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Abstract 
 

This paper presents the results of an experiment with human subjects investigating their ability to discover a 

mistake in a model used for engineering design. For the purpose of this study, a known mistake was 

intentionally placed into a model that was to be used by engineers in a design process. The treatment condition 

was the experimental design that the subjects were asked to use to explore the design alternatives available to 

them. The engineers in the study were asked to improve the performance of the engineering system and were not 

informed that there was a mistake intentionally placed in the model. Of the subjects who varied only one factor 

at a time, fourteen of the twenty seven independently identified the mistake during debriefing after the design 

process.  A much lower fraction, one out of twenty seven engineers, independently identified the mistake during 

debriefing when they used a factional factorial experimental design. Regression analysis shows that relevant 

domain knowledge improved the ability of subjects to discover mistakes in models, but experimental design had 

a larger effect than domain knowledge in this study.  Analysis of video tapes provided additional confirmation 

as the likelihood of subjects to appear surprised by data from a model was significantly different across the 

treatment conditions. This experiment suggests that the complexity of factor changes during the design process 

is a major consideration influencing the ability of engineers to critically assess models.   
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1. Overview 

1.1. The Uses of Models in Engineering and the Central Hypothesis 

The purpose for the experiment described here is to illustrate, by means of experiments with human subjects, 

a specific phenomenon related to statistical design of experiments.  More specifically, the study concerns the 

influence of experimental designs on the ability of people to detect existing mistakes in formal engineering 

models.   

Engineers frequently construct models as part of the design process.  It is common that some models are 

developed using formal symbolic symbol systems (such as differential equations) and some are less formal 

graphical representations and physical intuitions described by logic, data, and narrative (Bucciarelli, 2009).  As 

people use multiple models, they seek to ensure a degree of consistency among them.  This is complicated by 

the need for coordination of teams.  The knowledge required for design and the understanding of the designed 

artifact are distributed in the minds of many people.  Design is a social process in which different views and 

interests of the various stakeholders are reconciled (Bucciarelli, 1988).  As described by Subrahmanian et al. 

(1993), informal modeling comprises a process in which teams of designers refine a shared meaning of 

requirements and potential solutions through negotiations, discussions, clarifications, and evaluations.  This 

creates a challenge when one colleague hands off a formal model for use by another engineer.  Part of the social 

process of design should include communication about ways the formal model‟s behavior relates to other 

models (both formal and informal).     

The formal models used in engineering design are often physical.  In the early stages of design, simplified 

prototypes might be built that only resemble the eventual design in selected ways.  As a design becomes more 

detailed, the match between physical models and reality may become quite close.  A scale model of an aircraft 

might be built that is geometrically nearly identical to the final design and is therefore useful to evaluate 

aerodynamic performance in a wind tunnel test.  As another example, a full scale automobile might be used in a 

crash test.  Such experiments are still models of real world crashes to the extent that the conditions of the crash 

are simulated or the dummies used within the vehicle differ from human passengers.   

Increasingly, engineers rely upon computer simulations of various sorts.  Law and Kelton (2000) define 

“simulation” as a method of using computer software to model the operation and evolution of real world 

processes, systems, or events. In particular, simulation involves creating a computational representation of the 

logic and rules that determine how the system changes (e.g. through differential equations). Based on this 

definition, we can say that the noun “simulation” refers to a specific type of a formal model and the verb 

“simulation” refers to operation of that model.  Simulations can complement, defer the use of, or sometimes 

replace particular uses of physical models.  Solid models in CAD can often answer questions instead of early-

stage prototypes.  Computational fluid dynamics can be used to replace or defer some wind tunnel experiments.  

Simulations of crash tests are now capable of providing accurate predictions via integrated computations in 

several domains such as dynamics and plastic deformation of structures.  Computer simulations can offer 

significant advantages in the cost and in the speed with which they yield predictions, but also need to be 

carefully managed due to their influence on the social processes of engineering design (Thomke, 1998).       

The models used in engineering design are increasing in complexity. In computer modeling, as speed and 

memory capacity increase, engineers tend to use that capability to incorporate more phenomena in their models, 

explore more design parameters, and evaluate more responses.  In physical modeling, complexity also seems to 

be rising as enabled by improvements in rapid prototyping and instrumentation for measurement and control.  

These trends hold the potential to improve the results of engineering designs as the models become more 

realistic and enable a wider search of the design space. The trends toward complexity also carry along the 

attendant risk that our models are likely to include mistakes.   

We define a mistake in a model as a mismatch between the formal model of the design space and the 

corresponding physical reality wherein the mismatch is large enough to cause the resulting design to 

underperform significantly and make the resulting design commercially uncompetitive.  When such mistakes 

enter into models, one hopes that the informal models and related social processes will enable the design team to 

discover and remove the mistakes from the formal model. The avoidance of such mistakes is among the most 

critical tasks in engineering (Clausing, 1994).   

Formal models, both physical and computational, are used to assess the performance of products and 

systems that teams are designing. These models guide the design process as alternative configurations are 

evaluated and parameter values are varied. When the models are implemented in physical hardware, the 



exploration of the design space may be guided by Design of Experiments (DOE) and Response Surface 

Methodology. When the models are implemented on computers, search of the design space may be informed by 

Design and Analysis of Computer Experiments (DACE) and Multidisciplinary Design Optimization (MDO).  

The use of these methodologies can significantly improve the efficiency of search through the design space and 

the quality of the design outcomes.  But any particular design tool may have some drawbacks.  This paper will 

explore the potential drawback of complex procedures for design space exploration and exploitation.   

We propose the hypothesis that some types of Design of Experiments, when used to exercise formal 

engineering models, cause mistakes in the models to go unnoticed by individual designers at significantly higher 

rates than if other procedures are used.  The proposed underlying mechanism for this effect is that, in certain 

DOE plans, more complex factor changes in pairwise comparisons interfere with informal modeling and 

analysis processes used by individual designers to critically assess results from formal models.  As design 

proceeds, team members access their personal understanding of the physical phenomena and, through mental 

simulations or similar procedures, form expectations about results.  The expectations developed informally are 

periodically compared with the behaviour of formal models.  If the designers can compare pairs of results with 

simple factor changes, the process works well.  If the designers can access only pairs of results with multiple 

factor changes, the process tends to stop working.  This paper will seek evidence to assess this hypothesis 

though experiments with human subjects.   

 

1.2. The Nature of Mistakes in Engineering and in Engineering Models 

 “Essentially, all models are wrong, but some are useful” (Box and Draper, 1987).  Recognizing this, it is 

important to consider the various ways models can be wrong and what might prevent a model from being useful.  

Let us draw a distinction between what we are calling mistakes in models and what is commonly described as 

model error.  

Model error is a widely studied phenomenon in engineering design.  To the extent that simplifying 

assumptions are made, that space and time are discretized, that model order is reduced, and solutions of systems 

of equations are approximated, some degree of model error is invariably introduced. Model error can frequently 

be treated so that bounds can be rigorously formulated or so that model error can be characterized 

probabilistically.  Such errors are not fully known to us during the design process, but we have some realistic 

hope of characterizing these errors using repeatable, reliable procedures.  

By contrast, mistakes in models are much more challenging to characterize.  Examples of mistakes in 

computer models include a wrong subroutine being called within a program, model data being entered with a 

decimal in the wrong location, or two data elements being swapped into the wrong locations in an array.  

