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1 Quick Summary

We consider rationality and rationalizability for normal-form games of incomplete informa-
tion in which the players have possibilistic beliefs about their opponents. In this setting,
we prove that the strategies compatible with the players being level-k rational coincide with
the strategies surviving a natural k-step iterated elimination procedure. We view the latter
strategies as the (level-k) rationalizable ones in our possibilistic setting.

Rationalizability was defined by Pearce [23] and Bernheim [12] for complete-information
settings. Our iterated elimination procedure similar to that proposed by Dekel, Fudenberg,
and Morris [14] in a Bayesian setting. For other iterated elimination procedures and corre-
sponding notions of rationalizability in Bayesian settings, see Brandenburger and Dekel [9],
Tan and Werlang [24], Battigalli and Siniscalchi [8], Ely and Peski [15], Weinstein and Yildiz
[25], and Halpern and Pass [19].

2 The Epistemic Framework

2.1 Possibilistic Structures and Rationality Models

Given an n-player normal-form game Γ, let Si be the set of pure actions of player i in Γ and
S = S1 × · · · × Sn. To model the players’ uncertainty about each other’s utility and action
in Γ, we consider a possibilistic version of Harsanyi’s type structure [20].

Definition 1. A possibilistic structure G for Γ is a tuple of profiles, G = (T, u,B, s), where
for each player i,

• Ti is a finite set of i’s types;
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• ui : S × T → R is i’s utility function;

• Bi : Ti → 2T−i is i’s belief correspondence; and

• si : Ti → Si is i’s strategy function.

A possibilistic structure does not impose any consistency requirements among the beliefs
of different players. Indeed, a player may have totally wrong beliefs about another player’s
beliefs. For instance, in a single-good auction, player i may believe that player j’s valuation
for the good is greater than 100, whereas player j may believe that player i believes that j’s
valuation is less than 10. Moreover, each utility function ui has domain S × T rather than
S × Ti. This enables us to deal with interdependent-type settings as well.

Below we define the players’ rationality, higher-level rationality and common belief of
rationality, in the same way as Aumann [5].

Definition 2. Let G = (T, u,B, s) be a possibilistic structure for Γ and t be a type profile in
T . Player i is rational at ti if for every action s′i of i, there exists t′−i ∈ Bi(ti) such that

ui((si(ti), s−i(t
′
−i)), (ti, t

′
−i)) ≥ ui((s

′
i, s−i(t

′
−i)), (ti, t

′
−i)).

Player i is rational at t if he is rational at ti.

Based on this definition we define the following events.

• Let RATi = {t ∈ T | i is rational at t} be the event that player i is rational.

• For any event E ⊆ T , let Bi(E) = {t ∈ T | (ti, t
′
−i) ∈ E ∀t′−i ∈ Bi(ti)} be the event that

player i believes that E occurs.

• Let RAT 0
i = T be the event that player i is level-0 rational (namely, irrational), and for

any k ≥ 1, let RAT k
i = RATi ∩ Bi(∩j 6=iRAT

k−1
j ) be the event that player i is level-k

rational.
Clearly, RAT 1

i = RATi ∩ Bi(∩j 6=iRAT
0
j ) = RATi ∩ Bi(T ) = RATi ∩ T = RATi. That

is, being level-1 rational is equivalent to being rational.

• For any k ≥ 0 let RAT k = ∩iRAT
k
i be the event that every player is level-k rational,

and let RAT = RAT 1 be the event that every player is rational.

• For any event E ⊆ T , let EB0(E) = E, EB1(E) = EB(E) = ∩iBi(E) be the event that
every player believes that E occurs, and EBk(E) = EB(EBk−1(E)) for any k ≥ 2.

• Let CB(RAT ) = ∩k≥0EBk(RAT ) be the event that the players have comment belief of
rationality.

Definition 3. For any t ∈ T and k ≥ 0, player i is level-k rational at t if t ∈ RAT k
i . For

any ti ∈ Ti, player i is level-k rational at ti if there exists t−i ∈ T−i such that i is level-k
rational at (ti, t−i). For any t ∈ T , the players have common belief of rationality at t if
t ∈ CB(RAT ).

