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Abstract
Angiogenesis requires coordinated dynamic regulation of multiple phenotypic behaviors of
endothelial cells in response to environmental cues. Multi-scale computational models of
angiogenesis can be useful for analyzing effects of cell behaviors on the tissue level outcome, but
these models require more intensive experimental studies dedicated to determining the required
quantitative “rules” for cell-level phenotypic responses across a landscape of pro- and anti-
angiogenic stimuli in order to ascertain how changes in these single cell responses lead to
emerging multi-cellular behavior such as sprout formation. Here we employ single-cell
microscopy to ascertain phenotypic behaviors of more than 800 human microvascular endothelial
cells under various combinational angiogenic (VEGF) and angiostatic (PF4) cytokine treatments,
analyzing their dynamic behavioral transitions among sessile, migratory, proliferative, and
apoptotic states. We find that an endothelial cell population clusters into an identifiable set of a
few distinct phenotypic state transition patterns (clusters) that is consistent across all cytokine
conditions. Varying the cytokine conditions, such as VEGF and PF4 combinations here, modulates
the proportion of the population following a particular pattern (referred to as phenotypic cluster
weights) without altering the transition dynamics within the patterns. We then map the phenotypic
cluster weights to quantified population level sprout densities using a multi-variate regression
approach, and identify linear combinations of the phenotypic cluster weights that associate with
greater or lesser sprout density across the various treatment conditions. VEGF-dominant cytokine
combinations yielding high sprout densities are characterized by high proliferative and low
apoptotic cluster weights, whereas PF4-dominant conditions yielding low sprout densities are
characterized by low proliferative and high apoptotic cluster weights. Migratory cluster weights
show only mild association with sprout density outcomes under the VEGF/PF4 conditions and the
sprout formation characteristics explored here.
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Introduction
Angiogenesis, the generation of new blood vessel branches from existing vessels, arises
from activation of an endothelial cell population constituting a previously quiescent vessel
by angiogenic cytokines such as vascular endothelial cell growth factor (VEGF). This
process involves stimulation of cells among this population to become proliferative and
migratory. A few cells adopt an invasive ‘tip cell’ phenotype, whose penetration of the
extracellular matrix (ECM) lead to formation of extending sprouts in which following cells
(‘stalk cells’) proliferate and migrate1,2. Given a presumably homogeneous starting
population, an interesting question is how do individual cells carry out the various kinds of
phenotypic behaviors in coordinated manner leading to successful formation of new vessel
branches. This question is further complicated by the presence of angiostatic cytokines, such
as platelet factor 4 (PF4), which can inhibit sprout formation even when VEGF is present3,4.
The net outcome of potential angiogenic sprouting situations for a given tissue environment
comprising both angiogenic and angiostatic factors results from an integration of the
stimuli’s effects on the various endothelial cell phenotypic behaviors, including not only
proliferation and migration but also apoptotic death. Understanding how various molecular
and cellular properties may influence the outcome is important for envisioned therapeutic
manipulation, such as for anti-cancer treatments or for tissue regeneration strategies5.

Because of the daunting complexity of this multi-factorial system – i.e., multiple phenotypic
behaviors governed by multiple environmental cues – computational approaches have been
developed by many laboratories with the goal of helping to predict sprouting angiogenic
outcomes across diverse landscape of potential circumstances; an excellent review has been
provided by Peirce6. These models take into account the differential responses of individual
cells in a population using a variety of alternative approaches. For continuum models7,8, a
population is described in terms of cell number distribution and its evolution is governed by
deterministic or probabilistic differential equations, allowing calculation of how cell number
evolves in space and time. Lattice models9,10 generalize a population as individual cells
occupying discrete “lattice sites” in a geometrically organized space; the evolution of this
population arises from functions governing cell behavior in terms of site properties. In
agent-based models, including hybrid continuum/discrete variants, cells are treated as
autonomous entities whose behaviors are governed by rules for their phenotypic states11,12.
In recent years, hybrid agent-based modeling has gained popularity as it allows simulation
of changing cellular and extracellular microenvironment in response to cell-cell and cell-
ECM interactions over the course of sprout initiation and extension into ECM9,11,13.

The power of computational models for complex multi-cellular systems such as
angiogenesis is critically dependent on having a strong foundation in experimental
characterization of the phenotypic behavioral responses of endothelial cells to various
angiogenic and angiostatic stimuli that may be encountered in their environment. This
characterization needs to possess a number of complex features, including: {a} a
probabilistic nature, since individual cells may exhibit different phenotypic behaviors in a
given environment; {b} a dynamic nature, since any given cell may exhibit different
phenotypic behaviors over the course of time; {c} a contingent nature, since these behaviors
will likely be influenced by environmental conditions such as cytokine stimuli. Our work
here aims to contribute a helpful advance in this basic experimental foundation.

In particular, our goal is to demonstrate a useful framework by which quantitative data
concerning phenotypic behaviors of individual endothelial cells within a population can be
characterized across diverse angiogenic and angiostatic conditions in a manner that can be
related to overall population behavior such as sprout formation. We have designed and
implemented an experimental and analytical methods to determine stochastic transition rate
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parameters among the four key phenotypic behaviors involved in angiogenic sprouting:
proliferation, migration, apoptosis, and a state representing quiescent/sessile (i.e., not
proliferating, dying, or migrating). Focusing on the endothelial cell behavior prior to the
sprout initiation, we establish a method to identify phenotypic cell behavioral state from
time-lapse live-cell microscopic imaging, showing that the basic phenotypic states can be
inferred from cell morphology and movement parameters. Using this state identification
tool, we characterize the state transition dynamics of more than 800 individual human
microvascular endothelial cells (hMVECs) over 24–30 hours across combinations of
angiogenic and angiostatic cytokines (VEGF and PF4, respectively) within their respective
angiogenesis modulating concentration ranges (Fig S1b,c,e). We find that the transitions
among the phenotypic states are consistent with the conditional independence and the
memory-less properties of a continuous-time Markov (CTM) process. Thus, a CTM
framework provides a valid model of dynamic phenotypic state transitions, with the
transition rates estimable from single-cell trajectories.

