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Abstract

This dissertation extends the use of the dynamic stiffness and transfer matrix methods
in marine riser vibration. Marine risers possess a predominant chain topology. The
transfer matrix method is appropriate for the analysis of such structures. Wave trans-
mission and reflection matrices are formulated in terms of transfer-matrix elements.
The delta-matrix method is introduced to deal with numerical problems associated
with very long beams and high frequencies. The general internal relationships be-
tween the transfer matrix and dynamic stiffness methods are derived and applied to
the problem of a non-uniform beam with discontinuities. An implicit transfer matrix
of a general non-uniform beam is derived.

The vibration analysis of non-uniform marine risers is addressed by combining the
procedure of the dynamic stiffness method with the WKB theory. The WKB-based
dynamic stiffness matrix is derived and the frequency-dependent shape function is
expressed implicitly. The Wittrick-Williams algorithm is extended to the analysis
of a general non-uniform marine riser, allowing automatic computation of natural
frequencies. Marine riser models with complex boundary conditions are analyzed.
The WKB-based dynamic stiffness method is improved and applied to a non-uniform
beam system with discontinuities. A dynamic stiffness library is created.

Dynamic vibration absorbers and wave-absorbing terminations are investigated
as a means of suppressing vibration. The optimal tuning of multiple absorbeis to a
non-uniform beam system under varying tension is investigated. The properties of
wave-absorbing terminations of a beam system are derived.

The vibration of two concentric cylinders coupled by the annulus fluid and by
periodic centralizers is modeled. The effects of coupling factors on vibration are nu-
merically evaluated. It is shown that a properly designed inner tubular member may
be used to damp the flow-induced vibration of the outer cylinder.

Thesis Supervisor: J. Kim Vandiver
Title: Professor of Ocean Engineering
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Chapter 1

Introduction

1.1 Motivation

The term "crashworthiness" evolved around 1950s and was first associated with avia-
tion safety [1]. It refers to the capacity of a vehicle or component to provide occupant
protection during potentially survivable collisions. A crashworthy design should be
able to dissipate in a controlled manner the kinetic energy of the impact, and to
retain a survival space for occupants and to attenuate the forces and accelerations
experienced by the occupants. Because of the very demanding requirement of crash,
it is plausible that the crush criteria will dominate the structural design of a vehicle
body. Well designed crashworthy structures will, as a rule, meet the general stiffness
criteria set by other requirements such as NVH (Noise, Vibration and Harshness) [1].

The most important challenge for today's automotive engineers is to design vehicles
that are not only structural safe, but also light, fuel efficient and environmentally
friendly. The quest for reduction of vehicle weight without jeopardizing structure's
crash performance has led to investigating structural materials other than steel, such
as, aluminum, composite, magnesium, etc. Among others, aluminum appears to be
the most attractive material due to its low specific weight, recycling potential and
excellent corrosion resistance. Aluminum space frame and extruded aluminum com-
ponents have been used in the automotive industry (for example, Audi A8 and Audi
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A12). It was proved that excellent crash performance as well as other performance

parameters can be achieved by aluminum structures while satisfying weight saving

targets.

In order to achieve the weight reduction without compromising the vehicle crashwor-

thiness, structural stiffening methods have also been investigated. Thornton et al.

[2, 3] proposed a method to reinforce thin-walled components by filling the empty

space with polyurethane foam. They found that the filling may be of benefit on a

weight effectiveness basis only for thin-walled sections made from high density, low

strength material, e.g. mild steel. However, when the wall thickness of a section

is reduced below a certain limit, the range of useful wall thickness for which foam

reinforcement is weight effective tends to be of no practical use. These conclusions

were substantially verified by a later study by Lampinen and Jeryan [4] who devel-

oped regression models to predict the load capacity and axial collapse of polyurethane

foam-filled sections.

Recent advances in cost-effective process for the production of utralight ( < 20%

of solid aluminum) cellular materials, such as aluminum foams and aluminum hon-

eycombs, has cleared the way for using these materials as reinforcement to exist-

ing thin-walled structural members. The motivation for using the ultralight metal

core is to increase the rigidity of the thin-walled members and therefore increase

the energy absorption while minimizing additional weight penalty. Santosa and

Wierzbicki [5, 6, 7, 8, 9, 10, 11] carried out extensive numerical studies on the crash

behavior of thin-walled prismatic structural members with ultralight filler subjected

to axial compression, bending and torsional loadings. It was found in their studies

that superior weight efficiency can be achieved for thin-walled members filled with

the ultralight metal core. Seizberger et al. [12, 13] conducted experimental study on

the axial crushing of steel columns filled with aluminum foam. They reported that

considerable weight efficiency improvements with respect to energy absorption were

obtained by foam filling. Comprehensive experimental studies on the effect of filling

thin-walled square and circular aluminum extrusions with aluminum foam were car-

ried out by Hanssen et al. [14, 15, 16]. They concluded that foam-filled extrusions

are advantageous over empty ones in terms of least weight where high levels of energy

absorption are required.

In the present research, extensive theoretical, numerical and experimental studies
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are carried out on the axial crushing, bending collapse and torsional deformation

of thin-walled structures filled with ultralight metal core material (aluminum foam

or honeycomb). A clear physical understanding of the crush mechanics of such ul-

tralight structures is achieved. The strengthening effects of the filling are revealed

and quantitatively assessed. With this fundamental work, the optimization problem

of ultralight structures for minimum weight is formulated and a methodology is de-

veloped, which combines the above results with numerical optimization techniques,

to determine among all feasible options an optimum design of structural geometry

and material properties for the minimum weight while satisfying the requirements of

structural integrity and crashworthiness.

1.2 Research Objective

The objective of the present research is to study the crushing behavior of two new

types of structural components, i.e., aluminum foam-filled thin-walled members and

aluminum honeycomb-filled members, and then to optimize such components with

crashworthiness constraints.

A number of new contributions are generated from this research

* An analytical solution for mean crushing force of multi-cell sections is developed,

based on the Superfolding Element theory. Closed-form solutions are derived to

predict the mean crushing forces of foam-filled multi-cell sections.

* Technologies of manufacturing foam-filled closed-hat profiles and joint tech-

niques are investigated.

* Axial crushing tests are conducted on foam-filled hat profiles to study their

collapse behavior, energy absorption and weight efficiency.

* Experiments of bending up to 1500 on filled beams are performed. Numerical

simulations of bending collapse are also carried out. The strengthening effects of

filling are quantitatively assessed based on the results of numerical and physical

experiments.
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* Theoretical models of torsional crushing of empty and filled thin-walled pris-

matic tubes are developed. Solutions are validated by numerical simulations

and physical testing. The strengthening effects of foam filling are quantified.

* A new methodology of design optimization of ultralight structures for minimum

weight with crashworthiness constraints is developed.

1.3 Overview of the Thesis

The present thesis is organized into seven chapters and a bibliography of cited refer-

ences.

In Chapter 9, two types of ultralight cellular solid materials (aluminum foam and hon-

eycomb) used as core materials in ultralight structures are discussed. The production

process and the mechanical behavior of these two materials are addressed. The yield

criteria of the materials present in literature are reviewed, and the simple maximum

principal stress yield model employed in the numerical simulations in the present re-

search is discussed. Finally, the ultralight structural components studied in this thesis

are briefly introduced, and they are aluminum foam or honeycomb filled extrusions,

aluminum foam-filled hat profiles, and double-walled sandwich components.

Chapter 3 investigates the axial crushing behavior of empty and foam-filled double-

cell and triple-cell extrusions and foam-filled hat profiles. Based on the Superfolding

Element theory, an analytical solution for the mean crushing force of multi-cell sec-

tions is derived, and the solution is compared with numerical predictions. Numerical

studies are then carried out in the second part of this chapter on the axial crushing

of foam-filled multi-cell columns. With the numerical results of filled columns and

analytical solutions for non-filled columns, closed-form solutions are derived to pre-

dict the mean crushing strength of the foam-filled double-cell and triple-cell sections.

The relative merits in energy absorption of multi-cell and foam-filled sections are

discussed.

In the third part of Chapter 3, experimental study is conducted on the axial crushing

behavior of aluminum foam-filled hat profiles. A total of 34 specimens are tested,
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which are of three different section types, i.e., single-hat, double-hat, double-hat

with a center flange. Various processes of fitting foam into hat sections and joint

techniques are investigated. The experiments revealed important features of axial

crushing behavior of empty and foam-filled hat profiles. Joint techniques should be the

point of concern. The spot-welding and weld-bond schemes, which appear sufficiently

strong for empty members, are not strong enough for foam-filled members. Finally,

the relative merit of foam-filled members compared to non-filled ones are quantified

by performance tests.

The first part of Chapter 4 presents the experimental results of aluminum foam-filled

hat profiles undergoing bending collapse. Quasi-static bending tests are carried out

on empty and foam-filled single and double-hat beams. A new experimental approach

is applied so that the specimens can undergo large bending angles up to 1500. Salient

features of the deep bending behavior of empty and filled hat members are revealed

in the experiments.

The strengthening effects of the foam and honeycomb fillings on the plastic resis-

tance of thin-walled beams in bending collapse mode are then studied numerically in

Chapter 4. The increase in bending resistance resulting from filling is quantified, and

closed-form expressions are derived based on the analytical solutions, experimental

data and numerical results. The densities of the cellular solid fillers considered in the

study are up to 20% relative density, which is of practical interest.

Torsional crushing behavior of empty and foam-filled thin-walled tubes are discussed

in Chapter 5. An analysis by applying the principle of virtual velocities to kinemat-

ically admissible displacement fields is conducted to predict the torsional behavior

of thin-walled tubes with large plastic deformations. Three successive deformation

phases, namely pre-buckling, cross-section buckling, and collapse-spreading phase,

are identified. The analytical model is then extended to the cases of thin-walled rect-

angular and hexagonal tubes. Numerical simulations are carried out and the results

are compared with the analytical solutions.

Of particular interest in crashworthiness application is the effect of the lightweight

metal filler on the resistance and energy absorption of a structural member. The

torsional collapse behavior and plastic resistance of thin-walled tubes filled with alu-

minum foam are investigated theoretically and numerically in the second part of
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Chapter 5. It is found that the presence of the filler acting as elastic-plastic foun-

dation to the skin changes the sectional buckling mode into higher ones, and hence

increases the torsional resistance. The upper and lower bounds on the torsional resis-

tance of filled tubes are established approximately. Numerical simulations are carried

out. The torsional resistance elevation due to filling is quantitatively assessed, and

closed-form expressions are derived based on the analytical solutions and numerical

results. Finally, results of torsional experiments on empty and foam-filled square tubes

are presented. Results are used to validate the theoretical and numerical solutions.

The fundamental work discussed in previous chapters is of great importance in achiev-

ing a clear physical understanding of the crush mechanics of ultralight structures. The

strengthening effects of the core material under various loading conditions are investi-

gated and quantified. In particular, closed-form solutions are developed based on nu-

merical simulations, physical experiments and theoretical considerations. This forms

the basis of an optimization methodology proposed in Chapter 6. The methodology

combines the numerical optimization techniques with the above results in the crush

mechanics of ultralight structures. The optimization formulations are constructed

on a component level for the minimum weight with the constraints of crashworthi-

ness and elastic bending stiffness. Design optimization of various sections are carried
out using the proposed methodology to decide the most weight-efficient design for

crash energy management in axial crushing, bending collapse and torsional crushing

loadings. It is shown that the proposed methodology is suitable for the early-stage

component design with very little computational effort.

Finally, a summary of the results is presented in Chapter 7. Recommendations for

future research are suggested.
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Chapter 2

Ultralight Core Materials and

Ultralight Structures

2.1 Introduction

Highly porous metallic materials with a cellular structure have many attractive char-

acteristics, including low density, good acoustic and thermal resistance, and high

compressive strength-to-weight ratios. Therefore they have great potentials for use in

structural applications, such as reinforcement to hollow thin-walled structures, cores

for sandwich panels, and devices for absorbing impact energy. Reviews of the research

on the mechanical and physical properties of cellular materials are given by Gibson

and Ashby [17], Santosa [5], and Doyoyo and Wierzbicki [18].

Two typical cellular solid materials are aluminum foams and aluminum honeycombs.

Aluminum foams are made of a network of three-dimensional cells, while honeycombs

are composed of an array of parallel, prismatic cells. When subjected to a compres-

sive load greater than their maximum strength, deformation occurs by progressive

crushing of individual cells through the thickness of the foams and honeycombs. This

deformation characteristics gives the materials the capacity to undergo very large

compressive strains. Typically, the compressive stress-strain curve of aluminum foam

shows an elastic regime, followed by a long plastic collapse plateau regime, truncated
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by a regime of densification where the stress rises steeply. The elastic regime in foam

materials is a function of bending stiffness of cell walls and edges (Christensen [19]).

The collapse regime is associated with the development of plastic hinges formed in

these members, until cell walls begin to touch and the foam densifies (Thornton and

Magee [20, 21]). Likewise, the compressive stress-strain curve of aluminum honey-

comb shows three regimes: elastic, plastic and densification regimes. The elastic stage

is associated with axial compression of cell walls in out-of-plane loading and bending

of cell walls in in-plane-loading. Beyond a critical strain, the cells collapse by plas-

tic buckling (McFarland [22] and Wierzbicki [23]), and plastic deformation continues

until cell walls begin to touch. As the cells close up, the honeycomb densifies and the

slope of the stress-strain curve increases rapidly.

The manufacturing process, the mechanical properties and plasticity models of alu-

minum foams and honeycombs are summarized in the following.

2.2 Aluminum Foam

Metallic foams have been around since the 1950s. However, because of the high

cost and unsatisfactory quality, no industrial applications were found for those early

foams. Recent advances in cost-effective process for the production of high quality

aluminum foam has cleared the way for using this material in many applications,

such as reinforcement to thin-walled structures, cores for sandwich panels, and other

energy absorption applications.

2.2.1 Production Process of Aluminum Foam

The techniques of manufacturing aluminum foam fall into three main categories,

namely, melt route process, powder route process, and deposition techniques (Markaki [24]

and Santosa [5]).

Melt Route Process

While the techniques in this category vary, they basically involve melting the metal

36



and introducing the gas either by direct injection or by foaming agent decomposing.

The Cymat, Hydro, and Mepura foams are produced by injecting and mixing gas into

a vat of molten aluminum alloy and ceramic particles (typically SiC or Al 03). The

volume fraction of ceramic particles in the mix is between 0.05 and 0.15; the size of

the particles is between 1pm to 20 pm (Prakash et al. [25]). The injected air causes

bubbles to rise to the surface of the melt, form a liquid foam which is stabilized by

the presence of the ceramic particles on the gas-liquid interface of the cell walls. The

average size of the bubbles is between 3mm and 30mm and can be controlled by the

gas injection rate. The stabilized liquid foam is mechanically conveyed off the surface

of the melt and allowed to cool below the solidus temperature of the alloy. This

method allows for the semi-continuous production of foam panels.

The Alporas foam, on the other hand, is produced by adding 0.2 to 8 weight percent-

age calcium and 1 to 3 weight percentage titanium hydride powder to molten alu-

minum, which is then mixed with an impeller in a special casting chamber (Akiyama

et al. [26]). The calcium acts to increase the viscosity of the melt, while the titanium

hydride powder dissociates into titanium metal and gaseous hydrogen. The bubbles

formed by the gaseous hydrogen cause the melt to expand into a liquid foam. During

the expansion, the casting chamber maintains a constant chamber pressure, resulting

in a homogeneous cell structure in the liquid foam. Once the foam expands to the

desired volume, it is then cooled below the solidus temperature of the melt to form

a solid foam casting. Foams with average cell size between 2mm and 10mm can be

produced by this method.

Figure 2.1 shows the aluminum foam (Hydro) produced by the melt route process.

The advantage of the melt route techniques is that the manufacturing cost is relatively

low, while the disadvantage is that the size and distribution of the pores can only be

controlled to a limited extent.

Powder Route Process

Powder route techniques avoid the handling of molten metals by using a powdered

mixture of a metal or alloy and a foaming agent. IFAM foam is produced by this

technique. The foam agent is usually 0.4 to 0.8 weight percentage depending on

the desired foam density. The powder blend is then compacted by extrusion to be-
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come foamable semi-finished product in which the foaming agent is homogeneously

distributed within a dense, virtually non-porous metallic matrix. The semi-finished

product is then processed into pieces of the desired size and shape by rolling and

cutting. Upon heating the foamable material to temperature within the range of the

melting point, the foam agent releases gas in a controlled way, so that the metal trans-

forms into semi-solid, foamy mass which expands slowly into a highly porous cellular

solid with a closed-pore structure. The density of the metal foam is controlled by

adjusting the content of the foaming agent and varying the heating condition.

Figure 2.1 shows the aluminum foam (IFAM) produced by the powder route process.

Powder metallurgy allows greater control over foam macrostructure and can be used

to produce foams with complex shapes and inside hollow thin-walled structures. How-

ever, powder route techniques are inevitably more expensive than the melt route.

Deposition Techniques

Deposition techniques are based on the deposition of a metal onto a polymeric sub-

strate which is then removed by thermal decomposition. The foam produced by this

technique are with uniform cell structures, but the high cost limits their application.

(a) Hydro (b) If am

Figure 2.1: Aluminum foam (a) Hydro (b) IFAM
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2.2.2 Mechanical Behavior of Aluminum Foam

The mechanical properties of aluminum foam depend on both the cell structure of

the foam and the properties of the base material. A typical compressive stress-strain

curve of aluminum foam may be approximated by three regimes: linear elasticity at

small strains, a long plateau stress region, and a final densification region where stress

rises steeply, see Fig.2.2

densification

plateau

Of Et

felasticity

EDE

Figure 2.2: Compressive stress-strain curve of aluminum foam

The mechanical properties of aluminum foam for various relative densities can be

given as follows

Ef = ESQL), 2 (2.1)
PS)

Et = 0.02E1  (2.2)

Gf = Ef (2.3)

Olf = 00f(5 ) 3/2 (2.4)

1r7 = 0.5of(&) (2.5)

ED = 1 - l.4I (2.6)
PS
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where E,, aol, p, are the Young's modulus, plastic flow stress, and mass density of the

skeleton material of the foam, respectively. The plastic collapse stress 0f in Eq. (2.4)

was given among others by Santosa and Wierzbicki [27], while the expressions for

Young's modulus Ef, shear modulus G1 and densification strain EDwere developed

by Gibson and Ashby [17]. Based on experimental data, the plastic shear strength r1

is usually a fraction of the plastic collapse stress, r = (0.5 - 0.8)aj. The coefficient

was assumed to be 0.5 in Eq.(2.5) for simplicity. The expression for the tangent

modulus Et describing the strain hardening of the foam at the plastic stress plateau

was proposed by Santosa and Wierzbicki [27] and Hanssen [28].

