
Geometric Modeling and Analysis of Dynamic Resource Allocation Mechanisms

by

Matthew Secor

B.S., University of California, Berkeley (1994)
S.M., Massachusetts Institute of Technology (1996)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of BARKER

Doctor of Philosophy MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2001 LIBRARIES

@ 2001 Massachusetts Institute of Technology. All rights reserved.

Author:
Department of Electric Engineerinand Computer Science

February 5, 2001

Certified by:
George Verghese

Professor of Electrical Engineering
Thesis Supervisor

Accepted by:
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Geometric Modeling and Analysis of Dynamic Resource Allocation Mechanisms
by

Matthew Secor

Submitted to the Department of Electrical Engineering and Computer Science
on February 5, 2001, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The major contribution of this thesis is the investigation of a specific resource allocation optimiza-
tion problem whose solution has both practical application as well as theoretical interest. It is
presented as a specific case of a more general modeling framework we put forth. The underlying
question asks how to partition a given resource into a fixed number of parts such that the elements
of the resulting partition can be scheduled among a set of user requests to minimize the worst case
difference between the schedule and the requests. This particular allocation problem has not been
studied before. The general problem is difficult in part because the evaluation of the objective
problem is a difficult task by itself. We present a novel algorithm for its exact solution in a con-
strained setting and discussion of the unconstrained setting in, followed by a number of practical
applications of these solutions. The solution to the constrained optimization problem is shown to
provide sizable benefits in allocation efficiency in a number of contexts at a minimal implementa-
tion cost. The specific contexts we look at include communication over a shared channel, allocation
of many small channels to a few users and package delivery from a central office to a number of
satellite offices.

We also present a set of new fairness results for auction-based allocation mechanisms and show
how these mechanisms also fall within our modeling framework. Specifically, we look at using
auctions as mechanisms to allocate an indivisible shared resource fairly among a number of users.
We establish that a straightforward approach as has been tried in the literature does not guarantee
an fair allocation over a long time scale and provide a modified approach that does guarantee a fair
allocation. We also show that by allowing users to strategize when bidding on the resource we can
avoid the problem of unfairness, for some simple cases. This analysis has not been seen in existing
literature.

Finally, an analysis of the deterministic and stochastic stability of our class of models is pre-
sented that applies to a large subset of the models within our framework. The deterministic stabil-
ity results presented establish the ultimate boundedness of the lag of deterministically stabilizable
models in our framework under a wide variety of quantizer-based scheduling rules. This variety of
available rules can be used to further control the behavior of the lag of a stable mechanism.

We also discuss the application of existing stochastic stability theory to a large subset of the
stochastic models in our framework. This is a straightforward usage of existing stability results
based on verifying the satisfaction of a stochastic drift condition.
Thesis Supervisor: George Verghese
Title: Professor of Electrical Engineering

Acknowledgments

I would like to start by thanking the people and organizations most directly responsible for creating

a work environment which made this work possible. Financial and administrative support for myself
and my research was made available through United States Army AASERT grant number DAAH04-

95-1-0473 and U.S. Army Research Laboratory Cooperative Agreement DAAL01-96-2-0001, and
the Digital Signal Processing research group and teaching appointments within the Department

of Electrical Engineering at MIT. In particular, I would like to thank Alan Oppenheim for his
willingness to provide me a place in his research group for the last six years.

My thesis committee members, John Buck and John Tsitsiklis, provided me with valuable
feedback on the structure and content of this thesis. They were instrumental in helping with the
process of finalizing and presenting this research.

There are also many other people who have helped me in different ways. Anant Sahai came
with me to MIT as a great friend, and we leave together the same. I would like to thank him
for his advice, conversation and humor through these past years and hopefully many more in the
future. In the DSP group, I have known many great people; all have impacted my work and life in
some way or another. Of these, I would like to especially thank Giovanni Aliberti, Richard Barron,
Stark Draper, Yonina Eldar, Chris Hadjicostis, Nick Laneman, Andrew Russell, Maya Said, Wade
Torres, Kathleen Wage, Dianne Wheeler, and Greg Wornell. Vivian Mizuno has also been a fun
conversation partner while waiting to meet with my advisor.

I owe a great deal to my advisor, George Verghese, who has been an unfailingly patient sounding
board and teacher. Through many starts and stops, twists and turns, George has always tried to
guide me towards a better understanding of the problems we have investigated. He is not only a
great teacher and advisor, but a wonderful person that I feel privileged to know.

Finally, I must recognize the contributions of my family. My parents and brothers have given
me a strong foundation for life upon which I have been able to grow with curiosity and confidence
and for which I will always be grateful. In recent years, my wife Darla has provided the inspiration
and motivation needed to finish this thesis. I appreciate the sacrifices she has made, and look
forward to many years of making it up to her.

For

Ryden

Contents

1 Introduction
1.1 Resource Allocation .
1.2 Structure .
1.3 Contributions .

2 Background

3 Dynamic Allocation Mechanism
3.1 Static Problem

3.1.1 Applications
3.1.2 Allocation Mechanism as Quantizer

3.2 Dynamic Model .
3.2.1 Fairness and Scheduling
3.2.2 Relation to other Models

3.3 Quantizing Schedulers
3.4 General Applications
3.5 Queueing Networks

3.5.1 Input-Queued Packet Switching
3.5.2 Reentrant Multi-class Queueing Networks . .
3.5.3 Constrained Queueing
3.5.4 Fair Queueing, and Credit or Potential Based

4 Stability
4.1 Deterministic Stability

4.1.1 Drift Condition
4.1.2 Smooth Norms
4.1.3 Time-Varying r[n]
4.1.4 Stability Sets
4.1.5 Corner Norms
4.1.6 Necessary Condition for Stability

4.2 Controlling the Lag Behavior
4.3 Stochastic Stability

4.3.1 Bounded Input Stochastic Models
4.3.2 Stochastic Drift Condition
4.3.3 Fairness .
4.3.4 The 2-Norm

Algorithms

9

17
18
21

22

23

33
34
35
36
37
40
41

42
44
45

46
51
51
53

59
60
62
62
64

66
70
73
73
77
78
79
80
80

5 Variable-Sized Channels

5.1 Problem Statement .
5.1.1 Static Problem .
5.1.2 Dynamic Problem .

5.2 Preliminaries .
5.3 Equally-Sized Pieces .
5.4 Design of Uniformly Dense Constellations

5.4.1 Maximally Dense Uniform Constellations
5.4.2 Generating Uniform Constellations
5.4.3 Characterizing F .
5.4.4 Computing the Optimal Allocation and Schedule . . .

5.5 Nonuniform Constellations .
5.5.1 Difficulty of Finding the Optimal Schedule or Allocation

stellations .
5.5.2 Simple Nonuniform Constellations

5.6 Aside: Bits and Pieces .

6 Applications of the Variable-Sized Channel Results
6.1 Dynamic Model .

6.1.1 Variable-Sized Resources
6.2 Distributed Sensor Data Transmission .

6.2.1 Many Equal Channels
6.2.2 Many Variable-Sized Channels .

6.3 Many, Many Resources: Virtual Channel
6.4 Varying Numbers of Users
6.5 Batch Queueing System

6.5.1 Package Delivery Problem
6.5.2 Variable Length Packets

6.6 Robust Size Vectors
6.6.1 Applications

for Nonuniform

Groups

7 Auction-Based Scheduling
7.1 Auction Model
7.2 Simple Auction Allocation Strategies

7.2.1 Escalating Bid - Deterministic Income
7.2.2 Escalating Bid - Probabilistic Income

7.3 One Auction, Many Users
7.3.1 M odel
7.3.2 Results

7.4 Many Resources
7.5 Strategic Auction Mechanisms

7.5.1 Finite Rounds Model
7.5.2 Fairness
7.5.3 Infinite Rounds

7.6 D iscussion .

8 Conclusion

10

Con-

83
84
84

85
86
89
90
91
92
95
96
97

99
99

101

103
103
105
105
106
106
108
109
110
114

116
117
118

119
120
122
123
124
126
127
128
132
133
134
147
147
151

153

A Properties of Convex Sets 165

B Proofs 167
B.1 Proof of Theorem 5.1. 167
B.2 Proofs of Lemmas 5.4, 5.5 and Theorem 5.4 . 169
B.3 Proof of Theorems 4.3 and 4.8 . 173
B.4 Proof of Theorem 6.1. 177
B.5 Proofs from Chapter 7 . 179

11

12

List of Figures

1-1 State evolution example with an arbitrary constellation 20
1-2 Block diagram of the canonical dynamic equation . 21

3-1 Block diagram of lag evolution equation . 38
3-2 Lag evolution example with a fixed input . 39
3-3 Block diagram of the state evolution equation . 54
3-4 Diagram of the lag evolution equation block, Clag . 55

4-1 Voronoi regions for SF and a sample trajectory when f = (.7, .3) 64
4-2 Schedule constellation S in the plane. Each schedule is marked with a 0 68
4-3 Level curves of the norm 1 - 11 .. 68
4-4 Set R(2/3) using the constellation and norm from Figures 4-2 and 4-3 68
4-5 Set R(2) using the constellation and norm from Figures 4-2 and 4-3 68
4-6 Level curves of the norm || - ||b . 69
4-7 Set R(2/3) using the constellation and norm from Figures 4-2 and 4-6 69
4-8 Set R(2) using the constellation and norm from Figures 4-2 and 4-6 69
4-9 Example of unstable deterministic model . 71
4-10 Example of stable deterministic model with corresponding unstable stochastic model 71
4-11 Example quantization constellation . 74
4-12 Quantization regions for the example constellation under the 1-norm 74

4-13 Quantization regions for the example constellation under the 2-norm 74
4-14 Error distribution for triangular norm-like function and hexagonal constellation . . . 76
4-15 Error distribution for triangular norm-like function with diamond constellation . . . 76
4-16 Error distribution for weighted norm function and diamond constellation 76
4-17 Lag distribution function for biased scalar quantizing scheduler 78

5-1 Constellation with 8 equally-sized pieces . 87
5-2 Maximally dense uniform constellation with 8 pieces 87
5-3 Slightly more dense constellation with 8 pieces, but not quite uniformly dense 87
5-4 A very nonuniform constellation more dense than any uniformly dense constellation 87
5-5 Illustration of pieces and dividers for M = 8, N = 3 90
5-6 Illustration of slots and dividers for N = 3, using pieces with sizes (1, 1, 1, 2, 3) . . . 92
5-7 Average and maximum error for N = 3, M = 2 for a range of constellations 100
5-8 Comparison of resolution achieved for N = 3, 5,7,9 and M = 5, ... ,100 102

6-1 The uniform rate set for N = 3, M = 8 . 105
6-2 Values of fairness ratio -ym . 107
6-3 Number of channel groups needed for N = 4, 7, 10 and values of M from 10 to 106 . 109

13

6-4 Batch queueing system . 110

6-5 Cost profiles for variable- vs. equally-sized servers; R = 40, M = 8, N + 1 = 3 . . . 112
6-6 Average cost C over a range of loads for M = 8, N = 2 113
6-7 Cost profiles for equally-sized trucks and variable-sized trucks; R = 56, M = 8,

N + 1 = 3, m = 2 . 115

7-1 Block diagram of auction-based lag evolution equation. 120
7-2 Plots showing the wealth and fraction of wins for two users in the Spawn system . . 125
7-3 Markov chain defined by the two user auction . 127
7-4 Recurrent class C3(1) for a 3-user auction . 131
7-5 Recurrent class C3(0) for a 3-user auction . 132
7-6 Optimal number of wins for user 1 for initial wealth less than 20 and R = 8 137
7-7 Depiction of regions in which users can guarantee specific numbers of wins using a

second-price auction . 138
7-8 Depiction of regions in which users can guarantee specific numbers of wins using a

first-price auction . 143
7-9 Convergence of the fraction of wins for infinitely repeated auction 148
7-10 Convergence of the maximum, mean and minimum of the fraction of wins for in-

finitely repeated auction . 149

B-i Deterministic stability proof construction . 174

14

List of Tables

6.1 Values of fairness ratio yM for various combinations of N and M 107
6.2 Values of fairness ratio -y for 1-robust size vectors and various combinations of N

and M .. 118

7.1 Fraction of wins for two users with varying income rates in the Spawn system 124

15

16

Chapter 1

Introduction

In this thesis, we develop stability properties and applications of a simply-defined class of dynamic
resource allocation mechanisms. The mechanisms are meant to solve the problem of repeatedly
allocating a shared resource among a number of competing users according to some set of requested
or assigned resource fractions. The resource may be a group of computing processors, a network of

queues, a shared communication link or even a limited number of bits in a quantizer. This allocation
problem arises in a number of contexts, such as input-queued switching [51], packet radio networks
[66], reentrant queueing networks [13], and vector E-A encoding [7]. In all of these contexts one
of the goals is to allocate the resource so that each user gets the fraction of the resource that it
requests or requires, or that the allocation be fair.

The aspects of this class of mechanisms we investigate fall into two major categories: stability

and performance. We will call a mechanism stable when the internal state of the mechanism remains
bounded and long-term fairness guarantees are met. In the first part of this thesis, we present a
number of conditions that guarantee stability or instability in various subclasses of mechanisms.
A subset of the general model we analyze automatically guarantees long-term fairness when the
state is bounded (in a sense we define later); at the end of this thesis we present an alternative
model based on auction mechanisms that guarantees boundedness but exhibits bias in the fairness

guarantees.

The performance of a mechanism relates to its short time-scale properties. The performance
of a stable mechanism concerns how well the mechanism achieves an equitable allocation. This is
described when we discuss stability; a stable mechanism whose state is bounded yet varies widely
may be termed less fair than other mechanisms. We will see that there are many rules we can use
to schedule a resource among a set of users that all guarantee stability; when we choose among
these rules we can control (to some degree) the performance of the system as well. We investigate
performance more closely in the second part of the thesis, which looks in detail at the design of a
very specific allocation mechanism and a number of practical applications of the mechanism.

We isolate a class of simple allocation mechanisms that can be used to model the contexts men-

tioned above and investigate whether or not the mechanisms ensure an equitable, or fair allocation

of the resource. For our purposes, a perfectly fair allocation is one that splits the resource exactly
according to the requests from the users. In practical situations we can not guarantee a perfectly
fair allocation at every decision point so we discuss fair scheduling mechanisms whose allocations
approach the perfectly fair allocation over longer periods of time.

The main focus of this thesis is to investigate a simple resource allocation model that shares
significantly with a number of existing different dynamic resource scheduling models. Our model
can be understood very simply, and allows us to build intuition about other models that share the

17

same basic structure, while also allowing us to solve some specific allocation problems easily.

1.1 Resource Allocation

The basic allocation problem we consider can be summarized as follows. A number of customers

(users, sessions) all generate work over time that requires the use of a specific resource. Each
customer has an assigned nominal fraction of the resource that he is allowed to use. However, the
resource has a limited number of possible configurations between which it is switched in successive
intervals of time, according to a scheduling rule. Each configuration can not necessarily accommo-
date all of the customers simultaneously, and is only able to process a prescribed amount of work
based on the customers that are serviced.

As a concrete example, we begin with a simple scheduling problem adapted from [61]. A traffic
intersection is controlled by two pairs of traffic lights: one pair for each of the two intersecting
roads, and one light for each direction on each road. The goal is to choose a pair of lights to turn

(or keep) green (and turn or keep the other pair red) at fixed intervals so that only one road is
allowed to use the intersection during each interval while not allowing the queues of waiting cars to
become too long. The choices are made based on the number of cars waiting in the four directions
at the beginning of the interval (we assume the lights change instantaneously, and all cars that do
not make it into the intersection before the light turns red are stopped). The incoming traffic in
the four directions is modeled as a random process, each direction having a well-defined average
arrival rate. The cars may travel at a fixed rate through the intersection when they have a green
light.

This simple problem has all of the elements that we will be discussing in this thesis. First,
we have a core static resource allocation problem - allocate the intersection to one of two pairs
of traffic streams. The particular allocation problem here is fairly simple, and in fact is a simple
case of the input-queued switching problem described later. Second, we have a dynamic scheduler
that repeatedly makes an allocation decision according to constantly changing inputs (numbers of
waiting cars) that depend on the previous scheduling decisions and external inputs (new arrivals).

The first question that we are interested in is modeling, designing and understanding the core
resource allocation problem from a geometric point of view. The next question is how to model the
dynamic scheduler. The choices the scheduler is allowed by make may be very simple, as in this
example, or possibly much more complicated where the resource may represent a large network of
communication links with a large number of users competing for bandwidth. Finally, once we have
the dynamics and the core allocation problem, we would like to understand the effects of various
reasonable scheduling strategies. By scheduling strategy we mean a rule that makes an allocation
decision based on some set of inputs (or requests). The main property of a scheduling strategy we
look at is whether or not it stabilizes the system (keeps the inputs bounded). This will be taken
up in much more detail later on.

We investigate all of these issues in the following chapters; for now we would like to discuss them
with relation to our traffic example. We have already seen that the central allocation problem for
our traffic example is very simple: we have two possibilities. To model this situation geometrically,
we say that we have two possible configurations, or schedules, that comprise a schedule constellation.
A schedule constellation is a bounded finite collection of points that lies in the scheduling state
space. The state space is the space in which the inputs (requests) lie. For this example, the
inputs are the numbers of waiting cars, so the state space would be the set of nonnegative integer
vectors of length 4. If the vector of inputs is labelled in order: North, East, West, South, then

18

the two configurations correspond with the points (C, 0, 0, C) and (0, C, C, 0).1 We can think of a
configuration as describing how many cars are allowed to go through in the four directions during
a single interval. In this case, we allow C cars to move through the intersection from each of two
opposing directions during each interval. Given the current state, the state at the beginning of the
next interval is found by adding the new arrivals and subtracting off the configuration.

By doing this, we have defined the scheduling problem as a dynamic feedback system whose
behavior can be understood by considering the state trajectories. Our goal then is to determine a
scheduling strategy that keeps the number of waiting cars bounded. A simple rule might find the
direction that has the largest number of waiting cars and turn the corresponding lights green. A
different rule might find the pair - either (North, South) or (East, West) - that has the largest
total number of waiting cars and turn the corresponding lights green. Which of these achieves the
goal of keeping the number of waiting cars from growing unbounded? This is an example of the
type of question we take up in more detail in the chapters to come.

We describe a generalization of this problem which includes a number of situations in the
current literature, including input-queued packet switching [51], constrained queueing (packet radio
networks) [66], fair queueing [57] and other communication and computational contexts. We also
look at some of the scheduling rules used in these situations and show how they all fit within our
common framework.

One interesting aspect of the model we present here is its ability to capture dependencies
between users and within a distributed resource, such as a queueing network, in the same geometric
framework as simpler models. The model does not take the place of domain-specific models such
as queueing networks; restricting our view to a specific domain often allows us to gain even more
insight into a particular problem. However, our framework allows us to think about and visualize
a number of very different dynamic resource allocation problems within a common context. For
example, our framework allows the state vector (number of waiting cars above) to vary over a
continuous space, incorporating other possible dynamic feedback systems including a vector E-A
encoder, which we discuss in more detail later. We might also model systems in which materials
are arriving at a processor according to some stochastic characterization, and we must choose the
configuration of the processor during a sequence of rounds to make use of all of the materials.

A subset of the models we are considering here can be captured with the following description:

Given a constellation (finite set) of points S in RN whose convex hull contains a specified
vector r and given a distance measure d(e, s), does e[n] stay bounded as n -* oo in the
following dynamic equation:

f [n + 1] = f [n] + f - s[n],

where s[n] is the point in the constellation closest to e[n] under the metric d(e, s)? If
f[n] stays bounded, how large is the region within which e[n] stays?

The lag variable e[n] plays an important role in our discussions. We think of e[n] as the state
of the system; it is the accumulated mismatch between the actual allocations and the desired
allocations. By keeping e[n] small, we guarantee that this mismatch does not grow unbounded.
Under many choices of constellation and metric as we will show, f[n] remains bounded. If the
constellation has a high density of points, e[n] travels in a trajectory that remains close to f. We

'We are assuming here that there are always at least C cars waiting in the directions we choose; in a more practical
setting we would augment this collection of configurations to include all configurations that schedule at most C cars
in two opposing directions.

19

I I I I I

0.5-

c'J
a) - - - - -- - - - - - - - - - - - - - -- - -- --_- - - - - ~ -- ~- - - - ---

-0.5-

-1-
SI I I I I I I I I

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
User 1

Figure 1-1: State evolution example with an arbitrary constellation. The trajectory is indicated
with a dashed line, the convex hull of the constellation by a solid line, and the constellation points
by o.

can think of this as a simple control problem, where the control s[n] is chosen as a function of
f[n] in order to keep 11 f[n + 1] - f 11 small. A sample trajectory of f[n] is shown in Figure 1-1 for
a particular constellation using the minimum squared distance as the distance metric, and with
r = 0. This figure gives us a good view of the general dynamics of these systems when they are
stable. When the state variable f[n] is outside the confines of the constellation it will converge
towards the constellation. This is not always the case, and depends crucially on the constellation
and metric. The behavior of this large-scale convergence, when it happens, generally depends
on the interplay between the structure of the constellation as visible from the outside and the
properties of the distance metric. When f[n] is inside the constellation, the behavior of the state
depends much more on the internal structure of the constellation; the location and spacing of the
points inside the constellation determine the actual trajectory. These characteristics govern steady
state performance, ability to adapt to changing inputs, and scheduling accuracy. The distance
metric also affects the small-scale behavior of the lag. By choosing an appropriate metric, we can
enforce preferences we might have about the relative desirability of different lag values. We can
not enforce arbitrary preferences, but in Section 4.2 we give a few illustrative examples of how we
might approximately match a specific set of preference.

We look at these two aspects - large-scale stability and small-scale performance - by both
developing global stability results for different classes of metrics and system definitions, and inves-
tigating how we might design the structure of a constellation to optimize the small-scale behavior.
We discuss the connection between the constellation design problem and vector quantization in
Chapter 5.

Our problem was very simply stated, yet can be easily extended to encompass a number of
interesting scheduling problems, as we will show later. If we modify the dynamics in the canonical
scheduling problem to allow for time-varying external input signals r[n:

[n + 1] = f [n] + r[n + 1] - s[n]

then we have something that is much closer to the model we develop later on. This can be simply
captured with the block diagram in Figure 1-2. In the figure, the Q block represents a minimum-
distance quantizer whose output is the point s[n] E S that minimizes the distance d(e[n], s[n]).

20

1

r[n] (Q s[n]

Delay rl

Figure 1-2: Block diagram of the canonical dynamic equation.

1.2 Structure

This thesis is structured as follows. We begin in Chapter 2 with a survey of related literature, and
give an overview of the most closely related work. In Chapter 3 we continue with a definition of the
dynamic allocation mechanism model, consisting of a core static allocation model and a dynamic
feedback mechanism. In terms of the canonical scheduling problem from the previous section, the
core static allocation problem is simply a model for the scheduling decision that must be made
at every round. The same rule is used every round; only the input (the state) changes value. In
addition to defining the problem, we give a number of examples that show how it can model a
number of real applications. This static allocation problem is interesting by itself, as it is related
closely to quantization constellation design. Once we have the core static problem established, we
move to defining the more general dynamic allocation problem model that provides the basis for
the last half of the thesis. We define the allocation problem and the class of quantizing scheduling
policies that we will investigate. We also look at a number of queueing network models that can be
modeled in our framework. We show that some of the scheduling policies used for these models can
be categorized as quantizing scheduling policies. This is followed in Chapter 4 by a development
of stability and stabilizability results for both deterministic and stochastic dynamic models when
using quantizing scheduling policies.

Chapter 5 is an investigation of a constellation design problem that arises in a specific resource
allocation context. We present a general discussion of the problem as well as a solution for a
constrained version of the problem. The next chapter, Chapter 6, applies the constellation design
solution from Chapter 5 to a dynamic context. This results in a number of practical applications of
the design solution that increases the efficiency of some communication and transportation resource
allocation mechanisms.

This is followed in Chapter 7 by a discussion of another version of our dynamic model which
allows the core quantizer to be replaced with an auction. Auctions behave like quantizers but
with a few important differences. A naYve auction-based allocation mechanism (published in the
literature) is shown to not guarantee fair allocation of the resource to the competing users. We
then develop an alternate method that does guarantee a fair allocation on average. Finally, we
extend the model to allow the users to strategize, or choose their own bids as inputs to the auction
mechanism. We show that the ability to strategize results in approximately fair allocations for
finite numbers of repeated allocations, and asymptotically fair allocations for indefinitely repeated
allocations.

We finish with our conclusions and descriptions of a number of interesting extensions and other
ideas. Finally, the Appendix contains all long proofs, in order to make the text more readable.

21

1.3 Contributions

The major contribution of this thesis is the investigation of a specific resource allocation optimiza-
tion problem whose solution has both practical application as well as theoretical interest (Chapters 5
and 6). It is presented as a specific case of a more general modeling framework put forth in Chap-
ter 3. The underlying question asks how to partition a given resource into a fixed number of parts
such that the elements of the resulting partition can be scheduled among a set of user requests
to minimize the worst case difference between the schedule and the requests. This particular allo-
cation problem has not been studied before. The general problem is difficult in part because the
evaluation of the objective problem is a difficult task by itself. We present a novel algorithm for its
exact solution in a constrained setting and discussion of the unconstrained setting in Chapter 5,
followed by a number of practical applications of these solutions in Chapter 6. The solution to the
constrained optimization problem is shown to provide sizable benefits in allocation efficiency in a
number of contexts at a minimal implementation cost. The specific contexts we look at include
communication over a shared channel, allocation of many small channels to a few users and package
delivery from a central office to a number of satellite offices.

We also present a set of new fairness results for auction-based allocation mechanisms in Chap-
ter 7 and show how these mechanisms also fall within our modeling framework. Specifically, we look
at using auctions as mechanisms to allocate an indivisible shared resource fairly among a number
of users. We establish that a straightforward approach as has been tried in the literature does
not guarantee an fair allocation over a long time scale and provide a modified approach that does
guarantee a fair allocation. We also show that by allowing users to strategize when bidding on the
resource we can avoid the problem of unfairness, for some simple cases. This analysis has not been
seen in existing literature.

Finally, an analysis of the deterministic and stochastic stability of our class of models is pre-
sented in Chapter 4 that applies to a large subset of the models within our framework (as described
in Chapter 3). The deterministic stability results presented in Chapter 4 establish the ultimate
boundedness of the lag of deterministically stabilizable models in our framework under a wide
variety of quantizer-based scheduling rules. This variety of available rules can be used to further
control the behavior of the lag of a stable mechanism as illustrated in Section 4.2.

We also discuss the application of existing stochastic stability theory to a large subset of the
stochastic models in our framework. This is a straightforward usage of existing stability results
based on verifying the satisfaction of a stochastic drift condition.

22

Chapter 2

Background

The work in this thesis relates to a number of existing areas of study. In this chapter, we discuss
how our work here grows out of and differentiates itself from such existing research.

The basic dynamic model we use, a simple dynamic feedback system with a quantizer in the
loop, is similar to a number of other models that have been used in a number of other contexts,
including E-A encoders [7, 35, 43], input-queued switches [51, 30, 15, 62], reentrant multi-class
networks [42, 38], feedback control [52], constrained queueing networks [66, 65], fair allocation
strategies [3, 57]. Although most of these models are more complex in some way or another than
our model, they all share a similar basic structure.

Fairness

The problem of defining a fair allocation of a resource has been considered in a number of different
ways. At its most basic, fairness is simply the notion that every competing user gets a turn with the
resource within a finite amount of time after requesting the resource; this sense is used in distributed
algorithm analysis [45]. However, this limited notion of fairness can not guarantee any particular
fraction of the resource to a user. In many data communication and multi-processing contexts,
assigning a fraction of a resource to a user is a very common method of sharing a resource. Each
user is nominally given entitlement to a fraction pi of a shared resource, and then the allocation of
the resource to the users over time is chosen in such a way as to match these fractions as closely
as possible. A method for choosing these allocations in a simple discrete-time setting is given in
[3], and is called p-fair scheduling. A fixed number of identical processors are allocated among a
number of competing users during a number of identical rounds. The (integer) number of times
that a user has won until a given round N is within 1 of the desired number piN under p-fair
scheduling.

We may also use "fairness" coefficients to control other aspects of the system, as in the gener-
alized processor sharing (GPS) algorithm used to allocate a shared communication link [57], where
the coefficients that are assigned do not decide the fraction of the bandwidth allocated, but govern
the delay properties of packets as they pass through the link. In these applications ordinary fairness
is guaranteed if the input queues do not overflow. However, by choosing coefficients as in the GPS
algorithm, we can affect how close to fair a mechanism is for each user. The coefficients make it
possible to control how much delay each user sees relative to the other users. We discuss a few
examples of this kind of control in Section 4.2.

Fairness has also been extended to apply to situations in which the total amount of resource
available determines the fractions that should be given to each user. Approaches in this category

23

include min-max fairness, proportional fairness, and others [49]. We assume here that the fractions
are already chosen and that the only question left is how to allocate the resource in order to meet
the desired fractions.

However, our model also allows the desired fractions to change from round to round. This
happens, for example, in queueing systems where the desired amount of service is equal to the
number of waiting packets, which changes over time. This can also be used as a model for a E-A
encoder, where the shared resource is a small number of bits to be allocated at each round among a
number of signals. The signals may take values over a wide range. The ability to vary the fractions
may also be useful when the priorities we assign the users change over time.

Stability

Our proof of deterministic stability under all smooth norms in Chapter 4 relies on a number of
properties of convex sets and polytopes. The needed properties are detailed in Appendix A and more
extensive material can be found in [58, 33, 5] and other convex analysis and linear programming
texts.

Two existing approaches to showing stability for stochastic systems under specific scheduling
policies are relevant to the systems we study here. Lyapunov techniques are often used to establish
stability (i.e. boundedness of queue lengths) of queueing systems [51, 38]. In these cases, establishing
stability involves showing that a specific drift condition holds. The drift condition requires that a
nonnegative Lyapunov function of the state always be decreasing outside of a compact region of the
state space. This approach has been applied to queueing networks [38] and has been generalized to
show different forms of stochastic stability for a wide variety of Markov chains over general state
spaces (which include many discrete-time queueing models and dynamic systems) in [53]. Closer to
our model, which operates in Euclidean space, are the results in [40] establishing basic properties of
Markov chains (in Euclidean space) that satisfy drift conditions, and results in [46] and [25] (which
extends the result in [46] to hold for more general increment distributions). The approaches used in
these works relies on modeling the values of the Lyapunov function as a supermartingale when the
drift condition is satisfied. An accessible introduction to martingales can be found in [24]. Using a
martingale approach can be more general because it does not assume that the process of interest is
Markovian as in [53]. In our model, the structural dynamics are Markovian, but the introduction
of stochastic models whose parameters are correlated over time can invalidate this property. Our
results rely heavily on the presentation in [25], which develops properties of real-valued stochastic
processes that satisfy the same strict stochastic drift condition we use in this thesis.

Another method involves using fluid models of general stochastic networks [52, 14, 13, 15]. We
do not use this method, but it is important to illustrate how this work differs from what we do here.
The work on fluid models has shown that the stability of a member of a large class of stochastic
networks is equivalent to the stability of a related fluid model, obtained through a limiting process.
In [52] especially, a stochastic model is presented that is very similar to the dynamic model presented
in Chapter 3. The model consists of a network of queues that route jobs probabilistically either
to each other or out of the network. The main thrust of the work is to establish a relationship
between stability of the original model and stability of the fluid approximation for these kind of
networks under stationary policies, and also to determine cost-optimal policies. The approach uses
fluid models obtained through methods similar to those in [13]. The final results establish a class of
policies called feedback regulation policies that are simpler to implement than average-cost optimal
policies, but are stabilizing and track the performance well.

Although our presentation as well as our model are similar to those in [52], our focus is different.

24

We concentrate on the geometric nature of the allocation problems; our model allows a greater

variety of problems with control constraints to be incorporated, including constrained queueing
problems like those in [66, 65]. The work in [52] also relies on the fact that the fluid model,
including the scheduling policy, must somehow be obtainable from the stochastic model, which is

not always straightforward for arbitrary scheduling policies. The results in [52] give us a method

of converting from fluid policies to discrete policies, but do not investigate directly the analysis of
discrete policies.

The model we discuss here also differs from stochastic network models such as the one in [52]
and those discussed in [53] by the fact that the state evolves in a continuous space while the controls
are restricted to comprise a discrete finite set. Models such as reentrant queueing networks have a

finite set of control possibilities, but evolve on a countable space as do most queueing models. The
fluid models in [52] use continuous controls as limits of discrete controls. Another similar model is
a storage model [53] which has very similar dynamics to the problem we consider here but assumes

inputs that are chosen from a continuous domain rather than the discrete constellation we use here.
The aspect of our model that differentiates it from these other models is the finite and discrete
nature of the values that the controls can take while still allowing the state to vary continuously.

Another paper [34] establishes the stochastic stability of a very general class of feedback quan-
tization mechanisms, including delta modulation, adaptive quantization, differential pulse code
modulation and others. It is not immediately clear that the published results can be applied di-
rectly to the feedback structure we use here, but it is likely that the results could be extended
to include this case. Stability is shown as the almost sure convergence of averages of arbitrary
bounded measurable functions of the processes that define the model. The model in [34] allows
state-dependent quantization and complex state evolution dynamics. The result is very general and
depends on technical assumptions that are not always easy to translate into specific applications.

Queueing Theory

Our basic approach is similar to the sequencing and routing work with open multi-class queueing
networks [39, 13, 52] and constrained queueing networks [65]. Our work differs in that it uses an
underlying structure which allows an arbitrary geometric formulation of the scheduling possibilities

and a continuous state space on which the model state evolves. The queueing network model in
[13, 52] allows for integer numbers of jobs to be scheduled at discrete times; the overall schedules
are limited to be integer vectors. However, the queueing network model also incorporates variable
processing times and arrival times. In our work, we use a discrete-time queueing model where
scheduling decisions are made in rounds indexed by integer times. We discuss how we might extend
our model to include variable processing times in the concluding chapter.

The differences between our model and traditional queueing network model (including reentrant

multi-class networks) make it possible for a system to have no possible work-conserving (or non-
idling) policies. This means that stability results for queueing networks such as [38, 39, 4] do not

apply directly. As we discuss below, the constrained queueing model in [65] shares this property
with our model, but does not allow for arbitrary scheduling constellations.

Reentrant Multi-class Networks

Much of the work related to reentrant multi-class networks [42, 38, 37, 13] deals with policies
that look only at the whether or not the queues are empty, not the number of jobs in the queues.
The scheduling policies that are interesting to them, such as first-come-first-served and static buffer

25

priority policies, choose to service queues based only on whether or not the queues are empty, along
with some other augmenting rule such as static priorities to choose between nonempty queues. All
of these scheduling policies are consistent with the maximum size scheduler, or 1-norm based
quantizing scheduler we discuss in Section 3.5. There are many interesting results dealing with
stability and performance with this class of scheduling policies [42, 38, 4, 37, 13]. An example in
[13] illustrates a virtual blocking problem in a reentrant system. Because of the structure, two
queues that are not directly tied together block each other, and reduce the maximum throughput.
However, this problem is only present because the scheduling policy just takes into account the
emptiness of the queues, not the number of jobs in nonempty queues. The scheduler is a first-
come-first-served (FCFS) static buffer priority (SBP) policy. Although it is non-idling, it does not
take into account the queue lengths and as such is subject to problems similar to the maximum
size matching algorithm in the input-queued switching literature.

Input-Queued Switching

The input-queued packet switching problem involves selecting the configuration of an N x N switch-
ing fabric in order to route packets from the inputs to the outputs and keep the input queues from
growing unbounded [15, 51].

A number of existing scheduling techniques used for the input-queued switching problem can
be modeled closely with our dynamic model [30, 51, 15], using an appropriate choice of distance
metric in our quantizing scheduler of Chapter 3. Our model places some of the previous solutions
within a geometric context in which to think about the problem. Our geometric approach indicates
why certain approaches might or might not work better than others, or might not work at all. It
confirms the basic results and difficulties that have been identified already.

There are two main approaches to the input-queued switching problem. The first uses a single
first-in-first-out (FIFO) queue for each input; this has been shown to limit throughput [32] to
(2 - f(2)) = 58.6% of the maximum possible because of blocking problems at the heads of the
queues. The second approach uses a separate queue at each input for each possible output; this
approach is called virtual output queueing (VOQ) [51]. Within the VOQ approach, there have
been a number of different techniques proposed for achieving the maximum throughput (see [51]
for references). A number of these techniques can be described as maximal matching algorithms
because they all make scheduling decisions at each round by computing a maximal matching in
a graph that describes the switch and queue status. A general result that applies to all maximal
matching algorithms can be found in [15]. It guarantees that any maximal matching scheduling
algorithm achieves at least 50% throughput. The earliest scheduling approaches used a maximum
size matching, which tries to schedule as many queues as possible within the constraints of the
switch; this has been shown to achieve full throughput in simulation under reasonable assumptions,
and is also known to be unstable using more general assumptions [51]. The next approaches
[51, 15] used a maximum weighted matching, where the schedule is chosen by finding a maximal
matching that maximizes the sum of the queue lengths corresponding to the scheduled packets. This
matching is shown to achieve full throughput; however, the computation of the maximum weighted
matching is more complex than other methods, and does not lend itself to easy implementation in
hardware. Another matching that has been introduced in order to simplify the scheduling is the
greedy weighted matching [30]. This method seems to guarantee full throughput in simulation, but
the theoretical lower bound on the maximum throughput is still only 50%.

All of these scheduling techniques are consistent with using a static minimum-distance quantizer
to make the scheduling decisions. This is the view we take of the input-queued switching problem.

26

In Section 3.5.1 we discuss this in more detail. Our framework places all of the approaches in a

common setting in which we can analyze and compare them in a different manner than is done

now.

Much like the fair queueing model that we talk about later, there are also algorithms [30]
based on accumulating credits over time as a way of determining the relative priorities of the input
queues. These credit algorithms provide the ability to control the system in two additional ways.

First, by choosing the rates at which credit is accumulated for the different queues, the queues are
given relative priorities in order to modify the delay properties of the system. Second, the credit

accumulation serves as a traffic smoothing device that reduces the effects of bursty traffic. We

discuss how this credit mechanism can be related to our model in Section 3.5.4.

Constrained Queueing / Packet Radio Networks

Our model is also closely related to the constrained queueing model presented in [65]. The input-

queued switch described above is in fact a special case of a constrained queueing network. The model
incorporates constraints between servers in a queueing network that can be used to capture features
of parallel processing problems, or of a broadcast packet radio network [66]. The constrained

queueing network itself is a general model whose basic structure can also be captured within our
geometric model. By viewing the constraints as restricting the possible schedules that can be chosen
at the scheduling instants, we can construct a schedule constellation containing all of the possible
schedules. Stabilizability results for these constrained queueing networks are developed in [65] as
a generalization of results in [66]. The networks are not constrained to operate in discrete-time
and jobs are allowed to have variable processing times, although the scheduling algorithms that

are developed make their decisions at well-defined instants in time. This is required because the

constraints may be global, and require the synchronization of scheduling control among all of the

servers in the network.

The development of the model and stability results in this thesis in Chapters 3 and 4 parallel to

some degree the work on the constrained queueing model. Our focus in Chapter 4 is on determining

the stability region of our model as is done in [66, 65], but also on finding a larger class of scheduling

rules that guarantee stability. The major difference between the two is that our systems allow the

inputs and state of the model to lie in a continuous space, rather than the countable state space

used in the constrained queueing model. The other important difference is that our model operates

in discrete time much like the model in [66].

The constrained queueing model adds an interesting level of complexity to the problem of
queueing network scheduling. Although it makes the problem of scheduling more difficult, it also

allows the model to capture a wider variety of contexts such as packet radio networks, input-queued

switches and others. We show that a conceptually simple scheduling policy based on minimizing

the distance between the state and schedule maintains stability for all feasible input rates as in [65],
while the problem of reducing the complexity of the scheduling policy is also important and not

investigated in depth here (see e.g. [30]). A common restriction used to make stability guarantees

is to assume the policies are non-idling, or are work-conserving. For a general constrained queueing

model the constraints between servers make it sometimes impossible to use non-idling policies, as

we can see with the input-queued switching problem. The class of reentrant multi-class queueing
networks discussed above can be seen as a special case of this model, where each station can serve
only one of a number of buffers during each round. The Cartesian product of these sets of schedules

for each station will give us a constellation of possible overall schedules. However, non-idling policies
are always feasible for reentrant networks.

27

We show in Section 3.5.3 that if we only consider discrete-time scheduling problems, the con-
strained queueing model and algorithms that stabilize it are very closely related to the model and
schedule rules we present in this thesis.

Fair Queueing

Basic fair queueing algorithms schedule a shared resource among a number of competing users,
each of whom has been assigned a fairness coefficient. These fairness coefficients are meant as a
way of specifying what fraction of the resource a user should nominally receive relative to other
active users.

We can view these algorithms as specific examples of quantization-based scheduling with more
complexity. The generalized processor sharing (GPS) model in [57] and the more general rate-
proportional server (RPS) model in [63] fall into this category. The GPS model uses a measure of
accumulated fairness credit as a state variable that is input to a basic quantizer. The accumulation
of credit depends on the state of the queued work; as long as a queue is full, the credit accumulates
at a constant rate. The differences between algorithms, as captured in the RPS model, is how they
reinitialize the state when a queue becomes full again. This credit model is also used in [30] in the
input-queued switching context.

The p-fair scheduler is another lag-based algorithm that uses a more complicated scheduling
rule. The model in [3] is essentially the same as the backlogged fair queueing model. Each of a
number of users has a reservation which is some fraction of the total resource available. The number
of independent resources that can be allocated to the users is larger than 1 in general, but there
are no constraints on how the resources can be allocated. At each round, a complex rule is used
to decide which users are allocated which resources. This rule, being a function of the current lag
and the reservations, can also be seen as a mapping that divides the lag state space into allocation
regions. However, the function depends on the actual reservations, and so is not very flexible with
respect to changes in reservations. All of the norm-based scheduling mechanisms do not depend on
the reservation, simply the current lag and the current scheduling constellation.

Fair queueing provides an interesting motivation for the study of larger classes of stabilizing
scheduling rules because a wider variety of rules allows more flexibility in the specification of the
closed-loop behavior of the mechanism. We discuss in Section 4.2 a possible way we can extend
the weighting coefficient-based fairness specification to a more general way of specifying fairness
relationships between users.

Vector Quantization

A recent comprehensive survey of quantization can be found in [23]. The areas of quantization that
apply most directly to the work presented in this thesis are vector quantization (VQ) [21] and E-A
quantization [26, 27].

VQ is a much-studied area of quantization theory. Although the problem statement we use in
Chapter 3 has significant differences from the VQ problem, it has a similar spirit. The literature
on VQ is vast, and a good starting point would be [23]. We are interested mostly in two parts
of the basic VQ problem, which are covered well in [21, 60]: the basic model formulation and the
actual quantization procedure. The basic structural model consists of a collection of quantization
points and a distortion metric. Input vectors are quantized by choosing the closest quantization
point according to the distortion metric. We are not concerned with codebooks because the quan-
tization points are not meant to be coded to a standard bit representation, but instead are directly

28

represented by the configuration of a resource; we discuss this difference in Section 5.6. Our ba-
sic static model in Chapter 3 is similar to the structural quantization model, and the scheduling
mechanism we use is equivalent to a minimum-distance vector quantizer. We are not investigat-
ing a general constellation design problem; instead, Chapter 5 investigates a particular scenario in
which we solve a specific constellation design problem that is different in structure from VQ design
problems. The second part of VQ that is similar to part of Chapter 5 is the problem of finding
the closest quantization point given an input vector. This is a difficult problem in general [23], as

the obvious approach in the absence of specific structure in the constellation is a brute force search
through the possibilities. In higher dimensions, the computation involved becomes infeasible. A
class of constellations whose geometric structure is based on lattices simplifies this computation
[11, 23, 17]. This division between lattices and general constellations shows up as well in Chapter 5,
where our scheduling (quantization) algorithm becomes simple when the constellation is equivalent
to a particular lattice. Otherwise, the the scheduling problem is NP-hard [23] in the worst case.

Another area of interest in quantization theory is the study of E-A encoders; a comprehensive
overview of E-A modulation can be found in [7]. Scalar E-A encoders have received much attention,
and are used in many practical systems. The noise properties are studied in [22], and decoding
algorithms and stability analysis of E-A encoder structures is covered in [26]. The basic single-loop
E-A encoder is equivalent in overall structure to our feedback dynamic scheduler in Chapter 3.
However, our scheduler is really equivalent to a E-A encoder with a vector input, which has

received little attention in the literature. The only work specifically related to vector E-A quantizers
relates to the control of three-phase switching power converters [43, 55]. These are essentially two-
dimensional E-A encoders with a simple hexagonal quantization constellation. The vector E-A
structure is compared in [55] with existing methods of controlling the converters based on pulse-
width modulation (PWM) techniques [28]. In [43], the power spectrum of the error signal for
the vector E-A encoder is derived. There has been a wide variety of approaches to the PWM
problem, using a large number of control structures. Essentially, they attempt to approximate a
desired reference signal by switching three terminal voltages on and off so that an averaged version
of the switching signal (the load voltage) approximates the reference signal. The core control
dynamics take the reference signal as input and output a sequence of switching configurations that
achieve this goal. The configuration constellation has a fixed hexagonal structure, and there is
no discussion of the distortion metric used. These results are not easily generalizable to higher

dimensions and, as we discuss later, the boundedness of the internal state is not guaranteed for
arbitrary constellations. The question of boundedness is not addressed directly in this work. The
model we present in this thesis can be seen as a generalization of the vector E-A structure in [43].
We also discuss a generalization in the concluding chapter when we allow the scheduling decisions
to be made at arbitrary discrete times; this extended model is (in 1 or 2 dimensions) equivalent to
the interpolative E-A modulator discussed in [44] if the sampling times are allowed to vary.

Static Resource Allocation

The allocation problem that we present in Chapter 5 fits within the general model put forth in [29].
In [29], the basic framework is that of choosing an allocation (or partition) of a resource to a number
of competing goals such that a given objective function is maximized. The problem presented in
Chapter 5 fits within this framework, if we consider the objective function to be minimizing the
worst-case error over all possible input vectors. However, this objective function does not fit within
any of the problem classes in [29] that lend themselves to easy solution. Our allocation problem
shares similar goals with a few other problems in the literature, including the change-making

29

problem [47], the structured partitioning and vehicle routing problems [1], the vector quantization
problem [23] and other bin packing and assortment problems. We show later in Chapter 6 that
the problem we pose can be used to model practical applications; we discuss a few applications
including reducing the latency of data sent over a shared link by a number of competing users,
reducing the scheduling complexity of a particular communication link scenario, and minimizing
the overhead cost associated with shipping packages or processing packets in systems with fixed
costs for busy resources.

The change-making problem has been studied in [47, 69, 8], which give optimal and heuristic
algorithms for its solution. This is an optimization problem that involves minimizing the number
of coins with fixed denominations used to make a certain amount of change. It differs from our
problem in a few ways. First, the number of coins of each denomination is unbounded; we consider
a bounded number of resource pieces in Chapter 5. Second, even if we were to bound the number
of coins of each denomination, the optimization goal is different; we try to choose denominations
that minimize the difference between the change made and an unknown future requested amount,
while the change-making problem seeks to minimize the total number of coins used to make an
exactly achievable amount of change, given a known set of denominations. Last, the change-making
problem only involves making change for a single customer. With an unbounded number of coins
available, it does not make sense to talk about multiple customers because we can make change for
each independently. However, with a fixed number of coins as in our problem, the customers now
compete for the resource, and the problem becomes more interesting.

The allocation problem of Chapter 5 also has a similar flavor to the one-dimensional bin packing
[48], cutting stock, and assortment [20] problems, but has a slightly different goal and constraint
set. Our objective is to fit a fixed set of objects into a set of containers of unknown sizes whose
total capacity is known to be the same as the total size of the objects. Our optimization objective
is to choose the sizes of the objects to minimize the maximum overfill or underfill of any of the
containers over all possible container sizes. We also assume in our formulation that a collection
of smaller resources of given total size is equivalent to a single larger resource of the same size.
This assumption is valid in some communication or computational contexts, but not necessarily in
environments such as paper mills or lumber yards, where the cutting stock problem applies most
directly.

Part of this problem also fits in the more general problem of partitioning. A general approach
to partitioning sets of sized objects given a cost structure is described in [1], as it applies to bin
packing, vehicle routing, queue scheduling and other applications. The focus in these cases is on
determining an optimal allocation or partition. In Chapter 5 we look at the related, but different,
problem of choosing the sizes of the objects to minimize the eventual cost when the objects are
allocated.

There has also been a lot of research into vehicle routing and one-to-many delivery problems
[2, 6]. In these problems, the emphasis is on choosing and routing vehicles through the destinations
to minimize the cost of delivery. In the transportation application of Chapter 6 we assume here
that all deliveries are done directly from source to destination and so the routing concerns are not
important.

Auction and Game Theory

In recent years, economic resource allocation mechanisms - especially the auction - have gained
attention in the computing resource allocation field [10, 67, 68]. Auctions are commonly used to
price and allocate resources [50, 54]. They are attractive due to the simplicity of implementa-

30

tion, and their efficiency properties [16]. Recent work that studies the use of auctions to allocate
processing resources in computing contexts includes a number of projects in [10], [31], [67], [68].
The major difference between the economic research and the computer-related research is that the
computer-related work focuses more on using auctions as a tool, rather than studying them as
independent systems.1 The kinds of allocation guarantees we seek are not necessarily that the allo-
cation be efficient, or maximize the profit of any of the participating agents. When using auctions
as a tool for computing resource allocation, the goals are more focused on achieving performance
guarantees, or meeting reservations; the economic basis of auctions is simply a means to some other
end. Furthermore, the context in which they are used is much more controlled than the traditional
context of allocating real world resources to human participants. This allows the properties of the
overall system to be more closely modeled. For this reason, more recent research has focused on
how to use auctions as mechanisms to achieve allocation goals that are much more difficult to attain
using existing, more structured and centralized techniques.

