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Abstract4

Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns5

and are often considered as having superior locomotory performance. The extent to which6

morphological traits of swimming animals have evolved due to primarily locomotion consid-7

erations is, however, not clear. To shed some light on that question, we present here the opti-8

mal shape and motion of undulatory swimming organisms obtained by optimising locomotive9

performance measures within the framework of a combined hydrodynamical, structural and10

novel muscular model. We develop a muscular model for periodic muscle contraction which11

provides relevant kinematic and energetic quantities required to describe swimming. Using12

an evolutionary algorithm, we performed a multi-objective optimisation for achieving maxi-13

mum sustained swimming speed U and minimum cost of transport COT — two conflicting14

locomotive performance measures that have been conjectured as likely to increase fitness for15
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survival. Starting from an initial population of random characteristics, our results show that,16

for a range of size scales, fish-like body shapes and motion indeed emerge when U and COT17

are optimised. Inherent boundary-layer-dependent allometric scaling between body mass and18

kinematic and energetic quantities of the optimal populations is observed. The trade-off be-19

tween U and COT affects the geometry, kinematics and energetics of swimming organisms.20

Our results are corroborated by empirical data from swimming animals over nine orders of21

magnitude in size, supporting the notion that optimising U and COT could be the driving22

force of evolution in many species.23

Keywords: biomechanics; optimal morphology; undulatory swimming; scaling; multi-24

objective optimisation25

1. Introduction26

Undulatory swimming organisms achieve locomotory feats that in terms of maximal burst speed,27

acceleration, or agility are unmatched by man-made aquatic vehicles. These have been the in-28

spiration for the development of biomimetic robots [1] which were reverse-engineered based on29

living fish under the assumption that their morphology is optimised for swimming. Whether fish-30

like organisms are indeed optimised for swimming, and whether extant morphological traits would31

evolve based on locomotion considerations alone, however, has not been completely established.32

Despite a vast body of work on various aspects of undulatory swimming (from physiology to33

physics of swimming), optimisation studies based on mathematical models are relatively sparse.34

Swimming motion for a given body shape has been optimised from a hydrodynamical perspective35

using theoretical [2] and numerical models [3, 4]. The body shape and body stiffness for efficient36

hydrodynamical performance have also been studied [5]. Further insights into the relationship37

between morphology and swimming performance have been obtained from numerical studies on38

bodies of prescribed shape and motion [6–8], but without conducting optimisation.39

A significant drawback of all these studies is that they do not consider muscle behaviour and the40



associated energetics so that it is not clear whether the motions or morphologies obtained are physi-41

ologically feasible. Mathematical models of muscle behaviour during swimming have mostly been42

developed to study the muscle response to a given neural activation [9–12], with model parameters43

being often fine-tuned for particular species [12–14]. The actuation–response relationship varies44

widely among species [15–17], making these models unsuitable for the optimisation of morpho-45

logical traits of a generic organism. Furthermore, these models do not provide information about46

metabolic energy consumption which is a critical component of swimming energetics.47

A different approach to studying morphological effects on swimming, without resorting to de-48

tailed mechanistic models, is through a comparison of extant morphologies based on their observed49

performance. Qualitative studies of fish shapes [18–21] and hypothesis testing methods [22, 23]50

have given us some intuition of the optimal body shapes and motion patterns of undulatory swim-51

mers and have provided insight into the effects that performance trade-offs can have on morphol-52

ogy. These methods, however, are qualitative and generally not predictive.53

In contrast to the existing studies, our objective is to predict optimal morphological traits, in-54

cluding body shapes and motion patterns, across broad ranges of size scales. We achieve this by55

optimising locomotory performance measures based on a comprehensive swimming model which56

incorporates a novel model for periodic muscle contraction. We perform multi-objective optimisa-57

tion with respect to two conflicting performance measures (sustained swimming speed U and cost58

of transport COT ) to understand the effect of the interplay between them on the morphological59

traits of the obtained optimal organisms. Finally, the obtained optimal morphological traits are60

compared to those observed in nature.61

2. Model description62

We study sustained straight-line undulatory swimming (powered by superficial red muscle [20,24,63

25]), where an organism passes a muscle-produced wave of curvature down its body and propels64



itself using the hydrodynamic forces exerted on the body as a reaction to the motion. To describe65

the kinematics and energetics of swimming, the main components of the swimming machine con-66

verting the energy from food into useful propulsion work have to be modelled. In addition to an67

effective and robust body shape and motion description, our swimming model consists of three68

parts: (i) hydrodynamical model describing the flow around the moving body, (ii) structural model69

describing the distribution of the internal forces required for swimming motion, and (iii) muscle70

model describing the muscle behaviour needed to achieve such forces. To facilitate optimisation,71

these model components are sufficiently general to describe the physics for arbitrary morphologies72

across many scales, and highly computationally efficient to allow a large number of simulation73

realisations.74

(a) Body and motion description75

We consider an arbitrary three-dimensional organism of mass m characterised by its body length76

L, tail height D and body width B, figure 1. We assume that the body is symmetric with respect to77

the horizontal and vertical planes, with elliptical cross-sections of area A(x) and sectional moment78

of inertia I(x). The lengths of axes of cross-sections determine the body height and width distri-79

butions, denoted by d(x) and b(x), respectively. Wetted surface of the body is denoted by S. The80

body is assumed to be neutrally buoyant, with uniform body density ρ, for simplicity. Neutrally81

buoyant fish often hold the fins close to the body during steady undulatory swimming [15], thus82

minimising their effect on the flow around the body. In this paper, we therefore do not consider83

fins and other appendages.84

The locomotory muscle is made of red muscle fibres arranged in a superficial longitudinal85

strip [20, 25], located along the horizontal symmetry plane on each side of the body, figure 1a,86

b. The muscle cross-section Am(x) is a small portion µ0 (µ0(x) = 2Am(x)/A(x)) of the body87

cross-section A(x) [9, 25].88

We express the undulatory motion of the body neutral line ĥ(x, t) using a single time harmonic89



[15, 20, 24]:90

ĥ(x, t) = r(x) cos(2πx/λb − ωt) , (1)

where ω is the angular frequency of tail-beat (with tail-beat period T = 2π/ω), r(x) is the defor-91

mation envelope and λb the wavelength of the body undulation.92

(b) Hydrodynamical model93

The role of a hydrodynamical model is to determine the relationship between the swimming speed94

U and the tail-beat frequency ω for steady swimming, and to provide external forces that occur95

during swimming. We are interested in swimming at high Reynolds numbers Re ≡ U L/ν (ν is96

the kinematic viscosity of water), for which potential flow models can be used. We use classic97

Lighthill’s potential flow slender-body model for small-amplitude motion [26], which has the ad-98

vantage of being three-dimensional and very simple to solve compared to other numerical models.99

The hydrodynamic pressure field around a freely swimming body gives rise to a forward point-100

ing thrust force FT powering the forward motion, and a lateral force FL(x, t) which causes an101

additional rigid-like lateral movement known as recoil. Both the imposed motion ĥ(x, t) and the102

recoil are assumed to be small (compared to L), so the total deflection h of the body can be written103

as h(x, t) = ĥ(x, t) + y0(t) + xϕ(t), where y0(t) is the lateral and ϕ(t) the angular recoil, figure104

1c. Equations of motion of a swimming body as a whole, relating the lateral (angular) acceleration105

and the total external force (moment) acting on the body, provide a way to calculate the unknown106

lateral (angular) recoil:107

∫ L

0

ρA
∂2h(x, t)

∂t2
dx = −

∫ L

0

FL(x, t) dx∫ L

0

xρA
∂2h(x, t)

∂t2
dx = −

∫ L

0

xFL(x, t) dx ,

(2)

where, for a slender body, FL(x, t) = D (ma(x)D h(x, t)) [26]. Here D ≡ ∂t+U∂x is the material108



derivative and ma(x) the cross-sectional added mass.109

To obtain the steady swimming speed U in the present context, we follow a standard ap-110

proach [4, 26, 27] wherein one equates the average thrust FT from a potential flow model with the111

average drag FD calculated from an empirical relationship, i.e. requiring FT = FD. For Lighthill’s112

slender-body model [26], FT = 1
2
ma(L)