The tensile stress-strain response of aluminum foam differs from a compressive one.

A typical tensile stress-strain curve is illustrated schematically in Fig.2.3. Unlike in

compressive loading where the material can undergo large macroscopic strains ( >

60%), the aluminum foam in tension tends to fail in a brittle fashion at a relatively

small strain (around 10%), and cracks start propagating after stress reaches a peak

and until it ruptures.

E

Figure 2.3: Tensile stress-strain curve of aluminum foam

Harte et al. [29] found that the uniaxial tensile yield strength is approximately equal

to the uniaxial compressive yield strength for some commercial foams. However, a

recent experimental study carried out by Doyoyo and Wierzbicki [30] showed that for

anisotropic foams the tensile strength is about one-third of the compressive strength

for the aluminum foam they tested. Sugimura et al. [31] reported that certain metal

foams exhibit a higher yield point in tension than in compression. The wide scattering

results suggest that more studies are needed to achieve a clear picture.
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Many investigators have focused on the development of physical models of failure of

cellular solids under multi-axial stresses. A few of such models are described below.

Gibson et al. [32J used an analysis of an idealized cubic unit cell to develop a yield

surface of the form

L + 0. 81(g)(1m)2 = 1 (2.7)
Orf P.9af

where a, is the magnitude of the uniaxial compressive collapse stress; p1/p, is the

relative density of the foam compared to the solid aluminum; a, and cm are the Von

Mises effective stress and mean stress defined in terms of the stress tensor as

I
am = -1(2.8)

3

C = rses = (2.9)

Sjj = Oij - Om ij (2.10)

In the principal stress space (O1, 02, 03), the above yield surface is an ellipsoid sitting

on the hydrostatic axis, see Fig.2.4(c). In biaxial loading, the yield surface is a

skewed ellipse, see Fig.2.5(dotted line). This model, however, does not account for

the difference in tensile and compressive strengths of foams which is a characteristic

of compressible materials.

The well-known Drucker-Prager yield criterion [33] has also been used for porous

materials such as soils

f = a, + vam - d (2.11)

where v and d are constants which can be determined by uniaxial tensile and com-

pressive tests. The Drucker-Prager yield surface is a cone sitting on the hydrostatic

axis in the principal stress space, see Fig.2.4(b).

41



Miller [34] improved the Gibson's model by incorporating the Drucker-Prager model

to account for the unequal tensile and compressive strengths in metal foams. Three

adjustable parameters were introduced in his model to fit the yield surface to the

experimental data. The yield surface takes the form

f = Oe + vam + a2 - d (2.12)

where v, a and d are material parameters to be determined from experimental data

of uniaxial tensile and compressive yield strength, and the plastic Poisson's ratio.

Deshpande and Fleck [35] suggested a self-similar yield model based on axisymmetric

loading tests on isotropic foams. The yielding would occur when the equivalent stress

& attains the yield value Y (uniaxial yield strength in tension and compression)

4P - Y < 0 (2.13)

where the stress function & is defined by

(2 1 2 + #202) (2.14)
1+ (1-)2

This criterion produces a yield surface of elliptical shape in (om, ce) space, with an

aspect ratio determined by the parameter #. The value of 0 can be established by

measuring the plastic Poisson's ratio vP

05-v=13(.- v) 2(2.15)

1 + pP

In the principal stress space, this yield surface is of ellipsoid shape similar to those

described above (Fig.2.4(c). With '32 = 4.5, i.e., the plastic Poisson's ratio VP = 0

(which is close to the case of aluminum foam), the yield surface in the biaxial loading

condition is a circle with radius being the value of a,, see Fig.2.5(dashed line).
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Figure 2.4: Yield surfaces.

Drucker-Prager model (d)

(a)Von Mises model (b)Drucker-Prager model (c)Modified

Maximum principal stress criterion

a C2

(71

Figure 2.5: Yield surfaces in biaxial loading. Solid line:the maximum principal stress

yielding model. Dotted line: Gibson's model. Dashed line: Deshpande & Fleck model

The models described above are for isotropic ductile foams, whereas many foams tend

to develop anisotropy under large plastic deformations. Gioux et al. [36] suggested

that anisotropy can be accounted for in the above yield models by using normalized

values of the equivalent and mean stresses

(2.16)
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and

1( + 2+ 03)
3 at 0 7p12 Op13

(2.17)

where -pi1, opI2 and Up13 are the uni-axial strengths in the X1, X2 and X3 directions.

Recently, Doyoyo and Wierzbicki [37] conducted combined normal and shear loading

tests on aluminum foam and honeycomb specimens. The tests were carried out on a

modified Arcan apparatus with a butterfly cellular solid specimen rigidly connected at

the center (see Fig.2.6). Their preliminary tests showed that, under the biaxial state

of stress, the foam tested exhibited a brittle fracture envelop determined by three

different models in the principal stress space. The fracture occurred at the maximum

principal stress in one regime, and when either the normalized difference or sum of

the principal stresses reached a critical value in the other stress regimes.

Figure 2.6: The Arcan apparatus with a butterfly

(Doyoyo and Wierzbicki [37])

cellular solid specimen at the center

Although the yield prediction method has been advanced by the above investigations,

a lack of multi-axial experimental data and the scattering of the available data made

it difficult to establish a general yield surface applicable for aluminum foams from

different manufacturer and of various densities. Furthermore, in most of the theo-

ries discussed above, only the initial yield surface has been addressed, which is not
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sufficient for the applications such as energy absorption structure design, where an

understanding of the post-yield behavior is essential.

In the numerical analysis carried out in this thesis, we shall use a simple maxi-

mum principal stress criterion for aluminum foam material (Shaw and Sata [38], San-

tosa [5]). In this yield model, no interactions between components of the stress tensor

is incorporated. On the other hand, the model describes adequately the hardening

and locking. Also the anisotropic properties of the foam can be easily incorporated

in the constitutive description. As shown in Fig.2.4(d), the yield surface is a cube in

the principal stress space, while in biaxial loading, it is a square (Fig.2.5, solid line).

This simple uncoupled yielding model is relatively easy to implement in numerical

analysis, and is available in some finite element code such as PAM-CRASH and LS-

DYNA. This model was employed in the analysis of foam-filled structures undergoing

compression, bending and torsion, and good agreements were shown between the

simulation and experimental data [7, 39, 40, 41]. The mechanical properties described

in Eq.(2.1) - Eq.(2.6) are specified in numerical analysis in three normal directions

and three shear directions, see Fig.2.7.

compression/tension shear

Gf

-ED

a Y

ff
... F f a

x3

x2

X1

Figure 2.7: Material model for the aluminum foam used in numerical simulation
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Bao et al. [42] performed a comparative study on indentation response of aluminum

foam using the above uncoupled yielding model in PAM-CRASH and the Deshpande

& Fleck model implemented in ABAQUS. They found that the uncoupled model

generally agrees well with the experiments in punch force, while the Deshpande &

Fleck model underpredicted the punch force response.

The strain rate compressive behavior of two aluminum alloy foams (Alulight and Duo-

cel) was investigated by Deshpande and Fleck [43] using the split Hopkinson pressure

bar and direct impact tests. It was found that for both foams tested, the mode of

collapse is qualitatively the same under quasi-static and dynamic (i < 5000s-1) load-

ings. The micro-inertia and shock wave propagation do not significantly affect the

properties of metallic foams for the range of impact velocities employed. The effect

of strain rate on the dynamic strength of the cell wall material is smaller than the

scatter band in strength of the foams. The stress elevation due to compression of

the trapped air is less than 1.5% of the static strength. It was concluded that the

dynamic behavior of these foams is very similar to their quasi-static behavior, and

the plateau stress is almost insensitive to strain rate, for strain rate up to 5000 s

(impact velocity 50 m/s).

This is consistent with what Hanssen et al. [16] found in their experimental study on

static and dynamic axial crushing of square aluminum extrusions filled with aluminum

foam. They found that the introduction of foam filler in general reduces the "energy

ratio" (the ratio between dynamic and static mean loads) compared to non-filled

extrusions. This behavior can be explained by considering two factors: (1) the foam

filler increases the absolute force level of the componens (2) aluminum foam shows

little loading rate dependency in their velocity range (up to 25 m/s).

2.3 Aluminum Honeycomb

Structural honeycomb revolutionized the aerospace industry 40 years ago, making

aircraft lighter, stronger and faster. The automotive industry has also recognized the

potential of honeycomb material to help it meet the increasing need for improved

safety, reduced emission, improved fuel consumption, lower weight and demanding

cost reductions. Much effort has been directed towards the research on the mechanical
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behavior of aluminum honeycomb. We shall give in the following a brief introduction

on the production process, mechanical behavior and the material modeling of the

aluminum honeycomb.

2.3.1 Production Process of Aluminum Honeycomb

Honeycomb is made primarily by the expansion method. The corrugated process is

most common for high density honeycomb materials (Hexcel [44]).

Expansion Process

The aluminum honeycomb fabrication process by the expansion method begins with

the stacking of aluminum sheets on which adhesive node lines have been printed. (see

Fig.2.8). The adhesive lines are then cured to form a HOBE (HOneycomb Before

Expansion) block. The HOBE block itself may be expanded after curing to give

an expanded block. Slices of the expanded block may then be cut to the desired

T dimension. Alternatively, HOBE slices can be cut from the HOBE block to the

appropriate T dimension and subsequently expanded. Slices can be expanded to

regular hexagons, underexpanded to 6-sided diamonds, and overexpanded to nearly

rectangular cells. The expanded sheets are trimmed to the desired L dimension

(ribbon direction) and W dimension (transverse to the ribbon).

W

HOBE Block HOBE Slice

Adhesive -

Expanded Sheet

Figure 2.8: Expansion process of aluminum honeycomb production(Hexcel [44])
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Corrugated Process

The corrugated process of honeycomb manufacture is normally used to produce prod-

ucts in the higher density range. In this process, adhesive is applied to the corrugated

nodes, the corrugated sheets are stacked into blocks, the node adhesive cured, and

sheets are cut from these blocks to the required core thickness, see Fig.2.9.

Figure 2.9: Corrugated process of aluminum honeycomb production(Hexcel [44])

2.3.2 Mechanical Behavior of Aluminum Honeycomb

The strength and stiffness of honeycomb are higher when loaded along the cell axis

(out-of-plane loading, T direction in Fig.2.11) than when loaded perpendicular to the

cell axis (in-plane loading, L and W directions in Fig.2.11). Much effort has been

made to study the mechanical behavior of aluminum honeycomb. McFarland [22]

was the first to analyze the axial crushing resistance of the aluminum honeycomb

used in the Apollo space program (in fact, honeycomb was the first material from

the earth to touch the moon). This early work was followed by Wierzbicki [23]. The

progressive folding of hexagonal honeycomb in the T direction was analyzed by using

his Superfolding Element method, and the crushing strength of honeycomb was given
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as a function of its relative density

ah = 3 .2 2 ao p) (2.18)

where ao is the flow stress of the cell wall material; ph is the apparent mass density

of the honeycomb; p, is the mass density of the cell wall material.

The theoretical prediction appears to be in good agreement with the experimental

data [45].

Figure 2.10 shows a typical uniaxial compressive stress-strain curve of aluminum

honeycomb. As can be seen, elastic, collapse plateau and densification regimes can

be clearly identified.

2

c' 1.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5
Strain

0.6 0.7 0.8 0.9

Figure 2.10: Compressive stress-strain curve for Hexcel Aluminum honeycomb

Very little theoretical or experimental work was found in the literature on the failure

properties of aluminum honeycomb under combined normal and shear stress load-
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ing [46]. Recently, Doyoyo and Wierzbicki [37] proposed a test fixture, an Arcan

apparatus with a butterfly cellular solids at the center (see Fig.2.6), to measure fail-

ure envelops of aluminum foam and honeycomb under biaxial loading. It was found

in their preliminary tests that the honeycomb collapsed plastically under biaxial load-

ing, developing collapse lines oriented at directions parallel to the maximum principal

stress. The plastic yield surface of the honeycomb is elliptic in the space of the second

principal invariant of the stress deviator (J2) and the first principal stress invariant

(I).

Similar to the case of aluminum foam, the maximum principal stress yield model

(Santosa [5]) is employed for aluminum honeycomb in the numerical analysis con-

ducted in this thesis. The mechanical properties of aluminum honeycomb, which

include the elastic moduli (Eh, Gh) and plastic collapse stresses ( h, h) are smeared

in three orthogonal directions of T, L, and W as shown in Fig.2.11. The mechanical

properties in each direction are defined in Table 2.1. The out-of-plane direction T is

considered as the strong axis, while the in-plane direction L and W are weak axis.

No interaction between components of the stress tensor is incorporated in the yield

condition.

compression/tension shear

Gh

-ED

T

L

W honeycomb

Figure 2.11: The material modeling of aluminum honeycomb in the numerical analysis
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Table 2.1: The mechanical properties of aluminum honeycomb

Properties Normal T Normal L or W

Eh EqPA 1.49E8 A
Gh0.5Eqh. 037E(L)3

Oh 3.220h(&A) 5/ 3  0.50oh(p') 2

Th 1Cr6h (PA5|3 0.220h( LA)2

PAED 1 140A j

The in-plane and out-of-plane expressions of Young's modulus Eh, shear modulus

Gh, plastic collapse stress oh, plastic shear stress rh and densification strain ED for

various relative densities listed in Table 2.1 are given by Gibson and Ashby [17]. The

expression of os in T direction was given by Wierzbicki [23]. The plastic shear stress

rh in the T direction is tentatively assumed to be a half of the plastic shear stress

ah- Parameters E,, ao, and p, are respectively the Young's modulus, the flow stress,

and the mass density of the cell wall material. Note that the expressions given above

were derived for a low relative density range PA <0.3.
PO

Regarding the dynamic properties, previous studies [47, 48, 49] found an increase of

between 20 and 70% in the dynamic crush strength at impact velocities of the order

of 30 m/s compared with the corresponding quasi-static value. These findings are

inconsistent with an apparent insensitivity of the foam to the strain rate.

2.4 Ultralight Metal Structures

The ultralight metal structures studied in this thesis are based on the innovative ideas

of ultralight structural components, which consist of aluminum sheets, extrusions,

honeycombs, foams and sandwich panels. They will be assembled into ultralight

structures using a variety of operations, including press break forming, stamping,

hydroforming, flanging, foaming, and various methods of joining (Wierzbicki [50]).

Aluminum extrusions are the most probable candidate for ultralight space-frame ap-

plications because they can be welded. A considerable weight advantage of extrusions
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can be achieved by placing aluminum foam or honeycomb inside tubes, see Fig.2.12.

The crush behavior and design optimization of aluminum foam or honeycomb filled

extrusions will be studied intensively in the course of the current thesis work.

(a) (b)

Figure 2.12: Aluminum foam and aluminum honeycomb filled extrusions

Another ultralight structural component considered in this thesis is the reinforced

cross-sections of spot-welded channel (single or double) beams with an insertion of

pre-casted foams (see Fig.2.13). The foam element of a desired geometry is provided

by foam manufacturer as a semi-finished product. This element will be fit inside

two channel profiles before spot-welding. This technique is especially attractive for

local reinforcing A and B pillars and longitudinal rails [50]. The manufacturing

process and the crush behavior of such foam-filled hat profiles will be investigated

experimentally in this thesis. Design optimization for minimum weight will also be

carried out.

(a) (b)

Figure 2.13: Aluminum foam-filled single-hat and double-hat profiles

Double-walled sandwich component (see Fig.2.14) are recognized as a very weight-

efficient structural member is crash energy management (Santosa [5], Barrera et

al. [51], Mohr and Meyer [52]). The double-walled sandwich components can be made
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of extrusions and ultralight cores by hydroforming, or made of commercially available

sandwich panels (thin skins are separated by, and bonded to, ultralight cores) by edge

bending or press break forming [50]. Weight optimization of double-walled sandwich

members with stiffness and energy absorption constraints will be addressed in this

thesis.

Al foam
or honeycomb

Al skin

Figure 2.14: Double-walled sandwich components
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Chapter 3

Axial Crushing of Ultralight

Structures

Over the past twenty years, enormous efforts have been made in the academia and

industry to understand the mechanisms of structural collapse in axial crushing of

thin-walled metal tubes. The axial progressive folding deformation of the tubes is

known to be an efficient energy absorbing mechanism. It is recognized that the

number of "angle" elements on a tube's cross-section decides, to a large extent, on

the efficiency of the energy absorption [53, 54]. It is therefore desirable to design thin-

walled sheet metal profiles or extrusions with internal webs for weight-efficient energy

absorption. The axial crushing of single-cell, double-cell and triple-cell aluminum

extrusions is studied analytically and numerically in this chapter. Based on the

Superfolding Element theory [53, 54], an analytical solution for mean crushing force

of multi-cell sections is developed. Numerical simulations using a non-linear explicit

finite element code are then conducted. The numerical results are compared to the

analytical solutions.

In the second part of this chapter, the axial crushing of aluminum foam-filled multi-

cell columns is addressed. The applications of cellular solids such as aluminum foam

and honeycomb as reinforcement to thin-walled structures, and as cores for sand-

wich panels, have received increasing interest in recent years. Aluminum foam is

of particular interest because of its mass efficiency, its attractive mechanical prop-
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erties, and the recent development of cost-effective production process. Extensive

studies have been carried out by a number of authors on the axial crushing behav-

ior of foam-filled columns [12, 13, 14, 15, 16, 10, 39], and it was revealed that the

crushing resistance and energy absorption of thin-walled columns are improved dra-

matically by filling them with aluminum foam. This is due to the interaction between

the tube wall and the foam core which changes the local buckling mode of the tube

wall. Seizberger et al. [12, 13] conducted experimental studies on the axial crushing

of steel columns filled with aluminum foam. Various cross-sections were considered

in their studies, including square, hexagonal, octagonal and bitubal arrangements of

these cross-sections (two concentrically oriented profiles with aluminum foam in be-

tween). They reported that considerable mass efficiency improvements with respect

to energy absorption were obtained by foam filling, particularly the bitubal arrange-

ments. Comprehensive experimental studies on the effect of filling tiin-walled square

and circular aluminum extrusions with aluminum foam were carried out by Hanssen

et al. [14, 15, 16]. Santosa et al. [10, 39] conducted numerical investigations on the

effect of foam-filling undergoing axial crushing. Aluminum foam filling was found to

be preferable to thickening the column wall in terms of specific energy absorption.