Here we begin with a specific approach to using auctions for resource allocation in decentralized
networks, detailed in [67] and called the Spawn system. The allocation mechanism used is simple
and turns out to be analyzable for certain cases. The Spawn system uses a mechanism with
dynamics very similar to those of our model. The results in [67] use empirical data to support the
hypothesis that auctions will provide a fair allocation of a collection of shared computing resources
among competing users. We present here some results that look at this of problem with a more
analytical eye, and provide some initial results that help to understand the fairness of auction
mechanisms when used in computing resource allocation problems.

'Auctions have always been used as tools for allocation in economic systems as well. However, the computer-related
work neglects the other aspects of economic research into auctions.

31

32

Chapter 3

Dynamic Allocation Mechanism

At the core of this thesis is the problem of allocating limited resources among a number of competing
users. Resource allocation is a long-studied problem, and arises in a large number of contexts. In
different contexts, resources can represent any number of things: lumber, money, time, space,
fuel. The users may also represent a wide variety of entities: corporations, employees, computer
processors, integrated circuits, engines. In every context, we have a number of users that seek to
make use of the same set of limited resources. Although the goals may also vary somewhat -
minimize cost, maximize profit, equalize distribution - we consider a particular class of goals:
trying to match a set of users' resource requests as closely as possible. The users' requests come in
many forms; they may be bandwidth, queued jobs, processing time or a number of other possibilities.

These problems can be stated and analyzed using formal mathematical models. We will do this

but we will rely heavily on geometric ideas and interpretations of the problems. Users' requests

are seen as points in space, as are the possible resource schedules, or configurations of the resource.
The problem of matching a set of requests with a configuration becomes an optimization problem:
choose the configuration that is closest to the requests. We will also view dynamic scheduling
problems later on as problems of controlling dynamic systems, and relate them to the geometric

ideas we present here.

The basic dynamic allocation problem we will consider is how to choose configurations from

round to round so that the fraction of the resource that a particular user receives over time is

equal to (or close to) some desired amount. This amount may be a constant for each round, or
may vary from round to round. A feedback scheduler is presented as a method of guaranteeing
this, see Figure 3-1. There are three main parts to our scheduler. First is the description of the
user resource requests r[n] at each round n. Users may request a constant amount each round,
or the requests may vary according to some stochastic or deterministic rules. Second is the core

static allocation problem which must be solved during each round to provide the actual schedule
of resource allocations for the round. This consists of two pieces: the scheduling constellation S
which specifies all possible schedules, and the scheduling rule Q(.) which specifies which schedule
to use based on the current state of the system. Last is the actual feedback mechanism which
updates the state based on the previous schedule. A combination of constellation and feedback rule
is called a model, and the combination of a model with a scheduling rule is a dynamic allocation

mechanism, or simply a mechanism. We also refer to a static allocation mechanism when we talk
about a scheduling rule being used to determine a single schedule.

This chapter is structured as follows. In Section 3.1 we begin by describing the static allocation

problem that serves as the core of our dynamic model. Then in Section 3.2 we describe our feedback
scheduler model, and the scheduling rules that we consider here. Then, we refine this model to a

33

quantizing scheduler in Section 3.3.

3.1 Static Problem

In order to formalize the structure of the model hinted at above, assume that we have N users of
a single configurable resource. The resource has a number of possible ways of being scheduled for
the users. We can think of these schedules as configurations of the resource. Each schedule is an
N-dimensional vector that specifies in each component how much of the resource each user receives.
It is not necessary in all cases that the sum of these components be the same for all configurations;
this allows overhead costs and other constraints to be modeled by the set of schedules. The possible
schedules depend on the application and the structure of the resource. For example, if there are 5
processors that make up the resource and can be allocated independently to the users, the possible
schedules would consist of all nonnegative vectors that sum to 1 whose elements are multiples of
1/5. On the other hand, if there is a single processor that can handle more than one user at a time
but with a performance penalty for multiple users, the schedules would be different.' We will use
the notation r for the vector of users' requests (or reservations), and s for a schedule. The set of
all possible schedules is denoted by S.

Once we have the constellation set down, we need to determine some scheduling rule, or a
method of determining which schedule is used when the users make their requests. For this thesis,
we will concentrate on static scheduling rules Q(-), or ones that simply map a request r to a schedule
Q(r) = s.

The scheduling rule that we look at here is a simple geometric rule. Given a finite set S c RN
of points in space and a single point r E RN, find the point s* E S such that some distance (or
distortion) metric d(r, s*) is minimized. Or, in more formal terms,

s* = Q (r) = arg min d(r, s)
sES

As an example we would like to minimize the worst-case difference between the request and the
actual amount of resource allocated to a user, we would choose d(r, s) = 11 r - s KJ.. For specific
applications, this or other measures of distance might make sense. We discuss the specific choice
of d(r, s) below.

Another equivalent way to define our rule is to specify a region associated with each schedule
such that if the vector r lies in the region, then the corresponding schedule is chosen. Define Rd(s)
as the allocation region for a point s E S. The allocation region for a point s is the set of points r
such that the corresponding s* = s, or

Rd(S) = {r I Q(r) = s}.

We see that our choice of d(-) along with S determines these allocation regions. In turn, it is clear
that the allocation regions completely determine the properties of the scheduling rule.

Scheduling rules for scheduling problems are not generally interpreted geometrically. Classical
resource allocation problems deal with either a set of indivisible resources, or an arbitrarily divisible
resource [29]. Queue scheduling problems are not seen geometrically because the decisions are
generally binary-valued. This does not allow for arbitrary relationships and constraints between

'A simple example might be a processor that can handle two users by either allocating all of its resources to one
user, or multitasking and incurring the overhead of context switching constantly between users. The configurations
would be (1, 0), (0, 1), and (0.5 - a, 0.5 - a) where 2a is the overhead cost.

34

resources. Our model is a user-centric one, where resources are defined as they appear to the users.
We assume that the actual configuration of the resource is done transparently by the resource itself,
and the scheduling rule's job is simply to choose an appropriate configuration.

Although in many cases the models are described in a way that would make the geometry clear,
the rules themselves are justified by appealing to general intuitions of good performance. In [30],
[51], [66, 65] and much of the GPS literature, although geometric notions are used in the proofs,
the rules are not themselves interpreted geometrically. Part of our goal is to present a unifying

geometric framework in which all of these rules can be looked at together.

It turns out that many of the rules used in the work just cited can be interpreted geometrically.
Also, this interpretation gives us insight into why some of the rules may work and why some do

not (or have not been proven to) in a dynamic setting. These examples will be discussed in more

detail at the end of this chapter.

3.1.1 Applications

Before we get to the modeling of more dynamic allocation problems, let us get familiar with the

types of problems we will be considering in this static context, specifically a few applications of our
model to real scheduling problems. These applications will be described as simple static problems

for now, but will be taken up in a dynamic form later.

Independent Processor Sharing

The first and most obvious application is that of allocating M identical independent processors

among N competing processes. The set of possible schedules, S, consists of all possible ways of

allocating the processors to the processes, or all possible nonnegative integral vectors s of length

N (assuming processes can make use of any number of processors) whose components sum to M.

In this way, if we are only able to make our scheduling decision a single time, we will choose the

schedule s that most closely approximates the workload r that the processes would like to put on

the processors. If one process requires approximately twice as much work as another, then as long

as we are treating them equally, that process should receive twice as many processors. We can

also think of this as saying that each process should receive a number of processors that is close

to the amount of work that process requires. One way to model this is to use our static allocation
mechanism with d(r, s) = 11 r - s 11.. This choice minimizes the maximum deviation between the

workload of a process and the actual number of processors the process is allocated.

We can extend this model to also cover constraints on the use of processors. If certain processes
can not use certain processors, or there are limits on the maximum number for each process, we can

capture these constraints by choosing a subset of the previous S. As mentioned before, if there is

an overhead cost for processing multiple processes, or for processing certain processes on particular

processors, we can also capture this in the set S.

Input-Queued Switch

A specific example of a constrained problem is an input-queued switch. As described in [51, 30,
15], the input-queued switch is a constrained scheduler, where we have M 2 switching elements

connecting each of M inputs to each of M outputs. Each input has M queues, one for each of the
outputs. The switch must choose which set of input queues (one from each input) to connect to
the outputs without connecting two inputs to the same output. The set of possible schedules S is

the entire set of matrices obtained by row and column permutations of the identity matrix. The

35

element of a schedule in row i and column j represents the number of packets (1 or 0) that are
transferred from input i to output j. This set is a very constrained subset of the possible ways
of allocating the switching elements to the M 2 queues. The input request vector r is the matrix
containing the numbers of packets in each of the input queues. Again, to keep the input queues
short, we would like to choose a schedule s that is close to r in some way.

Generalized Processor Sharing

Similar to the above is the generalized processor sharing problem [57]. The basic issue is how to
share a single communication link among a number of transmissions. This is similar to a trivial case
of the input-queued switch, where we have 1 input and N outputs (each output corresponds to a
transmission), except for the fact that each transmission also has a fairness coefficient. The fairness
coefficient is a weight that tells how much priority each transmission has over the channel. The
basic concept is that if one transmission has twice the priority of another (the fairness coefficient
is twice as large), then that transmission should be able to use the link twice as often as the other
when they are both competing for it. In this problem, the request vector is a measure of the amount
of work in the queues, but weighted by the corresponding fairness coefficient. In this way, if a high
priority transmission has few packets waiting, it may still be able to use the link even if the other
lower priority transmissions have more packets waiting. We can fit this scenario in our static model
by choosing the distance measure appropriately. The possible schedules are simply the unit vectors
with a 1 in one location and O's elsewhere. The distance measure can be seen to be related to
d(r,s) = 11 r - s

Auctions

The last application of our model we will look at is in auction-based resource allocation. Auctions
can be used for many of the same resource allocation problems we have been discussing. The basic
idea of a closed-bid single round auction is the same: a collection of users submits bids (or requests)
for a shared resource. The allocation mechanism depends on the type of auction. Normally the
highest bidders win, but the payment often depends on the bids themselves. This payment issue
is what makes auctions an interesting contrast to the mechanisms we have mentioned so far. Our
previous allocation mechanism implicitly assumed that the "payment" was simply the fact that
the queue lengths, or amount of buffered data, decreased if a user was allocated some part of the
resource. Thus, the next time around, the user would have less work and hence lower priority.
However, auctions have separate methods of payment, and so the amount of payment may not
coincide with the amount of resource allocated. We will show later that this can lead to systematic
biases in simple dynamic auction-based allocation mechanisms. Apart from the payment issue,
the decision making process in an auction is very similar to that of the allocation mechanisms we
have been looking at. Instead of being described as a distance minimizing function, the auction
mechanism uses a set of rules to decide the winners in an auction, but these rules constitute a
function that maps bids (requests) to schedules, just as the scheduling rules we described earlier.

3.1.2 Allocation Mechanism as Quantizer

The static allocation mechanism we have presented here can be interpreted as a quantizer. There is
a long history of work in the area of quantization; see [23] for a good overview of the fundamentals.
As our model is stated above, it is immediately clear that it is equivalent to a kind of quantization
problem. The description of the static model boils down to a very simple problem: given a particular

36

input, find the member of a finite set of valid allocations that minimizes the distance between the
allocation and the input. This divides up space into a collection of allocation regions, one for each
possible allocation. The result is structurally equivalent to a vector quantizer [21], where we have
a constellation of quantization points in IRN, and an error metric. Each input point is quantized
to the point in the constellation that minimizes the error between the input and the quantization

point.
Much effort has been put into the examination and understanding of vector quantization and

vector quantizer design (see [23] for a number of citations). Vector quantizer design approaches
concentrate on the design of quantizer constellation such that the quantizers have small distortion.
The applications we are interested in are resource allocation problems, and it is not always a
question of designing the geometry of the set S directly, but designing the underlying resource
structure which then determines the set S. Existing vector quantization results prove useful both
as inspiration and guidance, but as we show in Chapter 5, the set S can be constrained in different
ways than in typical vector quantization applications. Whereas in quantizer design problems, a
common goal is to minimize the expected error given a restriction on the number of quantization
points allowed, the goal in Chapter 5 is to minimize the error given a restriction on the maximum
number of pieces we can chop a single resource into. This restriction does not restrict the number
of points directly, but does play a large role in determining the geometry of the set S.

3.2 Dynamic Model

We have considered a static resource allocation model so far; we would like to extend the model
now to include repeated allocation problems. We will concentrate on an extension that assumes a
given resource is available to be scheduled during a sequence of rounds. A schedule is chosen at
the beginning of each round and kept until the end of the round.

Consider a situation in which a resource with a schedule constellation S of possible configurations
or schedules is to be repeatedly allocated to a set of N users during a sequence of allocation rounds
by choosing an appropriate schedule during each round. We denote the desired fraction of the
resource or request for user i during round n by ri[n] at round n, and the collection of requests

by r[n]. At the beginning of round n, a new schedule s[n] is chosen by a scheduler using a static
mechanism according to our model from Section 3.1, and the users employ the resource according
to the schedule for the duration of the round. The actual resource request e[n] of a user at round
n is equal to the request for that round plus whatever requests have not been met up until this
point. The situation is shown in Figure 3-1, which differs from Figure 1-2 in that we now have a
(possibly random) matrix B[n + 1] that shapes the effects of the allocation on the system. The
actual schedule that is used is the product of a matrix B[n + 1] and the desired schedule s[n].
The goal of the scheduler in the case of constant r[n] = fr is to ensure the sequence of allocations
B[n + 1]s[n] has a time average close to the time average of the request vector r[n]. The matrix
B[n + 1] is one method of modeling indirect effects of the schedule on the system. We are allowed
to choose s[n] arbitrarily, but it is then multiplied by B[n + 1] (which may be unknown at the time
we choose s[n]) in order to compute the actual resource allocation for the round. For example,
B[n +1] might represent the connectivity of a network of queues with probabilistic service times, as
we will see later. Alternatively, there may only be a probability that the resources that we assign
to each user are available, in which case B[n +1] might be a diagonal matrix with Bernoulli random
variables on the diagonal. In the simplest case, B[n + 1] = I, and s[n] directly affects f[n + 1].

We make a distinction between two classes of scheduling models. The first is the deterministic
model. In this case, we view B[n] as a constant matrix and r[n] as a deterministic, possibly time-

37

r[n] s[n]

Delay -- 3-B[n + 1]+-

Figure 3-1: Block diagram of lag evolution equation.

varying, sequence of vectors. We can think of r[n] as modeling the relative amounts of different
types of fluids entering a system. The second class is the general stochastic model. This includes
all other stochastic characterizations of r[n]; for example, ones in which r[n] models the arrivals
to a queueing system. The deterministic model is important for a few reasons. First, it gives us a
simpler model to think about. The scheduling mechanisms (with static scheduling rules) we have
discussed become deterministic nonlinear systems, and can be visualized very easily. Because of
this simpler characterization and visualization of the deterministic models, they allow for simpler
(although not necessarily simple) analysis. Also, as we discuss in the next chapter, many of our
stability results for deterministic models apply when we let r[n] vary over time within the confines
of the constellation. This allows the results to apply to a larger set of models. Second, we might
think of using a deterministic model as an approximation of a stochastic system in order to design
scheduling rules more easily. However, although the analysis of the stability of a deterministic
model is sometimes easier, in general, the stability of a deterministic model does not necessarily
imply stability of a corresponding stochastic model.

We use a scheduling rule defined using the notion of a lag or mismatch between the accumulated
scheduling choices and the accumulated requests. The lag evolution equation of the scheduler at
round n + 1 is defined - consistently with Figure 3-1 - to be

f[n + 1] = f[n] + r[n + 1] - B[n + 1]s[n] . (3.1)

Note that f[n] is allowed to have negative components, i.e. 'lead' components. The block diagram
in Figure 3-1 suggests that we can actually think of the scheduler as a nonlinear dynamic system,
where the requests r[n] comprise the input signal, and the schedules s[n] comprise the output signal.
This interpretation will be taken up in this and the next chapters, when we discuss the connection
with E-A encoders.

We may also view the schedule s[n] as a control input to the lag evolution equation. At
each round, s[n] is chosen as a function of f[n]. The way that s[n] is chosen depends on the
information available and the specific goals of the scheduler. The input r[n] and matrix B[n] will
be modeled in one of a number of ways. The simplest deterministic problem we consider is where
each is a constant at each round, r[n] = r and B[n] = B. We also extend this to an r[n] which
varies arbitrarily (including stochastically) in a region R that is a compact set lying within the
constellation. Our stochastic models include an uncorrelated model, where r[n] and B[n] are both
uncorrelated sequences of random variables, as well as a more general model where both r[n] and
B[n] are stationary random processes with well-defined means and bounded higher moments.

The lag vector can be interpreted as a point in N-dimensional space that evolves over time.
With this interpretation, we will view r[n +1] as a disturbance that moves the lag vector away from

38

f1:31 -- (-B[3]s[2])

(B[2]s[1])

r[2] r[3]

f[11 -(-B[1]s[0]) f[2]

r[1]

f[0] 1 2

Figure 3-2: Lag evolution example with a fixed r[n] = (0.5, .25).

its current position, and we will try and choose s[n] so that B[n + 1]s[n] counteracts this effect to
some degree. Figure 3-2 shows an example of how the lag might evolve over time.

Two concepts that will come up later on in relation to this model are the set of feasible input
rates and the convex hull CH(B - S) of a constellation of points B - S. The set of feasible input
rates is defined as the set of all vectors r such that f is in the interior of CH(B - S).

A convex set C is defined as a collection of points such that for any two points c, d c C, all
points ac + (1 - a)d E C for 0 < a < 1. We will only be concerned with closed convex sets, and
will simply call them convex. The convex hull of a collection of points S is the collection of all
points that are convex combinations of points in S. From this definition, a convex hull is a convex
set. This makes the convex hull of a finite collection of points (our constellation) a polytope whose
surface consists of a collection of flat faces [5].

Definition 3.1 (Convex Hull) Given a set of N-dimensional points S, the convex hull of S,
CH(S), is the set of points r such that

r = a(s)s
sES

for some set of a(s) where Ecs a(s) = 1 and 0 < a(s) K 1.

We define the interior of the convex hull, ch(S), similarly with the convex hull, except that we
constrain a(s) so that EZ5 r a(s) < 1 for all L C S. This is equivalent to saying that a point in
CH(S) is in the interior of the convex hull if it does not lie on the surface of the hull. Another way
to define the interior is as the set of points for whom a finite neighborhood exists that is contained
in CH(S), i.e. every point in the interior is a positive distance away from the surface of the hull.

Other properties of convex sets we use for our proofs are given in Appendix A.

39

3.2.1 Fairness and Scheduling

The example in Figure 3-2 shows how the lag evolves for a specific sequence of choices for s[n].
These choices are made by a scheduling rule. In the scheduling applications we consider later in
this chapter, the scheduling rule is designed to keep the lag vector bounded, in expectation or in
actual value. If we know that the absolute value of the elements of the lag vector stay bounded
below some finite number b for all rounds n, then the time average schedule will converge to the
desired request i when the request vector is constant. The smaller the absolute value of the lag,
the closer the system is to maintaining an allocation of the resources close to the requests. To see
this, first note that

f[n] - f[n - k + 1] n

k - k s[m]. (3.2)
m=n -k+1

With each component of the lag bounded by ±b, each component of the left side of Equation (3.2)
is bounded by ±2b/k, which approaches 0 for increasing k. This implies that the time average of
s[n] approaches r as the time window grows larger. Also, for smaller b, the time average schedule
is closer to f. We can also use this argument to show that the time average of s[n] converges to i
in expectation if the system is stochastic. Also, if the variance of the lag at any round is bounded,
the time average of s[n] converges asymptotically to f, i.e. the variance of the difference decreases
to 0 as n increases. We say the system is fair if the size of the difference between f and the time
average of s[n] can be driven arbitrarily small.

Definition 3.2 (Deterministic Fairness and Bounded Fairness) A scheduling mechanism is
deterministically fair if for every e > 0, there exists a ko > 0 such that for all n > no for a finite
no and for all k > ko:

1- En s [n] - f[n - k +1] i
k| r m=n--k+lSIM] 11= k-

We will call a system bounded fair if the lag is constrained to stay within some compact set.

The function - 11 is an arbitrary norm. Bounded fairness implies deterministic fairness because if
4[n] is in a compact set, then 11 f[n] 11 is bounded by some finite C and by the triangle inequality
we can satisfy the definition of deterministic fairness:

1| f[n] - f[n - k + 1] | | [n | | [n - k + 1] | 2C
k k k k

for k > 2C/E. Most of the deterministic cases we look at will be bounded fair, but the second-price
infinitely-repeated auction in Chapter 7 seems to be deterministically fair but not bounded fair.
We will show in the next chapter that a deterministic mechanism that satisfies a drift condition is
bounded fair. We can also extend this definition to a stochastic setting by simply bounding the
expected value of the norm of the difference between lag values.

Definition 3.3 (Stochastic Fairness) A scheduling mechanism is stochastically fair if for every
e > 0 there exists a ko > 0 such that for all n > no for a finite no and for all k > ko:

E 1 [n] - f[n - k + 1] ||
E k

40

This is a rather weak definition; it does not place any constraints on any other characteristics of
the lag. For instance, the variance of the lag may grow to oo with n. Stronger notions of stochastic
fairness can be defined only when we know more about the statistics of the lag. Later we will
show that if a mechanism satisfies a stochastic drift condition then it is bounded stochastically fair.
This means that E[II f[n] 11] < C < oo which is again satisfied when f[n] lies in a compact set,
but also includes cases when f[n] may take values in the entire state space. As before, a bounded
stochastically fair mechanism is stochastically fair:

E [< [n] -[n kA+1] E +E [11 i[n< 2C< 1E
k I k Ik - k -

for k > 2C/E. This guarantees us that the total allocation to a user over a long time window is
close to the accumulated requests of the user during the window in expectation.

If the scheduling rule we use is a static rule as in Section 3.1 (also called a stationary rule) that
only depends on the current lag vector, we can simply map each point in RN to a specific schedule
s E 8. This gives us a simple interpretation of the model and scheduling rule. We can picture the
lag vector moving from point to point in RN; at each point, there is a fixed value of s[n] that is used
to compute the next value of the lag. In addition to the geometric interpretation, this structure
can also be seen as a randomized state machine, or Markov chain in some cases, which will allow
us to establish the stability results in Chapter 4. The problem is now to choose a specific static
scheduling rule in order to keep the lag bounded. We will generally denote scheduling rules by Q(.),
where Q(.) maps lag vectors to schedules, or Q : RN -* S. Using a specific scheduling rule, the lag
evolution equation becomes

f[n + 1] = f[n] + r[n + 1] - B[n + 1]Q([n])

and becomes a nonlinear dynamic equation driven by the input r[n].

3.2.2 Relation to other Models

This model is similar to models considered in [65, 52, 30]. However, it differs from each of them
in that it maintains a simpler geometric interpretation. The model in [52] is identical in flavor,
and as stated contains more complexity. However, there are a few important differences. Our
model allows for sparse constellations with arbitrary geometry, while [52] requires that the control
constellations take on integer values, and be restricted to polytopes (more precisely, the integer
subset of a polytope), or the product of these polytopes and integer matrices.

The model in [65] selects controls with a fixed matrix B (same as in [52]). The model in [65]
also allows for random processing times at the queues. This situation is captured by our dynamic
model when, for example, the processing times are geometrically distributed, which is modeled by
multiplying B with a random matrix M as in [66].

The model in [30] is a subset of [65]. It is a model with no nontrivial routing (simply a bank
of processors). However, it does have a characteristic not present in the model of [52]. As in [65],
the model is a constrained queueing model, where the status of a queue (scheduled or not) may
influence whether or not other queues may be scheduled. This makes it impossible at times to
define non-idling schedules. However, it is still possible to show that these systems are stabilizable,
as [65] does for constrained queueing systems and as we establish for our general stochastic model
later in this chapter.

41

3.3 Quantizing Schedulers

For most of the rest of the thesis, we will restrict ourselves to a specific class of scheduling rules Q(-)
we call quantizing scheduling rules. A quantizing scheduling rule is defined in terms of a norm; in
Section 4.2 we discuss how we might extend the class of scheduling rules to include other measures
of distance. We define a quantizing scheduler as an instance of the dynamic model from the previous
section, where the static allocation mechanism is a minimum distance quantizer and the output of
the quantizer is used as the feedback. As before, we can view the overall scheduler in terms of the
state trajectories. However, the dynamics of the system become much simpler. We can simplify the
deterministic model even further and view the problem of determining the stability of a scheduler
as an instance of the canonical problem presented in Chapter 1.

The model we use for a quantizing scheduler is defined with respect to the same dynamic
equation as before:

f[n + 1] = f[n] + r[n + 1] - B[n + 1]s[n]

where s[n] is chosen from a schedule constellation S, a finite set of points in RN. Our overall goal
is to keep the lag small, in order to maintain an average resource allocation close to the requests
r[n]. However, at time n, we only have access to f[n] in order to make our decision. We present
one particular method of making the decision below, but it requires knowledge of the statistics of
r[n] and B[n] to compute the expectation. We may also use a similar rule that chooses s[n] based
only on past, known values of r[n]; this is used in cases when B[n] does not change. We discuss
this more in the next chapter.

However, here we assume full knowledge of the statistics of r[n] and B[n]. If our goal is to keep
the lag small, an obvious choice of schedule is one that minimizes some measure of the size of the
lag at the next round f[n + 1], given the lag at the current round f[n]. If the size measure that we
use corresponds with a metric or norm, we have a quantizing scheduler. We choose a schedule at
round n that minimizes a measure of the size of the expected lag:

s[n] E arg min E [d(f[n] + r[n + 1], B[n + 1]s) I f[n]] (3.3)
sES

E arg min E [d(i.[n + 1], 0) 1 f[n]]
seS

The function d(f + r, s) is a metric that tells us the distance between s and f + r, just as we used
in Section 3.1. In some cases we may also consider a scheduling rule that chooses a schedule when
B[n + 1] is known:

s[n] c argmind(f[n],B[n+1]s)
sS

This rule is used for example in queueing contexts when we must decide which jobs to process based
on the current number in queue, not including the new arrivals, r[n + 1]. It may also be useful
when we do not know the statistics of r[n] and so can not compute the expectation above. We do
not explicitly present proofs of stability for mechanisms using this type of scheduling rule, but the
proofs we present can be easily modified to accommodate them. The actual scheduling rule Q(-)
that we use to make the choice is said to be consistent with a metric d(-) if Q(.) always chooses a
schedule that minimizes the measure in (3.3). A common metric is distance under the p-norm, or

N
Pd(a, b) = || a - b 11P = j ai - bi|lP

42

When p = 2, we have the familiar 2-norm. Others that are important are p = 1 and p = 00

which give us the sum of the components in the absolute difference and the maximum of the
absolute difference. In general, the metric d(x, y) will be a function satisfying the following defining
properties:

" d(x, y) 0 , and d(x, y) = 0 only when x = y;

" d(x, y) =d(y, x); and

" d(x, y) d(x, z) + d(z, y) for all z.

We will concentrate mainly on metrics induced by a norm | -, or d(x, y) = fl x - y 11 but will relax
this at times. Again, we say a scheduling rule Q(.) is consistent with a norm || - 1| if it is consistent
with the corresponding induced metric. In the case of a norm, we have the scaling property

|1 axl| = jaj| x f and the triangle inequality |x+ y 11 I || x || + Iy 11. One property of norms
that we make use of is the convexity property of the sub-level sets of a norm (see Appendix A).
A sub-level set is simply the collection of all vectors whose norm is no larger than some maximum
value. For a norm 11 - 11, a sub-level set is the set of points {v 1 11 v 11 D} for some D > 0. The
following establishes that sub-level sets are convex.

Theorem 3.1 (Convexity of Norm Sub-level Sets) Given a norm - |j, the sub-level set D, =

{x 111 x 11 c} is a convex set.
Proof: First, note that we only have to show it for DI, because the scaling property of the norm
tells us it is then true for all other D. Assume that D 1 is not convex. Then, there exist two points
x 1 and X2 such that x, E D1 and X 2 e D 1 but such that x3 = axi + (1 - COx 2 ' D 1 . Thus, we
know that 11 X3 > 1. But this means that

11 ax, + (1 - a)x2 11 = 11 X3 11 > 1 ; | axi 11 + 11 (1 - a)X2 11,

which violates the triangle inequality. .

The set of norms can be characterized as the set of functions whose sub-level sets are linearly
scaled versions of a convex set symmetric about the origin. Another property that is important is
whether or not the norm is smooth.

Definition 3.4 (Smooth Norm) A norm || - || is smooth if the surface of any sub-level set of the
norm has bounded curvature everywhere. Equivalently, we can say that the gradient of a smooth
norm is continuous.

A p-norm, as defined above, can be either smooth or not. We define corner norms as all norms
that are not smooth. The class of corner norms includes the oo-norm, the 1-norm, any norm whose

sub-level sets are polytopes, and many others. The p-norms for which p is an integer not equal to
1 are smooth norms. The essential property of a corner norm is that the surface of the sub-level
set has at least one corner, or a point with infinite curvature.

When we talk about a quantizing scheduler, we need to specify more than a distance metric d(.).
Depending on the constellation and lag, there may be several schedules that are equally attractive.
A single metric may give rise to a number of possible scheduling rules, depending on the way that
ties are broken. There are times when we will make a distinction between a scheduler based on a
particular metric, and a specific scheduling rule that is consistent with that metric. Most of our
stability results will deal with all scheduling rules consistent with a specific metric, although there

43

are pairs of scheduling rules that are both consistent with a particular metric, where one stabilizes
a model and the other does not. We give an example of this later, in Section 3.5.1.

In our subsequent discussions, we will investigate such scheduling rules, with varying choices
for the characteristics of the model. The simplest models have B[n] = I and r[n] = fr, a constant
vector, with a simple constellation S. The more complex models have arbitrary constellations and
time-varying B[n] and r[n].

Our goal in the next chapter is to investigate the stability behavior of a scheduler model under
various choices of d(-), concentrating on understanding the behavior through a geometric interpre-
tation. We show in Section 3.5 how a number of existing scheduling algorithms can be modeled
this way, and will now show that a variety of scheduling problems (along with specific algorithms)
fall within our framework, and thus can be interpreted as dynamic systems with discrete feedback
control mechanisms.

3.4 General Applications

In addition to the queueing applications we discuss in the next section, our model is applicable
in other contexts. The first obvious context is in modeling vector E-A encoders. The model
as we have stated it so far is exactly equivalent to a first-order vector E-A encoder, with an
arbitrary vector quantizer in the feedback loop. Generally, these encoders operate on continuous
state spaces, and have inputs r[n] that vary with time. The matrix sequence B[n] is typically
equal to the identity matrix, but could possibly be used to model external effects. A vector E-A
encoder model requires the aspects of our model that differentiate it from other queueing models
and flow models [52]. The encoder requires both a continuous state space with continuously varying
input operating in discrete time and a quantizer that has a finite number of possible outputs. The
fact that deterministic models with time-varying inputs can be shown to be stabilizable by any
smooth quantizing scheduler implies that vector first-order E-A encoders whose inputs lie within
the convex hull of the quantization points are also stabilizable if the distortion metric is a smooth
norm. More interesting, perhaps, is the fact that vector E-A encoders can be unstable not only
in the sense that is currently understood for higher-order encoders in the literature, but also for
first-order vector encoders that use a non-smooth distortion measure. No existing results that we
know of have exposed this potential instability.

Our model is also similar to the storage model [53], but restricts the release rule to be a
quantizing rule. Inputs arrive over time, and accumulate. The accumulated inputs serve as the
state which is then used to decide when to release some of the accumulation. The model here looks
at the release rule as a quantizing rule and establishes appropriate stability results. Again, this
differs from the traditional model in which the release rule is either a constant, or a continuous
control variable.

Another setting in which the general model might make sense would be in a chemical manufac-
turing plant, where the availability of reagents for various processes dictates which processes will
be run and for how long each day. If reagents arrive at a time-varying rate then each day we need
to decide how to use the available reagents. Each process can be associated with a constellation
point, and determines an amount of a number of different reagents that is consumed to sustain the
process for the day. The lag of the system is the available amount of each reagent. This applies
most directly if we assume there is always enough of each reagent to feed all of the processes or if
we assume that we can run a process partially if some reagent is limited.

44

3.5 Queueing Networks

In this section, we describe a number of specific contexts in which we show how our framework
relates to existing work. We look at queueing models of resource allocation systems, and present
another view of a number of different models that unifies some of their basic characteristics. Our
model lacks some of the complexity of many of the existing models in order to make the connections
more transparent, but still results in an interesting synthesis of a number of separate models. The
queueing models we consider are multi-class queueing networks (specifically input-queued switches),
constrained queueing networks (specifically packet radio networks), and fair queueing systems.

The study of the stability of multi-class queueing networks under various scheduling policies
is a very active area of research [38, 4, 13, 52]. This area is related to specific problems such as
input-queued switch scheduling [30, 51, 15, 36] and the packet radio routing problem [66, 64] which
fall in the constrained queueing network framework [65]. We will also look in some detail at the
basic generalized processor sharing (GPS) fair queueing model as formulated in [57].

All of these models fit within our general dynamic scheduling model as a result of the underlying
queueing structure. The basic dynamics of a typical queueing network model are exactly those
of our model: work arrives at the queues from internal and external sources according to some
stochastic process, and is processed according to a scheduling rule and then continues to the next
appropriate server or exits the network, in the process reducing the amount of work remaining.
We will concentrate here on a simple discrete-time queueing model in which the work arrives as
integer-sized jobs according to some arrival process, and is routed through the network according
to a routing matrix.

One subtlety of this model when used for a queueing network is that in queueing contexts the
number of packets scheduled during a round is constrained to be no more than the number waiting
in queue. Our quantizing scheduler does not explicitly make this constraint - it would require
the constellation to depend on the current state. However, because the queue lengths are integral
and the number of jobs taken by a particular queue is either 0 or 1 in most of the examples we
give here, the constraint is satisfied by the scheduler due to the structure of the feasible states. If
a queue has no packets waiting, then it is clear that we will schedule none. If a queue has any
packets remaining, there is always at least one packet and so the queue length is larger than the
possible schedule. The one exception is the fair queueing example at the end of this section. The
fair queueing model changes its behavior when queues are empty, and so its discussion is more
complex.

This constraint also might not hold for more complicated queueing networks, such as ones that
schedule either 0 or 3 packets each round. If there are 2 packets in queue then we may choose to
schedule 3, leaving us with a queue length of -1 in our unconstrained model. This case does not
happen in the examples below, but we do consider a related system in Section 6.5.

There are N queues, or buffers, which receive external arrivals at the beginning of each round,
as well as arrivals from other servers within the network. There are M (> N) servers which can be
configured in a number of different ways. We view these configurations in terms of the number of
jobs taken from each of the buffers, or the corresponding schedule. The set of these schedules, as
before, is denoted S, a set of N-dimensional vectors. The servers process the appropriate number
of jobs and then send them to another server or out of the network. After the desired schedule s[n]
is chosen, the actual number of jobs processed and their routing through the network is specified by
the routing matrix B [n]. In the simplest case, each server processes exactly one job every round, and
B[n] is simply a static routing matrix whose i-th diagonal element equals 1, and the i, j-th element
equals -1 if server j sends output jobs to server i. We can also model more complex situations,

45

where the availability of a server may depend on which other servers are activated, and the routing
matrix B[n] may be stochastic, reflecting characteristics of varying packet lengths, server speeds,
or routing connections. Specifically, this model can be used to represent discrete-time versions of
the models mentioned above as we will show subsequently.

A scheduling rule is used to determine the appropriate configuration at the beginning of each
round. If we denote the number of arriving jobs during round n by r[n] and the number of jobs
processed from each buffer (the schedule) during round n by s[n], then the amount of waiting
work f[n], or queue length is governed by an equation equivalent to the lag evolution equation,
Equation 3.1.

l[n + 1= [n] + r[n + 1] - B[n + 1]s[n].

The work comes at an average rate we call r. As we will see in the next chapter, we need only
consider average rates such that f C ch(B - S); a network with some other set of arrival rates
would not be stabilizable. We call this set of average rates the set of feasible arrival rates. This
model has the ability to incorporate many system behaviors into the schedule constellation and
routing matrix. Parallel processing overhead, multiple links, and differently-sized links can all be
captured in the constellation. If we allow the constellation to vary over time, we can model even
more complex situations. We can even track changing reservations over time if we need to. Given
a model of the reservation changes, we can modify the constellation configuration to track it.

We start by considering the input-queued packet switching problem as considered in [30, 51,
15]. We show that the scheduling algorithms that have been proposed fall within our quantizing
scheduler paradigm. From this we move to reentrant multi-class networks [38], where we discuss
how some of the scheduling rules used in the literature fit within our quantizing scheduler model.

Another problem that can be understood using the model we have developed is the constrained
queueing model in [65]. Although the constrained queueing model allows more general dynamics
than our model, a restricted (but useful) class of discrete-time constrained queueing systems can
be represented well by our model. We show how the two models are related and discuss how our
model might be extended to include a larger subset of the class of constrained queueing systems.

Finally, we look at how fair queueing algorithms relate to our model. To do this, we develop
an extended version of our basic dynamic model that involves two interrelated dynamic equations.
We show how modeling the fair queueing system as a shared resource with a time-varying schedule
constellation allows us to relate our notion of stability with the notion of fairness.

3.5.1 Input-Queued Packet Switching

We start with a simple scheduling context, called an input-queued packet switch. This turns out
to be a special case of a constrained queueing system; we will consider more general constrained
queueing networks in Section 3.5.3.

The input-queued packet switching stability problem (for an N x N switch) can be stated as
follows [15, 51]. Packets arrive at a switch from N sources; each packet wants to get to one of N
destinations. During each transmission time, the switch can only make connections from source to
destination such that no source is connected to more than one destination, and no destination is
connected to more than one source; i.e. a one-to-one mapping between the sources and destinations.
Given a scheduling algorithm that chooses connections at each transmission time as a function of
the queue lengths, do the queue lengths stay bounded if the average arrival rate at each input does
not exceed one packet per transmission time and the average arrival rate of packets for each output
(across all inputs) does not exceed one packet per transmission time?

46

If each input has only a single queue, i.e. all arrivals at a particular input are serviced FIFO,
the throughput is limited to 58% [32] of the maximum under certain arrival process assumptions.

In other words, the average arrival rate of packets arriving at each input, as well as the total rate

of packets destined for each output must be less than 0.58 packets per transmission time to ensure

stability. This head-of-line blocking problem is well-known, and motivated the move to a more

complex structure where each input has a set of N virtual output queues. This way, there are

N 2 total queues, one for each input-output connection. Packets that arrive at input i and are

destined for output j are placed in queue (i,). At each round some subset of these queues must

be chosen to send packets to the corresponding outputs without using either the same input or the

same output. We will restrict ourselves from now on to the input queued switches with virtual

output queues. Many of the results are based on computing matchings between the inputs and

outputs. A matching is simply a collection of connections between inputs and outputs that does

not connect more than one input to a single output or more than one output to a single input.

The schedule constellation includes the permutation matrices (row and column permutation of the

identity matrix) where a 1 at position Sjj [n] indicates that input i be connected to output j during

round n. A schedule does not have to be full rank, so it may have fewer than N values equal to 1.
Thus the constellation includes all lower rank permutation matrices as well. The matrix of queue
lengths at the beginning of round n is L[n]. We can model the dynamics of this system as we have

already done:
L[n+ 1] = L[n] - S[n] + R[n + 1],

where R[n + 1] is an integer matrix of arrivals to the queues during round n. When computing

norms below, we treat the matrices as vectors, so the norm is computed for an 'unwrapped' vector

of length N 2

" Maximum weighted matching - choose the schedule (permutation matrix) S[n] such that

(L[n], S[n]) is maximum, where (-, -) is the Euclidean inner product.

" Maximum size matching - choose the schedule (permutation matrix) S[n] such that (sgn(L[n]), S[n])

is maximum, where sgn(L[n]) is equal to 1 where L[n] > 0, and equal to 0 where L[n] = 0.

" Maximal matching - choose a schedule (permutation matrix) S[n] such that there are no more

possible input-output connections that can be made without losing the one-to-one mapping

between inputs and outputs.

" Maximal weighted matching - a maximal matching that is constructed by "greedily" selecting
connections with the largest weight (queue length or credit) one at a time.

The basic results for the input-queued packet switching stability problem with virtual output queues

can be summarized as follows:

" A scheduling algorithm which uses the maximum weighted matching between the queue length

matrix and the schedule at each round can guarantee full throughput [15].

" A scheduling algorithm which uses a maximum size matching between the queue length matrix

and the schedule at each round appears to guarantee 100% throughput in simulation, but

specific examples show that there are admissible arrival rates that cause instability [51].

" A scheduling algorithm which uses a maximal matching between the queue length matrix

and the schedule at each round is known to guarantee only 50% throughput [15, 36], and a
maximal weighted matching appears to guarantee 100% throughput in simulation [30].

47

The first result also is related to the stabilizing schedule in [66], where the scheduling rule is a
maximum weighted matching. The second result is known to be not a theoretical guarantee, in the
respect that there are admissible arrival rates that cause instability [51]. The third result has been
established a few times, but no counterexamples (i.e. admissible arrival rates that cause instability)
have been found to the simulation results when a maximal weighted matching is used.

What we show here is that the first two matchings are equivalent to using a simple geometric
rule to choose the schedule if we view the schedules and queue length matrices as points in IRN

2 ,

and that a specific case of the third matching is as well.

In all three cases, the quantizing scheduler that we consider does not match the form we pre-
sented earlier. As we discussed then, there are many ways to approach the problem of making the
scheduling choice. In this application, we do not assume that we know the statistics of the incom-
ing packet streams. It is also reasonable to assume that the statistics may not be of much use, as
many packet streams are bursty and vary greatly over time. We are also constrained because we
must choose a schedule that does not schedule a queue that is empty. For these reasons, instead
of choosing the schedule S[n] based on a prediction of the next lag, we simply choose the schedule
that results in the largest reduction in the size of the current lag, i.e. minimizes d(L[n] - S[n]).

Maximum Weighted Matching

The maximum weighted matching scheduling algorithm can be written as

S[n] = arg max(L[n], S)
SES

However, consider what S[n] is obtained by computing the following (with 11 -12 being the 2-norm
of the matrix when written as a vector):

S[n] arg min|| L[n] - S ||
SES2

= arg min| L[n] 1 - 2(L[n], S) + | S 1|
SES

= argmin-2(L[n],S) +| S 1|
SES

= arg max(L[n], S) - III S 12
SeS 2 2

Finally, we realize that all nonzero elements of L[n] are greater than or equal to 1, so the second
term in the last line just enforces the constraint that if Lij[n] = 0, then we will choose Sij[n] = 0
as well. Otherwise, we would unnecessarily be increasing the second term while not affecting the
first term.

This tells us that the maximum weighted matching scheduling algorithm along with the con-
straint that when Lij[n] = 0, Sij[n] = 0 is equivalent to choosing the schedule that minimizes
the squared distance (or equivalently the distance) between the matrix of queue lengths and the
schedule.

48

Maximum Size Matching

We can also reason similarly about the maximum size matching scheduling algorithm. Consider
the following rule:

S[n] = argminj| L[n] - S |11SGS

arg min |Lij [n] - Si| .

Again, it is clear that we choose S[n] so that as many nonzero elements of L[n] as possible line up

with 1's in S. Again, the constraint that when Lij[n] = 0, Sij[n] = 0 follows from the statement;
otherwise, we would increase the sum. This schedule is equivalent to the one that would be

chosen in the maximum size matching algorithm. However, the maximum size matching does not
necessarily guarantee stability because it is based on a corner norm. Our stability results from
Chapter 4 tell us that corner norms can cause problems even for deterministic queueing models.
A 3 x 3 counterexample is given in [51] that indicates that, for certain feasible input rates, the
queue lengths will grow without bound. The problem with the maximum size matching algorithm
as given in [51] is that when there is a choice to be made between more than one possible maximum
size matching, the choice is made probabilistically. This can be seen as an artificial restriction on
how often a particular choice can be made when two schedules are equally attractive, shrinking the
effective convex hull of the average schedule constellation. Instead, if we make a more intelligent
choice between multiple options we can achieve stability, at least empirically. For example, if we
were to choose the maximum size matching that had the maximum weight, the system would
stay stable for the 3 x 3 example. To our knowledge, no counterexample has been published that
establishes that any scheduling rule consistent with the 1-norm is not stabilizable for some set of
feasible arrival rates; in another context, static buffer priority policies as used in reentrant multi-
class queueing networks are consistent with the 1-norm, and have been shown to maintain stability
in those networks in some cases but not in others. We discuss this more in Section 3.5.2.

Maximal Weighted Matching

Finally, we consider a specific version of the maximal matching scheduling algorithm as given in
[30]. The maximal matching scheduling algorithm does not specify a unique schedule; rather, it
constrains the possible schedules. We consider a specific maximal matching algorithm which we
call the greedy algorithm: place a 1 in S at the location of the largest element of L[n]; after the 1
is placed, cross out the corresponding row and column of L[n] and repeat until L[n] is completely
crossed out or only O's remain. It is shown in [30] that this produces a maximal matching S. This
maximal weighted matching is also consistent with a simple geometric rule:

S[n] = argrmin|IL[n]-Sl||
SES

= arg min max|Lij [n] - Si| .
SeS ij

From this, it is clear that the greedy rule will reduce the maximum of the absolute difference
between L[n] and S as far as possible. As such, the greedy rule is consistent with a quantizing
scheduler that uses the oc-norm. The iterative part of the greedy rule specifies how the other
elements in S are to be chosen. The oo-norm does not because only the largest elements of L[n]
can affect the oo-norm; the rest can be specified arbitrarily.

49

Just as with the maximum size matching, we can use the same 3 x 3 example to cause instability
in the deterministic model when using a scheduling rule consistent with the oo-norm. Consider a
deterministic model with arrival rate matrix

.49 .49 0 1

.49 0 .49
0 0 0_

If we start with Lij[0] = 0 for all i, j then the switch configuration

[1 0 0~

S[n]= 0 1 0

0 0 1_

minimizes the oo-norm of L[n] - S[n] at every round. However, it is clear that three entries of L[n]
grow unbounded under this scheduling rule. This counterexample holds for a large range of arrival
rates, but breaks down if the initial condition is perturbed slightly (start with L 12 [0] = E > 0). The
problem with this example is that the actual schedule that we are using is

1 0 0~

S[n] = 0 0 0
0 0 0

because many of the queues are always empty. This schedule leaves parts of the switch idle even
though there is work they could be doing. If we use the above rule, and augment it by enforcing
the constraint that the schedule must be a maximal schedule, as the greedy rule in [30] does, then
empirically the oo-norm scheduling rule maintains stability.

As with the maximum size matching above, the unstable example above deals only one schedul-
ing rule that is consistent with the oo-norm scheduler. We are not aware of any published work
that establishes that all mechanisms are unstable which use a scheduling rule consistent with this
oo-norm scheduler when the arrival rates are feasible.

Discussion

We have shown that a number of existing scheduling algorithms that have been used in the input-
queued switch scheduling problem are consistent with norm-based quantizing scheduling algorithms.
We have also established that the stability of a model when using a norm-based algorithm is not
simply a function of the norm itself. In particular cases such as the 1-norm, stability may be
dependent on the method by which ambiguities in the scheduling rule are resolved. There is no
existing empirical or theoretical evidence that all scheduling rules consistent with the 1-norm or
oo-norm result in unstable mechanisms. It may be that there are consistent scheduling rules which
guarantee the stability of these input-queued switching mechanisms for all feasible input rates.

It is interesting to note that we do not have this ambiguity problem for smooth norms; stability
is guaranteed based only on the geometric properties of the norm for deterministic versions of this
switch model. However, the computation needed for a smooth-norm based scheduling algorithm is
generally more complex than the computation required for the 1-norm or o-norm, which drives
the interest in these corner norms.

50

3.5.2 Reentrant Multi-class Queueing Networks

The work on reentrant multi-class queueing networks such as in [38, 13] presents an interesting
illustration of the complexity of the stability problem. The reentrant model consists of a collection
of R servers and N buffers. Each buffer i must be served by a particular server u-(i). After a job
from buffer i is served, it is routed to some other buffer; i.e. there is a fixed order in which each
job must visit the buffers. The added complexity of these networks comes in because more than
one buffer can contend for a single server and the server must decide between buffers when making
scheduling decisions.

The reentrant queueing model can be captured within our framework by modeling each queue
(possibly more than one at each server) as a user seeking to use a resource. We can construct
a constellation S that consists of only the configurations possible, i.e. does not allow more than
one queue at a server to receive service simultaneously. By selecting B[n] = B as an appropriate
routing matrix, we can also model the connections between queues.

If we restrict ourselves to the discrete-time queueing model we consider in this thesis, it can be
easily seen that any non-idling scheduling rule which only uses the emptiness (whether or not jobs
are waiting) of the buffers in a network in order to make a decision is consistent with the 1-norm
based quantizing scheduler. To see this, we note that the 1-norm simply tells us to schedule as
many buffers as possible. Because the buffer choice at each station is independent of the choice at
any other station (unlike the situation we consider in Section 3.5.3), this corresponds to a simple
rule: schedule one of the nonempty buffers at each station; if all the buffers are empty at a station,
leave the station idle. This rule leaves open the choice between multiple nonempty buffers. The
scheduling policies that are static buffer priority (SBP) policies, such as last-buffer-first-served
(LBFS) and first-buffer-first-served (FBFS), are ways of making this choice explicit by ranking all
of the buffers in the system and using strict priority to choose between nonempty buffers. The
LBFS and FBFS policies have been shown to be stable [42], while other SBP policies can lead to
instability in certain example networks [13, 37]. This tells us that the 1-norm is not enough to
guarantee stability, as will also be apparent when we discuss the difference between smooth and
non-smooth norms in the next chapter. These instability results actually tell us that the 1-norm
can be unstable in a queueing context, not just in the simple examples we presented earlier. There
are many other rules that are consistent with the 1-norm for these networks; SBP policies are an
easily-characterized subset. If we instead use a squared 2-norm based quantizing scheduler, we know
by the stochastic stability results in Chapter 4 that we will guarantee stability for all stabilizable
arrival rates.