[
(∂th)

2 − U2(∂xh)
2
]
x=L

. The drag force is modelled as113

FD = 0.5ρU2SCD, using an empirical formula for the drag coefficient CD = CD(Re) (see elec-114

tronic supplementary material, eq. (S.11), [27]), which exhibits a discrete jump transitioning from115

laminar to turbulent regime. Although there is some uncertainty about the accuracy of CD, proper116

scaling with Re is more important for this study than its exact value.117

The solution of the nonlinear system of equations ((2), FT = FD) determines the steady swim-118

ming condition, which can be expressed in terms of ω–U or ω–Re relationship since for a given119

organism L is known.120

(c) Structural model121

The main purpose of the structural model is to obtain the internal forces acting in a swimming122

body so that the muscular activity required for powering the motion could be calculated. This is123

modelled using the standard Euler-Bernoulli beam equation [28]124

ρA(x)
∂2h

∂t2
+

∂2

∂x2

(
EI(x)

∂2h

∂x2

)
+

+
∂2

∂x2

(
νbI(x)

∂3h

∂t∂x2

)
+ FL =

∂2M

∂x2
. (3)

The above terms, corresponding respectively to forces due to inertial, elastic, visco-elastic, hy-125

drodynamic effects, are all balanced by the bending moment M produced by muscles. Aggregate126

Young’s modulus E and visco-elastic coefficient νb include combined contribution from all the127

passive elements during bending: elasticity and visco-elasticity of the spine, the skin, the white128



muscle and the inactive part of red muscles (assuming that the morphology of the organisms is129

equivalent to that of fish).130

Assuming there are no muscles at the very ends of the body (M(x = 0, L; t) = 0), the boundary131

conditions that a feasible h(x, t) has to satisfy require [28]132

∂2h

∂x2
= 0,

∂3h

∂x3
= 0, x = 0, L . (4)

The sectional bending moment M(x, t) can then be directly obtained from (3) for a given h(x, t)133

which satisfies (4). A muscle model has to be introduced to answer the question how precisely the134

required bending model M is achieved.135

(d) Muscle model136

The primary purpose of a muscle model is to determine the physiological feasibility of the pre-137

scribed motion and to determine the energy consumption by the muscle, which highly affects138

swimming energetics (the energy losses in real fish muscles are significant and amount to a muscle139

efficiency of around 20% [27]). The present model is developed for periodic swimming powered by140

red muscle, as is generally the case in sustained fish swimming [20,24,25]. Other modes of swim-141

ming, e.g. unsteady burst-and-glide swimming in which white muscle fibres are recruited [29], are142

not considered here. The model should, however, correctly describe the most important character-143

istics of muscle behaviour and be valid for different undulatory-swimming species and across the144

scales. We have focused on the facts that seem to be universally valid for swimming fish and have145

built a new model based on them.146

The contractive force Fmusc(x, t) that the muscles at some cross-section have to provide can147

be obtained from the calculated required bending moment M(x, t). For a muscle of small cross-148

section placed 1/2b(x) from the neutral line, this corresponds to Fmusc(x, t) = M(x, t)/0.5 b(x).149

Since the muscle produces contractive forces only, in alternating manner from side to side at any150



x [20, 30], the sign of Fmusc uniquely determines the side of the active muscle fibres. According151

to our definition, the required contractive force Fmusc is positive/negative when the muscles on the152

right/left side of the body are active.153

The force Ffib that each muscle fibre actually produces is a function of the fibre kinematics,154

which is in turn dependent on body motion. Such dependence is also true for the metabolic power155

Pfib consumed per fibre length. During steady swimming, it can be assumed that muscle behaviour156

is quasi-steady [15, 31] since the characteristic time for muscle fibres to adapt to a new force157

is typically much shorter than the characteristic tail-beat period T . Thus, we assume that for a158

contracting fibre, Ffib and Pfib are functions of instantaneous contraction velocity v(x, t), given159

by Hill’s model [31] (see electronic supplementary material, section 3.2).160

The contraction velocity v(x, t) of superficial muscle fibres (measured in lengths/second) can161

be determined from the time rate of change of fibre strain, which in turn can be determined from162

the curvature of the neutral line alone [9, 15, 24, 32]. Based on a simple beam theory [15, 24],163

v(x, t) = ±1

2
b(x)

∂

∂t

(
∂2h

∂x2

)
. (5)

The sign of Fmusc determines the choice of plus-minus sign in (5), where plus(minus) corresponds164

to the case when the fibres on the right(left) side of the body are active (the active side of the body165

cannot be determined from the rate of change of curvature of the spine alone).166

Non-dimensional relative contraction velocity is defined as vr(x, t) ≡ v(x, t)/vmax, where167

vmax is maximal achievable contraction velocity for given fibre characteristics.168

At any cross-section, the required muscle force Fmusc is the sum of all the active single-fibre169

contractive forces Ffib. To obtain the required force Fmusc(x, t) constrained by Ffib(v(x, t)), we170

assume that only a fraction µ(x, t) of the total muscle cross-section area Am(x) is activated:171

µ(x, t) =
Fmusc(x, t)

Ffib(v(x, t))Am(x)
, |µ(x, t)| ≤ 1 . (6)



The condition for a physiologically feasible motion h(x, t) can then be stated as172

|µ| ≤ 1, |vr| ≤ 1, ∀x, t . (7)

The metabolic power consumption per unit length of the muscle Pmusc(x, t) = Am(x) |µ(x, t)|Pfib(v(x, t))173

is proportional to the active muscle portion. It is always positive, corresponding to the fact that174

metabolic energy is being spent when the mechanical power output of the muscle Pmech(x, t) =175

Fmusc(x, t)v(x, t) is positive or negative, regardlessly. With the muscle force and power consump-176

tion calculated, all relevant dynamic and energetic quantities for locomotion can be calculated.177

The predicted muscle efficiency matches the measured one for swimming fish and for isolated red178

fibres (see electronic supplementary material, section 3.3).179

3. Performance measures and optimisation variables180

The optimisation problem we are trying to solve can be stated as follows: find optimal solutions181

for a set of conflicting objectives (locomotory performance measures) over the variables that ade-182

quately parametrise the body shape and motion, constrained by the motion feasibility (7) and shape183

integrity conditions. Body shape and motion parameters are chosen as the optimisation variables184

since they are the key mechanistic components that determine locomotory performance.185

To elucidate the trade-offs between conflicting locomotion-based objectives, we focus on two186

performance measures of arguably great importance in the evolutionary scenario [20, 33]: max-187

imising sustained swimming speed and minimising energy consumption. For the latter, we use a188

standard nondimensional measure called cost of transport COT [20, 34] (for derivation, see elec-189

tronic supplementary material, section 5):190

COT ≡ Ptot

mgU
=

Ps + PL
musc

mgU
(8)



where Ptot, the total metabolic power consumed by swimming at speed U , is the sum of the191

metabolic power PL
musc consumed by swimming muscles and the standard metabolic rate Ps re-192

quired for other physiological processes even when there is no motion at all ((·)L denotes a length-193

integrated, time-averaged quantity). Note that in (8), gravity g is used merely for nondimensional-194

isation and is not related to swimming. Expressed by (8), COT is the “gallons-per-mile” measure195

quantifying the total energy consumption per unit mass and distance, which probably governs long196

migrations [20].197

The choice of locomotive performance measures to optimise is not unique. For example, an en-198

ergetic measure can be a generic power coefficient defined as CP ≡ PT/P0, where P0 ≡ 0.5ρSU3,199

and PT is some measure of swimming power based on which CP has different meanings and200

implications. In general, CP might be more suited for studying the efficacy of hydrodynamical201

propulsion itself as it is normalised by the scale of hydromechanical power P0. The ultimate jus-202

tification of the present choice of U and COT has to be borne out on whether the consequent203

predictions based on it are corroborated by nature.204

Optimising conflicting objectives usually leads to an infinite number of optimal solutions.205