Mistakes in physical models can be just as common.  Mistakes in physical experiments include recording data in 

the wrong units, installing a sensor in the wrong orientation, or setting the factors incorrectly in one trial or 

systematically across all trials (by misinterpreting the coding of factor levels).   When such a mistake enters a 

formal model, it is likely to give an answer that is off by an order of magnitude or even wrong in sign (it may 

indicate the effects of a design change are opposite to the effect that should actually be observed).     

It is interesting to consider how frequently there are mistakes in engineering models and how consequential 

those mistakes might be.  Static analyses of software used for simulation of physical phenomena suggest that 

commercially available codes contain, on average, eight to twelve serious faults per one thousand lines of code 

(Hatton 1997). Faults in commercial software may cause us to make wrong predictions about phenomena of 

interest to us.  To make matters worse, we may also say it is also a mistake to build a model that omits important 

phenomena, even those phenomena we never explicitly intended to include.  If errors of omission are included 

as mistakes, then mistakes in formal models must be common and serious, especially in the domains wherein 

technology is advancing rapidly.  

The presence of mistakes in engineering models and the implications for design methodology have been 

subjects of much research.  Error proofing of the design process is one area of development.  For example, Chao 

and Ishii (1997) worked to understand the categories of errors that occur in the design process and studied 

concepts of Poka-Yoke that emerged from manufacturing and adapted them to the design process.  Computer 

scientists have undertaken significant work on means to avoid bugs or to detect them early.  For example, there 

is quite consistent evidence across empirical studies showing that pair programming positively affects the 

quality of code (e.g., by reducing frequency of mistakes) (Dyba, et al. 2007) and that the benefits of pair 

programming are greatest on complex tasks (Arisholm, et al. 2007).  Among the most exciting developments in 

the last few years, is an approach drawing on experience in the field of system safety.  As Jackson and Kang 

(2010) explain “instead of relying on indirect evidence of software dependability from process or testing, the 



developer provides direct evidence, by presenting an argument that connects the software to the dependability 

claim.”  Thus there is hope for the development of an empirical basis for mistake avoidance in computer 

programming, but there are major challenges in successful implementation.  Software designers must ensure 

adequate separation of concerns so that the empirical data from an existing program remain relevant to a new 

function they are creating.   

The structure of the rest of the paper is as follows. Section 2 provides some background to the investigation. 

This includes some discussion of relevant cognitive phenomena, and descriptions of one-at-a-time experiments 

and orthogonal arrays. Section 3 describes the experimental protocol. Sections 4 and 5 present and discuss the 

results of the investigation. Sections 6 and 7 make some recommendations for engineering practice and suggest 

some ideas for further research.  

 

   

2. Background 

2.1. Frameworks for Model Validation  

The detection of mistakes in engineering models is closely related to the topic of model validation.  Formal 

engineering models bear some important similarities with the designs that they represent, but they also differ in 

important ways.  The extent of the differences should be attended to in engineering design – both by 

characterizing and limiting the differences to the extent possible within schedule and cost constraints.   

The American Institute of Aeronautics and Astronautics (AIAA, 1998) defines model validation as “the 

process of determining the degree to which a model is an accurate representation of the real world from the 

perspective of the intended uses of the model.”  Much work has been done to practically implement a system of 

model validation consistent with the AIAA definition.  For example, Hasselman (2001) has proposed a 

technique for evaluating models based on bodies of empirical data.  Statistical and probabilistic frameworks 

have been proposed to assess confidence bounds on model results and to limit the degree of bias (Bayarri, et al., 

2007, Wang, et al., 2009).  Other scientists and philosophers have argued that computational models can never 

be validated and that claims of validation are a form of the logical fallacy of affirming the consequent (Oreskes, 

et al., 1994).  

 

Validation of formal engineering models takes on a new flavor when viewed as part of the interplay with 

informal models that is embedded within a design process.  One may seek a criterion of sufficiency – a model 

may be considered good enough to enable a team to move forward in the social process of design.  This 

sufficiency criterion was proposed as an informal concept by Subrahmanian et al. (1993).  A similar, but more 

formal, conception was proposed based on decision theory so that a model may be considered valid to the extent 

that it supports a conclusion regarding preference between two design alternatives (Hazelrigg, 1999).  In either 

of the preceding definitions, if a formal model contains a mistake as defined in section 1.1, the model should not 

continue to be used for design due to its insufficiency, invalidity, or both.    

 

2.2. Cognitive Considerations 

The process by which an engineer might detect a modeling mistake can be described in an abstract sense as 

follows. The engineer presumably has subject-matter expertise regarding behavior of the components of a 

device under design consideration. Based on this subject matter knowledge, the engineer may be capable of 

forming a mental model of probable behavior of the device under different, not yet realized conditions.  

Bucciarelli (2002) refers to this as the “counterfactual nature of designing” and describes an engineer making 

conjectures such as „if we alter the airfoil shape in this manner, then the drag will be reduced by this 

percentage‟. When observing a predicted behavior of the device based on a formal model, whether via a 

physical prototype or a computer simulation, the engineer may become aware of a conflict between results of 

two models (e.g. the formal mathematical model might indicate the drag rises rather than drops as expected 

based on a less formal mental model).  The process of integrating observed simulation results into a framework 

of existing mental models may be considered a continuous internal process of hypothesis generation and testing 

(Klahr and Dunbar 1988). When observed results are in opposition to the mental model, the attentive engineer 

experiences an expectation violation (which may reveal itself in a facial expression of surprise) and the engineer 

must resolve the discrepancy before trust in the mental model is restored and work can continue.  The 



dissonance between formal and informal models can be resolved by changing the mental model (e.g., learning 

some new physical insights from a simulation).  Alternately, the formal mathematical model may need to 

change; For example, the engineer may need to find and fix a mistake embedded in the formal model.   

 

It is interesting in this context to consider the strategies used by engineers to assess formal models via numerical 

predictions from an informal model.  Kahneman and Tversky (1973) observed that people tend to make 

numerical predictions using an anchor-and-adjust strategy, where the anchor is a known value and the estimate 

is generated by adjusting from this starting point. One reason given for this preference is that people are better at 

thinking in relative terms than in absolute terms.  In the case of informal engineering models, the anchor could 

be any previous observation that can be accessed from memory or from external aids. 

 

The assessment of new data is more complex when the subject is considering multiple models or else holds 

several hypotheses to be plausible.  Gettys and Fisher (1979) proposed a model in which extant hypotheses are 

first accessed by a process of directed recursive search of long-term memory.  Each hypothesis is updated with 

data using Bayes‟ theorem.  Gettys and Fisher proposed that if the existing hypothesis set is low in plausibility, 

exceeding some threshold, then additional hypotheses are generated.  Experiments with male University 

students supported the model.   These results could apply to designers using a formal model while entertaining 

multiple candidate informal models.  When data from the formal model renders the set of informal models 

implausible, a hypothesis might be developed that a mistake exists in the formal model.  This process may be 

initiated when an emotional response related to expectation violation triggers an attributional search 

(Stiensmeier-Pelster et al. 1995; Meyer et al. 1997).  The key connection to this paper is the complexity of the 

mental process of updating a hypothesis given new data.  If the update is made using an anchor-and-adjust 

strategy, the update is simple if only one factor has changed between the anchor and the new datum.  The 

subject needs only to form a probability density function for the conditional effect of one factor and use it to 

assess the observed difference.  If multiple factors have changed, the use of Bayes‟ law involves development of 

multiple probability density functions for each factor, the subject must keep track of the relative sizes and 

directions of all the factor effects, and the computation of posterior probabilities involves multiply nested 

integrals or summations.  For these reasons, the mechanism for hypothesis plausibility assessment proposed by 

Gettys and Fisher seems overly demanding in the case of multiple factor changes assuming the calculations are 

performed without recourse to external aids.  Since the amount of mental calculation seems excessive, it seems 

reasonable to expect that the hypotheses are not assessed accurately (or not assessed at all) and therefore that a 

modeling mistake is less likely to be found when there are too many factors changed between the anchor and the 

new datum.  