3.5.3 Constrained Queueing

Another scheduling problem, which includes the previous input-queued packet switching problem as
a special case, is the constrained queueing system in [66] (a precursor to [65]). In this case, at each
round N servers (edges in a graph) are used to process customers of J different classes in L queues

(nodes of a graph). The customers are queued by class at each of the nodes. Customers enter the
system at any node, and leave at some subset of the nodes as determined by the customer's class.
The set of possible activation vectors for the classes {ej}, which specify which servers serve class j
at each round, are constrained so that the sum of the vectors across all classes j lies within a set S.
This models a situation in which only certain subsets of the servers can be activated at any given
round. At the beginning of each round, the vectors {ej} must be chosen in such a way as to keep
the total number of jobs in the system bounded; i.e. route the customers through the network.

Reentrant networks are a special case of constrained queueing networks; we can model each

51

server in a reentrant network as a collection of equal virtual servers, one for each input buffer.
Then, by constraining only one of these virtual servers to operate at a time, we can place reentrant
networks in the constrained queueing context.

We start by considering the case when there is only a single class of customers. 2 According to
the model in [66], and defining x[n] as the vector of queue lengths at round n, the dynamics of the
queue are

x[n] = x[n - 1] + RM[n]e[n] + a[n],

where a[n] is the vector of arrivals at time n, e[n] is the schedule (activation vector), R is the L x N
routing matrix that is defined by the interconnection graph of the servers and queues, and M[n]
is a diagonal matrix with a 1 in location Mii[n] if server i finishes processing a customer during
round n. The matrix R plays the same role as -B[n] for this queueing model.

In order to compare the actual scheduling algorithm used in [66] with a simple geometric rule,
we first define d[n] as

d[n] = -(RM[n]) x[n]

where R and M are as above. In [66], with d[n] = E[d[n] I x[n - 1]] the schedule e[n] is chosen
such that

e[n] = arg max aT[n - 1]e .
eES

If we use a minimum 2-norm scheduling rule as follows

e'[n] = arg min E {I1 x[n - 1] + RM[n]e 112 1 x[n - 1]
eE-S 2

and define M = E[M[n]] we have the following

e'[n] = arg max -(x[n - 1], Rke) - - E [11 RM[n]e ||]

arg max -(xT[n - 1]RM)e - - E |11 RM[rn]e'

1
=arg max dT[n - 1]e - -EL| RM[n]eII|]

= arg max dT[n -l]e -D.
eES

This choice of e'[n] differs from e[n] only in the bounded additional term. Qualitatively, the
minimum 2-norm scheduling rule uses the same quantity to determine the schedule, the inner
product between the queue length vector and the expected schedule (after multiplication with R
and M[n]. The stability of this 2-norm scheduling rule follows from Theorem 4.8, and the choice of
schedule e'[n] will be the same as e[n] except for a small portion of possible queue length vectors.

This model is an interesting generalization of the traditional queueing network model because
it allows dependencies to be introduced between servers. In fact, we can also model the input-
queued switch and reentrant queueing networks in this context. This brings up an interesting
question: what classes of scheduling rules guarantee stability (bounded queue length) for the general
constrained queueing model?

2 The same model works for multiple classes; we just have many more queues, and constraints between the queues
so that a single server only services one class at a time. It is easily seen that minimizing the squared distance of this
augmented model simply entails looking at the maximum length for any class queue at a node. If we choose a node,
we will always subtract from the longest queue to minimize the squared norm.

52

The scheduling rule that corresponds with the minimum 2-norm quantization rule guarantees
stability for all r E ch(B - S), by Theorem 4.8. This scheduling rule also reduces to a non-idling
policy when the queueing network is unconstrained. This idea has also been presented in [65],
where it is shown that a rule related to the 2-norm quantization rule guarantees stability for the
same set of r. Our previous results extend this result (in a discrete-time context) to a larger set of
geometric scheduling problems instead of just queueing network scheduling problems.

Constrained queueing networks have not been studied in great detail. Through our general dy-
namic model they can be seen as a special case (at least in discrete-time) of models with scheduling
constellations that are an arbitrary collection of points.

3.5.4 Fair Queueing, and Credit or Potential Based Algorithms

Another class of scheduling algorithms, which we will call lag-based algorithms, have been used for
maintaining a fair allocation of a resource among a number of competing users. The basic problem
is that a resource with a number of possible configurations must be shared among a number of users
according to fairness coefficients {<0} that are assigned to the users. The difference between this
and the previous model is that a subset of the users may be idle during each round. The allocation
that each user gets when the user is actively using the resource must be proportional to the ratio
between the user's fairness coefficient and the sum of the coefficients of all currently competing
users. This is not possible in general for a resource having a limited number of configurations, so
we must try to match the desired allocations on average, over a long period of time. The PGPS
algorithm in [57], the credit-based scheduling algorithm in [30], and the more general class of RPS
algorithms in [63] can all be modeled using a modification of our dynamic model for situations in
which the job processing times are constant. The p-fair algorithm in [3] is also an example of a
lag-based algorithm; however, it lacks the arrival dynamics of the more general queueing model
used in the other works.

The algorithm framework we look at here, which includes the models used in [57, 30, 63],
extends our basic dynamic model. We include an additional dynamic equation that is used to
model the actual queue length evolution. Instead of identifying the lag with the queue length,
or buffered packets, we use the lag as a measure of credit that accumulates independently from
the arriving packets themselves. In this way, we introduce a mechanism for determining priority
between competing users.

The most important point to be understood is that the fairness coefficients do not govern the
long-term bandwidth allocations, but the delay characteristics of the system, except when the users
are submitting packets at a total rate larger than the maximum rate that the resource can handle.
This is because as long as the total average arrival rate of the packets for all users is feasible (the
system is stabilizable for that arrival rate) and the scheduling algorithm is non-idling, the system
will be able to handle the overall arrival rate. The fairness coefficients determine the relative
bandwidth that the users receive when competing with each other. We call a user backlogged if the
user has packets waiting to be transmitted. If a backlogged user has a large fairness coefficient,
the user will send the backlogged packets more quickly because he will be able to use the resource
more often than users with small coefficients. This will allow this user's packets to travel through
the resource with less delay. The method of initializing credit when a user becomes backlogged can
also affect the delay or latency properties. If we give a large amount of initial credit the user can
burst his first few packets through, and the resource appears more responsive to the user.

We restrict our scheduling problem to that of scheduling a number of users on a resource in a
sequence of equally-sized rounds. In other words, all jobs/packets are the same size. There are two

53

a[n] X n Ciag s[n]

-Delay(_

Figure 3-3: Block diagram of the state evolution equation.

equations that describe the dynamics of the system, as in [30]. The lag evolution equation is

f [n + 1] = f[n] + r[n + 1] - s[n] .

We call fi[n] the lag of user i. The input r[n] measures the rate at which the users are currently
accumulating lag (or credit), and s[n] is the schedule chosen at round n. The state evolution
equation captures the dynamics of the queue lengths themselves:

x[n + 1] = x[n]+ a[n + 1] - s[n] .

The queue lengths are x[n] and the arrivals are denoted a[n]. At each round, the schedule s[n] is
chosen such that

s[n] = arg min d(f[n], s)
sES

We also look only at the schedules that do not schedule more jobs than are currently in the queue,
i.e. si[n] < fi[n]. Figure 3-3 shows a block diagram of this system. The major difference between
this and the earlier diagram, Figure 3-1, is the complexity of the scheduler Ciag. We are now dealing
with a scheduler that has memory. A block diagram of Clag (Figure 3-4) itself looks very similar
to the previous diagram, but with x[n] affecting r[n] and e[n] through the set of backlogged users.
If xi [n] = 0, user i is not backlogged and no credit accumulates during the period user i is not
backlogged; user i is ignored when making scheduling decisions. For backlogged users, the credit
accumulates at a constant rate equal to the ratio between the fairness coefficient #i and 0, the sum
of the fairness coefficients of all backlogged users.

Backlogged Users

Let us assume for now that the users are constantly backlogged, or that there are always packets
available to be scheduled (xi[n] is always greater than 0 for all users i). In this case, we can ignore
the state evolution equation because it only affects the scheduling decisions when a state variable
is equal to 0. In this case ri[n] = qi and we can write

fi[n] = filn - 1] + #i - si[n - 1].

We will assume that E #i = 1, or that the processing capacity of the resource is equal to 1. If
the resource is a single queueing server, or communication link, s[n] might be chosen by setting

si[n] = 1 for the user with the largest value of fi[n]. As this is repeated, it is clear that on average
each user is allocated the resource a fraction qi of the time. However, there is considerable latitude

54

x[n]

r[n] s[n]

Delay O

Figure 3-4: Diagram of the lag evolution equation block, Cag-

in choosing s[n]. As we saw before, we can choose d(-) to be one of a number of choices. The RPS
model in [63] (which includes PGPS) uses a scheduling method that is equivalent to dividing fi [n] by
#i for each i, then finding the largest element in the resulting vector and setting the corresponding
element in s[n] to 1. This rule can also be written with d(-,-) as a weighted function

d(f, s) = max Si

The credit-based scheduler in [30] is also similar; the algorithm uses a greedy maximal matching

as described above, which is consistent with

d(f, s) lfe-s .

Again, for the input-queued switch, as long as all of the queues are backlogged, the bandwidth of

the switch is allocated fairly among the users, assuming the credit stays bounded. Bounded credit
is guaranteed if we use a maximum weighted matching, and empirically observed if we use a greedy
maximal matching for all admissible arrival rates.

Queueing Dynamics

We have shown that our extended dynamic model represents the dynamics of the PGPS and credit-

based input-queued switching algorithms when all queues are backlogged. What happens when a
queue goes empty, or an empty queue receives an arrival? The question of how to allocate credit
to idle queues and to newly backlogged queues in the link scheduling problem has been called a
philosophical one ([59]), and has been approached in many different ways. One of the earliest and

simplest lag-based algorithms is the VirtualClock algorithm [70]. In this basic mechanism, each

user simply accumulates lag (credit) whether or not the user has packets in queue. If a user is idle

for a while, then sends a burst of traffic, the user will have accumulated a large amount of credit
while others have used theirs to transmit, and the user may monopolize the link for a period of
time until its extra credit has been used. Although this may seem fair on a large scale - users are
guaranteed a certain portion of the resource, no matter what - it is not generally good behavior
because bursty traffic at the input remains bursty at the output, and fairness for each user is only
guaranteed over large time windows. In fact, a user that does not send packets at a rate equal

55

to its fairness coefficient will eventually accumulate an insurmountable surplus of credit that will
allow it to monopolize the resource whenever it has packets to send.

A solution to this problem in [70] is to simply not accumulate credit when the queue is empty

(realized by resetting the credit to zero whenever an empty queue receives a packet). This method
may seem to violate the fairness guarantees, but we can see that this does not happen on a large
scale, and by construction, it disallows the monopolization problem and all users share according
to their fairness coefficients when all have packets. If this method were to violate a user's fairness
coefficient by not sending traffic fast enough, then we would expect the user's queue to eventually
become backlogged. As long as the queue is backlogged, however, the user is guaranteed a minimum
rate appropriate to its fairness coefficient, so this solution does not affect the large-scale fairness
guarantees, and provides better smaller-scale guarantees by eliminating the ability of a user to
monopolize the link.

Another simple method of dealing with this problem is used in [30], where credit is allowed
to build up while a user is idle up to a certain bound. An artificial limit is placed on the lag
when a user is idle. This controls the bursty users through smoothing the traffic somewhat by only
allowing a user to save up a limited amount of credit with which to send bursts through. After this
amount is used up, the user will have to wait for credit to accumulate at its fixed rate. This method
still guarantees long-term fairness. By allowing idle users to build up some credit, it allows newly
backlogged users to begin transmitting a few packets quickly before smoothing out the traffic.

The PGPS algorithm in [57] uses essentially the same credit accumulation method as in [30],
with a few differences, if we only consider the case when all packets are the same size. We define
the lag for a user as the product of the user's fairness coefficient and the difference between the
current time and the time at which the next packet would be finished if the communication link
were able to time share with an infinitely fine resolution (vanishingly short rounds). As long as a
queue is not empty and does not send packets, the lag builds up at a constant rate. This rate is
proportional to the actual fairness coefficient #i for the backlogged user. However, if only a subset
of the users have nonempty queues, the rates are scaled by the same factor so that the sum of the
rates is equal to 1. If the set of backlogged users is B, then the actual rate ri[n] is

ri[n] = _ .
EjEB Oi

We set ri[n] = 0 for all i 0 B. We set £j[n] = -1 for all i g B. During each round, we choose s[n]
based only on the queues that are backlogged during the round. The choice of s[n] is also made in
a different manner. Instead of simply picking the largest fi[n], we first scale fi[n] by 1/r[n], then
pick the largest of the resulting numbers; in other words, we use a metric

d(e, s) = max .
ri[n]

For a non-backlogged user i, ri[n] = 0 and ei = -1, so £i/ri[n] = oo and we will never choose to
give the resource to i.

To see that this is equivalent to the PGPS algorithm, consider the two inputs to the lag evolution
equation: r[n] and s[n]. The input r[n] is an analog of the rate of change of virtual time in the
PGPS model, simply scaled by q. Because virtual time is the same for all users, when we scale it
by 1/# in order to allocate the link, it does not affect the choice - the same user will have the
maximum lag if we multiply the same number with every user's lag. Also, s[n] is the negative of
the timestamp that is put on each packet, or the time it would finish processing in a fluid GPS
server. If all packets are the same size, this timestamp simply increments by 1/# each time a new

56

packet arrives. This corresponds with decrementing the lag by 1 after every packet that is serviced
(the next packet's timestamp is simply the old stamp plus 1/#). So, if we scale the lag by 1/#,
it is equal to virtual time minus the next packet's timestamp. Thus, choosing the user with the
maximum scaled lag is equivalent to choosing the user with the minimum timestamp, as in the
PGPS algorithm.

We can picture the PGPS algorithm simply as follows. During each period in which the same
set B of users have packets waiting, the queue services them according to their fairness coefficients
as if the idle users did not exist. When a user leaves this set B, its remaining credit, or lag, is
redistributed by normalizing the lags of the remaining users. When a user enters B, it begins with
lag equal to -1.

This specific choice of the initial lag points towards the more general question of what happens
when we vary the initial conditions. That is what the RPS model [63] essentially entails. At the
beginning of each busy period for each user, a system potential function is consulted and used as
the initial value for the user's potential (an affine transformation of our lag).

We have been able to extend our original model to include a more dynamic model in which
the scheduler adapts to the set of currently active, or backlogged, users. The large-scale fairness
guarantees are kept while allowing flexibility in choosing the actual scheduling rule. The scheduling
rules described above, especially the class of rules in [63], let us tailor the short time-scale behavior
of the allocation mechanism to have other desired properties (as described by the fairness coefficients
in this example).

We can also extend this model to include arbitrary length packets as follows. If we consider
round n as corresponding to t, the time of the n-th departure from the link, and if p[n] is the
length of the packet serviced during round n, then the lag evolution equations become:

fi [n] = fi [n - 1] - p[n] si [n - 1] + p[n - 1]ri [n] .

The rules for updating r[n] and f[n] when a queue goes empty or becomes backlogged are now more
complicated, but possible to write down. This equation still fits within our dynamic model; it now
has stochastic elements. We discuss this in some more detail in the concluding chapter.

57

58

Chapter 4

Stability

Our focus in this chapter is on developing stability results that apply to the general dynamic model
we have just presented. The model we use here is similar in flavor to ones in other work [52, 65],
but is different enough that the stability results already published do not directly apply. Although
the theory of stochastic stability for Markov chains that evolve over general (non-countable) state
spaces has been looked at in detail [53], our specific model has not been analyzed to the best of
our knowledge.

Our results fall into two categories: stability of deterministic models and stability of stochastic
models. We adopt our notions of stability in the stochastic setting from the literature on stochastic
stability [53, 41, 40, 46, 25]. As in [65], the analytical results concentrate mainly on determining the
class of models which are stabilizable under different types of norms. Just like in [65], stabilizability
will be shown constructively, by exhibiting a quantizing scheduling rule that stabilizes a given
model. For our general model we will be able to show stabilizability (ultimate boundedness for
deterministic models and various levels of stochastic stability for stochastic models) when the
average input rate lies within the confines of the schedule constellation. The class of norms for
which these guarantees hold is either the class of smooth norms for deterministic models, or the
squared 2-norm for stochastic models. Our coverage of the stochastic stability of our mechanisms
consists mainly of the application of existing results to our model. We also establish that input
rates outside of this region result in instability for all scheduling rules for deterministic models.

For the deterministic models with a feasible input rate, we show that a sufficient condition for
stability is that the scheduling norm be smooth; we also look at some examples of non-smooth
norms which illustrate that all models are not always stabilizable under specific norms.

In Section 4.1 we have a definition of stability and stability results for the case when the
scheduler is deterministic, showing that the scheduler is stabilizable for all average input rates
within a feasible region using any quantizing scheduling algorithm based on a smooth norm. Then,
we present example systems to show that under non-smooth norms, stability is not guaranteed in
general, and that deterministic stability does not imply stochastic stability.

Once we know that a large class of mechanisms are stable under a variety of norms, we can use
this to help us choose a norm that results in some desired lag behavior. We discuss a few examples
in Section 4.2 that show how the choice of norm can influence the behavior of the lag.

We then investigate the general stochastic model in Section 4.3 and show how existing stochastic
stability results can be applied to our model.

59

4.1 Deterministic Stability

We begin with the deterministic model because of the ease with which the notions of stability can
be defined and visualized. A natural definition of stability for a deterministic dynamic system is
that all state trajectories tend towards a bounded region

One of the main reasons we care about stabilizability, or that the lag stay bounded, is that it
guarantees the time-average allocation to a particular user converges to the requested allocation
for the user. Theorem 4.3 tells us that under any given smooth norm, the lag of a deterministic
model (B, r, S) stays bounded within a finite region, and thus the system allocates the resource
fairly among the users. The rest of this section is devoted to proving this fact.

We start with defining deterministic stability. A model is deterministically stable under a
particular scheduling rule if there exists some compact set such that the lag vector remains within
the set after the first time it enters it.

Definition 4.1 (Stability of a Deterministic Model) Given a deterministic dynamic sched-
uler model (B, f, S) and a scheduling rule Q : RN - S, we say that the model is deterministically
stable under rule Q if for all f[0] there exists a round no and a compact set B C RN such that
n > no, f[n] E B.

We can connect stability with fairness as follows.

Theorem 4.1 A deterministic model (B, f, S) along with a scheduling rule Q(-) is a bounded fair
mechanism if and only if it is deterministically stable.
Proof: This follows easily from Definitions 3.2 and 4.1. m

Of course, this means that a deterministically stable mechanism is also deterministically fair. How-
ever, this does not imply that a mechanism that is not deterministically stable is not fair. An
example of a mechanism that is fair but not stable (although only demonstrated empirically) is
the second-price infinite horizon repeated auction from Chapter 7. We also want to define what it
means for a model to be stabilizable. A deterministic model is stabilizable if there exists a sequence
of schedules s[0], s[1], s[2],... such that the lag vector is bounded.

Definition 4.2 (Stabilizability of a Deterministic Model) Given a deterministic dynamic sched-
uler model (B, f, S) we say that the model is deterministically stabilizable if for any f[0] there exists
a sequence of schedules s[O], s[1], s[2],..., a round no and a compact set B C RN such that for
n > no, f[n] E B.

Another notation that we will use is B -S. This is defined to be the set of all vectors Bs, for s E S.
An object that is very important in our stability discussions is the convex hull of the constellation
CH(B - S), or the set of all possible convex combinations of points in B - S (see Appendix A for
the definition of the convex hull and its interior). A deterministic model is not stabilizable if f is
not inside of the convex hull of B - S. This follows from the fact that there is no way to combine
the elements of S over time to obtain an average value of f and so the difference between the
cumulative allocations and the reservations grows unbounded. So, from now on, unless specifically
stated otherwise, we will generally make the assumption that i is inside the convex hull of P - S.

Theorem 4.2 (Stabilizability of a Deterministic Model) A deterministic model (B, f, S) is
not stabilizable if f ' ch(B - S).
Proof: When f V CH(B - S) there is at least one parameter a(s) such that a(s) < 0 or a(s) > 1

60

for any set of parameters a(s) such that Cs B.S a(s)s = r. But, for any scheduling sequence s[n],
we can write

f[n + 1] = e[0] + 1 (i - s[m])
m=0

= £[O] + Y (E a(s)s - Bs[m])
m=O s BS

= f[0] + E (n + 1) (a(s)s - &n(s)s),
sEB*S

where we define &(s) to be the fraction of rounds up to round n that Bs[n] = s, or

&(s) = 1 .1 .
j:s[j>=s,O<j<n

It is obvious that 0 < &n(s) < 1 for any n. For later contradiction, assume that there exists a finite

no such that f [n] 112 < b for n > no. Then, we have

e[n + 1] - f[0] = en = (a(s)s - &n(s)s)
n + 1

a(s)s - en = 5&(s)S
sEP-S sEBS

en = &n(s)s .
sEP-S

Because i CH(B -S) and CH(B -S) is closed, we know that there exists a neighborhood of radius
6
j > 0 around f which is also not in CH(B - S). If we assume that I| f[n] 112 < b for all n > no, then

we can drive 11 en 112 arbitrarily small as n increases. Because 6; > 0 we know that there is a finite

value ni for which 11 e n 112 5 6j and thus t - en 0 CH(B - S) for all n > n1 . Thus, the system is

not stabilizable if f 0 CH(B -S).
Finally, we need to show that the model is not stabilizable if f is on the surface of the convex

hull, i.e. i E CH(B -S) - ch(B -S). To do this we realize that when i; is on the surface of the convex

hull there is some vector z such that

zT= max ZTr .
rECH(B.S)

If we pick a starting position f[0] such that zTe[0] = a > zTFi then we know that zTe[n] > a for all

n > 0. This follows by induction. If it is true for f[n - 1] then we have that

zTe[n] = ZT(f[n - 1] + i - s[n - 1]) = ZTf[n - 1] + zTP - zTs[n -

> zTL[n - 1] > a .

So, if we were to assume the existence of a compact set B which f[n] enters and stays within for all

time after some point, we could just choose f[0] such that zTe[0] > maxbeB zT b, and we know that

i[n] will never enter B, contradicting our assumption. *

The converse of this theorem, that a deterministic model is stabilizable if i E ch(B - S), is demon-

strated in the next section by exhibiting a class of scheduling rules that stabilize such a deterministic

model.

61

4.1.1 Drift Condition

A common technique that we will use to prove deterministic stability makes use of Lyapunov
functions. One way to establish deterministic stability for our model is to exhibit a positive-valued
function V(f) called a Lyapunov function that satisfies the drift condition given below. We will
call a function V(f) level-bounded if the sub-level set {e I V(f) < a} is bounded for every a. The
Lyapunov functions we talk about below are all norms, which are level-bounded by definition. From

[53], if we can show that V(f[n + 1]) - V(e[n]) < -e outside of some compact set of values of f[n]
and if V(e[n]) < oc for all E[n] within the set, then it is clear that V(L[n]) must stay bounded
below some value and thus L[n] is bounded below some finite constant for all n. We call this the
deterministic drift condition.

Definition 4.3 (Deterministic Drift Condition) The sequence L[n] defined by a deterministic
model (B, f, S) and a scheduling rule Q(-) is said to satisfy the deterministic drift condition if there
exists a positive- and finite-valued level-bounded function V(.), a compact drift set C C RN, and a
constant M < oc such that

V(f[n +1]) - V([n]) < -e (4.1)

for e > 0, all L[n] C and

V(L[n + 1]) - V([n]) < M < oo (4.2)

for L[n] - C.

By finite-valued, we mean that V(f) is finite when L is finite. The second condition (4.2) will always
be true for the Lyapunov functions we choose, and so we will generally concentrate only on showing
condition (4.1). By Theorem 11.2.1 of [53], this drift condition ensures that the state f[n] in our
deterministic model remains within a bounded set.

4.1.2 Smooth Norms

Having defined stability for deterministic models and given a sufficient condition for stability we
proceed to look at specific scheduling rules. We show that any quantizing scheduling rule based on
a smooth norm 1 - 11 guarantees stability for a deterministic model such that f E ch(B - S).

In particular, we will investigate the stability region for a given constellation P - S and smooth
norm 11 - 11. The stability region is simply the set of vectors f such that the model (B, f, S) is de-
terministically stable under the quantizing scheduling rule that uses the metric d(x, y) = 11 x - y 11.
We show now that the stability region for a deterministic model using an arbitrary smooth norm
is equal to ch(B - S), just as with the 2-norm.

In order to show stability for a particular model and scheduling rule combination, we will show
that the deterministic drift condition is satisfied for any deterministic model when i E ch(B - S).
We define the Lyapunov function V(.) as

V(Y) = || f 1.

We will also define f+[n] = F[n] + i. This notation makes the following work simpler. With this
definition, we also have

V(L[n]) = I l+[n] - fl

V(f[n+1]) = |l+[n+1]- iI =HL|+[n]- Bs[n]||.

62

By the definition of the quantizing scheduling rule, Bs[n] is the closest point in P - S to f+[n].
From the definition of V(.), we only have to show that f+[n] is closer to Bs[n] than to r for all f[n]
outside some finite region C in order to establish the drift condition.

To prove this stability result we show that for any i c ch(B - S) there is a set C such that if
f[n] V C then

I f+[n] - f -_ +[n] - Bs[n] 11 < -e (4.3)

and we have satisfied the deterministic drift condition. After this we will introduce the idea of a
stability set, which is the collection of possible values of f for which (4.3) holds for all f[n] that are
at least some distance C (according to 11 - 11) away from the constellation S. 1 We will show that the
stability set for an arbitrary smooth norm and constellation grows towards ch(B - S) as C grows
to oo. However, we can also define a stability set for a corner norm; when we do this we see that
the same property does not hold. The stability set may reach a maximum that is smaller than
ch(B -S).

We begin by stating the theorem that establishes stability under smooth norms. The proof works
by constructing a compact set outside of which (4.3) holds. We use D(u, C) = {x I I x - u I I C}
to denote the set of vectors that are within distance C of a point u; then the set D(, C) is a
sub-level set of the norm 11 - 11.

Theorem 4.3 (Deterministic Stability of Smooth Norms) A deterministic dynamic sched-
uler model (P, f, S) is deterministically stable under scheduling rule Q(.) for all i E ch(B - S) if
Q(.) is consistent with a smooth norm
Proof: See Appendix, Section B.3. m

The drift set C for which the drift condition holds is equal to D(O, C) for some value C. This
means that for all r[n] V D(O, C) the drift condition is satisfied. This result tells us that for any
deterministic model (B, F, S) we are free to choose a scheduling rule consistent with any smooth
norm without worrying about whether the system will be stable. We examine how the choice of
norm might be important and how it can influence the performance of a system when we discuss
E-A encoders in Section 4.2.

Theorem 4.3 can tell us whether or not a deterministic model is stable, but it does not give us
any way of constructing a minimal set of vectors f+ outside of which the negative drift condition
(4.1) holds. There is an easy way to characterize this minimal set geometrically as a superset of the
Voronoi region for f in an augmented constellation Sp = S U {i} given the particular norm. The
Voronoi region for a point x within a constellation X is defined as the set of points that are closer
to x than any other point in X. If we use an arbitrary norm 1| - 11 to make the distance comparisons,
it is clear that any point f some distance outside the Voronoi region corresponding to f is closer
to a point in S than to f. The minimal set then would correspond to the set of points f such that

minsEs 11 I+ - S 11 - 11 f+ - ; 11 -e < 0. We can think of this minimal set as a superset of the
Voronoi region for i extended by an amount proportional to E. This corresponds to satisfying the
drift condition (4.1).

A sample trajectory for a simple deterministic model using the 2-norm with B = I, f = (.7, .3)
and S as a hexagon is shown in Figure 4-1. It is clear that the trajectory moves towards the Voronoi
region for T, then remains close by as time goes forward. In general, as is exemplified by this figure,
the Voronoi region is much smaller than the drift set determined in the proof of Theorem 4.3.

'Being a distance C from a constellation means that the closest point in the constellation, s[n] in this case, is at
distance C.

63

1.5

0.5

-0.5 --

-2.5 -2 -1 5 - -0.5 0 05 1 1 5 2 2.

Figure 4-1: Voronoi regions for S and a sample trajectory when i; (.7, .3).

The set of f+ outside of which the drift condition holds in Theorem 4.3 can be thought of as the
set D(f, C) that completely contains this minimal set (Voronoi region) for the smallest value of
C. Another way of interpreting Theorem 4.3 is that it tells us the Voronoi region with respect
to an arbitrary smooth norm for any constellation point in the interior of the convex hull of the
constellation is bounded. We will see later that it is this property that can be violated when we
use non-smooth norms, which makes our drift-based proof inapplicable.

Theorem 4.3 also leads to the following result.

Theorem 4.4 (Stabilizability of Deterministic Models) A deterministic model (B, f, S) is
stabilizable if and only if f E ch(B - S).
Proof: We have already shown the reverse direction with Theorem 4.2, and we now know that
the forward direction is also true because any scheduling rule induced by a smooth norm stabilizes
such a deterministic model. m

We can extend this theorem to allow time-varying r[n] as long as r[n] stays within a subset of
ch(B -S).

4.1.3 Time-Varying r[n]

It follows from the previous proof that if we extend our deterministic model to allow r[n] to vary
(deterministically or stochastically) over time such that r[n] C ch(B - S) for all n while keeping
B[n] = P constant, we can still guarantee the stability of all deterministic models under all smooth
norms, with the condition that r[n] lie in a closed subset R of ch(B - S). We use the same
scheduling rule as before, choosing the schedule s[n] that minimizes 11 f[n] + r - Bs[n] |1. However,
we can choose f now to be any vector in ch(B -S). If f is not equal to the average value of r[n], the
performance may suffer as the lag will drift somewhat outside the constellation, so a good estimate
of the average value is useful. As long as R is closed then there is no subsequence i[m] of r[n]
such that limm f[m] V ch(B - S) and we can always use the technique of Theorem 4.3 to construct
a compact drift set C for each possible value of r[n]. This subsequence property basically means
that r[n] must stay some finite distance away from the surface of the convex hull for all n, and can
not approach the surface asymptotically.

64

Theorem 4.5 (Deterministic Stability with Time-Varying Input) A deterministic dynamic
scheduler model (3, r[n], S) is deterministically stable under scheduling rule Q(-) for all r c ch(B.S)

if Q(-) is consistent with a smooth norm 11 and if r[n] c R c ch(B - S) where R is closed.
Proof: This follows from Theorem 4.3. We define R as the set of possible values of r[nl. We use
V(f[n]) = 11 f[n] 11 and f+[n] = L[n] + i as before, but now we can use an arbitrary i E R. We need
to guarantee that

V(e[n +1]) - V(E'n]) < -c

We can rewrite this as

I|+[n + 1]- - ||[- i+ _
f+[n] + r[n + 1] - f5s[n] - i; f|-| +[n] + r[n + 1]-(i + r[n + 1]) ||< -6

i [n] - Ps[n] i-||[n] - r[n-+ 1] || -,.

By the proof of Theorem 4.3, we know that this last statement is true for f[n] outside of the set
D(r[n + 1], C) for large enough C. We can easily translate this into a drift set C = D(0, C) for f[n].
Finally, we define the overall drift set C' as the union of these corresponding sets for each value
of r E R. This union is simply equal to D(0, C) for the largest value of C over all possible values
r E R.

This means that at each round the drift condition (4.1) is satisfied. The condition that R
be a closed subset of ch(B - S) is required in the statement of the theorem because the proof of
Theorem 4.3 depends on the distance between k and ch(B - S) being some finite positive value. If
R were open, we could we let r[n] get arbitrarily close to the convex hull without ever reaching it
and violate this property. Then, we may get behavior as described in the example below, where
the bound on the lag is not independent of the initial condition. M

An example of the unstable behavior when R is not closed is seen when r[n] = 1 - e-, B[n] = I
and S = {-1, 1}. For this scalar case, the distortion metric is not important, so we will just use
the oo-norm. As long as e[n] > 0, we will always choose s[n] = 1. In this case, the lag evolution
equation becomes:

f[n +] = f[n]+r[n+1]-s[n]=L[n]+1-e-(n+1) -I

= f[n] - -(n+l

=~~ 1[O - e-(n+l)

e 1 - e

So, limne f[n] = f[0] - 1/(e - 1). As long as f[0] > 1/(e - 1) we will have f[n] > f[0] - 1/(e - 1)
for all n. This means that there is no bound D such that lf n] I < D for large n and all initial
conditions because for any D we can pick E[0] > D + 1/(e - 1) and get a contradiction.

This extension to time-varying r[n] is interesting because it captures a couple of important
scenarios. First, a E-A encoder whose quantization constellation is chosen such that the input
signal always lies within the convex hull of the constellation fits this model, and as such we know
that the encoder is stable using any smooth norm. Second, we can also capture a subclass of our
general stochastic model this way if we restrict the input r[n] to be a random process that only
takes values within the interior of the convex hull as assumed in the theorem. Thus, we have a
form of deterministic stability for a subclass of the stochastic model.

65

4.1.4 Stability Sets

We now move to an alternative view of the stability question for smooth norms. Drawing from
the proof of Theorem 4.3 we can define the stability set of vectors r such that we are guaranteed
stability for a given smooth norm and specific drift set C. Theorem 4.5 tells us that the stability
set grows larger and eventually includes all closed subsets of ch(B - S) as we increase the size of
C. By our definition of the stability set, we can construct it for any norm, smooth or otherwise.
We can use the stability set for a corner norm to illustrate why we can not guarantee stability for
corner norms with the techniques used so far. When we use a corner norm, the stability set may
not grow to include all closed subsets of ch(B -S), and may leave out particular regions of ch(B -S)
no matter how large we grow C.

Let L+(C) denote the set of vectors such that the closest constellation point is at most distance
C away, or all f+[n] such that 11 f+[n] - Bs[n] 11 < C, for some positive constant C. By this
definition L(C) is the set of points that are within distance C of some point in the constellation S,
or

L+(C)= U D(s,C).
sES

We will eventually use L+(C) as an upper bound on the drift set C in order to analyze the stability
set. We will denote the surface of L+(C), or the set of vectors f+[n] such that I If+[n] - Ps[n] I| = C
as L(C). In order to use Theorems 4.3 and 4.5, we need to know that for any C = D(f, C), there
is a Cm such that for all D > Cm , C C L+(D).

Lemma 4.1 There exists some positive C' such that for a given C, all D > C' and f C ch(B -S),
D(f, C) C L+(D).
Proof: By the definition of L+(.), we have L+(Cm) C L+(D) if Cm < D. So, we only have to
show that there exists a C' such that D(f, C) C L+(Cm).

This last statement follows from the triangle inequality. For any point p C D(f, C), we would
like to show that there exists a Cm such that p E L+(Cm). We know that D(s, C') C L+(Cm) for
any s E S by definition, so we will just show that p E D(s, Cm) for some Cm.

|1 p - s || 11| p - k || + \ 11i - s || < C + | 11i - s || .

If we define Cm = C + maxses f - s 11 then we know that p E D(s, Cm) 9 £+(Cm) whenever
p E D(f, C). .

Because the form of the drift sets determined in Theorems 4.3 and 4.5 is C = D(O, C) and thus the
set of vectors t+ outside of which the drift condition is satisfied is D(f, C), this lemma tells us that
we can always choose Cm large enough to include this set in some £+(Cm).

Given a set L+(C) we define the stability set R(C) as containing all vectors i such that T E
ch(5 - S) and

| -+[i - f > 11 +[n] - Bs[n] - (4.4)

for some E > 0 and all f+[n] ' L+(C). This equation tells us that the deterministic drift condition
(4.1) holds for i; E R(C) and thus gives us deterministic stability. This development leads to a
sufficient stability condition as follows.

Theorem 4.6 (Stability Region) A deterministic dynamic scheduler model (B, f, S) is deter-
ministically stable under scheduling rule Q(-) if Q(-) is consistent with a (possibly non-smooth)

66

norm 11 - 11 and i E R(D) for some finite D.
Proof: This follows because the definition of the stability set R(D) implies that the deterministic

drift condition is satisfied for all f outside of a compact set L+(D) for any k E R(D). .

Theorem 4.6 is only useful if R(D) is not empty. We now show that the stability region R(D)
for smooth norms tends towards the interior of the convex hull of the schedule constellation as D
grows to oo. More specifically, we will show that for any given f E ch(B - S) there exists a finite D
such that f E R(D).

Lemma 4.2 (Stability of any k) For any deterministic model (P, f, S) with f E ch(5 -S), there
exists a positive finite number Cmax such that f E R(D) for D ;> Cmax where R(-) is defined with
respect to a smooth norm || - ||.
Proof: From Theorem 4.3 we know that there exists a set D(i, C) such that for f+ V D(f, C) the
deterministic drift condition is satisfied. From Lemma 4.1 we can choose C' so that D(f, C) C
L+(D) for all D > Cm. Thus the condition (4.4) holds and i; E R(D) for D > Cm. U

Given Theorem 4.6 and Lemma 4.2, we can state the following result.

Lemma 4.3 (Stability Region for Smooth Norms) The stability region R(D) C ch(B - S),
and limD-o R(D) = ch(B -S) under scheduling rule Q(-) if Q(.) is consistent with a smooth norm

11 - |1.
Proof: Follows from the previous lemma. *

An interesting fact that comes out of Lemma 4.2 is that R(D) C R(C) when D < C. We give this
as another lemma that applies even when the norm 11 - 11 is not smooth.

Lemma 4.4 (Stability Sets are Nondecreasing) For a (possibly non-smooth) norm -, when
D < C we have R(D) C R(C).
Proof: We know that I+(D) C L+(C), so tc(C) C LC(D) where LC(C) is the complement of
L+(C). If i; E R(D) then

11 f - i ;> P|E s ||-E

for all f E £c(D). But this also means that this inequality holds for all f E £c(C). Which in turn
implies that Tr E R(C). m

However, Theorem 4.3 tells us that for every C there is some D > C such that R(C) C R(D)
because eventually all i E ch(B - S) must be included in R(C) for some large enough C. We will
see this in the next example.

Consider the schedule constellation S in Figure 4-2, and the norm " with level curves shown
in Figure 4-3. Figures 4-4 and 4-5 show the stability set (as the shaded region) R(C) for C = 2/3
and C = 2 respectively for the constellation and norm shown in Figures 4-2 and 4-3. From the
figures, we see that R(2/3) is smaller than R(2). Intuitively, as we increase C, the difference
between R(C) and ch(B - S) will grow smaller. If this is true, then for a given r we can pick C
large enough so that i; C R(C).

If 11 - 11 is a corner norm then this result does not hold and R(oo) C CH(B - S); we are left
with a set of possible vectors i; for which the model is not guaranteed stable. Figures 4-6-4-8 show
a corner norm 11 ' lib, and the resulting sets R(2/3) and R(2) as before for the same constellation
from Figure 4-2. In this case, the shaded set in Figure 4-8 is R(2) = R(o). As we increase C,
there is a certain point beyond which the set R(C) does not increase in size with increasing C.

67

0.5

0

-0.5

-1

-1.5
1.5

Figure 4-2: Schedule constellation S in the

plane. Each schedule is marked with a 0.

O6

Figure 4-4: Set R(2/3) using the constellation

and norm from Figures 4-2 and 4-3.

----- --

-1.5 -1 -0.5 0 0.5 1

68

Figure 4-3: Level curves of the norm - I|a

Figure 4-5: Set R(2) using the constellation
and norm from Figures 4-2 and 4-3.

Figure 4-6: Level curves of the norm 11 Ib-

b

0

Figure 4-7: Set R(2/3) using the constellation

and norm from Figures 4-2 and 4-6.

Figure 4-8: Set R(2) using the constellation
and norm from Figures 4-2 and 4-6. This set
R(2) is equal to R(c) for all c > 2 as well,
including R(oo).

69

0

0

The counterexample to the stability of the maximum size matching algorithm in [51] also falls
in this category. It exhibits a specific vector f for which 1 - 1 does not guarantee stability in the
deterministic (or stochastic) model. However, we do not know that a model with a scheduling
rule consistent with a corner norm is unstable for f V R(oo), only that we can not guarantee
stability in the sense we have defined. This is important, and a simple example is convincing.
Consider a schedule constellation S = {(0, 0), (1, 0), (0, 1)} (assume B = I). The oo-norm stabilizes
the dynamic system for any f C ch(S). This can be seen because we can define a scheduling rule
consistent with the oo-norm which is exactly equal to the rule consistent with the 2-norm (a smooth
norm) for this geometry.2 However, if we follow the same construction as before, it is clear that
the set R(oo) = 0. This tells us that the approach we used to prove stability using smooth norms
can be very weak when applied to corner norms.

Despite the possible weakness of this method, it is important to realize that when the stability
set R(C) does intersect with ch(B - S) as in Figure 4-8, Theorem 4.6 guarantees stability for a
corner norm when f is constrained to lie within a corresponding R(C). For certain corner norms
and constellations, we can guarantee stability for all f E ch(B -S). For example, if we add the point
(1, 1) to the constellation discussed in the previous paragraph, the set R(C) = ch(B -S) when C is
greater than 1.

4.1.5 Corner Norms

An important question now is whether or not non-smooth norms guarantee stability of our dynamic
model when they are used to determine the scheduling rule. These non-smooth norms can be
more useful because they allow the scheduling rule to be implemented more simply. For example,
implementing the scheduling rule which uses the o-norm requires a number of comparisons that
grows linearly with the size of the switch in an input-queued switch, while the 2-norm necessitates
a higher polynomial complexity. Linear complexity allows the scheduling rule to be built and scaled
in hardware. A norm whose sub-level sets are polytopes can be computed with a fixed number
(perhaps large or growing faster than O(N)) of linear operations and comparisons on the current
lag.

The goal of this section is to illustrate simple counterexamples showing that using a non-smooth
norm in a static scheduling rule, specifically the oo- and 1-norms, does not guarantee the stability
of the stochastic model even when r E ch(P -.S). Determining the behavior of these dynamic models
under non-smooth scheduling rules in general is difficult, so we concentrate on a few examples.

We will concentrate here on the oo-norm and the 1-norm, as they are simply described and
commonly used as measures of distance. It is obvious that they both are non-smooth; the set
of vectors v such that 11 v 1= 1 in two dimensions is a square centered around the origin for
p = o and a diamond for p = 1. The first example below shows that, unlike the smooth norms
considered previously, the oo-norm does not guarantee the deterministic stability of all stabilizable
deterministic models. The second illustrates the fact that a scheduling rule based on the 1-norm
may stabilize a deterministic model while not stabilizing a corresponding stochastic model.

The 1-norm is also interesting as it relates to queueing networks. As we discussed in the previous
chapter, static buffer priority policies used for scheduling reentrant multi-class queueing networks
are consistent with the 1-norm. There are counterexamples in the literature [13, 37] that show the
instability of specific networks when using static buffer priority policies. There is also a similar
counterexample in [51] for the input-queued switching problem.

2The oo-norm leaves ambiguities in the scheduling rule, where there is more than one optimal schedule over large
regions. For these cases, we can always choose to make the same choice as we would with the 2-norm.

70

(0.75, 0.75)

r = (0.45, 0.45) ir = (0.725, 0.725)
0

(0.4, 0.4)

(1,0) (1,0)

Figure 4-9: Example of unstable deterministic Figure 4-10: Example of stable deterministic
model. model with corresponding unstable stochastic

model.

The class of corner norms is much larger than just these two examples. For instance, it includes
all norms whose level sets are polytopes, defined by a collection of linear inequalities. It also
includes other mostly-smooth norms that happen to have points of unbounded curvature on the
surface of their sub-level sets.

Unstable Deterministic Model

Consider a situation in which we have two users of one machine. The machine can process the
users' data at a rate of 1 MB/second individually. However, the machine can also process both
data streams simultaneously, but can only process each one at a rate of 0.4 MB/second because of
the overhead of switching between the two. The machine switches between configurations (one of
the above three, or idle) once every second. Assume that user 1 has a data rate of ri, and user 2
has a data rate of r 2. We can plot the possible machine configurations as shown in Figure 4-9, along
with a possible data rate vector r = (ri, r2) = (0.45, 0.45). Even though r is easily schedulable and
thus the system is stabilizable for this input (simply alternate between the two users and share
every so often), a scheduler that uses the oo-norm to choose the configuration may not necessarily
be stable for this case depending on the initial amount of data in the system.

A reasonable choice for a scheduler might be to choose the configuration at each switching time
n that will result in the smallest remaining work for both users, t[n + 1]. In other words, minimize
the maximum amount of work remaining at the next switching time. This is equivalent to using
d(f + r, s) = 11 t + r - s j1. If we try this, however, the sharing configuration is chosen at each
time because it maintains the smallest maximum remaining work. Because this configuration can
not keep up with the incoming data rates, the remaining work grows unbounded.

However, if we instead use d(t + r, s) = 11 f + r - s 112, the same thing happens for a while, but
eventually one of the other configurations is chosen and the remaining work decreases. In fact, no
matter what r is chosen (as long as it is within the convex hull of the available configurations), this
choice of d(.) does not allow the remaining work, f[n], to grow without bound.

This example illustrates that corner norms, or at least the oc-norm, require careful attention if
they are to be used. However, the example we give here is a contrived one; a small change in r will
give us a stabilized model. In higher dimensions, unstable behavior can appear over a nontrivial
set of reservation vectors i as in the example given in [51].

71

(0, 1) -*- (0, 1) -*

Stable Deterministic Model, Unstable Stochastic Model

Another interesting problem that arises when we deal with corner norms is that stability of the
deterministic model does not guarantee stability of a corresponding stochastic model.

We will use the o0-norm again to perform the scheduling. The possible schedules are

S = {(0, 0), (1, 0), (0, 1), (3/4, 3/4)} ,

shown in Figure 4-10. This system is similar to the previous example, but can work for both users
somewhat independently. Arrivals occur as one of the following possibilities:

(1, 1) with probability 0.65
n (1, 0) w. p. 0.075

r[n] = (0, 1) w. p. 0.075

(0, 0) w. p. 0.2

This corresponds with an average rate of E[r[n]] = f = (0.725,0.725) which is clearly within ch(S).
We know the deterministic model (I, f, S) is stable for these two cases using the same stability

set construction used in the previous section for smooth norms. We can define a Lyapunov function
based on the 1-norm and show that it always decreases for lag values outside a bounded region for
this particular f.

Now we turn to the stochastic model (I, r[n], S) and show that this model is unstable when we
use the scheduling rule

Q(e[n]) = arg min1|f [n] - s
sES

If there is more than one minimizing schedule s, we will pick one of them arbitrarily. Assume that
f[n] is on the line with unit slope and is equal to (a, a) for a large (this is not needed, any a positive
or negative will do, but this assumption simplifies the analysis). The schedule s[n] is chosen to be
(3/4, 3/4) and the possible values for f[n + 1] are:

(a + 1/4, a + 1/4) with probability 0.65

e[n+ 1] = (a + 1/4, a - 3/4) w. p. 0.075
(a - 3/4, a + 1/4) w. p. 0.075
(a - 3/4, a - 3/4) w. p. 0.2

We note that if f[n + 1] = (a - 3/4, a + 1/4) or (a + 1/4, a - 3/4) then s[n + 1] = (0, 1) or (1, 0)
respectively and we have the same possibilities for f[n + 2] as for f[n + 1]. So being in one of these
two states leads to the same trajectory as being in state (a, a). We can rewrite the possibilities
equivalently as:

(a + 1/4, a + 1/4) with probability 0.65
[n + (a, a) w. p. 0.15

(a - 3/4, a - 3/4) w. p. 0.2

But this equivalent to a Markov chain where a state a transitions to state a + 1/4 with probability
0.65, remains at a with probability 0.15 and moves to a - 3/4 with probability 0.2. The average
drift from round n to n + 1 is +0.0125. This means that on average the Markov chain moves to
the right, or to larger values and the system is unstable.

It is important to remember that this unstable behavior is dependent on the initial condition.
There are many initial conditions for which the mechanism is stable using the same scheduling rule
and model.

72

4.1.6 Necessary Condition for Stability

Our earlier stability results can not be extended to cover corner norms. And the previous section
gave two counterexamples that showed that corner norms do not always guarantee stability. We
now give a condition on the constellation and norm that is necessary for a deterministic model to
be stable for all f E ch(B -S) under the quantizing scheduling rule, Q(.), that corresponds with the
norm for both smooth and corner norms. The statement and proof of the condition is very simple.
An allocation region for schedule s is said to be linearly bounded if there is no nonzero vector r and
initial condition vo such that the affine sequence of points v0 = vo + ar satisfies Q(v,) = s for all
a > 0. This essentially means that there is no straight line starting somewhere in the allocation
region and going to infinity completely within the region.

Theorem 4.7 (Necessary Condition for Deterministic Stability) If a schedule s in ch(B-
S) (not on the surface) does not have a linearly bounded allocation region given the scheduling rule
Q(.) then the deterministic model (P, f, S) is not stable for some choice of f.
Proof: If this is not true, then we can pick f[0] = vo and F = s + er for e > 0 small enough that
i E ch(B -S). With these choices L[n] = f[0] + ner and f[n] = vn, driving L[n] arbitarily large as n
increases. m

We know that the condition is not sufficient because the maximum size matching scheduling algo-
rithm used in the input-queued switching problem satisfies this property (trivially because it has
no schedules that lie inside the convex hull), but can be unstable for some values of f. The second
corner norm example given earlier in this section also has no interior schedules, but can still be
unstable.

This necessary condition does allow us to make some conclusions about the stability of spe-
cific deterministic models by only looking at the allocation regions. For example, in the unsta-
ble deterministic model presented in Section 4.1.5, we can see that the allocation region for the
schedule (0.4, 0.4) includes (at least) the points s + ar = (0.4, 0.4) + a - (1, 1) for a > 0. If
f = (0.45,0.45) = s + 0.05r, which is still inside the convex hull of the schedule constellation, the
lag vector grows unbounded and we violate the above condition.

As another example, Figures 4-12 and 4-13 show quantization regions for the constellation
shown in Figure 4-11 when we use the 1-norm and the 2-norm, respectively, to make scheduling
decisions. The constellation spaces 8 points in the plane fairly evenly in order to have good
quantization error performance over the region they occupy. However, we can see in Figure 4-12
that the quantization regions for the center points are unbounded along the horizontal axis. This
violates our necessary condition and tells us that the deterministic model with this constellation is
not stable for some values of r when the 1-norm is used to make scheduling decisions. If we use
any input r[n] = p = (c, 0) for 1 > c > 1/2, the lag L[n] will be equal to L[0] + (n - (c - 1/2), 0),
which grows without bound. In fact even if r[n] is a random signal with mean p = (c, 0) and small
variance around that mean, the lag will grow large, although it is not clear without more detailed
analysis whether the lag grows to infinity with any probability.