Since by the definition of conflicting objectives an organism cannot be optimal in every objective,206

it is considered as optimal when it is non-dominated [35], i.e. when there is no (feasible) variation207

of organism’s morphology that could improve every objective. We call the set of non-dominated208

organisms the optimal population Π.209

To facilitate the optimisation of generic swimming geometries and motions, we parametrise210

the body height, width, and motion along the body in terms of general unbiased mathematical211

descriptions. We represent the body height distribution d(x)/L by a sum of NS + 1 polynomial212

shape functions Dn213

d(x)/L = D/L

(√
x/L+

NS∑
n=0

CnDn(x/L)

)
,

Dn(x) = Tn(2x− 1)− Tn+2(2x− 1) ,

(9)



where Tn(x) is the Chebyshev polynomial of the first kind of order n; shape coefficients Cn pro-214

duce different shapes when varied. Without loss of generality, we assume the body width b(x)215

to be given by a symmetrical NACA-00 profile with relative maximum thickness B/L. We thus216

parametrise the body shape by NS = NS + 3 optimisation variables (D/L, B/L, C0,. . . ,CNS+1).217

The body length L is not a parameter as it can be calculated for a given m once d(x)/L and b(x)/L218

are prescribed.219

The spatial and temporal parametrisation of body motion ĥ(x, t) is achieved using NM = N+1220

variables. The envelope r(x) is represented as a sum of N Chebyshev polynomials, where the221

coefficients of the series serve as optimisation variables (see electronic supplementary material,222

section 1.2). To reduce the number of optimisation variables and to ensure the validity of Lighthill’s223

model (see electronic supplementary material, section 4), we set the relative body-undulation wave224

length to λb/L = 1, a value characteristic for many fishes [15, 20, 27]. Upon parametrisation, the225

motion is slightly corrected to satisfy motion boundary conditions (4).226

The swimming speed U and the tail-beat period T can both be determined from Re using the227

steady swimming condition. Hence, we use Re as a kinematic optimisation variable and the values228

of U and T (or ω) are determined as the outcome of optimisation.229

In the following, we use NS = NS +3 = 5 and NM = N +1 = 4 as we have found that those230

values are sufficient to represent the extant body shapes and motion patterns to within O(1%).231

The advantage of our parametrisation is that, despite NS and NM being small, we are capable of232

representing a large variety of shapes and motion patterns without introducing a particular bias.233

4. Results234

We optimise for U and COT using a multi-objective evolutionary algorithm [36], evolving genera-235

tions of feasible populations starting from the one with random body shape and motion parameters.236

We perform calculations for body sizes ranging from m = 0.001 kg to m = 1,000,000 kg to obtain237



the optimal populations Π(m), figure 2. Given the conflicting nature of optimisation objectives,238

Π(m) obtains a range of values for each swimming characteristic presented (Re, U , COT , T , rela-239

tive tail amplitude hT/L, µmax). The results are compared with the empirical data, where available,240

for fish and cetaceans.241

For specificity, in this discussion we focus on the values attained by organisms for which either242

U or COT is optimal. Hereafter, these predicted values are denoted as (·)U−opt and (·)COT−opt for243

those corresponding to U– and COT–optimal organisms, respectively. As discussed earlier, the244

choice of performance measure for optimisation is not unique. For comparison, we provide results245

for the minimisation of power coefficients, namely of power-output-based CM
P ≡ PL

mech/P0 (used246

in [14]) and of power-consumption-based CT
P ≡ PL

musc/P0 (suggested in [39]).247

The Reynolds number Re employed by the optimal populations Π grows over four orders of248

magnitude, figure 2a. The prominent feature of Re − m relationship is the presence of a transi-249

tion region RT separating otherwise allometric relationships (visible from the linear (Re)U−opt −250

m or (Re)COT−opt − m relationships in log–log plots). The transition regions (RT )U−opt and251

(RT )COT−opt are defined as the range of m for which U -optimal and COT -optimal organisms252

swim at speeds just below critical Reynolds number Recr to remain in the laminar regime. The253

ranges of (RT )U−opt and (RT )COT−opt differ, reflecting the earlier transition to turbulent flow of254

U -optimal organisms ((Re)U−opt > (Re)COT−opt for a given m). Different behaviour in RT , ac-255

companied with the change of (·)U−opt−m and (·)COT−opt−m slopes over it, is a common feature256

of almost all quantities describing Π(m) (some shown in figure 2).257

The optimised swimming speed U obtains values from O(0.1− 1) m/s (corresponding to rela-258

tive swimming speed U/L in body-lengths/s from O(1) to O(0.1), figure S12a). As one of the per-259

formance measures being optimised, U is clearly maximal(minimal) for U -optimal(COT -optimal)260

organisms in Π of all body sizes, as expected. We find a decrease in slopes of (U)U−opt −m and261

(U)COT−opt − m over RT , as has been previously suggested [21, 37], figure 2b. The slight de-262

crease of (U)U−opt in the transition region (RT )U−opt is due to the organism’s inability to cross the263



laminar-to-turbulent transition with the available muscle. A similar, but more pronounced decrease264

of (U)COT−opt in the transition region (RT )COT−opt can be explained by energetic arguments: here265

more muscle units could be employed but that would result in undesirably higher COT .266

The cost of transport COT (figure 2c) is one of the quantities that heretofore could not be267

predicted from theoretical or numerical considerations due to the lack of a comprehensive muscle268

model. The results we obtain show a slight general under-prediction of the COT range which269

might imply that the values of Ps or νb we use might be lower than those in many natural organisms.270

The obtained tail-beat period T in the laminar regime seems to be slightly greater than the271

measured one (but of the same order), figure 2d. Over the entire m-range, (T )COT−opt > (T )U−opt272

consistently. We find that the increase in T with m is correlated with the decrease in maximum273

max vr, as has also been empirically found for cyclical muscle contractions [40] (figure S12c).274

Note that even for the smallest organisms investigated, T > 0.1 sec (figure 2d) which is greater275

than the 30ms–50ms needed for the muscle fibre to adapt to a new force [15], thus not violating276

the quasi-steady assumption.277

The relative tail amplitude hT/L shows a decreasing trend in each of the sub-regions, figure278

2e. Generally, hT/L ≪ 1, which does not violate our small-amplitude motion assumption. A non-279

obvious prediction is the fact that (hT/L)U−opt < (hT/L)COT−opt below RT but (hT/L)U−opt >280

(hT/L)COT−opt above RT .281

The maximum active muscle portion µmax, i.e. the maximum value of µ(x, t), exposes some of282

the driving constraints behind the obtained overall results, figure 2f . As expected, (µmax)U−opt =283

1 for all m, limiting the maximal achievable swimming speed. Generally, (µmax)COT−opt < 1284

indicating that only a portion of the muscles is required, as suggested [41].285

Compared to these results, it appears that power-output-based power coefficient CM
P is not286

an adequate objective function as its predictions deviate from empirical data by several orders of287

magnitude for larger m (figure 2a–e). On the other hand, due to the presence of muscle-consumed288

power, optimising power-consumption-based power coefficient CT
P gives reasonable results (simi-289



lar to optimising U or COT ), suggesting that other reasonable measures could be at play in living290

organisms.291

The optimal motion envelopes r(x) converge to fish-like motion envelopes, figure 3 (cf. r(x)292

of initial population, figure S11). We show here (r(x))U−opt and (r(x))COT−opt for select m; the293

envelopes within each optimal population Π(m) and with the change in m vary smoothly between294

those presented. Considering (r(x))COT−opt, the motion is largely confined to the aft part of the295

body which, together with λ′
b = 1, consistently resembles the (sub)carangiform motion [15, 20]296

(the terminology is not uniform in the literature [27, 42]). Carangiform swimming has previously297

been associated with low energetic costs [21]. Interestingly, a CFD study of mackerel and lamprey298

swimming [8] found that at high Reynolds numbers, the (sub)carangiform motion is faster than299

prescribed anguilliform motion. However, a direct comparison with our results (after matching Re300

and λb/L) is not easy since a muscle model is not considered in [8] so it is not clear whether the301

prescribed motion is physiologically feasible (see electronic supplementary material, section 4 for302

details). Very small amplitudes of (r(x))COT−opt in RT (cf. figure 2e) are in line with the decrease303

in (U)COT−opt. It is, however, possible that Lighthill’s theory together with CD(Re) model provide304

less accurate results in the boundary layer transition region RT . We note that in some cases, there305

is significant motion of the head. This less-than-intuitive kinematics is a limitation of the present306

body model wherein the muscle actuation extends throughout the fish body, including the head.307