Based on their numerical simulations, a simple closed-form solution was developed to

calculate the mean crushing force of foam-filled square sections. It was found that

the increase of mean crushing force of a filled column has a linear dependency on the

foam compressive resistance and cross-sectional area.

Numerical analyses are carried out in this chapter to simulate the axial crushing of

double-cell and triple-cell extrusions filled with aluminum foam. Based on the numer-

ical results and the analytical solutions to non-filled sections, closed-form solutions

are derived to calculate the mean crushing force of foam-filled multi-cell sections.

In the third part of this chapter, an experimental study is conducted on the axial

crushing behavior of aluminum foam-filled hat profiles. Closed-hat sections are con-

monly used in automobile structures. Experimental, numerical and theoretical studies

have been initiated to investigate the crash behavior of empty closed-hat members

[55, 56, 57, 58, 59, 60]. McGregor et al. [55] presented the experimental results

for the performance of aluminum structural components with various closed-hat sec-

tions subjected to axial and bending loading. It has been demonstrated in their work

that it is possible to obtain weight saving of around 45% of aluminum automotive
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structures in comparison with an equivalent mild steel structure while still meeting

the required structural performance in terms of crashworthiness and other structural

performance criteria. However, no extensive experimental data regarding axial crush-

ing and bending collapse of aluminum closed-hat sections with aluminum foam filler

appears to have been published in the open literature.

A total of 46 specimens were tested in this experimental program, 34 of which were of

length 350mm and tested in axial crushing mode. The remaining specimens were of

length 675mm and were tested in bending collapse mode, which will be discussed in

the next chapter. Three different cross-sections are considered which are single-hat,

double-hat and double-hat with a center plate. The sheet metal is aluminum alloy

HS5754 with 2.0mm gauge. The foam is CYMAT Al-SiC foam with apparent mass

density of 0.27 g/cm3 .

3.1 Single-cell and Multi-cell Thin-walled Extru-

sions

The Superfold Element theory [53, 54] on the crushing mechanics of thin-walled struc-

tures is reviewed first. Then theoretical solutions to the mean crushing force of

multi-cell columns undergoing axial crushing is derived based on this theory. Numer-

ical analyses using the explicit finite element code PAM-CRASH are then carried out,

and the results are compared to the theoretical solutions

3.1.1 Superfolding Element Theory

The Superfolding Element theory on the crushing mechanics of thin-walled structures

was developed by Wierzbicki and Abramowicz [53, 54] to describe the crushing behav-

ior of a class of thin-walled structures. The physical problem considered in the theory

was two intersected plates subjected to axial compression. The initial geometry of

the compressed element was defined by the height 2H, total width b, wall thickness t,

and the angle 240 between two adjacent plates. The current geometry was described

by the crushing distance 6. See Fig.3.1.
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2H.

Figure 3.1: The geometry of the Superfolding Element. Left: initial geometry. Right:

global geometry of the basic folding mechanism

The following assumptions were made in the derivation:

(i) The structure consists initially of planar surface element.

(ii) The material is regarded as rigid-perfectly plastic with a constant value of flow

stress oo.

(iii) The length of the local buckling wave 2H remains constant during the formation

of each buckle or fold.

(iv) The constraints imposed on the crushing process by the boundary and symmetry

conditions are forcing the fold lines to move through the material.

A basic folding mechanism was then constructed based on the above assumptions

and the kinematic continuity conditions. Figure 3.2 shows the proposed basic folding

mechanism, which is a one-degree-of-freedom system and consists of four trapezoidal

elements, a section of two horizontal cylindrical surfaces, two inclined conical surfaces,

and a section of a toroidal surface.

The equilibrium of the system was expressed via the principle of virtual velocities

PI' = Ei (3.1)

The product P6 represents the rate of work of external force where the relative velocity

of the uniformly shortened upper and lower edges of the basic folding mechanism is
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Figure 3.2: Basic folding mechanism in Superfolding Element theory

denoted by 6 while P is the instantaneous force. The rate of energy tin dissipated

in the crushing process results from the continuous and discontinuous velocity fields

(horizontal and inclined hinge lines)

int = :(MPkO + NQIAaO)ds + ILModl(3.2)

where kafi and Aas are respectively the rate of curvature and the rate of extension in

the continuous deformation field; M*0 and NGO are respectively stress couples and

stress resultant; Mo = laot2, the fully plastic bending moment.

Since the basic folding mechanism is a one-degree-of-freedom system, the equilibrium

equation Eq.(3.1) can be integrated over the whole deformation process (distance

2H), which gives the balance of total energies

2PmH = Ei+ E2 + E3  (3.3)

where Pm is the mean crushing force; E is the energy dissipated in the continuous

deformation field; E2 and E3 are respectively the energy dissipated on the horizontal

hinge lines and on the inclined hinge lines. E, E2 and E3 can be calculated from the

geometry of the basic folding mechanism.

From Eq.(3.3), a general form of the formula for Pm can be obtained (for details, see
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reference [53])

P~ r b H
_M- = A1r+A2-+ A3-H(3.4)
MO t H r

where the numerical values of the coefficients A1, A 2 and A3 are known and depend

on the type of problem. The wall thickness is denoted by t and r is the smaller radius

of the toroidal surface.

It was postulated in the derivation that the collapse mechanism, which activates and

persists in the course of the crushing process, leads to the least possible amount of

the mean crushing force. The unknown parameters can thus be determined from the

set of equations

t9Pm, OPm
= 01 = 0 (3.5)

OH '(9r

which results in an expression for the mean crushing force

PM= 33A A2A3,Vb_1 (3.6)
MO

and the half folding wavelength

H = A2/(A 1A 3 )?/Wi (3.7)

The result shows that two thirds of the plastic energy is always dissipated through

inextensional deformations at stationary and moving plastic hinge lines. The exten-

sional deformation, confined to the small fraction of the total area of the shell, are

responsible for the remaining one-third of the dissipated energy.

For a square box column with with b and wall thickness t, the theory gives the mean

crushing force,

Pm = 9.560OtAb3 (3.8)
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The above formula was revised by the same authors [54] taking the effect crushing

distance into account

Pm = 13.06ootbk (3.9)

For a material with power law hardening, the flow stress ao can be approximated by

an energy equivalent stress [39]

ro0 " "(3.10)
1 + n

where a, and au denote the yield strength and the ultimate strength of the material,

respectively; n is the exponent of the power law.

3.1.2 Simplified Superfolding Element Theory for Multi-cell Sec-

tions

In order to apply the Superfolding Element theory to the multi-cell sections (such as

double-cell and triple-cell, see Fig.3.3), a simplified approach is used in the following

derivation. In this approach, instead of constructing a kinematically admissible model

consisting of trapezoidal, toroidal and cylindrical surfaces with moving hinge lines as

described above, the basic folding element proposed hereby only consists of three

extensional triangular elements and three stationary hinge lines [61]. See Fig.3.4

for the global geometry of the basic folding mechanism, and Fig.3.5 for extensional

elements and bending hinge lines on the basic folding mechanism.

Figure 3.4 shows one contributing flange with width c (which is a half of the sectional

width b on a single-cell section), thickness t, length 2H (folding wavelength), and flow

stress ao. After deformation, three membrane elements (one in extension and two in

compression) are developed near the corner line (Fig.3.5(a)), and three horizontal

stationary hinge lines are developed on the flange with rotation angles 9, 29 and 9
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Figure 3.3: Single-cell, double-cell and triple-cell cross-sections

c

2H1

corner line

(a)

2H

(b)

P

(c)

Figure 3.4: The global geometry of the basic folding mechanism. (a) Before deforma-

tion. (b) After deformation. (c) Side view

respectively (Fig.3.5(b)). The equilibrium of the system can be stated by the principle

of virtual velocities

Ps = E6 +Ekm (3.11)

where P denotes the instantaneous crushing force; 6 is the axial displacement rate;

Eb and Em are respectively the energy dissipation rate in bending and membrane

deformation.

By integrating Eq.(3.11) for one wavelength in the process of progressive folding, the
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Figure 3.5: Extensional elements and bending hinge lines

equilibrium can be restated as

Pm2H = E&+ Em (3.12)

In the above equation, Pm denotes the mean crushing force. The membrane energy

Em dissipated during one wavelength crushing can be evaluated by integrating the

extensional and compressional area (shaded area in Fig.3.5(a))

Em = otds = -aotH2 = 2Mo--
s 2 t

(3.13)

where MO = jaot 2 , the fully plastic bending moment of the flange plate.

The bending energy E can be calculated by summing up the energy dissipation at

three stationary hinge lines

3

Eb = Mo6tci
i=1

(3.14)

where 67 is the rotation angle at each hinge line. For simplicity, it is assumed that

the flange is completely flattened after the axial displacement of 2H, see Fig.3.6.
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Figure 3.6: A simplified model of post-deformation geometry

It can be seen therefore that the rotation angles at three hinge lines are respectively

,r and M. On employing Eq.(3.14), Eb can be obtained

E = 2rMoc (3.15)

With Eq.(3.12), Eq.(3.13) and Eq.(3.15), the mean crushing force Pm can then be

obtained

PM = -(H+r-i i (3.16)
Mo t H

However, in a real structure, the flange can never be completely crushed as in Fig.3.6.

The available crush distance for one wavelength is actually less than 2H. Wierzbicki

and Abramowicz [53, 54] found that the effective crush distance is about 70%- 75% of

the wavelength. This value is taken as 0.75 in the following derivation for simplicity.

Eq.(3.16) should then be modified taking the effective crush distance into account

-P = 4 -H H-(3.17)
Mo =3 (t + H7

Now lets consider a multi-cell section which consists of N number of contributing

flanges (for example, N = 14 for double-cell and N = 20 for triple-cell). Assume
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the wall thickness is constant over the cross-section, the mean crushing force of the

multi-cell section can be calculated by summing up all the contributing flanges

Pm 4 N H c
_M =t +r-l

Mo 3. t H)
(3.18)

where I is the total length of the walls (and internal webs) of the cross-section.

The wavelength H can be determined by the stationary condition of the mean crushing

force

8Pm =0(3.19)
w cH

which leads to

Srit (3.20)

Substituting Eq.(3.20) into Eq.(3.18) results in the final expression of the mean crush-

ing force for a multi-cell section

PM = 2ot irNA (3.21)
3

where A is the (material) area of the cross-section.

Take, for instance, a double-cell section with width b. The number of contributing

flanges is N = 14, and the material area A = 5bt. Eq.(3.21) can then be rewritten

for the double-cell section

(3.22)= 9.89oobiti
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Similarly, for triple-cell section (N = 20, A = 6bt), the mean crushing force is

P,',f = 12.94oobit2 (3.23)

It should be noted that the above theory is derived for a rigid perfectly plastic material

with a constant flow stress co. For a material with power law hardening a =a(-)",

the flow stress uo can be approximated by an average stress over the strain range

0 < e < E (see Fig.3.7).

(3.24)Or f o d a
U= / +u

en o 1+n

4

C(L.

-4po

a

E

Figure 3.7: Energy equivalent flow stress

3.1.3 Numerical Simulations of Multi-cell Sections

Quasi-static finite element analyses are carried out using the explicit code PAM-

CRASH to simulate the axial crushing of single-cell, double-cell and triple-cell columns.

Numerical results are then compared to the theoretical solutions derived above.
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3.1.3.1 Finite Element Modeling

The single-cell, double-cell and triple-cell columns (see Fig.3.3) with sectional width

b = 80mm and column length L = 400mm were considered in the analyses. The

wall thickness for each cross-section was varying in the range of 1mm - 3mm. The

column walls were modeled using the Belytschko-Tsay 4-node shell elements with

three integration points through the thickness and one integration point in the element

plane. One end of the column was simply supported, while the other end was pushed

in the axial direction by a rigid wall, A single surface contact algorithm was used in

the simulation to account for the contact between lobes during deformation.

In order to initiate a stable and progressive crushing, triggers with a magnitude of

5mm were introduced in the models. The positions of the triggers were guided by

the theoretical predictions of the buckling and folding wavelength: a half folding

wavelength H down from the pushed end of the columns, whcre H was calculated by

Eq.(3.7) for single-cell and Eq.(3.20) for multi-cell columns. The shape of the triggers

are illustrated in Fig.3.8.

Figure 3.8: Triggers introduced in the finite element models

The column wall material was aluminum extrusion AA6061 T4, with Young's modulus

E = 70GPa, Poisson's ratio v = 0.28, yield strength ay = 110.3MPa, ultimate

strength a, = 213.OMPa, and elongation 19%. The tensile stress-strain curve is

shown in Fig.3.9. It can be well fitted by a power law expression with n = 0.2.

The constitutive behavior of the thin shell element was based on an elastic-plastic

material model with Von Mises isotropic plasticity algorithm with piecewise linear

plastic hardening.
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Tensile stress-strain curve of AA 6061 T4
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CO,
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Figure 3.9: Tensile stress-strain curve of AA6061 T4

3.1.3.2 Numerical Results

The specimens were crushed axially in simulations with a final displacement equal

to 75% of the initial length. Fig.3.10 shows examples of deformed meshes of single-

cell (t = 3.0mm), double-cell (t = 2.0mm) and triple-cell (t = 1.67mm) columns.

The three columns thus have the same mass with these values of thickness.

corresponding crushing force responses are shown in Fig.3.11.

The

Figure 3.10: Deformation patterns of single-cell, double-cell and triple-cell columns

As can be seen, all three columns developed stable and progressive folding deformation

patterns. The crushing forces fluctuate around mean values before they rise steeply
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Figure 3.11: Crushing force responses of single-cell, double-cell and triple-cell columns
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Figure 3.12: Mean crushing forces predicted by theoretical solutions and by numerical

simulations
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when the deformation capacity is exhausted at the effective stroke length. While

the exact definition of the effective stroke length on the force-displacement curve is

somehow not unique, the theoretical prediction by Wierzbicki and Abramowicz [53,
54] giving the stroke efficiency of 0.7O-0.75 (stroke efficiency is defined as the ratio
between the effective stroke length to the initial length of the column) agrees very

well with the numerical predictions. The mean crushing force Pm is defined by

1 St

Pm = - P(s)ds (3.25)
s e f

where s, is the effective stroke length, and is taken as 0.731 in the following calculation.

The mean crushing forces of single-cell, double-cell and triple-cell columns with var-

ious wall thicknesses were calculated, and the results are shown in Fig.3.12. The

theoretical solutions (Eq.(3.9), Eq.(3.22) and Eq.(3.23)) are shown in the same fig-
ure for comparison. One can see that in the case of empty columns the theoretical

solutions compared very well with the numerical predictions.
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3.2 Foam-filled Extrusions

In order to achieve higher weight efficiency in energy absorption, the lightweight

cellular materials such as aluminum foam was utilized to fill the thin-walled structures.

Significant increases in the crushing resistance and energy absorption were obtained

from the direct compressive strength of the foam and from the interaction between the

foam and the column wall. The foam filler functions as an elastic-plastic foundation

to the column wall, and accordingly reduces the folding wavelength and thus increases

the crushing resistance. In this section, the crushing resistances of foam-filled single-

cell and multi-cell columns were studied by dimensional analysis and by numerical

simulations. The mean crushing force elevation due to the foam filling for such cross-

sections were quantified thereafter.

3.2.1 Foam-filled Single-cell Sections

Based on the results of numerical simulations, Santosa and Wierzbicki [10] assumed

that the mean crushing force of a foam-filled square column (Pm 1 ) takes an additive

form of the mean crushing force of a non-filled column (Pm) and a force elevation due

to the foam filling (APm), that is

Pmj = Pm + APm (3.26)

where the force elevation AP is a function of the materials and geometries of the

column and the foam filler

APm = f(oo,aof, b, t) (3.27)

where ao and aj are respectively the flow stress of the column wall material and the

compressive strength of the foam; b and t are respectively the sectional width and the

wall thickness.

Now let us inspect the dimensions of these quantities in the standard LMT-base

dimension system. APm is the dependent quantity, and oo, a , b, t are the complete
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set of independent variables. In the chosen base dimension system, the dimension

functions read

[APm] = MLT-2 ; [0o] = [aj] = ML 1 T-2 ; [b]= [t] = L (3.28)

By simple inspection, we can choose two dimensionally independent quantities, o1

and b. The sought dimensionless form of Eq.(3.27) is straightforwardly obtained by

applying Vaschy-Buckingham Theorem (or Pi-Theorem) (e.g. Ulm [62])

A M =F (00 IA 3-9
aft Ka,' (3.29)orfb2 C tf

Hassen et al. [39] conducted experiments on foam-filled columns with a wide range

of width-to-thickness ratio, 28 K K 80 (which is a practical range of many thin-

walled structures applications), and with three different column material, AA6060 T4,

AA6082 T4 and mild steel Rst37, and with a wide range of foam strength 0.3 0

12.5MPa. They found that the non-dimensionalized force elevation "', shows very

weak dependences on the quantities a and t in the interested range (see Fig.3.13).
of 

t

Based on this observation, Eq.(3.29) was further simplified

AP
"n = C (3.30)

orfb2

The constant C was determined by fitting the experimental and numerical simulation

data, and was found to be 1.8. Therefore, the mean crushing force of the foam-filled

single-cell sections reads

Pm1 = Pm + 1.8b2ur (3.31)

where Pmf is the mean crushing force of the filled section; P,,, denotes the mean

crushing force of the corresponding non-filled section and is given in Eq.(3.9); b is the

sectional width; of is the compressive strength of the foam material.

72



(b) Mean crushing force Increase : Numerical prediction vs Experiments
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Figure 3.13: Mean crushing force elevation due to foam filling:experiments and pre-

diction (Santosa et al. [39])

The above equation can be interpreted that the increase in the mean crushing force of

the foam-filled section is due to the direct compressive resistance of the foam (bo)

plus the foam-wall interaction effect 0.8b20 which accounts for 80% of the direct

compressive resistance of the foam. The proposed solution is within 8% of the exper-

imental data for wide range of column geometries, materials and foam strength [39].