We discover that the hMVEC population comprises several subpopulations, which cluster
with respect to distinct state transition patterns that remain categorically consistent across
the landscape of cytokine conditions. VEGF and PF4 treatments alter the hMVEC
population behavior by changing the proportions of cells distributed within these state
transition patterns. We quantify these proportions in terms of ‘phenotypic cluster weights’,
and find that the VEGF-/PF4-induced changes in phenotypic cluster weights correlate
successful with population sprout density across all treatment conditions.

Results
Human microvascular endothelial cells can generate angiogenic sprouts from confluent
monolayer on Collagen I gel

With the longer-term goal of constructing an integrative model encompassing multiple types
of experimental data, we select an experimental platform that: {a} is amenable to angiogenic
sprout formation; {b} allows the observation of single cells through the course of their
phenotypic state transitions; and {c} permits interrogation of the intracellular signaling
through which angiogenic cytokines’ effect can be measured. The collagen gel invasion
assay (endothelial monolayer on gel as reported in14,15) meets all these criteria. Using this
experimental setup, we can modulate the extent to which sprout initiation occurs by
treatments with the potent angiogenic cytokine VEGF from a monolayer of human
microvascular endothelial cells (hMVECs) (Fig 1a,b). The sprouting responses in Collagen
gel invasion assay are comparable to those in in microfluidic devices under the same
angiogenic VEGF and angiostatic PF4 cytokine combinations (Fig S1b,c,e). To understand
how combinations of cytokines affect the hMVEC population at individual cell level, we
used videomicroscopy to track cells over the course of 24–30 hours and ascertained their
phenotypic patterns by image analysis. To follow individual cells in fluorescent time-lapse
images, a mixture of cytoplasmic GFP-labeled, RFP-labeled, and unlabeled hMVECs were
seeded at a 1:1:3 ratio. This mixed cell population was allowed to adhere on 2.0 mg/mL
Collagen I gel for 4 hours in endothelial growth medium and then incubated with cytokine-
free, 5% fetal bovine serum (FBS) supplemented medium for 20 hours, completing a 24-
hour period after seeding. The purpose of FBS incubation is to allow the intrinsic
intracellular signaling to subside to basal level without significantly synchronizing the cells
to non-mitotic state. The cells are then stimulated with cytokines and immediately imaged in
a live-cell imaging chamber with regulated temperature, humidity, and CO2 levels (Fig 1c).
Cell contours were detected using a modified level set active contour algorithm16, with cell
centroids computed as the center of mass of the detected contour points (Fig 1d). From these
individual-cell contours and centroid tracks, we determined the phenotypic state of each
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time point using morphology- and movement-related features as discussed in the following
section.

Individual endothelial cells exhibit four identifiable phenotypic behaviors: Sessile,
Proliferative, Migratory, and Apoptotic

Time-lapse imaging and tracking of hMVEC contours and centroids revealed four distinct
major phenotypes exhibited by any given cell at any given time-point: proliferative,
apoptotic, migratory, and sessile. These phenotypes are identifiable based on cell
morphology and dynamics of transient motility features (Fig 2a). Proliferative and apoptotic
phenotypes are characterized by doubling/splitting and disappearance/shrinkage of existing
contour respectively and can be detected as changes in contour topology. Migratory
phenotype is characterized by productive and persistent translocation of the centroid,
whereas sessile phenotype is characterized by erratic and unproductive centroid variation. A
single-cell track is obtained from live-cell imaging as a temporal series of snapshots of the
cell contour and centroid properties; we refer to individual snapshot as an ‘instance’ in the
track. To assign a phenotypic state to each instance of a given track, we used a hybrid
approach outlined in Figure 2b. First, we determined whether the contour topology changes
(splits, or collapses), with respect to the previous time-step within the instance being state
assigned. If a contour instance splits or collapses, we assigned the instance to be in
proliferative or apoptotic state respectively. If the contour topology does not change, the
instance is subjected to further classification into either migratory or sessile states.

Based on the above description of migratory vs. sessile states, we asked whether a single
motility feature is sufficient as a discriminatory criterion. To undertake migratory vs. sessile
classification in a more informed yet unbiased manner, we computed morphological and
motility related features of instances of centroid tracks (Table 1). Among these features, we
included cell step size and velocity autocorrelation function (VACFN), which are one-
interval equivalents of speed and directional persistence of cell migration respectively.
Hierarchical clustering analysis in the feature space reveals two distinct subsets of instances
(Fig 2c). Notably, the first subset (orange cluster) is characterized by high mean VACFN and
low variance of VACFN, fitting the migratory description. (Here N denotes the number of
time interval over which mean and variance of VACF are computed). Conversely, the other
subset is characterized by low mean VACFN and high variance of VACFN (aqua cluster)
that follows the sessile description. Three-dimensional principle component embedding of
the instances shows separation of these two clusters (Fig 2d), demonstrating that multiple
features are significantly useful as determinants of migratory vs. sessile instances (Fig 2d).