4.2 Controlling the Lag Behavior

The stability result just presented for deterministic models allows us to choose a norm on which
to base our scheduler from a large class. In fact, we can relax this class to include other norm-like
functions that are not necessarily norms, but which have geometric properties similar to norms. An
interesting application of this result is in controlling the properties of the lag vector by varying the

73

I.

0.5 F

-0.5 -

-1
-15 -1 -05 0 0.5 1 15

Figure 4-11: Example quantization constellation.

0.5

0

-1

Figure 4-12: Quantization regions for the ex-
ample constellation under the 1-norm.

Figure 4-13: Quantization regions for the ex-
ample constellation under the 2-norm.

74

I I

- -e- ----- -~

* I

I I

I I

51 1

0.5

-0.5

-1.

-0 0

-1. -1 -0.5 0 0.5 1 1.5

0 0

-15 -1 -0.5 0 0.5 1 1.5

-0.5|

I

norm that the scheduler is based on. If the lag vector remains within (or very near) the constellation
its behavior is governed by the internal structure of the constellation and the distance metric used.
Thus there are two ways we can affect the behavior of the lag. First, we can design the constellation
to perhaps reduce the variation of the lag or bias it towards one user or another. In the following
chapters we consider a specific constellation design problem that reduces the maximum value the

lag can take. The other method we might use to affect the behavior of the lag is to choose an
appropriate distance metric which results in favorable lag behavior.

We see an example of this in [57]; the PGPS algorithm makes scheduling decisions by doing
the equivalent of scaling each component of the lag vector by the inverse of the corresponding
priority and then scheduling the user with the largest resulting scaled lag. This method, instead
of equalizing the worst-case lag across all of the users, equalizes the weighted worst-case lag, which
can be seen to be the time delay rather than packet delay. By doing this [57] gives worst-case
guarantees on the delay rather than the lag. These guarantees do not affect the throughput, or
fairness of the scheduler, but they do affect the delay properties that individual users experience.
By choosing the priorities appropriately the scheduler can guarantee desired delay properties. This
method is equivalent to using a diagonal matrix M to weight the lag inputs to the scheduling rule.
We can generalize this for our model if we view the matrix and a quantizing scheduling rule as a
combined single rule. Our model allows the scheduling rule to be defined in terms of any norm,
and guarantees deterministic stability if the norm is smooth and in many cases for non-smooth
norms. By choosing the geometry of the level sets appropriately, we can specify how lag vectors in
different directions are weighted and through this control how large the elements of the lag vector

are relative to each other on average.

To illustrate this, we discuss three cases below. We extend our consideration of distance metrics

to include functions that do not necessarily satisfy all of the properties of a metric. The functions

will be positive and equal to 0 at the origin, but may violate any of the other properties. We will
still use the term distance metric in this section, but in a non-technical sense. Our observations will
mostly be based on empirical results, and we will discuss a few cases in which we can successfully
choose distance metrics to modify the behavior of the lag as well as one instance illustrating that

this method is not always useful.

Consider first a function f(-) that does not necessarily satisfy the metric symmetry property

(f(x - y) - f(y - x)), but that satisfies a scaling property (f(ax) = af(x) for a > 0) and has
smooth convex sublevel sets. We will call these functions norm-like. The proof of Theorem 4.3 does
not depend on the symmetry property, and so any smooth norm-like function can also be used as
a distance metric in a quantizing scheduler without sacrificing deterministic stability. To illustrate
when using a norm-like function might be useful, consider the following example for N = 2.

Assume we are feeding a signal r[n] into a E-A encoder where r[n] can be modeled as i + w[n]

where i is a fixed vector and w[n] is a sequence of independent zero mean random variables. Assume

also that we have different requirements for each of the components of the error e[n] = t[n]-s[n]. We

would like e1 [n] to have a smaller variation when it is negative than when it is positive, and thus will

concentrate on reducing the variation of e2 [n] only when we can make e1 [n] more positive. Define

the sublevel sets of f(x) to be concentric equilateral triangular regions (with corners rounded for
smoothness) with one point directed to the right and the origin at the center of mass of the triangle.
From this definition, we are weighting three directions preferentially: (1, 0), (- /(3)/2, 1/2), and

(- f(3) /2, -1/2). These directions correspond to e2 [n] having a small variation when e1 [n] is
positive and e2 [n] having a large variation when el[n] is negative. This is best illustrated with a

picture; Figure 4-14 shows a representative plot of how the error is distributed when we define w[n]

to be a vector of two independent uniform random variables. The constellation used is the same as

75

W~ss~

0.5- 0.5

0- + (D 0 +

-0500
-0.5

-0.5

-1 -1 +

-15 -1 -05 0 05 1 1.5 -15 -1 -05 0 05 1 1.5
User I User 1

Figure 4-14: Error distribution for triangu- Figure 4-15: Error distribution for triangu-
lar norm-like function and hexagonal constel- lar norm-like function with diamond constel-
lation. lation.

Sos -

-1. -1 -0.5 0 0. 1 1.5

Figure 4-16: Error distribution for weighted norm function and diamond constellation.

in Figure 4-11. Each point in the plot is e[20] for an independent realization of w[n]. Because w[n]
is uniform and remains within the constellation, the resulting error distribution is bounded. The
same error-shaping behavior can be seen for other constellations as well. For example, Figure 4-15
shows the behavior for a diamond constellation.

A simpler example might entail weighting the two error components differently, by using a
diagonally-weighted 2-norm as the distance metric. If M is a diagonal matrix, and we use a

function f (i - s) = 1 MVI - s) 112 we see that the element of f - s with index i such that i - Si

corresponds with the largest element of M is weighted more highly than other elements. When
minimizing the norm of this weighted vector, a schedule s which reduces ei - si at the expense

of other elements will be preferable to a schedule that reduces all elements of f - s equally. We

plot error e[20] as before when the constellation S = {(1, 0), (0, 1), (-1, 0), (0, -1)} in Figure 4-16.

The elements of r[n] are uniform random variables, distributed in [-0.5,0.5]. We use a weighting
matrix M with the elements 2 and 1 on the diagonal. The average value of 11[30]1 is (0.44,0.3),
showing a reduction in the variation in the error for user 2 when compared with the average value

76

II

of (0.4,0.4) for the unweighted case. This behavior, however, depends on the constellation. If we

use S = {(-1, -1), (1, -1), (-1,1), (1, 1)} the diagonal weighting matrix M has no effect on the
error. This is clear when we observe that the decision regions induced by the weighted norm for
this constellation are identical for any matrix M.

Another example of a metric that can allow us to control the lag behavior of a system is a
skewed norm. Skewed norms are a subset of norm-like functions. A skewed norm f (-) is defined as
a function whose level set df(C) = {x I f(x) = C} is equal to a translated level set d(C) + Cxo =
{x 1 11 x - Cxo 11 = C} for some norm 11 - 11 and x0 such that |1 xo 11 < 1. Computing the size
of a vector using a skewed norm is more complex than with a real norm because the equation

11 x - Cxo 11 = C must be solved for C. A skewed norm can be visualized as a norm whose center
has been translated so that the sub-level sets are not symmetric around the origin. Even though
the skewed norm is not a real norm, we will call it a norm because the geometry of its sub-level sets
is the same as for the corresponding norm 11 - 11 except for a translation. Because of this, the sets
L+ (C) for a skewed norm can be constructed from those of the corresponding norm by the same
translation. Thus, although we do not show it in detail, we can reprise our earlier stability results
for skewed norms and show that any skewed norm which corresponds with a smooth norm results
in a deterministically stable model when used in the quantizing scheduling rule. For now, we will
assume that the norm used is the 2-norm. In this case we can compute the value of C = f(x) by
solving the following quadratic equation.

I x - Cxo 11 = C2

| 2 - 2CxiTx + C211 x0 112 = C2

By choosing x0 , we can change shape of the decision regions and thus control the characteristics of
the error.

As an example, consider a scalar system (N = 1). The only decision regions we can have for
a scalar system are intervals containing each point in the constellation. Typically, when we use a
norm as the distance metric the intervals are centered around the constellation points. Instead, if
we skew the norm in one direction the intervals are no longer centered around the points. This
tells us that the error distribution will similarly be shifted relative to the constellation points.
Using skewed norms we can bias the error towards positive or negative values for the different error
components. This works for larger N as well. We use a scalar system as an example because we can
actually compute the probability distribution of the error e[n] for a simple two point constellation
if we can model the input r[n] as a fixed mean plus white noise. At each round, the distribution
of the lag e[n + 1] can be computed by convolving the distribution of the previous error e[n] with
the distribution of the new input r[n + 1]. If we assume all r[n] are identically distributed, we can
calculate these convolutions to see if the lag converges to a steady-state distribution. For example,
when r[n] is a uniform random variable in the range [-0.8,0.8] and the constellation S = {-1, 1}
with a scalar quantizer whose threshold is at 0.6 this iteration converges and the steady-state
distribution is shown in Figure 4-17. The distribution is centered around 0.6, and so we have
effectively biased the lag towards positive values (the convergent distribution when the threshold
is at 0 is symmetric around 0 and the same shape). In fact, the error distribution is uniform on
the interval [-0.4,1.6].

4.3 Stochastic Stability

We now look at a more general stochastic model with random B[n] and r[n]. Our goals are
to establish that classes of stochastic mechanisms are stabilizable in some sense, and that these

77

0.5

0.4- -

O0.2 -

0.1 -

-10 -8 -6 -4 -2 0 2 4 6 8 10
Lag

Figure 4-17: Lag distribution function for biased scalar quantizing scheduler.

mechanisms are fair. It will be clear that, just as in the deterministic case, the mechanisms are fair
as we defined in Chapter 3 when a Lyapunov function of the lag exists that satisfies the stochastic
drift condition 4.4. Our development here (apart from the bounded input models discussed first)
depends mainly on the stability results for real-valued strict supermartingales in [46] and [25]. This
section serves mainly as an illustration of how the more complex question of stochastic stability
might be approached for our model.

We first discuss what the drift condition alone implies about the behavior of the lag. If we know
that a Lyapunov function satisfies the stochastic drift condition for a mechanism, then we can model
the evolution of the values of the Lyapunov function as a strict supermartingale. This allows us to
make conclusions about the long-term behavior of the lag vector. Some of our conclusions are based
on the assumption that the probability distribution of £[n + 1] - f[n] satisfy certain assumptions,
which restricts the set of sequences r[n] and B[n] to which the conclusions apply to those with
appropriately constrained probability distributions. For example, a one-dimensional E-A encoder
was analyzed in [35] and shown to have favorable properties such as a steady state distribution
for the quantization error (and thus the lag) when the input r[n] is a sequence of independent
and identically distributed Gaussian random variables (B[n] = I) and the distortion metric is the
squared 2-norm. We use the more general stability results (which do not assume that the process
of interest is Markovian) in [25] in order to establish a fairly strong level of stochastic stability.

We then show that the drift condition is satisfied for the specific case when the scheduling rule
is consistent with the squared 2-norm for any white sequences r[n] and B[n] with finite second
moments. This result can be extended to a larger class of sequences for which the moments of r[n]
and B[n] are bounded conditioned on the past.

4.3.1 Bounded Input Stochastic Models

Before we get to the drift condition, we consider stochastic models with fixed B[n] = B, and
r[n] E R C ch(B - S). We allow r[n] to vary arbitrarily within a closed subset of ch(B - S).
This case was considered in Section 4.1.3 and shown to be deterministically stable; this means
that [n] remains bounded within a fixed region after an initial transient period has elapsed. This
case covers a number of different interesting situations, including the E-A encoder for which the
quantization constellation is chosen so that the range of the input signal is contained within the
convex hull of the constellation. If we know that the input signal stays within the convex hull of the
quantization points, then the lag will remain deterministically bounded. This class of stochastic
models is deterministically stable and thus both deterministically and stochastically fair.

78

4.3.2 Stochastic Drift Condition

The definition of the stochastic drift condition is similar to that of the deterministic drift condition
except that it is stated as an expectation of an appropriate Lyapunov function. We define it as

follows, using the notation Ee[V(e[n + 1])] to mean the expected value of V(e[n + 1]) given that

e[n] = e. All conditional expectations and relations between random variables are considered to

hold with probability 1 unless otherwise specified. We also assume that Ee[V(e[n + 1])] is finite for
any finite value e[n] = f.

Definition 4.4 (Stochastic Drift Condition) The process i[n] defined by a model (B[n], r[n], S)
and a scheduling rule Q(.) is said to satisfy the stochastic drift condition if there exists a positive-
and finite-valued level-bounded function V(.), a compact set C C RN , and a constant M < oc such

that

E[V(e[n + 1])] - V(e[n]) < -e (4.5)

for E > 0, all fn] V C and

E[V(f[n + 1])] - V(f[n]) K M < oc (4.6)

for f[n] C C.

It is possible to reach some conclusions about the stability of a model given only that it satisfies
our stochastic drift condition. For example, if the sequence f[n] is a Markov sequence (i.e. when
r[n] and B[n] are white) a weak notion of stability called non-evanescence is guaranteed when
a model satisfies a relaxed version of the stochastic drift condition (see Theorem 9.4.1 in [53]).
Non-evanescence guarantees that the probability that a sample path of the chain f[n] goes to oo
is 0. This means that f[n] visits at least one compact subset of RN infinitely often, but does not
constrain the length of the times in between visits. Non-evanescence also does not guarantee that
the expectation of the lag is bounded.

In order to bound the expectation of the lag, we note that Equation 4.5 also implies that
the quantity V(f[n]) is a strict supermartingale before f[n] enters C. A supermartingale [24] is a
sequence of random variables Vn such that

E [Vn+1 I Vii < n] < V-

A strict supermartingale is a supermartingale such that there is an e > 0 such that for all n and i

E [Vn+1 I Vi < n] < Vn - e .

It is immediately clear that a strict supermartingale is a supermartingale.
The drift condition we have defined is the same as Condition C1 used in [25]. In [25], it is

shown that if a sequence of random variables satisfies this drift condition and if the increments
JVn+1 - Vnj are exponential type (Condition C2), then each element V" is also exponential type.
A random variable Vn that is exponential type essentially means that the variable has a finite

exponential moment, or that E[aVn] < A < oo for some a > 0. This in turn implies that the tail
of the probability distribution of V7 is asymptotically bounded below an exponential.

This assumption on the distribution of the increments is not nearly as restrictive as the one
required for deterministic stability. This assumption is satisfied, for example, when r[n] and B[n]
are constrained to lie within bounded regions. This is a looser constraint than for deterministic

79

stability, for which we required r[n] to lie within ch(-.S) and B[n] to be constant. The assumption
here even allows the region of support of the probability distribution of IV,,+, - V I to be unbounded,
as long as the distribution itself has subexponential tails.

Under these conditions, the results from [25] tell us the following about the sequence {V} given
an initial value Vo of exponential type (we define a as the smallest number such that V(f) 5 a for
all f E C):

* Every Vk is exponential type;

" Starting at V0 , the time T when V, is first below a is exponential type; and

" The probability that Vk > b is exponentially decreasing in b.3

All these together tell us that V(f[k]) does not travel far above a. This means that f[k] is bound
closely to the compact set {e I V(f) < a}. Specifically, all of the polynomial moments of V(f[k])
are finite for all k.

This is a fairly strong form of stability, as it tells us that the probability distributions for
the elements V(f[k]) maintain nice properties (finite moments and exponential tails whose rate of
decay has a finite lower bound independent of k) for any value of k. Thus, if we can show that the
sequence of values V(f[k]) satisfies conditions C1 and C2 above for some mechanism, we know that
the mechanism will be very well behaved.

4.3.3 Fairness

In particular, the previous properties of the sequence V(f[k]) may also give us guarantees on the
fairness of a mechanism. As we have discussed, bounded lag implies deterministic fairness; for the
stochastic model we have just seen that the probability that the lag leaves a bounded region defined
as the set of points £ such that V(f) b decreases exponentially with the size of the region. This
tight stochastic boundedness implies that, for many choices of V(.), the fact that the polynomial
moments of V(f[k]) are finite implies that E[II f[k] 11] is also finite. This means that a mechanism
that satisfies conditions C1 and C2 with such a function V(-) is also fair. As a simple example, if
conditions C1 and C2 hold and V(-) is defined to be a norm then the mechanism is stochastically
fair by definition.

4.3.4 The 2-Norm

Our stability results require that the mechanism satisfy the stochastic drift condition above. We
show here that the condition (4.5-4.6) is satisfied for a common scheduling rule. A stochastic model
with independent white processes r[n] and B[n] satisfies the stochastic drift condition when we use
the following scheduling rule. At each stage, choose the schedule s[n] that minimizes

E [11 [n] - B[n + 1]s[n] + r[n + 1] 12 | f[n]]

Another related scheduling rule chooses s[n] that minimizes

1 f[n] - Bs[n] ||

when B[n] = . This is useful for situations when we can only make decisions based on the current
state 4n], such as in queueing networks or when the statistics of r[n] are unknown; we can not

3This holds on all but a set of outcomes whose probability decreases to 0 as k grows to oo.

80

schedule future arrivals before they arrive. We concentrate on the first scheduling rule, but it is
clear that the drift condition also holds when the second rule is used. These are technically not
quantizing schedulers as we have defined them because the distance metric is the squared distance

-_ rather than the distance itself, and thus is not a norm. We discuss how we might extend the
class of schedulers that satisfy the drift condition to include all smooth norms in the conclusion.

This type of result is not particularly new; it uses a quadratic Lyapunov function to satisfy a
drift condition, and related results have been developed in a number of different situations, such
as [66, 51, 52, 39]. The proof follows a similar path as these others, by exhibiting a Lyapunov
function of the lag vector that decreases if the lag vector lies outside of a compact region. This
theorem includes restricted cases of some of the previous results and extends the stability result
to our geometric model. However, these previous results all apply to situations in which the state
space is countable. Our result extends this class of results to a more general state space. A simple
version of this result has been shown for a one-dimensional Z-A encoder with IID Gaussian inputs
[35], but not extended to more general models.

By viewing our model within a geometric framework, the intuition behind this theorem is simple:
if we simply choose the schedule that minimizes what we expect the value of the next state vector
to be, then the state vector will stay bounded. In the deterministic lag model, this corresponds to
picking the schedule that is closest to the current lag vector plus the next reservation vector, or
the point closest to where the lag vector is heading next. This intuition holds even when we have
a stochastic model, with an arbitrary schedule constellation, as long as i c ch(B - S).

Theorem 4.8 (Drift of the 2-Norm for Independent Inputs) Given dynamics

f[n + 1] = f[n] - B[n + 1]s[n] + r[n + 1]

if we choose s[n] so that

s[n] = arg min E [i f[n] - B[n + 1]s + r[n + 1] 11 1 f[n] ,
sCS2

and if B[n] and r[n] are independent sequences of independent random variables with finite means

and second moments such that f E ch(B - S), then f[n] satisfies the stochastic drift condition (4.5-

4.6).
Proof: See Appendix, Section B.3. m

From this, we know that the expected value of 11 f[n] 112 is bounded because E[II L[n] 1121 < 00 if
E[I L[n] 112] < oo. This theorem also implies that the variances of the components of the lag are
finite because E[i [n]] < E[I| L[n] 2I] < oc. For this particular case, a stochastic model with white
sequences r[n] and B[n] and a scheduler consistent with the squared 2-norm, the mechanism is not
only stochastically fair, but the lag also has a finite variance.

The constraint that B[n] and r[n] are independent and consist of independent random variables

is rather limiting. We define EE[-] as the expectation of the argument given the previous history of
r[n], B[n], and f[n]. In situations such as the vector E-A encoder, the input sequence will often be

correlated over time; in these situations E,[r[n]] is not necessarily equal to f, because the current
state may be correlated with, and thus provide some knowledge of the previous inputs. However,
the only conditions that are required on B[n] and r[n] in the proof of Theorem 4.8 are that Er[r[n]],
EE[B[n]] and Er[I B[n + 1]s[n] - r[n + 1] 11] be finite. This is equivalent to saying that the first
and second moments of r[n + 1] and B[n + 1] be finite, conditioned on knowledge of the previous
inputs and lag values. This will be true under many circumstances, such as when both r[n] and
B[n] are finite. In light of this, we can immediately state a corollary to the previous theorem.

81

Corollary 4.1 (Drift of the 2-Norm) Given dynamics

f[n + 11 = f[n] -- B[n + 1]s[n] + r[n + 1] ,

such that the first and second moments of r[n] and B[n] are finite, t c ch(B3 - S) and the following
conditions are satisfied:

EE[r[n + 1]] - rf ; R1 < oo , E,[r[n + 1] 112] - E[II r[n + 1] |12]1 < R2 < 00

|Ey[B[n + 1]] - Bj < B < 00 , IEr[I B[n + 1] 112] - E[j B[n + 1] 1|]I < B 2 < 1 00

if we choose s[n] so that

s[n] = arg min E [i1 f[n] - B[n + 1]s + r[n + 1] 11 1 f[n]]

then £[n] satisfies the stochastic drift condition (4.5-4.6).

It is important to note that this corollary does not place any restrictions on the densities of r[n] or
B[n] other than the ones mentioned. Thus, the corollary applies to a large subset of models in our
general stochastic framework.

This result is restrictive in another sense. Unlike the deterministic model, we can not guarantee
(with this approach) the stochastic fairness of a stochastic model when the quantizing scheduler is
consistent with an arbitrary smooth norm. It appears that this may be true, but we do not have a
proof yet. If it were true that stochastic models are stabilizable with smooth quantizing schedulers
as the deterministic models are, then we can use the same approach to controlling the lag behavior
by choosing an appropriate scheduler as we did for the deterministic models in Section 4.2.

82

Chapter 5

Variable-Sized Channels

The previous chapter explored the large-scale stability of the dynamic model we presented in
Chapter 3. In this chapter, we move to an investigation of the smaller-scale performance of the
model for a particular resource allocation problem. Specifically, we consider a constellation design
problem for which we try to minimize the worst-case variation of the lag.

We consider a resource allocation context in which a shared resource is made up of a collection
of smaller pieces. We are most interested in the case when the number of pieces is much larger than
the number of users sharing the resource, and there are no constraints on the possible allocations
of the pieces to the users except that the pieces are not further divisible: specifically, any user
can use any subset of pieces from the resource at any time. The scheduling algorithm we use is
simply a minimum-distance quantizer that chooses the schedule which minimizes the maximum
componentwise difference between the user requests and the amount of resource each user receives.

Later, in Chapter 6, we will look at a dynamic extension of the static problem considered here
that fits within the class of models presented in Chapter 3. The problem that we present here is
one in which we are trying to partition a shared resource into a fixed number of fixed-size pieces,
such that when incoming requests for resources are considered after we have chosen the partition,
we can use the pieces to approximate the unknown vector of requests as closely as possible. A
simple analogy for this problem that captures many of the details is deciding the minimum number
and denominations of bills that you would need to make change for a given dollar amount. It is
clear that in order to make any amount of change less than a 100 dollars, the minimum number (7)
of bills might have denominations 1, 2, 4, 8, 16, 32, and 64 dollars.1 Another question you might
ask is, given that you can have at most 7 bills, what is the largest amount you could make change
for? Using the denominations above, you could make change for anything up to $127. Our results
from Section 5.4 give a solution to more general versions of these two problems. For the first, we
solve the problem in which you need to make change for N people using M bills and such that
the total change made is no more than 100 dollars. For the second question, our results tell us the
largest amount of change that can be made for N people given M bills. The results also give us a
characterization of all sets of bill denominations that are able to make change for any amount up
to their total value. 2 A basic assumption we make in this chapter is that the resource pieces are
strictly additive; i.e., if a user receives more than one piece, the set of pieces is just as useful as a
single piece with the same total size.

'The last bill could actually be anything between 37 and 64 dollars.
2For example, bills with denominations 1, 2, 4 and 5 dollars can make change for anything up to 12 dollars, bills

with denominations 1, 2, 3 and 6 can also, but bills with denominations 1, 3, 3 and 5 dollars can not, although the
total value (1 + 3 + 3 + 5 = 12) is the same.

83

A similar problem that has been studied in depth is the quantization constellation design prob-
lem for vector quantizers [21]. The vector quantization goal is to choose the points in a fixed-size
constellation to minimize the average or worst-case error between a stochastic input value and the
closest constellation point given a distribution of possible input values. This general problem is
typically difficult to solve, so constraint techniques such as looking only at lattice-based quantizers
that reduce the possibilities are used to make the solution easier to find. Our problem differs in
that we choose a number of other parameters, the sizes of the resource pieces, that define the
constellation indirectly through the process of allocating resource pieces to inputs. However, the
ultimate optimization goal - minimizing some measure of error - is the same.

In Section 5.1, we describe this static resource allocation problem. Issues related to the opti-
mization problem are discussed and the concept of a uniformly dense constellation is defined in
Section 5.2. A special case of the problem in which the pieces of the resource are all equally-sized is
used to illustrate the geometry of the problem in Section 5.3, and the minimum distance is deter-
mined for this case. Then in Section 5.4 we use the uniformly dense notion as a way of constraining
the general problem to be easily solvable, and show how the solution relates to the case in Sec-
tion 5.3. Section 5.5 presents examples of nonuniform constellations that perform better than the
uniformly dense constellation that is the solution to the constrained problem in Section 5.4. Finally,
we give a few possible applications for the results of the earlier sections and some extensions of the
basic model in Chapter 6 by embedding our static model in a repeated resource allocation mecha-
nism much like the ones in [3, 51, 57]. We discuss a class of resource partitions that are robust to
the deletion of elements, i.e. sets of piece sizes that still yield uniformly dense constellations when
some of the pieces are removed in Section 6.6.

5.1 Problem Statement

5.1.1 Static Problem

We state our problem in terms of the change-making analogy as follows: given that you may only
have a total of M bills whose total value is 100 dollars, determine the denominations of the bills such
that, if you are to distribute them among N people who each request a portion of the 100 dollars
and collectively request the total dollar amount, then the distribution has the smallest worst-case
under- or over-payment to a person. We show in Chapter 6 that this problem can be looked at in
a few different ways in order to model more practical problems.

The more abstract problem definition we consider is the problem of choosing the sizes, p =

(pi, ... , pm), of M pieces of a single, divisible resource with total size >ipi = 1, pi > 0, so that the
optimal allocation of these pieces to N bins with unknown capacities r = (ri,..., rN), Z3 rj = 1,
r i > 0 minimizes the amount by which any bin is over- or underfilled for all possible r. The
collection of all possible values of r is denoted by SN. The region SN is often called a simplex.
It has a very simple description as the set of all nonnegative vectors that sum to 1, or as the set
of all convex combinations of vectors equal to columns of the identity matrix. For example, S3 is
the area inside the circumscribing triangle in the plot in Figure 5-1). Throughout this chapter and
next, we will assume that r G SN. We refer to a vector of sizes, p, as a size vector. An allocation
is a mapping of the pieces to the bins. The set of all possible allocations can be represented by the
set A of all possible M x N 0-1 matrices that have a single 1 in each row. We define a schedule
with respect to an allocation A c A and a particular p as

SA(p) = pA ,

84

where A is an M x N-dimensional matrix whose element Aij is equal to 1 if the i-th piece is allocated
to the j-th bin, and is otherwise 0. A schedule describes the total size of the pieces allocated to

each of the bins. The collection of achievable schedules given some size vector p is denoted by
S(p); we call this set the schedule constellation, or more simply, the constellation. Because we can
always allocate the entire resource to any of the users, the convex hull of the constellation is always
equal to SN. Although a constellation is completely determined by a given p, a constellation does
not determine a unique p. The error properties and performance measures that we care about are
properties of the geometry of the constellation, but the constellation may be achievable using a
number of different p vectors.

By an optimal allocation, we mean an allocation of the pieces that minimizes the maximum
amount any bin is over- or underfilled for a given p. We call the schedule that results from
the optimal allocation the optimal schedule. Below we will use the notation x j| to mean the
maximum componentwise absolute value of the vector x, or

11 x 11. = maxlJxj .

We will use A* (p, r) to denote the optimal allocation for a given p and r:

A*(p, r) = arg min 11 sA(p) - r || = arg min 11 pA - r |I
AEA AEA

and the optimal schedule is

s*(p, r) = pA*(p, r)

We define the maximum error for a particular choice of p and r as

e(p, r) = 1 s*(p, r) - r 11. .

Then, the quantity we are trying to minimize with our choice of p is

E(p) = max e(p, r) . (5.1)
rESN

With this terminology, we can restate our objective as finding the vector of sizes p* such that

p* = arg min E(p) . (5.2)
PESM

Note that Ei ri pi = 1. One aspect of this objective that is very important in how we choose
to solve the problem is that simply evaluating E(p) is very hard to do for an arbitrary vector p.
However, for restricted classes of vectors p, the evaluation becomes easy.

5.1.2 Dynamic Problem

Although we will discuss the dynamic model in detail later in Chapter 6, we preview the idea here.
We can begin to think of the dynamic model in the following way: each morning, M packages with
fixed weights p are to be loaded onto N trucks with maximum load ratings of r. If the total package
weight is equal to the total load rating, we would like to place the packages on the trucks in order
to minimize the amount by which we exceed any truck's load rating. At the same time, over many
days we would like to make sure that each truck is loaded to exactly its load rating on average.
To do this, we choose the best allocation as above, and allocate the packages to the trucks. The

85

difference between the allocation vector and the vector of load ratings r is measured as an error
vector and used when we fill the next set of trucks. By subtracting this error from the actual sizes
of the trucks before we allocate the packages, we make sure that any trucks that were overfull the
previous day are less full the next. As this repeats over many days, the error propagates forward;
if the error does not grow without bound, then we can say that the each truck is filled exactly
to capacity on average. The simple feedback of the error guarantees that on average we will not
be biased towards any particular truck. This also indicates why we assume that the vector r is
unknown. As the error evolves over time, the effective truck sizes (after subtracting the error) to
which we will be allocating also change and may be somewhat unpredictable. So, we would like our
solution to the previous optimization problem to work well no matter what happens to the error.

5.2 Preliminaries

It is important to realize that solving Equation (5.2) is trivial if the capacities r are known before
we have to choose p; we simply choose p = r. When r is not known, the choice of p must work
well for any possible r. Even the method of solving for E(p) for any particular p is not obvious.
Theorem 5.1 gives us the value of E(p) when the elements of p are all equal, but for an arbitrary p
this calculation is not as simple. We can begin to understand why it might be more or less difficult
to compute E(p) for a particular p by considering the schedule constellation S(p) associated with
the size vector p. The geometric properties of the constellation S(p) can help us understand why
the calculation of E(p) might be complex in general.

In solving Equation (5.2), we are essentially trying to design a vector p that gives rise to a
schedule constellation with somewhat regularly spaced points, and thus small maximum error.
This follows from the definition of E(p), which is the maximum distance between any value of r
and the closest point s* (p, r) in the constellation.

Figures 5-1-5-4 show a number of constellations that correspond to different vectors p for M = 8
pieces and N = 3 bins. We will be referring to these plots to illustrate ideas throughout the thesis.
The plots are limited to the case when N = 3, to show the geometry of the constellations as clearly
as possible. The plots are made so that the viewer is looking in the direction (-1, -1, -1) towards
the origin. The triangle indicates the boundary of the region that contains all nonnegative points
that sum to 1, or all points r where E> ri = 1, and ri > 0. For N = 3, this region is a 2-dimensional
triangle whose vertices (labeled on the plots) lie on the axes. The points of the constellation, or
elements of S, are indicated by x's or dots, and all lie in the 2-dimensional triangle. The axes are
indicated by the lines radiating out from the origin.

Figure 5-1 shows a constellation that is very regular, and corresponds to a size vector po whose
entries are all equal, pi = 1/M for all i. In order to compute E(po) for this constellation, we
have the advantage that the regular geometry makes the computation easier. Theorem 5.1 tells us
that the maximum error in this case is 1/12. The next constellation, shown in Figure 5-2, is also
completely regular. However, it is much denser than the first, even though we use the same number
of pieces (M = 8) to generate it. In fact, E(pi) for this constellation is equal to 1/60, smaller than
the first by a factor of 5. The third constellation, Figure 5-3, is almost completely regular; it has
a small number of holes. Computing E(p 2) involves only looking at the holes, as they can only
increase E(-) beyond a completely regular constellation with the holes filled. It turns out that for
this case, the maximum error is also 1/60. If we were to look at the average error, we would find
that this third constellation has a much smaller average error than the first two (see Section 5.5).
The last constellation, Figure 5-4, has very complex geometry and is representative of constellations
for most arbitrary size vectors; computing E(p4) looks much more complicated. For this specific

86

/*

) X X

x x X

X/ XA x x

Y,

X X x x x

(0,1,0) (1,0,0)

(0,011)

/.......

.............. ,

.....

..... . A......

....

/....

(0,1,0)

po = (1/8) - (1, 1, 1, 1,1, 1, 1, 1)

Figure 5-1: Constellation with 8 equally-sized
pieces.

(1,0,0)

(0,0 1)

...........
.

............ :.........

/.I............
.

/.................

/...................

/

(0,1,0)

P2 = (1/60) - (1, 2, 3, 4, 6, 9, 14, 21)

Figure 5-3: Slightly more dense constellation

with 8 pieces, but not quite uniformly dense.

pi = (1/40) - (1, 1, 2, 3, 4, 6, 9, 14)

Figure 5-2: Maximally dense uniform constel-
lation with 8 pieces.

(0,0,1)

VI.

&,Few W~

V I ~ Is___P 1

(1,0,0) (0,1,0)

P3 = (1/6277) - (128, 164, 288, 432, 648, 972,1458, 2187)

Figure 5-4: A very nonuniform constellation
more dense than any uniformly dense constel-
lation.

87

/

(1,0,0)

X

example, an exhaustive examination of the constellation tells us that the maximum error is strictly
less than 1/60 (and also that the average error is smaller than that of the constellation in Figure 5-
3). Although this last constellation has a smaller maximum error than the previous two, it is more
complicated to compute the error, and it is also appears very complicated to compute the optimal
schedule given a particular value of r. Currently, it is not clear how to compute E(p) efficiently
for an arbitrary p with a schedule constellation with very nonuniform geometry.

Uniformly Dense Constellations

At the end of Section 5.5, we show that the problem of determining the optimal schedule given an
arbitrary size vector p and capacities r is NP-hard. Because of this and the apparent complexity of
computing E(p) for unconstrained p, we will restrict ourselves (except for Section 5.5) to optimizing
over size vectors p that give rise to what we call uniformly dense, or simply uniform, schedule
constellations S(p). The basic property of a uniformly dense constellation is that it has completely
regular geometry, much like the constellations in Figures 5-1 and 5-2. We define IF as the set of all
vectors p such that S(p) is a uniformly dense constellation in SN- In general, F is a subset of SM.
It will also become clear that 17 is a finite and countable subset of Sm, which allows the continuous
optimization problem in Equation (5.2) to be restated as a discrete optimization problem when
we restrict ourselves to only looking at size vectors p in the set F. This discrete optimization
problem can then be solved using a very simple algorithm. Finally, even though we constrain the
optimization problem, we show that we are still able to attain a minimum error E(p) that decreases
exponentially with M for any fixed N (the error associated with identically-sized resource pieces
decreases with 1/M).

A uniformly dense constellation in our scheduling context is defined to be a collection of all
possible schedules s that satisfy the following conditions: each component of the vector s is a
nonnegative integral multiple of some value /, and the components of s sum to 1. An important
property of any uniformly dense constellation is that, no matter what vector p of length M was used
to generate it, we know that there is some p' that consists of M' = 1/ equally-sized elements and
yields the same constellation. For example, a vector p' with all (M' = 40) elements equal to 1/40
yields the same constellation as the vector pi in Figure 5-2. We call this the emulation property of
the variable-sized pieces that create a uniformly dense constellation. We show in Section 5.4 that a
set of M variable-sized pieces can generate a uniformly dense constellation requiring a larger number
M' of equally-sized pieces when M is larger than N. We investigate the practical implications of
this property further in Chapter 6.

One choice of p that produces a uniformly dense constellation is pi = 1/M (Figure 5-1), but
there are others (Figure 5-2). A uniformly dense constellation has a single parameter, E(p),
which determines the density of the constellation. In Section 5.4 we discuss these uniformly dense
constellations in more detail and give an algorithm that produces size vectors of length M that
have maximally dense (i.e. minimal E(p)) uniform constellations. We will denote any vector that
yields a maximally dense uniform constellation by p+.

It is not necessarily true that a vector p+ producing a maximally dense uniform constellation
for a given M and N has the same E(-) as the optimal size vector p* that solves Equation (5.2). In
Section 5.5 we illustrate that for a specific choice of M and N and p', we can create a constellation
that is not uniformly dense but has a smaller maximum error E(p') than that of the maximally
dense uniform constellation, E(p+) for p+ of length M.

The other important issue that makes uniformly dense constellations attractive is relative ease
of implementation. If we are actually to implement a system that takes as input some vector r

88

and outputs the optimal schedule (closest point in the constellation), along with the corresponding
optimal allocation, we would like a simple algorithm to compute the optimal schedule. For the

constellation in Figure 5-4, finding the optimal schedule and allocation is difficult. However, in

Section 5.4.4 we show that if the p we use generates a uniformly dense constellation, then there
is a very simple algorithm to compute the optimal schedule and allocation. In general, we are not
guaranteed that there is a simple (or even polynomial-time) algorithm to calculate the optimal
schedule unless the size vector p yields a uniformly dense constellation. Outside of this set of size
vectors, solving this problem is an NP-complete problem.

5.3 Equally-Sized Pieces

Before we discuss uniformly dense constellations any further, we will look at a particular choice of
p to gain some insight into the general problem and to develop some basic results that are useful
in the subsequent discussion.

We start by considering the case when the resource is divided into M equally-sized pieces of size
1/M. We call this set of sizes po = (1/M, ... , 1/M). With these pieces, we are able to achieve any
schedule sA(-) with a granularity of 1/M. In other words, po yields a uniformly dense constellation.
We can visualize these schedules by picturing the corresponding constellation in the region SN. The
set of achievable schedules S(po) = {SIS = sA(PO), A C A} is a constellation of points within SN.
We will use the notation S = S(po) when we are dealing with equally-sized pieces. Figure 5-1
shows this constellation when N = 3, and M = 8. Looking at this figure, we can see that no
matter where r is within SN, it is close to a point in the constellation - there are no regions of the
constellation where schedules are more or less dense than in other regions. We mentioned before
that the computation of E(p) is easier for equally-sized pieces, and this comes from the regularity
of the constellation and the uniformity of the size vector po. The following theorem establishes
E(po) < 1/M for all choices of M and N, and that limN- ,o E(po) = 1/M.

Theorem 5.1 (Maximum Error with Equally-Sized Pieces) If p = po and r E SN, then

E(po) = N- -7 .
N M

Proof: See Appendix B.1. m

This theorem establishes the value of E(po) for equally-sized pieces. This basic result is used as a
point of comparison in the next section when we discuss more general size vectors p. This maximum
error implies that any bin will be over- or underfilled by at most E(po) for any N and M.

It might help to return to the change-making analogy presented earlier. Theorem 5.1 says that
if you have M dollars to pay N people who collectively request M dollars, the most you would be
forced to under- or over-pay any one person is (N - 1)/N dollars. The next section addresses the
problem of how to choose the denominations of my bills so that you can pay more than M dollars
with M bills but achieve the same payment guarantee. For example, if N = M = 3, you could use
bills with the denominations 1, 1, and 2 dollars to pay off a total of 4 dollars to 3 people while still
guaranteeing that you only under- or over-pay any person by at most 2/3 of a dollar. The factor
of (N - 1)/N in E(po) comes from the geometry of the higher dimensions. We can gain some feel
for it by considering what can happen if you need to give a single N-dollar bill (M = 1) to one of
N people. If each person wants a single dollar, you will underpay N - 1 people by a single dollar,

89

0 0 0 0 0 1 0 1 0 0

Figure 5-5: Illustration of pieces and dividers for M = 8, N = 3.

but overpay one person by N - 1 dollars. you thus overpay one person by a fraction (N - 1)/N of
the entire amount you have to pay out.

In order to move to discussing uniformly dense constellations in more detail, we need to establish
one more fact for equally-sized pieces.

Lemma 5.1 (Number of Schedules using Equally-Sized Pieces) If we have M equally-sized
pieces, to be allocated among N bins, the number of distinct schedules is

R(M, N) = M N- I

Proof: Consider a sequence of M + N - 1 slots. In each slot we can put either one of the M pieces,
denoted by '0', or one of N - 1 dividers, denoted by '1'. The dividers indicate where the amount
placed in one bin ends and the next begins. The number of pieces between the (m - 1)-th and m-th
dividers is the number of pieces allocated to bin m. Figure 5-5 illustrates this for a simple example.
In the figure, bin 1 receives 5 pieces, bin 2 gets 1 piece, and bin 3 gets 2 pieces after we allocate
the two dividers in slots 7 and 9. It is easy to see from this that we can get all possible distinct
schedules of the 8 pieces to the 3 bins by choosing the positions of the dividers appropriately. In
the case of general M and N, the number of possible ways of placing the N - 1 dividers and the
M pieces in the M + N - 1 slots is simply the number of possible ways of choosing N - 1 slots out
of M + N - 1 total slots, or R(M, N). m

This lemma will help us later on when we compare uniformly dense constellations generated by
variable-sized pieces with those generated by equally-sized pieces.

Consider Figure 5-2 again. Although we have not discussed the design of uniformly dense
constellations, it is clear that pi yields a uniformly dense constellation. In fact, p1 yields the
densest uniform constellation over all vectors p of length 8 for N = 3. The next few sections
discuss the problem of how to design such maximally dense uniform constellations. In order to do
this, we ask in Section 5.4 how to choose the piece sizes so as to increase the density of schedules
while not changing the other parameters of the problem (M, N) or losing the regularity of the
constellation.

5.4 Design of Uniformly Dense Constellations

As was mentioned before, the optimization problem in Equation (5.2) is not easy to solve in general.
We concentrate in this section on a constrained version of the problem in which the size vectors
p that we are allowed to choose are the ones that give rise to uniformly dense constellations. In
Section 5.5, we show an example of a nonuniform constellation that performs better with respect

90

to the measure of optimality we have chosen; however, nonuniform constellations in general require
a more complicated algorithm to find the closest point in the constellation to a given point r E SN,
and so are less practical to implement.

More specifically, in this section the three main results are Theorems 5.2, 5.3, and 5.4. They
show, respectively, that: (i) we can easily compute the size vector yielding the maximally dense
uniform constellation, i.e., the uniformly dense constellation with the smallest E(-) for given N
and M; (ii) we can define a simple algorithm to generate any vector p yielding a uniformly dense
constellation; and (iii) we can compute the optimal schedule and allocation for a given point r E SN
and vector p which yields a uniformly dense constellation using a simple algorithm. Section 5.4.2
describes an algorithm that returns a set of sizes of M pieces that yield a uniformly dense constel-
lation, and thus can be used to emulate a set of M' > M equally-sized pieces. Section 5.4.3 gives
a complete characterization of the set F that comprises all possible vectors p yielding uniformly
dense constellations. This characterization is accomplished by a generalization of the algorithm
of Section 5.4.2. Section 5.4.4 shows that if the pieces are allocated from the largest piece to the
smallest piece, a simple greedy algorithm can be used to determine the allocation that results in
the closest schedule to any given r.

5.4.1 Maximally Dense Uniform Constellations

We now define what we mean by a vector p+ that yields a maximally dense uniform constellation.
The constrained version of Equation (5.2) considered now is

p+ = arg min E(p) . (5.3)
pcr

The solution to this, p+, is said to yield a maximally dense uniform constellation. This means that
there is no other vector p that yields a uniformly dense constellation with a smaller value of E(p)
than E(p+). The results in this section (see Lemma 5.4 and Theorem 5.3) allow us to characterize
the set F completely for given M, N, as well as to pick p+ out of the set. It is important to realize
that we are solving this problem for fixed values of M and N, so that the vector p+ that we find
only applies for the specified values of M and N. However, the simple iterative structure of the
algorithm that is used to generate p+ tells us that the M elements of p+ for M pieces are equal to
the first M elements of p+ for K pieces where K > M. There is no simple correspondence between
vectors p+ for different values of N. However, it is easy to show (though not proved here) that a
size vector p+ designed for some N also yields a uniformly dense constellation for all smaller values
of N (follows from Lemma 5.4 and Section 5.4.3).

Our definition of a uniformly dense constellation is equivalent to saying that the constellation
can be generated using some number of equally-sized pieces. If we know the equivalent number
of equally-sized pieces (say M') that are required to emulate a size vector p then Lemma 5.1 can
be used to determine the number of schedules in p's constellation. We illustrate this with two
examples.

If we consider the example of Figure 5-5 again, we can see that we can reach the same schedule
if we use 5 pieces with sizes (1/8, 1/8, 1/8, 2/8, 3/8) instead of 8 pieces with size 1/8. A possible
schedule using these 5 pieces is shown in Figure 5-6. Upon further inspection, it becomes clear
that these five pieces and three bins can be used to achieve precisely the set of schedules that is
possible with eight identical pieces and three bins. Thus 5 variable-sized pieces can be used to
emulate a larger number (8) of equally-sized pieces. So, by using 5 variable-sized pieces instead of
5 equally-sized pieces, we have increased the number of distinct schedules in the constellation from
R(5, 3) = 21 to R(8, 3) = 45.

91

0 0 0 0 0 1 0 1 0 0

Figure 5-6: Illustration of slots and dividers for N = 3, using pieces with sizes (1, 1, 1, 2, 3). The
ovals surrounding the black dots indicate the actual pieces.

We can also consider the constellations in Figures 5-1 and 5-2. By using variable-sized pieces

(p1), we have increased the number of distinct schedules from IS(po)I = R(8, 3) = 45 to IS(pi) =
R(40,3) = 861, and decreased the maximum error from E(po) = 1/12 to E(pi) = 1/60. This
decrease in error occurs for all values of N and M where M > N. In fact, the ratio between E(p+)
and E(po) for a given N grows exponentially as M increases (see Section 5.4.2).

The problem we look at next is how to find the size vector p+ that maximizes the density of the
resulting constellation S(p+), or in other words, the size vector that allows M pieces to emulate
the largest possible number of equally-sized pieces.

5.4.2 Generating Uniform Constellations

In this section, we present an algorithm that generates the maximally dense uniform constellation
for given M and N. Before we get to the actual algorithm, we will establish a few restrictions that
can be made on the size vectors and properties of the vectors that will motivate the algorithm and
simplify the proof of the maximality of the resulting maximal size vector.

We first establish the property that only vectors p with rational elements can generate uniformly
dense constellations, so that we may assume from now on that all vectors p are rationally-valued.

Lemma 5.2 (Rationality of p) For any vector p such that Eipi = 1, all of the elements pi
must be rational if p generates a uniformly dense constellation.
Proof: Assume without loss of generality that p1 is irrational. Consider the schedule that puts p1
in the first bin, and all the other elements of p in the second bin, so the second bin contains 1 - pl.
There are no integers k and f such that

1 -Pi kf k

Pi f

otherwise p1 would be rational (= e/(e + k)) and so would 1 - pi. However, by the definition of a
uniformly dense constellation, every schedule must consist of elements that are integer multiples of
some common factor, so the above schedule is evidently not part of a uniformly dense constellation.
Thus, any p with an irrational element can produce a schedule that is not in any uniformly dense
constellation. m

Given that we are only considering rationally-valued size vectors, we can define a scaled version
of any vector p that has only integer components. We call this vector P = d - p, where d is the
greatest common denominator of the elements of p; there is a one-to-one correspondence between
p and P. Working in terms of P at times will make the statement of the algorithm and the proof

92

of its optimality simpler. We will use the notation

P(i) = ZP
j=1

in our discussions below, and when necessary

P(i, N) = P
j=1

if we need to make the number of bins, N, explicit.

We will next assume that the elements of p (and thus P) are sorted, with p1 < P2 < - PM

(P1 < P2 5 - -5 PM). This does not restrict the possibilities, because any vector p produces the

same constellation as the sorted version of the vector.

We use the terminology "P corresponds to a uniformly dense constellation" to mean that
P= P/ Z3 Pj has a uniformly dense constellation S(p).

Lemma 5.3 For any sequence P that corresponds to a uniformly dense constellation, P is a com-
mon divisor of all Pi.

Proof: We show this by considering p = P/ E P. By the definition of a uniformly dense constel-
lation, every schedule s that can be generated by some allocation of p must have elements si = vi#
for integers vi and some constant 3. The smallest that si can be is p, and because the constellation
must be uniformly dense, we know that # = pi. So, we can write s = vpi for any allocation s and

some integer vector v. However, any allocation of the elements pi to a schedule s must be a point

in the constellation. Specifically, the allocation s(j) that puts element pj in s1 (j) and the other

elements in si(j), i > 1 must produce a vector s(j) = v(j)pi, which means that si(j) = pj v(j)pi

for integer vi. This implies that pj is a multiple of pi if p generates a uniformly dense constellation.
If every element of p is an integer multiple of p1, then when we multiply p by E P to get the

integer sequence P, every element of P must be an integer multiple of P 1 . m

Lemma 5.3 lets us consider only sequences with the smallest element P = 1, because we know that

there is no other common factor across all of the elements of P. Lemma 5.3 also tells us that p1 = #
for any p that yields a uniformly dense constellation. Thus, we now have a method for comparing

vectors with uniformly dense constellations. If a size vector p yields a uniformly dense constellation
and thus can emulate M' = 1/# equally-sized resource pieces, then the maximum error is

-1 1 N-i N-i
E(p) = N = -P1N M' N N

and the size vector p+ with the smallest 8 yields the maximally dense uniform constellation. This

is important because it implies that we can determine p+ if we can determine the vector P+ that

corresponds to a uniformly dense constellation and has the largest sum, P+(M), of all possible
vectors that correspond to uniformly dense constellations, for given M and N.

We now describe an algorithm that will generate the size vector that yields the provably densest

uniformly dense constellation using M variable-sized pieces and N bins. The following algorithm

first produces integral piece sizes that result in a scaled version of the maximally dense uniform

constellation. Then p+ results from scaling these sizes so that their sum is equal to 1.