2.3. Experimental Design: Theoretical and Practical Considerations 

Engineering models are frequently used in a process of experimentation.  If the model is a physical apparatus, 

then experimental error will be a concern and statistical Design of Experiments (DOE) may be used to structure 

the uses of the model.  If the model is a computer simulation, then specialized techniques for design of computer 

experiments may be used.  In either case, the complexity of factor changes between the experiments will tend to 

be high.  This section reviews one type of statistical design of experiments. As a comparator, we describe One 

Factor at a Time (OFAT) experiments, which feature very simple changes between experiments.    

2.3.1. Fractional Factorial Design and Complexity of Factor Changes 

Fractional factorial designs are arrangements of experiments intended to promote efficient exploration and 

estimation of the effects of multiple factors.  An example is the 2
7-4

 design depicted in Table 1, also known as an 

orthogonal array (Plackett, and Burman, 1946).  The labels in the column headings (A through G) represent 

seven factors in an experiment.  The rows represent the settings of the factors for each of eight experimental 

trials.  The entries in each cell indicate the level of the factor, with the labels “1” and “2” indicating two 

different settings for each factor.  



 

 Table 1. A Fractional Factorial Design 2
7-4

. 

 

 Factors 

Trial  A  B  C  D  E  F  G   

1 1  1  1  1  1  1  1   

2  1  1  1  2  2  2  2   

3  1  2  2  1  1  2  2   

4  1  2  2  2  2  1  1   

5  2  1  2  1  2  1  2   

6  2  1  2  2  1  2  1   

7  2  2  1  1  2  2  1   

8  2  2  1  2  1  1  2   

  
 

The 2
7-4

 design enables the investigator to estimate the main effects of all seven factors.  The design does not 

enable estimation of interactions among the factors, but two-factor interactions will not adversely affect the 

estimates using the 2
7-4

 design.  Thus, the design is said to have resolution III.  It can be proven that using a 2
7-4

 

design provides the smallest possible error variance in the effect estimates given eight experiments and seven 

factors.  For many other experimental scenarios (numbers of factors and levels), experimental designs exist with 

similar resolution and optimality properties.   

Note that in comparing any two experiments in the 2
7-4

 design, the factor settings differ for four out of seven 

of the factors.  Relevant to the issue of mistake detection, if a subject employed an anchor-and-adjust strategy 

for making a numerical prediction, no matter which anchor is chosen, the effects of four different factors will 

have to be estimated and summed.  The complexity of factor changes in the 2
7-4

 design is a consequence of its 

orthogonality, which is closely related to its precision in effect estimation. This essential connection between the 

benefits of the design and the attendant difficulties it poses to humans unaided by external aids may be the 

reason that Fisher (1926) referred to these as “complex experiments.” 

Low resolution fractional factorial designs, like the one depicted in Table 1, are recommended within the 

statistics and design methodology literature for several uses.  They are frequently used in screening experiments 

to reduce a set of variables to relatively few so that subsequent experiments can be more efficient (Meyers and 

Montgomery 1995). They are sometimes used for analyzing systems in which effects are likely to be separable 

(Box et al. 1978).  Such arrangements are frequently used in robustness optimization via “crossed” arrangements 

(Taguchi 1987, Phadke 1989).  This last use of the orthogonal array was the initial motivation for the authors‟ 

initial interest in the 2
7-4

 design as one of the two comparators in the experiment described here.   

2.3.2. One-at-a-Time Experiments and Simple Paired Comparisons 

The one-at-a-time method of experimentation is a simple procedure in which the experimenter varies one factor 

while keeping all other factors fixed at a specific set of conditions. This procedure is repeated in turn for all 

factors to be studied. An example of a “one-at-a-time” design with seven different factors (A-G) is given in 

Table 2. The experiment begins with all the factors set at a baseline setting denoted as “1”. In this particular 

example, each parameter is changed in turn to another setting denoted “2”. This design is sometimes called a 

“strict” one-at-a-time plan because exactly one factor is changed from one experiment to the next.  



 

Table 2. A simple version of the “one-factor-at-a-time” method. 

 

 Factors 

Trial  A  B  C  D  E  F  G   

1  1  1  1  1  1  1  1   

2  2  1  1  1  1  1  1   

3  2  2  1  1  1  1  1   

4  2  2  2  1  1  1  1   

5  2  2  2  2  1  1  1   

6  2  2  2  2  2  1  1   

7  2  2  2  2  2  2  1   

8  2  2  2  2  2  2  2   

 

 

 

 

This paper will focus not on the simple one-at-a-time plan of Table 2, but on an adaptive one-at-a-time plan 

of Table 3.  This process is more consistent with the engineering process of both seeking knowledge of a design 

space and simultaneously seeking improvements in the design.  The adaptation strategy considered in this paper 

is described by the rules below:  

 Begin with a baseline set of factor levels and measure the response  

 For each experimental factor in turn  

o Change the factor to each of its levels that have not yet been tested while keeping all 

other experimental factors constant  

o Retain the factor level that provided the best response so far  

Table 3 presents an example of this adaptive one-at-a-time method in which the goal is to improve the 

response displayed in the rightmost column assuming that larger is better.
1
 Trial #2 resulted in a rise in the 

response compared to trial #1. Based on this result, the best level of factor A is most likely “2” therefore the 

factor A will be held at level 2 throughout the rest of the experiment. In trial #3, only factor B is changed and 

this results in a drop in the response. The adaptive one-at-a-time method requires returning factor B to level “1” 

before continuing to modify factor C. In trial #4, factor C is changed to level 2. It is important to note that 

although the response rises from trial #3 to trial #4, the conditional main effect of factor C is negative because it 

is based on comparison with trial #2 (the best response so far). Therefore factor C must be reset to level 1 before 

proceeding to toggle factor D in trial #5. The procedure continues until every factor has been varied. In this 

example, the preferred set of factor levels is A=2, B=1, C=1, D=2, E=1, F=1, G=1 which is the treatment 

combination in trial #5.  

 

 Table 3. An adaptive variant of the one-at-a-time method. 

 

 Factors  

Trial  A  B  C  D  E  F  G  Response   

1  1  1  1  1  1  1  1  6.5   

2  2  1  1  1  1  1  1  7.5   

3  2  2  1  1  1  1  1  6.7   

4  2  1  2  1  1  1  1  6.9   

5  2  1  1  2  1  1  1  10.1   

6  2  1  1  2  2  1  1  9.8   

7  2  1  1  2  1  2  1  10.0   

8  2  1  1  2  1  1  2  9.9   

  

 

The adaptive one-factor-at-a-time method requires n+1 experimental trials given n factors each having two 

levels. The method provides estimates of the conditional effects of each experimental factor but cannot resolve 

                                                 
1
Please note that this response in Table 3 is purely notional and designed to provide an instructive example of 

the algorithm. The response is not data from any actual experiment. 



interactions among experimental factors. The adaptive one-factor-at-a-time approach provides no guarantee of 

identifying the optimal control factor settings. Both random experimental error and interactions among factors 

may lead to a sub-optimal choice of factor settings.  However, the authors‟ research has demonstrated 

advantages of the aOFAT process over fractional factorial plans when applied to robust design (Frey and 

Sudarsanam, 2007).  In this application therefore, the head-to-head comparison of aOFAT and the 2
7-4

 design is 

directly relevant in at least one practically important domain.  In addition, both the simple and the adaptive one 

factor at a time experiments allow the experimenter to make a comparison with a previous result so that the 

settings from any new trial differ by only one factor from at least one previous trial.  Therefore, the aOFAT 

design could plausibly have some advantages in mistake detection as well as in response improvement.   