Notice that whether player i is level-k rational or not at t solely depends on ti and player
i’s belief hierarchy at ti, and does not depend on t−i at all. Thus it is immediately clear that

Player i is level-k rational at ti if and only if
for all t−i ∈ T−i player i is level-k rational at (ti, t−i).
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2.2 Basic Properties of Our Model

The following six properties (proved in Section 4) help understanding our model.

1. For any player i, RATi = Bi(RATi).

That is, a rational player believes that he is rational.

2. For all players i and all E ⊆ T , Bi(E) = Bi(Bi(E)).

That is, if a player believes (the occurrence of) event E, then he believes that he
believes E.

3. For any player i and any k ≥ 0, RAT k
i = Bi(RAT

k
i ).

That is, a level-k rational player believes that he is level-k rational.

4. For any player i and any k ≥ 0, RAT k+1
i ⊆ RAT k

i .

The following two properties provide alternative definitions for level-k rationality and com-
mon belief of rationality.

5. For any player i and any k ≥ 1, RAT k
i = RATi ∩Bi(∩jRAT

k−1
j ).

That is, for k ≥ 1, being level-k rational is equivalent to being rational and believing
that every player is level-(k − 1) rational.

6. CB(RAT ) = ∩k≥0 ∩i∈[n] RAT
k
i .

2.3 Type Structures and Iterated Elimination of Strictly Domi-
nated Actions

In many scenarios the players’ beliefs about each other’s (payoff) types are given exogenously,
and they reason about each other’s actions based on their beliefs about types. To model
this kind of information structure and reasoning procedure we define type structures: a
type structure T for Γ is a tuple of profiles, T = (T, u,B), where T, u,B are as defined in
a possibilistic structure for Γ. Thus a type structure can be considered as a possibilistic
structure with the strategy function removed.

Definition 4. A possibilistic structure G = (T, u,B, s) for Γ is consistent with a type struc-
ture T ′ = (T ′, u′, B′) for Γ if there exists a profile of functions ψ with ψi : Ti → T ′i ∀i such
that,

• ∀i and ∀t ∈ T , ui(·; t) = u′i(·;ψ(t)); and

• ∀i and ∀ti ∈ Ti, ψ−i(Bi(ti)) = B′i(ψi(ti)).

We refer to such a ψ as a consistency mapping.

The notion of consistency captures that, introducing actions into the picture does not
cause the players to change their beliefs about types, but causes them to form additional
beliefs about actions.

Illustratively, both possibilistic structures and type structures can be represented by
directed graphs, with nodes corresponding to the players’ types and edges corresponding
to their beliefs. The only difference is that in a possibilistic structure each node is also
associated with an action.
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Example Consider a revised version of the BoS game, where player 1 has a unique type
t1 and player 2 has two types t2 and t′2 —whether he wants to meet or avoid player 1. The
players’ utilities are specified in Figure 1.

B S
B 2,1 0,0
S 0,0 1,2

(a) Utilities under type profile (t1, t2)

B S
B 2,0 0,2
S 0,1 1,0

(b) Utilities under type profile (t1, t′2)

Figure 1: A revised BoS game

Figure 2a provides an elementary type structure T ′ for the revised BoS game, where
player 1 believes that player 2’s type can be either t2 or t′2 and player 2 believes that player
1’s (unique) type is t1. Figure 2b provides an elementary possibilistic structure G consistent
with T ′. Here player 1’s two types t11 and t12 induce the same utility function but different
actions for him, and under both types player 1 believes that player 2 will use action B under
type t2 and S under t′2. The type structure T obtained from G by removing the actions is then
illustrated in Figure 2c. It is immediate to see that the consistency mapping ψ = (ψ1, ψ2) is
such that ψ1 maps both t11 and t12 to t1, and ψ2 maps t2 to t2 and t′2 to t′2. Indeed, under
such mapping the utilities are preserved and “the belief correspondence and ψ commute.”

t1
//

""

t2oo

t′2

bb

(a) Type structure T ′

(t11, B) //

''

(t2, B)oo

(t12, S) //

77

(t′2, S)oo

(b) Possibilistic structure G

t11
//

##

t2oo

t12
//

;;

t′2oo

(c) Type structure T

Figure 2: A type structure and a consistent possibilistic structure

We now define rationality for type structures.