3.2.2 Foam-filled Multi-cell Sections

Using the same argument as above, the mean crushing force elevation of double-

cell and triple-cells due to foam filling are assumed to have a linear dependence on

the foam strength and the cross-sectional area of the column. The proportionality

constant are to be determined by the following numerical analyses.
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3.2.2.1 Finite Element Modeling

The double-cell and triple-cell columns with sectional width b = 80mm were consid-

ered in the analyses (see Fig.3.14). The wall thickness of the double-cell column was

2.0mm, while the wall thickness of the triple-cell was 1.67mm (so that two empty

columns have the same weight). The column walls were modeled with Belytschko-

Tsay 4-node shell elements, while the aluminum foam filler was modeled with 8-node

solid elements. The interaction between the foam filler and the column wall was sim-

ulated with a surface-surface sliding contact. A single surface contact algorithm was

used to account for the contact between the lobes of the walls. The axial crushing

process was simulated quasi-statically by a moving rigid wall pushing one end of the

column while the other end was simply supported. The same type of triggers as

illustrated in Fig.3.8 were introduced in the finite element models.

PfPf

Figure 3.14: Foam-filled double-cell and triple-cell sections

The column wall material was aluminum extrusion AA6061 T4. Its mechanical prop-

erties and tensile stress-strain curve were provided in the previous section. The me-

chanical behavior of aluminum foam is characterized by elastic modulus Ef, plastic

collapse stress c-f, shear modulus Gf, plastic shear strength Ty, and densification

strain ED, see Fig.2.7. These parameters strongly depend on the aluminum foam

density pf, and they were described in Chapter 2 via Eq.(2.1)- Eq.(2.6). The max-

imum principal stress yielding model, as discussed in Chapter 2, was applied in the

calculation for aluminum foam.

The CYMAT Al-SiC foam was used in the present analysis, with the plastic flow

stress of the base material aof = 98.3MPa, and Young's modulus Ef = 70GPa.
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3.2.2.2 Numerical Results

Numerical simulations were carried out for the double-cell and triple-cell columns

filled with aluminum foam with relative density in the range of 2.5-20%. Fig.3.15

shows examples of deformed meshes of columns filled with 10% relative density foam.

Figure 3.15: Deformation patterns of column walls of double-cell and triple-cell filled

with 10% relative density foam

One can see that the columns deformed in a stable and progressive folding patterns.

Compared to the non-filled columns (Fig.3.10), the filled ones exhibit smaller folding

wavelength. The number of 13 lobes were developed on the filled double cell, while

only 10 lobes were developed on the non-filled one. For the triple cell, 12 lobes were

developed on the non-filled one, while much more lobes appeared on the triple-side

of the filled one. On the other hand, the extensional folding mode (all lobes moving

outward) is evident in the filled columns, while for non-filled columns the folding mode

is mainly inextensional one where the individual lobes around the circumference of

the column alternatively move inward and outward. Due to the foam filling, the

crushing resistances are substantially elevated, as can be seen in Fig.3.16 for double-

cell columns and in Fig.3.17 for triple-cell columns.
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Figure 3.16: Crushing force responses of foam-filled double-cell columns
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Figure 3.17: Crushing force responses of foam-filled triple-cell columns
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3.2.2.3 Mean Crushing Force Prediction

The mean crushing forces up to the effective stroke length were calculated for the

columns filled with various foams with relative densities in the range of 2.5- 20%. As

can be seen in Fig.3.16 and Fig.3.17, the effective stroke length (at which the crushin6

force rises steeply) varies slightly for different densities of foam filling. It is therefore

assumed in the mean crushing force calculation that the stroke efficiency is 0.73 for all

filled columns considered in the present study, which is the same as that of non-filled

ones. Using the same argument as in the case of single-cell sections that the increase

of the mean crushing strength due to the foam filler depends linearly on the foam

crushing strength (af) and the cross-sectional area (b), the proportionality constants

for double-cell and triple-cell sections are found to be 2.4 and 2.8 respectively, based

on the numerical results obtained in the present study. Therefore, the mean crushing

force of foam-filled double-cell section can be predicted by

P'1 = P" + 2.4b 5 (3.32)

where PI4 is the mean crushing force for a non-filled double-cell section and is given

in Eq.(3.22).

Similarly, the mean crushing force of the foam-filled triple-cell section can be predicted

by

P"'- = P4/' +2.8b2Of (3.33)

where P4" is the mean crushing force of a non-filled triple-cell section and is given

in Eq.(3.23).

The above equations should be compared with Eq.(3.31) for a foam-filled single-cell

column where the proportionality parameter equals 1.8. Eq.(3.32) and Eq.(3.33) can

be interpreted that the elevation of the mean crushing resistance of the foam-filled

section is due to the direct compressive resistance of the foam plus the foam-wall

interaction effect which accounts for respectively 140% and 180% of the direct con-

tribution of the foam for double-cell and triple-cell sections. The resulting solutions

77



of APm = Pm1 - P. as functions of foam strength are plotted in Fig.3.18 together

with the numerical solutions for double cell and in Fig.3.19 for triple cell. It can be

seen that the analytical curve compares very well with the finite element predictions.
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Figure 3.18: The increase of mean crushing strength due to foam filling for double

cell
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Figure 3.19: The increase of mean crushing strength due to foam filling for triple cell
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3.2.3 Discussions

The axial crushing of hollow multi-cell columns were addressed in this section. Based

on the Superfolding Element theory, an analytical solution for the mean crushing force

of multi-cell sections was derived, and the solution was compared very well with the

numerical predictions.

Numerical studies were also carried out on the axial crushing of foam-filled double-

cell and triple-cell columns. Based upon the numerical results of filled columns and

the analytical solutions for non-filled columns, closed-form expressions were derived

to calculate the mean crushing strength of the foam-filled double-cell and triple-cell

sections. It was found that the interaction effects between the foam core and the

columns wall contribute to the total crushing resistance by the amounts equal to 140%

and 180% of the direct foam resistance for double cell and triple cell, respectively.

The energy absorption En during the axial crushing up to the effective stroke length

can be calculated using the expressions of the mean crushing force

En = PmLSE (3.34)

where Pm is the mean crushing force; L denotes the length of the column; SE is the

stroke efficiency;

The energy absorbed is often divided by the weight of the structure to give a Specific

Engery Absorption (SEA), and this quantity is widely used to judge the relative

effectiveness of various energy absorbing devices and structures [3]. The specific

energy absorption of foam-filled columns can be calculated

SEA = En (3.35)
mC + m1

where m, is the mass of the column wall and m1 is the mass of the foam filler. mr = 0

for non-filled columns;

Take, for instance, columns with sectional width b = 80mm, column length L =

400mm, and wall thickness t = 1mm. To achieve higher energy absorption, one
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approach is to increase the wall thickness (up to 5mm) of the non-filled single-cell,

double-cell and triple-cell sections. The other approach is to keep the wall thickness

constant but increase the weight by filling the columns with aluminum foams (relative

density up to 15%). Take stroke efficiency SE= 0.73 in the calculation. The resulting

SEAs are plotted in Fig.3.20

Weight Efficiency Comparison, b=80mm, L=400mm

,--25
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Figure 3.20: Specific energy absorptions of various types of columns

A few observations can be made based upon the SEA plot.

* The foam-filled sections generally exhibit higher specific energy absorption val-

ues and thus higher weight-efficiency in energy absorption. The gain in SEA of

filled columns is about 30% for single cell and about 40% for double cell and

triple cell relative to empty columns.

* The gain in SEA of the double cell and the triple cell is about 15% compared

to the single cell.

* The triple cell is no better than the double cell in terms of SEA, either filled or

non-filled.
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* At very low energy absorption level, all the sections considered show comparable

SEAs.

It should be noted that the above comparisons are based on one fixed sectional width

(b = 80mm) and a same starting wall thickness (t = 1mm). In other words, the

resulting SEAs are by no means optimized. According to the optimization study,

which will be addressed in Chapter 6 of this thesis, the gain in SEA for foam-filled

members can be as high as 300% if the sectional width, wall thickness and foam

density are optimized. Besides, the wall thickness of the non-filled section in the

above calculation is allowed to be increased up to 5mm. This must be limited in

practical design by manufacturing consideration and fracture controlling, which will

result in a much lower specific energy absorption for non-filled sections.
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3.3 Foam-filled Sheet Profiles

An experimental study was carried out on aluminum sheet profiles filled with alu-

minum foam and subjected to axial crushing loading. The objective of the undertaken

experimental program is to:

(i) study the various process of fitting aluminum foam into hat section, suitable for

high volume production;

(ii) study the various joint techniques for foam-filled thin-walled hat members, in-

cluding spot-welding, welding-bonding and riveting;

(iii) quantify the relative merit of foam-filled members compared to empty ones by

performance tests on axial crushing

A total of 34 specimens were tested. Three different sections were considered which

are single-hat, double-hat and double-hat with a center plate. All the specimens were

of length 350mm. The sheet metal was aluminum alloy HS5754 with 2.0mm gauge.

The CYMAT Al-SiC foam with a mass density of 0.27 g/crn3 was used.

3.3.1 Experimental Details

3.3.1.1 "Standard" Hat Section

A "Standard" hat section in this experiment is considered as an open-hat section of

50mm x50mm, 2.0mm gauge and 21 mm flange (Fig.3.21).

This open hat section was first fitted with aluminum foam and then assembled with

closing plate or center plate by various joint techniques to form three different types

of closed hat sections, i.e., single hat, double hat, and double hat with a center plate.

The geometry of sections is illustrated in Fig.3.22, Fig.3.23 and Fig.3.24.

82



21

50 2

50

Figure 3.21: A "Standard" open hat section
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Figure 3.22: Geometry of a single-hat section (empty and foam-filled)
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Figure 3.23: Geometry of a double-hat section (empty and foam-filled)

83



s

OEM

b

F I

b

Figure 3.24: Geometry of a double-hat with center flange section (empty and foam-

filled)

3.3.1.2 Foam-fitting

The aluminum foam blocks were fitted into the open hat channel by three different

methods.

Precise Fitting

The inner dimensions of a few open hat channels were measured carefully. The foam

blocks were cut from a foam panel by machine saw. They were then sized accurately by

milling machine to fit into the open channel. Fig.3.25 shows precisely fitted sections.

Figure 3.25: Precisely fitted sections
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This fitting method does not require special processing during fitting other than

cutting the foam with some prescribed tolerances. However, the foam blocks have to

be machined carefully by milling machine, which is time-consuming and expensive.

Worse yet, special care is needed during machining because the foam cell comprises

Silicon carbide particles. It is evident that this fitting method is not suitable for

mass production of foam-filled structural members. Pre-casting method successfully

developed by other research centers seems to be more suitable.

Pre-compression Fitting

The second fitting method studied in this project was pre-compression fitting. The

foam blocks were cut by machine saw into the sizes slightly larger (1%-2%) than

the average inner dimensions of the open channels. They were then pressed into

the channels by a compression jig (testing machine in the experiment). In order to

prevent the channels opening up during fitting, a special foam-fitting jig was designed

(Fig.3.26) to provide lateral confinement.

P

Figure 3.26: Illustration of pre-compression fitting

The width of the jig is adjustable for taking out the fitted channel after the fitting.

The channel opened-up slightly and a small slant angle around 10 was observed at each

of the bottom corners (Fig.3.27). Three pre-compression fitted sections are shown in

Fig.3.28.

The pressure associated with the fitting operation is quite small. No noticeable crush
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slant angle x

Figure 3.27: Illustration of pre-compression fitted open hat with small slant angles

Figure 3.28: Pre-compression fitted sections

of the foam was observed. This fitting process does not require accurate machining

of the foam block. The operation needed for the processing is simple. It could be

developed as an appropriate way for high volume production.

Adhesive-bond Fitting

The third alternative for foam fitting is to bond the under-sized foam blocks to the

sheet aluminum by adhesive. The gap between the sheet skin and the foam was set

around 2-3 mm, which was filled with adhesive (Fig.3.29). Three bond fitting sections

are shown in Fig.3.30.

The adhesive used in the experiment is XD4600. The fitted hat members needed to

be cured by heating up to 1800C for 40 minutes for adhesive treatment. This fitting

method could also be a choice in mass production.
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Aluminum foam

Aluminum sheet Adhesive

Figure 3.29: Illustration of adhesive bond fitting

Figure 3.30: Adhesive bond fitted sectioned
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3.3.1.3 Joining Techniques

The foam-fitted hat members wwe assembled with closing plate or center plate by

spot-welding, welding-bonding and/or riveting. In this experiment, the pitch of spot-

weld was set to be 25 mm for spot-welding only, and 75 mm for welding-bonding. Riv-

eting were later added at critical locations in axially crushed specimens to strengthen

the joint and prevent premature joint failure.

The strength of one spot-weld is 4.27kN (minimum average) in shear (data provided

by Alcan International, Banbury Laboratory). No strength data for peel and tension

is available at this moment.

3.3.1.4 Material Properties

1. Aluminum Sheet

The aluminum sheet used in the tests is HS5754, which is a high strength variant of

AA5754. Fig.3.31 shows typical tensile stress-strain curves of this alloy, obtained from

specimens cut from longitudinal, 45-degree and transverse directions. The mechanical

properties are listed in Table 3.1.

Table 3.1: Mechanical properties of aluminum alloy HS5754

0.2% Proof Ultimate Young's Poisson's Elongation

stress (MPa) stress (MPa) modulus(MPa) ratio (%)

Longitudinal 110 244 70,00 0.33 22.3

45 degree 106 234 70,000 0.33 26.2

Transverse 108 234 70,000 0.33 24.3

2. Aluminum Foam

The aluminum foam used in the testing was manufactured and provided by CYMAT.

The foam density is 0.27 g/cmn3. Fig.3.32 shows typical stress-strain curves for a

cube of aluminum foam obtained from quasi-static uni-axial compression crush tests
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Figure 3.31: Typical tensile stress-strain curves of aluminum

gauge

alloy HS5754, 2.0mm

in three different directions. The directions are defined as: 1: longitudinal direction

of the foam panel; t: thickness direction of the foam panel; w: width direction of the

foam panel. One can see, the foam shows certain anisotropy, which is associated with

its manufacturing process. The foam core was fitted into the hat member with its I

direction aligning with the axial direction of the column and its t direction aligning

with the width direction of the hat section.

3. Adhesive

The adhesive applied in bonding foam to the aluminum sheet and in weld-bond joint

is Adhesive XD4600. The tensile properties are listed in Table 3.2 and typical tensile

stress-strain curves are shown in Fig.3.33.

Table 3.2: Mechanical properties of adhesive XD4600

Adhesive Young's Poisson's Proportionality Ultimate Strain at

Modulus (MPa) ratio limit strength (MPa) (%)
XD4600 2954 0.35 33.6 63.0 5.6
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Crshing Strength of the Aluminum Foam
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Figure 3.32: Stress-strain curve of aluminum foam in uni-axial crushing
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Figure 3.33: Typical tensile stress-strain curve of adhesive XD4600
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3.3.1.5 Triggering

For the purpose of ensuring a desirable progressive folding mechanism and reducing

the peak load as well, the specimens for axial crushing tests were pre-triggered at

their top ends (Fig.3.34).

60mm 60mm
E 3mm

a. single-hat b.double hat and double
hat with center plate

Figure 3.34: Triggers on the axial crushing members

As can be noted in Fig.3.34, two unsymmetrical triggers were introduced on the

double-hat and double-hat with a center plate specimens. The above triggers helped

to initiate a stable asymmetric crushing mode. A special trigger jig was designed and

is shown in Fig.3.35.

Figure 3.35: Trigger jig for axial crushing specimens
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3.3.1.6 Axial Crushing Tests

Axial crushing tests were conducted on all 34 shorter specimens. Some of the pre-

test specimens are shown in Fig.3.36. All tests were quasi-static with a cross-head

displacement rate of 0.2 - 0.3 mm/s, performed on the ESH 300kN Testing Machine

(Fig.3.37 left) at Alcan International, Banbury Laboratory, England and on the MTS

200kN universal long stroke Testing Machine at MIT (Fig.3.37 right). The force and

displacement data were recorded at a frequency of 10Hz.

Figure 3.36: Some of the pre-test specimens

Figure 3.37: Testing machines

The test specimens were placed between the two platens of the testing machine with-

out any additional fixing. The two ends of the specimens were carefully polished to

ensure their flatness.
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3.3.2 Test Results

3.3.2.1 Empty Profiles

In order to set up the reference basis for foam-filled columns, several empty columns

were tested first. Table 3.3 lists the details of all the axial crushing specimens tested

so far in this project.

Single-hat Profiles

All three tested empty single-hat specimens (sgl-eptl, sgl-ept2, and sgl-ept3) col-

lapsed in a predictable, stable and progressive manner (Fig.3.38). The local collapse

was initiated at the trigger and propagated from one end to the other to form an asym-

metric folding mechanism with the hat part of the section folded asymmetrically and

the back closing plate bending along stationary horizontal hinge lines.

Figure 3.38: Asymmetric folding mechanism of a single hat empty column

Some failure of the spot welds was observed during the crushing tests, which is consis-

tent with the results reported in [55, 56, 57]. The spot-welding strength in aluminum

is about one half that in steel for equal gauges. The integrity of the welds in aluminum

crash members become points of concern for the stability of the collapse and crash
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energy management. In contrast, no spot welds failure occurred in the axial crush-

ing tests of steel hat members and the structures can be considered as continuously

joined, as reported in [59]. It was observed in the present tests that joint retention

in the positions away from the crash zone of the specimens is very essential to main-

tain a stable progressive collapse. If the spot weld opens prior to the crash region, a

subsequently "unzip" along the flange length will occur. An irregular collapse mode

occurs almost inevitably resulting in a deficient amount of energy absorption.

In the present tests, a spot-welding pitch of 25 mm was used for all the empty speci-

mens. The spot-welding failure was observed only in the crash zone during the rolling

deformation of the flanges. Consequently, a stable progressive collapse mechanism was

obtained, which indicates that such a spot-welding configuration is sufficiently strong

for the empty hat members used in the tests. However, it is not the case for the

foam-filled hat members, as revealed later on in the tests.

Fig.3.39 shows the crushing force responses of the empty single hat specimens. The

mean crushing force, averaged for the three tests is 32kN.

Axial Crushing Force of Single-hat Empty Columns
so-

- 01tpt I

50

40 k.