 

3. Experimental Protocol 

In this experiment, we worked with human subjects who were all experienced engineers.  The subjects 

worked on an engineering task under controlled conditions and under supervision of an investigator.  The 

engineers were asked to perform a parameter design on a mechanical device using a computer simulation of the 

device to evaluate the response for the configurations prescribed by the design algorithms.  The subjects were 

assigned to one of two treatment conditions, viz which experimental design procedure they used, a fractional 

factorial design or adaptive one-factor-at-a-time procedures. The investigators intentionally placed a mistake in 

the computer simulation. The participants were not told that there is a mistake in the simulation, but they were 

told to treat the simulation “as if they received it from a colleague and this is the first time they are using it.” 

The primary purpose of this investigation was to evaluate whether the subjects become aware of the mistake in 

the simulation and whether the subjects‟ ability to recognize the mistake is a function of the assigned treatment 

condition (the experimental procedure they were asked to use).   

In distinguishing between confirmatory and exploratory analyses, the nomenclature used in this protocol is 

consistent with the multiple objectives of this experiment. The primary objective is to test the hypothesis that 

increased complexity of factor changes leads to decreased ability to detect a mistake in the experimental data.  

The secondary objective is to look for clues that may lead to a greater understanding of the phenomenon if it 

exists. Any analysis that tests a hypothesis is called a confirmatory analysis and an experiment in which only 

this type of analysis is performed is called a hypothesis-testing experiment. Analyses that do not test a 

hypothesis are called exploratory analyses and an experiment in which only this type of analysis is performed is 

called a hypothesis-generating experiment. This experiment turns out to be both a hypothesis-testing experiment 

(for one of the responses) and a hypothesis-generating experiment (for another response we chose to evaluate 

after the experiment was complete).  

The remainder of this section provides additional details on the experimental design.  The full details of the 

protocol and results are reported by Savoie (2010) using the American Psychological Association Journal 

Article Reporting Standards.  The exposition here is abbreviated.  

3.1. Design Task 

The physical device in the design task is the Xpult catapult (Peloton Systems 2010) shown with component 

nomenclature in Figure 1.  Normal operation of the Xpult catapult is as follows: (1) One or more rubber bands 

are threaded into the hole in the base plate and wrapped around the rubber band pin, (2) the launch angle is set to 

one of the values indexed every 15 degrees between 0 and 90, (3) a ball is selected and placed in the cup, (4) the 

movable arm is rotated to a chosen initial pullback, (5) the arm is released and sends the ball into a ballistic 

trajectory, and (6) the landing position of the ball is measured. The goal of this parameter design is to find the 

configuration that results in the ball landing nearest the target distance of 2.44m from the catapult pivot.  

 



 
 

Figure 1. A schematic of the X-pult catapult device used in the experiment. 

 

 
The number of control factors (seven) and levels (two per factor) for the representative design task were 

chosen so that the resource demands for the two design approaches (the fraction factorial and One Factor at a 

Time procedures) are similar. In addition to four control factors the Xpult was designed to accommodate 

(number of bands, initial pull-back angle, launch angle, and ball type), we added three more factors (catapult 

arm material, the relative humidity, and the ambient temperature of the operating environment). The factors and 

levels for the resulting system are given in Table 4. The mathematical model given in Appendix A was used to 

compute data for a 2
7
 full-factorial experiment.  The main effects and interactions were calculated. There were 

34 effects found to be “active” using the Lenth method with the simultaneous margin of error criterion (Lenth, 

1989) and the 20 largest of these are listed in Table 5.  

The simulation model used by participants in this study is identical to the one presented in Appendix A, 

except that a mistake was intentionally introduced through the mass property of the catapult arm. The simulation 

result for the catapult with the aluminum arm was calculated using the mass of the magnesium arm and vice 

versa.  This corresponds to a mistake being made in a physical experiment by consistently mis-interpreting the 

coded levels of the factors or mis-labeling the catapult arms.   Alternatively, this corresponds to a mistake being 

made in a computer experiment by modeling the dynamics of the catapult arm incorrectly or by input of density 

data in the wrong locations in an array. 

  



Table 4. The factors and levels in the catapult experiment. 

 

 

 

 Level   

Factor  Description  Nominal (–)  Alternate (+)   

A Relative Humidity  25%  75%   

B Initial Pullback  40 30  

C Ball  Orange  White   

D Arm Material  Magnesium  Aluminum   

E Launch Angle  60 45  

F # Rubber Bands  3  2   

G Ambient Temperature  22 C  0 C   

  

 

  

Table 5. The 20 largest effects on landing distance in the catapult experiment. 

 

Term Coefficient   

F  -0.392   

B  -0.314   

D  -0.254   

E  0.171   

C  0.082   

B×F  0.034   

C×F  -0.031   

E×F  -0.029   

G  -0.028   

B×C  -0.025   

B×E  -0.024   

D×F  0.022   

B×D  0.022   

D×E  -0.019   

C×D  -0.019   

F×G  0.009   

B×G  0.007   

B×C×F  0.007   

B×E×F  0.006   

  

 

3.2. Participant Characteristics 

We wanted the experimental subjects to be representative of the actual group to which the results might be 

applied – practicing engineers of considerable experience.  We partnered with Draper Laboratory, a nonprofit, 

engineering design and development company that operates in a broad range of industries, especially in space 

and defense.  We wanted to ensure the subjects had domain-specific knowledge of simple mechanical dynamics 

and aerodynamics sufficient to enable them to recognize anomalous behavior when considering the simulation 

results during the design task. The needed material is typically taught during freshman physics for science and 

engineering undergraduates, so the minimum eligibility criterion for participating in this study was successful 

completion of a college-level course in physics including mechanics.  

To recruit for this procedure, a person other than the authors contacted approximately 750 potential study 

participants by email, describing the experiment and inviting those interested to contact the first author directly. 

All of those contacted were technical staff members of Draper Laboratory with the requisite educational 

background.  Out of the approximately 750 people contacted, 56 of them (about 7.5%) agreed to participate in 

the study.  One of these 56 elected to drop out early in the experiment.  Another could not be included in the 

study because the video tape equipment failed during the experiment.  This left 54 subjects in the final group, 27 



in each treatment group.   

A statistical power analysis determined that a sample size of 25 per each of the two treatment groups would 

be required to resolve a 3-in-5 chance of becoming aware of a problem versus a 1-in-5 chance. The error rates in 

this analysis were set at 5% for Type I error (α=0.05) and 10% for Type II error (β=0.10). Thus, the experiment 

is powered at 90% to resolve the stated effect size. Another consideration is the minimum event count for a 

good logistic regression fit, and this was assumed to be 10 per covariate in the analysis (Perduzzi et al. 1996).  

 

 

 

Figure 2. A description of the demographics of the human subjects in the experiment. The filled circles 

represent subjects in the aOFAT treatment condition and the empty circles represent subjects in the 

fractional factorial treatment condition. 