Definition 5. Given a type structure T = (T, u,B) for Γ, for any player i, type ti ∈ Ti,
action si and integer k ≥ 0, si is consistent with level-k rationality for ti if, there exists a
possibilistic structure G = (T ′, u′, B′, s) and a type t′i ∈ T ′i , such that G is consistent with T
under a consistency mapping ψ, ψi(t

′
i) = ti, si(t

′
i) = si and i is level-k rational at t′i.

Action si is consistent with common belief of rationality for ti if, there exists a possibilistic
structure G = (T ′, u′, B′, s) and a type profile t′ ∈ T ′, such that G is consistent with T under
a consistency mapping ψ, ψi(t

′
i) = ti, si(t

′
i) = si and the players have common belief of

rationality at t′.

Notice that our concept of consistency with level-k rationality or common belief of ra-
tionality is called rationalizability in other studies, see [8]. Next we define an iterated
elimination procedure for refining the players’ actions, and use it to characterize actions that
are consistent with level-k rationality or common belief of rationality.
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Definition 6. Let T = (T, u,B) be a type structure for Γ. For each player i, type ti ∈ Ti

and integer k ≥ 0, we define NSDk
i (ti), the set of actions surviving k-round elimination of

strictly dominated actions for ti, inductively as follows:

• NSD0
i (ti) = Si.

• For each k ≥ 1 and each si ∈ NSDk−1
i (ti), si ∈ NSDk

i (ti) if there does not exist an
alternative action s′i ∈ NSDk−1

i (ti) such that ∀t−i ∈ Bi(ti) and ∀s−i ∈ NSDk−1
−i (t−i),

ui((s
′
i, s−i), (ti, t−i)) > ui((si, s−i), (ti, t−i)),

where NSDk−1
−i (t−i) = ×j 6=iNSD

k−1
j (tj).

In the definition for NSDk
i (ti), if the required action s′i does exist, we say that si is

strictly dominated (by s′i) for ti over level-(k − 1) surviving actions. It is easy to see that
defining NSDk

i (ti) by eliminating strictly dominated actions from NSDk−1
i (ti) is the same

as defining it by eliminating strictly dominated actions from Si:

• For each k ≥ 1 and each si ∈ Si, si ∈ NSDk
i (ti) if and only if there does not exist an

alternative action s′i ∈ Si such that ∀t−i ∈ Bi(ti) and ∀s−i ∈ NSDk−1
−i (t−i),

ui((s
′
i, s−i), (ti, t−i)) > ui((si, s−i), (ti, t−i)).

Given player i’s knowledge about T , he can iteratively compute NSDk
i (ti) for any ti and

k. Since the game Γ is finite, the elimination procedure ends at some K when no action is
strictly dominated over level-(K− 1) surviving actions. Letting NSDi(ti) = ∩k≥0NSD

k
i (ti),

we have NSDi(ti) = NSDK
i (ti) 6= ∅. We say that an action si survives iterated elimination

of strictly dominated actions for ti if si ∈ NSDi(ti). Following [8] we refer to NSDk
i (ti) as

the set of level-k rationalizable actions for ti, and to NSDi(ti) as the set of rationalizable
actions for ti.

An immediate consequence of Definition 6 is the following lemma, stated without proof.

Lemma 1. Action si ∈ Si survives k-round elimination of strictly dominated actions for ti
if and only if there exists B′i ⊆ Bi(ti) and Z−i(t−i) ⊆ NSDk−1

−i (t−i) for each t−i ∈ B′i, such
that for each s′i ∈ Si there exists t−i ∈ B′i and s−i ∈ Z−i(t−i) with

ui((si, s−i), (ti, t−i)) ≥ ui((s
′
i, s−i), (ti, t−i)).

Intuitively, si survives k-round elimination if, given i’s belief that other players’ types are
among (some subset of) Bi(ti) and they use (some subset of) actions that survive (k − 1)-
round elimination, no other action according to i’s belief can lead to higher utility than what
he gets by using si. Lemma 1 is a possibilistic analog of Pearce’s lemma [23] which, in
probabilistic models, relates best responses and rationalizability to strict dominance. Note
that whereas in the possibilistic case (which is what we consider) the proof is trivial, Pearce’s
original lemma for the probabilistic case requires additional work.