6"4%

I. I

20
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0 20 40 60 s0 100 120 140 10 180O 200

Crush DIstance (mm)

Figure 3.39: Crushing force response of empty single hat members
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Table 3.3: Details of the specimens for axial crushing tests. a, b and s are referred to

Fig.3.22, Fig.3.23 and Fig.3.24.

Specimen Section a b s Joint Fititng 6 P

ID Type (mm) (mm) (mm) (mm) (kN)

sgLeptl SH 52 52 21 sw25 no 200 30.9

sgLept2 SH 52 54 21 sw25 no 200 32.2

sgLept3 SH 52 54 21 sw25 no 200 31.4

dbLeptl DH 51 104 20.5 sw25 no 200 51.2

dbLept2 DH 52 103 21 sw25 no 200 47.4

dblceptl DHC 52 105 21 sw25 no 200 66.0

dblc-ept2 DHC 52 105 21 sw25 no 200 63.7

dblc-ept3 DHC 52 105 21 sw25 no 200 63.7

S4 SH 52 54 21 sw75+ad FM1 122 43.5

S3 SH 52 54 21 sw75+ad+rv2 FM1 175 52.5

S2 SH 52 54 21 sw25+rvl FM1 200 51.0

S31 SH 51 54 21 sw25 FM2 141 39.7

S42 SH 51 54 21 sw25 FM3 200 49.8

S43 SH 51 54 21 sw25 FM3 200 49.8

S81 SH 52 53 21 sw75+ad+rv3 FM1 190 52.2

S6 DH 52 103 21 sw25 FM1 162 77.1

S1b DH 52 103 21 sw75+ad+rv2 FM1 193 81.6

S45 DI 51 104 20.5 sw25 FM3 77 78.2

S44 DH 51 104 21 sw25 FM3 127 83.7

S8 DH 51 104 21 sw75+ad+rv3 FM1 171 74.3

S13 DHC 52 105 21 sw25 FM1 175 85.5

S15 DHC 52 105 21 sw75+ad+rv2 FM1 200 121.5

S46 DHC 51 105 21 sw25 FM3 200 97.3

S14 DHC 52 J 105 21 sw75+ad+rv3 FMI 181 119.3

Note: SH=single-hat; DH=double-hat; DHC=Double-hat with a center plate; sw25=spot-

welding with 25mm pitch; sw75+ad=weld-bond with 75mm pitch; rvl=1 rivet added each

pitch of spot-welding; rv2=2 rivets added each pitch of spot-welding; rv3=3 rivets added

each pitch of spot-welding; FMI= precisely fitting; FM2= pre-compression fitting; FM3=

Adhesive bond fitting
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Double-hat Members

Two empty double hat specimens tested (dbLeptl and dbLept2) showed similar col-

lapse mode (Fig.3.41 left). In this crushing mode, instead of the flange undergoing

a rolling deformation along the length of the specimen, as observed on single hat

specimens, the flanges buckled inward and outward in its own plane. The process of

axial crushing loses its stability at early stage, which is obviously undesirable for the

crash energy management.

This irregular collapse mechanism is due to a large aspect ratio of the section (b/a=2.0).

It's worth noting that a stable progressive folding deformation can still be obtained

for an extruded rectangular member (without flanges) even with large aspect ratio,

while it is not the case for closed hat sections with flanges. The flanges have large

in-plane bending stiffness and therefore the side-plates with flanges can only develop

folding with very large wavelength. The only progressive folding mode that a double

hat member can undergo is the one with the rolling deformation of flanges, which

can be anticipated in sections with small aspect ratio, or in the sections with strong

filler, or a double-hat sections with center plates, where the in-plane movement of the

flanges can be prevented.

Fig.3.40 shows the crushing force responses of empty double hat specimens. The

mean crushing force of approximately 50kN was recorded.

Double hat with a center plate

A stable progressive asymmetric folding deformation was observed on ldouble hat

columns with center plates (Fig.3.41ib)

Owing to the existence of the center plate, the in-plane buckling of the flanges were

prevented and a rolling deformation of the flanges were developed. It can be noted

that spot welds were not strong enough to hold three 2mm plates together. Many spot

welds failed in the crush zone. However, similar to the case of single hat members,

the failure happened in the crash zone and it did not affect significantly the crushing

mechanism and energy absorption of the specimens.

Fig.3.42 shows the crushing force responses of double hat columns with center plates.
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Figure 3.40: Crushing force response of empty double-hat members

Figure 3.41: Crushing deformation of double hat columns. Left: double-hat w/o

center plate. Right: double-hat w/ center plate

Comparing force-displacement diagrams for single and double hat sections one can

see doubling of the mean crushing force (increase from 32kN to 64kN). This is to be
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Axial Crushing Foe of Empty Double-hat wI center plate Columns
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Figure 3.42: The crushing force of empty double-hat columns with center plates*-

expected because double hat sections have eight corners compared to only four for

single hats.

3.3.2.2 Foam-filled Profiles

Sixteen quasi-static axial crushing tests have been carried out on the foam-filled

columns. It was revealed in these tests that spot-welding, which appears to be suffi-

ciently strong in empty columns, failed prematurely by tension/peeling in foam-filled

columns. Rivets were therefore added to improve the joining strength and prevent

the undesirable premature joint failure. This is still an on-going subject of research.

Results obtained so far are summarized in the following.

Single-hat Profiles

Some interesting observations were made on the axial crushing behavior of the single

hat foam-filled columns:

(i) The specimens filled with foam without bonding, and with the same joint method
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as in empty columns (spot-welding with pitch 25 mm or welding-bonding with pitch

75 mm), exhibited premature joint separations during crush tests (Fig.3.43 specimen

S4). The back closing plate was peeled off from the top hat and bent at stationary

hinge lines and thus developed only two large folds, while a few folding lobes were

formed on the top hat.

(ii) The columns fitted with foam by adhesive bonding showed a stable and progres-

sive asymmetric collapse mode with little or no joint separation observed (Fig.3.43,

Specimen S42, S43). The joint method used for the specimens is spot-welding with a

pitch of 25 mm. No additional strengthening was made on the joint.

(iii) Two rivets were added between one pitch (75 mm) on a weld-bond specimen

to improve the joint. Early-stage joint opening, similar to case (i), still happened

(Fig.3.44, specimen S3).

(iv) Three rivets were added between one pitch (75mm) on a weld-bond specimen.

The joint strength was improved and little premature joint separation was observed

(Fig.3.44, Specimen S81). The specimen was not triggered at either end. The peak

crushing force is thus much higher than other triggered specimens, as can be seen in

Fig.3.46.

(v) One rivet was added between one pitch (25 mm) on a spot-welded column. The

densely distributed rivets prevented developing a pure rolling deformation, which is

essential for a progressive folding for a closed hat member. Only two large folds was

formed at the closing plate. The large amount of out-of-phase deformation pattern

between the top hat and the closing plate resulted in fracture at the flange corner of

the top hat sheet metal (Fig.3.45, S2).

Fig.3.46 shows the crushing force responses of single hat foam-filled specimens (S4,S42,

S43, S3, S81, and S2). Despite various irregular failure modes resulting from weld

failure, the columns still developed considerable resistance of approximately 50kN as

an average among all five tests.
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Crush deformation of single-hat foam-filled members.

S4. Right: specimen S43

Figure 3.44: Crush deformation of single-hat foam-filled columns with rivets added.

Left: specimen S3. Right: specimen S81
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Figure 3.45: Crush deformation of single-hat foam-filled member (Specimen S2)

Axial Crushing Response of Single-hat Foam-filled Columns
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Figure 3.46: The crushing forces of single-hat foam-filled specimens
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Double-hat Profiles

From five double-hat foam-filled columns which were tested, the following general

observations can be made:

(i) A specimen with spot-welding of 25mm pitch and with unbonded foam filler under-

went premature joint open-up. Instead of rolling deformation, the flanges developed

in-plane movement. The test was stopped when the specimen tended to lose global

stability (Fig.3.47).

Figure 3.47: Crush deformation of double-hat foam-filled column (Specimen S6)

(ii) Specimens with pitch 25mm spot-welding and with bonded foam filler lost global

stability when two flanges underwent large and unsymmetrical in-plane deformation.

The large in-plane deformation also resulted in the joint separation (Fig.3.48, Speci-

mens S44 and S45).

(iii) Two rivets were added between one pitch (75mm) on a weld-bond specimen.

Premature joint failure was greatly reduced. Flanges developed in-plane deformation

(Fig.3.49, Specimen S10).

(iv) Finally, three rivets were added between one pitch (75mm) on a weld-bond spec-

imen. No premature joint failure was observed. Flanges underwent in-plane buckling

(Fig.3.49, S8).

Fig.3.50 shows the crushing forces of the double-hat foam-filled columns. It can
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Figure 3.48: Crush deformation of double-hat foam-filled columns. Left: specimen

S44. Right: specimen S45

Figure 3.49: Crush deformation of double-hat foam-filled columns. Left: specimen

SlO. Right: specimen S8
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be seen that the foam filler not only increase the crushing force level of double-hat

columns, but also increase the stable crush distance of the columns. Therefore, the

energy absorption can be significantly increased with the existence of the foam filler.

The mean crushing force increased further to around 80kN, as an average among all

five tests.

Axial Crushing Response of Double-hat Foam-filled Columns (without center plate)
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Figure 3.50: Crushing force responses of double-hat foam-filled columns

Double-hat Profiles with Center Plates

Four specimens of double hat with a center plate section have been tested so far. It

was observed that:

(i) Premature joint separation occurred on an unbonded fitted specimen with pitch

25mm spot-welding (Fig.3.51, Specimen S13).

(ii) For a similar specimen to case (i), but the foam filler was bonded to the aluminum

sheet, a stable and progressive asymmetric folding was developed (Fig.3.51, Specimen

S46).
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Figure 3.51: Crush deformation of double-hat foam-filled columns. Left: specimen

S13. Right: specimen S46

(iii) For the specimen S15, which was weld-bonded with pitch 75mm, the foam was

fitted without bonding. Two rivets were added between one pitch. A fairly stable

folding was developed. But the flanges were too stiff to form regular rolling defor-

mation. The out-of-phase deformation pattern between the top hat and the flanges

resulted in small amount of fracture (Fig.3.52, Specimen S15).

(iv) Finally, 3 rivets each pitch were added to a specimen similar to the one in (iii).

The flanges are even stiffer with more rivets added. No rolling deformation were

developed on flanges. The testing was stopped when the specimen tended to lose

global stability (Fig.3.52, Specimen S14).

Fig.3.53 shows the crushing forces of double-hat foam-filled columns with center

plates. The mean crushing force for this group was even higher reaching 105kN,
as an average between four tests.
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Figure 3.52: Crush deformation of double-hat foam-filled columns. Left: specimen

S15. Right: specimen S14
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Figure 3.53: Crushing forces of double-hat foam-filled columns with center plates
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3.3.3 Energy Absorption and Specific Energy Absorption

From the crushing force-displacement data, the energy absorption of the columns

during axial crushing can be calculated according to

En j Pd = PmS (3.36)

where Pm is the mean crushing force and 6 is the crush distance. In the above

calculation, the contribution from the elastic deforamtion is neglected.

The specific energy absorption (SEA), which is defined as the energy absorption per

unit mass of structural member, can then be calculated by Eq.(3.35).

Table 3.4 lists the average values of energy absorption and specific energy absorp-

tion of tested specimens with various sections for the same amount of axial crush

(6=200mm).

Table 3.4: Energy absorption and specific energy absorption of the specimens

Section Type Pm Energy En Mass of Mass of SEA

(kN) (kJ) Column(kg) Filler(kg) (kJ/kg)

Empty single-hat 31.5 6.3 0.541 0 11.5

Empty double-hat w/ closure 64.5 12.9 0.907 0 14.2

Filled single-hat 49.8 9.96 0.541 0.191 12.6

Filled double-hat w/ closure 109.0 21.8 0.907 0.382 16.9

From Table 3.4, one can see that

(i) Empty double-hat section with center plate can absorb crash energy 105% higher

than empty single-hat section while the mass increases 68%. Therefore, the specific

energy absorption gains of the double-hat is 24% increases when compared to single

hat section;
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(ii) Foam-filled single-hat section can absorb crash energy 58% higher than their

empty counterpart with a 35% increasing in the total mass. Thus, the specific energy

absorption of the foam-filled single-hat section is only 18% higher than that of empty

one;

(iii) Foam-filled double-hat section with center plate can absorb energy 69% higher

than its empty counterpart with a 42% increasing in the total mass. Hence, the

specific energy absorption gains a 19% increasing for foam-filled sections compared

to empty ones.

It should be noted that the above calculation is based on the current test results

with the sheet metal gauge 2mm and foam density 0.27 g/cm3. Much higher gain

in specific energy absorption is expected for foam-filled members if the dimensions,

gauges and foam density are optimized. We shall address this in Chapter 6.

3.3.4 Discussions

Experimental study carried out so far have revealed some interesting points:

(i) The foam-filling methods of adhesive-bonding and pre-compression proposed in the

current testing project could be conducive to high volume production of foam-filled

closed-hat structural members;

(ii) Double-hat empty section with large aspect ratio may undergo unstable collapse

deformation during axial crushing with flanges developing in-plane buckling, which

is highly undesirable for crash energy management. To resolve this, a center plate or

a ultralight metal filler can be introduced to suppress the in-plane movement of the

flange and therefore obtain a stable folding mechanism;

(iii) Joint techniques should be the point of concern in the design of aluminum closed

hat members. Spot-welding becomes more problematic in foam-filled members than

empty ones. The spot-welding and weld-bond schemes, which appear sufficiently

strong for empty hat members, are not strong enough for foam-filled members. The

premature joint failure of foam-filled members to large extent jeopardizes their relative

merit as weight-efficient crash members compared to the empty counterparts. More
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research must be carried out to study various joint techniques to ensure the joint

integrity of foam-filled member during a crash event;

(iv) Riveting can be applied together with spot-welding and weld-bond to improve the

strength of joint. More experiments must be performed to investigate an appropriate

joining scheme to obtain desirable regular rolling deformation of the flanges;

(v) With the same joining method, bonded-fitting members exhibited more desir-

able collapse characteristic and less premature joint failure than the unbonded-fitting

members and therefore is favorable for crash energy management;

(vi) Foam-filled columns provided the specific energy absorption (SEA) around 20%

higher than their empty counterparts during axial crushing for the sheet gauge and

foam density used in the current study (2mm and 0.27 g/cm3 , respectively). The

double-hat empty members with center plates exhibited higher energy absorption

than single-hat empty members by about 25%.

(vii) As observed in the tests, the development of a regular rolling deformation of the

flanges is essential for closed-hat members to undergo a stable and progressive collapse

deformation in the axial crushing. However, the large bending stiffness due to the

double thickness at the flanges somehow hinders the rolling deformation. Therefore, a

thinner closing plate or center plate might be beneficial in obtaining desirable folding

deformation and higher specific energy absorption as well. This will be addressed in

the continuation of the study.

The experimental study on the same profiles subjected to large rotation bending will

be addressed in the next chapter.

109



fr-b
I-I
0



Chapter 4

Bending Collapse of Ultralight

Structures

The problem of a deep bending collapse of thin-walled beams has received a great deal

of attention over the past twenty years. A study on 81 real world vehicle crashes [63]

showed that up to 90% involved structural members failed in bending collapse mode.

A first comprehensive study of the bending collapse of prismatic members was made

by Kecman [64]. The bending collapse behavior of rectangular and square section

was studied theoretically and experimentally. Simple failure mechanisms involving

stationary and moving plastic hinge lines were proposed in his analysis, and the

moment-rotation characteristics was calculated in the post-failure range up to 40*.

A similar approach was developed independently by Abramowicz [65]. Mahmood

et al. [66] developed a bending collapse model which divides the thin-walled cross-

section into a number of strips. Experiments for aluminum hat sections undergoing

cantilever bending up to 200 were reported by McGregor et al. [55]. Wierzbicki et

al. [67] extended the concept of Superfolding Element, developed originally for axially

loaded columns, to the cases of bending and combined bending/compression loadings.

Closed-form solutions were derived for the moment-rotation characteristics in the deep

bending collapse range.

Usually, bending collapse of thin-walled members is localized at plastic hinges, with

remaining parts of beam-columns rotating as rigid bodies. Only a small portion of the
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structures is involved in plastic deformation. The plastic bending resistance drops

significantly after local sectional collapse occurs at relatively small rotation angle,

which results in a low energy absorption efficiency. From a practical point of view,

a constant force or a "square wave" response seems to be ideal. With the constant

collapse force, the energy absorption is maximized with respect to the deceleration

rate that is applied to the passenger compartment [1]. In order to achieve higher

weight efficiency in energy absorption and the desirable force response, the concept

of introducing an ultralight metal filler, such as aluminum foam or aluminum honey-

comb, into the thin-walled hollow structural members has received increasing interest.

Santosa et al. [7, 8] studied the effect of foam filling on the bending crush resistance

of thin-walled beam through quasi-static numerical simulations and physical experi-

ments. It was found that the presence of the foam filler offers additional support from

inside and suppresses the sectional collapse at the compressive flange, and therefore

prevents the drop in load carrying capacity, thus maximizes the energy absorption.

The first part of this chapter is to study experimentally the crushing behavior of

foam-filled aluminum hat profiles undergoing very deep bending collapse. Quasi-

static bending tests are carried out on empty and foam-filled single and double hat

sections. Because the bending angle of a specimen on a conventional three-point

bending fixture is usually limited by the depth of the fixture, a new experimental

approach is applied so that the specimen can undergo large bending angles up to

1500. In such'an approach, the tests are conducted by two steps. First, bending

tests are run on a conventional three-point bending fixture up to 400 rotation. Then,

the bent specimens are loaded vertically in compression, and the specimens are bent

further up to 1500. Some interesting features of the deep bending behavior of empty

and filled hat members are revealed, and the strengthening effect of foam filling is

quantified by the test results.

The finite element simulation on the deep bending of empty and foam-filled single-hat

sections are also conducted using non-linear explicit code PAM-CRASH. Simulations

are run in two steps similar to those in the experiment by utilizing time sensors.

Numerical results are compared with the testing results showing good agreement.