 

The demographics of the participant group are summarized in Figure 2.  The engineering qualifications and 

experience level of this group of subjects was very high.  The majority of participants held graduate degrees in 

engineering or science.  The median level of work experience was 12 years.  The low number of female 

participants was not intentional, but instead typical for technical work in defense-related applications.  A dozen 

of the subjects reported having knowledge and experience of Design of Experiments they described as 

“intermediate” and several more described themselves as “experts”.   The vast majority had significant 

experience using engineering simulations.  The assignment of the subjects to the two treatment conditions was 

random and the various characteristics of the subjects do not appear to be significantly imbalanced between the 

two groups.    

The experiments were conducted during normal business hours in a small conference room in the main 

building of the company where the participants are employed. Only the participant and test administrator (the 

first author) were in the room during the experiment. This study was conducted on non-consecutive dates 

starting on April 21, 2009, and ending on June 9, 2009. Participants in the study were offered an internal 

account number to cover their time; most subjects accepted but a few declined. 

3.3. Measures and Covariates 

In this protocol, sixteen measures were taken for each participant: the explanatory variable domain 

knowledge score (XDKS), seven instances of the explanatory variable comparison elicits anomaly (XCEA), seven 

instances of the exploratory response variable surprise rating (YS), and the confirmatory response variable 

debriefing result (YDR).  

The explanatory variable XDKS is a measure of the participant‟s level of understanding of the physics of the 

catapult device. For each of the seven control factors, the participant was asked to predict qualitatively the 



change in response when the factor was changed from its nominal to its alternate setting with all other factors 

held at the nominal setting. The composite score XDKS is the number of predictions in the correct direction.  This 

explanatory variable was interesting to us as a means of assigning some practical meaning the size of the 

observed effects.  Most of engineering education is related to improving measures similar to the domain 

knowledge score.  This measure would be assumed by most educators and practicing engineers to have an 

important impact on ability to find and fix mistakes in engineering models.  If the choice of experimental design 

technique has an impact on ability to find mistakes, its relative size compared to domain knowledge score will 

be of practical interest. 

For the second through the eighth trials in the design algorithm, the participant was asked to predict the 

simulation outcome before being told the result. In each case, the participant was asked which (if any) of the 

previous results were used in making the prediction. The explanatory variable XCEA is a dichotomous variable 

indicating whether the participant based the prediction on one or more trials with the anomalous control factor at 

the same level (XCEA=0) or at a different level (XCEA=1) than in the configuration being predicted. 

The reason for asking participants to make predictions after each trial was to reduce the effects similar to 

those reported as “automation bias” in the human factors literature (Parasuraman et al. 1993).  In developing 

studies with human experiments such as the ones in this paper, one frequently prescribes an algorithm for each 

participant to follow. In doing this, errors in judgment may arise. Complacency-induced errors may manifest as 

inattention of the human participant while carrying out a rigid procedure.  One strategy for countering this is to 

require participants to explicitly predict the response prior to each trial (Schunn and O‟Malley 2000).   

The exploratory variable YS is a measure of display of the emotion surprise. Each participant‟s reaction to 

being told the simulation result in trials two through eight was videotaped and later judged by two independent 

analysts on a five-point Likert scale.  The analysts were asked to watch the video response, then indicate their 

level of agreement with the following statement: the subject seems surprised by the result given. Possible 

answers were Strongly Agree, Agree, Neutral, Disagree and Strongly Disagree.  The analysts‟ ratings were 

subsequently resolved according to the following rules:  

 If the raters each selected Strongly Agree or Agree, then the raters were deemed to agree that the 

subject appears surprised (YS=1).  

 If the raters each selected Neutral, Disagree or Strongly Disagree, then the raters were deemed to have 

agreed that the subject does not appear surprised (YS=0).  

 Any other combination of ratings was taken to imply that the raters did not agree, and the data point 

was not incorporated in the exploratory analysis.  

According to Ekman et al. (1987), observing facial expressions alone results in highly accurate judgments of 

emotion by human raters. However, Russell (1994) points out several serious methodological issues in emotion-

recognition studies. We therefore felt it would be prudent to use self-reporting by participants in addition to 

judgement by independent raters.  The confirmatory variable YDR is the response to debriefing at the conclusion 

of the experiment. Each participant was asked a series of questions:  

1. Did you think the simulation results were reasonable?  

2. Those who expressed doubt were asked to pinpoint the area of concern: “Which of the control factors 

do you think the problem is tied to?”  

3. To those who did not express doubt, the administrator then said, “There is a problem in the simulation. 

Knowing this now, which of the control factors do you think the problem is tied to?”  

If the participant‟s answer to the second question is arm material, catapult arm, bar, magnesium versus 

aluminum, etc. – any wording that unambiguously means the control factor for choice of arm material in the 

catapult – then the participant was categorized as being aware of the issue (YDR=1); otherwise, the participant 

was categorized as not becoming aware of the issue (YDR=0).  

 



3.4. Experimental Procedure 

A flowchart showing the sequence of events during the experiment for each participant is given in Figure 3. This 

flowchart also shows all explanatory and response variables and the point in the experiment when each is 

measured or specified.  

  

 

 Fig. 3. Flowchart of experimental method 

The experimental process described in Figure 3 was supervised by a test administrator (the first author) who 

ensured consistent application of the protocol that had been authorized by the Institutional Review Board.  All 

of the subjects were required to undergo what we are calling “device training” in Figure 3.  All participants were 

trained on the operation of the physical device under consideration by listening to a description of the device 

including the name of each component of the device, the intended operation of the device, and the factors that 

may be changed in the design task. The “device training” procedure generally required 5 minutes. The graphical 

aids used by each participant in this study were provided in the form of a sheet of paper and included:  

1. On one side, the catapult diagram with components labeled according to nomenclature used in 

the experiment (which are shown in Figure 2). 

2. On the reverse side, the consolidated model reference sheet (which is shown in Appendix B).  

It should be noted that “device training” was not intended to qualify the person to operate the physical device.  It 

was intended to ensure the subjects understood the nature of the device and the definitions of its operating 

parameters.  We chose not to have people work directly hands-on with the device before working with the 

simulation of the device.  The purpose of the experiment was to assess some challenges related to use of 

computer simulations in engineering design.  In most cases, engineers would not be able to interact with the 



exact same physical device before using a simulation to optimize its parameters. 

After this “device training”, each participant was instructed to provide, for each of the seven control factors, 

a prediction of what would happen to the response of the device if the factor were changed from the nominal to 

the alternate setting, the rationale supporting this prediction, and a level of confidence in the prediction on a 

scale of 1 to 5 in order of increasing confidence.  The accuracy of the predictions and the methodology used by 

the subjects were assessed and used to develop a domain knowledge score XDKS.  

Each participant was told that a computer simulation was to be used in the design task.  Each subject was 

given the exact same description of how it was to be treated.  The experiment administrator told each subject to 

“treat the simulation as if they had received it from a colleague and were running it for the first time.” 

Assignments of the participants to control (XDM=0) or treatment (XDM=1) groups were made at random. 

Masking was not possible since the treatment variable determined which training was administered.  Based on 

the assignment to a treatment group, training was provided on the design method to be employed.   

Participants assigned to the control group used the adaptive one-factor-at-a-time (aOFAT) method.  They 

were instructed to:  

1. Evaluate the system response at the nominal configuration.  

2. For each control factor in the system  

(a) Select a new configuration by using the previously evaluated configuration with the 

best performance, changing only this factor‟s setting to its alternate value.  

(b) Evaluate the system response at the new configuration.  