Our single cell trajectory dataset comprises more than 500,000 cell track instances to be
classified into either sessile or motile state. To meet the computational challenge of
classifying these instances, we drew non-overlapping subsamples of cell track instances that
make up about 2% of all instances and performed initial hierarchical clustering analysis. In
all of the subsamples, hierarchical clustering yields two well separated clusters (example
shown in Fig 2d) characterized by differences in mean and variance VACFN. We used these
cluster assigned subsamples (of cell track instances) as labeled data to train, test, and cross
validate an ensemble of base classifiers using the Adaptive Boosting algorithm17,18. The
validated ensemble classifier achieved the desired classification task as seen from the
images of cell centroid tracks and the sessile vs. migratory state prediction (Fig 2e). In the
instances in which cells exhibit productive locomotion, the instances are labeled migratory
(shown as orange centroid track and contours), while those in which cell contours or
centroids fluctuate erratically the instances are labeled sessile (shown as aqua centroid track
and contours). These results demonstrated that our state annotation approach yields
satisfactory classification results using an unbiased method.
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Individual-cell phenotypic state transition patterns statistically follow one-step dependent
continuous time Markov chain (CTMC) dynamics

Applying the state classification method described above, we converted the time-series
snapshots of each cell track into a sequence of states with corresponding waiting time prior
to each transition; we refer to this sequence as a ‘single-cell state trajectory’ (illustration in
Table 2). The transition dynamics of these single cell trajectories are well characterized by
continuous time Markov process based on two criteria. First, the waiting time distributions
of the state transition in the data are well estimated by an exponential distribution (Fig S3a).
Second, the state transitions are consistent with the conditional independence properties of a
one step dependence continuous time Markov chain19 (Fig S3b,c,d).

An advantage of modeling single cell trajectories in terms of a continuous time Markov
chain (CTMC) is that the parameter estimation problem based on likelihood function can be
solved analytically. In a CTMC, the probability at which a cell transitions from a state s to
another state s′ after some time t depends on the relative rates to s′ compared to the rates to
other states s″ reachable from s (SI Modeling Approaches 2.1). Since individual state
transitions in CTMC are independent, the likelihood of a single cell trajectory (as a sequence
of state transitions and corresponding waiting time) is a product of likelihood of all
individual transitions (illustration in Table 2). From this likelihood of single cell trajectories
(expression in Table 2), we can determine the set of transition rate parameter values most
consistent with the observed single cell trajectories by either a maximum likelihood
estimation (MLE) or Bayesian inference (BI). In either case, we rely on the same likelihood
distribution of the phenotypic transition rates given the observed single cell trajectories. For
MLE, we solved for the rate parameter sets that maximize the likelihood distribution
function whereas for BI we weighted the likelihood distribution by a conjugate prior and
renormalized the resulting distribution.

By combining automatic phenotypic state identification from single-cell data and the
parameter estimation procedure, we have established a method that enables determination of
the phenotypic state transition rates consistent with agent-based modeling. Our rate
parameter estimation methodology consists of three main aspects. First is the contour
tracking method that maps time-lapse images to sets of contour points outlining individual
cells. Second is the automated state annotation based on features derived from the images,
the detected contour points, and the centroids. Third is parameter estimation method based
on CTMC. We now proceed to the application of our method to a particular biological
system: quantitative analysis of how cytokine-modulated individual-cell phenotypic
behavioral state transition patterns may govern changes in population-level sprouting.

VEGF and PF4 differentially influence hMVEC dynamic phenotypic state transitions by
altering the distribution of cells among diverse behavioral subpopulations

With our analysis methodology in hand, we proceeded to examine the phenotypic state
transition dynamics of hMVECs treated with vascular endothelial growth factor (VEGF) and
platelet factor 4 (PF4) -- opposing angiogenesis modulators that are co-released from
activated platelets during the onset of inflammation20,21. The cytokine conditions selected
for this study (0 – 80 ng/mL VEGF and 0 – 500 ng/mL PF4 in the background of VEGF) are
physiologically relevant for angiogenesis under acute inflammation conditions and
effectively modulate sprouting angiogenesis in vitro (Fig S1) and in vivo3,22,23. Within these
concentration ranges, we found that VEGF dose dependently induces sprouting in collagen
gel invasion assay and in microfluidic device sprouting assay. On the other hand, PF4 at the
higher end of this range suppresses VEGF-induced sprouting.
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Figure 3 shows the single-cell state trajectories for each of the cytokine treatment conditions
selected from the VEGF and PF4 sprouting dose response curve, with approximately 100
cells observed in each condition. Some differences among the sets of trajectories seem
readily apparent, such as more migratory states for the VEGF-treated cells, but the
quantitative comparisons of both kinds of states and transitions between them are not
obvious from inspection. Thus, we need to bring the next layer of computational analysis to
bear on these data, in order to elucidate the cytokine influences.

We considered two kinds of conceptual models to account for the individual-cell phenotypic
state transitions as they are distributed across a cell population (Fig 4). A Uniform
Population Model (UPM) posits that all cells in the population intrinsically possess identical
potential to adopt different phenotypic states, such that under a cytokine combination, the
population state transition rates are described by a single transition rate parameter set. In
contrast, a Diverse Population Model (DPM) posits that endothelial cells within angiogenic
population are heterogeneous in their state transition dynamics such that, under a cytokine
combination, it cannot be described by a single parameter set. One or the other kind of
model might prove superior with respect to capturing the features of our experimental data,
although it is possible that both kinds of models can do so satisfactorily. If the UPM is more
consistent with the data, the dependence of phenotypic transitions on context conditions is
due to a uniform population of cells exhibiting transition probabilities that are as a whole
modulated by context (angiogenic/angiostatic cytokine treatment). If, on the other hand, the
DPM is more consistent, the context dependence is better explained as due to cell
subpopulations exhibiting transition probabilities invariant with respect to treatment but with
the treatment modulating the proportion of cells in each subpopulation.

To address this question, we applied our parameter estimation method in two ways. First,
under the UPM, we performed parameter estimation on the all state trajectories within each
condition separately and refer to the rates estimates obtained via this approach as condition-
based estimates (λ(cond)). Alternatively, under the DPM, we first cluster the state trajectories
based on relevant transition dynamic descriptors (listed in Table 2). As we observed
subpopulations of distinct state transition dynamics, we subsequently performed parameter
estimation on the single-cell trajectories within each cluster separately. The rate estimates
obtained via this approach is referred to as phenotypic program-cluster based estimates
(λ(clust)).