In the second part of this chapter, the strengthening effects of the foam and honey-

comb filler on the plastic resistance of thin-walled members in bending collapse are

studied numerically. The increase in bending moment resulting from filling is quan-
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tified based on the analytical solution, experimental data and numerical results. The

densities of the fillers considered in the study are up to 20% relative density, which

is of practical interest.

4.1 Experimental and Numerical Study on Foam-

filled Hat Profiles

Experimental study were carried out on the hat profiles with the same cross-sections

as those used in the axial crushing tests. Numerical simulation was then conducted,

and results were compared to the experimental data.

4.1.1 Experimental Study

Quasi-static deep bending tests were conducted on empty and foam-filled hat sections.

Three different sections were considered in the present study, which are single-hat,

double-hat, and double-hat with closure. The specimens were manufactured at Alcan

International, Banbury Laboratory, England. The bending tests were carried out on

a 200kN MTS long stroke universal testing machine at Impact & Crashworthiness

Laboratory at the Massachusetts Institute of Technology. A total of 12 specimens

were tested.

4.1.1.1 Specimen Preparation

The specimens were prepared in the same way as those used in the axial crushing tests

and described in the previous chapter. An open-hat section of 50mm x 50mm, 2.0mm

gauge and 21mm flange(Fig.3.21) was used as a "standard" section to assemble with

closing plate or center plate to form three different types of closed hat sections, i.e.,

single-hat, double-hat, and double-hat with a center flange (see Fig.3.22 - Fig.3.24).

The aluminum foam core was fitted into the open channel before the assemblage by
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three different fitting methods: precise fitting, pre-compression fitting, and adhesive-

bond fitting. See the description in Chapter 3.

The foam-filled hat members were assembled with closing plates by spot-welding of

25mm pitch. The length of specimens is 675mm.

4.1.1.2 Material Properties

The aluminum sheet used in the tests is HS5754. Typical uniaxial tensile stress-

strain curves of this alloy, obtained from specimen cut from longitudinal, 45-degree

and transverse directions, were shown in Fig.3.31. The mechanical properties were

listed in Table 3.1.

The aluminum foam used in the tests was manufactured by CYMAT. The macroscopic

mass density of the foam is 0.27g/cm 3 . Fig.3.32 shows the typical stress-strain curves

obtained from quasi-static uni-axial compression crush tests on aluminum foam cubes

in three different directions. The alignment of the foam core within the hat profiles

are the same as those in the axial crushing tests: I direction of the foam aligning

with the longitudinal direction of the beam and t direction aligning with the width

direction of the hat section.

The adhesive applied in bonding foam to aluminum sheet is adhesive XD4600. The

tensile properties of it are listed in Table 3.2.

4.1.1.3 Experimental Design

The bending tests involve two stages. First, the tests were run on a conventional three-

point bending configuration, see Fig.4.1(a). The maximum punch displacement was

set to be 99mm (the maximum travel distance available on the three-point bending

fixture). The corresponding bending rotation angle is 30 '- 40*, depending on the

section type. The specimens were unloaded at the end of the first stage. Subsequently,

the bent specimens were loaded vertically in compression for further bending, see

Fig.4.1(b).
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Figure 4.1: Experimental setup for the deep bending tests. (a) stage 1; (b) stage 2

A special end fixture was designed for installing the bent specimens vertically on the

testing machine in such a way that one end of the specimen is pin-pin connected with

the stroke with two degrees of freedom (vertical displacement and in-plane rotation),
and the other end is pin-pin connected with the base of the testing machine with only

one in-plane rotational degree of freedom. Fig.4.2 shows one such end fixture.

Figure 4.2: A specially designed end fixture

Via such connection, only forces are transmitted to the ends of specimens, and speci-
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mens are bent further up to 150* by compressing the upper end down. All tests were

run quasi-statically with a cross-head displacement rate 0.4mm/s. The vertical force

and displacement were recorded at a frequency of 10Hz in both bending stages.

4.1.1.4 Stage I: Three-point Bending

Three-point bending tests were conducted on 12 specimens. The diameter of the

punch was set to be 100mm (from our experience, a punch with the diameter com-

parable to the dimension of the cross-section of the specimen is a reasonable choice).

The span of the beam between two supporting points was 550mm. The punch went

down with a constant low rate of 0.2mm/s. The details of specimens are listed in

Table 4.1. The following component test numbering system was applied, e.g. sgLbl

means the following: sgl: single-hat (dbl for double-hat, and dblc for double-hat with

a center flange); b: empty section under bending (bf for foam-filled); 1: repetition

number. The post-test specimens are shown in Fig.4.3.

Table 4.1: Summary of specimens (SH=Single-hat; DH=Double-hat; DHC=Double-

hat with closure). Parameters a, b, and s are referred to Fig.3.22 - Fig.3.24

Specimen ID Section type a b s Foam-filling Punch

(mm) (mm) (mm) travel(mm)

sglibl SH 51.5 54 21.3 Empty 99

sgLbfl SH 53 53 20.5 Filled 99

sgLbf2 SH 53 53.5 20.5 Filled 99

sgLbf4 SH 53 53.5 20.5 Filled 99

dbLbl DH 51 104 20.5 Empty 99

dblibfl DH 53 102.5 21.0 Filled 99

dbLbf2 DH 52 103 20.5 Filled 99

dbLbf3 DH 52.5 102.5 20.8 Filled 99

dblc-bl DHC 51.5 105 20.8 Empty 99

dblc-bfl DHC 52.5 105 20.8 Filled 99

dblc.f2 DHC 52 105 20.5 Filled 99

dblc.bf3 DHC 53 104.5 20.5 Filled 99
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Figure 4.3: Post-test specimens of bending stage I

Some general observations can be made regarding the deformation patterns of both

empty and foam-filled beams.

" No joint failure was observed at all the specimens tested, empty or foam-filled;

" One single inward fold was developed at the compression flange and two outward

folds at the adjacent sides on single hat beams , both empty and foam-filled

ones, see Fig.4.4;

* One large inward fold was developed on an empty double-hat beam. The shape

of the fold more or less conforms that of the punch. It indicates that the crush-

ing behavior is a combination of a localized indentation and a global bending

collapse. In contrast, the inward folding deformation of foam-filled double-hat

beam was suppressed by the lateral support of the foam, which resulted in higher

bending resistance. The localized folding propagates to the adjacent sections,
and more plastic hinge lines were formed, see Fig.4.5;

" The deformation patterns of double-hat with closure beams are more or less

similar to their double-hat counterparts, see Fig.4.6.

The punch force-displacement curves of single-hat, double-hat and double-hat with

closure sections are shown in Fig.4.7, 4.8, 4.9, respectively. As can bee seen, the

punch forces, and thus the bending resistances are increased due to the foam filling.

Among all tested specimens, specimen sgl_bf4 is the only filled beam with adhesive-

bond filling. It is interesting to note that the punch force at the early stage of bending
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is smaller than those of the other two filled beams, while in the advanced bending

state, specimen sgl-bf4 shows higher bending resistance. The reason for this is that

the supporting from foam filler in specimen sgl bf4 is weak at small bending because

the foam core is undersized with appreciable gap between the core and the skin.

Figure 4.4: The deformation patterns of single-hat beams after three-point bend-

ing(left:empty; right:filled)

Figure 4.5: The deformation patterns of double-hat beams after three-point bending

(left:empty; right:filled)

Figure 4.6: The deformation patterns of double-hat with closure beams after three-

point bending (left:empty; right:filled)
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Figure 4.8: The punch force-displacement curves of double-hat beams
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Figure 4.9: The punch force-displacement curves of double-hat with closure beams

4.1.1.5 Stage II: Vertical Compression

The second stage of the deep bending tests was conducted on the bent pieces of the

first stage. After unloaded from the three-point bending mode, the bent specimens

had small spring-back, which changed the rotation angles by about 10. They were

then vertically mounted and loaded in compression, as shown in Fig.4.10. Lengths R

and e were measured before compressive loading, and are listed in Table 4.2.

In this stage, the specimens were bent by being compressed at the ends. The plastic

deformation concentrated on the center portion of the beam-column. For simplicity in

analysis, the plastic zone at the center portion of the beam-column (see Fig.4.10(a))

was treated as a generalized plastic hinge (see Fig.4.10(b)). The remaining parts of

the beam-column were kept undeformed and rotated as rigid bodies.

The compressive force F and the vertical displacement A recorded in the quasi-

static tests for single-hat, double-hat and double-hat with closure beams are shown

in Fig.4.11, Fig.4.12 and Fig.4.13, respectively.
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Figure 4.10: Vertical compression configuration for the second bending stage

Table 4.2: The summary of specimens in the bending stage II (SH=single-hat;

DH=double-hat; DHC=double-hat with

rameters R, e, Oi, A and 0 are referred to

a center

Fig.4.10

flange; E=empty; F=filled).

Specimen Section R e Oj A 0 Fracture

ID type (mm) (mm) (Deg) (mm) (Deg)

sgl-bl SHE 380.5 125 38.4 580 156 No

sgl-bfl SH,F 380.5 138 42.5 550 153 No

sgl-bf2 SH,F 380.5 136 41.9 502 146 No

sgl-bf4 SH,F 380.5 136 41.9 546 151 No

dbl-bl DHE 380.5 95 28.9 548 151 No

dbl-bfl DHF 380.5 120 36.8 448 135 No

dbl-bf2 DHF 380.5 118 36.1 550 152 No

dbl-bf3 DHF 380.5 115 35.2 51 52 Yes

dblcbl DHC,E 380.5 95 28.9 549 151 No

dblc-bfl DHC,F 380.5 111 33.9 39 48 Yes

dblc-bf2 DHC,F 380.5 112 34.2 46 50 Yes

dblc-bf3 DHCF 380.5 110 33.6 529 149 No
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Figure 4.13: Compressive force-displacement responses of double-hat with closure

beams

A few general observations can be made regarding the bending deformation of various

sections.

Single-hat Sections

* For the empty single-hat section, the inward folding at the generalized plastic

hinge develops with one inward fold at the beginning of the deformation process

associated with decreasing of the compressive force, until the first jamming

occurs (touching of two sides of the fold, see Fig.4.14). At that point, the

compressive force started to increase and reached one peak (Fig.4.11 empty)

when a second fold develope4(Fig.4.14), and the force dropped accordingly. A

second jamming started to develop at a large compression (thus large bending

rotation), and the force increased again.

* For the foam-filled single-hat beam, the jamming of the first fold developed in

the three-point bending stage occurred at the beginning of this bending stage

(Fig.4.15), and accordingly the compressive force started to climb up to a peak

(Fig.4.11, filled), where a second fold started (Fig.4.15). As a consequence, the
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Figure 4.14: Bending deformations of empty single-hat beam (from left to right: first

jamming, second fold, second jamming)

force dropped until a second jamming occurred (Fig4.15). At that time the force

reached a second peak. After that, a third fold developed and force decreased

again.

Figure 4.15: Bending deformations of filled single-hat beam (from left to right: first

jamming, second fold, second jamming, third fold)

* The final deformed empty and filled single-hat beams are shown in Fig.4.16.

Fig.4.17 shows a cut-through view of the generalized plastic hinge of two speci-

mens. As can be noted, the foam provided the lateral support to the compressive

flange of the beam, and therefore suppressed the sectional collapse deformation.

Three folds were formed at the filled beam, while only two at the empty one.

It can also be seen that the foam was subjected to bi-axial loading, with the

compression in lateral direction being the dominant component. No appreciable

fracture is observed in the foam material.
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Figure 4.16: Bending deformations of empty and filled single-hat beams(left:empty;

right: filled)

Figure 4.17: Cut-through of empty and filled single-hat beams(left:empty; right:

filled)

Double-hat Section

" For the empty double-hat beam, the large inward fold developed in the bending

stage I continued to grow in this stage (Fig.4.18), and the compressive force

dropped rapidly(Fig.4.12, empty) until the jamming developed (Fig.4.18). After

the jamming, the force increased, which indicates the increasing of the bending

moment at the generalized plastic hinge.

" Similarly, the large inward fold on the filled double-hat beam continued to

grow at the beginning of this bending stage (Fig.4.19), and the compressive

force correspondingly dropped rapidly(Fig.4.12,filled), until the jamming oc-
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curred (Fig.4.19). From that point on, the force increased generally, with small

fluctuations resulting from small second and third folding and corresponding

jammings(Fig.4.19).

A negative curvature was developed at the tensile flange of both empty and

filled beams (Fig.4.20), which relieved the plastic strain and prevented fracture

from occurring. One filled beam failed prematurely with fracture at the tensile

flange, and the loading capacity diminished consequently (Fig.4.12, dbl_bf3).

Figure 4.18: Bending deformations of empty double-hat beams(left:first fold; right:

jamming)

Figure 4.19: Bending deformations of filled double-hat beams(left to right: first fold,

first jamming, subsequent folds and jammings)
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Figure 4.20: Negative curvature and fracture at the tensile flange of double-hat beam

Double-hat with Closure Section

" Similar deformation pattern and loading characteristics are observed in empty

double-hat with closure beams, as in the case of empty double-hat without

closure beams.

" Only one of three filled beams developed large bending rotation, with the de-

formation characteristics similar to the double-hat counterpart. The other two

beams failed prematurely with fracture at the tensile flange. This underlines

the importance of the consideration of fracture as a limiting factor of structural

strengthening methods, such as foam filling.

4.1.1.6 Moment-rotation Characteristics

The moment-rotation characteristics of the generalized plastic hinges of various sec-

tions can be derived from force-displacement data. From the three-point bending

configuration (Fig.4.1(a)), the bending moment and the rotation angle at the plastic

hinge in the first bending stage can be calculated approximately from

PL
M = (4.1)

4

0 2tan-1(26 (4.2)
L
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where P and 6 are punch force and punch displacement in the bending stage I,

respectively, and L is the beam span.

In the second bending stage(vertical compression), one can idealize the beam-column

as a three-hinge mechanism, with the center hinge being the generalized plastic hinge

connected with two end hinges via two rigid bars, see Fig.4.10(b). The bending

moment M(9) and bending rotation 9 at the plastic hinge can then be approximated

as

9
M(9) = F -Rsin- (4.3)

2

9 = 2cos'(coJs - )(4.4)

where F and A are the compressive force and vertical displacement, respectively. R

is the length of the rigid bar shown in Fig.4.10. 9; is the initial rotation angle at the

beginning of this bending stage.

However, due to the spring-back during the unloading at the end of the first bending

stage, the initial angle 9i is not equal to the final angle Oo of the first bending stage.

This discrepancy must be taken into account when combining the moment-rotation

data of two bending stages into one continuous curve. Accordingly, Eq.(4.4) should

be revised

9 = 2cosC1 (cos- ) (4.5)
2 2R

where 0o is the final rotation angle of the first stage, and AO is a displacement cor-

recting shift

Ao = 2R(cos- - cos0) (4.6)
2 2

The calculated moment-rotation data in the deep bending range up to 150* rotation

angle are plotted in Fig.4.21, 4.22, 4.23, respectively for single-hat , double-hat and
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double-hat with closure sections. As can be seen, bending moments fluctuate with the

bending angle in a way analogous to the axial folding behavior. The peaks and troughs

on moment-rotation curves correspond respectively to the formation of subsequent

folds and jamming. The bending moments of filled sections are elevated'compared to

non-filled sections due to the strengthening effect of filling. For those specimens in

which fracture developed (dbLbf3, dblcbfl, dblc..bf2), the bending moments diminish

rapidly.

Bending Moment Responses of Single-hat Beams
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Figure 4.21: Moment-rotation responses of single-hat beams

It is also interesting to note that appreciable drop in bending moment is observed

at the transition points of two bending stages. The moment drop is partly due to

the change of loading condition. In the three-point bending stage, the plastic hinge

is subjected to bending moment only (neglecting the shear force). When the first

bending stage transits to the second stage, a compressive force N acts as well on the

plastic hinge in addition to a bending moment M, see Fig.4.24.

Assuming that the failure condition of the plastic hinge can be expressed as

)+( ) = 1 (4.7)
MU Nu
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Bending Moment Responses of Double-hat Beams
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Figure 4.22: Moment-rotation responses of double-hat beams (Note

strength of fractured beam dbLbf3)

Bending Moment Responses of Double-hat w/ Closure Beams
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Figure 4.23: Moment-rotation responses of double-hat with closure beams (Note a

sudden drop in strength of fractured beams dblc-bfl and dblc.bf2)
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Figure 4.24: The generalized plastic hinge subjected to bending moment and axial

compression

M. is the fully plastic bending moment of the section, and can be approximated by

the bending moment developed on the section at the end of the first bending stage.

N, is the squash load of the section, and can be calculated

N = co0A (4.8)

where ao is the plastic flow stress; A is the sectional area.

Rewriting Eq.(4.7) leads to the expression for the bending moment M at the beginning

of stage II

Nu U) (4.9)

with

N = Fcos- (4.10)
2

Therefore, the moment drop AM can be obtained

N
AM = . - M= M.(4.11)
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The moment drops predicted by the above equation are listed in Table 4.3. The

experimental results are also shown in the table. One can see that Eq.(4.11) generally

under-predicts the moment drops compared to the experimental results. This could

be attributed to several reasons including

(i) the approximate nature of Eq.(4.7);
(ii) the idealization of 3-hinge mechanism;
(iii) the wandering effect of the neutral axis.

Table 4.3: The moment drop at transition point of two bending stages

Specimen moment drop predicted Moment drop obtained

U- by Eq.(4.11) (Nm) in experiment (Nm)
sgLbl 23 148
sgLbfl 51 168
sgLbf2 54 185
sgLbf4 68 289
dbLbl 337 922
dbLbfl 930 1563
dbLbf2 979 1395
dbLbf3 1083 1250
dblcbl 464 1250
dblcbfl 1400 1487
dblc-bf2 1354 1416

dblc-bf3 1250 1654

4.1.1.7 Energy Absorption and Specific Energy Absorption

From the moment-rotation data obtained above, the energy E" absorbed by the spec-

imens during the bending collapse can be calculated from the definition (neglecting

the elastic deformation at the very beginning)

(4.12)En = M(9)dG
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where Of is the final rotation angle.

The specific energy absorption(SEA) can then be calculated by Eq.(3.35). Because

bending deformations are localized in plastic hinges, only a small fraction of the beam

participates in the process of energy absorption. Consequently the magnitude of SEA

is relatively small for bent columns and beams.