(c) If the performance improves at the new setting of this factor, keep it at this setting for 

the remainder of the experiment; otherwise, keep it at the original value for the remainder of 

the experiment.  

3. The configuration obtained after stepping through each control factor exactly once is the 

optimized result for this design approach.  

Participants assigned to the treatment group used the fractional factorial design and were instructed to:  

1. Evaluate the system response at each of the eight configurations prescribed by the fractional 

factorial design matrix.  

2. Calculate the coefficients in the linear model used to approximate the relationship between the 

control factors and system response.  

3. Using the linear model, find the configuration that results in the best system response.  

4. Optionally, check the system response for this configuration using the simulation results.  

The administrator of the experiment supervised the subjects during the sessions and enforced adherence to 

these procedures.  As an aid in understanding and implementing the design, each participant was also provided 

with a reference sheet with a summary of the design algorithm and the design table to be used as a worksheet 

while stepping through the algorithm. In either case, evaluating the system response meant getting the computer 

simulation result from a lookup table of all possible results. For the fractional factorial design, the estimated 

responses for the resulting linear model were also provided in tabular form. This approach was taken to reduce 

the complexity of this experiment and the time required of each participant.  

4. Results 

4.1. Impact of Mistake Identification during Verbal Debrief 

In our experiment, 14 of 27 participants assigned to the control group (i.e., the aOFAT condition) successfully 

identified the mistake in the simulation without being told of its existence, while only 1 of 27 participants 

assigned to the treatment group (i.e., the fractional factorial condition) did so.  These results are presented in 

Table 6 in the form of a 2×2 contingency table. We regard these data as the outcome of our confirmatory 

experiment with the response variable “debriefing result.”  

There was a large effect of the treatment condition on the subject‟s likelihood of identifying the mistake in 

the model.  The proportion of people recognizing the mistake changed from more than 50% to less than 4%, 

apparently due to the treatment.  The effect is statistically significant by any reasonable standard.  Fisher‟s exact 

test for proportions applied to this contingency table yields a p-value of 6.3 ×10
-5

.   Forming a two tailed test 

using Fisher‟s exact test yields a p-value of 1.3 ×10
-4

.  To summarize, the proportion of people that can 

recognize the mistake in the sampled population was 15 out of 54.   Under the null hypothesis of zero treatment 

effect, the frequency with which those sampled would be assigned to these two categories at random in such 

extreme proportions as were actually observed is about 1/100 of a percent.  



 Table 6. Contingency Table for Debriefing Results 

 

 

 

 Identifies Anomaly?    

  No  Yes   Totals 

Condition 
aOFAT  13  14   27 

Fractional Factorial 2
7-4

 26  1   27 

Totals  39 15 54 

   

 

  

4.2. The Registering of Surprise during Parameter Design 

One measure of participant behavior in reaction to the computer simulation result is whether the participant 

expresses surprise, a well-known manifestation of expectation violation (Stienmeier-Pelster et al. 1995). As this 

is a subjective measure, it was obtained through ratings by independent judges. Two analysts, with certification 

in human subjects experimentation and prior experience in a similar study, were hired for this task. The analysts 

worked alone, viewing the video recordings on a notebook computer using a custom graphical user interface that 

randomized the order in which responses were shown, enforced viewing the entire response before entering a 

rating, and collected each rating on a five-point Likert scale.  

Applying the decision rule for resolving disagreements between raters as described in section 3.5 resulted in 

319 of 385 agreed-upon surprise ratings. In addition to this simple 83% agreement, the margin-corrected value 

of Cohen‟s kappa (Cohen 1960) was calculated to be 0.708. According to Lombard et al. (2002), these values of 

simple percent agreement and Cohen‟s kappa are acceptable levels of inter-judge agreement for an exploratory 

analysis.  

These surprise ratings may be used to study the difference in performance between the two treatment groups, 

by revealing whether the subjects were surprised when they should have been or whether they were surprised 

when they should not have been. The subjects should presumably be surprised, assuming that prediction ability 

is sound, when the anomaly is elicited. We define here the anomaly to have been “elicited” when the new result 

influenced the performance of the device relative to the baseline the subject seemed to be using for comparison.  

In most cases in this experiment, when a subject made a prediction it was based on an anchor-and-adjust 

strategy (Tverksy and Kahnemann 1974), where a previously revealed result was used as the anchor. In this 

particular experiment, the anomaly in the simulation was tied to one factor.   Therefore the “anomaly was 

elicited” when the subject based a prediction on a prior result, and then the parameter was changed so that the 

anomaly affected the relative performance.  In 319 cases, raters agreed on the surprise ratings.  In 14 of these 

319 cases, it could not be determined unambiguously whether the anomaly had been elicited.  All 14 of the 

ambiguous data points were for the fractional factorial condition and the ambiguity arose when the subject gave 

more than one anchor and the multiple anchor cases did not have the same value for the factor “arm material”. 

This left 305 data elements to include in a 2×2×2 contingency table shown in Table 7.   

Inspection of the data in Table 7 suggests that those subjects using the aOFAT approach were consistently 

surprised (22 out of 26 opportunities or 85%) when the anomalous behavior of the model was present in the 

results they were observing and appeared surprised slightly less than half of the opportunities otherwise.  By 

contrast, subjects using the fractional factorial approach were surprised about half the time whether or not the 

anomalous behaviour was present.  

Table 7. Contingency Table for Surprise Rating Results 

 

  Anomaly  Surprised?    

  Elicited?  No  Yes   Totals 

Condition 

aOFAT 
No  79  52   131 

Yes  4  22   26 

Fractional Factorial 2
7-4

 
No 59  43   102 

Yes 24  22   46 

 Totals  166 139 305 

 

 

  



 

The contingency data are further analyzed by computing the risk ratio or relative risk according to the 

equations given by Morris and Gardner (1988).  Relative risk is used frequently in the statistical analysis of 

binary outcomes.  In particular, it is helpful in determining the difference in the propensity of binary outcomes 

under different conditions.  Focussing on only the subset of the contingency table for the aOFAT test condition, 

the risk ratio is 3.9 indicating that a human subject is almost four times as likely to express surprise when 

anomalous data are presented as compared to when correct data are presented to them.  The 95% confidence 

intervals on the risk ratio is wide, 1.6 to 9.6.  This wide confidence interval is due to the relatively small quantity 

of data in one of the cells for the aOFAT test condition (anomaly not elicited, subject not surprised).  However, 

the confidence interval does not include 1.0 suggesting that under the aOFAT test condition, we can reject the 

hypothesis (at α=0.05) that subjects are equally likely to express surprise whether an anomaly is present or not.  

The risk ratio for the fractional factorial test condition is 1.1 and the 95% confidence interval is 0.8 to 1.5.  The 

confidence interval does include 1.0 suggesting that these data are consistent with the hypothesis that subjects in 

the fractional factorial test condition are equally likely to be surprised by correct simulation results as by 

erroneous ones.      

4.3. The Role of Domain Knowledge 

First, we analyse the domain knowledge score alone to determine whether a bias may have been introduced due 

to an inequitable distribution of expertise between the two groups of subjects. The approach taken here is to 

assume a normal probability distribution for each frequency response, formally test the assumption for each, 

then perform the appropriate comparison between the two distributions. Separate D‟Agostino-Pearson K
2
 

omnibus tests (D‟Agostino and Pearson 1973) show that each distribution is not significantly different from a 

normal distribution.  A two-sample t-test for equal means suggests that, although the domain knowledge score 

was slightly higher for the aOFAT test condition, the difference was not statistically significant at α=0.05.  