For this set of cytokine treatments, the UPM-derived condition-based estimates are shown in
Figure 5a-b. Some differences can be seen between the phenotypic state transition rates for
different cytokine treatment conditions. Following the λ(cond) in the VEGF dose conditions
(first to fourth bars in Fig 5c subplots), VEGF treatments increase the S-to-P transition rate,
consistent with previous findings that VEGF promotes proliferation24. VEGF also appears to
increase S-to-M while decrease S-to-A transition rates. However, the changes in these two
transition types are non-monotonic (first to fourth bars in Fig 5c S-to-M and S-to-A
subplots). Going from VEGF-treated to combination with PF4 (second to forth bars in Fig
5d subplots), the S-to-P and P-to-S transition rates directionally decrease as PF4
concentration increases, while S-to-A transition rates directionally increases. Other
transition rates do not change directionally. These results suggest that while the majority of
the cytokine-induced changes may be consistent with the current understanding of VEGF
and PF4 roles, these changes are difficult to interpret with the UPM framework.

To pursue the alternative DPM-derived cluster-based estimates, we sought clustering
features that will resolve the differential state transition dynamics of single cell trajectories
within the population pool. In the likelihood expression of a cell trajectory (equation in
Table 2), there are two sets of key variables determining the state transition dynamics: {a}
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fss′ - the (trajectory length) normalized frequencies of the transition from s to s′ states; and
{b} Στs - the total dwell or waiting time in a particular state s for that trajectory. fss′
describes the average frequency at which ss′ state transition occurs, while Στs the total s
state dwell time is inversely proportional to the rate at which an agent escapes state s.
Intuitively, these parameters are relevant descriptors of state transition dynamics and can be
used as clustering features.

Hierarchical clustering of single cell trajectories based on fss′ and Στs reveals three to five
identifiable clusters (Fig 6a). Notably, the clustering pattern and the cluster assignment
correspond well to the different cellular phenotypes in which cells dwell in the most.
Clusters 1 and 2 consist exclusively of single-cell trajectories that transition through
proliferative and apoptotic states and are referred to as proliferative (P cluster) and
apoptotic (A cluster) respectively. Clusters 3, 4, and 5 contain trajectories that traverse only
through sessile and migratory states and are more related. Trajectories in Cluster 3 are
characterized by relatively longer dwell time in sessile and Cluster 4 by relatively longer
dwell time migratory states and are referred to as sessile (S cluster) and migratory (M
cluster) respectively. Cluster 5 is highlighted by an exceptionally high rate of back-and-forth
shifting between sessile and migratory states, so is referred to as switching (Sw cluster). It is
conceivable that the M and Sw clusters could be combined into a single cohort, but because
they clearly exhibit different quantitative properties with respect to their individual-cell
trajectories we held it important to consider their contributions separately.

The transition dynamics of trajectories in each of these clusters is determined by the
phenotypic program-based transition rate values (Fig 6c), characterizing the probabilities for
each subpopulation in quantitative manner. The cluster based transition rate MLE matrices
here permit explicit appreciation of the underlying structure of the key phenotypic
transitions, which may not be easily discerned from the trajectories. For instance, A cluster
exhibits the largest rate constants for transition into A state, but predominantly from S state
and M state. For another, P cluster shows a large rate constant for transition into P state but
only from S state (Fig 6c). The same hierarchical clustering analysis performed on single-
cell trajectories of different treatment conditions yield similar clustering patterns (Fig S4),
suggesting that the hMVEC population is heterogeneous with respect to angiogenesis-
related phenotypic behaviors and can adopt one of a few distinct state transition patterns.
Projection in principle component subspace (Fig 6d) shows clear contrast between the A
cluster and the P cluster and a separate aggregate of S, M, and Sw clusters. Interestingly, the
quantitative relationship for transitioning between S and M clusters is significantly different
from that between S and Sw clusters, indicating an underlying distinction among these three
exists with respect to their influence by the cytokine treatments.

To examine the cytokine effects within the DPM framework, we computed the phenotypic
cluster weight coefficients of each treatment condition with respect to proportion of cells in
each behavioral subpopulation (Fig 7a,b). In the no cytokine control condition (first bars in
Fig 7a,b), the proliferative (green), and apoptotic (red) cluster weights are small compared to
that of switching, migratory, and sessile clusters. With VEGF (second to fourth bars in Fig
7a), the proliferative cluster weight (wP) increases while the apoptotic cluster weight (wA)
decreases as a function of VEGF doses. Upon adding PF4 from 0 to 500 ng/mL under
constant 20 ng/mL VEGF concentration (second to fourth bars in Fig 7b), wP decreases from
0.16 to 0.03, while wA increases from 0.04 to 0.10. Compared to the corresponding
conditions with VEGF, the conditions with no VEGF have higher wA (0.186 for 0 ng/mL
VEGF to 0.037 for 40 ng/mL VEGF) and lower wP (from 0.096 at 0 ng/mL VEGF to 0.192
at 40 ng/mL VEGF).
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To determine whether the changes in cluster weights are statistically significant, we
estimated the distribution of weight coefficients by bootstrapping. We drew 1000 random
samplings with replacement of 50 trajectories from the pool of all single-cell trajectories.
For each of these samplings, we assigned clusters based on relative similarities of the
sampled trajectories to the cluster prototypes (cluster means in the feature space) in
Supplementary Figure 5 and computed the cluster weight coefficients. We performed pair-
wise comparisons of the resulting cluster weight coefficient distributions across different
cytokine conditions using non-parametric Kolmogorov-Smirnov (KS) tests with the null
hypothesis that the two samplings are drawn from the same distributions. For 134 of the 140
pair-wise comparisons, the weight coefficient differences are statistically significant to the
0.05 level (Fig S5a–c).

hMVEC dynamic phenotypic cluster weights are predictive of population-level sprout
density response

Finally, in order to connect individual-cell behaviors with cell-population outcomes, we
sought to determine if the cytokine-induced modulation of phenotypic cluster weights might
be predictive of overall sprout density across the landscape of treatment conditions.
Establishment of this association would further support the notion that VEGF and PF4
influence population-level sprout formation at least partly by governing the quantitative
proportion of cells exhibiting these dynamic transition behaviors rather than giving rise to
new classes of behavior. To address this question, we acquired and quantitatively analyzed
additional sprout density data by confocal imaging; accordingly, we generated
measurements of the number of angiogenic sprouts moving into the underlying gel per unit
cell monolayer area. Then we devised and employed a method -- outlined in Figure 7c -- to
elucidate a potential quantitative mapping between sprout density and phenotypic cluster
weights over the full set of VEGF and PF4 concentrations.