Algorithm 5.1 (Maximally Dense Uniform Schedule Constellations) To generate the size

vector p+ that has the maximally dense uniform constellation, given N and M (P+ below is an

integer vector of length M):

93

1. Set P+ 1

2. Set P+t + p() for i = 1, . _. . M - 1.

Zt=f P+(i) N

3. Set p+ =+ for i = 1,..., M.
EM1 Pt

This algorithm is interesting for a few reasons. First, it is very simple to perform the calculations.
Each new element of P+ depends only on the sum of the previous elements. Second, as we shall
see, this simple dependence allows the algorithm to be applied to any existing vector p that has
a uniformly dense constellation in order to extend p to larger values of M. Third, as we show
in Section 5.4.3, if we were to generalize the algorithm slightly (see Algorithm 5.2) so that the
iterative step chooses some value of P+1 such that Pi _< P+1 < f(P(i)), it would still generate a
vector p that has a uniformly dense constellation, and in fact this generalized algorithm is able to
generate all possible size vectors that have a uniformly dense constellation, i.e. all vectors in the
set F defined earlier.

We prove that this algorithm computes the vector p+ as a function of M and N using the
following lemmas and theorem. First, in Lemma 5.4 we will show that the integral sequence
P+ produced in the algorithm corresponds to a uniformly dense constellation. We then show
in Lemma 5.5 that P+ is a nondecreasing sequence of integers that is a component-wise upper
bound on any other nondecreasing sequence P of integers corresponding to a uniformly dense
constellation. In other words, if p = P/ E P has a uniformly dense constellation S(p), then
P < P+ for i = 1,..., M. Finally, using these two results, we show that p+ has the densest
uniform constellation among all other normalized sequences that have uniform constellations.

We first present a property that can be used to test whether a sequence P corresponds to a
uniformly dense constellation.

Lemma 5.4 (Uniformly Dense Test) The sequence P corresponds to a uniformly dense con-
stellation if and only if Pk Pk+1 < f (P(k)) for all k = 1,..., M - 1.
Proof: See Appendix B.2. m

It follows from this lemma that P+ corresponds to a uniformly dense constellation, because it
satisfiesthe condition in the statement of the lemma. We have shown that Algorithm 5.1 produces
a sequence p+ that has a uniformly dense constellation. We now assert that the corresponding
sequence P+ is an upper bound on all integral sequences whose smallest element is 1 and that
correspond to uniformly dense constellations.

Lemma 5.5 The sequence P+ of length M that is produced by the previous algorithm is an upper
bound (element by element) on any other integral nondecreasing sequence P that corresponds to a
uniformly dense constellation.
Proof: See Appendix B.2. m

We now present the theorem that we have been building to.

Theorem 5.2 (Maximality of p+) The nondecreasing sequence p+ has the maximally dense
uniform constellation over all possible nondecreasing sequences p of length M that have uniformly
dense constellations and such that >1pi = 1 for given N.
Proof: Lemma 5.4 tells us that P+ corresponds to a uniformly dense constellation, and Lemma 5.5

94

tells us that P+ is an upper bound on any length M sequence P that corresponds to a uniformly
dense constellation such that P = 1. Thus, P+(M) > P(M) for any P that corresponds with a
uniformly dense constellation. Because P+(M) = M' = 1/, p+ has a smaller # than any other p
that yields a uniformly dense constellation, and thus the smallest maximum error. *

This result is particularly interesting due to the simplicity of the algorithm that is used to compute
the vector p+. Each element of p+ is generated based only on the sum of the previous elements;
this also tells us what the relationship is between vectors p+ of differing lengths M.

A useful property of the maximal sequence p+ is that the increase in density over the sequence

po is exponential in the number of resource pieces, M. The integers that are produced for large M
and fixed N are

+ [1+E_ P+ Ei Pt
N - 1 N - I'

and so the sum

N-
P+ (i + 1) > - P+ (i)

N - 1)P

Since we know that pi = 1/M' /3, then 1/3 M' = P+(M) for p+ is greater than (N/(N -

1))M-1. And so we have the following bound for E(p+).

N -i 1 N-i N 1 (-

N M' N N

where M' = P+(M). Compare this with the maximum error for a sequence of equally-sized pieces,
PO,

E(po)= N .I
N M'

For M larger than N we have an increase in density (a decrease in maximum error) by a factor
exponential in M. This means that the density of schedules grows exponentially with M when we
choose the piece sizes properly. Because the constellation is uniformly dense, the possible schedules
that result are equivalent to the ones that would be possible if we were to use M' equally-sized pieces.
We will see some concrete examples of this in Chapter 6. Also, as we will show in Section 5.4.4,
the complexity of finding the optimal schedule and allocation is very low.

5.4.3 Characterizing F

We now present a slight modification of Algorithm 5.1 that can compute all possible size vectors p
yielding uniformly dense constellations for given M and N.

Algorithm 5.2 (Uniformly Dense Schedule Constellations) To generate a size vector p that

has a uniformly dense constellation, for given N and M:

1. Set P 1 = 1.

2. + Por s t P. P f.(i)2. Set Pi+j such that Pi <_ Pi+j <;_ f (P(')) = - , Io ,...,M-1

95

P
3. Set pi = P .

Se P

As we argued before, we only need to worry about nondecreasing vectors because any other vector
yields a constellation equivalent to that of the sorted (and thus nondecreasing) version of the vector.
Thus, the fact that the algorithm must output a nondecreasing vector by construction does not
limit the constellations that will result.

Theorem 5.3 (Characterization of F) A nondecreasing size vector p is in the set F if and only
if it is a possible output of Algorithm 5.2.
Proof: It is obvious that the vector p output by Algorithm 5.2 satisfies the property in Lemma 5.4,
and so yields a uniformly dense constellation. Because F is simply the set of vectors with uniformly
dense constellations, we have proved the theorem. m

We will use F(M, N) to denote the vectors p C F such that the length of p is equal to M, and it is
a possible output of Algorithm 5.2 using N bins. Being able to characterize F in this way not only
allows us to find the vector that has the maximally dense uniform constellation, but allows us to
test whether or not a given vector has a uniformly dense constellation. By simply performing the
test in the statement of Lemma 5.4 for each increment in the sorted vector, we can tell whether
or not a vector has a uniformly dense constellation. Algorithm 5.2 also provides a way to generate
vectors with uniformly dense constellations when there are other constraints on the elements of
the vector. If we consider that the last element of the vector p+ grows exponentially with M,
we may have problems practically implementing a system with such widely varying piece sizes.
For example, view the pieces of the resource as individual compute servers, then our optimization
problem becomes how to choose the speeds of the servers so that we can provide the finest-grain
allocation to the users. It may be infeasible to choose such a wide range of server speeds, or certain
speeds may not be available. In this case, we can just choose the largest speed available at each
step in the algorithm, instead of using the largest possible increment.

5.4.4 Computing the Optimal Allocation and Schedule

The previous results tell us that we can create any schedule of P(M) equally-sized pieces among N
bins by using only M variable-sized pieces with sizes corresponding to the elements of P. Another
way to interpret this result is that we can schedule P(M) equally-sized pieces using only M deci-
sions, where each decision is made to allocate a subset of the pieces to some bin. We now present
a simple algorithm that will compute the optimal allocation in this way.

If we only wanted to determine the optimal schedule for a given vector r, we can simply use
the method in Theorem 5.1 to construct the schedule closest to a given r by choosing I to contain
the indices that correspond with the K = E ri - [ri] largest elements of r - Ir [11, p. 447]. This
method requires O(NK) steps. However, if we want to also find an allocation of the pieces that
results in the optimal schedule, we need to do a little more work. The following algorithm computes
the optimal schedule and algorithm in O(NM) steps. At each of M stages it simply needs to find
the largest element of a vector of length N, and perform a few minor operations.

The basic idea of the algorithm is that at each round, the largest remaining piece is smaller than
the largest difference between the optimal schedule and the current schedule (based only on the
allocations made in previous rounds), and so we can simply allocate the largest remaining piece to
the user with the largest difference between the optimal schedule and the current schedule. At each
step, we know that every element of the current schedule is no greater than the optimal schedule,

96

and after the last round the total sums of both schedules are equal, implying that the two schedules
are equal.

Algorithm 5.3 (Variable-Sized Scheduling Algorithm (VSSA)) The following algorithm com-
putes an optimal allocation A of M pieces with sizes p E , given a set of bins with capacities r. It
also computes the optimal schedule s.

1. Begin with the schedule s and allocation A initialized to zero and define working quantities

Vk = rk -

2. Initialize m = 1, and while >k sk < 1 repeat the following:

(a) Choose k* E arg maxk Vk.

(b) Set vk' = V*. - PM-m+1 -

(c) Set Sk= sk* + PM-m+1-

(d) Set A(M-m+),k* = 1.

(e) Increment m by 1.

Theorem 5.4 (Optimality of VSSA) The VSS algorithm computes a schedule s such that || s - r |
is minimized for any r such that >j ri = 1.
Proof: See Appendix B.2. .

This scheduling algorithm gives us a way of practically determining the optimal schedule and
allocation given a set of bin capacities. This means that both designing and using optimal size
vectors p+ in practical systems is easily accomplished.

5.5 Nonuniform Constellations

Section 5.4 describes how to find the vector p+ that has a maximally dense uniform constellation
as the vector that solves Equation (5.3), and thus is the best choice among uniformly dense con-
stellations if we want to minimize E(p). There are also other choices of error measures that would
make sense other than E(p), such as the average error

em(p) = f e(p, r)dr . (5.4)
ISNI IN

We could also use another metric besides e(.) to measure the distance between r and S(p). It is
clear that as the density of a uniformly dense constellation increases, many of these reasonable
error measures will decrease, keeping the maximally dense uniform constellation as the best choice
among uniformly dense constellations.

However, the vector p+ is not necessarily equal to p*. It turns out that we can easily come
up with other vectors p with nonuniform constellations with equal or smaller measures of error
(either maximum error, or as we show first below, average error). We also give an example of a
vector p that, although we do not show that it is equal to p*, outperforms p+ with respect to the
optimization problem in Equation (5.2).

We first present an example that shows that even a simple modification to the vector p+ can
result in a new vector that outperforms p+ with respect to the average error. Look at the two

97

constellations in Figures 5-2 and 5-3. The uniform constellation in Figure 5-2 uses pieces with
sizes

P1 = P+ = (1/40, 1/40,2/40, 3/40,4/40, 6/40, 9/40,14/40)

and is the maximally dense uniform constellation as determined using Algorithm 5.1, and the
constellation in Figure 5-3 uses pieces with sizes

P2 = (1/60, 2/60, 3/60,4/60, 6/60, 9/60, 14/60, 21/60)

We will use Mj to denote the number of equally-sized pieces needed to emulate pi. By Theorem 5.1,
we know that E(pi) = (N - 1)/NM' = 2/(3 - 40) = 1/60. We define M2 as the number of
equally-sized pieces that would be needed to generate a uniformly dense constellation equal to
the constellation in Figure 5-3 with the holes filled in to make the geometry completely regular.
Looking closely at the nonuniform constellation in Figure 5-3, we see that the only missing points
are isolated from each other. It is easy to see that if we choose r to lie where one of the points
is missing, the closest schedule will be distance 1/M = 1/60. If we try to maximize the error by
putting r anywhere else, we will get (N - 1)/NM2 = 1/90, so E(p2) = 1/60 = E(p1). However,
it is obvious from the figure that the average error between an arbitrary r and the closest schedule
is much smaller in the nonuniform constellation (there are only a few small areas in which it could
be larger). We can get a rough idea of how much smaller by considering the number of points
in the two constellations. The number of points in the uniform constellation is N1 = 861 and
the number of points in the nonuniform constellation is N2 = 1881. This means there are more
than twice as many points in the same area for the nonuniform constellation. If the nonuniform
constellation had the few holes filled in, the average error would be proportional to the maximum
error 1/90 (or equivalently, proportional to the density). Call this average error a/90. The 10 holes
in the constellation at most increase the average error for the 60 surrounding points to a/60, so
an approximate upper bound on the average error would be a(1/90 + (60/1881) - (1/60)) ~ a/85.
The average error in the uniform constellation would be approximately a/60. Empirical studies for
these two constellations show that the ratio of the average error of the nonuniform and the uniform
constellations is approximately 0.67 (compared with the approximate upper bound of 60/85 ~ .7).
This indicates that pi may not perform as well as other almost-regular nonuniform constellations
under varying error measures.

We can even exhibit an example vector that outperforms p, with respect to both the average
and maximum error measures. If we use the vector p3 such that

P3 = (1/6277) - (128, 164, 288, 432, 648, 972, 1458, 2187)

the maximum error is smaller than 1/60 as can be determined by an exhaustive examination of
the constellation (shown in Figure 5-4). Empirically, the average error also appears to be about
1/2 the average error of the constellation of pi. Uniformly dense constellations do not have the
smallest maximum error over all possible constellations, as the example above illustrates; there are
other constellations that are much denser on average, and provide better worst-case bounds.

A drawback to the use of nonuniform constellations is that it is more complicated to determine
the optimal schedule. Uniformly dense constellations can be scheduled using the simple algorithm
given in Section 5.4.4, but the algorithm does not select the optimal schedule for arbitrary nonuni-
form constellations. In fact, as we show next, determining the optimal schedule given an arbitrary
size vector p and capacities r is an NP-hard problem.

98

5.5.1 Difficulty of Finding the Optimal Schedule or Allocation for Nonuniform
Constellations

It appears that the problem of determining the optimal schedule and allocation in a nonuniform
constellation given an input vector r is more difficult than for a uniform constellation. In order to
establish that, in fact, the problem of determining the optimal allocation is NP-hard, we show that
any algorithm that computes the optimal allocation would also allow us to solve the set partition
problem, which is NP-complete [12]. See [12] for background information.

The set partition problem is defined as follows. Given a set A of integers with sum A, does
there exist a subset A' of A such that E> A' = (1/2) >i Ai = A/2? This question can be answered
by an algorithm that computes the optimal allocation given a size vector p and capacities r. All
we have to do is set pi = Ai/A and r1 = r2= 1/2 for M = JAl and N = 2. Then, our algorithm
will compute the optimal allocation from which we can find the optimal schedule s by matrix
multiplication. If s = r, then there is a partition of A. Otherwise, there is no partition because
s minimizes the maximum componentwise error between any schedule and r. So, because the set
partition problem is NP-hard, computing the optimal schedule must also be NP-hard.

The NP-hardness of the general allocation problem, and our ability to completely characterize
the set F gives us a simple division of the space of possible size vectors p. For all p E F, the
determination of the optimal allocation and schedule is accomplished through a simple greedy
algorithm. For all other p V F, this determination is not as straightforward, and in the worst case
requires the solution of an NP-hard decision problem.

The scheduling problem can be solved using a nondeterministic Turing machine by simply
iterating through the resource pieces and trying all possible positions for each piece in parallel.
Thus, the problem is NP-complete.

Even if this scheduling problem is NP-complete, are there practical situations in which a re-
stricted version of the optimization problem can be solved exactly or approximately in polynomial
time? For instance, if we only consider vectors p such that the maximum element of the corre-
sponding P is bounded below some number B then the optimal allocation can be computed by
a pseudo-polynomial algorithm [19], at least for N = 2. There might also be polynomial time
approximation algorithms which allow us to find a schedule that is guaranteed to have an error
close to the optimal error. We leave these questions for further investigation.

5.5.2 Simple Nonuniform Constellations

Although the general optimization problem with nonuniform constellations is hard to solve, it is
possible to examine a few simple cases and solve directly for the best nonuniform constellation.
These examples establish that N = 2, the uniform constellation has the smallest worst case error
but for N = 3, uniform constellations do not necessarily have the best error characteristics.

Start by assuming that N = 2 and M = 2. In this case, we have 4 possible schedules: (0, 1),
(a, 1 - a), (1 - a, a), and (1, 0). It is obvious that by choosing a = 1/3 we will get the smallest
maximum error; this is equivalent to the maximally dense uniform constellation.

Next, assume N = 2, and M = 3. Again, if we choose p = (1/7, 2/7,4/7) we will get the
smallest maximum error as well as the maximally dense uniform constellation. In fact, for N = 2
the maximally dense uniform constellation always gives the smallest maximum error for any M.
This is because we are simply placing 2M points on a line; placing them uniformly spaced gives us
the smallest maximum distance between adjacent points and thus the smallest maximum error.

Now, assume N = 3, and M = 2. In this case, p = (1/2, 1/2) yields a uniformly dense
constellation and choosing p = (1/3, 2/3) results in the same maximum error, 1/3, but smaller

99

0.65

0.-6
-0.55 1

E 0.5 -

S0.45

.0.35-F

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.35 --

0.3 -

E!0.25 --

0.2 --

0.15 -
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 5-7: Average and maximum error for N = 3, M 2 for a range of constellations. Approx-
imately 5000 sample points were used to compute the error statistics. This translates to a bound
of ±0.02 on the maximum error.

average error with a nonuniform constellation. The average error turns out to be 0.16 as opposed
to 0.19 for the maximally dense uniform constellation. In fact, empirical data shows that p =

(0.35, 0.65) results in an even smaller average error for the same maximum error. A plot of the
average and maximum error is given in Figure 5-7 for a fine sampling of all possible constellations.
The constellations can be parameterized by a single value we will call a. A constellation corresponds
to p = (a, 1 - a) for 0 < a < 0.5. We have plotted error statistics for a = 0.01, 0.02, ... , 0.5. The
plots were obtained by sampling the entire space 53 evenly and then perturbing the sample points
slightly on the plane. From the plot of average error, it is clear that the minimum error occurs
near a = 0.35.

If we repeat this for N = 3 and M = 3, we get similar results; the maximal uniformly dense
constellation p+ = (1/4, 1/4,1/2) has maximum and average error measures of 1/6 and 0.1, respec-
tively, but is outperformed by other size vectors, such as p = (1/6,1/3,1/2) which has a maximum
error slightly smaller than that of p+ and an average error of approximately 0.077. These error
measurements are reduced slightly at points near p.

Continuing this process for larger N or M is computationally very difficult. The complexity of
this process arises because the objective function, Equation (5.1), that we are trying to minimize
is very difficult to evaluate. A straightforward approach as we have used involves generating large
numbers of sample values of r and computing the worst-case error over all of the samples as a
lower bound on the value of our objective function. Even just computing the worst-case error for
a single sample in an arbitrary constellation is an NP-hard problem if the computation is done by
first finding the closest point in the constellation (which is NP-hard), then computing the distance
between the sample and the closest point.

100

5.6 Aside: Bits and Pieces

As we mentioned earlier, the general static allocation problem of Section 3.1 is equivalent to a vector
quantization problem. The goal of a vector quantizer is to minimize the number of bits per sample
needed to encode a stream of samples to a maximum level of error or distortion. In this chapter,
we have the same goal, but we are restricted to dealing with what we might call a building-block
quantizer; the output of the quantizer is formed by partitioning a set of building blocks among the
elements of the output. A uniform scalar quantizer is the simplest building-block quantizer, where
the output of the quantizer can be thought of as having been assembled from some subset of a
number of building blocks called bits. If the input number is an integer between 0 and 1, then the
blocks have sizes 2 i-B for 0 <i < B - 1 to give a resolution of 2 -B. A general vector quantizer will
not have this kind of structure; the constellation points are chosen for their geometric properties
directly. The problem we are solving here is how to determine the sizes of these building blocks in
order to get the smallest distortion measured over all possible input values.

As an illustration of how this problem differs from a more traditional quantization problem,
consider what happens when we compare the number of bits required to represent an allocation
built out of these blocks with the number of bits needed to quantize the input directly using a
uniform scalar quantizer for each element of the input. An allocation consists of a mapping of M
resource pieces to N users. Each resource requires approximately log 2 N bits to specify the user
it is allocated to, for a total of M log 2 N bits to represent the entire allocation. We compare the
following situations using the resolution of the resulting quantizer, which is proportional to the
worst-case quantization error. We have shown in this chapter that this number of bits gives us an
upper bound on the resolution of

ro(M) ~ ((N - 1)/N)M-1

if we choose the sizes of the blocks properly. If we instead want to encode the schedule directly
with the same number of bits, we can gain a better resolution over a larger space of inputs by
simply splitting the bits equally between the inputs. Given N inputs, we have (M log 2 N)/N bits
per input. This leaves us with a resolution of

ri(M) 2 -(Mlog 2 N)/N = N-M/N

This decreases faster than ro as N increases, and so gives better resolution for a given number of
bits. Also, because we are splitting the bits evenly, we are accounting for a range of input values
that allow each individual input to vary from 0 to 1 independently, instead of the restriction that
the sum of the inputs be equal to 1. This allows us to represent inputs over a much larger range,
and perhaps even increase the resolution further if we use a smarter bit allocation.

What if we keep the basic restriction that we have a limited number of building blocks? This
implies that we will only have M blocks to split across the elements of the output. By giving M/N
bits to each element, we can now achieve a resolution of

r 2 (M) ~ 2

for the direct encoding of the input. This is equivalent to assigning a group of blocks to be used only
for a single input element, and using block sizes that are powers of 2 within each group. Because
(N - 1)/N < (1/ 2)1/N, we now have that r 2 decreases more slowly than ro with M.

This still leaves us with the problem that the region of input vectors that can be represented is
larger when we quantize each element independently. However, if we simply scale the sizes of the

101

N=3

-- - _ _ Best Blocks
- Scaled Blocks

- Equal Bits
-- Equal Blocks

20 40 60 80 100
N27

20 40 60 80 100

01010 0

10-10

0
10

10-1

N=5

!. !

0

20 40 60 80 100

Figure 5-8: Comparison of resolution achieved for N = 3, 5, 7, 9 and M = 5,. ., 100.

original blocks by N, we make the resolution worse by a factor of N, but can now represent any
N-dimensional input such that each element is between 0 and 1 independently. Additionally, the
resolution r' is still asymptotically better than r 2 :

r (M) N - ((N - 1)/N) M 1 .

We show examples of the 4 resolution measures ro(M) ('Best Blocks'), r4(M) ('Scaled Blocks'),
ri(M) ('Equal Bits'), and r 2 (M) ('Equal Blocks') in Figure 5-8 for values N = 3,5,7,9 and M =

5, ... , 100.

102

10

10

10

20 40 60 80 10
N=9

. .

Chapter 6

Applications of the Variable-Sized
Channel Results

We begin in Section 6.1 with a basic dynamic model which fits in our framework from Section 3.2,
building on the scenario and results presented in Chapter 5. After a presentation of the problem
and discussion of how it fits in with our model, we show how the results from Chapter 5 can be
incorporated into this dynamic model and used to improve performance in a number of different
ways in various applications in subsequent sections.

We present three representative applications of the previous results to scheduling problems
arising in:

" distributed sensor communication;

" virtual grouping of channels in multichannel communication systems;

" batch queue servers.

All three use the same model for the dynamics of the system, which we described in Section 6.1.
We then discuss in Section 6.2 how the results from the previous sections can decrease the buffering
requirements in a specific shared-link distributed communication environment. In Section 6.3 we
use the previous results to reduce the control complexity in a communication system with a large
number of small identical channels. In Section 6.5, we show how to design a batch queueing system
with multiple servers with differing service rates such that the system has a large throughput while
never having any idle servers. A basic assumption we make here is that the resource pieces are
strictly additive; i.e., if a user receives more than one piece, the set of pieces is just as useful as
a single piece with the same total size. Finally, in Section 6.6 we discuss modifications of these
applications in which failures of the resources can be handled through the use of sets of resource
pieces that are robust to the removal of some number of pieces.

6.1 Dynamic Model

In order to illustrate how the earlier scheduling results can be applied to specific circumstances, we
will first introduce a basic model of a dynamic scheduler. Consider a situation in which a resource
comprising M interchangeable pieces (with sizes specified by a fixed vector p) is to be repeatedly
allocated to a set of N users during a sequence of allocation rounds. The desired fraction of the
resource or reservation that the respective users want takes the place of the bin sizes f in the generic

103

problem from Section 5.1; we assume that f, like p, is fixed. At the beginning of round n, a new
allocation is chosen by a scheduler, and the users employ the allocated pieces for the duration of
the round. The goal of the scheduler is ensure the schedule s[n] of pieces has a time average close
to the desired schedule f. As in Section 3.2, we define the dynamics as

f[n + 1] = f[n] + f - s[n] , (6.1)

and we define f[0] = 0. Note that f[n] is allowed to have negative components, i.e. 'lead' components.
We choose an allocation at round n that minimizes the predicted lag:

s[n] = arg min f| [n] + f - s jjo (6.2)
scS(p)

= arg min fIe[n + 1]|.
sES(p)

The basic idea behind this scheduler is to try to keep the lag bounded by choosing s[n] to minimize
the size of the lag vector at the next time step, f,[n + 1]. If the absolute value of the elements
of the lag vector stay bounded below some finite number b, then the time average schedule will
converge to the desired schedule f as we saw in Section 3.2. We now show that using this dynamic
scheduler with M equally-sized pieces results in B < 1/M for all k in a set fR C SN. We call the
set of vectors R the uniform rate set.

Theorem 6.1 (Lag Bound for Equally-Sized Resources) The scheduling rule in Equation (6.2),
with M equally-sized resources (p = P0) yields

Ii[n<N - 1 K 1
-N M M

for all i, n, and f G P. The uniform rate set R is the set of vectors f such that for all s E S(po)
there is no pair of indices i and j such that (si - ri) - (sj - rj) > 2/M.
Proof: Follows from Corollary B.2 and Theorem B.6 in Appendix B.4. a

We can interpret the set R as a constraint that i is not closer to any point whose elements sum to
1 and are multiples of 3 that is outside the schedule constellation S (these points outside S have
at least one negative element) than it is to a point in S itself.

Figure 6-1 depicts R for M = 8, N = 3. As the figure shows, the set R is a large subset of

S3, only lacking small sections near the boundaries. For large values of M, this means that f is a
large portion of the total volume of S3. To see that R remains a large portion of the total volume
for larger N, note that even for large values of N, the set of points f such that ri ;> 1/M for all i is
a subset of R. This subset only neglects the boundary of SN, and as M increases the thickness of
the excluded boundary decreases. So, because the set R contains this smaller subset, R is a large
portion of SN for large values of M and N.

It is important to realize that the restriction of T to f is needed only to guarantee the simple
lag bound of Theorem 6.1. In practice, when f is allowed to take values anywhere in SN, the lag
appears to satisfy the bounds

(N-1 1) (N 1 2)
- N I --- < fi[n] < - - .

N M)- N M)

This means that the benefits that we get by using variable-sized pieces (as we see next) still apply
for these values of f, although the actual bounds may be larger than when f is in the set R. 1

'The tightest analytical bound we have come up with so far replaces the 2 with N - 1; however, empirically the
given bound holds.

104

0 0 0

0 10 0 0, 0

(1,0,0) (0,1,0)

Figure 6-1: The uniform rate set for N 3, M 8. The circles are the points in S(po), the

dashed lines are the axes, the dash-dot lines indicate the region SN, and the solid lines indicate the

boundary of the region R.

We can relate these lag bounds with the earlier stability results for deterministic models in

Chapter 4. In this case, we have a very tight bound on the variation of the lag. It turns out

that because of the geometry of the constellation, the allocation regions achieved by using an

optimization criterion based on the oo-norm is equivalent to the regions achieved when the 2-norm

is used. We would expect then, from Theorem 4.3, that the lag would be ultimately bounded. In

fact, in this case the lag is bounded very closely to the convex hull of the constellation.

6.1.1 Variable-Sized Resources

Theorem 6.1 applies to equally-sized pieces. However, if we allow p to be any M-dimensional

vector that corresponds to a uniformly dense constellation, we can choose schedules at each round

to exactly emulate as many as P+(M) equally-sized pieces. We can therefore generalize Theorem 6.1
as follows.

Theorem 6.2 (Lag Bound for Variable-Sized Resources) The scheduling rule in Equation (6.2),
with M resources of sizes given by p that correspond to a uniformly dense constellation S(p) yields

N - 1 1 1
AMIn] < < -

-- N M' M

for all i, n, and f E P where M' = P(M). The uniform rate set R is the set of vectors r such that

for all s E S(p) there is no pair of indices i and j such that (si - ri) - (sj - rj) > 2/M'.

Proof: Follows from the emulation property. m

Because M' is maximized when p = p+, using p+ will give us the tightest lag bound. Although

the preceding lag bounds have factors relating to N in them, we will ignore them in the following

sections. We are more interested in the properties of the scheduler as a function of M, so we use

the upper bound 1/M (or 1/M') as the actual lag bound.

6.2 Distributed Sensor Data Transmission

Now that we have the basic model set up, we will move to an application of the variable-size results

from Section 5.4 as an illustration of how they might affect the design of a communication system.

105

We have N > 1 sensors, each producing data at a particular (unknown at design time) rate. We
call the vector of these rates r. It is important to realize that all of what we present here only
makes sense if this rate vector is unknown at design time, or may change with time. If it is constant
and known, we can simply design channel sizes to exactly carry the right amount of data for each
sensor. The data all has to be broadcast back to a central processing server over the same shared
communication link. The shared communication link has a capacity of 1 Gbit/sec. Our goal is to
design a partition p of the communication link into M independent channels that will be used for
communication between the sensors and the central server. Our options are:

" M equal channels, pi = (1/M) Gbit/sec each;

* M variable-sized channels, E pi = 1 Gbit/sec.

The allocation of channels to sensors is updated once every second. We assume here that the
i-th sensor is producing data at a constant rate ri, and so if we have a large enough buffer in the
sensor, the sensor will be able to make use of whatever allocation of capacity it is given during each
update. We will compare the cases of equal- and variable-sized pieces with respect to the variability
of the capacity allocated to the sensor transmitters, and amount of total buffer space needed at the
sensors. If we know that the lag is bounded by ±B, then the buffer space required to handle the
worst case lag for sensor i is at least bi = ri + B.2 This happens when the lag is equal to B, or we
are B Gbits behind in sending data, and the sensor produces ri Gbits more data to send.

6.2.1 Many Equal Channels

This means that if we use M channels of equal size, the i-th sensor requires at least ri + (1/M) Gbits
of buffer space because we know the lag is bounded by 1/M. It is clear that the more channels we
use (larger M), the closer we can approximate the number of bits each sensor wants to send during
each second, and the less the buffer varies over time. However, we still need to buffer at least ri bits
for each sensor. Also each sensor needs to be able to send at rates in the range ri ± (1/M) Gbits/sec.

However, as more and more equal channels are used, the complexity of assigning and tracking
the allocations, and the necessity of having the sensors send on a number of channels simultaneously
makes the scheduling fairly complex.

6.2.2 Many Variable-Sized Channels

When we allow the sizes of the channels to vary, we can either decrease the buffer space needed at
each sensor, or reduce the complexity of scheduling. For a given number of channels, M, variable-
sized channels can emulate M' equal channels, where M' < P(M) for some P that corresponds
to a p that has a uniformly dense constellation. So, for the same scheduling complexity, we can
reduce the buffer requirements to ri + (1/M') for each sensor. When M < N, the optimal variable-
sized channels are simply M equally-sized channels because there is no other choice if we are to
stick with a partition p that yields a uniformly dense constellation. When M > N, the optimal
variable-sized channels start to differ from the equally-sized channels. Because the allocations are
able to approximate the data rates more closely than with equally-sized channels, each sensor will
be sending at a total rate in the range ri ± (1/M') (across all allocated channels) which is closer to
its data rate ri during each second than if we had used equally-sized channels. Thus, the variation
in transmission rates for a particular sensor is decreased.

2This is a lower bound on the required buffer space, because if r is not in the uniform rate set R, the lag could be
worse and force the sensor to store more data.

106

M 345 16_ 7 8 91011 12

N - 3 4
__ _ 4 7 11 17 26 40 61 92 139 209

N -4 _T_ -5

____ 35 10 1926 5 47 6

3_ 34 6 8 11 14182329 37

Table 6.1: Values of fairness ratio ^YM for various combinations of N and M.

15
10

5 5 10 15 20 25 30 35 40 45 50

N
M

Figure 6-2: Values of fairness ratio yM.

The main drawback to using variable-sized channels in this situation is that each sensor must be
able to send data at a wide range of possible rates on differently-sized channels. However, because
we can choose channel sizes anywhere between equally-sized to p+, we can tune the system to the
abilities of the sensors. By choosing P appropriately, we can vary the ratio between M and M'

and the range of channel sizes. If we define the ratio M/M' as -y, we can express the total buffer
space required for all of the sensors as 1 + -y(N/M). We will define -yM as the maximum value of -y,
for M' = P+(M) and will refer to it as the fairness ratio. We can sacrifice buffer space for sensor
simplicity. For example, if we choose the sizes

p = (1/30,1/30, 2/30, 2/30,4/30, 4/30, 8/30, 8/30)

instead of

p+ = (1/40,1/40, 2/40, 3/40, 4/40, 6/40, 9/40,14/40),

we get -y = 4/15 as opposed to -yM = 1/5. However, each sensor only needs to be able to send at 4
distinct rates which are geometrically related and may be more practical to implement.

Table 6.1 shows values of yM for a number of values of N and M, and Figure 6-2 shows similar
data graphically. Our previous bounds for a system with M equally-sized channels showed that the
lag was bounded closely to the reservation by ±1/M. By varying the sizes of the channels, we can
get an exponential decrease in the lag/reservation difference, and we require less buffer space for
the sensors. Also, by reducing the variability of the channel capacity allocations to the sensors, we
decrease the latency from ri + (1/M) to ri + (1/M') because less data needs to be buffered before
being sent.

107

Although using variable-sized channels reduces the buffer space required, in the region where
M is large compared with N, where variable-sized channels give the most benefit, 1/M is much
smaller than ri. The reduction in buffer space that results is not a very large part of the space
needed for the reservation for each individual sensor. Even if we instead consider the total buffer
space for all of the sensors (perhaps at the central server, where data may need to be sent to the
sensors) this reduction becomes larger, but still remains the smaller portion of the buffer space
required. The total buffer space required is

N N

N
M

For this case, if M is much greater than N, the bulk of the buffer space comes from the first term,
and as N increases, the maximum reduction due to -y decreases as well. In many cases, however,
y can provide a measurable benefit. For instance, if we consider the N = 3, M = 8 case again,
the total buffer space with equal channels is 1.375 Gbits as compared with the space needed for
variable channels with the maximum yM of 1.075 Gbits, a reduction of about 30%. Even for N = 9,
M = 24, we get 1.11 Gbits compared with 1.375 Gbits, a 25% savings.

The real advantage to using variable-sized channels is that the variation in the lag is reduced by
a factor of -y. This means that the data that is sent by the sensors is received more smoothly over
time instead of in large bursts. At the end of time slot n, each sensor has sent its desired amount
of bits, rin plus or minus (1/M') Gbits. For example, with N = 9, and M = 24, -YM = .29. So, if
we used M equal channels, the variation of the lag would be ±41.7 Mbits; with M variable-sized
channels, the variation would be ±41.7 Y 7M Mbits, or ±12 Mbits. With N = 10, and M = 100,
YM = 4.7 x 10-4. Now we reduce the lag variation from ±10, 000 Kbits to ±10, 000 - -Y Kbits, or
±4.7 Kbits.

6.3 Many, Many Resources: Virtual Channel Groups

Another region of interest is when M is very large. Consider a telephone cable with a total capacity
of 1 Gbit/sec. Assume that the link consists of 1000 smaller, 1 Mbit/sec physical channels.3 If
we were to try and allocate these physical channels between a few users with large data rates,
any scheduling scheme that tries to allocate the physical channels individually will quickly become
very complex. However, if we consider instead the problem of partitioning the M channels into a
smaller number of channel groups that can be allocated to the users as a whole, the results above
tell us that we can achieve the allocation granularity of M channels by using a smaller number of
larger channels that grows logarithmically in M. To do this, we run the channel capacity design
algorithm m rounds until P+(m) > M. If P+(m) = M, we are finished. If P+(m) > M, we can
simply replace the m-th element of p+ with a smaller one so that P+(m) = M. These capacities
still produce a uniform constellation and can represent any allocation with a granularity of 1/M.4

3 The numbers are not realistic, but the right order of magnitude.
4 The first part of this statement follows because if we have a sequence p+ of sizes, we can insert any other size d

between pt and pt such that pt < d < pt and be able to have a uniformly dense constellation with the new set of
sizes p'. This is because d < pt, so it does not violate the property of Lemma 5.4, and the remaining p+, k > j also
do not violate the property.

108

120

100-_-N=
0- N=7N N7

- 80 - N=10
C

0

3 20 - - --

10 102 1 0 10 10 10
Number of Real Channels

Figure 6-3: Number of channel groups needed for N = 4, 7, 10 and values of M between 10 and
106.

For example, if N = 10 and M = 1000, we only need m = 50 channel groups to simulate the
1000 physical channels. 5 This can be a benefit in a practical implementation, as the scheduling
algorithm only needs to keep track of the channel groups, not the actual channels themselves.
Figure 6-3 shows the number of channel groups needed for N = 4,7, 10 and values of M between
10 and 106. The reduction in control complexity, also reduces the amount of storage needed to
specify which users are allocated which channels. If we take the above example again, we will only
require 50 log 2 10 ~ 200 bits to store a complete allocation of the 10 users to the 1000 channels
without any loss of granularity. If we were to allocate the channels individually, we would require

1000 log 2 10 ~ 4000 bits. This method of grouping channels allows a large reduction in the amount
of control data that needs to be manipulated.

6.4 Varying Numbers of Users

Up until now we have restricted the number of competing users to be a constant. This is required
because the sizes of the resource pieces or channel groups that we choose depend on the number
of users. We can obviously account for changing numbers of users if we can switch between sets of
piece sizes depending on how many users are currently competing. In a somewhat static case such
as this, where users do not come and go often, we can simply change the channel groups when a
new user arrives or an existing user departs. This will only require us to also keep track of the
number of users (log 2 N bits) for which we make a particular allocation.

If it is practically infeasible to have this many possible configurations, we can always use a few
configurations for a few values of N, and simply choose the configuration for the smallest value of
N that is at least as large as the number of users.

5For m = 50, we can actually simulate 1083 physical channels.

109

P4 P2 P3 P P 6 7 P

Figure 6-4: Batch queueing setup. Each of the four queues is connected up to some subset of the
servers.

6.5 Batch Queueing System

Another possible application when M can be very large compared with N is in certain parallel
processing applications. If we have a large number of identical processors that must be allocated
among a few processes, we can come up with groups of processors that can be allocated together
without reducing the ability to allocate the processors with a granularity of a single processor. This
not only reduces the complexity of scheduling the processors, but allows the groups to be decided
beforehand to minimize other costs such as communication between processors. This also requires
that we are trying to allocate the processors according to some set of computational reservations
assigned to the processes, and that the processes always have enough work for the number of
processors assigned to them. The next application describes a situation which might be able to
model a situation in which the work for each of the processes comes probabilistically, but with some
average rate.

Although we have talked about variable-sized channels in the case where the data rates are
constant, it is also important to consider a queueing model, where jobs arrive and must be serviced
according to a probabilistic model. The previous examples assumed that each user could always
make use of whatever allocation it was given; here, data may not always be available, or queued,
for processing or transmission.

We consider a setup in which jobs of N different classes arrive at a total rate of less than R
equally-sized jobs per round. They are kept in separate queues for each class. There are M servers
available; server i can accommodate a maximum of P jobs of the same class every round, and
incurs a cost of C2(s) dollars when it services s jobs during a particular round. This setup can
be pictured as N input queues being routed to M servers as shown in Figure 6-4. At each time
slot, we need to select which servers are connected with each queue. Scheduling decisions are made
every round, wherein each server is allocated to some class. A server is never left idle if there are
additional packets to be processed (i.e. the scheduling policy is non-idling). As before, A[n] c A is
the allocation matrix for round n, and s[n] = min(e[n], PA[m]) is the schedule that determines how

110

many jobs are able to be processed from each class. The total cost during each round is

M

C [n] = Ci(si [n])

with the constraint that a server can not be idle if there are still packets to be processed. Our
objective is to select the parameters P with EM Pi > R such that the average cost per round is
minimized,

n
S=lim EC[Tn].

m=1

Similar to our earlier work, we will concentrate on choosing sizes Pi such that the vector P = mP',
where P' is an integer vector such that p' = P'/P' C I'(M, N + 1) and m is an integer. This
guarantees that servers with sizes P can emulate P' servers of size m. Just as before, if the choice
of P is left completely unconstrained, the problem of selecting and using the optimal vector P is
difficult.

Although we have stated this optimization problem precisely, we are not concerned here with
exact solutions or examining specific scheduling policies; instead, we would just like to outline how
our previous results prove useful in approaching a solution to the optimization problem.

In many contexts, a cost Ci(s) = P + as for a busy server is appropriate. The first cost term,
Pi, is a fixed start-up cost equal to the size of the server if the server is busy and zero otherwise,
and the second job-specific cost, as, is proportional to the number of jobs served. It is easy to
see that the average job-specific cost over a large number of rounds under any non-idling policy is
equal to the average number of packets that are processed per round which is independent of the
scheduling policy and server sizes, making the job-specific cost not very interesting as far as our
optimization objective is concerned.

So, we will neglect the job-specific cost, and concentrate on the start-up cost for a busy server,
Ci(s) = P. This cost is equal to the size of the server if the server is busy, and independent of the
actual load on the server. For example, when a number of processors are shared among a number
of users, if one user locks up a processor for a certain amount of time, but leaves the processor idle
for part of the time, the effective cost is the total amount of time, not the busy time, because no
other users can use the processor. In this case, the choice of server sizes affects the average cost.

We begin by considering the case when R < P+(M, N + 1). When we set the speeds Pi of the
servers equal to P for N + 1 bins and M pieces, we will be able to serve at a total rate up to
P+ (M, N + 1) jobs per round. This is easy to see by considering two cases. First, if there are more
than P+(M, N + 1) jobs in the queues, we know that we can allocate any set of P+(M, N + 1) of
them in N queues by the definition of P+, filling all of the servers during that slot. Second, if there
are K < P+(M, N + 1) jobs in the queues, imagine an (N + 1)-th queue with P+(M, N + 1) - K
imaginary jobs in it. By definition of P+, we can schedule all of the (real plus imaginary) jobs
from N + 1 queues into M servers by allocating each server to a single queue; all of the servers
that are allocated to queue N + 1 are left idle for that slot. Thus, no matter how many jobs are
in the queues, we will be able to allocate the M servers to the N queues in such a way that either
a server is completely full, or is completely empty for the entire slot. This allows us to implement
non-idling scheduling policies by only making decisions at fixed, regular time instants. Also, from
the definition of P+, any other P that violates the condition of Lemma 5.4 will not be able to
schedule at least one possible configuration of the queues in this way. It is also clear that the cost
C[n] is never less than the number of packets serviced during round n. In this case, the cost C[n]
is exactly equal to the number of packets serviced at each round, and so C[n] is minimized at each

111

35- - ... --- - --

30 - - -.---- -

25-

- 20-

15 -

10-

5 10 15 20 25 30 35 40
#of Packets

Figure 6-5: Cost profiles for variable- vs. equally-sized servers; R 40, M 8, N + 1 = 3.

round over all possible sets of server sizes that sum to at least R. This implies that the average
cost C is also minimized when we use server sizes equal to the elements of P+(M, N + 1).

As a comparison, consider using M equally-sized servers instead, each of speed P = FR/M] > 1.
By the construction of P+, the difference in cost between processing K packets and processing
K + 1 packets is exactly one dollar. This follows because we can always find an allocation that
serves exactly those K + 1 packets with no idle time. However, for equally-sized servers, the cost
differential for an additional packet from user j is either 0 if there is a partially empty server
already assigned to user j or FR/Mi if all servers assigned to i are currently full, and the total cost
required for a given number of packets is never less than the cost required with the variable-sized
servers because there may be partially empty servers. In other words, C[n] may be larger than
its minimum possible value. In the worst case, if each user has a single packet, N packets require
N - [R/Mi dollars because each packet requires a separate server. For the variable-sized servers,
each packet will use a server of size 1, and so only N dollars will be spent. We can visualize the
difference between the M equally-sized servers and the M variable-sized servers by plotting the cost
required to process some number of packets during a round (see Figure 6-5). The figure actually
shows three cost profiles. The solid line corresponds to the variable-sized servers, where processing
p packets requires p dollars. The dashed line shows the best-case cost needed when we use equally-
sized servers. This minimum cost occurs when only one of the user queues has a partially empty
server assigned to it at a time. The dash-dot line shows the worst-case cost needed for equally-sized
servers. The worst-case cost occurs when all of the queues have partially empty servers. Ideally
we would like to plot cost versus the number of packets in each queue, but we can not visualize
this easily for N > 2. As an example of the difference between the best-case and worst-case costs,
assume we have a total of 12 packets waiting to be processed. No matter how we distribute them
to the three users, we will always require at least 3 servers of size R/M = 5 to process them. This
gives us the best-case cost of 15 dollars. It is also true that there is no way to distribute the 12
packets to the users that uses more than 4 servers. This gives us the worst-case cost of 20 dollars.

Now we have to consider what happens when R > P+(M, N + 1). As we have mentioned, we
will concentrate on choosing sizes P such that the vector P = mP', where P' is an integer vector
which corresponds with a uniformly dense constellation and m is an integer. By this definition P

112

- I - ~ ~ -

100-

40-

20

00 02 03 04 0 L5 06 07 08 09 1
Load

Figure 6-6: Average cost C over a range of loads for M 8, N 2. The solid line shows the
average cost when using P' = P+(8,3) and m = 3, the dashed line shows the average cost when
using equal servers of size 15, and the dash-dot line shows the minimum possible average cost (R
equal servers of size 1).

has a larger, scaled constellation with a coarser resolution. In order to handle an average rate less
than R, we need mP' = P > R. By the emulation property, servers with sizes P' can emulate
P' servers of size 1. Thus, servers with sizes P can emulate P' servers of size m. If we are only
considering variable-sized servers that emulate some number of equally-sized servers, then the size
of the emulated servers, m, is the metric that we would like to minimize. The smaller m is, the
closer we can approximate the current profile of packets in the users' queues. For a size vector P',
we define the smallest m that meets the minimum service rate requirement as

m= -1.
P'

From this, it is clear that the smallest value of m (we will call it m+) that is possible with
the uniformly dense restriction on the vector P' occurs when we maximize P' by choosing P'
P+(M, N + 1).

It is also clear that, in general, we will have capacity that exceeds the maximum average rate
R and so there will actually be a number of possible vectors P' that can be used, as long as
m+P' > R. For example, if M = 8, N = 2, P+(M, N + 1) = 40. If R = 60, then m+ = 2 and
m+P+(M, N + 1) = 80. We could also choose P' = (1, 1, 2, 3,4, 6, 6, 7) which corresponds with a
uniformly dense constellation, and m+P' = 60 = R. This choice of P' will result in smaller initial
costs needed to buy the servers, and also has a smaller spread between the smallest and largest
elements which would be more practical to implement. In general, we can pick any element P' that
corresponds with some p' E F(M, N + 1) such that m+P' > R.

Simulation results are shown in Figure 6-6. The plot shows the average cost when using the
same set of servers for a number of different loads. The load is the ratio between the average arrival
rate of jobs and the maximum processing rate of the servers. During each round, the number of
jobs that arrive at each of the two input queues is a Poisson random variable. We see that using
variable-sized servers, we have a roughly constant decrease in average cost for low loads. As the
load increases, the queues are very full more often, and then the servers can almost always be

113

t PO

completely filled no matter how we choose the sizes of the servers. By choosing the sizes as a
multiple of the vector P+(8, 3), we are able to achieve a smaller average cost than for equally-sized
servers over the entire range of loads.

6.5.1 Package Delivery Problem

Now consider another illustration of these results. A shipping company must deliver a large number
of packages from its central office to a small number, N, of satellite offices every day. Assume that
the packages are all the same size, and that packages arrive at an average rate P per day. The
company has M possible drivers, and we will assume that it will buy exactly M trucks to deliver
the packages. In the course of buying the trucks, the company has to decide what sizes (as integer
multiples of the package size) to buy.

We assume that a component of the cost for a delivery is directly proportional to the size of the
truck (as before we neglect the cost proportional to the load). If this is the case, then the company
would like to choose the sizes of the trucks to minimize the empty space on the trucks when they
make deliveries.

As we saw for the batch queueing system, we will assume that the company buys M trucks
with a total capacity of at least R > P. The sizes of the trucks will be chosen to be the elements
of the vector mP+(M, N + 1) where m is the smallest integer such that mp+(M, N + 1) > R. If
P < R < P+(M, N + 1) (and thus m = 1), these sizes will allow us to accommodate any possible
set of deliveries up to the maximum capacity P+(M, N + 1) of the trucks, with no empty space.
It is clear that this distribution of sizes minimizes the delivery cost because it always uses trucks
whose total size equals the number of packages that need to be delivered, which is the minimum
size required to deliver the packages. If we were to choose to buy M trucks of the same size instead
we would end up sending partially empty trucks to some of the destinations.

When R > P+(M, N + 1) the best-case cost for the first of every m packages is equal to m
(the size of the smallest truck), no matter how many packages (< R) we deliver, or where they are
delivered to. If we were to use M identical trucks of size [R/M] instead, we pay a cost of at least
[R/Mi dollars for the first of every [R/Mi packages. This means that by choosing the sizes of the
trucks appropriately, we can reduce the average cost per package.

The best- and worst-case cost profiles of these two choices for size vectors are shown in Figure 6-7
for particular choices of R, M, and N. Note that even though the best-case profile for equally-sized
trucks dips below the profile for variable-sized trucks occasionally, on average the cost is higher. In
order to quantify the higher cost, we would calculate the expected value of the cost as a function
of the queue lengths given a steady state probability distribution over the possible queue length
vectors. In order to discuss this, we would need to specify how the packages are allocated to the
trucks; when there are too many packages waiting, we need to decide how to allocate the trucks to
the destinations. As a practical rule, we will assume we choose the allocation that minimizes the
maximum number of packages left in any queue after removing the allocated packages. 6

As a numerical example, assume there are 10 satellite offices that receive fewer than 5000
packages per day on average. We only have 75 drivers, so we can only buy 75 trucks. The obvious
choice is 75 trucks that can each hold 67 packages, for a maximum capacity of 5025 packages per
day, and in the worst case 66 - 10 = 660 packages worth of wasted space (10 of the trucks carry
a single package). If we choose the sizes of the trucks to vary according to P+, we can deliver

6 Another practical allocation rule might be to only send full trucks on deliveries. In this case, the variable-sized
trucks can accommodate a finer granularity of packages, and so would not leave the packages waiting as long as
equally-sized trucks of the same total capacity.