3 Characterizing Level-k Rationality and Common Be-

lief of Rationality

Theorem 1. Given a type structure T = (T, u,B) for Γ, for any player i, type ti, action si

and integer k ≥ 0, si is consistent with level-k rationality for ti if and only if si ∈ NSDk
i (ti).
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Proof. We first prove the “only if” direction. Assuming si is consistent with level-k rationality
for ti, we prove si ∈ NSDk

i (ti) by induction on k. For k = 0, the property trivially holds
since NSD0

i (ti) = Si by definition.
For k > 0, by Definition 5 there exists a possibilistic structure G = (T ′, u′, B′, s) and a

type t′i ∈ T ′i , such that G is consistent with T under a consistency mapping ψ, ψi(t
′
i) = ti,

si(t
′
i) = si and i is level-k rational at t′i.
By Definition 3 and Claim 2.1, player i being level-k rational at t′i implies: (a) i is rational

at t′i; and (b) for each type subprofile t′−i ∈ B′i(t′i) we have (t′i, t
′
−i) ∈ ∩j 6=iRAT

k−1
j . According

to (a) and Definition 2, for each action s′i ∈ Si there exists t′−i ∈ B′i(t′i) such that

u′i((si, s−i(t
′
−i)), (t

′
i, t
′
−i)) ≥ u′i((s

′
i, s−i(t

′
−i)), (t

′
i, t
′
−i)). (1)

According to (b), for each t′−i ∈ B′i(t′i) and each j 6= i, player j is level-(k− 1) rational at t′j.
By Definition 5, sj(t

′
j) is consistent with level-(k− 1) rationality for ψj(t

′
j) and thus, by the

induction hypothesis,
sj(t

′
j) ∈ NSDk−1

j (ψj(t
′
j)). (2)

For each t−i ∈ Bi(ti), let Z−i(t−i) = s−i(ψ
−1
−i (t−i)). Because ψ−i(B

′
i(t
′
i)) = Bi(ti),

Z−i(t−i) 6= ∅. By Equation 2,

Z−i(t−i) ⊆ NSDk−1
−i (t−i).

For each s′i ∈ Si, let t′−i ∈ B′i(t′i) be such that Equation 1 holds, t−i = ψ−i(t
′
−i) and s−i =

s−i(t
′
−i). Accordingly, s−i ∈ Z−i(t−i). Since ui(·; (ti, t−i)) = u′i(·; (t′i, t

′
−i)), Equation 1 implies

ui((si, s−i), (ti, t−i)) ≥ ui((s
′
i, s−i), (ti, t−i)).

By Lemma 1 we have si ∈ NSDk
i (ti), concluding the proof of the “only if” direction.

Now we prove the “if” direction. By definition, proving this direction is equivalent to
proving that, if si ∈ NSDk

i (ti) then there exists a possibilistic structure G = (T ′, u′, B′, s)
for Γ and a type t′i ∈ T ′i such that, G is consistent with T under a consistency mapping ψ,
ψi(t

′
i) = ti, si(t

′
i) = si and i is level-k rational at t′i. Notice that G, t′i and ψ may depend on

k, i, ti and si.
In fact, we shall prove a stronger statement. Namely, for each k, there exists a universal

possibilistic structure G = (T ′, u′, B′, s) for Γ, consistent with T under a consistency mapping
ψ, such that for every player i, type ti ∈ Ti, action si and non-negative integer k′ ≤ k,

if si ∈ NSDk′
i (ti) then there exists a type t′i ∈ T ′i such that

ψi(t
′
i) = ti, si(t

′
i) = si and i is level-k′ rational at t′i, (3)

which implies that si is consistent with level-k′ rationality for t′i.
We define G as follows: for each player i,

• T ′i =
{

(ti, k
′, si) : ti ∈ Ti, k

′ ∈ {0, . . . , k}, si ∈ NSDk′
i (ti)

}
;

• for each type profile t′ ∈ T ′, letting t ∈ T be the type profile obtained by projecting
each t′j to its first component, u′i(·; t′) = ui(·; t);
• for each type t′i = (ti, k

′, si), si(t
′
i) = si; and
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• for each type t′i = (ti, k
′, si) and type profile t′−i ∈ T ′−i, t

′
−i ∈ B′i(t′i) if and only if there

exists t−i ∈ Bi(ti) and s−i ∈ NSDmax{k′−1,0}
−i (t−i) such that t′j = (tj,max{k′− 1, 0}, sj)

for all j 6= i.