The changes in kinematic and energetic quantities across the scales and among performance308

measures are accompanied by the shape modifications of optimal organisms, figure 4 (also figure309

S12d-f ). Relative to fish found in nature, the shapes show qualitative resemblances, for example,310

the emergence of the caudal peduncle that is more pronounced for COT -optimal organisms in the311

range m = 1 ∼ 100 kg. Over the transition region RT in the middle, optimal organisms have312

generally smaller U and L than the allometric expectation as they try to remain in the laminar313

regime. Such adaptations might be observed in nature with organisms that swim predominantly314

near Recr. Although the shapes are mostly slender, lateral dimensions D and B reach 0.4L in315



some cases (figure S12e,f ), where Lighthill’s theory may cease to be valid. Results corresponding316

to these shapes should be considered with care.317

5. Discussion318

This study shows, using relatively standard hydrodynamic and structural descriptions and a novel319

muscular model, how optimal undulatory swimming organisms might look and move if the driving320

force behind evolution were locomotory performance measures, in particular the swimming speed321

U and the cost of transport COT . If submodels of different complexity or different performance322

objectives are used, the overall optimisation framework should still be useful, although the detailed323

predictions would of course vary.324

The body shape in nature primarily affects the hydrodynamics of swimming (in our model, it325

also influences the muscle performance through muscle disposition). The effect of shape on hy-326

drodynamics in Lighthill’s model is accounted for by the recoil equations (2), wherein the overall327

shape affects the total deflection h(x, t). Lighthill’s model exhibits limitations, however. The hy-328

drodynamics at very long motion wave-lengths λb ≫ L is not correctly captured (see electronic329

supplementary material, section 4), therefore a constraint on the value of λb/L is required. The330

model also neglects vortex shedding, lateral flow separation, and viscous drag (relevant at lower Re331

numbers [13]). Despite these restrictions, Lighthill’s model has been shown to provide sufficiently332

accurate values for the obtained lateral force [14,43]. It is important to point out, however, that our333

primary interest is in the correct scaling of quantities with Re and the proper dependence on kine-334

matic and geometric parameters, rather than in the quantitative accuracy (requiring substantially335

greater computational cost). For example, we have compared the scaling of the stride length with336

Re calculated by Lighthill’s model and empirical drag formula with that from a more sophisticated337

hydrodynamic model [7]. Over the wide range of Re, the slopes of the predicted scaling agree to338

within ∼ 10%.339



Modelling hydrodynamics with higher accuracy might be achieved at low Reynolds numbers340

Re (O(103–104)) where computational fluid dynamics (CFD) models solving the viscous flow341

equations [3, 7] are computationally feasible. However, the above Re-range covers only a small342

range of Re considered in this paper (which basically covers the entire range of fish and cetacean343

swimming). For such large Re numbers, potential flow models [6, 26, 43, 44] are often the only344

option. The large numbers of simulation evaluations required (O(107) for this study) further limits345

the computationally feasible models to only the simplest ones. Lighthill’s model provides a rea-346

sonable choice because it is valid for large Reynolds numbers Re and it is computationally very347

efficient.348

Regardless of the complexity of the hydrodynamical model used, it alone cannot account for349

the losses that occur during the conversion of metabolic energy from food to useful mechanical350

work, nor can it assess the physiological feasibility of the prescribed motion, both of which are of351

a fundamental concern. For these reasons, the addition of muscle behaviour model is absolutely352

necessary if the overall swimming physics is to be considered.353

We have introduced a novel muscle model primarily because the existing models for muscle354

behaviour during swimming do not provide the metabolic power consumption information [9–355

12]. Our model of muscle behaviour considers the contraction velocity v(x, t) and the required356

contraction force Fmusc(x, t) as primary quantities, which avoids relying on still uncertain and357

variable relationship between Fmusc and neural activity [15–17] as was done in previous studies358

[9–12]. The fact that the feasible combinations of the imposed motion ĥ(x, t) and the required359

Fmusc(x, t) are determined by the available muscle and the intrinsic properties of muscle fibres is360

often overlooked in studies which only consider hydrodynamical aspect of swimming [3, 4, 7, 8].361

Our results compare reasonably favourably across many scales, which lends validity to the362

present overall model, despite the assumptions and simplifications therein. None of the quantities363

presented in section 4 are prescribed; they are all outcomes of the optimisation procedure, i.e.364

our results give the values the optimal organisms would choose to employ. As such, our results are365



fundamentally different from previous studies where a kinematic quantity (either Re [7,8] or neural366

activation [13, 14]) that directly sets the swimming speed was prescribed. We limit motion the367

wave-length to λb/L = 1, but that is a restriction on the degrees of freedom by which we describe368

the motion, not on a parameter that drives the motion. The value λb/L = 1 is roughly between369

those characteristic for the anguilliform and the carangiform swimming and is used by many fish370

species [15, 20, 27]. With such a choice, motion and geometry features of both swimming forms371

are found in optimal population Π. However, organisms with λb/L significantly different from 1,372

like lamprey or scup [15], or even “anguilliform mackerel” [8], cannot be correctly modelled with373

the present model. Relaxing the constraint on λb/L, which is undoubtedly an important parameter374

for swimming, would further enrich this study.375

The lack of artificially imposed constraints enables us to obtain the intrinsic scaling of kine-376

matic and energetic quantities as it emerges from the optimisation. Inherent allometric relation-377

ships (based on body mass m) are found for some quantities and they exhibit boundary layer regime378

dependence. Such scaling results have heretofore not been predicted from theoretical/numerical379

considerations alone. Discrepancies between the measured and predicted values might result from380

the likelihood that some measured values have not been obtained under the sustained swimming381

regime we assume, or that values of actual muscle and tissue properties differ from those we use.382

Improved predictions could presumably be achieved by tailoring the model parameters to a partic-383

ular species (e.g. geometry, muscle properties and distribution); although uncertainty in measured384

data still remains, especially for larger m. Larger deviations might also indicate that other swim-385

ming or muscle behaviour not modelled here, or performance measures not presently considered,386

are involved.387

Realistic overall results (figure 2–4) make it interesting to make a direct quantitative compar-388

ison between predicted shapes and kinematics of optimal organisms and select aquatic species389

over a range of m, figure 5. Despite the relative simplicity of the present model, including the390

low degrees-of-freedom in the modal representations of the shape and motion, we obtain a good391



match. The conflicting nature of optimising COT and U contributes to the diversity of the ob-392

tained morphologies and behaviour. While parallels could be drawn between the performances of393

the real organisms and the theoretically predicted ones (e.g. the tuna-similar organism being close394

to COT -optimal — a feat for which tuna is often noted), the intent here is primarily to show that395

swimmers in real world do exhibit rather similar characteristics to those predicted. In spite of a396

possible bias in the selection of the specific examples, the overall corroboration of the model pre-397

dictions by swimming animals in nature for diverse measures and across the scales is noteworthy.398

While locomotion-based performance measures studied here are not necessarily the (only) im-399

portant ones in nature, the present study provides a direct evidence of their impact on morphology.400

Comparisons of model-predicted morphological traits and those of real organisms also provide401

some means for deducing possible roles that specific performance measures might have played402

(causation) in the organisms’ adaptation. A further insight into understanding the diversity of ex-403

tant morphologies could be achieved by varying the choice of performance objectives and studying404

the predicted morphologies, based on the present optimisation framework. Understanding whether405

and how living morphologies are related to specific performance measures would also pave the406

way for improved biomimetic swimming vehicles.407

This study is financially supported by the US Office of Naval Research.408

Appendix A.409

(a) Assumed body/muscle/fluid properties410

For simplicity, in all our calculations muscle and tissue properties are taken as length and size411

independent, but characteristic for fish (red fibre isometric force F0 = 150 kN/m2, vmax = 5412

lengths/s [48], E = 105 N/m2, νb = 104 m2/s [9, 14, 28], µ0 = 0.1 [25]). The standard metabolic413

rate used here is Ps = 0.1327m0.80 [W] [49]. Fresh water properties are used throughout (ρ = 103414



kg/m3, ν = 10−6 m2/s).415

(b) Optimisation algorithm416

The optimisation is conducted for organisms of mass m = a10b, with log a = 0, 1/4, 1/2, 3/4 and417

b = −3, .., 6. We use a multi-objective covariance matrix adaptation evolutionary strategy (MO-418

CMA-ES) [36], with default parameters. For every case, an initial randomly generated feasible419

population of 500 individuals is evolved through 500 generations. The optimisation converges in420

all cases, and the bounds imposed on the variables are never active in the final population.421

(c) Shape similarity measure422

We define the shape similarity measure S as423

S ≡ 1−
1∫

0

|d(x)− dr(x)|
max(dr(x))

dx .

