this paper is a discussion of pain points in RFID applications
that have made deployments challenging and a proposal how
they can be addressed using solutions directly inspired from
the architecture of the Web and its services. Our work also
illustrates the applicability of Web of Things [6] concepts to
the world of RFID applications.

This paper is structured as follows. We begin by describ-
ing a typical use-case of the EPC Network. We then look at
three important pain points. For each pain point we propose
and implement a Web blueprint (i.e., architectural pattern)
and discuss the respective related work. Finally, we illus-
trate the benefits by means of two concrete prototypes and
discuss the challenges we encountered.

1.1 Case Study: Electronic Article Surveillance
with RFID

In this section, we describe a common RFID application,
RFID as an electronic article surveillance technology, and
illustrate how the EPC Network framework can be used to
realize this application. This example will help us illustrate
the challenges in RFID application development and deploy-
ments in later sections of this paper.

In many clothing stores, RFID technology is set to replace
existing Electronic Article Surveillance (EAS) technology
because of its many advantages. The two most important
issues include knowledge about the product being stolen and
the reduction in the number of false alarms. Today, retail
stores have little information about which particular prod-
uct is actually being stolen. As a consequence, the stores
cannot replenish shelves appropriately resulting in a possi-
ble lost sale to a consumer who is willing to pay for the item.
There is also no way to prevent frequent false alarms where
products with active EAS tags from another retailer trigger
the alarm.

The use of RFID technology as an EAS system relies on
the presence of RFID tags on the individual clothing items
as well as RFID readers at the backroom door to the store,
at the checkout and at the exit. When products are placed
on the shop floor, the RFID tags are read as they pass the
reader at the backroom store entry. The applications regis-
ters the tags and marks the IDs as ’on sale’. If a consumer
decides to purchase an item, the RFID tag is read again at
the checkout and flagged as ’sold’. If the user leaves the store
with the product, the RFID readers at the exit report the
RFID tag to the application, but no alarm is triggered be-
cause the product is marked as sold. If the consumer decides
to leave the store without paying, the RFID tag is identified
by the readers at the exit and an alarm is triggered because
the product is still not paid for.

To realize the above example, the RFID readers need to
be mounted in the store and connected to a local area (wire-
less) network. After discovery of the readers on the network,
each RFID reader needs to be configured to read RFID tags
and report RFID tag read reports via the binary EPCglobal
LLRP reader protocol. To prevent RFID readers running
continuously, the backroom reader is often triggered via a
motion sensor. There is also an alarm connected to the net-
work that can be triggered by the RFID readers at the exit.
Following the configuration of the readers, an application
server needs to be set up on a server in the clothing store
that runs the RFID middleware. In the case of the EPC Net-
work, such an application server would run an instance of
an Application-Level-Events (ALE) compliant middleware
that filters and aggregates the RFID data. Using the ALE
WS-* API, the developer would need to group the RFID
readers at the various locations (entry, exit, and checkout)
and also define time filters and aggregators that eliminate
redundant RFID reads. In a typical RFID deployment, the
appearance of an RFID tag in the read range of an RFID
reader can result in numerous tag reads of the same tag. To
process the filtered and aggregated RFID data, custom busi-
ness logic needs to be implemented. The business logic of
the EAS application needs to deserialize the incoming ALE
SOAP messages containing the tag reads, to send off web
service EPCIS (EPC Information Services) query interface
to check the state of the particular tag (’on sale’, ’sold’), and
to create a new EPCIS event that triggers a state change
and possibly sound an alarm. To store and access these
EPCIS events, the developer needs to set up a database on
the application server and deploy an EPCIS repository that
supports the EPCIS capture and query protocols. The de-
veloper might also decide to develop a custom application
that queries the EPCIS repositories across multiple stores to
provide analytics capabilities. The retailer might for exam-
ple want to identify the products most stolen and locations
of stores with the most stores.

2. PAIN POINTS AND REMEDIES
A direct consequence of the complexity of installing and

implementing the use-case we described before is that many
smaller businesses decide to adopt very basic solutions where
non-standard tags simply trigger an alarm everytime they
pass the gate. In this section, we analyze some of the pain
points of RFID application development, deployment and
maintenance that are illustrated by the above scenario.