To construct this mapping between the two data sets, we fitted the observed sprout density
data to parametric models of biological switches as functions of VEGF and PF4, and for
each model, estimated an optimized model parameter set. Among variants of the parametric
models, each with corresponding, the five parameter hyperbolic tangent (Tanh) switch
model made the closest prediction to the observed sprout densities (quantified as the
smallest Kullback-Liebler divergence between the model prediction and the observed sprout
density data (Fig S6)). Using the optimized Tanh switch model, we estimated the sprout
densities at the VEGF and PF4 combinations corresponding to those in phenotypic cluster
weight dataset - thus creating consistent data sets from which quantitative mapping can be
drawn. We used partial least-square regression (PLSR) to simplify the dimensions of the
input phenotypic cluster weights and the output sprout density datasets by projecting them
onto alternative bases on which the redundancy and co-linearity within the input dataset
were eliminated. To determine an optimal number of model dimensions, we examined the
percent variance explained and mean square prediction error (MSE) with increasing
numbers of PLS components. The 1-component PLSR model explains about 79% of the
variance in the predicted sprout density; models with increasing number of PLS components
from 2 to 4 only capture an additional few percent of the variance (Fig 7d). Importantly, the
2-component version achieves the smallest MSE (Fig 7e), so we chose the this model to
analyze the relationship between phenotypic cluster weights and sprout density. To assess
the PLSR mapping performance, we plotted the predictions of the 2-component model
(FPLS(v,p)) against the corresponding estimates by the Tanh switch equation (F*(v,p)) (Fig
7f). The model predictions fall close to the identity line (FPLS(v,p) = F*(v,p)), affirming that
the PLS mapping based on phenotypic cluster weights captures the majority of trends in
VEGF- and PF4-modulated sprout density across all the angiogenic and angiostatic
treatment combinations.
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As a complementary means to visualize model performance, we plotted the PLSR
projections of the model predictors (phenotypic cluster weights in each cytokine
combination) and model predictions (sprout density in each cytokine combination). To
denote the different inputs (cytokine combinations) and outputs (sprout densities), we scaled
the projection markers by sprout density and color-coded them by the relative VEGF and
PF4 concentrations (Blue: VEGF dominant relative to EC50, Red: PF4 dominant relative to
IC50 for sprout density response respectively). A few important features can be seen in the
PLS projections. First, the markers are segregated by size and color along the first
component (PLSC1) (Fig 7g). The relatively large (high sprout density) markers are mostly
blue (VEGF dominant) while the smaller ones are mostly red (PF4 dominant). The co-
segregation of the marker color with size (VEGF-dominance with high relative sprout
density) is consistent with biological understanding that VEGF and PF4 play the opposite
roles in sprout formation. In addition, the first component (PLSC1) axis is composed of large
coefficients for wA and wP but small coefficients for wM and wS, indicating that the
proportions of the population in the apoptotic and proliferative clusters are the strongest
predictors of sprout density. Notably, most of the large blue markers show up on the positive
PLSC1 side (with which wP axis is strongly positively correlated) while the small red ones
lie mostly on the negative PLSC1 (with which wA axis is strongly positively correlated),
indicating that high wP is associated with the VEGF dominant, high sprout density
conditions, while high wA is associated with the PF4 dominant, low sprout density
conditions (Fig 7g).

DISCUSSION
An important challenge in developing reliable, and even predictive, approaches to modulate
multi-cellular processes in biomedical applications, such as promoting angiogenesis for
tissue regeneration or diminishing it for anti-cancer therapies, is the need for design
principles that offer guidelines for how molecular-level interventions will alter tissue-level
properties via cell-level behavioral processes. The past decade has witnessed advances in
multi-scale (often agent-based) computational modeling of angiogenesis aimed toward this
objective, generating theoretical predictions and insights concerning the molecular-to-cell
and cell-to-tissue relationships6. A consequent need is foundational quantitative
experimental information at the cell level, across a diverse landscape of conditions that
might be encountered in physiological contexts, to aid in model construction and constraint.
We have designed and implemented an experimental measurement and data analysis method
that quantifies multiple phenotypic behavioral responses of individual endothelial cells to
various concentration combinations of an angiogenic cytokine (VEGF) and an angiostatic
cytokine (PF4) that yield noticeably different cell-level phenotypic behaviors along with
noticeably different population-level sprout formation. Our method consists of three main
procedures: cell contour detection, automated state annotation, and rate maximum likelihood
estimation based on continuous time Markov process (Fig 1–2).

To address the effect of opposing inflammatory cytokines VEGF and PF4 on phenotypic
state transition dynamics, we have considered two conceptual models to account for
variations in phenotypic transition dynamics across cell population: uniform population
model (UPM) and dynamic population model (DPM) (Fig 4). We have shown that under
DPM, the endothelial subpopulations are distinct and well-separated in identifiable
behaviors (Fig 6a) consistent across all cytokine treatment conditions (Fig S4). These
behaviors are characterized not by a single time-point measurements of a traditional
phenotype (e.g., proliferation, death, migration), but instead by dynamic patterns for more-
or-less predominance of one or more of these traditional phenotypes followed over a 24-
to-30 hour period. That is, any particular cell can exhibit multiple traditional phenotypes
during a sustained time period, and our analysis indicates that its behavior is most usefully
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represented by its dynamic pattern of multiple behaviors rather than requiring only one
behavior be specified. The dynamic patterns, however, can be clustered into a small number
of identifiable categories, which we have terms as follows (Fig 6): Apoptotic (A),
Proliferative (P), Sessile (S), Migratory (M), and Switching (Sw). The latter two show
qualitative similarities in shifts between Sessile and Migratory, but the Switching category is
quantitatively separable in exhibiting a much greater frequency of shifting. Because the
same five categories are identifiable regardless of cytokine treatment, we learn that the
cytokines influence cell population behavior by quantitatively influencing the proportion of
cells following the various categorical dynamic behaviors.