It is easy to check that G is consistent with T under the consistency mapping ψ where
ψi(ti, k

′, si) = ti for each player i and type (ti, k
′, si) ∈ T ′i .

We now prove by induction on k′ that for any i, ti ∈ Ti and si ∈ NSDk′
i (ti), player i is

level-k′ rational at t′i = (ti, k
′, si). For k′ = 0, since RAT 0

i = T by definition, it trivially
holds that player i is level-0 rational at t′i.

For k′ > 0, for any t′−i = (tj, k
′ − 1, sj)j 6=i ∈ B′i(t′i), by construction we have t−i ∈ Bi(ti)

and s−i ∈ NSDk′−1
−i (t−i). By the hypothesis induction, for any player j 6= i, j is level-(k′−1)

rational at t′j and thus at (t′i, t
′
−i). Therefore

(t′i, t
′
−i) ∈ ∩j 6=iRAT

k′−1
j .

Since this is true for any t′−i ∈ B′i(t′i), we have

(t′i, t
′
−i) ∈ Bi(∩j 6=iRAT

k′−1
j )

for any t′−i ∈ B′i(t′i), as again whether player i believes some event or not only depends on t′i
and not t′−i.

Since si ∈ NSDk′
i (ti), by definition for any s′i ∈ NSDk′−1

i (ti), there exists t−i ∈ Bi(ti)
and s−i ∈ NSDk′−1

−i (t−i) such that ui((si, s−i), (ti, t−i)) ≥ ui((s
′
i, s−i), (ti, t−i)). Since any

strategy s′i that does not survive (k′ − 1)-round elimination for ti is strictly dominated by
some action in NSDk′−1

i (ti) for ti over level-(k′ − 1) surviving actions, we further have that
for any s′i ∈ Si, there exists t−i ∈ Bi(ti) and s−i ∈ NSDk′−1

−i (t−i) such that

ui((si, s−i), (ti, t−i)) ≥ ui((s
′
i, s−i), (ti, t−i)).

Letting t′−i = (tj, k
′ − 1, sj)j 6=i, we have t′−i ∈ B′i(t

′
i), ψ(t′i, t

′
−i) = (ti, t−i), si(t

′
i) = si and

s−i(t
′
−i) = s−i. Thus

u′i((si(t
′
i), s−i(t

′
−i)), (t

′
i, t
′
−i)) ≥ u′i((s

′
i, s−i(t

′
−i)), (t

′
i, t
′
−i)).

Accordingly, player i is rational at t′i and (t′i, t
′
−i) ∈ RATi for any t′−i ∈ B′i(t′i). By definition,

(t′i, t
′
−i) ∈ RATi ∩ Bi(∩j 6=iRAT

k′−1
j ) for any t′−i ∈ B′i(t

′
i), and thus i is level-k′ rational at

t′i. This concludes the induction step and the proof of Statement (3). Therefore the “if”
direction holds, concluding the proof of Theorem 1.

Similarly, we characterize common belief of rationality in our model by the following
theorem, the proof of which is omitted.

Theorem 2. Given a type structure T = (T, u,B) for Γ, for any player i, type ti and action
si, si is consistent with common belief of rationality for ti if and only if si ∈ NSDi(ti).

7



4 Proofs of the Basic Properties of Our Model

Property 1. For any player i, RATi = Bi(RATi).

Proof. By definition, for any t ∈ RATi, player i is rational at ti. Thus for any t′−i ∈ Bi(ti), i
is rational at (ti, t

′
−i), implying t ∈ Bi(RATi).

On the other hand, for any t ∈ Bi(RATi), for any t′−i ∈ Bi(ti), i is rational at (ti, t
′
−i),

which implies that i is rational at ti. Thus i is rational at t, namely, t ∈ RATi.

Property 2. For any player i and any E ⊆ T , Bi(E) = Bi(Bi(E)).

Proof. By definition, for any t ∈ Bi(E), for any t′−i ∈ Bi(ti), we have (ti, t
′
−i) ∈ E. Thus

for any t′′−i ∈ Bi(ti), (ti, t
′′
−i) is such that for any t′−i ∈ Bi(ti), (ti, t

′
−i) ∈ E. Accordingly,

(ti, t
′′
−i) ∈ Bi(E), which implies (ti, t−i) ∈ Bi(Bi(E)).