Figure 1: Overview of the EPC Cloud component
architecture

2.1 Pain Point: Complex and Expensive Back-
end Deployment and Maintenance

Real-world, industrial IoT systems often encompass sev-
eral relatively complex standards and involves several dif-
ferent software components [9]. The EPC Network is no
exception; Vendors of EPC products offer several different
software components often sold separately to form an EPC
software stack. As an example, the Fosstrak open-source
project1 implements most of the EPC standards and requires
the installation of 9 different software components in order
to be able to run a standard use-case, such as the EAS one
described before. Additionally, a full Fosstrak installation
also requires a compatible Java SDK, Apache Maven, a full
MySQL database and an Apache Tomcat server, summing
up the number of required software components to 13. As
a consequence, a full EPC software stack is rather complex
to install and deploy and often requires software experts, es-
pecially when considering businesses for which IT is not a
core concern (e.g., operators in the supply chain) or smaller
businesses. The complexity is further increased by the main-
tenance work required by a number of different components
and their respective updates and patches cycles. Hence, de-
ploying and maintaining IoT systems is time consuming and
accounts for more than 70% of the system’s overall software
costs [1].

Furthermore, the software components often need to be
deployed on application servers running on dedicated hard-
ware. For the Fosstrak stack, a Java Application Server (or
a least a servlet container such as Tomcat) is required which
needs to be configured on a hardware server to handle the
appropriate load and accesses. Similarly, the IoT embedded
devices (e.g., RFID readers, sensor nodes, etc.) need to be
deployed, maintained and configured. This induces signifi-
cant hardware costs and the need for hardware experts.

2.1.1 Remedy: A Cloud-Based Virtual Infrastructure

Virtualization Blueprint. Reducing complex software in-
stallation is one value proposition of virtualization platforms [7]

1http://www.fosstrak.org

such as VMWare2 or the open-source Virtual Box3. With
these platforms, software stack can be installed once in a
virtualized OS (operating system) called virtual machine or
guest OS, and then shared to be deployed within minutes
on any supported host machine running the virtualization
platform. This significantly reduces the installation costs
and required skills.

In the IoT space, this benefit has been identified and is
increasingly used by several platforms such as the Instant
Contiki virtual machine4 which offers a complete develop-
ment environment for WSNs (Wireless Sensor and Actuator
Networks) ready to use within minutes [10]. However, the
EPC Network still lacks such solutions. Hence, we virtual-
ized an EPC software stack. The EPC Dev Virtual ma-
chine combines a Linux Ubuntu Operating System, with
an Eclipse IDE (Integrated Development Environment), a
source repository (Maven), as well as an Apache Tomcat
container in which we deployed and configured the 9 Fos-
strak software components. This means that the virtual
machine can be used as a development environment or as a
test server instance of the EPC software stack if installed on
an appropriate server machine.

This cuts down the installation time of a full EPC soft-
ware stack from several hours or days to a few minutes. It
further fosters quick evaluation of a complete EPC software
stack which can be of great help when assessing different
implementations or developing proof of concept prototypes
or enhancements of the EPC software stack.

Cloud Computing: Utility Computing Blueprint. While
Virtualization significantly reduces installation time, it does
not solve two other pain points of IoT deployments: software
and hardware maintenance costs. However, recent develop-
ments in the Web 2.0 and especially the trend towards pro-
viding services on the Web rather than simply Web-pages,
have led to a convergence of virtualization technologies and
the distributed Web, leading to Cloud Computing.

Cloud Computing can take several forms under the um-
brella of two big groups. “Private Clouds” are basically vir-
tualized environments running locally as described in the
previous section. “Public Clouds”are, on the other hand vir-
tualized environments running on remote machines. A Pub-
lic Cloud can take many forms [12]. In its “Utility Comput-
ing” form, it basically proposes to further push the notion of
virtualization by making the hardware on which virtual ma-
chines run available as a virtual resource pool fully accessi-
ble, on-demand, on the Web. Amazon Web Services (AWS)5

pioneered the space of Utility Computing followed by many
others such as IBM, Microsoft, Rackspace and VMWare.
Recently, Cloud Computing has been increasingly used in
conjunction with WSNs [2] as a way to reduce complexity.

We experimentally applied the Utility Computing blueprint
to the EPC software stack using the AWS platform and in
particular the EC2 service. Amazon EC2 allows the creation
and management of virtual machines (Amazon Machine Im-
ages, or AMIs) that can then be deployed on demand onto a
pool of machines hosted, managed and configured by Ama-
zon. We created a server-side AMI, called EPC Cloud Ap-

2http://www.vmware.com
3http://www.virtualbox.org
4http://www.sics.se/contiki/instant-contiki.html
5http://aws.amazon.com

pliance based on Linux Ubuntu Public Cloud edition6 and
containing the 13 software components required by a full
installation of Fosstrak.