To evaluate the effect of the domain knowledge score on mistake detection ability, the logit of the response 

variable YDR was regressed onto both the dichotomous variable indicating design method, XDM, and the 

continuous variable indicating normalized domain knowledge score, X’DKS, to find the coefficients in the logistic 

equation  

 logit(YDR)=β0+ βDM XDM+ βDKS X’DKS (1) 

 

The results of the regression analysis are presented in Table 8.  Note that both design method, XDM, and domain 

knowledge score, X’DKS, are statistically significant at a typical threshold value of α = 0.05.  As a measure of the 

explanatory ability of the model, we computed a coefficient of determination as recommended by Menard 

(2000) resulting in a value of RL
2
=0.39.  About half of the ability of subjects to detect mistakes in simulations 

can be explained by the chosen variables and somewhat more than half remains unexplained.   

 

As one would expect, in this experiment, a higher domain knowledge is shown to be an advantage in locating 

the simulation mistake. However, the largest advantage comes from choice of design method.  Of the two 

variables, design method is far more influential in the regression equation than domain knowledge score.  In this 

model, a domain knowledge score of more than two standard deviations above the mean would be needed to 

compensate for the more difficult condition of using a fractional factorial design rather than an aOFAT process.  

 

Table 8. Logistic Regression Coefficients for Subject Debriefing 

 

Explanatory Variable Estimate Standard 

Error 

p-value 95% Confidence 

Interval 

Odds ratio 

Intercept (β0) −0.105 0.438 0.810 (−0.965, 0.754) – 

Design method (XDM) −3.518 1.155 0.002 (−5.782, −1.255) (0.003, 0.285) 

Domain Knowledge Score (X’DKS) 1.100 0.471 0.020 ( 0.176, 2.024) (1.193, 7.564) 

 

 

5. Discussion of the Results 

When interpreting the results in this paper, it is important to acknowledge the limited size and scope of the 

investigation.  This experiment employed a single engineering model, a single type of mistake in that model, 

and a single engineering organization.  We cannot be sure the effects observed here will generalize to other 

tasks, other modeling domains, to other kinds of errors in models, to other groups of people, or to other 



statistical DOE approaches.  It is possible that the catapult simulation is exceptional in some ways and that these 

results would not replicate on other engineering simulations.  It is also important to note that this study cannot 

the optimal experimental design to enable subjects to detect mistakes.  This study can only reliably allow 

comparison of the two designs studied.  Replications by other investigators are essential to assess the robustness 

of the phenomenon reported here.  Despite these reservations, this section explores the effects assuming they 

will replicate and generalize.   

The most salient result of this experiment is the very large effect on likelihood of subjects to report noticing 

the mistake in the engineering model due to the experimental design that the human subjects used.  We argue 

that the underlying reason for the observed difference is the complexity of factor changes in the fractional 

factorial design 2
7-4

 as compared to the aOFAT process.  If an experimenter makes a paired comparison between 

two experimental outcomes, and there is just one factor change, then it is relatively easy for the subject to apply 

physical and engineering knowledge to assess the expected direction of the difference.  If instead there are four 

differences in the experimental conditions, it will surely be much harder to form a firm opinion of which of the 

results should have a larger response.  Such a prediction requires, as a minimum, estimating all four effects and 

then computing their sum.  When all four of the factors do not influence the results in all the same direction, 

which occurs with probability 7/8, accurately predicting the direction of the change requires not only correct 

estimates of the signs of the factor effects, but also accurate assessments of relative magnitude of the effects.   

Forming an expectation of the sign of the difference would also, in general, require estimation of some multi-

factor interactions. This is clearly much harder and also subject to greater uncertainty than simply reasoning 

qualitatively about the sign of a single factor‟s conditional effect.   

The explanation of the data based on complexity of factor changes is reasonable only given the assumption 

that subjects discover the mistake in the model by making comparisons between two individual experimental 

observations.  But there are other ways to discover the mistake in the model.  In the fractional factorial design 

2
7-4

 condition, subjects were presented with estimates of the main effects of each factor based on the set of eight 

observations of the catapult experiment after they had all been collected.  Why didn‟t subjects form an 

expectation for the main effect of the factor “arm material” and then challenge the result when the calculations 

from the data violated their prediction?  There are three reasons we can hypothesize here: 

1) The subjects in the fractional factorial condition formed an expectation for the main effects of the 

factors (including “arm material”) and experienced an emotional reaction of surprise when the main 

effect computed was different in sign from their expectation, but the subjects were reluctant to report 

this emotional response during the debrief.  A reasonable hypothesis is that the fractional factorial 

design lends an authority to the results that are a barrier to a single engineer challenging the validity of 

the simulation.  After all, the experimental design is intended to improve the reliability of the results and 

make them robust to error and avoid bias in the conclusions.  Perhaps engineers are confused about what 

kinds of reliability the factorial design can provide. 

2) The subjects in the fractional factorial condition formed an expectation for the main effects of the 

factors (including “arm material”) and forgot about their expectation before the main effects were 

presented to them.  As Daniel (1973) has noted, the results from one factor at a time experiments have 

the benefits of immediacy. Experimenters can see and react to data as they arise.  By contrast, the full 

meaning of factorial designs fundamentally cannot be assessed until the entire set of data are available, 

which generally implies a delay in the violation of expectations.  A reasonable hypothesis is that this 

time delay and the effect of the delay on the subject‟s memory is the primary cause of the differences 

observed in this investigation.   

3)  The subjects in the fractional factorial condition find the effort involved in following the experimental 

design to be greater and therefore lack the additional time and energy to perceive the mistake in the 

simulation.  If this is the reason for the reduced frequency of finding the mistake in this experiment, then 

the result would not generalize to experiments conducted over longer periods of time.  In this 

experiment, the data were collected and analysed over the course of a few hours.  In realistic uses of 

experimental design in industry, the data often emerge and are analysed over several days and weeks.  

In addition to the main result regarding the difference between fractional factorial designs and OFAT 

procedures, some other features of the data are worth discussion.   In studying the data from Table 7, it is 

interesting to us that experienced engineers express a reaction of surprise frequently when presented with 

predictions from a simulation.  Almost half of the reactions we analysed were rated as surprise.  In viewing the 

video tapes, we can see instances in which engineers express surprise even when the simulation results confirm 

their prediction quite closely.  Apparently, it is possible to be surprised that you are right about a prediction.  

This makes sense if you make a prediction tentatively and do not feel confident about the outcome, especially if 

your prediction turns out to be very accurate.  The key point is that reactions of surprise are, as implemented 



here, a fairly blunt instrument for research in engineering design.  It would be helpful to sort reactions of 

surprise into finer categories.  Since these different categories of surprise cannot be differentiated based on our 

videotapes using any techniques known to the authors, the analysis of surprise in this study can only serve as a 

rough indicator of the mechanisms by which engineers find mistakes in simulations. 

 

6. Recommendations for Engineering Practice 

If the results of this study are confirmed and can generalize to a broad range of engineering scenarios, there will 

be significant implications for engineering practice.  Engineers frequently view the processes of verification and 

validation of engineering models and the use of those models for design as separate.  But engineering models 

are never fully validated for the full range of uses in engineering design (Hazelrigg, 1999).  Mistakes in 

engineering models remain even when engineers feel confident enough to begin using them to make decisions.  

The results in this paper clearly indicate that more steps should be taken to ensure that mistakes in simulations 

will continue to be detected and reported during the subsequent steps of the design process.  