It is bounded from above by 1, which marks a perfect similarity in shape. Here, x represents424

longitudinal coordinate normalised by the respective organism length L, such that both d(x) and425

the height distribution of living organisms dr(x) (omitting fins and other appendages) are defined426

on x ∈ [0, 1].427
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Figure 1: Description of body shape and motion. (a) Lateral view of an organism of arbitrary
shape and idealised muscle layout (red line). (b) Body cross-section of area A(x) and muscle cross-
section of area Am(x) on each side of the body (red). (c) Dorsal view of the motion kinematics.
(d) Three-dimensional view of a body with a cross-section highlighted.
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Figure 2: Swimming characteristics of optimal populations Π(m) compared to empirical data for
fish [20, 37] (magenta stars) and cetaceans [20, 38] (black stars). Organisms with minimum COT
are marked by blue circles and U -optimal organisms by red circles; the rest of Π(m) are repre-
sented by yellow region(s). The transition region (RT )U−opt is marked by red dashed line and
(RT )COT−opt by blue dashed line. Alternative objective functions, power-output-based power co-
efficient CM

P (cyan line) and total-power-based power coefficient CT
P (green line), are also shown

for comparison. Where mass measurements are missing, they are obtained from an m − L allo-
metric expression (m = 12.62L3.11). (a) Reynolds number Re. (b) Sustained swimming speed U .
(c) Cost of transport COT . (d) Tail beat period T . (e) Relative tail amplitude hT/L. (f ) Maximum
active muscle portion µmax.
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Figure 3: Motion envelopes r(x) of optimal organisms for select m. (r(x))COT−opt is denoted by
blue, and (r(x))U−opt by red lines. Axes are not to scale.
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optimal U , with corresponding values of attained U as colour contours. The body shapes are scaled
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Figure 5: Comparisons of shape and swimming characteristics between model predictions and
representative fish and cetacean species [20, 45–47]. In each example, from optimal populations
Π(m) that cover the species’ standard range of m (double arrowhead line), an organism (∗) is
selected that best matches kinematic data and shape for that species. The predictions falling no-
tably outside the range of m for which kinematic data exists are denoted by †. Three-dimensional
shapes of theoretically predicted organisms are depicted alongside photographs of real swimmers
for qualitative comparison. The body shapes of each species are outlined neglecting the fins and
the trailing profile of the tail (blue line) and quantitatively compared with the predicted shapes (red
line) using the shape similarity measure S (see Appendix).
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1 Methods

1.1 Shape representation

The hydrodynamical model [1] used here does not model
flow separation. The flow separation due to abrupt
changes in body shape leads to increased drag which,
thus, would not be recorded using the present hydrody-
namical model and would not be penalized during the op-
timisation procedure.

In order to prevent too abrupt changes, we seek to de-
scribe the shape in a sufficiently smooth way such that
a possibility for non-physical changes in shape, which
would certainly be smoothed out in reality, is minimal.
We require the shape to have a smooth snout at x = 0 and
a finite height at x = L. The parametrisation presented
in (9) satisfies these requirements—the rounded nose and
the finite tail height are achieved by

√
x; the Chebyshev-

based polynomial shape functions Dn add variety to the
shape. This parametrisation also avoids a possible singu-
larity at x = 0 for the calculation of hydrodynamical force
FL.

The expansion (9) converges rapidly, requiring only
NS = 3 ∼ 4 to achieve relative errors of 3% or less for
fish-like bodies, Fig. S2. The optimisation is conducted
with the first three Dn (NS = 2) to allow for the flex-
ibility in the possible shapes, but to prevent oscillations
which could hardly be damped out by the hydrodynami-
cal model used.

Width of the body b(x) is defined as a symmetrical
NACA - 00 profile given by:

b(x)
L

=
B/L

0.1
(
0.2969

√
x − 0.1260x− 0.3516x2+

+0.2843x3 − 0.1015x4 − 0.0021x
)

where the last term has been added to ensure zero thick-
ness at the tail. The thickness B/L is one of the parame-
ters being optimised.
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Figure S1: First 6 modes of shape functions Dn(x)

In total, we parametrise the shape of the body by five
parameters: B/L, D/L, C0, C1, C2.

1.2 Motion representation

The motion envelope r(x) is parametrised in terms of
Chebyshev series for the purpose of optimisation. Only
the first three terms of the series have been used to define
r(x) as that gives wide enough flexibility to the envelope
shape and keeps the number of optimisation variables low.
Thus, ĥ(x, t) can be written as

ĥ(x, t) =
2∑′

n=0

R′
nTn(x) cos(2πx/λb − ωt) (S.1)

where λb is the length of body-motion undulation.

The parametrisation of r(x) is in fact implemented such

1
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that it is written as

r(x) = ĥT

2∑′

n=0

RnTn(x), (S.2)

with the requirement that

2∑′

n=0

Rn = 1, giving the tail am-

plitude to be ĥT . The motion envelope optimisation vari-
ables are then ĥT , R0 and R1, which are easier to bound
than three R′

n Chebyshev coefficients would be.
In total, the motion is parametrised using four optimi-
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Figure S3: An example of the width profile b(x) (NACA-
0010)

sation variables: Re, ĥT , R0 and R1. A large variety
of admissible motion envelopes, Fig. S11, together with
a range of possible Re and ĥT values, accounts for the
diversity of obtainable motion patterns.

1.2.1 The treatment of boundary conditions

Since we assume a small lateral recoil, the condition (4)
on h(x, t) transforms to the same conditions on ĥ(x, t). In
general, for arbitrarily selected r(x) and λb, (4) will not
be satisfied so ĥ(x, t) has to be corrected.

We calculate the correction by converting ĥ(x, t) into
the Fourier-Chebyshev expansion

ĥ(x, t) =
1∑

m=−1

N∑′

n=0

AmnTn(x)eimωt, (S.3)

where Amn are the complex coefficients accounting for
the spatial distribution of motion envelope r(x) and phase
function 2πx/λb. N can be arbitrarily large; we set
N = 50 which makes the residual between (S.1) and
(S.3) negligible. Note that there is no mean displacement
A0,n ≡ 0; and that A−1,n, A1,n are complex conjugate
pairs so only A1,n has to be calculated.

With (S.3), (4) becomes

N∑′

n=0

A1,n
d2 Tn

dx2

∣∣∣∣
x=0,1

= δ0,1 ,

N∑′

n=0

A1,n
d3 Tn

dx3

∣∣∣∣
x=0,1

= δ′0,1 .

(S.4)

The residuals δ0,1 and δ′0,1 are in general non-zero and
should be corrected for. Generally, (S.4) could be satis-
fied by modifying A1,N−3,. . .,A1,N , making the contri-
bution of the last four terms in the expansion of ĥ(x, t)
non-negligible even at the second derivative. However,
that causes global oscillations in the calculations of higher
derivatives of h(x, t) (derivatives up to the fourth are used
in the calculation of the required bending moment (3)),
and the lack of convergence with increase an in N .