This concretely means that any company or research in-
stitution willing to deploy an EPC software stack can sim-
ply log onto AWS, look for the EPC Cloud AMI, select the
type and number of remote servers it should be deployed on.
Once the virtual servers are running (which typically takes
less than 5 minutes), an RFID reader can be connected. If
the reader does not offer a Web-management interface or a
default configuration, the Fosstrak LLRP Commander and
its Eclipse-based UI is available in the EPC Dev Virtual ma-
chine and can be used for configuring it. Then, the readers
are described by accessing the configuration offered in Web
UI of the EPC Cloud Appliance. Once this is done, the
cloud instance will contact the reader and start recording
the tag reads.

A direct benefit of the approach is that the server-side
hardware maintenance is delegated to the cloud provider
which is often more cost-efficient for smaller businesses [12].
Furthermore it also offers better scaling capabilities as the
company using the EPC Cloud AMI, can deploy to addi-
tional and more powerful instances within a few clicks from
the Web front-end (or Web API) of AWS and will be charged
only for the resources they actually use.

2.2 Pain Point: Complicated Applications De-
velopments

The idea behind most commercial IoT deployments is the
integration of real-world data to business systems or end-
consumer applications. This requires to interface existing
or new applications with the IoT infrastructure. Thanks
to the recent advent of smart phones, companies are also
increasingly willing to create mobile applications using IoT
deployments.

In the case of the EPC network, the application integra-
tion point is the EPCIS standard. While the EPCIS pro-
vides a simple and lightweight HTTP interface for recording
EPC events, its query interface is a standardized WS-* (i.e.,
SOAP, WSDL, etc.) interface. WS-* applications are com-
plex systems with high entry barriers and require developer
expertise in the domain which is often an issue when con-
sidering small to mid-size businesses. Moreover, WS-* are
often not well adapted to more light-weight and ad-hoc ap-
plication scenarios [8] such as mobile or Web applications.

2.2.1 Remedy: RESTful Architectures and Real-Time
Web

RESTful Web services are based on a Representational
State Transfer (REST) [3] architecture. REST uses the Web
as an application platform and fully leverages all the features
inherent to HTTP such as browser access, scalability and
caching, authentication and encryption. In projects often
unified under the umbrella of“Web of Things”, REST is used
and adapted for real world devices (e.g., WSNs, appliances
or tagged objects, etc.) in order to create a “universal API
for things” [6].

When compared to WS-*, RESTful Web services are rather
lightweight [8, 11] and directly usable from a browser and
with well-known Web languages (e.g., JavaScript, HTML,
PHP, Python, etc.) which lowers the entry barrier for de-

6http://www.ubuntu.com/cloud/public

velopers. Furthermore, the Web currently accounts for one
of the most active pools of developers and as a consequence
finding Web developers is easier for companies (and espe-
cially small to mid-size companies) than finding highly skilled
embedded systems experts. Thus, REST results in a general
simplification of the development process [8] for ubiquitous
use-cases such as mobile or Web applications.

Hence, we propose to create a Resource Oriented Archi-
tecture for the EPC Network and offer two RESTful APIs
for building applications consuming RFID data.

RESTful Business EPC Events: EPCIS Webadapter.
The first RESTful API meets the needs of mobile, Web,
or WSN clients wanting to get business-level RFID events,
thus, it is deployed on top of the EPCIS. As a client, the EP-
CIS offers an interface to query for RFID events. This inter-
face is accessible through a WS-* Web Service. While this
enables users to create clients using several languages sup-
porting Web services, it makes it impossible to directly query
for RFID events using Web languages such as JavaScript or
HTML. More importantly it does not allow for exploring the
EPCIS using a Web browser, searching for tagged objects or
exchanging links pointing to traces of tagged objects. Thus,
we implemented a RESTful pluggable module for any stan-
dard compliant EPCIS called the EPCIS Webadapter7 and
further described in [5].