114

Best Case

5 0 - --- - -- - - - - - --- -

Worst Case

20 - - -----

5 10 15 20 25 30 35 40 45 50 55

Figure 6-7: Best and worst case cost profiles for equally-sized trucks (dashed lines) vs. best and

worst case cost profiles for variable-sized trucks (solid lines); R = 56, M = 8, N + 1 = 3, m= 2.

a total of 7871 packages per day while never wasting any space. The only issue with using these
variable-sized trucks is that the largest truck is 716 times bigger than the smallest. If we limit the
sizes of the trucks to be less than 210, we can still handle more than 5000 packages per day without
wasting any space. If we allow the trucks to be sizes that are multiples of 2 (m = 2), we need
a maximum truck size of 144 to guarantee 5000 packages per day with a worst case 10 packages
worth of wasted space. If we increase m to 8, with a worst case 70 packages of wasted space we
only need a maximum truck size of 96 packages, and the only sizes required are multiples of 8 from
8 packages to 96 packages. This tradeoff between m and the maximum truck size can be used to
balance the feasibility of buying trucks with many varying specific sizes against the costs incurred
by using partially empty trucks.

We might even extend this idea in another direction, and consider how choosing the truck sizes
might reduce the number of trucks required. Like our previous channel grouping example, we
can use fewer variable-sized trucks to emulate the performance of many equally-sized trucks. For
instance, to deliver to two satellite offices with no empty capacity we can use three trucks of sizes
1, 1, and 2 instead of four trucks of size 1. This allows the shipping company to reduce the number
of drivers and perhaps the amount of maintenance required for the trucks. From our previous
example, if there are 10 satellite offices that need to receive fewer than 5000 packages per day on
average, we can either use 5000 trucks of size 1, or 71 trucks of sizes P+ for M= 71, N + 1 = 11
to insure that we never have any empty space in any truck. We can also use a number of other
possible truck sizes if the sizes correspond to some vector in 1'.

In addition, we may be able to use fewer trucks if we allow a small amount of empty space. As
a simple example when this might take place, consider the following. If we needed to transport
at most 55 packages to two destinations every day, we could choose 9 trucks with sizes P1 =

(1, 1, 2, 3, 4, 6, 9, 14, 15) and guarantee that there would never be any empty space, or we could use
8 trucks with sizes P2 = (1, 2, 3, 4, 6, 9, 14, 16) if we are willing to live with empty space every once
in a while. If we use the sizes in P2 , there are only 9 combinations (out of approximately 1600)
of at most 55 waiting packages that can not be exactly transported with these trucks. As long as
these combinations do not occur very often, and if we have some extra capacity, we can reduce the

115

number of trucks while not affecting our costs a great deal.

6.5.2 Variable Length Packets

We now briefly discuss an extension of the previous batch queueing model to one in which we allow
variable length packets. If the packets require an integer number of rounds to process, and the
processing can be preempted if necessary at every round, we can simply view the system as having
a larger arrival rate. However, if the processing can not be preempted, the set of servers available
at each round for scheduling varies from round to round. This means that we are not always
guaranteed to have a set of servers with speeds that can insure a non-idling schedule. However, if
we use the algorithm given in Section 6.6 to generate the resource partition we can still guarantee
a non-idling schedule if we have an upper bound on the number of servers that will not be available
during any round.

On the other hand, if we view the length of a packet as the number of processing cycles required,
and the size of a server as its speed, we can process longer packets in a single round by assigning
them a larger portion of a server. This allows the servers to be available at each round, but makes
the problem of assigning servers to users more complicated. In this case, although the servers will
be able to handle any possible workload as above without partially idling any server, we are now
faced with the problem of deciding how to choose the packets that are to be processed. Because
the packets vary in size, it is not always easy to choose the packets from the heads of the queues so
that the total workload of the chosen packets equals the total capacity of the servers. To see this,
consider the following example. We have two users and four servers with speeds of 1, 1, 2 and 3
packets/second. The first user has two packets of length 2 at the head of its queue, and the second
user has a packet of length 2 followed by a packet of length 3 in its queue. If we can not split (or
preempt) the packets, we can only assign two packets to be processed, even though the servers have
enough capacity to handle one more packet. In addition, if we choose the packet from the first user
to be processed in the server with speed 2, we will be forced to assign a packet of length 2 to the
server with speed 3, causing it to idle. If we choose the packet from the second user first, the speed
3 server will be able to process a packet of length 3.

It is clear that an obvious goal would be to assign packets from the queues to the servers so that
we have the fewest number of idle cycles (on servers that are not idle) as possible. This problem is
very hard to solve optimally as a function of M and N. It is equivalent to a bin packing problem
where the bin sizes correspond to the server speeds and the objects to be packed are the packets.
Also, the packing order may be constrained such that we must always pack a packet at the front of
one of the queues if the packets are to be served in the order they arrive. This bin packing problem
is easily seen to be NP-hard. However, there are many heuristic algorithms for the bin packing
problem that may prove useful in practice.

116

6.6 Robust Size Vectors

So far we have concentrated on discussing sets of resource pieces that are able to emulate a large
number of equally-sized pieces. However, this property is not very robust to deletion of pieces from
the set. If an element is removed from a size vector or, equivalently, set to 0, the resulting vector
does not, in general, yield a uniformly dense constellation. In this section, we present a method
for designing size vectors that retain the ability to yield uniformly dense constellations even when
elements are removed. Of course, when we talk about a subset of a size vector yielding a uniformly
dense constellation, we have to restrict ourselves to looking at a subset of SN, containing r such
that Ei ri = a < 1 where a is the sum of the sizes of the remaining pieces. We denote this set

aSN.
We will use the term k-robust to denote a size vector that is robust to the removal of k pieces.

We use the notation Dk(M) to denote the collection of all the possible subsets of the indices from 1
to M that are missing at most k elements. The set Dk (M) is the set of all index sets d C {1,... , M}
such that Idl > (M - k). If M < k then Dk(M) = 0.

Algorithm 6.1 (Robust Uniformly Dense Schedule Constellations) In order to generate
the k-robust size vector p that has the maximally dense uniform constellation, given N and M,
do the following to generate the proper piece sizes p (P is an integer vector of length M):

1. Set P1 = 1.

^1 + ZedP
2. Fori = 1,... ,M-1: if Dk(i) = 0 then set P+1 = 1; otherwise set P+1 = min i

devk(i) N - I

P-
3. Set pi= ZMP for i=1,...,M.

Ej1 Pj

We can see that the resulting size vector will always yield a uniformly dense constellation even
when an arbitrary subset of no more than k pieces are removed from the size vector. This follows
because if we are told that the pieces are removed, and the resulting size vector is pk, then we know
that p - p is smaller than the maximum allowed for any possible p of length M - k if we are
to maintain a uniformly dense constellation. We also know that this algorithm produces the vector
P that is an upper bound on all possible k-robust size vectors because if some other size vector P'
was such that P+1 -P!> P+j - Pi for some i then there exists a subset d' of the first i pieces
with no less than i - k elements that achieves the minimum in the iterative step such that

F' l+ZEd P3 1 +l t--Ze, PJ1
Pi 1 > Pi+1 = min N =

+ dEDk(i) I

and so we will have violated Lemma 5.4 for the size vector of length ld'l + M - i with elements
equal to p. forj E d' U {i +1,..., M}.

By the nondecreasing property of P, we know that

dEDk(i) [1 +-jEdP 1 j

and so it would seem that the minimization is not needed. However, we see that this algorithm
will also compute the k-robust size vector with the densest uniform constellation when the possible

117

M 3 4 5 6 7 8 9 106 11 12

N=3 3 T 5 78 r3 5 7 10 14 20 28 39 54 74

N 4 5 4 --g- -F -U -1T2
3 4 6 8 11 14 18 23 30 38

N - 5 3 40 -T7 9 12
3 4 5 7 9 11 14 17 21 26

Table 6.2: Values of fairness ratio -y for 1-robust size vectors and various combinations of N and
M.

deletions are constrained; i.e. only certain combinations of pieces may be deleted together. In these
cases, the minimization might not be simplified.

We also note that the vector p+ for N + k bins is also a k-robust size vector for N, but is
not the k-robust size vector with the maximally dense uniform constellation. This follows from
the definition of p+. If we think of the N + k bins as N real bins plus k bins whose sizes are
equal to the sizes of the deleted pieces, and that each holds a single specific resource piece of the
same size, then by the definition of p+, the remaining M - k pieces must yield a uniformly dense
constellation (in aSN) when allocated to the N remaining bins. But, this property is the same
as the k-robust property; if k pieces are unavailable, the remaining M - k must yield a uniformly
dense constellation in aSN. However, p+ for N + k does not yield the maximally dense uniform
constellation for all k-robust size vectors for N bins because p+ is also constrained so that when
the k extra bins hold on to more than k resource pieces, the remaining pieces must still yield a
uniformly dense constellation.

6.6.1 Applications

We can also extend the applications discussed above to account for cases when the processors,
channels, or queues are unreliable. For instance, if there is a probability that at most k queues are
either broken or busy with other jobs when it comes time for scheduling, we can use a k-robust size
vector to define the sizes of the queues so that we still maintain the beneficial properties discussed
earlier.

Similarly for the channel group application, in Section 6.3, by using a k-robust size vector we
increase the value of -y, but allow ourselves to handle k failures in the channels during a scheduling
round, or equivalently k transmission errors during a round where the channel must retransmit the
data during the next round and so is unavailable for scheduling.

We give a few representative values of y for 1-robust size vectors in Table 6.2. If we compare
this table to Table 6.1, we see that -y decreases much more slowly for robust size vectors. However,
a k-robust size vector designed for a particular N grows more quickly, and has a smaller -y than -YM
for a non-robust size vector of the same length designed for N + k. We can see this for 1-robust
size vectors when we compare Tables 6.1 and 6.2.

118

Chapter 7

Auction-Based Scheduling

In many situations where resources are under contention, it is important that we guarantee fair ac-
cess to the resources in adverse circumstances. For example, fair access to a shared communication
link by a number of data streams is a widespread problem in modern communication networks.
When an allocation mechanism is designed, it must make sure that the link is not unfairly monop-
olized by a single, or a subgroup, of users. An example of an approach to doing this is the PGPS
algorithm we discussed earlier. By limiting the relative rates at which competing streams can use
the resource, the algorithm guarantees each stream a certain minimum rate of service. This makes
it impossible for one stream to penalize others by sending too much data too quickly. By augment-
ing our basic allocation framework from Chapter 3 with the use of auctions as scheduling rules,
we can capture the flavor of this approach in a well-defined setting. The results in this chapter
establish that if we use an auction mechanism as a scheduling rule, with monetary bids as inputs,
then if we control the relative amounts of income that the users receive over time, there is no way
for the users to choose their bids in order to receive an unfairly high allocation of the resource.

Our interest in auctions stems from actual allocation mechanisms based on auctions that have
been used in some cases. A paper by Waldspurger, et. al. [67] describes a mechanism called Spawn
which requires processes competing for resources on a computer network to bid for processing time.
Each process is given a stream of funding (measured in monetary units/time slice) with which to
bid for time slices in an auction, against other processes. Each process can only bid on a single
processor in the network during any round. The actual mechanism used to allocate the time slices is
a second-price sealed bid auction, so each process gets one chance to submit a bid, and the process
that submits the highest bid wins the time slice, paying only the second-highest bid. The goal
of the auction process is to allocate the resource (processing time) fairly amongst the competing
processes, where "fairly" means that processes with more money get more time (if they want it).
However, it is not immediately obvious what bidding strategies will ensure that this goal is reached.

This model falls very close to our dynamic framework, where lag is identified with accumulated
wealth, and the bids determine the schedule and payments that reduce the wealth. We investigate
how the use of an auction in place of a quantizer for a simple repeated resource allocation problem (a
single indivisible resource and many users) can change the properties of the allocation mechanism.
The analysis in this section may be seen as a first step towards a more general investigation of
more complex allocation mechanisms. The simple model presented in the previous chapters may
be used in well-controlled and characterized environments; the auction mechanisms we look at here
are more useful in somewhat uncontrolled environments. The results we present here show that
auctions can be valuable in allocation mechanisms that are designed to guarantee fairness even
when we do not have any control over the competing users except for the amount of money we pay

119

r[n] w'n]_ Bid Auction s[n]

p[n]

Delay (

Figure 7-1: Block diagram of auction-based lag evolution equation.

them.
In this chapter, we look at a dynamic scheduling model in which we use an auction mechanism

instead of a quantizer as the core static allocation mechanism. We start by describing the general
auction-based method in Section 7.1. We continue in Section 7.2 with an investigation of an
auction-based dynamic model by showing that a naive approach to using auctions to achieve a
fair allocation may not work, and presenting a modified approach that does achieve fairness. In
Section 7.5, we allow the users of a shared resource to strategize, and show that this allocates the
resource fairly according to predetermined reservation parameters.

7.1 Auction Model

In order to investigate the fairness of this mechanism, we describe a mathematical model for the
actual bidding process. The system in [67] was designed to work for large networks of computers
on which many processes competed for resources. We would like to investigate a simpler problem,
and so the example below works only with a pair of competing processes and a single resource. We
will show that one of the simplest versions of this allocation problem does not guarantee fairness
under the auction and bidding strategy combination as put forth in [67]. In Section 7.4 we discuss
how we might apply the results we present here to a setting with many networked resources.

The auction-based model fits within our previous framework, with the following difference: the
schedule during each round differs from the feedback signal, as depicted in Figure 7-1. We use the
notation w[n] for the lag in this case, to be more evocative of the underlying representation of the
lag as accumulated wealth. The output b[n] of the bid block in Figure 7-1 is a vector that is at
most equal to the input wealth vector. It represents the bids that each user makes in order to try
and win the auction. The schedule at each round is s[n], which simply indicates the winning user
with a 1. The feedback signal, or the price p[n], is a vector whose value at each round is based on
the schedule and bids for that round. Each user receives an additional amount of income equal to
r[n] at each round n. We can write this relationship as follows:

w[n + 1] = w[n]+ r[n + 1] - p[n].

The same questions that we asked of our dynamic model before can be asked here. In this case,
there is more complexity. The price vector is not simply a quantized version of w[n], but depends
on the values of b[n]. However, we can think of the output s[n] as the output of a quantizer; an
auction of a single object generally gives the resource to the highest bidder, equivalent to a oo-norm
based quantizing scheduler.

120

Given a particular bidding strategy and auction mechanism (mapping from bids to schedule)

we would first like to know whether the accumulated wealth is bounded. If it is, that implies that
the average price charged to each user per round is equal to the average rate of income for the
user. Second, we would like to know if the wealth stays bounded, does the fraction of time a user
is scheduled track the fraction of the total income the user receives? For example, if we give 20%

of the income to the first user every round we would like to know whether the first user gains the
use of the resource 20% of the time or not. If we think of the income as a proportional priority
or reservation like r[n] before, we would like the two fractions to be equal. If this property is
guaranteed for a particular bidding strategy and auction mechanism, we will call the mechanism

(or strategy for a given mechanism) fair.

Definition 7.1 (Auction Fairness) If user i gets a fraction pi of the income, either probabilis-
tically or deterministically, then a mechanism (or strategy) is fair if

no+M-1

lim E s[n] =r=pi.
M--COo M

This concept of fairness is useful, because a fair mechanism allows us to use the wealth distribution
as a method of controlling the resource allocations of the users over periods of time; by varying the
allocation of income, we can match the allocation of the resource to a set of reservations we assign
to the users. This definition of fairness is essentially the same as the definition of deterministic
fairness given in Chapter 3. For a deterministic model, the two definitions are equivalent. If we
know that the sequence of wealth vectors is a ergodic process with finite mean and variance, then
the above is also equivalent to the definition of stochastic stability given in Chapter 3 as well. If we
know that E[ri[n]] = pi or the time average of ri[n] is equal to pi, then fairness simply means that
over a long period of time the actual fraction of time a user wins is equal to the fraction of income
the user receives. However, fairness is not guaranteed if the wealth remains bounded, as was the
case with lag. We may have a fair mechanism that charges different prices to different users so that
even if the wealth stays bounded, the actual allocation is biased away from the desired value.

The system model in which [67] investigates the use of auctions is very similar to our dynamic
mechanism from Section 3.2. In some ways, a single object auction is a quantizer-like operation. It
takes a vector of bids, and allocates the object to the user with the largest bid. However, auctions
differ from quantizers in a very important way; an auction outputs a price in addition to the actual
scheduling decision. By decoupling the price and schedule, auctions allow for more flexibility while
also making the mechanism more complex. The flexibility is one reason that auctions are attractive
for certain situations. It allows the price to adapt to the bids being made by the users. In Section 3.2
we showed that if the average amount of income r is outside of the feasible region ch(B -S) for our
scheduling model, then we can not guarantee boundedness of the state variable, even for very simple
constellations. We do not have this problem when we use an auction in place of the quantizer, at
least for the simple resource allocation cases considered here. Because the price charged in an
auction rises with the bids, if users are accumulating large amounts of wealth (or lag in our earlier
model) and bidding proportionately then the price will rise also to counter the increasing wealth.
The price allows the auction to adapt to the levels at which the users are bidding. This adaptability
is one of the key reasons that auctions have been looked at for complex decentralized computing
resource allocation systems such as the Spawn system in [67].

However, along with the flexibility comes more complex behavior. Because the price is a scaled
version of the schedule, the bidding strategies and specific auction mechanism determine whether
or not the overall dynamic system will guarantee a fair allocation of the resource to the users.

121

We can relate this to the credit-based scheduling algorithms discussed in Section 3.5. The credit-
based algorithms are meant to guarantee that the rate at which credit accumulates for a user is
proportional to the fraction of the resource that the user acquires. With an auction mechanism,
this is not necessarily the case, as we show in the next section.

Although auction theory concerns a wide variety of different auctions [50], we will concentrate
on only two of the most common rules, first- and second-price auctions. A first-price auction
chooses as the winner the user with the highest bid, and charges a price equal to the winning bid.
In contrast, a second-price auction charges a price equal to the second-highest bid. Both auctions
are commonly used as real-world allocation mechanisms; in this context they are not optimal in any
way, but are a good starting point and allow us to investigate and compare with existing results. In
Section 7.2, we will show that using a first-price auction mechanism with a naive bidding strategy
and constant income does not guarantee fairness even for two users. When we make the income
probabilistic, we can guarantee fairness using the same mechanism and bidding strategy. We prove
this for a single auction with an arbitrary number of users in Section 7.3 and discuss how we might
extend the single resource case to a network of resources in Section 7.4. We then look at both
first- and second-price auctions in Section 7.5 and allow the users to use any bidding strategy they
wish, while keeping the income constant at each round. We consider both the finite-round and
infinite-round cases and show that if the users attempt to maximize the fraction of time they win
the auction, the mechanism has an asymptotic guarantee of fairness.

7.2 Simple Auction Allocation Strategies

In [67], each process' bid is determined with an escalating-bid strategy. An escalating-bid strategy
is simply one in which each competing process bids its entire amount of funding for each time slice,
or b[n] = w[n]. In this case, the bidding function in Figure 7-1 is simply an identity function.

The question of whether or not the escalating-bid strategy achieves fairness when used with a
second-price auction is left open in [67]; only empirical support is presented. We show here that
this strategy does not guarantee fairness even over long periods of time even when there are only
two users. We restrict our view here to a centralized system in which all users are competing for the
same resource; in [67], the model allowed the users to travel around and use one of many networked
resources. Although the particular combination of second-price auction and escalating-bid strategy
does not guarantee fair allocation of resources for this setup, we show that through a modification of
the funding process, we can guarantee fairness on a single processor asymptotically for any number
of users.

Consider the following dynamic system, meant to model the evolution of the wealth of two users
both competing for the same resource. Although this problem originally came up in the context
of processing time on a processor, it might also be used to model behaviors of related systems
consisting of independently funded agents competing for an exclusive resource (e.g. data streams
accumulating credits for the use of a communication link). Each user, i, receives some amount,
ri[n], of funding at the beginning of every time slice. An auction is held during each time slice, at
the end of which the highest of the two bids wins the auction, and the winning bidder must pay
the second-highest bid. Denote the bid from user i during time slice n as bi[n]. If bi[n] > b2 [n],

wi[n+1] = wi[n]+ri[n+ 1]-b 2 [n]

w 2[n+1] = W2 [n]+r 2 [n+1].

122

If b2 [n] ;> bi[n],

wi[n+1] = wi[n]+r1[n+1]

W2[n +1] W2[n]+r 2[n+1]-bi[n].

If b2 [n] = bi [n], it is not clear which user should win; we will assume for now that user 2 wins the

tie, and our simulations show that this affects the results quantitatively, but not fundamentally,
even if the tie is broken randomly. The wealth of user i at the beginning of time slice n (before

funding arrives) is given by wi[n].

7.2.1 Escalating Bid - Deterministic Income

The Spawn system in [67] uses as its basic allocation mechanism a second-price auction, and uses an

escalating-bid bidding strategy for each user - in other words, each user bets its entire wealth every

round. We would like to know whether or not this strategy is fair with respect to the second-price

auction.
We can formalize the mechanism as follows: At every time slice, user i bets all of its current

wealth, wi [n], and receives a constant income, ri [n] = pi. In this case, the wealth evolution equations

above become: If bi[n] > b2 [n],

wi[n +1] w,[n]+pi -W 2 [n]

W2 [n+1] W2[n] + p2

If b2[n] > bi[n],

wi[n+1] = wi[n]+pi

w 2[n] = w2 [n] + p2 - wi[n]-

This is a simple nonlinear dynamic system with two state variables w, [n] and W 2 [n]. We can easily

plot the state trajectories as a function of n. We will assume for now that both users start out with

no stored wealth, i.e. Wi [0] = W2[0] = 0. In this simple case, if we assume pi and p2 are integers,
the system can fail to achieve a fair allocation of the resource.

Example 7.1 (Unfairness) Set p1 1 and P2 = 2. After a few time slices, w[n] will be cycling

between (4,4) and (5, 2). This means that user 2 wins the auction 1/2 of the time (remember that

user 2 wins all ties), and user 1 wins the other 1/2 of the time. But, user 2 receives 2/3 of the

wealth! So, this bidding strategy does not achieve fairness even for this simple case.

This example illustrates a basic phenomenon that is present when all of the quantities in the wealth

evolution equations are integers (or, by extension, rational numbers). After an initial transient

period, the wealth falls into a cyclic pattern, repeating itself after some number of time slices. In

the example above, the period of repetition was 2. Ideally, we would like user i to win the auction

a fraction fi of the time, where

f -= i
=j P

But, this would require that the period of the repetition be a factor of Jg pj.1 Our simulations show
that this is generally not the case. The example above has a repetition period of 2, but Ej pj = 3.
This behavior makes it impossible for the bidding strategy given above to achieve fairness for an

arbitrary funding distribution. Table 7.1 shows a number of actual values of the fraction fi of the

123

(PI, P2) Period f, f2 h _ f2
(1, 1) 2 1/2 1/2 1/2 1/2
(1,2) 2 1/2 1/2 1/3 2/3

(1,3) 3 1/3 2/3 1/4 3/4
(1,4) 9 2/9 7/9 1/5 4/5
(1,5) 26 4/26 22/26 1/6 5/6
(1,6) 19 3/19 16/19 1/7 6/7
(2, 3) 2 1/2 1/2 2/5 3/5
(2, 5) 9 3/9 6/9 2/7 5/7
(3,4) 7 3/7 4/7 3/7 4/7

(37,53) 53 22/53 31/53 37/90 53/90
(2,1) 11 8/11 3/11 2/3 1/3
(3, 1) 4 3/4 1/4 3/4 1/4
(4, 1) 34 29/34 5/34 4/5 1/5
(5,3) 18 12/18 6/18 5/8 3/8

Table 7.1: Fraction of wins for users 1 and 2.

time that user i wins the auction for various pairs of (P1, P2). The table shows that of all of the
small pairs of incomes (pi < 5) where p1 < P2, only the pair (3,4) achieves fairness exactly. All of
the others, however, are as close to fair as is possible given the period of repetition (e.g. for (1, 5),
4/26 and 22/26 are the closest fractions to 1/6 and 5/6, respectively, with a denominator of 26).
This is not the case for the income pairs where Pi > P2. In particular, for (4, 1) the best fractions
would be 27/34 and 7/34. Figure 7-2 show the behavior of the system for income pairs (1, 3) and
(3,4).

This repetition behavior of the wealth trajectories can cause problems for an unsuspecting
system implementor. Even for a simple wealth distribution of (P1, P2) = (1, 2), the system would
have the same performance as if the division were even. Although the desired effect is for one of
the users to use the resource twice as often as the other, the end result is that they both use the
resource equally often. In fact, because we are allowing the second user to win ties, we are even
giving it an unfair advantage, but still the resource is split evenly. If a system using this auction
model is implemented, and at some time there are two competing users, where one has twice the
wealth as the other coming in at every round, the system will fail to provide priority to the wealthier
user.

Earlier, we mentioned that the winner of ties did not make an important difference in the
behavior of the system. If the first user were to win all ties, then by symmetry if P1 P2 we can
just switch r1 [n] with r 2 [n] and we will get results similar to the bottom section of Table 7.1. If we
were to break the tie probabilistically it turns out that the unfair example given earlier is fair on
average, but only if we use probabilities equal to fi. If we use other probabilities the mechanism is
not fair. Also, for other choices of income, choosing probabilities equal to fi does not always work.

7.2.2 Escalating Bid - Probabilistic Income

Now, consider the following modification of the previous mechanism: At every time slice, user i
bets all of its current wealth, wi[n]. However, now user i receives an income of 1 at each time step

'Or that it be a multiple a E, p3 , and the number of times that user i wins be a multiple of a.

124

Wealth
6

5J

fi t~~ 11 i f~ 11111 fill~~ iti .il Il l l fill

2 W [n]

1w [n

0.

0.

0.

0

6

0
0 50 100 150 200 250 30

Fraction of wins and Expected Fraction of wins

- - -

61 Proc

S- -- ProceSs 2

.2 - 1

-
0 50 100 150 200 250 30

ime

Wealth Phase Plot

1 -
4-5

-2-

0 1 2 3 4 5

12

10

8

0

?7

0.7

1.6

0.5

50 100 150
ime

200 250 3

Fraction of wins and Expected Fraction of wins

14

0.4 L

0.3 -
1.2 Process 2Prcs 22

0.1
0

0 s 1 150 20 250 3C
ime

Wealth Phase Plot
14

12-

a-

6-

4- -A .

2- -

10

0 2 4 6 8 10 12 14
wjn]

Figure 7-2: Plots showing the wealth and fraction of wins for both users with p = (1, 3) and
p = (3,4), respectively. In the phase plot, the solid line shows the final periodic repetition, while
the dotted line shows the initial transient.

125

Wealth

11', P il 11 11 1 I 11 11 1I 1 1 1 ~ II[

''I I w2[n]

-- ~

0

w n]

with probability pi, p, + P2 1. In this case, the wealth evolution equations are the same, but
the income pi is now a Bernoulli random variable; it takes the value 1 with probability pi, and
0 otherwise. We also make one more change: a tie (both users bid the same amount) is broken
probabilistically (to make the analysis simpler). If bi[n] > b2 fn],

wi[n+1] = wi[n]+pi-W2[n]

w2 [n+1] w2[n] + p2

If b2 [n] > bi[n],

wi[n+1] wi[n]+pi

w 2[n+1] w 2 [n]+p 2 -wi[n].

With probability pi, user i wins the tie. This system does not have the same unfairness problems
as the first system, and is still implementable using only integers.

Theorem 7.1 (2-User Fairness) The escalating-bid strategy is a fair bidding strategy for allocat-
ing a shared resource between two competing users when the income is distributed probabilistically
among the users.
Proof Idea: Consider a time slice m at which both users have first received two units of income
(this must happen with probability 1). If we consider the Markov chain described by the above
equations, where each state in the Markov chain is labeled by a possible wealth pair (wi, w2), it
turns out to have one recurrent class of two states: (2, 1) and (1, 2) (see Figure 7-3). So, after an
initial transient period, we are left with a two-state Markov chain. The limiting probabilities for
this chain are p, for (2, 1) and P2 for (1, 2). Thus, in the long run, the fraction of time we spend
in state (2, 1) corresponds to the fraction of time that user 1 wins the auction, or pi. The same is
true for user 2, and so the system is fair. m

This theorem will follow as a special case of the theorem proved in the next section.

7.3 One Auction, Many Users

It is fairly easy to analyze the above case for two competing users completely and show that the
limiting probabilities of the states in the recurrent class are equal to the distribution probabilities
of the wealth, and that the recurrent class is the only possible recurrent class. However, when the
number of competing users is larger than two, the mechanism is still fair but the proof of fairness
becomes more complicated.

Example 7.2 (Three Users) Consider a case where we have three users, 1, 2, and 3. We can
write out similar equations to the wealth evolution equations for two users. If we define the wealth
vector as (w1, w, w 3), then there are two recurrent classes of states in the Markov chain defined by
the evolution equations:

{(2, 1, 1), (1,2, 1), (1, 1, 2)}
and

{(2, 1, 0), (1, 2, 0), (2,0, 1), (1, 0, 2), (0, 2,1), (0, 1, 2), (1, 1, 1)}

Either of these classes is reachable starting from (0, 0, 0). Luckily, it turns out that both of the
classes have limiting probabilities that correspond with fair allocation of the resource to the users
according to the distribution probabilities, P1, P2, and p3, as will be shown below.

In the work that follows, we show that Theorem 7.1 can be extended to apply to the case with
more than two users competing for a single resource.

126

0,0

P 2

1,0 Ol

P 2 P 2

2,0 ' 1 1,1 2 0,2
2 2

P 2 2_2 2 21p

4,0 P131 221 2,2 192 P,3 02,
P 2 P2 P2 1 P 2

5,0 P1 4,1 P2 3,2 P2 P1 2,3 Pi 1,4 P2 0,5
P 2 P 2

Figure 7-3: Markov chain defined by the two user auction. Each state is labeled with the wealth
of the two users.

7.3.1 Model

We now present a wealth evolution model that allows many competing users. In this model, N
independent users compete for the use of a single resource. The competition is in the form of
a sequence of rounds, where each user may place a bid for the use of the resource during the
subsequent round. The user that places the highest bid wins the use of the resource, and must
pay an amount equal to the second-highest bid. After the winner is chosen, the resource allocates
a single unit of income to one of the competing users according to probabilities assigned to each
user as in Section 7.2.2. As before, the only bidding strategy we will consider is the escalating-bid
strategy, where each user bids all of its accumulated wealth in each auction (i.e. bi[n] = wi[n]).
The dynamic wealth evolution equations can be captured as follows, for the three possible cases for
some user i. If bi [n] is the unique maximum bid at round n and bj [n] = wj [n] is the second-highest
bid,

wi[n+1] =wi[n] + pi - wj[n].

If bi[n] is less than the maximum bid at round n,

wi[n + 1] = wi[n] + pi.

If bi[n] is equal to the maximum bid, but not unique, the winner of the auction is chosen randomly,
uniformly among the highest bidders.2 As before, pi is a Bernoulli random variable, which equals

2 This tie breaker is not sensitive to the actual probabilities assigned to each of the highest bidders, so the analysis

below assumes they are uniform.

127

1 with probability pi, and 0 otherwise. The fairness of this mechanism can be interpreted in the
following sense. If pj/pi = a > 1, then user j receives (on average) a times as much income as user
i, so user j has a higher priority than user i. The initial values of the wi[n] are all 0.

7.3.2 Results

This section will establish the fact that if we implement this auction model, with N competing
users, then in an expected finite amount of time we will enter a class of states within which the
expected fraction of the auctions that a user wins is equal to the expected fraction of the wealth
that the user receives from that point on. This implies that the mechanism is fair as we have
defined fairness.

In order to present the fairness results, we first need to make the following definitions.

Definition 7.2 (Wealth Chain) w[n] is the Markov chain where the state w[n] = (wi[n], w2 [n],.. -.- , N
and the transition probabilities from w[n] to w[n + 1] are defined by the wealth evolution equations
given above. The chain w[n] evolves over the space of nonnegative integer vectors of length N, Z N.

An essential class C E ZN is a set of states in w[n] such that every state c in the class communicates
with every other state in C and that no state in the class leads to any state outside of C with positive
probability [9]. A state a communicates with a state b if b can be reached with finite probability
from a in some number of steps, and the same for a from b. This implies that the probability of
moving between a state in C and a state outside of C is 0. We can think of an essential class as a
set of states that "captures" the chain; whenever the chain enters the class, it never leaves. So, if
we can show that the chain will enter an essential class in finite number of rounds we only have to
analyze the essential classes to determine the long-term fairness behavior of the chain.

The three key parts to the fairness proof are, (i), showing that the wealth chain consists of a
finite collection of finite-sized essential classes with the remaining states being inessential and that
the essential classes are ergodic, (ii), showing that the wealth chain enters one of these ergodic
classes in an expected finite amount of time, and (iii), showing that within each ergodic class the
stationary probabilities imply the allocation of the resource is fair.

In our wealth chain w[n] with N competing users, there are N - 1 essential classes of states we
will call C(m), for 0 < m < N - 1. These classes are important because, as we will show, the chain
w[n] must eventually end up in one of them and remain there.

Definition 7.3 (Fair Classes) A fair class C(m) E Z', with 0 < m < N - 1, is a subset of

the states of w[n] such that the one of the following two properties hold for each element w =

(wI, W2 , - - -, WN) E C(m) (for m > 1, k(m) = (ki, k2 ,... , m), where each ki is a user index
between 1 and N):

(i) m of the values wi are equal to 0, one of the wi's is equal to 2, and the rest (at least one) are

equal to 1. In this case, we use the notation w =w k(m) (i V k(m)) where the wealth of user
i is 2, and the wealth of each of the users kj(m), 1 < j < m is equal to 0.

(ii) m - 1 (for m > 0) of the values wi are equal to 0, and the rest (at least one) are equal to 1.

We use the notation w = wo (i k(rn - 1)) where the wealth of each of the users kj,
1 j rn-1 is equal to 0 and the wealth of the rest of the users is equal to 1. (If m = 1,
then there is only one of these states, denoted by wo.)

We start by showing that every class C(m) is an essential class and that there are no other essential
classes in w[n].

128

Lemma 7.1 (Existence and Completeness of Essential Classes) Every fair class C(m), for
all N > 2 and 0 < m < N - 1, is an essential class and there are no other essential classes.

The essential classes we consider here are aperiodic, meaning that we can be in any state in the
class at any time with positive probability. This property follows from the fact that any state in a
set C(m) has a nonzero probability of leading to itself. This means that these fair classes C(m) are
ergodic classes because they are essential, aperiodic and finite [18]. The ergodicity of one of these
classes implies that once the chain enters the class, there is a unique limiting probability distribution
over the states in the class and that over time the time-average occupancy of a particular state
converges to the limiting probability of being in that state [18]. This allows us to determine these
probabilities and show that they imply long-term fairness within each class.

Lemma 7.2 (Inevitability of Fair Classes) If n is the first round during which w[n] E C(m)
for some m, then E[nr] < oc for any given w[0].

With the above lemmas, we know that after some expected finite number of rounds, w[n] will end
up in one of the fair classes C(m). This says that the dynamics of w[n] for very large values of n are
determined by the fair classes. So, if we want to know whether or not the system is asymptotically
fair, we only need to analyze the fair classes.

Limiting Probabilities

In this section we will assume that we have already entered a fair class C(m); we will concentrate
on showing that the wealth chain is fair when the state space is restricted to C(m).

We have defined fairness for this mechanism as being the property that the time-average resource
allocation that user i gets is proportional to the probability pi that the user gets paid at each round,
or the time-average fraction of the income that the user is paid. Because each fair class C(m) is
ergodic, the time-average allocation for user i is equal to the steady-state, or limiting, probability
that user i wins the auction. Label the limiting probabilities of the states in a fair class C(m) as
follows:

(i) kr(m) (i V k(m)) is the limiting probability of state k(m) given that we are in class C(m).

(ii) rk(m-1) (i V k(m - 1)) is the limiting probability of state k(m) given that we are in class

C(m).

The limiting probability of state w E C(m) corresponds to the probability that the wealth chain
w[n] = w at some large value of n. Once we know these limiting probabilities, we can compute the
steady-state probability that user i wins by adding the state probabilities over all states in which
user i wins the auction (either because it has the largest wealth, or because it wins the probabilistic

tie-breaker). It is obvious that when in state k(m) , user i will always win the auction because by the

definition of w (m), user i has 2 dollars and all the other users have less wealth. In state k(m-1) thei ~0
winner of the auction is chosen randomly from the users j such that j V k(m - 1). When computing
the steady-state probability that a user i wins, we have to consider these two possibilities. We define
a few other quantities which are convenient when dealing with these probabilities:

(iii) rkm) = 1 pj is the product of all the probabilities pj of users that are not represented in
jflk(m)

the set k(m).

129

(iv) rm r k(m) is the sum over all possible values of k(m) of the above products.
k(m)

Given these definitions, we can now determine the limiting probabilities of the states in C(m) and
from them deduce the steady-state probability that user i wins the auction.

Lemma 7.3 (Limiting Probabilities) Given w[n] is in a fair class C(m), the limiting probabil-
ities of the states in the class are given by

k(m)

rmm

k~,m) _ _ _

7rk(m-1) (N-(- 1) rkml)

Lemma 7.4 (Winning Probabilities) Given w[n] is in a fair class C(m), the probability that
user i wins an auction at some arbitrary time n is equal to pi.

This last lemma follows from Lemma 7.3 by simply adding up all of the probabilities for which user
i wins the next auction given that we observe w[n] in some state in C(m). Before we present the
final theorem that establishes the fairness of the overall auction mechanism, consider the following
simple example that illustrates the implications of the previous lemmas.

Example 7.3 (3-User Chain with m = 1) Recall the second recurrent class mentioned in Ex-
ample 7.2 above, with 7 states. This class is denoted C3(1). For this class, we can write down the
some of the states using the notation just presented:

W =21 (2,0,1)

f = (2, 1, 0)

wo= (1,1, 1)

We can also draw a picture of the class, including all of the transition probabilities, shown in
Figure 7-4. The quantities r (m) and r1 are

{I}
= P2P3

I PIP3

rl = P2P3 + P1P3 + P1P2

ro = P1P2P3 -

And finally, the limiting probabilities for the three states listed above are

{2} P1P3

I Pi P2P3 + P1P3 + P1P2

I pi P23+ P1P3 + P1P2

{g} = 3. PP2P3
P2P3 + P1P3 + P1P2

130

1, 0, 2 2, 1, 0
P3

1 1 P2

2, ,1 Pi P2 1, 2, 0

3 Pi P 3

P3

0, 2, 1 0, 1, 2
P2

3 1

{1 121131 xX

Figure 7-4: Recurrent class C3(1) for a 3-user auction. The left figure is labeled with the each
user's wealth in each state; the right figure uses our notation to label each state.

We can also check for fairness by adding the probabilities that user 1 wins an auction:

Prob[user 1 wins an auction] {2} + fr + 7ro

2 2PIP3 + PIP2 + P1P2P3
P2P3 + P1P3 + P1P2

P1(P1P3 + P1P2 + P2P3)
P2P3 + P1P3 + P1P2

SP1-

Theorem 7.2 (N-User Fairness) Given the auction model described above, the escalating-bid
strategy is a fair strategy for allocating a shared resource between N competing users when the

income is distributed probabilistically among the users.

Proof: With the previous lemmas, the proof follows easily for m > 1. We see that the expected
time until the chain enters a fair class is finite and so the time-average allocation that a user will
get is determined by the behavior in the fair classes over long time periods. This allocation is equal
to the winning probabilities from Lemma 7.4 by the ergodic property of C(m). We can write this
because we know that n, < o0 with probability 1, so if no < n, (if not, the fairness follows easily):

1 no+M-1

M-+00 M Ehm~ o
1n. 1 no+M-1 1 no+M-1

s[n] = lim - s[n] + 1: s[n] = lim - s[n] = pi
M-+o M M M-+oo M

nfnonln flflr

with probability 1. The last step follows because after n, the chain is in one of the ergodic fair
classes. The only case left is when m = 0; an example for N = 3 is shown in Figure 7-5. For this
case, C(m) has N states, which we can call wi. It is easy to see that the probability of going from
state wj to state wi is just pi, because all that has to happen is that user i receive the unit of wealth

131

2, 1, 1 XT

P'
P2 P3

P2P

1,2 1 ,1, 1, 2 X2 , 3
P3

Figure 7-5: Recurrent class C3(0) for a 3-user auction. The left figure is labeled with the each
user's wealth in each state; the right figure uses our notation to label each state.

after J wins the auction. The limiting probability for state wi, 7ri = pi. This can easily be verified:

pzpj = Ai

Fairness is also obvious; the only time user i wins an auction is in state wi, so the probability that
i wins an auction is p2.

Thus, because the Markov chain w[n] reaches some C(m) in an (expected) finite time, and the
probability that user i wins an auction at some arbitrary time once we are in C(m) is equal to
the fraction of the wealth that is allocated to user i (the fraction is pi) for any C(m), the overall
auction model for N users competing for a single resource results in a fair allocation of the resource
according to the probabilities pi as n, the number of auctions, gets very large. *

7.4 Many Resources

We have now shown that if we replace the constant income model used in [67] and instead use the
probabilistic income model, we can guarantee fairness at each resource independently. We have
concentrated only on the problem of allocating a single resource among competing users. We could
also extend this to incorporate the more general allocation problems considered earlier in this thesis
and in [67]. The original model in [67] allowed the users to move between a number of resources to
try and find a resource that was not overloaded.

If we were to make the simple extension to multiple resources to be allocated among all of the
users at each round, we would have to define a more general auction that determines the allocation
of the objects and prices charged to the users. There are different possible ways of doing this. For
example, the second-price auction can be extended to multiple objects by simply allocating the
objects singly to the top bidders, and charging a price equal to the highest bid that did not win an
object [16].

In [67], this is taken in a different direction, and the objects are distributed so that the users
must pick one of many objects to bid on. The problem is to distribute the users among the resources
to balance the resource contention and achieve overall fairness for the network of resources. This

132

might be done in a centralized or decentralized way. In [67], the competing users were seen as
independent entities, so this overall fairness needed to be achieved using a decentralized method.
We present a possible way of approaching this problem as a way of indicating how the overall
system might guarantee fairness.

Let us assume that each user i has a priority ri associated with it. We have M identical resources
available for N users. Each user can only use a single resource at a time, and would like to use
as much of the resource as possible. If N < M, it is obvious that we can assign each user to a
different resource and each user then has the use of an entire resource. So, contention only arises
when N > M. Call the set of users competing at resource j during some round p(j). In order to
use our probabilistic income model, we define pi for a user i at resource j as

Ti ri

A Ek r(j)r R (j)A

Thus, the portion of the resource that user i receives, pi, is determined by the other users that
are competing at the same resource. The obvious goal for each user is to find a resource with the
smallest R(j) in order to maximize pi. The overall system goal is then to achieve a distribution of
users that minimizes the spread of R(j) over the resources and thus match the users' priorities. The
resource that a user i is using is called u(i); the collection of these assignments, or the allocation is
E. We can view the overall optimization objective as computing

E* = arg min[max R(j) - min R(j)] = arg min[max R(E)]
E 3 F

Just as in Chapter 5, computing the solution this problem is NP-hard; given 2 equally-sized re-
sources, an algorithm to solve this problem could also solve the partition problem.

Although it is not easy to solve this problem exactly, we can still try to approximate the answer
and use the decentralized nature of the problem to help make it more tractable. If we allow each
of the users to make their own decisions independently, the parallelism will decrease the time
complexity of determining a good solution. The mechanism for determining a good assignment
in [67] used prices as signals that the users could use to help make decisions. If a neighboring
resource was currently charging a lower price, a user would move to that resource. It is clear that
in equilibrium, the price charged at a resource would be equal to R(j) for resource j on average. It
makes sense, then, to use R(j) as a method of ranking resources. User i would compare R(O-(i)) -ri
with R(j) for all resources j that can be observed when deciding whether or not to move. The
smallest would offer the largest fraction of the resource if the allocation mechanism is fair. This
simple distributed algorithm does not necessarily converge to the optimal solution, and does not
necessarily converge at all; it may end up cycling. However, if R(E) is small in equilibrium, a
probabilistic income model will guarantee local fairness and thus approximate overall fairness.

7.5 Strategic Auction Mechanisms

In this section, we again investigate a scenario in which a number of users compete to gain access to
a single shared resource over a number of rounds. This differs from the previous discussion because
we will allow the users to choose their bids according to arbitrary rules. In other words, the bidding
function as shown in Figure 7-1 is not the identity function. Our goal is to investigate whether the
auction mechanisms we considered earlier are fair when we use non-naive bidding policies.

At the beginning of each round the resource is allocated to one of the users using a sealed-bid
first- or second-price auction. Each competing user's sole goal is to maximize the fraction of time

133

it can gain the resource. The users receive income and must use this money to bid on the resource
at each round. This setup differs from the traditional value-based auctions, where the competing
users are assumed to have some value for the resource, and bid on the object in order to maximize
a profit function. Although our setup does assume utility-maximizing users, the utility to the users
is not profit, but amount of resource. 3

We begin by investigating a repeated auction that has a finite number of rounds, and a fixed
amount of starting wealth with no income; we will show that the first- and second-price auctions
achieve approximately fair allocations of the rounds. Then we extend the fairness result to an
infinite round model with constant income at each round. We would like to know whether or not
these simple and commonly-used mechanisms are able to ensure fair allocation of the resource. We
define fair in this case to mean that the ratio between the number of rounds a pair of users wins
is approximately equal to the ratio between the amount of starting wealth, or income, for the two
users.

In [311, a similar problem is considered, where a number of users try to guarantee winning
some fraction of a number of resources, but the auctions for each of the resources are performed
simultaneously. A randomized bidding strategy is developed that guarantees a lower bound on the
expected number of resources that an user using the strategy will win. Their analysis also leads to
them noting that for the case when all users begin with the same amount of money, if the auctions
are performed sequentially (as in our model), and if the total number of resources available is
divisible by the number of users, every user can guarantee an equal share of the resources. This is
a special case of Theorem 7.7.

Our main results establish that the first- and second-price auctions, when used for repeated
resource allocation, exhibit a form of approximate fairness when a competing user uses a strategy
that maximizes the number of resources it can guarantee. The results depend upon the fact that
each user is aware of the other users' stored wealth at each round, as well as the winner of each
round and the corresponding price charged. For the case when we have only two competing users,
we give a complete characterization of the fairness (i.e. for N rounds, we show how many each user
wins for all possible initial wealths), and provide bidding strategies that guarantee these numbers
of wins for each user. When there are many users, we give a similar lower bound on the number
of wins that is within 1 of the desired number, but the upper bound is much looser except for a
special case. Finally, we provide similar results for the infinite horizon case, when the users are
trying to maximize the fraction of times they can guarantee wins over an unbounded number of
rounds. For this case, the income is provided to the users at a constant rate during each round.

7.5.1 Finite Rounds Model

First, let us assume that there are N users and a single shared resource. Name the users 1, 2,... , N.
User i receives a lump sum Wi before the beginning of the first round. The allocation of the resource
is performed in R rounds. Each round consists of an auction that determines which user is able to
use the resource, followed by the time slice that is allocated for the actual usage of the resource.
The users engage in a sequence of R of these rounds. Each auction is run independently of the
others; the only difference is the amount of money each user has available to bid. We will generally
denote the bid by an user for round n as bi[n], or simply bi if the round number is understood. Each
user can bid between zero and its current wealth at each round. After each auction, the highest

3Implicitly this means that any wealth left at the end of the rounds is useless to the users. This makes sense in
cases when wealth is not tied to real wealth, but to virtual credit that can be taken away at the end of the allocation
rounds.

134

bidder is declared the winner and must pay some price to be able to use the resource during that
round. The price is determined by the type of auction used. Here we will consider two possibilities:
the first-price auction, in which the price is equal to the highest bid; and the second-price auction,
in which the price is equal to the second-highest bid.

As we stated before, the basic goal of each of the users is to maximize the number of wins
that it can guarantee, R*, no matter what the other users bidding strategies are. This choice of
an optimization criterion implies that the sum of these guarantees over all of the users is equal

to the total number of rounds R when N = 2 because the mechanism is equivalent to a zero-sum
game [56]. This model can be characterized as an extensive game with perfect information [56]. In
game-theoretic terminology, we are searching for a strategy profile B that forms a sub-game perfect
equilibrium (SPE). Finding a SPE involves a dynamic programming iteration described below. In
many extensive games, although a SPE exists for every extensive game, it is difficult to find a SPE
especially in this case when the possible strategies are numerous. Here we show below that optimal
strategies can be characterized and verified relatively easily.

We denote the bidding strategy for user i by Bi and the collection of strategies for the other
users as B-i. The current state, or wealth is w[n] = (wi[n], w 2 [nJ, ... , wN[n]). A bidding strategy is
a collection of bidding functions /i (n, w), one for each round, that produce bids as a function of the
current wealth of all of the users. The bidding strategy for all users is B = (B 1 , B 2, ... , BN), and
consists of bidding functions 0(n, w) = (#1 (n, w),,82 (n, w), ... ,f3N(n, w)) (we also use the notation
b[n] = 0(n, w) when the amount of wealth w is understood). The price that is charged at time n
is p[n], and depends on the type of auction used. In the first-price auction p[n] = maxj f3 (n, w[n]),
or the largest bid, and in the second-price auction, p[n] is equal to the second largest bid. Given
a bidding strategy Bi, as the rounds progress (we label the first round by R, or by the number of
rounds remaining) the wealth of the users evolves as

w[n-1] = w[n] - p[n] - ((n, w[n]))

= w[n] - p[n].