Two different approaches to exercising engineering models were considered in this study and these two are 

traditionally used for different purposes.  The fractional factorial design considered here is most often used for 

estimation of main effects, is frequently used as an early step in response surface methodology, and is also used 

within Taguchi methods as a means for reducing sensitivity of the engineering response to the effects of noise 

factors.  The adaptive One Factor at a Time approach was proposed for use in improvement of an engineering 

response and was subsequently adapted as an alternative to Taguchi methods for robustness improvement.  The 

relevant criterion in this study is to detect mistakes in an engineering model.  The aOFAT approach does better 

than the fractional factorial design for this purpose, but neither was originally developed for this goal.  A more 

general question is what sorts of designs are good for their intended purposes and also able to strongly support 

the engineers‟ ability to critically evaluate the results.  The answer suggested by this manuscript is that complex 

factor changes are strongly detrimental to the process of mistake detection.    

One remedy we argue for strongly is that the complexity of factor changes should be limited during the design 

process, at least for some samples of paired comparisons.  If an engineer cannot anticipate any of the relative 

outcomes of a model in a set of runs, then we strongly encourage the engineers to make at least a few 

comparisons simple enough to understand fully.  The engineer should choose a baseline case that is well 

understood and then find a comparator for which the factor changes will be simplified until the engineer can 

form a strong expectation about the relative change.  Such simple comparisons for use in spot checking are 

readily available within full factorial designs and central composite designs.  In Design of Computer 

Experiments, such as Latin Hypercube Sampling, there are no simple factor changes among any pairs of results.  

However, some paired comparisons can be found that approximate a change in a single factor and these might 

be used to spot check for mistakes in the simulations.  Alternately, additional samples might be created that 

enforce simplicity in the factor changes so that spot checks can be made.  In any case, the need for diligence in 

discovery of mistakes in engineering models is strongly emphasized by the results of this study.  It is hoped that 

the data in this paper serve as a means to raise awareness of the frequency and severity of mistakes in 

simulations and the challenges of perceiving those mistakes.  The increased awareness of these issues, by itself, 

would be a valuable outcome of this research.    

We wish to emphasize in discussing the implications of the data presented here that the concerns about mistake 

detection in engineering may apply as strongly to use of physical models as they do to computer simulations.  

Mistakes can and frequently do occur when we run a physical experiment to make a prediction.  The physical 

system used in an experiment is rarely exactly the same as the referent about which the predictions are being 

made.  Further, in the conduct of an experiment by humans, mistakes can be made setting the values of 

experimental factors, labelling of materials and components, recording observations, and so on.  It should be 

clear for example that in the specific case of the catapult data presented to the human subjects in this 

experiment, we could have presented data from a physical experiment in which the identity of the two physical 

items were confused (the aluminium and the magnesium catapult arms).  The outcomes would be very similar to 

those when we instead entered the density data in the wrong fields of a computer code.  We therefore emphasize 

that the need for simplification of factor changes may apply as much to design of physical experiments as to 

computer experiments. 



7. Future Work 

It would be useful to undertake a study into the relevance of these experimental results for industry practice.  

Note that the rate of engineers noticing and reporting on mistakes in engineering models was low in both 

experimental conditions (fractional factorial and aOFAT).  The rate of mistake detection may not be anywhere 

near this low in industry.  When people work in teams, rather than individually as they did here, the mechanisms 

for mistake detection are likely to be more effective.  In addition to cross checking of individual mistake 

detection, teams may have substantially different mechanisms at play than those used by individuals working 

alone.  The effects of experimental design on mistake detection might be quite different when we consider team 

functioning and the specialized techniques different organizations use for managing engineering models.   

Assuming the results presented here are viewed as relevant to industry practice, the most immediate sort of 

follow up to this investigation might involve simple variants of the experiment.  The types of mistakes entered 

into the simulation might be changed.  In this study, the mistake in the model would reveal itself whenever the 

single factor involved was changed.  Some mistakes might reveal themselves only when combinations of factors 

change or when certain regions of the design space are entered whose boundaries are described by complex 

multi-dimensional functions.  It will be useful to know which types of mistakes are most common in industrially 

relevant engineering models and which types of experimental designs are most useful in detecting them. A 

useful study might be undertaken to determine how frequently actual mistakes in engineering models are 

activated by a single factor.  It seems likely that this is an important class of mistakes including at least: 1) data 

entry errors for material properties; 2) un-modeled effects influencing only one design component that is being 

added and removed from a model; and 3) incorrectly specified boundary conditions or discretization schemes 

that influence primarily a single design factor.      

Some follow up experiments might be designed primarily to explore the mechanisms by which fractional 

factorial designs apparently lead to blindness to mistakes in engineering models. The subjects in the fractional 

factorial condition may prefer to use paired comparisons between two individual experimental outcomes as a 

heuristic for forming expectations.  However, since this heuristic is difficult to implement in the fractional 

factorial design, the subjects might be able to learn a different approach.  For example, they might learn to form 

expectations for main effects instead.  Perhaps the difficulty with forming an expectation for a main effect will 

persist even if training or suggestions were made regarding critical assessment of main effects.  A main effect of 

a factor is conceptually very different from a conditional effect of a single factor.  By its very definition, a main 

effect of a factor is a function of behavior in a model across a multi-dimensional domain of factor changes.  

Even if an experimenter is able to form an expectation, the certainty about that prediction would have to include 

an assessment of the reliability of that expectation in the face of all the possible interactions that might 

countermand that prediction.  Therefore we suggest investigations into the conceptual differences between main 

effects and conditional effects.  For example, experiments might focus on the ability of engineers to predict 

main effects and their confidence in those predictions.  

An important issue in this sort of experiment is the nature and format of the data as presented to the subjects.  

Gigerenzer and Edwards (2003) and Tufte (2007) have demonstrated convincingly that visualization of data can 

turn poor performance in data analysis into almost effortless insight.  The data in this experiment were revealed 

to the engineers in the form of a single scalar (the distance a ball travelled when launched).  In most cases, an 

engineering model would reveal much more rich information.  In the catapult experiment, a model might 

provide data on the whole flight path of the ball or animations of the entire launch event sequence.  Availability 

of data visualization tools might significantly affect the rates of mistake detection and the effects of 

experimental designs on those rates.  Investigations of mistake detection and experimental design ought to be 

undertaken that include various forms of data presentation. 

The results presented here show that adaptive OFAT experiments have some advantages over fractional 

factorial designs in their effects on mistake detection in computer simulations.  Only two options were 

compared.  A remaining open question, therefore, is what approach optimally supports engineers in detecting 

mistakes.  More research should be conducted to consider how different experimentation methods influence the 

ability to reveal and recognize mistakes.  One promising option for revealing mistakes are factor-covering 

designs which ensure that certain combinations of factor levels will be exercised (Dalal and Mallows, 1998).  

Factor-covering designs are considered useful in software testing since the emergence of a failure may become 

obvious once the failure mode is excited (such as when software crashes).  But mistakes in engineering models 

are not always obvious once exercised, so covering properties alone may be insufficient for mistake detection.  

The results of this paper suggest that the analysis needed to recognize the mistake must also be considered.  In 

any case, the opportunity for future research probably lies in finding techniques that balance the considerations 

of coverage of the testing space and support of the human‟s ability to recognize mistakes as they are elicited.   
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Appendix A. Simulation Model for Catapult Device 

 

 

 



 



 
 



Appendix B. Simulation Model Reference Sheet  

This sheet was provided to the human subjects as an explanation of the parameters in the model and their 

physical meaning. 

 

 