Clients of the Open Source EPCIS Webadapter such as
browsers or Web applications can query for tagged objects
directly using the uniform HTTP interface. Requests are
then translated into WS-* calls on the standard EPCIS in-
terface. The direct benefit of the EPCIS Webadapter is
that every RFID event, reader, tagged-object or location
is turned into a Web resource and gets a globally resolv-
able URI which uniquely identifies it and can be used to
retrieve various representations. Thus EPCIS queries are
transformed into compositions of these identifiers and can
be directly executed in the browser, sent by email or book-
marked. As an example, a factory manager who wants
to know what tagged objects enter his factory can book-
mark a URI like: http://.../epcis/rest/location/urn:

company:factory1/reader/urn:company:entrance:1

Real-Time Web: Pushing from Readers to Web Clients.
The second RESTful API meets the need for mobile or Web
clients to access the raw data directly pushed by RFID read-
ers through the LLRP and ALE protocols. The challenge
here is that the Web was designed mainly as a client-pull
architecture, where clients can explicitly request (pull) data
and receive it as a response. This makes uses-cases where
near real-time communication is required rather challenging.
As an example, a typical use-case is one in which we would
like to push events that are being recorded by an RFID
reader directly to a mobile browser application for monitor-
ing purpose (see Section 3.1 for an implementation of this
use-case).

Here, the“Real-time Web”, one of the most recent blueprints
of the Web, can be leveraged. The Real Time Web en-
compasses several new techniques that can be used to push
events directly to browsers. We focus on two of these here.
The first one, called Comet (also called HTTP streaming or
long-polling) is based on the concept of long-lasting HTTP

7http://www.webofthings.com/rfid

connections and keep-alive messages. While this is sup-
ported by most browsers and HTTP libraries, it works by us-
ing an existing loop-hole. More recently, Web-sockets (part
of the HTML5 drafts) were proposed. Websockets propose
duplex communication with a single TCP/IP connection di-
rectly accessible from any compliant browser through a sim-
ple Javascript API. The increasing support for HTML5 in
Web and Mobile Web browsers makes it a very good candi-
date for pushing data on the Web.

For the EPC Network, we created two components as
shown on Figure 1. The Capture App Webadapter is a
modular Web application which gets events from ALE and
redirects them to a number of RESTful Services (e.g., to
the EPCIS Webadapter) for further processing. The ser-
vices the application sends the events to can be configured
through a RESTful interface on the Web as well, which al-
lows to flexibly decide where RFID events should be routed
to.

The second component is called tPusher and combines a
RESTful API with a Web-socket and Comet server. Using
a RESTful API, clients can subscribe to RFID event notifi-
cations for a particular reader by using a URL such as:
http://.../t-pusher/reader/READER_ID

This initiates a Web-socket connection with the server on
which RFID events recorded by READER_ID will be pushed.

Our implementation is based on Atmosphere8, a Java ab-
straction framework for enabling push support on most Java
Web servers. One of the advantages of this approach is to
be able to deploy tPusher on recent Web Servers such as
Grizzly9, which are highly optimized to push events on the
Web because of their usage of non-blocking threads for each
client. In order to support browsers or other clients that do
not support HTML5 Websockets yet, we use a client-side ab-
straction Javascript library called Atmosphere JQuery Plu-
gin which falls back to a Comet connection in case Websock-
ets are not supported by the client.

2.3 Pain Point: Tedious Business Case Model-
ing and Cross-IoT Systems Integration

RFID use-cases generally do not involve RFID readers
and tags only – they are usually combined with sensors and
actuators. In the EAS system we described before, several
sensors (e.g., RFID readers, motion sensors) and actuators
(e.g., alarm) are combined together to form the basic use-
case. These combinations of RFID, sensors and actuators of-
ten occur at a low level, sometimes even at the wiring level.
This mainly has two drawbacks. First it requires to com-
bine the complicated and often not homogeneous low-level
APIs of (expensive) devices which requires expert knowl-
edge. Then, once installed, these compositions of devices
are static and cannot be flexibly reconfigured to integrate
new sensors or actuators.

2.3.1 Physical Mashup Platforms
Web 2.0 Mashups are a recent form of Web applications

that compose several Web APIs using scripting languages
to create new composite applications. Since in the Web of
Things, every device is accessible through a Web (RESTful)
API, physical mashups have been proposed [6]. These ap-
plications combine WoT devices with each other and with
virtual service on the Web. Core to physical mashup is the

8http://atmosphere.java.net
9http://grizzly.java.net

notion of a mashup module. A module is a software ab-
straction that accepts a few inputs and delivers an output.
Modules can be composed or “piped” together to form a use-
case. Typically this occurs in a Mashup Editor. Figure 3
shows a visual representation of modules in the Clickscript
Mashup Editor10. Once a mashup has been successfully cre-
ated and tested locally using a Mashup Editor it should be
deployed to a Mashup Engine in the cloud such as the Phys-
ical Mashup Framework [4] where is it going to be executed
remotely.