In order to satisfy (4) and prevent unwanted global os-
cillation of ĥ(x, t), we add a corrective function δ(x) to
the second derivative of the original motion, such that it
accounts for the non-zero boundary conditions (S.4) at the
ends but drops down to zero everywhere else exponen-
tially fast. We write δ(x) as

δ(x) = (δ0 + (δ′0 + αδ0)x) e−αx+

+ (δ1 + (δ′1 − αδ1)(x − 1))eα(x−1) (S.5)
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Figure S4: Convergence of the corrected motion rep-
resentation with the order of Chebyshev expansion N .
The relative difference is defined as Δχ ≡ (max χN −
maxχN−1)/ maxχN , where χ is ĥ from (S.8) or one of
its first four derivatives.

where the parameter α is set to be α = 35. The function
δ(x) is then represented in Chebyshev series up to the or-
der N ,

δ(x) =
N∑′

n=0

Cδ
nTn(x) (S.6)

with the imposed boundary conditions

δ(x = 0, 1) = δ0,1;
dδ

dx

∣∣∣∣
x=0,1

= δ′0,1 (S.7)

The boundary conditions (S.7) are satisfied by modifying
Cδ

N−3,. . .,Cδ
N . After correction, δ(x) is integrated twice

[2] to yield new corrected coefficients C δ,corr
n . These are

then subtracted from A1,n, giving the new corrected coef-
ficients for ĥ(x, t)

Acorr
1,n = A1,n − Cδ,corr

n .

ĥ(x, t) =
1∑

m=−1

N∑′

n=0

Acorr
mn Tn(x)eimωt, (S.8)

With this correction, most of the original motion is not
polluted by high harmonics and the convergence with the
increase in spectral harmonics N is exponentially fast,
Fig. S4. Hence, once the motion parameters at each step
of optimisation process have been defined, all the subse-
quent calculations are performed with ĥ(x, t) expressed
by (S.8).
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Figure S5: Corrective function δ(x) for δ0 = 1.2, δ1 =
2.2, δ′0 = 100, δ′1 = 50 and α = 35.

1.2.2 Recoil calculation

For U and ĥ(x, t) given, we obtain the unknown recoil
functions y0(t) and φ(t) by expressing them in the form
of Fourier series

y0(t) = �e

(
M∑

m=−M

Ymeimωt

)
,

φ(t) = �e

(
M∑

m=−M

Φmeimωt

)

where Ym and Φm are the complex coefficients which
need to be determined from (2). Analogously to Amn, Ym

and Φm come in complex conjugate pairs and Y0, Φ0 ≡ 0,
so only the calculation of Y1 and Φ1 is required for M =
1. It can be shown that Y1 and Φ1 are the solutions of a
2-by-2 system

FV + Y1FT + Φ1FR = 0
MV + Y1MT + Φ1MR = 0

or, written in matrix form,[
FT FR
MT MR

]{
Y1

Φ1

}
= −

{
FV
MV

}
. (S.9)

The complex coefficients FT , FR, FV , MT , MR, MV
are known and depend on the body geometry, A mn, U
and ω. The system (S.9) is solved to obtain Y1 and Φ1

for every imposed motion ĥ(x, t) and shape during the
optimisation process.
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more abrupt changes in the characteristics of optimal or-
ganisms on P

1.3 Optimisation setup

Evolutionary optimisation algorithms work with popu-
lations of individuals (representing different solutions)
which are evolved through generations using some adap-
tation criteria to obtain better objective function values.
The complexity of the objective space poses little prob-
lems to the evolutionary algorithms since they do not re-
quire gradient information so they are well suited for non-
linear, non-convex, non-smooth problems. Since there is
always a probability to sample the space away from the
current minimum, evolutionary methods are more capable
of reaching the global optimum than gradient-based meth-
ods, which would have additional problems with non-
smooth problems (as the present one is).

A useful way of representing the optimal population Π
for two-objective problems is by a Pareto front in the two-
dimensional objective space [3]. The Pareto front is made
out of non-dominated solutions only and it illustrates the
functional trade-offs between the conflicting objectives.
A big advantage evolutionary optimisation methods have
when dealing with multi-objective problems is in their in-
herent ability to reach the Pareto front in one run, without
additional a priori information, since the entire popula-
tion is advanced at once [3]. Evolving entire populations
makes possible non-convexity of the Pareto front amend-
able to the evolutionary optimisation methods.

Since swimming is a non-linear, possibly non-convex
(Fig. S6) and a non-smooth problem, we use state-of-the-
art evolutionary optimisation algorithm—multi-objective

covariance matrix adaptation evolutionary strategy MO-
CMA-ES [4]. MO-CMA-ES has excellent performance
in converging to the final solution in terms of required
function evaluations (smaller population sizes, number of
generations), compared to some other evolutionary algo-
rithms. This fact has been already reported [4] and con-
firmed by our tests.

The optimisation is conducted for organisms of mass
m = a10b, with log a = 0, 1/4, 1/2, 3/4 and b =
−3, .., 6. Default parameters for MO-CMA-ES have been
used, with population size npop = 500 and 500 genera-
tions. There is a total of Np = 9 optimisation variables
ξ ≡ [Re, ĥT , R0, R1, D/L, B/L, C0, C1, C2]. Box con-
straints (i.e. upper and lower bounds) are set on optimisa-
tion variables to reduce the variable space that needs to be
explored, with the exception that for Re the bounds are set
on log(Re). This prevents the large deformation of vari-
able space in Re-direction which would otherwise hap-
pen since Re can have many order-of-magnitude changes
during the optimisation. The initial random population
explores the parameter space, while the final populations
were not influenced by the bounds we set, i.e. all the so-
lutions are found within the bounds, Fig. S7.
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Figure S7: Normalised optimisation variables of the ini-
tial and final generation. The normalised optimisation
variables are defined as ξn = (ξ− ξlb)/(ξub − ξlb), where
ξlb and ξub are lower and upper bounds imposed on opti-
misation variables, respectively.

In addition to the physical motion feasibility conditions
(7) and the box constraints set on optimisation variables,
motion and shape integrity conditions due to parametrisa-
tion require

r(x) > 0
d(x) ≥ d0(x)

d0(x) = 0.025D(1 − e−20x/L)

(S.10)

where d0(x) accounts for minimal height (set to ∼
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0.025D here) the organism has to have, ensuring struc-
tural integrity. This was, in some cases, an active con-
straint for the maximal reduction in the caudal peduncle
area.

Initial generation is required to be feasible (i.e. (S.10),
(7) satisfied for all individuals) and it is randomly chosen.
The feasibility of initial population improves the perfor-
mance of the optimisation algorithm which would other-
wise be often trapped in non-physical areas of variable
space. Optimisation variables’ values for the later gener-
ations are randomly chosen such that they always satisfy
(S.10), and we leave to the optimisation algorithm to find
the individuals that satisfy (7) as well.

CMA-ES algorithm cannot satisfy hard box constraints
on optimisation variables (there is always some probabil-
ity, albeit very small, that the randomly chosen individ-
ual will fall out of these bounds), so the deviation out-
side the bounds is penalized by a weighted square of the
distance to the bounds. The penalisation for not satisfy-
ing inequality constraints (e.g. (7)) is problem specific,
and we treat it by adding/subtracting an exponentially
growing function e(Δc) = exp(10|Δc|) − 1 to/from the
objective function, depending whether it is being mini-
mized/maximized. Here, |Δc| is the maximum constraint
violation. This penalisation has proved to have satisfac-
tory performance and the individuals remain in the fea-
sible region throughout the optimisation, after the adjust-
ments in few initial generations.

In order to have equally scaled objective space and,
thus, possibly improving the performance of the optimi-
sation algorithm, the optimisation objectives COT and U
were normalised by their expected values from empirical
scaling laws [5]

˜COT =
COT

0.33m−0.24
; Ũ =

U

0.50m0.27
;

the optimisation is then conducted over ˜COT and Ũ . This
scaling does not influence the results of the optimisation
since the optimisation is conducted for known m.

1.3.1 Convergence tests and sensitivity analysis

We use standard parameter settings for MO-CMA-ES [4],
with population size npop = 500 and number of gener-
ations ngen = 500. Convergence tests have been done
for several different masses m, with respect to population
size npop and number of generations ngen. MO-CMA-ES
does not require population sizes as large as some other
multi-objective optimisation methods, and npop = 500
has proved to be an adequate population size to allow for
the convergence to a consistent Pareto front. For a given

npop, ngen is chosen such that the individuals have con-
verged to a Pareto front (figure S8).
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Figure S8: Pareto front convergence. The colourmap in-
dicates different generations ngen as the population con-
verges to the final solution (from ngen = 100 to ngen =
500). The final Pareto front is depicted in black.