Importantly, the population-level outcome across all the angiogenic and angiostatic
treatments can be accounted for by the quantitative proportions of cells in these five
dynamic behavioral categories, within the framework of a multi-variate regression model.
We are confident that alternative models can be employed to pursue this kind of cell-to-
population “multi-scale” association, but it is valuable to have proven it in concept here
using PLSR methodology. Thus, our work illustrates how the behaviors of single cell in a
heterogeneous population can be quantitatively described and reduced empirically to a
simpler computational mapping that relates to population biological response.

Agent-based models of angiogenesis in the literature (including previous contributions from
our laboratory12,13 typically assume that the vascular endothelial cells can be described in
terms of a uniform population model such that cells in the population follow the same rules
and any given treatment condition modulates the phenotypic behaviors according to an
identical relationship for all cells. We have found that the phenotypic behavior of a human
microvascular endothelial cell population is heterogeneous – and, most remarkably, that this
heterogeneity can be mapped to a small number of distinct patterns based on phenotypic
state transition dynamics. This heterogeneity may reflect cell-to-cell variability in genetic,
epigenetic regulation and protein expression. Alternatively, we speculate that the observed
heterogeneity may serve as diverse potential phenotypic programs among which endothelial
cell can adopt, especially if such heterogeneity can be directionally altered by relevant
cytokine stimuli. In this study, we demonstrate examples supporting cases of such
directional alterations by potent angiogenic cytokine VEGF and PF4 -- as VEGF induces
higher fraction of the population to adopt the transition pattern consistent with a proliferative
program and lower fraction to adopt an apoptotic program while angiostatic cytokine PF4
exerts the opposite directional effect on an endothelial cell population.

Taken together, our findings offer a novel perspective in understanding the phenotypic
behaviors of endothelial cell population as a unique consistent set of dynamic transition
cassettes across angiogenic and angiostatic cytokine stimuli. In this light, the influence of
the angiogenic and angiostatic cytokines can be usefully characterized as the directional
changes in cell population proportions within the various dynamic transition programs. By
quantitatively summarizing the cytokine induced changes in the population proportions
adopting different state transition patterns as phenotypic cluster weights, we have identified
the single cell behavioral basis that can be used to predict the effect of cytokine on
population-level sprout density. As endothelial cells must take on multiple roles in various
physiological and pathological contexts (e.g., apart from playing central roles in sprouting
angiogenesis, they act as selective barrier for transport of molecules and immune cells
between blood and tissues, help regulate blood fluidity, and participate in inflammatory
responses). In each of these roles, endothelial cells need to flexibly exhibit different
phenotypic behaviors25,26 so individual cells in a homogeneous endothelial population have
to be able to switch their responses accordingly. Our findings suggest that in microvascular
endothelial cells, at least transiently, the population may achieve such diverse phenotypic
requirement by permitting subpopulation behavioral dynamics to be quantitatively
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modulated by their environmental stimuli. This may turn out to represent a more widely
general principle across a broad spectrum of tissue types.

Methods
Live imaging of hMVECs

Human adult microvascular endothelial cells (hMVECs) of dermal origin (purchased from
Lonza at passage 4; Cat No. CC-2543) were maintained in culture according to
manufacturers recommendations. Cells were passage once then stably infected with GFP
and RFP plasmid following a standard retroviral infection protocol. For all live cell imaging
experiments, GFP-labeled and RFP-labeled hMVECs were used at second passage after
infection, while unlabeled hMVECs were used after three passages after the cells were
received. hMVECs were mixed at 1:1:3 ratio in complete medium to allow visualization of
single cell when seeded at instant monolayer density (50000 cells/cm2) to allow sprout
initiation on 1 mm thick 2.0 mg/mL Collagen I gel (BD Biosciences; Cat No. 356236). At 4
hours after seeding, adhered hMVECs were replaced with 5% FBS no cytokine medium. At
24 hours after seeding, hMVECs on gel were stimulated with VEGF and PF4 (Peprotech;
Cat No. 100-20 and 300-16 respectively). The cell were imaged upon stimulation using
Cellomic array scan microscope. The chosen imaging frequency (15 min interval) does not
appear to drastically affect cell behavior (Supplementary Data Set 1).

Collagen gel invasion assay
Type I rat tail collagen (BD Bioscience; Cat.No. 354236) diluted in 0.02 N Acetic acid to
2.0 mg/mL at pH 7.4 was prepared on ice and was immediately casted in glass bottom 24-
well multi-well plate (MatTek Corp P24G-0-13-F) and allowed to solidify at 37°C for 30
minutes in a humidified environment. After gel solidification, cell culture medium was
added to the plate to prevent the gel from desiccation. After at least 1 hour of medium
incubation with collagen gel, hMVECs or HUVECs were seeded on the gel at instant
monolayer density (50,000 cells/cm2). At this seeding density, HUVECs and hMVECs
consistently formed a confluent monolayer on collagen gel at 18 hours after seeding (Fig
1a,b and Fig S1d). To test the effect of cytokines on sprouting, cytokine containing medium
was introduced at 24 hours after seeding. The conditioned media were refreshed every 24
hours until the end of experiment (72 hours after seeding, unless indicated otherwise).

Sprout density quantification
To build the sprout density dataset, hMVECs were seeded on Collagen I gel (as in single cell
tracking experiment) and treated with varying VEGF and PF4 combinations for 72 hours.
The samples were fixed at 72 hours and stained with DAPI(Sigma D8417) and Rhodamine
Phalloidin (Molecular Probes R415) for sprout visualization. Phase contrast and fluorescent
images of the fixed and stained samples were acquired using Olympus FV1000 confocal
microscope through a 20x long working distance air objective (LMPLFL 20x, Olympus
USA). In each input cytokine condition, 12–16 non-overlapping confocal imaging voxels of
approximately 1350×1350×100–200 μm3 were acquired and reconstructed in 3D using
Imaris software package (Bitplane Inc). The sprout density is determined by the number of
sprouts in each voxel were counted divided by the monolayer area.