Thanks to the blueprints we applied before, we can take
a similar approach to create composite applications in the
EPC Network. We create several simple modules that users
of the EPC Cloud can then compose to create their use-
cases. Our current implementation supports the following
EPC-related modules:

• RFID Reader: Inputs: business location (e.g., exit-
gate), URL. Output: matching EPCs.

• EPCIS: Inputs: EPC, business step (e.g., checkout),
URL. Output: true or false.

• CaptureApp and tPusher: Inputs: String to push,
URL of the push endpoint. Output: true or false.

It is worth noting that thanks to the RESTful APIs each
module is a simple Javascript snippet that fits within 20
lines of code.

3. PROOF OF CONCEPT EVALUATION BY
PROTOYPING

While a quantitative evaluation is an important part of
our future work, we tested the EPC Cloud by building two
proof of concept prototypes, focusing on how the pain points
can be relaxed by using the proposed Web blueprints.

3.1 Mobile TagPusher
When setting up RFID readers or maintaining existing de-

ployments it is valuable to have a direct feedback of the tags
observed by a particular reader in order to monitor the man-
ufacturing process or to debug the readers. In the current
implementations of the EPC software stack this would re-
quire to use and configure a monitoring tool such as the Fos-
strak LLRP Commander on a desktop computer. Thanks to
the RESTful interface of the Capture App Webadapter as
well as the Real-Time Web capability of tPusher, the tags
observed by any reader can now be directly pushed to any
browser or HTTP library.

Because these events are of interest in-situe, we developed
as Mobile Web page that can display them in a user-friendly
manner. The page uses HTML5 and Javascript with the
Atmosphere JQuery Plugin we described before. All code
required for such a page to subscribe to events pushed by
readers through the Capture App Webadapter and display
them fits within 5 lines of Javascript. The code is shown
below:

1 // called whenever an event is pushed:
2 function callback(response) {alert(

response.responseBody + response.
transport);}

3 //subs. to the events of reader "exit1"

10http://clickscript.ch

Figure 2: Real-time Web push from an RFID reader
to a mobile browser

4 $.atmosphere.subscribe(
5 "http :// EPC_CLOUD_APPLIANCE/capture -

webadapter/reader/exit1",
6 callback , $.atmosphere.request = {

transport: ’websocket ’ });

As shown on Figure 2, we deployed this prototype in a lab
environment. Each reader features a QR-Code containing
its unique URL in the EPC Cloud. When scanning this tag
with a mobile phone it redirects the user to the HTML5
Web page shown on the top right corner of Figure 2. As
tags are read by the readers, the Web page automatically
receives and displays new events. We successfully tested
this prototype on Android and iOS devices.

3.2 EAS Mashup
With this prototype we illustrate how the concept of phys-

ical mashups can be applied to the EPC Network towards
more flexible and cheaper EAS systems. As shown in Fig-
ure 2, our lab setting reflects the exit gate of a store. We
place an RFID gate at the exit, monitored by a cheap off-
the-shelf IP-enabled Webcam11.

We then compose these elements into a use-case within a
few clicks using a version of the Clickscript mashup editor
accomodated to support WoT type of devices [4]. For this,
we combine three main modules with some basic language
constructs as shown on Figure 3. From the RFID Reader
module we get events pushed whenever a tag is read by the
“exit-gate” reader. The EPCIS module is then used to check
whether the tag just read went through the business-step
“checkout”. If it is not the case, we trigger the Webcam
module which takes a picture. Finally, the tPusher mod-
ule pushes the URL of the picture to any listening client
application (i.e., a mobile Web application in our case).

11http://www.foscam.com

Figure 3: The EAS Mashup modeled with the
Clickscript Mashup Editor

4. DISCUSSION AND FUTURE WORK
While working on the proposed approach and its proto-

type we identified a number of challenges and discuss three
of them here. First, while some standard LLRP readers offer
a reader-initiated scheme, most operate on a server-initiated
scheme. This means that the EPC Cloud server has to con-
tact the RFID readers in order to start the reading process.
While this works fine in places where a direct access to the
Internet is available, this is problematic in industrial envi-
ronments where RFID readers sit behind firewalls and do not
feature public IP addresses. To solve this problem, LLRP
standard readers should also offer a reader-initiated scheme.