For all users j, o-,() = 0 except for the winner of the auction, k, for which Ork(-) = 1. So, the equation
above tells us that after each round the winner of the auction at that round must pay p[n], and the
rest of the users maintain their current wealth. Given this definition of the wealth evolution, user i
can guarantee RBi wins in R rounds when user j begins with wealth Wj (W = (W 1 , W2, ... ,WN))

R

RBi (R, W) =mnin E ri(,3(n, w [n])).
n=1

For user i to maximize the number of guaranteed wins in R rounds, he needs to determine a strategy
B* such that

R

RB; (R, W) = max RB(R, W) = max min E ai (0(n, w[n]))
Bi Bi Bi n=1

For simplicity, we will define R* = RB*. Because of the sequential nature of the problem, we can
rewrite this as

R*(R, W) = R*(R, w(R)) = max min [ou (b(R)) + R*(R - 1, w[R - 1]]
bi (R) b-i(R)

And more generally, when there are n rounds remaining

R'(n, w[n]) = max min [oj(b[n]) + R*'(n - 1,w[n - 1]]
bi[n] b-i[n]

135

Finally, we know that Rf (0, w[0]) = 0 for all i. Using these definitions, we can iteratively solve for
R*(R, W) starting from R* (0, w[0]). The only other detail left to be specified is how to break ties.
For the finite rounds model, we will assume that the lowest-numbered user with the highest bid
wins the auction.

Two users

We first focus on the case when there are only two users (N = 2). At each round user i tries to
maximize the minimum number of wins that it can guarantee from now until the final round by
choosing its bid b(-) appropriately (the bid can be anything from 0 to the user's current wealth).
From our model above, we are trying to compute the R* (R, W) and R* (R, W) using

R*(n,w[n]) = max min[o-1(n) + R*(n - 1, w[n- 11)1
bi[n] b2 [n]

R*(n, w[n]) = max min[0-2 (n) + R*(n - 1, w[n -1])]
b2 [n] bi[n]

w[n -1] = w[n] - p[n] - a-(6(n, w[n]))

By these definitions,

R*(R, W) + R*(R, W) < R . (7.1)

However, because this model (when looked at as a strategic game) is a zero-sum game we expect
that

R*(R, W) + R*(R, W) = R. (7.2)

Before the theoretical results are shown, we present a few observations based on solving the iteration
above to find R* (R, W) and R* (R, W). If we solve this problem for small W 1 , W 2 and R, the values
have the following properties:

* R*(R, W) is shown in Figure 7-6, for 0 < W 1 , W 2 < 20 and R = 8 and with a second-price
auction. The dotted lines indicate lines of slope m/(R - m), m = 1, ... , R - 1. Each of these
lines falls roughly within the region in which R* = m; this indicates a sort of proportional
fairness of the mechanism, in which ratios of starting wealth that are close to m/(R - m)
achieve a win ratio of m/(R - m).

" For each possible set of initial wealth parameters, there are a number of optimal strategies
that each can play (usually multiple choices at each round). Interestingly, among the optimal
strategies that have been examined, there is always a "conceding" strategy in which neither
user ends up losing any money; at least one user bids zero in every round, and so the other
user wins by default and does not have to pay. The optimal strategy we use in the proofs
below is not of this form.

So far we have not specified the actual auction mechanism used for the allocation. In the next
two sections, we present fairness results for two common mechanisms: the first- and second-price
auctions.

136

20

18

16

12a)

1 0~
310

-8

6

4

2

0

0 2 4 6 8 10 12 14 16 18 20
Wealth of Player 2

Figure 7-6: Optimal number of wins for user 1 for initial wealth less than 20 and R = 8. The

numbers on the plot indicate the number of wins by user 1 when the starting initial wealth falls

within the surrounding connected region.

137

20

18

16

14

12

010

Cz
a)

6

4-

2

0

0 2 4 6 8 10 12 14 16 18 20
Wealth of Player 2

Figure 7-7: This graph indicates the regions in which the users can guarantee a certain number
of wins using a second-price auction. Going counterclockwise from the bottom axis, the regions
indicate that user 1 can guarantee 0 wins, 1 win, 2 wins, etc. up to 6 wins. The dashed lines
indicate linear bounds within which the users can guarantee wins, and the shaded squares indicate
which initial wealth distributions fall within the linear bounds.

138

Fairness for the Second-Price Auction Our main goal in this section is to establish the

fairness properties of this repeated game when using a second-price auction mechanism. The ideal

measure of fairness that we use as a comparison is that we would like the ratio between the number

of wins for each user, R1/R 2 , to be as close to W1/W 2 as possible. This is similar to the notion of

deterministic fairness we presented in Chapter 3. However, with only a finite number of rounds, we

are constrained so that R 1 +R 2 = R, and can not represent any possible W1/W 2 . In this section, we
show in Theorem 7.4 that when the first user uses the strategy specified in Theorem 7.3, that user

guarantees a number of wins at least as big as [RWI/(Wi + W 2)J when the wealth of each user is
large enough. If both users use the strategy, the first user guarantees this or fRWI/(Wi + W2)1 and
the second user guarantees the rest. Subsequently we show the same result for first-price auctions
(Theorem 7.6).

It turns out that there is a very simple rule for the optimal bidding strategy for each user that
will guarantee the maximum number of wins for each. First, define the following quantities:

WiO Wi-e#(k), Wi z, m k
qi~k) = #57(k)==(.) qj(k) - ,Wi m (7.3)k k qi(k) - 1, Wi = mk

for positive integer m and e E (0, 1). Then, the following theorem holds.

Theorem 7.3 If 0'(k) > 0 1(f+ 1) and #'(k+ 1) < 0 1(f) for some k,f > 0 and k+ =N, then
user 1 has a strategy by which he can guarantee at least f wins and user 2 has a strategy by which
she can guarantee at least k wins.

If Of(1) < #1 (R) (k = 0, f = R) then user 1 can win every round.

If #1 (1) < #6 (R) (k = R, f = 0) then user 2 can win every round.

Proof: First, we show that user 1 can guarantee £ wins. Assume that W1, W 2 , f, and k all satisfy
the two conditions in the theorem, and user 1 bids b1 = bi (i) = #1(f) in each auction as long as he

is able. Also, assume (for later contradiction) that user 2 can win k + 1 times. Then we know that
the minimum amount of money that user 2 must spend to win k + 1 times is

B 2 = (k + 1)bi . (7.4)

It is clear that as long as user 1 follows this strategy, he will have enough money to bid #1(f) until

after he has won at least f times, because #1(f)f < W1. We also know that if 01(f) > #'(k + 1),
then #1 (f) > i2-. So, the following reasoning shows that in order to win k + 1 times, user 2
must bid more than her wealth to win the (k + 1)-st time, which is not allowed, and we have a
contradiction. We have

B 2 = (k + 1)bi = (k + 1)01(f) > (k + 1) k = W2 -
k +1I

which implies that B 2 > W 2 . But, this means that after k wins, user 2 must have already paid
B 2 - #1(f), and so would only have W 2 - (B 2 - #(f)) < #(f) wealth remaining. In order to win
for the (k + 1)-st time, user 2 must bid more than 0(i), which is not allowed given her remaining

wealth. Thus, user 1 can guarantee f wins.

Next, we show that user 2 can guarantee k wins. Again, assume that W 1 , W 2 , £, and k all

satisfy the two conditions in the theorem. Now, user 2 bids b2 = b2 (i) = 0'(k) + 1 in the ith

auction as long as she is able. User 2 can bid this high because she will only pay at most b2 (i) - 1
for any win (because user 1 wins all ties) and k(b 2 - 1) = kq'(k) 5 W 2 . We assume again (for later
contradiction) that user 1 can win f + 1 times. Then, the minimum amount of money user 1 must
spend is

W1
B1 = (f + 1)b 2 = (f + 1)(#'(k) + 1) > (+ 1) =W1

2 f~ + 1 W

139

So, B 1 > W 1 and we have a contradiction. 4

For the last two cases, note that if 0'(1) < #1 (N) then user 1 can bid 0 1 (R) every time and
win every round. Similarly if qh,(1) < 6"(R) and user 2 bids 6'(R) + 1 every round. M

It is important to note that the conditions on 1 (-) and #'(-) cover all possible pairs (W 1 , W2), so
this theorem tells us how many wins an user will have as a function of the starting wealth of the
two users. One important point to remember when thinking about fairness in the finite rounds
model is that there are only a finite number of possible allocations that can be achieved. As was
mentioned earlier with the simulation observations, the only possible ratios between Rt and R* are
m/(R - m), where m = 0,1,..., N. This means that for certain values of W, the ratio W 1/W 2

can not be achieved. However, the next corollary and theorem establish an approximate notion of
fairness.

Corollary 7.1 If W is large enough,

k +1 k W2 kkl> - > k (7.5)
e W1 W1 f+I

then user 1 can guarantee f wins and user 2 can guarantee k wins.
Proof: From the definitions above,

W1 W2-
#() > W - 1 and 2 > #(k + 1).

k+1 -

So, if W1 is large enough so that W 1/e - 1 > (W 2 - e)/(k + 1) then we know that

W > W2-E-1 >f k +l
k +1 k+1 > W2-

f W1 W1
k+1 k W2

f W Wi

The last step follows because e < 1. This final inequality implies that #1 (f) > #' (k + 1).
We can show the second inequality by seeing that

W 2 >W

k f +I

implies that #1(k) > 0 1 (e+ 1) This follows by noting that if W 2 /k is not an integer, then e and the
implication is obvious. If W 2 /k is an integer, then W 1 /(f + 1) must be less than an integer, and so
will drop to the next lowest integer when floored, and #1 (f + 1) will still be less than or equal to
0' (k) .

It tells us that for ratios of W 2 to W near a ratio k/f where k + f = R, user 2 wins k auctions and
user 1 wins e auctions. It is important to note that this corollary only defines a nonempty set of
W2 /W 1 if W1 + W2 is greater than a value that grows (asymptotically) as R2 /4.5

4As a clarification of a not-so-obvious detail, the (in the definition of 4 (k) is needed because otherwise if W = mk
for some integer m, user 2 could not bid 42(k) + 1 after it has won k - 1 auctions. It would only have 42 (k) left to
bid.

5Is there a tighter bound that gives a (sub-)linear bound? Not in the case of a first-price auction. In that case,
these bounds are within 1 of the best linear bound (simply add or subtract 1/W 1 on either side to widen the bounds),
as can be verified by the plots. Asymptotically, as N increases, the minimum total wealth needed for these linear
bounds to prove useful grows as k, whose maximum value is R2 /4.

140

Theorem 7.4 (Second-Price Fairness) In a second-price repeated auction with two users there

exists some integer LR such that for all W 1 , W 2 with W 1 , W 2 > LR, if

W n n+)

W2 .R-n' R-(n+l)

then user 1 can guarantee either f = n or = n + 1 wins, and user 2 can guarantee k = R - f wins.
Also, n = [WiR/(Wi + W 2)].
Proof: We will find a value LR such that if W1 > LR, then

n + 2 n + 2 n+1 W > n n

R - (n +1) W 1 R-(n+1) >W2 - n R-n+1

The first inequality tells us (with Corollary 7.1 and Theorem 7.3) that user 1 can guarantee no
more than n + 1 wins, and the fourth inequality tells us that user 1 can guarantee at least n wins.
This follows because the number of wins for either user increases with its wealth, and thus also
increases (for user 1) with W 1 /W 2 .

The second and third inequalities establish the assumption in the statement of this theorem.
We also know that if user 1 can guarantee n wins, then user 2 can guarantee R - n wins (similarly
for n + 1).

The last thing is to find a value for LR. To do this, we simply solve the first inequality above
for W1 :

n+2 n+2 n+1

R-(n+1) W 1 R-(n+1)

W1(n+2)-(n+2)(R-(n+1)) > W1(n + 1)

W1 > (n + 2)(R - (n + 1)).

And, from the second inequality, we know that

n + I1 W1
R - (n + 1) W2

W2> W1(R - (n + 1))
n + 1

W2 > n - (R - (n + 1))2
(n + 1)

So, if we set LR equal to the maximum of these two bounds over all n, the theorem follows. For
this case, LR turns out to be 2(R - 1)2. *

Fairness for the First-Price Auction If we follow similar reasoning, but use first-price auctions
instead of second-price auctions at each step, we can prove the following theorems.

Theorem 7.5 If #2 (k) > 01 (f + 1) and #2 (k + 1) < 01(e) for some k,£ > 0 and k + = N, then
user 1 has a strategy by which he can guarantee at least f wins and user 2 has a strategy by which
she can guarantee at least k wins.

If 02(1) < #1 (R) (k = 0, f = R) then user 1 can win every round.

If 0$1(1) < #2 (R) (k = R, f = 0) then user 2 can win every round.

141

Proof: In order to prove this, use the bidding strategies where user 1 bids 01(f) all the time and
user 2 bids #2 (k) every round. Then we have

B1 = (f + 1)b2 = (f + 1)# 2 (k) > ((+ 1)76 = W
B 2 = (k + 1)(bi + 1) = (k + 1)(# 1(f) + 1) > (k + 1)2 = W2

and again we have a contradiction. User 1 and user 2 must win at least i and k rounds, respectively.
For the final two cases, note that if 02(1) < 01(R) then user 1 can bid #1(R) every time and

win every round. Similarly if 01(l) < 02 (R) and user 2 bids 02 (R) every time. *

Again, the conditions on #1 (.) and q2 (') cover all possible starting wealths. A corollary similar to
the second-price corollary follows.

Corollary 7.2 If W is large enough,

k+I'> W2> k+ k(7.7)
e -W 1 -f+I W

then user 1 can guarantee f wins and user 2 can guarantee k wins.
Proof: The proof follows similar reasoning as the proof of Corollary 7.1. 0

Finally, we can prove a similar fairness theorem for the first-price auction.

Theorem 7.6 (First-Price Fairness) In a first-price repeated auction with two users there exists
some integer LR such that for all W 1 , W 2 with W1 > LR, if

W1 n n + I

W2 R - n' R - (n + 1

then user 1 can guarantee either f = n or f = n + 1 wins, and user 2 can guarantee k = R - f wins.
Also, n = W 1 R/(W + W 2)J.
Proof: We will find a value LR such that if W1 > LR, then

n+2 n +1 >W n n n

R - (n+1) R- (n +1) W 2 R-n - R - n +1 W1

The first inequality tells us (with Corollary 7.2 and Theorem 7.5) that user 1 can guarantee no
more than n + 1 wins, and the fourth inequality tells us that user 1 can guarantee at least n wins.
This follows because the number of wins for either user increases with its wealth, and thus also
increases (for user 1) with W 1 /W 2 .

The second and third inequalities establish the assumption in the statement of this theorem.
We also know that if user 1 can guarantee n wins, then user 2 can guarantee N - n wins (similarly
for n + 1).

The last thing is to find a value for LR. To do this, we simply solve the last inequality above
for W 1 :

n+1 n n
R- (n+) > -R-(n+1) W1

W 1(n+1) > Win-n(R-(n+1))

Wi > n(R-(n+1)).

142

20

18

16

14

12

010a)

8

0 2 4 6 8 10 12 14 16 18 20
Wealth of Player 2

Figure 7-8: This graph indicates the regions in which the users can guarantee a certain number of
wins using a first-price auction. Going counterclockwise from the bottom axis, the regions indicate
that user 1 can guarantee 0 wins, 1 win, 2 wins, etc. up to 6 wins. The dashed lines indicate linear
bounds within which the users can guarantee wins, and the shaded squares indicate which initial
wealth distributions fall within the linear bounds.

143

And, from the second inequality, we know that

n+1 W1

R - (n + 1) W2

W2 W 1(R - (n + 1))

Wy2 >
W2 > n) .(R -(n + 1))2.

So, if we set LR equal to the maximum of these two bounds over all n, the theorem follows. For
this case, LR turns out to be less than (R - 1)2/2. .

Many Users

Now, we take the results from the two user case, and extend them to apply to the case in which we
have many users (N > 2), each of which is trying to win as many rounds as possible.

As before, we would like to find an optimal strategy that guarantees a minimum fraction of wins
for an user that is close to the ratio between that user's wealth and the wealth of the other users.
In this section as we previously showed for two users, we show that we can guarantee the closest
achievable ratio that is less than the wealth ratio when the wealth of the users is large enough.
When all users play this strategy, this leaves a number of wins (up to one per user) that are not
accounted for in the guarantees.

As before, each of the M users begins with some initial wealth and bids during each round in
order to win as many rounds as possible. For now, we will concentrate on the second-price auction.6

Using the results from the two user case, we can show that the many user case is also approximately
fair. To do this, we start with the following definition:

Definition 7.4 (Coalition) A coalition is a subset of the users who are allowed to share the
resources of the entire subset. Specifically, the bids from the users in a coalition can be as large as
the entire wealth held by the coalition.

In order to show the fairness of the many user case, we consider a modification of the many user
case, where the users are broken up into two coalitions. The first coalition consists of a single user

(called N, without loss of generality) and the second coalition consists of the rest of the users. The
only case that this does not cover is when the single user has the highest priority in tie-breaking.
The previous results for two players do not change qualitatively if we reverse the tie-break order,
so we do not have to explicitly worry about it here. The first observation we can make about this
modified game is that the performance of the second coalition is bounded below by the collective
performance of the member users in the original many user game - the coalition can restrict itself
to play simply as a collection of independent users if that gives the best results. Next, we will show
that the first coalition (single user) with wealth WN can achieve the same performance competing
against the second coalition as in the two user case, with users whose wealths are WN and EN- Wi.

Before we present the lemma, we would like to make the observation that the number of wins that
a user can guarantee is a monotonic function of the wealth that the user has. The simple way to
see this is that a user with more money can always pretend he has less if it would help him, thereby
having the ability to win as many rounds as a user with less money.

6 We can use similar reasoning to show the same results for the first-price auction.

144

Lemma 7.5 (Coalition Bidding Strategies) Assume that a sequence of bids for the second
coalition of size N - 1 is b[i], i = 1,..., R, where each b[i] = (b1[i,...,bN-1 Call the num-

ber of wins achieved by the coalition k using this sequence of bids. Then, the sequence of bids

b'[i] = (max bji], 0,.... , 0) achieves k' wins such that k' > k. Thus the optimal sequence of bids

b*[i] is of the same form as b'[i], and guarantees k* > k' > k wins.

Also, the first coalition (single user) has a bidding strategy that guarantees R - k* wins against
any opposing coalition strategy.
Proof: First, define b3 [i] as the largest element of b[i], and bk[i] as the second largest element of
b[il. There are three cases to consider:

" bj[i] bk [i] bN[i,

" bj [i] > bN[i] > bki

" bN > b i] > bk -

In the first case, the second coalition wins, but pays a higher price (bk[iJ) than it needed to. If
we set bk[i] = 0, as in b', then the second coalition will pay less for the win at round i, making
it possible for the coalition to win more rounds under b' than b. In the second case, the second
coalition wins and pays the same price under b' and b, so there is no difference between the two
strategies. In the third case, the second coalition loses, and the winner pays the same price under
b' and b, so there is no difference between the two strategies. Thus, b' guarantees at least as many
wins as b.

To prove that the singleton can guarantee R - k* wins against any bidding strategy, we start by
noting that it can guarantee that many wins against any strategy in which only a single member of
the opposing coalition bids at each round by analogy with the two user case. Now we have to show
that it can only do better if the opposing coalition uses any other strategy. We do this by recalling
that the only time that any other strategy differs from a strategy in which a single member of the
coalition bids is when b3 [i] > b,[i] bN[i], or when the second coalition has the highest two bids.
The only effect this will have is to reduce the second coalition's wealth in the next round. But, we
know that the number of wins by the singleton can only increase as the opposing coalition's wealth
decreases (or as the ratio WN/ ZitN Wi increases), so the singleton will win at least as many times
as it would have if the second coalition behaved as a single user. n

So, we can assume that the optimal bidding strategy for a coalition is simply for a single member
of the coalition to bid. This means that the modified many user game can be reduced to a two
user game, between the first user with wealth WN and a super-user with wealth equal to WS =

ENz1 W,.
We now approach the problem slightly differently than before, and provide lower bounds for

the number of wins each singleton can guarantee using the linear bounds given in the previous
corollaries. These are looser than the previous guarantees for the two user case. In order to show
these fairness bounds for the many user game, we use Theorems 7.4 and 7.6. We now define

W-i = Ekoi Wk as the sum of the starting wealths for all users other than user i.

Theorem 7.7 (Many User Fairness) In a many user auction game (first- or second-price) with
arbitrary tie-break ordering, if the starting wealth of the users is greater than the maximum value
of LR, and

Wi E ni n + 1

W-i _R-nj' R- (nj+1) '

145

then user i can guarantee

Wi R
ni-

L Ej=i tWi
wins.
Proof: From Theorems 7.4 and 7.6, we know that user i can guarantee at least ni wins, where

ni <W < n +1
R - ni W R - (ni +)

for some value of LR. By simply rearranging this, we get

Wi

ni + < (7.9)
W-i -~W-i

WiR
ni < W (7.10)

j

and

ni + I > * (R - (ni+ 1)) (7.11)
W_2

W\ W R
(ni + 1)K1 + > W- (7.12)W-.; W-i

ni > WR 1 . (7.13)
j= 1 Wi

From this, we know that

WiR
n- =

This theorem establishes that, in a many user auction game, each user can guarantee a number
of wins that is the closest integer less than or equal to the fraction of wins corresponding to that
user's fraction of the overall wealth. The sum of these guarantees is lower bounded by

N

Eni > R - N . (7.14)
i=1

These guarantees can be met if each user uses the optimal bidding strategies for the two user
auction. In fact, if we know that Wi = Lwi, where >j_1 wj = R for some integer L then each user
can guarantee exactly wi wins and no more.7

Example 7.4 (Many User Auction) Consider two examples of the many user auction:

(i) There are four competing users, with starting wealths of 6, 12, 12, 18, and they compete for 8
rounds. The users can guarantee 1, 2, 2, 3 wins, respectively.

(ii) There are four competing users, with starting wealths of 6,12, 13, 17, and they compete for 8
rounds. The users can guarantee 1, 2, 2, 2 wins, respectively. The final unguaranteed round
might be won by any of the users.

7 This fact was also noted in [31] for the case when wi = 1 for all i.

146

7.5.2 Fairness

For both the two player and the many player scenarios above, each player could guarantee a number

of wins that is within 1 of the desired number of wins for a given maximum number of rounds R.

Although we have not shown an upper bound on the number of wins beyond the loose bound in

Equation (7.14), it is safe to say that these auction mechanisms guarantee some level of fairness.

It is tempting to say that the fairness guarantee gets tighter as the number of rounds increases.

If the number of wins is always within 1 of the desired value then as the number increases the

fraction of wins converges to the desired fraction. However, we have to take into account the value

LR in the statement of Theorems 7.4, 7.6 and 7.7. In all of the theorems, LR grows as R 2 . This

means that the amount of money, or at least the divisibility of the money, has to increase more

quickly than the number of rounds to guarantee the simple bounds given in these theorems.

In spite of this, the mechanisms still provide a degree of approximate fairness, as can be seen

in the theorems and figures given so far. We can not make the claim that these mechanisms

are deterministically fair as we could for the deterministic models considered earlier, but they do

guarantee that the number of wins, or total allocation is always very close to the desired number
or allocation.

7.5.3 Infinite Rounds

Now we change the game so that we have an infinite number of rounds, and each user starts with

no wealth, but receives a constant amount pi of income at the beginning of each round. The wealth

evolution equation is now

w[n + 1] = w[n] + p - p[n].

We would like to show that if both users follow the optimal bidding strategy, then the average
number of wins per round (for user 1) converges to the ratio pi/(PI + p2). As before, each user

would like to maximize the guaranteed wins that he gets. Additionally, to make the problem

cleaner, we break ties probabilistically. With probability 1/2, the first user wins a tie, otherwise

the second user wins. We define R(n, wi, W2) as the number of wins that user 1 can guarantee in

the first m rounds with starting wealth configuration (wi, w2).

R(m + 1, wi, W2) = max min E {om + R(m, w, - b2 0m, W 2 - bi(1 - Um))} . (7.15)
b1 b2

Again, we define om as the number of wins (0 or 1) by the first user at round m, but now 0-m is a

random variable if bi(m) = b2 (m). By iterating this, starting at m = 1, we would hope that

lim RM, W, W)=v*,
m-+00 m

where v* is the optimal fraction of wins that user 1 can guarantee. [When is this guaranteed to

converge?] Figure 7-9 shows R(-) after different rounds m with (pI, P2) = (5, 3) with a limit on the

maximum wealth either user can have of 20. It is apparent for this case that the limit is converging
to a constant v* such that

* = P .
Pi + P2

We show this convergence in Figure 7-10. At round 50, the maximum value of R(-) corresponds
with user 1 winning 33 times, and the minimum value corresponds with user 1 winning 29 times.

The average value corresponds with user 1 winning just over 31 times, the expected number given

the income rates for both users.

147

After Round 5

020

101

Wi 0 0 10152

After Round 15

.........

0.

- 0- ..

20

1w -0520

5 10 15

wt w2

After Round 25

0.5

- 0 -.. ..-
2 0 -....--.

20

10 15

w1 w 2

After Round 50

........................

0.5

-. 0
20--

LL--.

Wi - 15 20

10 1
0 0 5

w W2

Figure 7-9: Plots of R() after 5, 15,25,50 rounds Values (P, P2) (5 3) were used.

148

MINA

5 10 15 20 25
Round

30 35 40 45 50

Figure 7-10: Convergence of R(m, wi, w2) to a constant v* = pi/(pi + p2). The average of

R(m, wI, W2) over all values of wi and w2 is shown along with the maximum and minimum for a
number of values of m.

149

0

u-

-AAverage
-- Max

-. . - .-.-- M in

-.

--. -. .-.--.-. .-. .

- - .

-

-f

0.9

0.8

0.7

0.625
0.6

0.5

0.4

0.3

0.2

0.1

- -

1

-. .. .

.... -

- - -- - -.

- - - .

....-

- -. -.

-.

- -.. . .

Optimal Strategies for First Price Auction

We now show that the same bidding strategy that guaranteed the maximum number of wins for
the finite round model also guarantees the maximum fraction of wins for the infinite round model.
First we will show this for the first price auction. Recall that in the first price auction, the optimal
bidding strategy was for the first user to bid 0 1 (e) at every round, if #2 (k) > 01(f + 1) and

02 (k + 1) < 0 1 (e) for k + e = R. If we (just for motivation) extend this to large values of R while
increasing the initial wealth at the same time, we get the following two relations:

P2R pR P2R] [p1RJk _ E+1_ ' k+1_ ~ f

which can be rewritten as

P2 P1 P2 PI
f, + 1/R f2 + 1/R_ - fi

We define f2 = k/R and fi = f/R. As R increases, the gap in the inequalities becomes smaller and
smaller. In the limit as R approaches oo, the only possible values for fi and f2 are ones such that

f2 _ fi_

In order for the inequalities to hold as we increase R, the argument on each side of the equation
must be equal to an integer, and so we have

P2 _ P1

f2 hi

If we take this along with the restriction that fi + f2 1, then we have the solution

fi= Pi
P1 + P2

for i = 1, 2. So, the optimal bidding strategy, as R increases, tends towards bidding min(wi, p1 +p2)
at every round.

However, this argument does not establish that this bidding strategy will work for the infinite
round model; it only provides motivation for considering the strategy. In the infinite round model,
we do not start with a lump sum, we receive an income equal to pi after every round. So, the
amount of money available over R rounds is still pjR as in the finite rounds case, but it is not
available at the beginning. The following theorem establishes that this difference does not have a
large effect on the behavior of the model.

To prove that the strategy of bidding P1+ P2 at every round can guarantee winning a fraction fi
of the time for user 1, we need to show that if user 1 follows this strategy he is guaranteed winning
at least a fraction fi of the time against any opposing strategy. Then, we know that user 2 can
guarantee f2, which implies that user 1 can not guarantee any more than fi.

Theorem 7.8 (First-Price Infinite Rounds Bidding) If user 1 bids min(w1 , p1 + P2) at every
round in an infinite rounds repeated auction then he will win at least a fraction fi = P1/(P1 + P2)
of the rounds.

Proof: First, establish that user 1 can actually bid this high while winning a fraction fi of the

150

rounds. If he pays p1 + P2 at every round he wins, then he will have enough income (over a long

period of time) to win a fraction fi of the rounds:

(fiR) (pi + P2) = p1R .

Next, assume user 2 is to win a fraction c > 0 of the rounds that user 1 should win (leaving user

1 with fi - e). Every round that user 2 takes from user 1 allows user 1 to bid more than p1 + p2 on
some other round that he would not have been able to bid that high on otherwise (because he does

not need to pay for the loss). This means that user 1 can cause user 2 to pay more than pi + P2
for some fraction E of the rounds she would have paid less for before. But, if user 2 still wins them,
user 1 can force user 2 to pay more for some other fraction of the rounds. Essentially, user 1 can

force user 2 to pay more than p1 + P2 for all rounds that she wins if she tries to win more than a

fraction f2, but user 2 does not have enough income to sustain that rate of payment, so we have a
contradiction. User 1 must win at least a fraction fi of the rounds.

The only final observation that needs to be made is that even though the winning user may
not pay p1 + P2 for every win if they do not bid that high, if user 2 were to win a larger fraction of
the rounds than f2 the wealth of user 1 would grow without bound, and cause the winning bid to
always equal p1 + P2 as long as user 2 wins more than a fraction f2 of the rounds. m

The same reasoning applies to user 2, so we can finally say that if both users use the same bidding
strategy, each will win a fraction fi of the time.

Corollary 7.3 (Fairness of Infinite Rounds Model) If user i bids min(wi, p, + P2) at each

round, then user i will win a fraction fi = pi/(pi + P2) of the rounds.

Optimal Strategies for Second Price Auction

The second price auction is more complex. The proof for Theorem 7.8 also holds if we use a

second-price auction with a few minor modifications. This shows that the second price auction

also guarantees fairness when using the same strategies as above, but the behavior of the wealth

accumulation is different. For the first-price auction, the wealth of the two users remains bounded

(empirically) as the rounds progress. With a second-price auction, experiments show that a user
may be able to accumulate an unbounded amount of wealth even though the mechanism is allocating

the resource fairly. However, the wealth can only accumulate at a sub-linear rate. In all experiments

we have tried, there is no way for a user to modify her bidding strategy in order to utilize this

accumulated wealth to affect the fraction of wins that she gets. The wealth accumulates at a rate
that is not large enough to change the fraction of wins. This seems to indicate that while the second

price auction guarantees deterministic fairness in the infinite horizon case, it is not bounded fair.

7.6 Discussion

As we mentioned at the beginning of this chapter, and as we have shown throughout, auctions

are useful tools because we can use them to make fairness guarantees even when the users are

allowed to act as selfish agents, each trying to maximize his own allocation. This type of allocation
mechanism is becoming more important as computing and communication systems become more

complex, decentralized and uncontrolled.
We have shown (for a few possible cases) that when the actions of the users are assumed to

be unknown and possibly adversarial, an individual user can still guarantee himself a minimum

151

fraction of the available resource very close to the user's desired fraction. The original model in
Chapter 3 did not make this same guarantee. The only constraints on the requests made in the
original model were ones that were agreed upon in the statement of the problem. In a real system,
however, there is nothing stopping a user from requesting a very large amount of the resource.
Even if the user only gets a portion of what he asks for, he is still better off than if he were to ask
for less. In fact, if the user asks for more than he desires, the user will receive a larger fraction of
the resource. In situations when a user may not necessarily receive the fraction he desires because
the resource is oversubscribed, it is beneficial to the user to ask for more than he desires in order
to compensate. By using an auction, we decouple the user's desires from the requests (bids) he
is allowed to make. By doing this, we allow the user to request whatever he would like, but we
force him to do so using a bounded amount of bidding resources. In fact, this is a similar method
to that which is used, for example, in credit-based algorithms in [30] and in the PGPS algorithm.
To bound the behavior of the users, a limited amount of credit is allotted to each user which then
determines how the allocation decisions are made.

The use of auction mechanisms connects our original mathematical model with a more realistic
appreciation of the users' possible behavior in an actual system. Our original model assumed that
in some way the actions of the users are unknown ahead of time but somehow well-behaved; any
practical implementation of a fair allocation mechanism like the ones we have looked at here needs
to consider the complete range of user actions, including worst-case adversarial scenarios.

Auctions have been heavily studied over the years, and so have been chosen as convenient tools
for resource allocation in many areas. However, it is important that in addition to using empiri-
cal data to guarantee allocation fairness as was done in [67], we also determine what theoretical
guarantees can be made. The results presented here are a simple beginning, an illustration that we
can analyze these and possibly more complex mechanisms mathematically. The auctions we have
looked at are special cases of more general scheduling rules that might be used in our allocation
framework.

152

Chapter 8

Conclusion

We have presented an investigation of a number of aspects of a simple dynamic resource allocation

problem. Our approach to this problem treats the entire allocation mechanism as a dynamic

feedback system for which the behavior can be understood by analyzing the trajectories of the
state variable, or the lag of the system. There are a few important observations to make after our

presentation of the analysis. First, the model as we have formulated it is simple and even naive in

some respects. It operates only in discrete-time, the scheduling rules are constrained to correspond
with minimum distance quantizing rules, the feedback dynamics are about as simple as possible,
and very little application specific information is incorporated into the model (although we do give
a few examples that illustrate how this can be done). Despite this, mechanisms of this simplicity

have been used as the basis for proposed practical scheduling algorithms in the literature. There

are a number of possible extensions to our basic model that would make the model both more

complex and more powerful. We discuss a number of these below.

The second observation is that the view of a dynamic resource allocation problem as a geometric

problem seems to be underutilized. It is true that many resource allocation problems do not fit

within a nice geometric framework because of dependencies, discontinuous control and system

descriptions, and other reasons. However, as we have shown here, there are classes of problems

that can be usefully modeled this way. A large class of discrete-time queueing network models can

be embedded in a geometric framework. By viewing a number of different allocation problems in a

common framework it is easier to illustrate the similarities and differences between them.

These two observations make clear the pedagogical aspects of this thesis that have not been

discussed. The model we present, although it is not rich enough to capture all of the behavior of

interest to us, is complex enough to aid in the understanding of similar models. Our geometric

interpretation of resource allocation problems can help to understand the relationship between

different models, such as different classes of queueing systems.

As a concrete example, consider the different classes of queueing systems we considered earlier.

All of them can be modeled in our framework, and the differences come out in the choice of

constellation. Typical unconstrained queueing networks with N queues, each with a dedicated

server, have a constellation that looks like the corners of a N-dimensional cube and a matrix

B[n] that corresponds to the interconnections of the servers. Reentrant multi-class networks place

restrictions on the points in the constellation; they now form a subset of the corners of a cube.

The matrix B[n] also has a particular structure that simply routes jobs deterministically between
buffers. The input-queued switch can be seen as a simple queueing network with a collection of

N 2 queues and servers with constraints on which servers can be activated simultaneously, and no

complex structure in the routing matrix B[n]. The input-queued switch is also a special case of a

153

constrained queueing network, which can be modeled as a network of queues with constraints on
which servers can be activated simultaneously.

With this view of different classes of queueing networks, we can begin to see how they relate, and
why particular scheduling rules may work for some and not for others. For instance, in a queueing
network of independent simple queues a work-conserving FIFO scheduling rule will always maintain
stability while in a reentrant network that is not necessarily the case [13]. For the non-reentrant
network, the FIFO rule is equivalent to using a quantizing scheduler based on the 2-norm, while for
the reentrant network it does not because of the constraints placed on the servers. It is possible to
define schedule rules for reentrant networks that are consistent with the 2-norm, and thus stabilize
(at least) networks that satisfy the modeling assumptions in this thesis. The dichotomy between
the maximum weighted matching, which guarantees stability for all feasible input rates, and other
maximal matchings, which do not necessarily make the same guarantee, is also echoed in our
presentation. It appears here as the difference between a smooth norm and a non-smooth norm.

Before we conclude, it would probably be appropriate to answer the question posed for the
traffic light scheduling problem given in the introduction. As stated, the traffic light scheduling
problem is identical to the 2 x 2 input-queued switching problem described in detail in Section 3.5.1.
Thus, any scheduling rule that stabilizes an input-queued switch will also stabilize the traffic light
model. For example, if we simply schedule the pair of directions with the largest total number of
waiting cars (maximum weighted matching), the number of cars in line will never grow unbounded
as long as the arrival rate remains feasible.

We end with a discussion of a number of related topics and extensions that would be interesting
for further research.

Model Structure and Stability

Variable-Length Packets

Until now, we have only considered discrete-time queueing models with fixed-length jobs. In many
queueing applications, it is much more natural to model the processing times (or allocations) as
varying in length. As an illustration of how this might be done for our model and still allow
us to model it meaningfully and perhaps extend our stability results, we consider the case when
the processing times (or job/packet lengths) and inter-arrival times are determined according to
corresponding probability distributions. We will look at a single server with N competing queues.
With a single server, the scheduling times occur when a job departs from the server, or when a
job arrives when all queues are empty. Call these times {'rk} for k = 0,.. , P, where To is the
time at which the first job arrives (the beginning of the busy period) and Tp is the time at which
the second-to-last packet departs within the busy period. If Xk is the processing time for the k-th
packet processed by the server then Tk - Tk__1 = Xk and we can write the dynamics that govern the
amount of work in the queue f(t) as

i(t) = r(t) - s(t)

The arrival function r(t) is a point process; we define it as the derivative of the function R(t),
where R(t) is equal to the amount of work (sum of the job lengths) that has arrived up until time t.
The scheduling signal s(t) is a vector that indicates which of the queues is being serviced. We will
define S(t) as the running integral of s(t). The scheduling decision made at time Tk is s[k] = s(Tk),
and the amount of work that arrives after Tk_1 up until Tk is r[k]. Because we only care about the

154

queue size at scheduling times, we call e(Tk) = f[k] and we can rewrite the dynamics as

e(Tk+1) = f(T) + j (r(t) - s(t))dt

f[k +1] = f[k] + r[k +1] - Xk+s[k] .

This looks much like our dynamic model. It differs because Xk+1 may be correlated with f[k] (it is
the size of the job at the front of the queue that gets scheduled). If we do not allow the scheduling

rule to make use of the value Xk+1, only the statistics of xk+ 1 and the current amount of work

in the queues, this model does fit within our earlier framework with x" taking the place of B[n].

However, we might also want to look at scheduling rules that make use of the value of x", or at

least use the fact that r[n + 1] is correlated with x,.

Non-idling Scheduling Rules

Much of the existing work on stability of queueing networks under various scheduling disciplines,
including [52, 37, 5], assumes the property that the scheduling disciplines are non-idling -- whenever

a server has jobs waiting in a buffer, it must be busy. This property is not necessary to prove
stability, but generally makes it simpler. In most queueing network models, it is possible to define
a non-idling policy because all of the servers operate independently. In [65], however, a constrained
queueing model is developed that allows the status of a server to depend on the status of others. In
this way, two servers may both have waiting jobs, but may be constrained such that both servers
can not be busy simultaneously. It would be impossible to define a non-idling scheduling policy for
this example.

In our general dynamic allocation model also, a non-idling policy can not always be defined.
Moreover, the concept of a non-idling policy does not always make sense when the constellation is

a collection of points in a continuous space. The stability results here identify classes of scheduling
rules that always stabilize a model when it is stabilizable. These rules turn out to be non-idling
policies when the constellation allows them, and so can be thought of (at least for the limited class
of systems we consider here) as generalizations of certain non-idling policies.

As we showed in Chapter 4, if we make our scheduling decision by minimizing the squared
distance between the schedule and the current vector of queue lengths, we can guarantee full
throughput. It is also easy to see that when the queues are not constrained, this minimum squared
distance rule corresponds to a non-idling policy; each queue operates independently, so the schedul-
ing choice is s = 1 (busy) or s = 0 (idle). The squared distance is the squared difference between
the queue length and the schedule. When the length is nonzero, choosing s = 1 will result in the
smallest squared difference. When the length is zero, s = 0 is the best choice.

The concept of a generalized class of non-idling policies might prove to be useful not only for
systems like constrained queueing networks, but perhaps other non-queueing systems. This concept
has not been explored in much depth, either here or in the work on constrained queueing networks.

Schedulers

Another restriction we make in this thesis that allows us to reach our conclusions more easily is that

the schedulers be based on quantizing scheduling rules. Other rules such as the p-fair algorithm [3]
can be seen to have better performance than a quantizing scheduling rule with respect to minimizing
the maximum lag in simple cases.

One area that deserves some investigation is the relative performance and possible optimality
of different scheduling rules. Other work such as [52] has looked at this for related models, and

155

would have much to connect with. The scheduling rule we chose for this thesis is simple, and does
not make systematic use of all of the information we may have about the current and past values
of the lag.

More general scheduling rules may be very difficult to deal with, and would not fit easily into
the geometric framework we have here. However, we might allow for time-varying scheduling rules
and constellations. We have not captured any time dependence in the constellations we discuss.
An extension in this direction would give the framework much greater modeling power. This would
include models which use two alternating constellations that may each be very simple to implement.
Neither constellation may guarantee stability for all desired inputs, but by alternating we may be
able to stabilize the system. As a simple example, consider allocating a single resource between
two users. If we can only choose to give the resource to the first user in odd rounds and to the
second user in even rounds, our stability region gets smaller, but it might be simpler to implement
than a combined allocation mechanism.

It is also pretty clear that the proofs we give here for stability can withstand some variation
from a norm-based scheduling rule. We discussed some extensions such as skewed-norm scheduling
rules earlier in Chapter 4. For deterministic stability it looks as if we only need that the surface
of the sub-level sets of the distance function become increasingly smooth as they get larger. The
actual shape of the sets may change with increasing function value. In fact, even non-convexity is
not always a problem as long as the surface becomes arbitrarily flat locally.

Stability of Stochastic Mechanisms

We have only given stochastic stability results for a subset of our stochastic model with bounded
parameters and a single scheduling rule consistent with the squared 2-norm. It seems that these
results can be extended as in the deterministic case to mechanisms for which the error metric is
an arbitrary smooth norm, and also extended to include a subset of mechanisms with unbounded
parameters r[n] and B[n] whose distributions satisfy certain properties.

Although this class of models is perhaps practical, because all real systems have bounded
parameters, there is no reason to believe that we can not extend the class to include a much wider
range of parameter characterizations. Support for this comes from results such as those given in
[351 and [53]. By combining arguments from these two sources, we can tentatively come to the
conclusion that a stochastic model for which r[n] and B[n] are white processes and the region of
support of the distribution of r[n + 1] overlaps that of B[n + 1]s[n] has a lag vector that converges
to a fixed random variable with finite mean. This argument might even go further as we have seen
for the case considered in this thesis.

It would also be interesting to know whether or not quantizing rules consistent with smooth
norms stabilize certain classes of stochastic models. This would allow us to say with certainty that
we can guarantee stability while at the same time allowing a choice of norm in order to control the
behavior of the lag beyond simple fairness.

Stability of Corner Norms

We did not discuss corner norm stability in much detail in Chapter 4, but it appears that there is
interesting structure to problems using a corner norm in a quantizing scheduler. There are only
certain corridors of the state space in which the lag might extend to infinity. These corridors are
parts of unbounded decision regions for internal constellation points. If we can understand the
behavior of the lag within these corridors and the surrounding regions, we can characterize the
stability of the mechanism when the increment distribution is bounded.

156

For instance, in two dimensions we can break a constellation into collections of two neighboring

surface points and an internal point. If the internal point has an unbounded decision region that

extends between the regions for the two neighboring points, we might have an unstable trajectory

if the average rate of arrival can generate trajectories that travel within the corridor of the internal

point. For a stochastic model, the trajectories travel at an average speed out, then when they

exit the corridor to the side, return at some other average speed, flip-flopping between the two

neighboring regions until they enter the corridor again. If we can show that these trajectories

always return within an expected finite length of time or even with probability 1, we will have some

sense of the stability of a particular corner norm.

This problem is easy to conceive in any number of dimensions and looks perhaps tractable in

2-dimensions, but may quickly get very complex in higher dimensions as the corridors develop geo-

metric structure of their own. It seems that an investigation of this problem could make connections

with a number of areas in random walk theory.

Applications of Model

Our treatment of the model has been somewhat abstract; the search for more practical situations
that are captured well by this model would be valuable. For example, a generalized vector E-A
encoder has not been specifically proposed in the literature to our knowledge. Perhaps it is the

large number of more complex application-specific coding methods that has obscured the simple

E-A encoder. One possible application of the vector E-A encoder might be as a method of encoding

multiple signals simultaneously where a scalar E-A encoder might have been used before for each

signal. For instance, mechanisms similar to E-A encoders are used to dither images to fewer colors;

a vector E-A encoder might be useful in some way for these cases when multiple images are involved.

Investigation of this encoder along with other unrelated systems such as the storage model

mentioned earlier might bring out some possible applications of the results we develop in this

thesis.

Variable-Sized Channel Allocation Problem

For the channel allocation problem in Chapters 5 and 6, there are a few interesting related topics

that might prove interesting.

We have not investigated nonuniform constellations in much detail. The problem of choosing

schedules is very closely related to well-known NP-hard problems even for small values of M;

approximation algorithms that are practical in those situations may be applicable here. There

is also the question of what is the best performance possible over all nonuniform constellations.

Even a fairly tight upper bound on the average or maximum error would be a useful tool to help us

understand how well we can do, and how well we are doing with a particular choice of constellation.

One specific related question that would be both practical and interesting is whether or not it

is possible to use a polynomial-time approximation algorithm with a nonuniform constellation and

thereby outperforms the best uniform constellation. It is not even obvious that this is possible. For

instance, does the VSS algorithm given here ever achieve a smaller maximum or average error when

used with a nonuniform constellation than with the uniform constellation for which it is optimal?

There is also the possibility that a similar approach might be used for constellations with other
geometries. Our specific results only apply when the constellation lies within a specified region. In

3-dimensions, the constellation lies within a 2-dimensional triangle. Another interpretation of our

results is as a decomposition of the triangle into a number of smaller ones whose sizes correspond

157

to the piece sizes. It is clear that a planar constellation with a hexagonal boundary can also be
decomposed in a similar way into a set of smaller hexagons. it is not obvious whether there is a
simple algorithm that can be used to compute the sequence of smaller sizes as for the triangular
case, and it is also not clear what gains this would give us, or how generalizable the approach is to
other geometries.

Auction Mechanism

The auctions we have looked at are attractive because they are able to achieve fair allocations of
a resource with a very simply-described scheduling rule. In many other cases we may need more
complex mechanisms to deal with other possibilities. Allocating many items in parallel as in [31] is
often required; just as that work might be incorporated with what we have presented here, there are
other extensions such as to time-varying resource availability, and other domain-specific constraints
on how the resource is to be allocated over time that would be required in other circumstances.
Just as with our original framework, it is important to be able to apply these ideas in more complex
situations. For example, consider a collection of computing resources that are available to be used
by external users if there is idle time. The allocation mechanism needs to balance the fairness
concerns of the external users while also dealing with the availability and amount of resources.
There might be constraints on which users may use which resources at what times as well.

Another interesting twist on the basic idea is not to allow the users to know what other users
are bidding. For privacy, security, or other concerns, it might be necessary to blind each user to the
actions of the others. In this case, only partial information about the state of the resource will be
available to the users in order to make their decisions. The users may know only whether they have
won or lost each particular round, or they might know the value of the winning bid. Depending on
the available information the users will use different bidding strategies.

This also brings up the issue of implementation. We have not suggested a specific implemen-
tation of any our mechanisms, but the ultimate usefulness of these allocation techniques is only
proven when they are incorporated into a real system. Systems such as Spawn and others described
in [68] and [10] are the final test of the practicality of particular economically-based approaches
to resource allocation. Our results establish that the specific auction implementation can affect
the fairness properties of an allocation mechanism. It would be interesting to see if a modification
of the Spawn system to use our mechanism with probabilistic income would exhibit significantly
better fairness properties.

Auctions are only one example of extended dynamics. Although the study of arbitrary feedback
dynamics may be too complex, it might be interesting to investigate the connections between some
of the more complex E-A encoders and our resource allocation problem. Is there a benefit to
using a higher-order feedback loop as is done to shape noise in a scalar E-A encoder? How do the
attendant stability problems for the scalar encoder relate to stability in the vector input model?

158

Bibliography

[1] S. Anily and A. Federgruen. Structured partitioning problems. Operations Research, 39(1):130-
149, 1991.

[2] S. Anily and A. Federgruen. 2-echelon distribution-systems with vehicle-routing costs and
central inventories. Operations Research, 41(1):37-47, 1993.

[3] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A
notion of fairness in resource allocation. Algorithmica, pages 600-625, 1999.

[4] D. Bertsimas, D. Gamarnik, and J. N. Tsitsiklis. Stability conditions for multiclass fluid
queueing networks. IEEE Transactions on Automatic Control, 41(11):1618-1631, 1996.

[5] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Athena Scientific,
1997.

[6] L. D. Burns, R. W. Hall, D. E. Blumenfeld, and C. F. Daganzo. Distribution strategies the
minimize transportation and inventory costs. Operations Research, 33(3):469-490, 1985.

[7] J. Candy and G. Temes, editors. Oversampling Delta-Sigma Data Converters. IEEE Press,
New York, New York, 1991.

[8] Chang and Gill. Algorithmic solution of the change making problem. Journal of the Association
for Computing Machinery, 17(1):113-122, 1970.

[9] K. L. Chung. Markov Chains With Stationary Transition Probabilities. Springer-Verlag, New
York, New York, 1967.

[10] S. H. Clearwater, editor. Market-Based Control: A Paradigm For Distributed Resource Allo-
cation. World Scientific, 1996.

[11] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag,
New York, New York, 1999.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, MA, 1990.

[13] J. Dai. Stability of fluid and stochastic processing networks. Course Notes at the Centre for
Mathematical Physics and Stochastics (http: //www.maphysto. dk/), 1998.

[14] J. G. Dai. On positive harris recurrence of multiclass queueing networks: A unified approach
via fluid limit models. Annals of Applied Probability, 5:49-77, 1995.

159

[15] J. G. Dai and B. Prabhakar. The throughput of data switches with and without speedup.
Preprint, 1999.

[16] G. Demange, D. Gale, and M. Sotomayor. Multi-item auctions. The Journal of Political
Economy, 94(4):863-872, August 1986.

[17] M. V. Eyuboglu and J. G. D. Forney. Lattice and trellis quantization with lattice and trel-
lis bounded codebooks - high rate theory for memoryless sources. IEEE Transactions on
Information Theory, 39(1):46-59, 1993.

[18] R. G. Gallager. Discrete Stochastic Processes. Kluwer Academic Publishers, Boston, MA,
1996.