To ensure that the final Pareto front is a global one,
many runs with different random number seeds are con-
ducted, and the combined non-dominated front from all
these runs is considered as the final Pareto front. Since we
are performing the optimisation for a sequence of increas-
ing m, the smooth transition of (·)COT−opt and (·)U−opt

values with the increase in m serves as an additional indi-
cation that the global Pareto front has been reached.

Two additional comparisons are made to ensure that fi-
nal solution has in fact the fully converged. We have com-
pared the results obtained by MO-CMA-ES to the results
obtained by single-objective covariance matrix adaptation
evolutionary strategy (CMA-ES) [6, 7], running it sepa-
rately for COT and U optimisation. This allowed us to
compare the (·)COT−opt and (·)U−opt values obtained by
the two methods. The comparison shows no difference in
results between the two methods.

We have also made a comparison with the results ob-
tained using a different multi-objective evolutionary al-
gorithm, NSGA-II [8]. Standard settings were used for
NSGA-II. The results obtained by this method mostly
match those obtained by MO-CMA-ES, but the method
suffers from being stuck on local Pareto fronts, mak-
ing non-smooth transitions between solutions for differ-
ent m. It also requires large number of generations and
large population sizes for convergence (npop = 10000,
ngen = 500), making the use of the method prohibitive.
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Sensitivity analysis was also performed, where only
some optimisation variables were included in the optimi-
sation, and the results were shown to be robust. In these
cases, the values of U and COT are slightly sub-optimal,
compared to the values presented in this paper where all
the variables were optimised at once.

2 Drag coefficient

The drag coefficient CD around a swimming body can
be modelled as the friction coefficient of a flat plate Cf

corrected for thickness effects [9], giving

CD = Cf (1 + 1.5D1.5
L + 7.0D3

L)

Cf =
{

1.33 Re−0.5, Re < 5.0 · 105

0.072 Re−0.2, Re > 5.0 · 105 (S.11)

where DL denotes the maximum lateral dimension of the
body normalised by body length L. This relation shows
a discrete jump when transitioning from laminar to turbu-
lent regime at Re = 5.0 · 105, figure S9.
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Figure S9: Drag coefficient CD and friction coefficient
Cf . The solid line represents the Cf –Re relationship
(S.11). The obtained Cf (solid circles) and CD (empty
circles) of optimal organisms is denoted by in red/blue
color for U - and COT -optimal organisms, respectively.

3 Muscle model details

3.1 Continuity assumptions

Along with the assumptions made in the main text, we
make further assumptions on the geometrical and mor-
phological characteristics of muscles. The muscle fibres
forming the muscle are organised into myotomes and can
be contracted segmentally along the length [10]. We as-
sume the myotome length to be infinitesimally small to
enable a continuous length-wise representation of Fmusc

(myotome lengths in real fish have been reported to be
≈ 0.005L [11]). Since any muscle cross-section is of
much smaller area than the corresponding body cross-
section (μ0 � 1) and since it is located far away from
the neutral axis (

√
Am(x) � b(x)/2), the contraction ve-

locity v is assumed to be uniform over any muscle cross-
section. The muscle is longitudinally and laterally heav-
ily innervated [10] to allow different muscle employment
patterns.

3.2 Hill’s muscle model

We assume that muscle fibres operate on the plateau of
length-tension curve at all times during steady swimming
[12] so the effect of the fibre excursion on the contraction
force can be neglected.

Hill’s constitutive relation between contractive force
Ffib a muscle fibre exerts during steady isotonic contrac-
tion and the contraction velocity v is given by [13]:

Ffib = F0

⎧⎪⎨⎪⎩
1.8 − 0.8

1 + vr

1 − 7.56Gvr
, −1 ≤ vr < 0

1 − vr

1 + Gvr
, 0 ≤ vr ≤ 1

(S.12)
where we have taken G = 4, following [13]. The
metabolic power Pfib consumed by the fibre is,

Pfib/F0vmax =
{

0.01 − 0.11vr + 0.06 exp(23vr),
0.23 − 0.16 exp(−8vr),

(S.13)
for −1 ≤ vr < 0 and 0 ≤ vr ≤ 1, respectively.

3.3 The validity of our muscle model

The assumptions behind our muscle model have been re-
peatedly validated in the literature. However, it is interest-
ing to compare the final predictions of the overall muscle
model with empirically measured data, in the absence of
hydrodynamical and structural models, to make sure that
the assumptions do not conflict against each other.
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The obtainable values of contractive force F (x, t) and
contraction velocity v(x, t) are directly governed by the
chosen (realistic) values of F0 and vmax and, hence,
are realistic. However, secondary quantities which char-
acterise the time-averaged muscle behaviour provide a
stricter test.

To isolate the effect of muscle model alone from the ef-
fects caused by different muscle employment patterns, we
compare the maximum achievable local muscle efficiency
ηM ′ with the empirical measurements. The local muscle
efficiency at some cross-section x is defined as

ηM ′ (x) ≡ Pmech(x)/Pmusc(x) .

Based on our model, ηM ′ can achieve a maximum value
of 44.6%, which is comparable to empirically obtained
maximum efficiency of red muscle fibers of 51% [14].

The efficiency of isolated muscle fibres is greater than
the overall muscle efficiency in swimming organisms.
This total muscle efficiency is found to be around 20%
in real fish [9, 15]. Our theoretically predicted organisms
obtain muscle efficiencies of 3%–20%, depending on the
size and the location on the Pareto front.

4 Validity of Lighthill’s theory

Lighthill’s slender body theory [1] is valid for slender
body geometry and small lateral motion. While most
of the shapes of optimal population Π can be considered
slender, some of the shapes in the initial population cannot
be considered as such due to abrupt changes in geometry
(figure S10). That is due to the random choice of shape
parameters Cn. However, since all of our conclusions are
based on the final, optimal population, a possible lack of
accuracy in the calculation of hydrodynamic forces in the
initial generations is of little or no consequence. Repeated
runs provide a large enough selection of slender bodies in
the initial populations for the optimisation results to be
valid. Similar arguments are valid for motion envelopes
r(x), figure S11

The relative body wave length λ ′
b ≡ λb/L is undoubt-

edly an important parameter influencing the swimming
performance. However, Lighthill’s theory is not valid for
extreme values of λ′

b, either large or small. For very small
values of λ′

b, the small motion assumption is not valid due
to the steep waves of body deflection. For very large val-
ues of λ′

b, the body motion approaches that of a rigid body
for which the thrust should be zero if only added mass ef-
fects are considered. However, the thrust is non-zero in
that case according to Lighthill’s theory. When using λ ′

b

as an additional optimisation variable, the swimmers with

Figure S10: Some shapes from a random initial popula-
tion. Lengths are made the same for easier comparison.
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Figure S11: Some motion envelopes r(x) of an initial ran-
dom population. The motion envelopes have been nor-
malised by the tail amplitude hT for easier comparison.

small values of λ′
b are filtered out by the optimisation (for

one, due to higher internal viscous losses). However, our
tests have shown that larger values of λ′

b tend to propagate
through the optimisation iterations and the optimal values
reach the upper bound imposed on it. To prevent the op-
timisation from being stuck in regions where the theory
is not valid, we do not use λ′

b as an optimisation variable
and set λ′

b = 1.

5 The definition of cost of transport

Cost of transport COT is a measure quantifying the en-
ergy required to transport a kilogram of organism’s mass
over a unit distance [10, 16] and as such can be consid-
ered as an energetic measure of primary importance to an
organism in motion. It is essentially “gallons-per-mile”
measure ,

COT ∝ E

ml
, (S.14)
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where E is the total energy (“gallon”) required for a body
of mass m to travel the distance l (“miles”). A more
common version of expression (S.14) can be obtained by
dividing both the numerator and the denominator by the
time τ required to traverse the distance l, giving

COT ∝ E/τ

m l/τ
=

Ptot

m U
, (S.15)

where Ptot is the average metabolic power required for
swimming at steady speed U . To make the COT a non-
dimensional measure, right-hand side of (S.15) is divided
by g which gives the standard form of COT given by
equation (8) in the main paper.