Contour and centroid tracking by level set active contour
Fluorescent live cell images were enhanced by median and entropy filtering algorithms
using the built-in scripts in the MATLAB R2011a image processing toolbox (MathWorks).
Preprocessed image were binarized (thresholded based on intensity histogram to partition
intensity levels into that of the foreground and the background) and the boundary of the
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preprocessed image was used as an initial contour. Contours were detected by a level set
active contour algorithm of Chan-Vese16 implemented in MATLAB and applied to filtered,
unbinarized images. The level set routine was adopted from Yue Wu’s contribution on
publicly accessible MathWorks’ file exchange website (http://www.mathworks.com/
matlabcentral/fileexchange/23445) and the level set’s objective function was slightly
modified so the algorithm works well for our images. For time series analysis, the first
image in the series was contour detected as described. Then, the subsequent image was
initialized with the optimal contour of an immediately previous image in the series. All
single cell tracks in the data set are validated manually to ensure accurate tracking.

State annotation and determination of the length of proliferative and apoptotic state
interval

In this study, the proliferative state is defined with respect to the time-point at which the cell
contour splits from one to two (tsplit). We note that, for most ‘proliferative’ trajectories, the
mother cells slow down prior to splitting (pre-splitting phase) and the daughter cells pull
apart antipodally such that their velocity vectors are anti-correlated for some time before
they become uncorrelated (post-splitting phase). We use these phases to define proliferative
interval of individual trajectories. For apoptosis states, cells are characterized by continual
progressive shrinkage of contours which eventually lead to contour disappearance, causing
the characteristic lost contour track. This series of events are flagged and manually validated
at the final step of tracking.

Additional methods
Additional details for all experimental methods are available in SI Text descriptions,
including semi-supervised sessile vs. motile state classification, CTMC model of single cell
state trajectories, comparisons of condition based and cluster based rate estimations, and
parametric modeling of sprout density response.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

ECM extracellular matrix

hMVECs human microvascular endothelial cells

MLE maximum likelihood estimate

PF4 platelet factor 4

VACF velocity autocorrelation function

VEGF vascular endothelial growth factor

CTM continuous time Markov

CTMC continuous time Markov chain
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UPM uniform population model
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Fig 1.
Angiogenic human microvascular endothelial cells (hMVECs) cultured on collagen type I
gel are capable of initiating angiogenic sprout. (a) Angiogenic protrusions of hMVECs in
the collagen gel observed as shadow (red arrowheads) in phase contrast time-lapse images.
Time indicated is in minutes. (b) Wide-field confocal image of hMVEC angiogenic sprouts
showing 100 – 200 μm invasions. hMVECs were stained with DAPI, VE-cadherin, and
Phalloidin to visualize nuclei, cell-cell junctions, and actin cytoskeleton respectively. (c)
Experimental setup for live cell imaging experiments. First, a mixture of GFP-labeled, RFP-
labeled, and unlabeled hMVECs were seeded at an optimized seeding density (50,000 cells/
cm2) to yield a confluent monolayer after 24 hours of seeding. Cells are incubated for 20 hrs
under 5% fetal bovine serum (FBS) supplemented cytokine-free base medium, then
stimulated with angiogenic/angiostatic cytokines. After cytokine stimulation, cells are
imaged over a 24 – 30 hour period. (d) Image analysis procedure. Cell contours and
centroids at each time point were detected by a level set active contour algorithm. The
detected cell contour and centroid trajectories were classified into different phenotypic
states: sessile, proliferative, migration, and apoptotic.
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Fig 2.
Timelapse images of hMVECs reveal four major phenotypes: proliferative, apoptotic,
migratory, and sessile. (a) Example contours outlining hMVEC in sessile, proliferative,
migratory, and apoptotic states as detected by level set active contour. Proliferative instances
are characterized by contour splitting, while apoptotic instances by contour collapsing. Scale
bars are 20 μm. (b) Semi-hierarchical scheme for state classification. Contours are first
classified based on whether there is a change in contour topology. If topology is conserved,
they are further classified into sessile or migratory instances based on contour morphology
and motility-related features. (c) Hierarchical clustering reveals two clusters within the
subset of non-proliferative, non-apoptotic instances. The main discriminatory features
between the two subsets are the mean and the variance of VACFs over 1 – 6 hour track
interval. Sessile instances (blue) are characterized by low μVACF, high σ2