[19] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, San Francisco, CA, 1979.

[20] D. D. Gemmill. Approximate solutions for the cutting stock 'portfolio problem'. European
Journal of Operational Research, 44:167-174, 1990.

[21] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression. Kluwer Academic
Publishers, 1992.

[22] R. M. Gray. Quantization noise spectra. IEEE Transactions on Information Theory,
36(6):1220-1244, 1990.

[23] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions on Information Theory,
44(6):2325-2383, 1998.

[24] G. R. Grimmett and D. R. Stirzaker. Probability and Random Processes. Oxford University
Press, Oxford, 1992.

[25] B. Hajek. Hitting-time and occupation-time bounds implied by drift analysis with applications.
Advances in Applied Probability, 14:502-525, 1982.

[26] S. Hein and A. Zakhor. On the stability of sigma delta modulators. IEEE Transactions on
Signal Processing, 41(7):2322-2348, 1993.

[27] S. Hein and A. Zakhor. Sigma Delta Modulators: Nonlinear Decoding Algorithms and Stability
Analysis. Kluwer Academic Publishers, Boston, 1993.

[28] J. Holtz. Pulsewidth modulation for electronic power conversion. Proceedings of the IEEE,
82(8):1194-1214, 1994.

[29] T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Approaches. MIT Press,
Cambridge, MA, 1988.

[30] A. C. Kam and K.-Y. Siu. Linear-complexity algorithms for QoS support in input-queued
switches with no speedup. IEEE Journal on Selected Areas in Communications, 17(6):1040-
1056, 1999.

[31] M.-Y. Kao, J. Qi, and L. Tan. Optimal bidding algorithms against cheating in multiple-object
auctions. SIAM Journal of Computing, 28(3):955-969, 1999.

160

[32] M. J. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing on a space division

switch. IEEE Transactions on Communications, 35(12):1347-1356, 1987.

[33] P. J. Kelly and M. L. Weiss. Geometry and Convexity. John Wiley and Sons, 1979.

[34] J. C. Kieffer. Stochastic stability for feedback quantization schemes. IEEE Transactions on

Informatino Theory, 28:248-254, 1982.

[35] T. Koski. Statistics of the binary quantizer error in single-loop sigma-delta modulation with

white gaussian input. IEEE Transactions on Information Theory, 41(4):931-943, 1995.

[36] P. Krishna, N. S. Patel, A. Charny, and R. J. Simcoe. On the speedup required for work-

conserving crossbar switches. IEEE Journal on Selected Areas in Communications, 1999.

[37] P. R. Kumar. A tutorial on some new methods for performance evaluation of queueing net-

works. IEEE Journal on Selected Areas in Communications, 13(6):970-980, 1995.

[38] P. R. Kumar and S. P. Meyn. Stability of queueing networks and scheduling policies. IEEE

Transactions on Automatic Control, 40(2):251-260, 1995.

[39] P. R. Kumar and S. P. Meyn. Duality and linear programs for stability and performance anal-
ysis of queueing networks and scheduling policies. IEEE Transactions on Automatic Control,
41(1):4-17, 1996.

[40] H. Kushner. Introduction to Stochastic Control. Holt Rinehart Winston, New York, New York,
1971.

[41] H. J. Kushner. Stochastic Stability and Control. Academic Press, New York, New York, 1967.

[42] S. H. Lu and P. R. Kumar. Distributed scheduling based on due dates and buffer priorities.

IEEE Transactions on Automatic Control, 36(12):1406-1416, 1991.

[43] G. Luckjiff and I. Dobson. Power spectrum of a sigma-delta modulator with hexagonal vector
quantization and constant input. In Proceedings of the 1999 IEEE International Symposium

on Circuits and Systems, volume 5, pages 270-273, 1993.

[44] G. Luckjiff, I. Dobson, and D. Divan. Interpolative sigma delta modulators for high frequency
power electronic applications. In 26th Annual IEEE Power Electronics Specialists Conference,
pages 444-449, 1995.

[45] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.

[46] V. A. Malyshev and M. V. Menshikov. Ergodicity, continuity and analyticity of countable

markov chains. Transactions Moscow Mathematical Society, 39:1-48, 1981.

[47] S. Martello and P. Toth. Optimal and canonical solutions of the change making problem.

European Journal of Operational Research, 4:322-329, 1980.

[48] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Implementations. J.
Wiley & Sons, New York, 1990.

[49] L. Massoulie and J. Roberts. Bandwidth sharing: Objectives and algorithms. On the web at
Kelly's site, 1999.

161

[50] R. P. McAfee and J. McMillan. Auctions and bidding. Journal of Economic Literature,
25:699-738, 1987.

[51] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-
queued switch. IEEE Transactions on Communications, 47(8):1260-1267, 1999.

[52] S. P. Meyn. Feedback regulation for sequencing and routing in multiclass queueing networks.
Submitted to ISIT 2000 and SIAM Journal of Control and Optimization, June 2000.

[53] S. P. Meyn and R. L. Tweedie, editors. Markov Chains and Stochastic Stability. Springer-
Verlag, London, 1993.

[54] P. R. Milgrom and R. J. Weber. A theory of auctions and competitive bidding. Econometrica,
50(5):1089-1122, September 1982.

[55] J. Nieznanski. Performance characterization of vector sigma-delta modulation. In Proceedings
of the 24th Annual Conference of the IEEE Industrial Electronics Society, volume 1, pages
531-536, 1998.

[56] M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press, Cambridge,
MA, 1994.

[57] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to flow control in
integrated services networks: The single-node case. IEEE/A CM Transactions on Networking,
1(3):344-357, 1993.

[58] A. W. Roberts and D. E. Varberg. Convex Functions. Academic Press, 1973.

[59] H. Sariowan, R. L. Cruz, and G. C. Polyzos. SCED: A generalized scheduling policy for
guaranteeing quality-of-service. IEEE/A CM Transactions on Networking, 7(5):669-684, 1999.

[60] K. Sayood. Introduction to Data Compression. Morgan Kaufmann, San Francisco, 1996.

[61] B. D. Schutter and B. D. Moor. The extended linear complementarity problem and the
modeling and analysis of hybrid systems. In P. A. et al., editor, Hybrid Systems V, pages
70-85. Springer-Verlag, 1999.

[62] D. Stiliadis and A. Varma. Providing bandwidth guarantees in an input-buffered crossbar
switch. In Proceedings of IEEE INFOCOM 1995, pages 960-968, 1995.

[63] D. Stiliadis and A. Varma. Latency-rate servers: A general model for analysis of traffic
scheduling algorithms. IEEE/A CM Transactions on Networking, 6(5):611-624, 1998.

[64] L. Tassiulas. Linear complexity algorithms for maximum throughput in radio networks and
input queued switches. In Proceedings of IEEE INFOCOM 1998, pages 533-539, 1998.

[65] L. Tassiulas and P. P. Bhattacharya. Allocation of interdependent resources for maximal
throughput. Stochastic Models, 1999.

[66] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and
scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions
on Automatic Control, 37(12):1936-1948, 1992.

162

[67 C. A. Waldspurger, T. Hogg, B. A. Huberman, J. 0. Kephart, and W. S. Stornetta. Spawn:

A distributed computational economy. IEEE Transactions on Software Engineering, February

1992.

[68] W. E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. MacKie-Mason. Some economics of

market-based distributed scheduling. In Proceedings of the Eighteenth International Conference

on Distributed Computing Systems (ICDCS-98), pages 612-621, 1998.

[69] J. W. Wright. The change-making problem. Journal of the Association for Computing Ma-

chinery, 22(1):125-128, 1975.

[70] L. Zhang. VirtualClock: A new traffic control algorithm for packet-switched networks. A CM
Transactions on Computer Systems, 9(2):101-124, 1991.

163

164

Appendix A

Properties of Convex Sets

In this appendix, we present a number of results related to convex sets that we use in the subsequent
proofs and earlier analysis in this thesis. We state the results without proof; proofs and more detail
is available from other sources such as [58, 33, 5]. The definitions of a convex set and the convex
hull of a set were given in Section 3.2.

The main results we need relate to tangent planes (also called supporting hyperplanes) and
normals of convex sets. The surface C' of a convex set C is the set of points for which no neigh-
borhood is contained within C. A (hyper-)plane Z is tangent to a convex set C at a point c E C
if c c C' and C n Z : 0 and C is contained in one of the two closed half-spaces defined by Z. We
denote a tangent plane at c by Z(c). The normal to a tangent plane Z(c) is z(c).

This definition means that a convex set is always completely on one side of a tangent plane.
Because of this, we can always define z(c) to be a unit length vector such that it points inside the
set C. Given this definition of the normal z(c), we know that c always minimizes dTz(d) over all
d E C [58, 5].

Theorem A.1 Given a convex set C and a tangent plane Z(c), dTz(c) is minimized when d = c.

We also would like to know whether or not tangent planes exist. The following theorem states that
every point on the surface of a convex set has a tangent plane [33].

Theorem A.2 Every point c G C' for a convex set C has at least one tangent plane Z(c).

From these two theorems, we know that every point c on the surface of a convex set maximizes dTz
for some z.

Corollary A.1 For every point c c C' for a convex set C there exists a z such that dTz is
minimized when c = d. Moreover, we can choose z = z(c) for any tangent plane Z(c).

We can connect the definition of the normal z(c) to norm sub-level sets with the following.

Theorem A.3 If the sub-level set {c I f(c) < D} for a differentiable function f(-) is a convex set
C for all D, then if Vf exists at c E C',

Vf(c)
Vc1= -z(c) .

Proof: The gradient is always perpendicular to the tangent plane of a differentiable (smooth) sur-
face at some point c C C. From [33], this tangent plane must be the unique supporting hyperplane
of the set C at c. Thus, the gradient and z(c) are parallel, and we have chosen z(c) to point inwards,
so the equation above holds. m

165

For f(-) = 11 - 1|, we know that the normal to a tangent plane at a point c on the surface of a norm
sub-level set is equal to the gradient of the sub-level set at that point if the gradient exists.

Another fact we use, related to tangency, is the definition of a tangent line. A line L is tangent
to a convex set C at a point c if c E C', LA C C5 and if c E L. A line tangent at point c is
denoted by L(c).

Theorem A.4 If a line L is not a tangent line for some c C C for a convex set C, then it either
intersects the surface of C at 2 points or at 0 points.

Finally, we have the well-known result that a tangent plane to a convex set C always includes
an extreme point of the set [51. In particular, if C is a polytope there are finitely many extreme
points and so we know that at least one of these points is always on every tangent plane Z(c).

Theorem A.5 The intersection of a tangent plane Z(c) for some point c with the surface of a
convex polytope always includes an extreme point of the polytope.

166

Appendix B

Proofs

B.1 Proof of Theorem 5.1

Theorem B.1 (Maximum Error with Equally-Sized Pieces) If p = po, M > N and r E

SN, then

E(po) = N -.
N M

Proof: To show this, we determine a subset of S that is guaranteed to contain the closest s E S to
r. In order to do this, it is easier to deal with the vector R = Mr, and the integer vector S = Ms.

The set of possible scaled schedules S is Sm. If we are able to find the closest S to R, then the
corresponding s is closest to r. It is easy to see that the only elements of Sm that we need to
consider are the ones with all elements within 1 of the corresponding element of R. We can show
this by observing that there exists an S E SM such that Si is either equal to [RiJ or ERj]. Define
K = M - EZ [Rij, and pick any subset I of (1,... , N) of size K such that Ri Y [Rij for all i E I.
We construct an S by setting

Si [Ri j if i V I
[Ri] if i E I

By this construction, E Si = M, and 11 S - R _ < 1. There are (N) possible elements of SM
that can be constructed as above.

Define S(K) as the set of N-dimensional 0-1 vectors with K ones and N - K zeros. This
argument implies that we only need to worry about finding a vector D = R - LRJ such that

Ei Di = K and that maximizes the distance to the closest E E E(K). We can think of the
elements of E(K) as the set of vectors S - [Rj for each S constructed above. Because we know S*
is one of these constructed vectors, we know that E* = S* - [RJ C E(K).

Now, we find the vector D* that maximizes the error

.M(D) = min 11 E - D|,.
E

Call D(k) the k-th largest component of D. It is obvious that for any choice of D, the choice of
E that minimizes 11 E - D 11. is the vector with component E = 1 if Di is one of the K largest
components of D. So, D(K) is the smallest element such that the corresponding element of E is 1,
and D(K+l) is the largest element such that the corresponding element of E is 0. It follows from this
that the maximum error is either 1 - D(K) or D(K+1). If 1 - D(K) is the maximum error, we would

167

like to make D(K) as small as possible in D*. This can be done by making D(k) = 1 - 6/(K - 1)
for k < K and small 6, and setting the rest of the elements of D equal to (1 + 6)/(N - K + 1). The
error would then be 1 - (1 + 6)/(N - K + 1) = (N - K - 6)/(N - K + 1). If the maximum error
is equal to D(K+l), we would like to make D(K+1) as large as possible. We can do this by setting
D(k) = 0 for k > K + 1, and setting the rest of the elements of D equal to K/(K + 1). So, the
worst case error is equal to

M(D*) =max
(N - K+' VK+1I

This is maximized for K = N - 1.
We know that we can write any R = D + v, where v is a nonnegative integer vector that sums

to M - K, and the closest S can be written as S = E + v for some E because v = LRJ. Then,

M(R) = min1 S - R =minl E - D
S E

So, there is a R* = D* + v such that

M(R*) = M(D*).

And it follows then, that r* = R*/M maximizes e(po, r) and so E(po) = e(po, r*). If the worst
case error happens when K = N - 1 we have a maximum error of (N - 1)/N. This corresponds to
an error of (N - 1)/NM when we scale back to r*. m

168

B.2 Proofs of Lemmas 5.4, 5.5 and Theorem 5.4

Lemma B.1 The sequence P+ of length M that is produced by the previous algorithm is an upper
bound (element by element) on any other integral nondecreasing sequence P that corresponds to a
uniformly dense constellation.
Proof: Proof by contradiction. We show that

1 + fP(k)
Pk+i < = f (P(k)) (B.1)

is true for any choice of k < M - 1 for any sequence P that corresponds to a uniform constellation.
To prove this, assume that Pk+1 = f(P(k)) + c, where c is a positive integer and the sequence P
corresponds to a uniformly dense constellation. Then, we can show that there is an nonnegative
integer vector Vk+1 whose sum is equal to the sum of the elements of P, but that can not be
represented by allocating those elements among the N components of Vk+1. That vector is Vk+1

(a, Xi,x2 ,.. . ,XN1), where
M

Z = f (P(k)) + Pj + c -1
j=k+2

and the integers xi are chosen such that

N-1

Zxi =X = P(k) + 1
i=1

and xi : f(P(k)) for all i. First, note that

M

a + X = PJ = P(M)
j=1

so we know that Vk+1 has the correct sum. We now must show that such xi exist, and then
show that the vector Vk+1 can not be constructed using elements of P if Pk+1 = f(P(k)) + c. If
X < f(P(k))(N - 1), then we can simply set xi = f(P(k)) for all i until we reach X = P(k) + 1.
To show this is true, we know that

1 + P(k)f (P(k))(N - 1) = F 1 (N - 1)

P(k) + y (N 1) 0 y < 1
N - I

= P(k) + (1+ (N - 1)7)

> P(k) +I1 = X.

Now we need to show that there is no way of allocating the elements of P to an N-dimensional
vector that equals Vk+1. Because we know that the elements with sizes PF, j > k, are all bigger
than f(P(k)) and thus bigger than all of the zi, all of them must be part of a. But, a is less than
the sum of these sizes, so all of these large elements can not be placed in the first bin, meaning
that no allocation of the elements of P can be equal to Vk+1. Thus, there is no allocation of the
elements of p that results in the schedule s = Vk+1/, contradicting the uniformly dense property
of its constellation.

169

We have shown, finally, that any sequence that corresponds to a uniformly dense constellation
can not have an increase between Pk and Pk+1 for any k that is larger than the value f(P(k)) - Pk
determined by Equation (B.1) above. So, because Pt = P = 1, and the increments PP-i - Pk are
bounded by P+ - C+ and are increasing with P(k), we know that P ;> Pk for all k. mk+1 k k

170

Lemma B.2 The set P corresponds to a uniformly dense constellation if and only if Pk Pk+1 <

f (P(k)) for all k = 1, ... , M.
Proof: Proof by induction. We will assume that p(k) = (P1 , P2 ,... , Pk) corresponds to a uniformly
dense constellation using k pieces. Then, we will show that if Pk+1 = Rk+1 f(P(k)), P(k+1)

corresponds to a uniformly dense constellation. Remember that Pk+1 > Pk by definition.

In order to do this, we need to show that every nonnegative integer vector v that has the
property that

N k+1

E3vi=> P =P(k+1)
i=1 j=1

can be constructed by allocating the elements of p(k+1) to the elements of v (i.e. there is some
(K + 1) x N matrix A c A such that V - P(k+l)A). First, we show that at least one element of v
is at least as large as Rk+1 for any v we choose. To do this, we assume that vi < Rk+1 for all i and
show a contradiction. If vi < Rk+1 for all i, then

N

Zvi < (Rk+1 - 1)N = Rk+1 + (Rk+l(N - 1) - N)
i=1

K Rk+1 + (f (P(k)) - (N - 1) - N)

= Rk+1+ (P(k) + (1+ (N - 1)y) - N) 0 < < 1

< Rk+ 1 +P(k)

- P(k+1)

which contradicts the definition of v. Thus, at least one element of v is at least Rk+1- Call this
element v 3 .

Now, define f) such that bi = vi for all i # j, and i31 = vj - Rk+1 0. By the inductive
hypothesis, there exists some allocation of P(k) among the elements of b that give us the schedule
ib. By simply adding Rk+1 to Oj, we get v from b, so v can be generated by p(k+1).

Finally, we observe that P() = Pi = 1 obviously generates all integral vectors with a single
nonzero element equal to 1, and the proof is complete. If we can generate all possible nonnegative
integral vectors v that sum to P(M), then if we scale P by / to get p we can generate all schedules
s = vf, and thus p has a uniformly dense constellation.

The reverse direction follows from the proof of Lemma 5.5, where it is shown that if the increment
is too large between elements of P, the resulting p can not have a uniformly dense constellation.
M

171

Theorem B.2 (Optimality of VSSA) The VSS algorithm computes a schedule s such that || s - r
is minimized for any r such that Ej ri = 1.
Proof: First, we note that for any vector v (not necessarily nonnegative) that has the property

Ei vi = K > 0, any nonnegative vector s with a uniformly dense constellation that minimizes

11 s - v 11. over all possible nonnegative vectors s with uniformly dense constellations that sum to
K also satisfies the property that if vi < v1 then si < sj. This can be shown by assuming that
vi < v3 and si > sj. The vector s' created by switching si and sj in s would be closer to v than s
is, contradicting the optimality of s.

Second, if vi = vj, then either s. = sj or Isi - sjj= 1. For the second case, the error is the same
whichever of the two is larger. These two facts mean that the largest element in s corresponds to
the largest element in v.

We also know, from the proof of Lemma 5.4, that any length k prefix of p can be allocated
to create any length N schedule in a uniformly dense constellation that sums to p(k) = K. In
particular, any length N schedule in a uniformly dense constellation that sums to K must have at
least one element at least as large as Pk.

Call v(m) the value of the quantities {vk} at the end of round m in the algorithm. Call s(m)
the value of the computed schedule at the end of round m. Call 6(m) = s* - s(m), where s* is the
schedule that minimizes 11 s* - r ||. We show by induction that 6(M) = 0. First, we start with

s r = 6(1) - v(1)

This is true, because the only difference between 6(1) and s* is pM at location k*, which is the same
as the difference between r and v(1). So, the problem of minimizing the error on the left side of
the equation is the same as the problem of minimizing the error on the right side. We know from
the previous arguments that 6j (1) > 0 for all j, and Ei vi(1) = p(M - 1) E6i (1). Now, we
show the inductive step. We need to show that J. (m) > 0 for all j and m, and that to minimize the
error at step m we simply choose the largest element of p remaining and put it in sk where Vk(M)
is maximum (see beginning of proof) and then solve the minimization problem at the next step.
But this is always true because we know that the largest element of 6(m) is larger than pM-m, and
the largest element of 6(m) is in the same location as the largest element of v(m). Thus, we know
that by choosing k* = arg maxk Vk (m) at each step, we are adding a value PM- to sk- (m) that is
less than 6 k* (M). So, we have

6(m) - v(m) = 6(m + 1) - v(m +1)

and vj(m) > 0 for all j and m. By induction, this means that

s* -r = 6(M) - v(M)

and 6(M) = 0 because we have subtracted a total of 1 from s*, but at each stage left a nonnegative
6(m). But, 6(M) = s* - s(M) = s* - s. This means that s* = s. m

172

B.3 Proof of Theorems 4.3 and 4.8

Before we prove Theorem 4.3, we give a few properties of smooth norms that we will use in the
proof.

The sub-level set D(O, C) of a smooth norm has a well-defined continuous gradient V(.)
defined as

V~) dlix II dli x IIdlix ||' 1
[dx1 dx 2 dXN I

For an arbitrary vector u such that 11 u 11 = 1, we define z(f#u) as the unit-length inward-pointing
surface normal of the sub-level set D(/3u, C) at the point x(/u, C), where x(,Bu, C) is the point at
which the line connecting the origin with u intersects the surface of D(,3u, C). By the definition of
the normal, we know that

SuV(x('8u, C) - 8u)

11 V(X(OU, C) - #U) 112

By the definition of x(/3u, C), we know that x(/3u, C) = au for some a < 6 for any u. Thus,

z (0u) = - V((a -)u)
11V((a -#)u) 112

V(u)
V(u) 112

= z(u) .

This last step follows from the linearity of the gradient operator and the scaling property of the
norm. The plane tangent to D(Bu, C) at x(#u, C) is defined as

Z(#u, C) = {v I zT (u)v = zT (u)x(6u, C)}

We define x(u, C) = zT (u)x(6u, C).
We also make use of the fact that a convex object such as D(3u, C) is always contained com-

pletely in one of the two half-spaces defined by a tangent plane on the surface of the object: either

D(/u, C) C {v I zT(u)v ;> X(u, C)} or D(/3u, C) C {v I zT(u)v < x(u, C)} . (B.2)

Theorem B.3 (Deterministic Stability of Smooth Norms) A deterministic dynamic sched-
uler model (P, f, S) is deterministically stable under scheduling rule Q(.) for all f - ch(B - S) if

Q(-) is consistent with a smooth norm 11
Proof: Our goal is to define a region C outside of which the deterministic drift condition (4.1) or
equivalently (4.3) holds. We define the Lyapunov function V(.) as

V(f[n]) = || f[n]|| .

We will define C by showing that for each possible direction u (a direction is a vector u such that
11 u 11 = 1), there exists a scaling factor fm(u) such that f+ = t+m(u)u satisfies Equation (4.3) for
some e > 0. If we define 8#max = max, #,m(u), then we know that when e+ is outside of D(f , /max),

Equation (4.3) holds. Thus, the drift condition holds for f V D(0,fmax).
Everything will now be stated in terms of an arbitrary u. To make the notation simpler, we

make the assumption that i = 0. If it does not, we can redefine S such that B - S is shifted by -f,
and set i equal to 0. We can think of this as moving our coordinate system to be centered around
f. This implies that the origin is in the interior of ch(B - S).

173

2

0

2

2 a

Z(u) S(u)
I u+r a

.5 -..

x(u,C)

.5

0-
-1 -0.5 0 0.5 1

Figure B-1: Deterministic stability proof construction for u and 3u.

We first need to make a few definitions related to the geometry of our norm. Given a direction

u, a smooth norm 11 - 11 and a positive number # we define C to be the value of f1 Ou - s(u) ||, where

s(u) is defined as follows. Given the normal z(u), we will define s(u) E B S as a schedule which

maximizes zT(u)s(u), or
s(u) c arg max zT(u)s.

sECH(B-S)

We know that an extreme point always maximizes the value of a linear function over a polytope, so

we know that we can always pick s(u) to be a schedule in S. We define S(u) as the plane parallel

to Z(u) that includes the point s(u), or

S(u) = {V I zT (u)V = zT(u)s(u)}

All of these quantities are depicted in Figure B-1 for an example two-dimensional constellation

and norm. The region between Z(u) and S(u) is shaded in the figures.

We now observe that as # is increased, the constraint that ties s(u) and x(#u, C) together is

defined by
11 fu - s(u) |1 = 1 u - x(Ou, C) |

But because x(3u, C) is defined as the intersection of the surface of D(#3u, C) with the line con-

necting the origin and /u, we can write x(8u, C) = au, where a <B. Thus, we have

IIu - s(u) 11= 11 Iu - au 1 = (0 - a).

We also know that if a > cu > 0, then the origin is on one side of Z(u) and D(Ou, C) is on the

other. But this means that the origin (our translated i) is not inside D(/3u, C) and so we have

satisfied the drift condition for this particular value of 6. If we can show that there exists a finite

m such that a > cu for all 8 > f#m then we are done.

Another way of showing this is to establish that

11 Iu - s(u) || < e

174

0 .5-
ar s(u)

-1 -0.5 0 0. 1

1

for 0 > #m. Consider the set V = D(O, /); the above inequality is equivalent to saying that the
point 3u - s(u) lies in the interior of this set. The point 3u lies on the surface of this set, and the

outward-facing normal is equal to z(u) and so the tangent plane Z(/3u) to the surface of V at the

point fu is parallel to Z(u). We also know that zT (u)s(u) > 0 because zT(u)s(u) > zT(u)r for any

r E ch(B - S), including r = 0.
Consider the line S which passes through both /u and #u - s(u). This line must intersect the

surface of V at exactly two points because it is not tangent to the surface (zT(u)s(u) > 0). We
know that one of these points is /u by construction. Call the other point s. If the distance between
Ou and § is 6, then we know that 6 grows proportionately with 8; it simply scales with the size of
V. We also know that Ou - s(u) and s lie on the same side of Z(ou) and that the distance between
Ou and /u - s(u) is fixed, so eventually after / is larger than some 03m(u), 8u - s(u) will lie in
the interior of V. We can then pick a value Eu small enough and a /3m(u) large enough so that

11 u-s(u) 11 5 3-eu for all3 > 0m(u).
Putting this all together, we have

V(/3u - s*(u)) - V(/u) = 3u - s*(u) -- 3u

1 Iu - s(u)I I - I Ou 11

for 8 > #3m(u) where s*(u) is the point in B S closest to /3u under the norm
This reasoning holds for all u, so we pick /max = maxu /3m (u) and e = minu c and we satisfy

the deterministic drift condition for f+ V {v I II v I I < max} = D(0, /max) and e > 0. This is true
if we assume that i = 0. For general f, we simply translate so that f+ V D(, max). This tells us
that e V D(0,/max) and thus C = D(0, /max). 0

Theorem B.4 (Stability of the 2-Norm for Independent Inputs) Given dynamics

e[n + 1] =[n] - B[n + 1]s[n] + r[n + 1]

if we choose s[n] so that

s[n] = arg minE f[n] - B[n + 1]s + r[n + 1] 112 1 e[n],
sES

2

and if B[n] and r[n] are ID and have finite means and second moments such that i E ch(B - S),
then the Markov chain f[n] satisfies the stochastic drift condition (4.5-4.6).
Proof: Define V(f) = 1| f ||2. In order to prove the theorem, we will show that the following
inequality holds:

Et[V([n + 1])] - V(e[n]) < -e

for all e such that 11 ' 112 > a* for some positive bounded a* and that

E[V(e[n + 1])] - V([n]) < A < oo

for all i such that 11 f 112 < a*. Then we will have satisfied the stochastic drift condition with

C = {|| 11|12 > a*}.
We can expand the above inequality as

E[[f 11 - 2fT (B[n + 1]s[n] - r[n + 1]) + 11 B[n + I]s[n] - r[n + 1] 11| - 11 f |2 --

Et [11 B[n + 1]s[n] - r[n + 1] 112 - 2fT (Ps[n] - i) -.

175

The first term in the inequality can be bounded by some positive number y independent of f, so
we just need to show that the second term can become sufficiently negative. To show this it will
be sufficient to show that for e outside of some bounded region,

E(fs[n] - i;) > - [E, [11 B[n + 1]s[n] - r[n + 1] |112]e
If we show that eT(Bs[n]-i) > p' for positive p' and all e such that 1| | = 1 then a*eT(Bs[n]-i) _

a*p'. If we choose * to be large enough, we have a*p' > Y.

Assume that s[n] is chosen to minimize Ef [ii ae - B[n + 1]s[n] + r[n + 1] 112 for some given e
such that 11 f 112 = 1. The following holds for any s E S:

E [1 aL - B[n + 1]s + r[n + 1] 112 Ef [11 af - B[n + 1]s[n] + r[n + 1] 11 > 0

Now consider a schedule s chosen to maximize JTfs. This gives us

JTfs' - eT5s < 0

for any s' E S. Combining these two inequalities:

Et [11 B[n + 1]s - r[n + 1] 112 - 1| B[n + 1]s[n] - r[n + 1] 112
0 < T (s - Bs[n]) < 2a

0 < JT(Ps - f5s[n]) < ,8
2a

so eTfs[n] is a bounded distance away from £T5s, and the distance decreases with a. The quantity

/ is greater than 0, independent of e and is chosen as 6 = max, Ee [1i B[n + 1]s + r[n + 1] 112

min Ee [ii B[r + 1]s + rf ± 1] i. If T is in ch(B -S) then we can call p > 0 the minimum distance

between i and the surface of the convex hull. Then we simply choose a(e) > / 2 p and we will have
that fT(Bs - Bs[n]) = 0/2a < p. For any given f we have

p < eJ(5s - i') =T(BS - Bs[n]) + £T(Bs[n] - f) = 0/2a + p'.

But, since 0/2a < p then p' > 0. So, if we choose a* such that

a*p' > y ,

then we have a finite bound on the size of i[n] beyond which the expected value of V(f[n]) decreases
by 1 with each step. The only thing left is to show that the expected jump in V(e[n]) from n to
n + 1 is always finite. The finiteness follows from the boundedness of the moments of r[n] and the
fact that II f[n] 11 < a*. m

176

B.4 Proof of Theorem 6.1

Definition B.1 (Lattice AN) The lattice AN consists of all N-dimensional integer vectors a such

that Ei ai = 0.
The notation o - (AN + m) or AN(O-,m) denotes the set of vectors b such that b = -a' where

Ei a' = m.

We will use the shorthand S when we mean S(po), the constellation generated by the size vector

po. According to this definition, S C AN (1/M, M). Specifically, S contains only those vectors
b E AN(1/M, M) such that each component bi > 0.

Definition B.2 (Allocation Cell) The allocation cell AC(s) of a point s E S is the region sur-
rounding s such that for every point t in the cell,
11 t - s 1 . < 11 t - s' 11, for any other s' C S.

Definition B.3 (Basic Allocation Cell) The basic allocation cell BAC(s) of a point s E AN(1/M, M)

is the region surrounding s such that for every point t in the cell,
11 t - s < 11 t - s' 11, for any other s' C AN(1/M, M).

The basic allocation cell is equal to the allocation cell except for the points s that are on the
boundary of S. For these points, the allocation cell is not bounded, but extends outwards, because
the constellation is bounded. The union of all allocation cells is the entire space RN, while the
union of all basic allocation cells is localized around the constellation.

Definition B.4 (Root Cell) The root cell of the lattice AN(1/M, M) is the region of points x
such that E xi = 0 and ||x , < 11 x - v K for any other v E AN(1/M,0).

We will also use these definitions for all vectors r E SN. The allocation cell of r is the root cell
centered around r, i.e. the region of points f such that E fi = 1 and f - r is closer to 0 than to
any other s' E AN(1/M, 0). We denote this by BAC(r). We also note here that BAC(s) is also the
root cell centered around s E S similarly.

Lemma B.3 (Root Cell) The root cell of AN(1/M, M) is the region such that for x in the root
cell, maxi xi - minj xj < 1/M.
Proof: Call xM = maxi xi, and xm = min xj. Show that if xM - xm 1/M, there is a nonzero
point in AN(1/M, 0) that at least as close to x as is 0. Define v so that vk = 0 except that vi = 1/M
and vj = -1/M. It follows that v E AN(1/M,0). We have to show that 1x X - v |K' < 11 X |,.
First, we know that 11 x K1. = max(xMI, Ixm-). If xM - xm > 1/M, then xm 5 0 and xM > 0. We
also know that xm + 1/M < xm and xM - 11M > x,. So,

|x - v <5 max xM7 1 , Xm+ ,{jXk kmM})

< max (IXrm, k'M I , {XkI, k h m, M})

Now, we need to show that if xM - Xm < 1/M, then every nonzero point in AN(1/M, 0) is farther
from x than 0. To do this, we show that for any nonzero point v E AN(1/M, 0), we always increase
the distance between x and v if we increase any nonnegative element of v by 1/M and decrease
some other nonpositive element by 1/M. Because we can construct any nonzero v in this way, all
other points v must be further away from x than 0. Thus, 0 is the minimum.

177

Given v (could be equal to 0), pick a pair of indices i and j for which vi > 0 > v3 . Construct v'
equal to v except that v = vi+l/M and v = vj-1/M. We have to show that 1| x - ' 11 > 11 x - v
for the following four cases:

vi > 0 > vj: No matter what, Ivi - xiI and Ivj - xjI will be increased, which can only increase
the distance between s' and x.

vi = 0 > vj: The only complication is if |vi - xi was the maximum distance, and Is' - xiI <

Ivi - xiI But, in this case, Ivj - xjI > 1 > Ivi - xiI, so the distance is increased, anyway.

vi > 0 = vj: Same as previous case.

vi = 0 = vj: First, if xi < 0 or xj > 0, this case is similar to one or the other of the
previous two cases. So, we now assume that xi > 0 and xi < 0. All we have to show
is that max(i1,IJxjI1) < max(Ixi - 1/MI, |xj + 1/M). It is obvious that max(|xi1,x 1) <
max(xMI, IxmI). It is also clear that Ixi - 1/M ;> Ixm - 1/Mj and fxj + 1/MI ; Ixm + 1/MI.
So, we just have to show that max(IxmI, IxmI) < max(IxM - 1/MI, Ixm + 1/MI). This follows
because 0 > xm > XM - 1/M and 0 < XM < xm + 1/M.

Corollary B.1 The basic allocation cell for s E AN(1/M, M) is the root cell centered on s.

Theorem B.5 If BAC(r) n BAC(s) = 0 for all s E (AN(1/M, M) - S), then f[n] E BAC(0).
Proof: Proof by induction. First, if £[0] = 0, it is true for n = 0. Now, assume it is true for n,
and we will show it for n + 1. By the definition of the quantizing scheduler, f n] + r E AC(s[n]).
By the assumption in the theorem, f[n] + r c BAC(s[n]). By the definition of the basic allocation
cell, f n] + r - s[n] E BAC(0) and thus f[n I+ 1] E BAC(0). *

All of this tells us that f[n + 1] is in the root cell. This means that E> fi[n + 1] = 0 and that
maxj Ej[n + 1] - minj fj[n + 1] < 1/M. From this we can see that the largest any fi[n + 1] can
be is ((N - 1)/N) - (1/M) = E(po). This follows because in order to make one element as large
as possible, we must make the others as small as possible. This means putting N - 1 elements at
-1 / (NM) and the last element at (N - 1) / (NM). A similar argument establishes that the smallest
fi[n + 1] can be is -(N - 1)/(NM).

Corollary B.2 (Lag Bound) If BAC(r) n BAC(s) = 0 for all s E (AN(1/M, AM) - S), then
maxj fj [n + 1] - min, fj [n + 1] < 1/M. This implies that I fj[n + 1]| < ((N - 1)/N) - (1/ M) for all

This corollary is equivalent to Theorem 6.1, without the specific characterization of the possible
values of r. Now, we turn to the specification of the region R such that BAC(r) n BAC(s) 0 for
all r E T and s E (AN(1/M, M) - S).

Theorem B.6 If (si - ri) - (sj - rj) > 2/M for some i, j for all s c AN(1/ , M), r E SN, then
BAC(r) n BAC(s) = 0.
Proof: We need to show first that (r + s)/2 E BAC(r) n BAC(s) if the two regions intersect.
This can be shown using convexity and symmetry properties. First, fix s and r and define a vector
v = s -r such that BAC(r) intersects BAC(s) at at least one point t. Define x = t -r. By symmetry
of the root cell, t' = s - x is also in the intersection. But, because the two cells are convex, all convex

178

combinations of t and t' must be in the intersection. Thus, (t + t')/2 = (r + x+s - x)/2 = (r +s)/2
is in the intersection.

Finally, define y = r - (r + s)/2 = (r - s)/2. From the definition of BAC(.), y, - yj < 1/M

which implies that (ri - si) - (rj - sj) K 2/M. m

Now, we have a characterization of the set R. From the above, we know that BAC(r) n BAC(s) = 0
if there exist indices i and j such that (si - ri) - (sj - rj) > 2/M. This is equivalent to saying that
r is not in the region defined as a root cell of the lattice AN (2/M, 0) centered around s.

The basic interpretation of the uniform rate set is that if r C R, then we know that f[n] will

always be inside the union of all of the basic allocation cells of the points in S.

B.5 Proofs from Chapter 7

The full proofs of Lemmas 7.1, 7.2, 7.3, and 7.4 are given here.

Lemma B.4 (Existence and Completeness of Essential Classes) Every fair class 0(m), for
all N > 2 and 0 K m K N - 1, is an essential class and there are no other essential classes.
Proof: To establish that the fair classes are essential, we need to show that every state in C(m)
communicates with every other state in C(m) and that no state in C(m) leads to any state not in
C(m).

First, we show that if w[no] E C(m) at time no, w[n] c C(m) for all n > no. The following
facts establish this:

(i) The total wealth in any state in C(m) is N - (m - 1).

(ii) Any state reached by transitioning out of any state in C(m) maintains a total wealth of
N - (m - 1).

(iii) The maximum wealth any individual process can have in any state reached is 2.

(iv) Furthermore, only one process can have a wealth of 2, the others must be 1 or 0.

All of these facts follow easily from the definition of C(m) if you think of the auction in two stages:
first, some process wins the auction and pays the second-highest bid (which is always equal to 1
in C(m)), and second, one more unit of wealth is given to some process. After the first step, no
process can have more than 1 unit of wealth because the highest bidder could only have bid at
most 2, and must always pay 1. This leaves some number (> 2) of processes with 1 unit of wealth,
and some with none. After the second step, either N - (m - 1) processes have 1 unit of wealth
and the rest have none, or N - m have 1, one has 2 and the rest have none, which is exactly the
definition of C(m). So, once we are in C(m), we can only transition into another state in C(m).

We now show that all states in C(m) communicate. The following three statements establish
this:

(i) For a given k(m), all W are fully connected. The only difference between these states is i,

the process with a wealth of 2. w[n] will transition from k)j to W i for any i, Jk(m),
when process i receives the unit of wealth (probability pi) after j wins the next auction.

(ii) Given any two w and w f(m-l, there is at least one path between them as follows:
consider the two sets Qf2 = k(m - 1) - f(m - 1) and Qf2 = e(m - 1) - k(m - 1) (denote the
size of ike and Qik by c). If the processes in QUg win the next c auctions in order, and the

179

processes in Qek receive the next c units of wealth in order, we will be left in state w(r-l) if

we started in w .

(iii) Any k(in) reaches at least one wk(m-1) whenever some process j E k(m) receives a dollar

after an auction, and any state woml reaches some wi (k(m - 1) c k(m)) if process
k = k(m) - k(m - 1) wins the auction and some process i V k(m) receives a dollar after the
auction.

We have shown that once we enter a state in C(m), we always stay in states in C(m), and that all
states in C(m) communicate, so C(m) is an essential class.

We can see that these are the only essential classes because there is a finite length path between
any other state and a state in one of the sets C(m). This means that all other states are inessential
because they lead to some state which which they do not communicate [9]. 0

Lemma B.5 (Inevitability of Fair Classes) If n, is the first round during which w[nT] E C(m)
for some m, then E[n] < 00 for any given w[O].
Proof: Define ni for i = 1, ... , r - 1 as the rounds during which w[ni] = w[ni] - eu, where eu is
the vector whose u-th component is 1 and all other components are 0. The value T is defined such
that wtnr] is first in one of the fair classes C(m). We define no = 0. The states w -eu are of interest
because they are the only ones from which the maximum wealth over all users can increase. We
begin by showing that E[T] < oc for any initial condition w[0]. Then, define r = ni - ni_1 and we
will show that E[Z1 7 i] = E[n] < oc.

We can define a Markov chain W[m] = w[nm] with appropriate transition probabilities deter-
mined from the transition probabilities of w[n]. The chain W[m] operates on a smaller state space,
consisting only of vectors of the form w - e, for w > 0 and 1 < i < N augmented by a single state
w representing all of the states in the fair classes C(m). Thus, W[r + 1] = w.

In order to make W[m] an irreducible chain, which is technically needed for the following proof
of positive recurrence, we will assume that the chain W[m] moves from W to the state 0 with
probability 1. To show that W[m] is irreducible, we note that there is a finite length path (of
positive probability) between any two possible states of W[m].

To establish that E[T] < oc, we will show that the chain W[m] is positive recurrent. For an
irreducible Markov chain on a countable state space to be positive recurrent, we only need to verify
that the drift condition

E[V(W[m + 1]) - V(W[m]) I V(W[m]) = v] ; -E v ' R

holds for some stochastic Lyapunov function V(w), E > 0, and some finite set R [53]. We also must
show that the drift is bounded for v E R.

Define the Lyapunov function to be the maximum wealth over all users V(W[m]) = maxi Wi[m]
w[nrn]. We will now find an upper bound 'ii on the first term in the drift condition that still satisfies
the condition outside of a finite set of states.

Given that the chain is currently in some state W[m] = w[nn]eu[nm] = wen, there are two
possibilities. The chain can either transition to (w + 1)eu and increase the maximum wealth or to

180

some other point w'en, for some other pair of w' and u'. This leaves us with

E[V(W[m + 1])] = pu(w + 1) + E[w']

= pu(w + 1) + W' -Pr[W[m] -+ w'eu']

Pu(W + 1) + fD E Pr[W~m] -4 w'eu']

PU(W + 1) + (I - PU)

for some Cv which is an upper bound on the possible values of w'.
The fastest way (which also results in the largest remaining w') to get from W[m] = w[nmi]

we, to W[m + 11 = w[nm+1] = w'eu' is for the u'-th user to receive income at every round until
wme [n + k] = wu[n + k] at which point the u'-th user wins and W[m +1] = w'eu e = aeu. When this
happens, w - EZ a j = k = w' - 1. In other words the first time that the wealth for the two users
meet or cross, they are equal and the next step brings us to w'eu,. This means that user u' gains
1 dollar every round after nn and ends up with k dollars when both users have the same wealth.
Then at round nm+1, user u' has k + 1 dollars, so w' = k + 1 =rn+1- So,

w'-1
W' < w+1-Z k

k=1

(w')2 w'
+- - < W2 2

7 1
w' < 2w+- -

42

WI 2w + 2 1=w< ~ 7 1]

We can now write

E[V(W[m + 1)] < pu(w +1) + (1 - pu)

= PU(W + 1) + (1 - PU) 2+w +.

It is clear from this that we can pick a w = w(u) large enough for the upper bound on the right
side of this last equation to be smaller than w - c and thus satisfy the drift condition. So, we define
R to be the set of vectors weu such that w < w(u) for all u. The boundedness of V(-) within R is
obvious.

We have now established that W[m] is positive recurrent and thus that E[T] < oo. All that
is left is to show that E[i I 1] < oo. Assume we start at some state w[O]. The expected
value of 71 is finite because either we start in an appropriate state w[O]eu or the maximum wealth
deterministically decreases until we reach an appropriate state. The maximum wealth strictly
decreases when the second highest wealth is greater than 1; if it is equal to 1, then we have to
wait some number of rounds until the user with the second highest wealth has 2 dollars. But this
number is just a geometric random variable, and so has a finite expectation.

Let us assume that the maximum starting wealth maxi wi [0] = w and fix r at some value. Then,
the largest maximum wealth we can possibly have during the evolution of the chain is less than

181

w + T because we can only increase the maximum wealth by at most 1 per round and we can only
do it at most T times before we have to return to one of the essential classes. Thus, the largest
number of decreasing steps we can take is w + r. In addition to decreasing steps we have a number
of steps wasted waiting for the second highest wealth to move from 1 to 2 at most w + T times

(once at every decrease, a very conservative estimate). The expected time waiting in each of these
states is bounded above by Np, where p is the expected value of a geometric random variable with
distribution p(n) = (1 - pm)p'n where pm is the smallest probability of receiving income over all of
the users.

Finally we have that the expected waiting time 1z, given T and w is less than (Np + 1)-
(r + w) + r. Thus we have:

E[n,]=E [i < E[(Np+1)-(T+w))+ T]

= (Np + 1) - (E[T]+w)+E[T] < oo.

Lemma B.6 (Limiting Probabilities) Given w[n] is in a fair class C(m), the limiting proba-
bilities of the states in the class are given by

k(m)
k(m) _ __r _

km-1)
7k(m-1) (N - (m-1))- rm1

(Note that for m = 0, there are no 7r states, and for m = 1, there is only one, -ro.)
Proof: We need to verify two things: first, that the probabilities sum to 1, and second, that they
satisfy the equation II(m)P(m) = I(m), where 11(m) is a row vector of limiting probabilities and
P(m) is the matrix of transition probabilities between states in C(m).

So, to show that they sum to 1, just verify the following equation:

k k k(m) + k(m-1)

k(m) i M (m- k(m- 1)

A - + E-(M rM-1

k(m) ifk(m) rM k(m-1) rm

pir km)+ (M - (m - 1))rkM-1) _
k(m) i5k(m) k(m-1)

(r kM E Pi + (pir km = rM

k(m) ifk(m) k(m) iEk(m)

(r km) Pi+ 5 pi = rm
k(m) \iok(m) iEk(m)

E rkjm" = rm.
k(m)

182

The last statement follows by the definition of rm.

Next, we need to verify that these probabilities are actually limiting probabilities, i.e. they

satisfy H(m)P(m) = H(m). The equations that need to be satisfied are in two parts. The first set

of equations sets the limiting probability of being in state Wk(m) equal to the sum of two expressions.

The first expression is a sum over all states wl ; they can be reached if j receives the unit of

wealth after i wins the next auction when starting in state .k(m). The second expression is a sum

over all states w (m-i) that can reach wk(m) . The only possible states are the ones for which k(m)

and k(m - 1) differ by one process, j = k(m) - k(m - 1); we reach w (m) if j wins the next auction

and i receives the next unit of wealth (which happens with probability N-(P-1))i

First, for all k(m), and for all i V k(m) we need:

k(k) _ k(m) -) m k(- k-1)
7ri E Lpi rj + N-(-1) (

jjk(m) k(m-1):k(m--1)Ck(m)

pi-r p) - >3 - r km) + A(((B.1)

jjgk(m) k(m-1):k(m-1)Ck(m)
k(m)-r-rkm) +r kml (B.-3)

- M E3 r~ >3kr-1)
jok(m) k(n- 1) :k(rn-1)Ck(rn)

Now, we just need to show

M km-1)7

jCk(m) k(m-1):k(m-1)Ck(m)

and we will be done. The LHS of Equation (B.4) has m terms in the summation, one for each
element of k(m). The RHS also only has m terms, because there are only m possible values of
k(m - 1) such that k(m - 1) c k(m). We now show that for any term in the summation on the
LHS, there is a corresponding equal term on the RHS. Start with some j E k(m). Then, choose

k~m -{j} B dfintink(m-1) k(m)
k(m - 1) = k(m) - {}. By definition, rm1 = pjr , and we have a correspondence between
the terms on the LHS and RHS of Equation (B.4).

Now, going back to Equation (B.3), we have

jk(m) jkk(mm)

r km) - k~m) (3P±> =rkn).

\jgk(m) jEk(m) /
We now look at the second set of equations that must be verified. The LHS of the first equation

below is the limiting probability of being in state ok(m-1) The first summation on the RHS adds

up all of the possible ways of entering this state from states of the form 9m . If we are in state

Wk(and some k(m - 1) receives the next unit of wealth, we end up in state w k(m-1). The

second summation on the RHS adds up all the possible ways of getting to W k(m-1) from some other

state co(m-1. The only possible transitions are ones such that f(m - 1) and k(m - 1) differ only

in at most two processes (j and e in the summation). From state w(-1) , if e wins the auction
(with probability N(1) and j receives the next unit of wealth (with probability pj), we end up

in state k(m-)

183

For every possible k(m - 1),

7r k m-I)
(1) 0

(N - (m - 1))rmr71

k(m):k(m)-k(m-1)={j} iok(m)

pk 7r, + pj -{

iEk(m)

p pi r(m) +
k(m):k(m)-k(m-1)={j} iok(m) fEk(m)

r (>m -1)

k):pk) p-rk)m) + Prk(m)]

-k(m):k(m)km-1)={j} pr)
- Spjr km)

k(m):k(m)-k(m-1)={j}

k(m):k(m)-k(m-1)={j}

= k(m-1)z
km-1)

k(m):k(m)-k(m-1)={j}

(N - (m - 1))r -1)

ijk(m) Ek(m) _

1

M

Lemma B.7 (Winning Probabilities) Given w[n] is in a fair class C(m), the probability that
process i wins an auction at some arbitrary time n is equal to pi.
Proof: Given the limiting probabilities from Lemma 7.3, we simply need to make sure that the
sum of the probabilities that process i wins the auction over all states is equal to pi. We can break
these states into two sets: ones in which i wins because it has the most wealth (Wkm) for all k(m)

such that i V k(m)) and ones in which i wins a tie breaker (w (m1) for all k(m - 1) such that
i k(m - 1)). We simply need to verify the following equation

S

k
k(m):i k(m)

7k(m) + I 7rk(m-1)
SN - (m - 0)

k(m-1):igk(m-1)

ker m" + I N
Pirm N - (mn - 1) (

k(m-1):i Zk(m-1)

r +Pir k(") +(
k(m):ik(m)

- (m - 1))r k71)

(p r "0m)

k(m):iEk(m)

p3 5 rm)
k(m)

- pi

= rmpi

= rmpi

= rmpi

The last equation follows by the definition of rm. m

184

(rgzO7