The division by g has no significance to any of the re-
sults since g is constant and the same for all organisms.
Any constant quantity with the dimension of acceleration
would serve the purpose equally well. Even if COT is
left in the form of (S.15), the results presented in the main
paper would be the same (apart from quantitative differ-
ence in COT ). The division by g is used to conform with
common practice and it is carried over from terrestrial lo-
comotion, where is commonly used to compare the cost of
transport of different vehicles [18]. However, the presence
of g does not imply that gravity plays a role in swimming.

The ambiguity in making COT non-dimensional
comes from the fact that COT was not obtained through
the standard apparatus of dimensional analysis of quanti-
ties relevant to the swimming problem. Instead, it is in-
troduced as a measure that is initially dimensional (con-
sumed energy per unit mass and distance). Introducing
problem relevant quantities to non-dimensionalise it (say
by U 2/L) would change the initial intent of the measure.
Non-dimensionalising by g preserves the meaning of the
measure and gives some physical intuition about its val-
ues (energetic cost relative to the cost of lifting the same
object with same speed against gravity).

6 Additional results

6.1 Comparison to a CFD study

Some of our results (figure 3 in particular) are some-
what different from the findings of a numerical study
of the hydrodynamics of mackerel and lamprey swim-
ming. Borazjani & Sotiropoulos [19] find that, in invis-
cid case, a mackerel swimming in carangiform pattern
(λb/L = 0.94 in their case, with very similar motion en-
velope to (r(x))COT−opt) is faster than a mackerel swim-
ming in anguilliform pattern (λb/L = 0.64), and faster
than a lamprey swimming in either carangiform or an-
guilliform pattern. In contrast, we find that for m = 0.1kg
(mass approximately corresponding to Re at which mack-
erel and lamprey swim in nature) an organism that exhibits
motion closest to mackerel’s (figure 3) is actually COT -
optimal and, thus, the slowest of all optimal organisms.
Furthermore, COT -optimal shape is somewhat closer to
mackerel, while U -optimal is closer to lamprey, figure 4.

The comparison of [19] with our results, however, can-
not be made in a straight-forward manner. The compari-
son is limited to carangiform motions only since we limit
our analysis to λb/L = 1, which is similar to λb/L =
0.94 used in [19]. The comparison is further made com-
plicated by the difference in Re, since Re is the same for
mackerel and lamprey in [19], while in our case Re is dif-
ferent for each organism. Furthermore, the absence of a
muscle model in [19] questions the feasibility of the mo-
tion pattern they prescribe. While mackerel and lamprey
swimming with their own natural pattern is feasible since
it is copied from nature, it is not clear whether mackerel
swimming with lamprey’s (anguilliform) motion pattern,
or lamprey swimming with mackerel’s (carangiform) mo-
tion pattern, would be physiologically feasible at all as a
muscle model is not used in [19]. The body shapes in
the two studies are not identical, although COT -optimal
and U -optimal organisms for m = 0.1kg are somewhat
similar to mackerel and lamprey, respectively. The body
lengths are in [19] are identical, while in our case COT -
optimal and U -optimal organisms are of different length.
These differences in body geometries between the two
studies might also have an impact on how the results com-
pare.
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6.2 Kinematic and geometric characteris-
tics of optimal organisms across the
scales

The Fig. S12 shows further results complimenting those
from the main text. The relative swimming speed U/L in
body lengths per second, Fig. S12a, is a quantity that is
often found in literature when discussing the swimming
performance. The comparison of our predictions for U/L
values closely match those found in nature. We have cho-
sen to show U–m plot in the main paper because U is one
of the objective functions and because some comparisons
with results and conjectures from the literature involve U ,
not U/L [20, 21]. Furthermore, some constraints in our
model (μmax) refer to U , not U/L. Maximum relative
contraction velocity max vr, Fig. S12c, is the maximum
value that vr(x, t) attains over the tail-beat period and
along the length. Since the tail-beat period T increases
with the increase of m, the decrease of max vr is corre-
lated with the decrease of tail-beat frequency ω. This has
also been empirically found for cyclical muscle contrac-
tions [22], offering further validation to our muscle model.
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Grgur Tokić & Dick K.P. Yue, Optimal shape and motion of undulatory swimming organisms 10



References

[1] Lighthill, M. J., 1960 Note on the swimming of slen-
der fish. J. Fluid Mech. 9, 305–317

[2] Boyd, J. P., 2001 Chebyshev and Fourier spectral
methods. Dover, New York

[3] Deb, K., 2001 Multi-objective optimization using
evolutionary algorithms. Wiley, New York

[4] Igel, C., Hansen, N. & Roth, S., 2007 Covariance
matrix adaptation for multi-objective optimization.
Evol. Comput. 15, 1–28

[5] Videler, J. J. & Nolet, B. A., 1990 Costs of
swimming measured at optimum speed: scale ef-
fects, differences between swimming styles, taxo-
nomic groups and submerged and surface swim-
ming. Comp. Biochem. Physiol. A. 97, 91–99

[6] Hansen, N. & Ostermeier, A., 2001 Completely de-
randomized self-adaptation in evolution strategies.
Evol. Comput. 9, 159–195

[7] Hansen, N., Müller, S. D. & Koumoutsakos, P., 2003
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evol. Comput. 11, 1–18

[8] Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T.,
2002 A fast and elitist multiobjective genetic algo-
rithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–
197

[9] Webb, P. W., 1975 Hydrodynamics and energetics of
fish propulsion. Dept. of the Environment Fisheries
and Marine Service

[10] Videler, J. J., 1993 Fish Swimming. Chapman &
Hall, London

[11] Syme, D. A., Gollock, M., Freeman, M. J. & Gam-
perl, K. A., 2008 Power isn’t everything: Muscle
function and energetic costs during steady swim-
ming in Atlantic Cod (Gadus morhua). Physiol.
Biochem. Zool. 81, 320–335

[12] Syme, D. A., 2006 Functional properties of skeletal
muscles. In Fish Biomechanics: Fish Physiology,
volume 23 (eds. R. E. Shadwick & G. V. Lauder),
pages 179–240. Academic Press, New York

[13] Alexander, M. R., 1997 Optimum muscle design for
oscillatory movements. J. Theor. Biol. 184, 253–259

[14] Curtin, N. A. & Woledge, R. C., 1993 Efficiency
of energy conversion during sinusoidal movement
of red muscle fibres from the dogfish Scyliorhinus
Canicula. J. Exp. Biol. 185, 195–206

[15] Webb, P. W., 1971 The swimming energetics of
trout: II. Oxygen consumption and swimming effi-
ciency. J. Exp. Biol. 55, 521–540

[16] Wu, T. Y., 1977 Introduction to the scaling of aquatic
animal locomotion. In Scale Effects in Animal Loco-
motion (ed. T. J. Pedley), pages 203–232. New York:
Academic Press

[17] Schultz, W. & Webb, P. W., 2002 Power require-
ments of swimming: Do new methods resolve old
questions? Integr. Comp. Biol. 42, 1018–1025

[18] Gabrielli, G. & von Karman, T., 1950 What price
speed? Mech. Eng. 72, 775–781

[19] Borazjani, I. & Sotiropoulos, F., 2010 On the role of
form and kinematics on the hydrodynamics of self-
propelled body/caudal fin swimming. J. Exp. Biol.
213, 89–107. (doi:10.1242/jeb.030932)

[20] Block, B. A., Booth, D. & Carey, F. G., 1992 Direct
measurement of swimming speeds and depth of blue
marlin. J. Exp. Biol. 166, 267–284

[21] Webb, P. W., 1994 Exercise performance of fish.
In Advances in veterinary science and comparative
medicine, volume 38B, pages 1–49. Academic Press

[22] Askew, G. N. & Marsh, R. L., 1998 Optimal short-
ening velocity (V/Vmax) of skeletal muscle dur-
ing cyclical contractions: length-force effects and
velocity-dependent activation and deactivation. J.
Exp. Biol. 201, 1527–1540

[23] American Cetacean Society Fact Sheet, 2010.
http://www.acsonline.org/factpack/bluewhl.htm
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