VACF while
migratory instances (orange) are characterized by high μVACF, low σ2

VACF. (d) PCA
projection of the motile vs. sessile instances as classified by an optimized ensemble of
sessile vs. motile base classifiers (details in Supplementary Method). (e) Example instances
of single cell contour and centroid tracks labeled to show the sessile vs. motile state
identification results.
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Fig 3.
Phenotypic state labeled cell trajectories of hMVEC treated with physiologically relevant
VEGF and PF4 concentration ranges. Single cell state trajectories are plotted over time
along the rows and phenotypic states are colored labeled as follow: Sessile(S) - aqua;
Migratory (M) - orange; Proliferative (P) - pale green; Apoptotic (A) - dark red, and No data
(□) - dark blue. The corresponding dose response curves of hMVEC sprout densities under
VEGF and PF4 treatments are shown underneath the single state cell trajectories plots. (a)
hMVECs were treated with VEGF concentrations within the transition region of hMVEC
sprouting dose response curve in collagen gel invasion assay (fig S2), which is the same
setup as the imaging experiment (Fig 1). V1, …, V4 = 0, 10, 20, 40 ng/mL VEGF. (b)
hMVECs were treated with PF4 concentrations spanning with transition region of PF4 dose
response curve in the background of physiological VEGF concentration (20 ng/mL). P1 = no
cytokine, P2, …, P4 = 0, 50, 500 ng/mL PF4 in the background of 20 ng/mL VEGF.
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Fig 4.
Conceptual model of angiogenic population. (a) Uniform population model posits that
endothelial population is homogeneous in state transition dynamics and the population is
unimodally distributed in transition rate parameter space. Under control condition, the
population assumes a unimodal distribution in state transition rate parameters (top).
Treatments with cytokines (shown as black arrows) cause individual cells to respond in a
similar manner and the population distribution to shift unidirectionally (bottom left and right
shown as results of two different stimulations). (b) Diverse population model posits that
endothelial population is heterogeneous in state transition dynamics. Under control
condition, the population consists of multiple subpopulations characterized by different
transition rate parameters (top). Treatments with cytokines cause changes in the fractions of
cell within subpopulations without shifting subpopulations centers (bottom left and right).
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Fig 5.
Maximum likelihood estimates (MLEs) of the condition based transition rates under the
physiologically relevant cytokine conditions. Under the uniform population model’s
assumptions, MLEs of the phenotypic transition rates were computed from the cell
trajectories under each treatment condition separately. (a and b) The resulting transition rate
matrices exhibits slight difference across increasing VEGF (V1 - V4) and PF4 concentration
(P1 - P4). (c and d) Alternative way of visualizing the rate estimates of the same transition
types across cytokine conditions. (c) Rate estimates of the same starting and ending states
are presented in the same subplot as a function of increasing VEGF (V1 - V4). (d) Rate
estimates for the same starting and end staets shown as a function of PF4 concentrations in
the background of constant VEGF (P1 - P4).
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Fig 6.
Hierarchical clustering of all cell trajectories in all cytokine conditions reveals 3–5
identifiable clusters. Hierarchical clustering was performed based on the trajectory features
described in Table 2. (a) Dendrogram of the clustered features and (b)the corresponding
clustered single cell trajectories. Clusters color labels are consistent from (a – d). (c) The
corresponding transition rate MLEs computed from the single cell trajectories in each cluster
separately λ(clust). The transition rates matrices in sessile, migratory and switching clusters
are qualitatively similar. Under DPM, the effect of cytokine treatment can described as
changes in the fraction of cells adopting different dynamic phenotypic transition patterns
(also referred to as cluster weights). (d) Principle component projections of cell trajectories
shows the separation of the endothelial subpopulations. The apoptotic and proliferative
clusters (1 and 2) are well separated in state transition dynamics from each other and from
the sessile, migratory, and switching clusters. Sessile, migratory and switching clusters (3, 4,
5) consist of cells that transition between sessile vs. motile states and are only differentiated
by the frequencies of transition and the dwell times within the sessile vs. motile states.
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Fig 7.
Proliferative and apoptotic cluster weight axes predicts the VEGF and PF4 modulated
population level sprout densities. (a and b) Phenotypic cluster weights and sprout densities
vary as functions of input VEGF and PF4 concentrations. (c) A quantitative mapping
between the observed phenotypic cluster weights and sprout densities are determined using
parametric transfer functions of biological switch and partial least square regression (PLSR).
(d) Percent variance explained plot as a function of number of components shows that one
component PLS model captures almost 80% of the variance in model prediction. Increasing
model components from 2 to 4 components achieves additional 2% of the percent variance
explained. (e) Mean square prediction error plot shows that two component PLS model
achieves the smallest MSE. (f) The sprout density predicted by the two component PLS
model (FPLS(v,p)) is plotted against those estimated from the parametric switch model
(F*(v,p)), based on 3D confocal images of sprout densities at varying input VEGF and PF4
combinations. The two component PLS model produces a relatively accurate prediction with
most of the prediction points fall close to F*(v,p) = FPLS(v,p) line. (g) The PLS component
projections of model predictors and response are scaled by the predicted sprout densities and
color-coded by the level of VEGF vs. PF4 relatively their respective EC50 and IC50 values
in sprout densities.
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Table 1

Types and descriptions of morphological and motility related features used in classifying of instances of cell
tracks into sessile vs. migratory states. Morphological features were computed based on the detected contour
points of individual contour instance. Motility related features were computed based on the detected centroid
across N intervals around the instance being feature computed. Step size is the one time step equivalent of cell
speed and velocity autocorrelation function is the one time step equivalent of directional persistence.

Features Notation Type Definition

step size d motility centroid-to-centroid distance in subsequent time step

mean velocity autocorrelation function
across N time step

μVACFN motility sample mean of dot products of N adjacent unit velocity vectors

variance velocity autocorrelation function
across N time steps

σ2
VACFN motility sample variance of dot products of N adjacent unit velocity vectors

cell size A morphological area enclosed by cell contour

cell elongation ℓ morphological ratio between cell major and minor axes

cell orientation θ morphological dot product of unit instantaneous velocity vector and unit major axis
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Table 2

A hypothetical state trajectory with η state transitions. States are color-labeled. According to the continuous
time Markov (CTM) model, the likelihood of a particular transition rate parameter set Λ given the observed
state trajectory U is a product of the likelihoods of all individual transitions observed in the trajectory, and the
marginal probability of the first state So (PSo). After an arithmetic manipulation, the likelihood can be written
as in Equation 1 (details in Supplementary Modeling Approaches 2.1). The likelihood expression contains two
types of experimentally obtainable variables. The first is the total number of transitions of certain type ss′
(ηss′). The second set is total dwell time in a certain state s (Σhτh). Since these variables are involved in
determining the likelihood, they are used as state transition dynamic features for classifying single cell state
trajectories.

Feature Notation Definition

frequency of ss′ type jumps (trajectory length normalized number of ss′ type jumps) fss′

frequency of jumps of all types (trajectory length normalized number of any jumps) f tot

total dwell time in state s τtot Σhs τhs

mean dwell time in state s τs

variance dwell time in state s σ2
τs
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