Second, to optimize data access, most cloud infrastruc-
tures offer highly optimized storage services (e.g., NoSQL
databases) that can be easily distributed and load balanced.
In the Java world, the implementations of these services is
compliant with the Java Data Object (JDO) which abstracts
from the actual storage service being used and also allows
to easily switch the service. Unfortunately, the current Fos-
strak EPCIS is not JDO compliant but uses JDBC and is
rather tightly coupled with a MySQL database. Porting the
EPCIS to JDA would enable to better leverage the scalabil-
ity that cloud solutions have to offer.

Finally, for real-world applications, network delays might
be serious drawback as events and actions are sent and trig-
gered in the cloud. While it is unlikely that an EPC Cloud
solution will support true real-time use-cases in the near fu-
ture, our early measurements have shown typical delays of
less than a second on average for the described EAS Mashup,
from the reader, to the cloud and then to the mobile phone.
While this is acceptable for most envisioned applications we
still need to extensively evaluate the proposed blueprints and
their optimized implementations in real-world deployments.

5. CONCLUSION
In this paper we have shown how Web blueprints and

patterns can be beneficial to IoT infrastructures. In par-
ticular we looked at the EPC Network and explained how
virtualization, cloud computing, REST and the real-time
Web as well as the concept of physical mashups could con-
tribute to a wider adoption of the EPC Network standards
and tools. Virtualization allows us to package all the devel-
opment tools into a single virtual machine that can be run
virtually anywhere. Cloud computing simplifies deployment
and maintenance of the EPC software stack. Thus, we push

the standardized EPC Network closer to small and mid-size
businesses that could benefit from it. By taking a resource
oriented approach and using the real-time Web, we can of-
fer more lightweight interfaces and allow innovative mobile,
Web and WSN applications to directly use the EPC Net-
work. Finally, by offering a mashup editor and engine we
allow more flexible simple use-cases, where existing sensors
and actuators can be directly integrated from the Web with
RFID hardware.

6. REFERENCES
[1] R. D. Banker, S. M. Datar, C. F. Kemerer, and

D. Zweig. Software complexity and maintenance costs.
Communications of the ACM, 36:81–94, Nov. 1993.
ACM ID: 163375.

[2] J. Bungo. Embedded systems programming in the
cloud: A novel approach for academia. Potentials,
IEEE, 30(1):17–23, 2011.

[3] R. T. Fielding and R. N. Taylor. Principled design of
the modern web architecture. ACM Trans. Internet
Techn., 2(2):115–150, 2002.

[4] D. Guinard. Mashing up your web-enabled home. In
Adjunct Proc. of ICWE 2010 (International
Conference on Web Engineering), Vienna, July 2010.

[5] D. Guinard, M. Mueller, and J. Pasquier. Giving
RFID a REST: building a Web-Enabled EPCIS. In
Proc. of Internet of Things 2010 International
Conference (IoT 2010), Tokyo, Japan, Nov. 2010.

[6] D. Guinard, V. Trifa, and E. Wilde. A resource
oriented architecture for the web of things. In Proc. of
Internet of Things 2010 International Conference (IoT
2010), Tokyo, Japan, Nov. 2010.

[7] K. L. Kroeker. The evolution of virtualization.
Communications of the ACM, 52:18–20, Mar. 2009.
ACM ID: 1467253.

[8] C. Pautasso and E. Wilde. Why is the web loosely
coupled? a Multi-Faceted metric for service design. In
Proc. of the 18th International World Wide Web
Conference (WWW’09), Madrid, Spain, Apr. 2009.

[9] T. Riedel, N. Fantana, A. Genaid, D. Yordanov,
H. Schmidtke, and M. Beigl. Using web service
gateways and code generation for sustainable IoT
system development. In Proc. of Internet of Things
2010 International Conference (IoT 2010), Tokyo,
Japan, 2010.

[10] J. J. P. C. Rodrigues and P. A. C. S. Neves. A survey
on IP-based wireless sensor network solutions.
International Journal of Communication Systems,
2010.

[11] D. Yazar and A. Dunkels. Efficient application
integration in IP-based sensor networks. In Proc. of
the First ACM Workshop On Embedded Sensing
Systems For Energy-Efficiency In Buildings
(BuildSys), Berkeley, CA, USA, Nov. 2009.

[12] S. Zhang, S. Zhang, X. Chen, and X. Huo. Cloud
computing research and development trend. In Proc.
of the International Conference on Future Networks,
2010. ICFN ’10, pages 93–97, 2010.