On the other hand, for any t ∈ Bi(Bi(E)), for any t′−i ∈ Bi(ti), we have (ti, t
′
−i) ∈ Bi(E),

which implies that for any t′′−i ∈ Bi(ti), (ti, t
′′
−i) ∈ E. Accordingly, (ti, t−i) ∈ Bi(E).

Property 3. For any player i and any k ≥ 0, RAT k
i = Bi(RAT

k
i ).

Proof. For k = 0, RAT 0
i = T and Bi(RAT

0
i ) = Bi(T ) = T , as desired. For k = 1, since

RAT 1
i = RATi, the desired equality follows from Claim 1.

For any k ≥ 2,

RAT k
i = RATi ∩Bi(∩j 6=iRAT

k−1
j ) = Bi(RATi) ∩Bi(Bi(∩j 6=iRAT

k−1
j ))

= Bi(RATi ∩Bi(∩j 6=iRAT
k−1
j )) = Bi(RAT

k
i )

as desired, where the first equality is by definition and the second is by Claims 1 and 2.

Property 4. For any player i and any k ≥ 0, RAT k+1
i ⊆ RAT k

i .

Proof. By induction on k. For k = 0, RAT 1
i ⊆ T = RAT 0

i . For k > 0, by the induction
hypothesis we have RAT k

j ⊆ RAT k−1
j for each j, thus Bi(∩j 6=iRAT

k
j ) ⊆ Bi(∩j 6=iRAT

k−1
j ).

Accordingly, RAT k+1
i = RATi ∩ Bi(∩j 6=iRAT

k
j ) ⊆ RATi ∩ Bi(∩j 6=iRAT

k−1
j ) = RAT k

i , as
desired.

Property 2.2. For any player i and any k ≥ 1, RAT k
i = RATi ∩Bi(∩jRAT

k−1
j ).

Proof. For k = 1 we have RAT 1
i = RATi = RATi∩T = RATi∩Bi(T ) = RATi∩Bi(∩jRAT

0
j ),

as desired. For k ≥ 2, by the claims above we have

RAT k
i = RATi ∩Bi(∩j 6=iRAT

k−1
j ) = RATi ∩Bi(∩j 6=i(RAT

k−1
j ∩RAT k−2

j ))

= RATi ∩Bi((∩j 6=iRAT
k−2
j ) ∩ (∩j 6=iRAT

k−1
j ))

= RATi ∩
(
RATi ∩Bi(∩j 6=iRAT

k−2
j )

) ∩Bi(∩j 6=iRAT
k−1
j )

= RATi ∩RAT k−1
i ∩Bi(∩j 6=iRAT

k−1
j ) = RATi ∩Bi(RAT

k−1
i ) ∩Bi(∩j 6=iRAT

k−1
j )

= RATi ∩Bi(RAT
k−1
i ∩ (∩j 6=iRAT

k−1
j )) = RATi ∩Bi(∩jRAT

k−1
j ),

where the second equality is by Claim 4 and the sixth is by Claim 3.

Property 2.2. CB(RAT ) = ∩k≥0 ∩i∈[n] RAT
k
i .
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Proof. We show by induction that for any k ≥ 1, ∩iRAT
k
i = EBk−1(RAT ). For k = 1,

∩iRAT
1
i = RAT 1 = RAT = EB0(RAT ) as desired. For k > 1,

∩iRAT
k
i = ∩i

(
RATi ∩Bi(∩jRAT

k−1
j )

)
= ∩i

(
Bi(RATi) ∩Bi(∩jRAT

k−1
j )

)
= ∩i

(
Bi((RAT

1
i ∩RAT k−1

i ) ∩ (∩j 6=iRAT
k−1
j ))

)
= ∩iBi(RAT

k−1
i ∩ (∩j 6=iRAT

k−1
j )) = ∩iBi(∩jRAT

k−1
j )

= EB(∩jRAT
k−1
j ) = EB(EBk−2(RAT )) = EBk−1(RAT ),

where the first equality is by Claim 2.2, the second by Claim 1, the fourth by Claim 4, and
the seventh by the induction hypothesis. Since ∩iRAT

0
i = T , we have

∩k≥0 ∩i RAT
k
i = ∩k≥1 ∩i RAT

k
i = ∩k≥0EBk(RAT ) = CB(RAT ),

as desired.
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