Due to the localized nature of the bending collapse, filling beams with foam only

at strategic locations, instead of the whole beam length, will still get high bending

resistance, while the weight penalty from the filler is greatly reduced and thus the

specific energy absorption will be much higher. This concept of partial filling was

verified experimentally and numerically by Santosa et al. [7]. A simple formula to

estimate the effective foam length Lf (see Fig.4.25) was proposed in [7]

Lf = L - 2H (4.13)

where L is the beam length; q is a scaling parameter, q = with Mf being the

ultimate bending moment of filled section and Mo being the ultimate bending mo-

ment of empty section; H is the half folding wave length and can be calculated by

(Wierzbicki et al. [67])

H = 1.276bit3 (4.14)

where b and t are sectional width and wall thickness, respectively.

L

L

Figure 4.25: An illustration of partial filling

The energy absorption and the specific energy absorption of specimens with full filling

and partial filling are calculated and listed in Table 4.4. One can see that by partial
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filling, the SEAs of single-hat and double-hat beams can be increased by around
30% and 40%, respectively, compared to their non-filled counterparts. However, the
capacity of energy absorption of some filled double-hat specimens are greatly reduced
due to the premature fracture failure. The fracture on filled members should thus be
a subject of further research.

It is also worth noting that the SEA will reach around 70% in bending collapse mode
with smaller wall thickness and a medium foam density, according to the optimization
study [68]. The parameters of the foam-filled sections must be optimized to achieve
the most weight-efficient energy absorption.

Table 4.4: Energy absorption and specific energy absorption of specimens (Of = 1500)
fSpecimenI E, BIGain Full filling Partial filling

(ki) in E,, mass SEA j Gain mass SEA Gain

( J) InE I_ _ss(kg) (k J/kg ) j in SE A (kg) (k J/k g ) in SE A

sgLbl 2.048 / 1.043 1.964 / 1.043 1.964 /
sgLbfl 3.020 47% 1.400 2.157 10% 1.129 2.675 36%
sgLbf2 2.620 28% 1.400 1.871 -4.7% 1.123 2.333 19%
sgLbf4 2.767 35% 1.340 2.065 5% 1.075 2.574 31%
dbLbl 3.920 / 1.407 2.786 / 1.407 2.786 /
dbLbfl 6.381 63% 2.121 3.808 8% 1.666 3.829 37%
dbLbf2 6.729 72% 2.121 3.173 14% 1.665 4.038 45%

dbLbf3* 2.804 -2.8% 2.121 1.322 / / / /
dblc-bl 4.795 / 1.750 2.740 / 1.750 2.740 /

dblc..bfl* 3.046 -36% 2.464 1.236 / / / /
dblc-bf2* 3.165 -34% 2.464 1.284 / / / /
dblc-bf3 7.225 51% 2.464 2.932 7% 1.972 3.663 34%

*Failed with premature fracture
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4.1.2 Numerical Study

Numerical simulations are conducted using the explicit non-linear finite element code

PAM-CRASH on the empty and foam-filled single-hat beams. Similarly as in the

physical testing, numerical simulations are modeled as a quasi-static process, and

consist of two bending stages: three-point bending(stage I) and a subsequent vertical

compression (stage II). Details are discussed in the following.

4.1.2.1 Finite Element Modeling

Thin-walled single-hat beams with sectional geometry shown in Fig.3.22 and length

675mm is considered in the analysis. The outer skin of the beam is modeled with

Belytschko-Tsay 4-node shell elements. Due to the localized nature of the bending

deformation, the central portion where the bending collapse is expected is modeled

with a fine mesh (2.5 x 5mm mesh size). The remaining parts of the beam, which

rotate as rigid bodies during bending, are modeled with very coarse mesh to reduce

computation time, see Fig.4.26. At the interface of fine mesh and coarse mesh, nodes

are connected by rigid body mechanisms. The aluminum foam core is modeled with 8-

node solid elements. The interaction between the foam core and the skin is simulated

by a surface-to-surface sliding contact. Due to the expected symmetry of deformation,

only a half of the beam is modeled in the analysis, and symmetry boundary conditions

are applied at corresponding plane. Two rigid triangular plates are defined at two

ends of the beam to model the end fixture where displacement boundary conditions

are applied in the bending stage II.

Figure 4.26: The finite element model of a single-hat beam
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Two time sensors are defined in the analysis. Sensor I controls the punch and two

supports, and sensor II controls the vertical compression process. At the beginning

of the simulation, sensor I is activated, and the punch, which is modeled as a mov-

ing rigid cylinder with diameter 100mm, and two supports, which are modeled as

stationary rigid cylinders with 550mm distance between, are active in the model.

The velocity boundary condition is applied on the rigid punch with downward speed.

When the punch displacement reaches 99mm, the sensor I is deactivated, and there-

fore the punch and two supports are removed from the model. Meanwhile, sensor II

is activated, which triggers the displacement boundary conditions at two ends of the

beam. All DOFs except the in-plane rotation of one end of the beam are fixed, while

the other end has two DOFs, longitudinal movement and in-plane rotation. Velocity

boundary condition is applied at the moving end. Consequently, the bending stage

is transitted smoothly from three-point bending to vertical compression.

4.1.2.2 Material Modeling

The wall material of the beam is aluminum alloy HS5754, with Young's modulus

E = 70GPa, initial yield stress o = 108MPa, ultimate strength a = 237MPa,

and Poisson's ratio v = 0.33. The constitutive behavior is based on an elastic-plastic

material model with Von Mises's isotropic plasticity algorithm with plastic hardening.

The plastic hardening data is obtained by averaging three uniaxial tensile tests shown

in Fig.3.31.

The mechanical behavior of aluminum foam is characterized by elastic modulus Ef,

plastic collapse stress af, shear modulus Gf, plastic shear strength r1, and den-

sification strain ED, see Fig.2.7. The properties of the aluminum foam used in the

experiments (CYMAT Al-SiC foam, 10% relative density) are obtained by calibrating

the uniaxial compressive test data, see Fig.4.27, 4.28,4.29 for longitudinal, width and

thickness directions, respectively. Being lack of experimental data, the plastic shear

strength is taken to be a half of the plastic collapse stress, and the shear modulus Gf

is set equal to elastic modulus Ef.

The maximum principal stress yielding model was applied for aluminum foam in the

calculation.
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Figure 4.27: The material model for aluminum foam in L-direction
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Figure 4.28: The material model for aluminum foam in W-direction

137

V

"I
V

I
11

f-I

C
0-

C

I
'I,

|--EVperIM ldaa
-- FEM mode"ngdfta

2-

0-

a
8-

6-

4

-- 16. - - - I - mummms

I

li .
f I -- L-

1.

I



Compuselnve Sress-lrain curve of CYMAT foam(10% relaive densIty), T dreclion

2 -

o 0.1 0.2 0.3 04 0.5 0.6 0.7
Strain e

Figure 4.29: The material model for aluminum foam in T-direction

4.1.2.3 Numerical Results

The deformation modes of an empty and a foam-filled single-hat beam at the end of

the bending stage I are shown in Fig.4.30 and Fig.4.31, respectively. A cut-through

view of a foam-filled beam is shown in Fig.4.32. The corresponding post-test spec-

imens are also shown in the same figures. One can see from these figures that the

deformation patterns predicted by numerical simulations agree well with the experi-

ments.

Fig.4.33 to Fig.4.36 show the deformation patterns of empty and filled beams at the

end of bending stage II. Post-test specimens are also shown in the same figures for

comparison. As can be seen, very good agreement is obtained between numerical

simulations and physical testings in the light of bending collapse deformation.

The punch force-displacement responses in stage I and the compressive force-vertical

displacement responses in stage II are shown in Fig.4.37 and Fig.4.38, respectively.

As can be noted, the numerical results in bending stage I generally show good corre-

lations with experimental results, except that numerical simulations over-predict the
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Figure 4.30: The deformation modes of empty single-hat beams at the end of bending

stage I: numerical and experimental

peak loads. The reason for this is that the finite element model did not capture the

initial geometrical imperfections and finite corner radius of sections inherent in real

structures.

Two bending stages in numerical simulations are run continuously without unloading.

Accordingly, a displacement shift A0 , as discussed in the previous section, must be

taken into consideration in comparing the numerical and experimental results. One

can see that the numerical results and experimental data of both empty and filled

beams show reasonably good agreements.

The above comparisons between the numerical and experimental results validates the

finite element modeling technique used in the present work. More numerical analyses

are to be carried out in the next section with various sectional geometries and foam

densities, for the purpose of studying and quantifying the strengthening effect of foam

filling in the wide range of material parameters.
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Figure 4.31: The deformation modes of filled single-hat beams at the end of bending

stage I: numerical and experimental

Figure 4.32: Cut-through view of filled single-hat beams at the end of bending stage

I: numerical and experimental
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Figure 4.33: Bending collapse deformation of empty beams at the end of bending

stage II: numerical and experimental

Figure 4.34: Cut-through view of empty beams at the end of bending stage II: nu-

merical and experimental
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Figure 4.35: Bending collapse deformation of filled beams at the end of bending stage

II: numerical and experimental

Figure 4.36: Cut-through of filled beams at the end of bending stage II: numerical

and experimental
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Figure 4.37: The punch force-displacement responses of beams in bending stage I
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4.1.3 Discussions

The deep bending collapse of thin-walled empty and foam-filled hat profiles were

studied experimentally and numerically in this section. Three different hat profiles are

considered, single-hat, double-hat and double-hat with a closure. The deep bending

tests involve two steps. First, the beams are deformed in a conventional three-point

bending mode up to approximately 40* rotation. Then, the bent specimens are loaded

vertically in compression, and are bent further up to 150*.

Some important features of crushing behavior of empty and foam-filled hat members

with large bending rotation are revealed, and differences in failure modes among three

types of profiles are discussed. The moment-rotation characteristics are obtained

experimentally for the generalized plastic hinges with the rotation angle up to 150*,

and they are found to be similar to the case of axial folding of thin-walled members,

with peaks and troughs on M - 0 curves corresponding respectively to the initiation

of buckles and formation of subsequent folds all the way to jamming.

It is found in the experimental study that foam-filled members with the current design

of sectional geometry and foam density can achieve 30%-40% increase in the specific

energy absorption, compared to traditional non-filled members. This proves great

potentials of foam-filled structures as weight-efficient energy absorbers.

Some foam-filled double-hat specimens failed prematurely by developing necking and

fractures at tensile flanges, which diminished energy absorption. This underlines the

importance of fracture in filled structures as a subject of further research.

Numerical study using explicit nonlinear finite element method is also conducted.

Quasi-static simulations of deep bending collapse of empty and foam-filled single-hat

beams are carried out. A simple maximum principal stress yielding model is used

for aluminum foam in the analysis. Numerical results are compared with the experi-

mental results showing good agreement, which validates the finite element modeling

techniques used in the analysis. More numerical analyses will thus be carried out in

the next section with considerations of various sectional geometries and foam densi-

ties, for the purpose of studying and quantifying strengthening effect of foam filling.
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4.2 Quantifying the Strengthening Effect of Ultra-

light Filler

Santosa [5] conducted numerical simulations on the bending collapse of empty square

boxes and foam-filled ones with low density filler (relative density up to 2.7%) using

nonlinear explicit finite element code PAM-CRASH. Based on the numerical results,

the moment-rotation relations were derived, which are applicable for empty and filled

sections with low density filler. The present work employs the same finite element

modeling technique with the consideration of medium and high density foams (up

to 20% relative density). The strengthening effect of the foam filling and honey-

comb filling will be studied and quantified with the help of the numerical results and

experimental data.

4.2.1 Plastic Bending Resistance of Empty Square Sections

Consider a square box beam with cross-section of b x b and thickness t undergoing

bending rotation 0, see Fig.4.39. Bending collapse deformation is localized at the

central portion of the beam and the plastic work is dissipated through the formation

of hinge lines and membrane action zones. The localized nature of bending collapse

deformation is characterized by the half folding length H, which is obtained from the

postulate of minimum mean force [67], and was given in Eq.(4.14).

M 
M

t

b

Figure 4.39: A simplified model of bending collapse of a thin-walled beam

The moment-rotation characteristic in post-buckling range was derived analytically
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by Wierzbicki et al. [67] based on the concept of Superfolding Element

1
M(O) = 2Pmb(O.576 + 1)

where

Pjn = 2.76ao b ktd

and 0o is the equivalent flow stress and is given in Eq.(3.10).

(4.15)

(4.16)

An approximate expression for the ultimate bending moment of the beam was derived

by Santosa [5] based on his numerical analyses

Mu = 4.65 0ob0 30 (4.17)

By equating Eq.(4.15) with Eq.(4.17), the critical bending rotation 0" for local sec-

tional collapse can be obtained

(4.18)

Therefore, the moment-rotation response of an empty thin-walled square section can

be expressed as

4.65aobhit

M(O) =

2Pmb(O.576 + )

0 <0 <9o
(4.19)

9 > oc

Eq. (4.19) is valid for the bending rotation angle up to 300. Figure 4.40 shows schemat-

ically the moment-rotation characteristics of the thin-walled beam.
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4.2.2 Plastic Bending Resistance of Foam-filled Sections

The presence of the foam filler suppresses the local sectional collapse and therefore

increases the plastic bending resistance of the thin-walled beams. It is assumed that

the ultimate bending moment of a filled section is of the additive form of the ultimate

bending moment of a non-filled section and a moment elevation resulting from filling,

as illustrated schematically in Fig.4.40

M 1 = M +AM (4.20)

where Mu 1 denotes the ultimate bending moment of foam-filled section; M is the

ultimate bending moment of empty section given in Eq.(4.17); AM is a moment

elevation resulting from foam filling, which is a function of the foam properties and

the sectional dimensions.

M

Muf

AM Mi(O)

Mu.

M(0)

Oc Ocf 0

Figure 4.40: Schematical illustration of the moment increase resulting from foam

filling

The bending moment of foam-filled section in the post-buckling range can also be

evaluated by an horizontal and a vertical shifting of the moment-rotation charac-
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teristic of corresponding empty section given in Eq.(4.15). The shifting constant is

determined by setting the bending moment at the critical bending rotation M(Oq),

equal to the ultimate bending moment M~1 given in Eq.(4.20). The bending moment

of foam-filled section is then

Mu <0 8 < e

Mf() = (4.21)
Pmb( - )+ Muf Ocf !5 0 < Oo1 )+M 1  Gef

where M1 (8) is the bending moment of foam-filled section at rotation angle 8; P

and Mu 1 are given in Eq.(4.16) and Eq.(4.20), respectively; 80 is an upper limit for

8 usually set by the jamming condition. Of is the critical bending rotation for local

sectional collapse of foam-filled section, and was determined by Santosa [5] based on

the numerical simulation results

Oqf = c + 3.98L (4.22)
Ps

where pf denotes the macroscopic mass density of the foam, and p, is the mass density

of the skeleton material of the foam. Additional comparison with numerical results

for larger relative densities confirmed the validity of this equation.

The moment-rotation characteristic of foam-filled section is illustrated in Fig.4.40.

To obtain the full expression of bending moment M1 (8), the moment elevation AM

needs to be determined. One has to resort to numerical and experimental means for

this.

4.2.3 Numerical Simulation of Bending Collapse of Foam-

filled Beams

In order to quantify the bending moment elevation AM, numerical simulations using

PAM-CRASH are conducted on a three-point bending configuration of thin-walled

square beam. Under such a configuration, the shear force is a reaction in the beam
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theory. If the Love-Kirchhoff hypothesis is adopted, then the shear strains vanish

(dcz = 0) and there is no work done in the shear mode. The foam filler considered

in the simulation is of relative density up to 20%.

4.2.3.1 Finite Element Modeling

A thin-walled square beam with sectional geometry 50 x 50 x 1.5mm and length

470mm is considered in the analysis. The beam is subject to three-point bending, see

Fig.4.41.

P

35 L=400 mm 35

50N1.5

Figure 4.41: A foam-filled thin-walled square beam undergoing bending

The outer skin of the beam is modeled with Belytschko-Tsay 4-node shell elements.

Due to the localized nature of the deformation, the central segment where the bending

collapse is expected is modeled with finer mesh(2.5x 2.5mm mesh size). The aluminum

foam core is modeled with 8-node solid elements. The punch is modeled as a rigid

cylinder with diameter 50mm. The velocity boundary condition is applied on the rigid

punch. The two supports are spaced 400mm apart and are modeled as stationary rigid

cylinders. The interaction between the foam core and the skin is simulated with a

surface-to-surface sliding contact. The bending process is simulated quasi-statically.

4.2.3.2 Material Modeling

The wall material of the beam is stainless steel Crl8Ni8, with Young's modulus

E = 200GPa, initial yield stress ay = 507.6MPa, ultimate strength o, = 698.6MPa,
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Poisson's ratio v = 0.3. The reason for choosing this material is that some experimen-

tal data on the bending collapse of beams made of such material is available [8]. The

constitutive behavior is based on an elastic-plastic material model with Von Mises's

isotropic plasticity algorithm with multilinear plastic hardening. The plastic hard-

ening data was obtained by averaging four uniaxial tensile tests. The stress-strain

curves of the tensile tests are shown in Fig.4.42.

Tension test of steel Cr1 8Ni8
8001 I

700

600

W500

0-tD 400
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200

100

O0C 5 10 15 20
Strain e [%]

25 30 35 40

Figure 4.42: Stress-strain curves of stainless steel Cr18Ni8

The mechanical behavior of aluminum foam is characterized by elastic modulus Ef,

plastic collapse stress cf, shear modulus Gf, plastic shear strength Ty, and densifica-

tion strain 6D, see Fig.2.7. These parameters strongly depend on the aluminum foam

density pf, and were described in Chapter 2 via Eq.(2.1) - Eq.(2.6).

The IFAM aluminum foam is used in the present analysis, which has the plastic flow

stress aof = 111.4MPa and Young's modulus E, = 94.1GPa, [8].

4.2.3.3 Numerical Results

Finite element simulations are conducted on the empty and foam-filled beams with

foam density pf = 0.20,0.35, 0.47, 0.54g/cm3 , respectively.
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The deformation modes of an empty and a foam-filled beam(pf = 0.47g/cm 3) are

shown in Fig.4.43 and Fig.4.44, respectively. The corresponding post-test specimens

(obtained from reference [8]) are also shown in the same figures. One can see that

the bending collapse of hollow beam consists of an inward fold at the compression

flange and two outward folds at the adjacent flanges, while the localized crushing is

retarded due to the presence of the foam filler and propagates to the adjacent sections

in filled beams. More plastic hinge lines are formed, which results in higher energy

dissipation and plastic bending resistance.

Figure 4.43: Deformation patterns of empty beam: experimental and numerical

Similar deformation patterns were also observed in the three-point bending test of

foam-filled hat sections described in the previous section (see Fig.4.45).

The strengthening effect of the foam filling can be observed in Fig.4.46, which shows

the punch force-displacement response of three-point bending of empty and foam filled

beams(pf = 0.2g/cm 3 ). The bending moments and the bending rotation relationship

can be derived approximately from the three-point bending configuration, and was

given in Eq.(4.1) and Eq.(4.2).

The calculated M - 0 responses are shown in Fig.4.47.

Figure 4.44: Deformation pattern of foam-filled beam: experimental and numerical
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Figure 4.45: Deformation patterns of foam-filled hat sections (left:non-filled;

right:foam-filled).

Punch Force-displacement Response of Thin-walled Beams
25 I I

20-

15- am-filled, p/p.=0.075

Empty

10 --

5

n
5 10 15 20 25 30

Punch Displacement [mm]
35 40 45 50

Figure 4.46: Punch force-displacement response of beams
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Bending Moment-otation Response of Thin-waled Beams
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Figure 4.47: Bending moment-rotation response of beams

The bending moment elevations AM resulting from foam filling can be evaluated

from the differences between the ultimate bending moment of filled beams and that

of empty beams. The results for various foam densities are listed in Table 4.5. Some

experimental data are also shown in the same table.

4.2.4 The Bending Moment Elevations due to Foam Filling

The bending moment elevations AM for various foam densities predicted by numerical

simulations are listed in Table 4.5. The results for low density foam(pj/p, = 0.01 '

0.027) are taken from reference [5]. Experimental data obtained in the previous

section, and by IFAM [8] and BMW are also listed in the same table. The plastic flow

stress of of the skeleton material of different foams were obtained experimentally [5].

As discussed in Chapter 3, the mean crushing force elevation resulting from foam-

filling in axial crushing mode of thin-walled square column is proportional to the

crushing force of the foam core, i.e., APm xocaf1 . Using a dimensional analysis, it is

reasonable to assume that the bending moment elevation resulting from foam filling

153



can be approximated as

(4.23)AM = Coj b3

On employing the expression for o (Eq.(2.4)), it yields

AM = C ( 2Y
C-5b \ pf

(4.24)

where C is the coefficient, and can be determined via least-square fitting of the nu-

merical and experimental data in Table 4.5, which gives

C = 0.95 (4.25)

Table 4.5: The predictions of bending moment elevation AM

Numerical Results Experimental Data

MIT BMW IFAM

pf(g/cm 3 ) 0.029 0.046 0.06 0.073 0.20 0.35 0.47 0.54 0.27 0.135 0.275 0.594

Pf /Ps 0.011 0.017 0.022 0.027 0.075 0.13 0.175 0.20 0.10 0.05 0.102 0.22

cof (MPa) 150.4 150.4 150.4 150.4 111.4 111.4 111.4 111.4 98.3 150.4 150.4 111.4

b(mm) 51 51 51 51 50 50 50 50 50 * * 50

t(mm) 1.6 1.6 1.6 1.6 1.5 1.5 1.5 1.5 2 1.4 1.4 1.5

.M(Nm) 58.8 82.8 99.3 113.5 307.5 985 1108 750 385 371 1449 1100

0.003 0.004 0.005 0.006 0.022 0.071 0.08 0.054 0.031 0.007 0.027 0.079

*BMW testing was on a rectangular hat section. For such a section, b3 term in normalizing

AM is approximated as bh(Q f).

h=57.2 mm

b=87.2 mm

Figure 4.48: Rectangular hat section tested by BMW
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It leads to the expression of the ultimate bending moment of foam-filled section

M. = M + 0.950 jo b _
(PS)

(4.26)

where M. is the ultimate bending moment of empty section given in Eq.(4.17).

Fig.4.2.4 shows the curve-fitting of the numerical and experimental data of bend-

ing moment elevation. One can see that Eq.(4.24) with C = 0.95 gives very good

approximation compared to the numerical and experimental results.
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Relative Density of Foam
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Figure. 4.49: Bending moment elevation resulting from foam filling

4.2.5 The Bending Moment Elevations due to Honeycomb

Filling

Another ultralight material which can be utilized to fill hollow structural members is

aluminum honeycomb. Similar to the case of foam filling, numerical simulations were

carried out to predict the plastic bending resistance of honeycomb-filled sections. The
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relative density of the honeycomb filler is up to 20%. The same three point bending

configuration and finite element modeling techniques are employed as in the case of

foam filling. The strengthening effect of the honeycomb filling was quantified.

The material modeling of honeycomb is slightly different from that of foam. The

mechanical properties of aluminum honeycomb are smeared in three orthogonal di-

rections of T, L, and W as shown in Fig.2.11. The mechanical properties in each

direction are defined in Table 2.1. The out of plane direction T is considered as the

strong axis, while the in-plane directions L and W are weak axes. In the numerical

analysis, 5256 Hexcel aluminum honeycomb is used. The strong axis of the honey-

comb is aligned with the punching direction. Fig.4.50 shows a typical bending collapse

deformation of honeycomb filled beam. As can be seen, the deformation pattern is

similar to that of a foam-filled beam. The moment-rotation responses of the empty

beam and a honeycomb-filled beam with Ph/p, = 0.15 are depicted in Fig.4.51.

Figure 4.50: The deformation pattern of a honeycomb-filled beam (relative density

0.15)

The moment elevation AM resulting from honeycomb filling predicted by numerical

analysis for various honeycomb densities are summarized in Table 4.6. With the same
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argument as in the case of foam filling, AM can be expressed as

AM = arOhb (Ph
\ PS/

(4.27)

where a and # are two coefficients to be determined by least square fitting of the

numerical results.

Table 4.6: The numerical results for various of honeycomb densities

Ph/Ps 0 0.0125 0.025 0.05 0.10 0.15 0.20

b(mm) 50 50 50 50 50 50 50
00h (MPa) 285 285 285 285 285 285 285

AM (Nm) 0 59.0 183.8 356.2 480.9 557.1 677.8
AM 0 0.0017 0.0052 0.010 0.0135 0.0156 0.0190

Fig.4.52 shows the curve-fitting of the numerical data of Table 4.6 using Eq.(4.27) with

a=0.06 and/3= . With Eq.(4.27), the ultimate bending moment of honeycomb-

filled section can be calculated

M = M + 0.06cOrb6 (-) P

( PS
(4.28)

where the ultimate bending moment of non-filled section M, is given in Eq.(4.17).

Finally, the moment-rotation characteristic of honeycomb-filled beam can be obtained

Muh(

Mh(O) =

Pmb(% + Muh

0 ; c

(4.29)

where 9 ch is the critical bending rotation to sectional collapse and was given in [5]
based on the numerical simulation results. Additional comparison with numerical

results for larger relative densities confirmed the validity of this equation.

(4-30)Och = Oc + 4-92 P
Ps
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Figure 4.51: The moment-rotation responses of beams
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Figure 4.52: Bending moment elevation resulting from honeycomb filling
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4.2.6 Comparison Between Foam and Honeycomb Fillings

Take Hydro aluminum foam and Hexcel aluminum honeycomb for comparison. One

can see from Fig.4.53, the moment elevation resulting from honeycomb filling is larger

than that from foam filling for the relative density of filler up to 8%.

10-

S

4-

2*

0 002 004 006 008 0.1 012 0.14 0.16 018 02
R~he odukyo VWWp / p,

Figure 4.53: Comparison of strengthening effects of foam filling and honeycomb filling

It should be underlined that the strengthening effect of filling strongly depends on the

mechanical properties of the filler (aof and O0h, for instance). The above conclusion

is only valid for the currently considered core materials (Hydro aluminum foam and

Hexcel aluminum honeycomb).

Furthermore, honeycomb material shows strong orthogonality in three directions. It

is assumed in the calculation that the strong axis T of honeycomb material is aligned

normal to the compression flange of the beam. If the weak axis W or L is aligned in

the bending direction, the strengthening effect of the honeycomb is almost negligible.

Hence, the reinforcement provided by the honeycomb filler depends on the loading

direction in bending mode. On the contrary, the aluminum foam shows more or less

isotropy in its mechanical behavior.
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Chapter 5

Torsional Crushing of Foam-filled

Thin-walled Tubes

The load bearing capacity of prismatic tubes under torsion was given much less at-

tention in the literature than the corresponding axial crushing and bending collapse

cases. However, the torsional behavior of thin-walled beams or tubes well beyond the

maximum torque is of interest in many applications. For example, in a side impact

of a car, the bending collapse of the B-pillar may induce twisting deformation on the

roof rail (see Fig.5.1, the space frame structure of Audi A8).

The maximum load under torsion or combined loading has been studied over the past

several years. Baba [69] developed a finite element formulation for stress analysis of

a twisting bar with a solid or a thin-walled section. The formulation can be applied

to elastic-plastic pure-torsion or warping-torsion problems with small displacement.

Murray [70] studied a single rectangular plate subjected to pure torsion, bending and

compressive loading. The uncoupled solutions were later extended to combined load-

ing in the case of compressive and torsional moment [71], and torsion and bending

moment [72]. Grant [73] proposed a solution to the thin-walled sections undergoing

uniform torsion. Ma [74] carried out an experimental study of the static and dynamic

plastic buckling of circular cylindrical shells under impact torque using the Hopkinson

torsional bar. The static and dynamic critical torque of the shells were determined

experimentally. All the aforementioned theoretical analyses developed for the torsion
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Figure 5.1: An illustration of Audi A8 space frame structure

problems were restricted to the onset of local buckling. Trahair [75] developed a

method to analyze the plastic torsion behavior of monosymmetric I-sections, lipped

and unlipped channels, and equal flange lipped angles, and of point-symmetric lipped

and unlipped Z-sections. Recently, Santosa and Wierzbicki [9] conducted numerical

simulations for empty boxes and the tubes with light metal filler using a nonlinear

finite element code. Three parameters, which are initial crushing moment, the sta-

bilized torsional crushing moment and the critical twisting rotation, were defined to

characterize the torsional behavior of empty box tubes.

In the first part of this chapter, a theoretical solution is proposed for the torsional

behavior of thin-walled square tubes in the range of large rotation up to 1800. Simple

torsional cross-sectional buckling models are developed, which capture the basic tor-

sional crushing mechanisms of thin-walled tubes. The pre-buckling, plastic buckling

and post-buckling behavior of square tubes are predicted using kinematic approach.

Approximate formulas for the torsional resistance are derived and the solutions are

compared with the numerical results. The analytical solution for the square tubes

is then extended to rectangular and hexagonal thin-walled tubes. Numerical simu-

lations for rectangular and hexagonal tubes are also carried out and the results are

presented for comparison with the analytical solutions.
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Of particular interest in crashworthiness application is the effect of the lightweight

metal filler on the resistance and energy absorption of a structural member. The

torsional collapse behavior and plastic resistance of thin-walled tubes filled with alu-

minum foam are investigated theoretically and numerically in the second part of this

chapter. It is found that the presence of the lightweight filler acting as elastic-plastic

foundation to the skin changes the sectional collapse mode into higher ones, and hence

increases the torsional resistance. The upper and lower bounds on the torsional resis-

tance of filled tubes are established approximately. Numerical simulations are carried

out. Based on the obtained numerical results, the strengthening effects of foam filling

are investigated, and the twisting moment elevation due to filling is quantified.

Finally, torsional experiments on empty and foam-filled square tubes are performed

and results are used to validate the theoretical and numerical solutions.

5.1 Thin-walled Empty Square Tubes

5.1.1 Numerical Solutions

The torsional crushing problem of thin-walled square tubes will be solved numerically

in this section using the non-linear explicit finite element code PAM-CRASH. The

twisting deformation pattern of the tube and the sectional buckling mode are illus-

trated. The torsional plastic resistance of tubes with various length-width ratios are

revealed at large twisting rotations up to 1800. Santosa and Wierzbicki [9] conducted

numerical simulations for empty thin-walled box tubes undergoing torsion using non-

linear explicit finite element code PAM-CRASH. The numerical study is continued in

present research.

5.1.1.1 Finite Element Modeling

The considered tube has length 1, width b and wall thickness t, with 1/b = 4 - 6.5

and b/t = 50. The end twisting rotation is denoted by 0 (see Fig.5.2). The tube wall

was modeled with Belytschko-Tsay-4-node thin shell elements with one integration
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point in element plane and three integration points over the thickness. See Fig.5.3

for FE model. Clamped boundary condition was applied at one end of the tube,

while the other end was connected to a rigid body mechanism. The rigid body was

allowed to rotate about the x-axis and move in x direction. By connecting to this

rigid-body mechanism, warping at the end section was prevented. The velocity of

twisting rotation was applied at the center of gravity of the rigid body. The torsion

process was simulated under quasi-static condition.

Z

Y

All
T, Oo

x

Figure 5.2: A thin-walled square tube under torsional loading

Figure 5.3: Finite Element Model of the tube

Self impact contact (type 36 in PAM-CRASH) was utilized to simulate the contact

between walls of the tube during large twisting deformation.

The constitutive behavior of the thin shell element for the tube material was based on
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Table 5.1: Strain hardening data for AA6063 T7

Plastic Strain Plastic Stress [MPa] Plastic Modulus

[MPa]

0.00000 86.94 33390.0

0.00027 95.94 2913.0
0.00211 101.30 2200.0

0.00575 109.30 1959.0
0.01493 127.30 1460.0

0.02630 149.30 594.1

0.06939 169.50 18.0
0.15270 171.00 0.0

the elastic-plastic material model with Von-Mises isotropic plasticity algorithm. The

transverse shear effect was also considered by this material model. Plastic hardening

was described by a multi-linear curve, in which pairs of the plastic tangent modulus

and the plastic stress were specified.

The material used in the calculation was the aluminum extrusion AA6063 T7, which

is commonly used for automotive structures, with mechanical properties of Young's

modulus E = 69GPa, initial yield strength ay = 86.94MPa, Poisson's ratio v = 0.3.

The strain hardening data are given in Table 5.1. The engineering stress-strain data

were converted to true stress-strain data for finite element calculation.

5.1.1.2 Deformation Pattern

Square tubes with wall thickness t = 1mm, width-thickness ratio b/t = 50,

length-width ratio 1/b = 4 .-% 6.5 were considered in the numerical calculation.

deformed shape of the tube with 1/b = 5 at 450 rotation is illustrated in Fig.5.4.

evolution of the shape at the mostly deformed cross-section is shown in Fig.5.5.

following conclusions can be drawn from the analysis of the above figures.

and

The

The

The

(i) In the pre-buckling stage, all sections rotate without sectional buckling. The
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resistance is derived from shear stresses that increase with the increasing rotation

angle for an elastic-plastic material.

(ii) After buckling, the walls deform inwards with an increasing amplitude wo of the

transverse displacement function w(xe,). This reduces shear stresses and changes the

geometry so that the torsional resistance drops by a factor of 2 to 3 relative to the

pre-buckling state.

(iii) At a certain deflection amplitude and rotation angle, internal touching occurs

which locally stiffens a given cross-section. From this point on, torsional deformation

spreads along the length of the tube causing a moderate increase of the torque.

Figure 5.4: Deformed shape of the thin-walled square tube at 450 rotation (normalized

rotation 0.0785)

Figure 5.5: Evolution of the shape at the mostly deformed cross-section

5.1.1.3 Plastic Resistance

The torsional plastic resistances of tubes with t = 1mm, b/t = 50 and 1/b = 4

6.5 are plotted in Fig.5.6 at rotation angles up to 1800. It can be seen that the

twisting moment reached an ultimate value approximately at a twisting rotation
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of 100. Subsequently, the torsional resistance dropped significantly with increasing

twisting rotation due to the plastic sectional buckling of the tube. At large rotations,

the twisting moment appeared to reach a constant asymptotic value.
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Figure 5.6: Torsional plastic resistance of thin-walled square tubes (To normalize,

plot T vs 6? with ao = 105.4MPa, t = 1mm and corresponding b and 1)

5.1.2 Theoretical Solution

The torsional crushing of thin-walled square tubes will be modeled analytically in this

section. A kinematic approach is utilized in the analysis based on the principle of

virtual velocities. Pre-buckling, cross-section deforming and deformation-spreading

mechanisms are proposed as three phases of torsional deformation. A kinematically

admissible displacement field is established in each phase of deformation and a closed-

form solution for torque is obtained. By considering the analogy between a square

tube and a cylindrical shell, the critical twisting rotation to plastic buckling is esti-

mated.
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5.1.2.1 Theoretical Formulation

A kinematic approach is proposed in the present study based on assumed displacement

fields and the principle of virtual velocities

T~o = L NapaidS (5.1)

where T is the twisting moment -applied at the end of the tube; N, and iop are

respectively components of the membrane stress tensor and strain rate tensor in the

tube wall. The material is assumed to be rigid-perfectly plastic. The components of

the strain rate tensor in the local in-plane coordinate system a,83= 1, 2 are

- ( E2i E y (5.2)

where x is aligned with the longitudinal axis of the tube. Components 4". and #xy can

be evaluated from the assumed deformation modes and are related to the twisting

rotation (0, G0). The tensor of membrane stress N0 0 is determined from the associated

flow rule. To take strain hardening effect into account in the rigid-perfectly plastic

model, the work equivalent flow strength is used in the calculation. The expression

for the equivalent flow stress cO was given in Eq.(3.10).

The Von Mises yielding condition in a plane stress field is

F a +aOg - 'aay +3rf -00=0 (5.3)

The strain rate can be calculated from the associated flow rule

. cF
Eafi = KO (5.4)

where k is a flow constant at a given point (Eq.(5.6)), but varies in space and time.
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The components of stress tensor 0 a, can be expressed in terms of the proportionality

constant k and the strain rate tensor tip by inverting Eq.(5.4)

1
= (i + 2x)

3*ir
I

a,,, = -(#x + 24,,)

r, = -I (5.5)

The constant k can now be determined by substituting Eq.(5.5) into Eq.(5.3)

1
P +t2 + ixXiw + j2 (5.6)

The rate of plastic work per unit volume is Oofi /, which can be expanded into the

following form

Oaflia3 = o'xix& + o,i,, + 2m/y,, (5.7)

Substituting Eq.(5.5) and Eq.(5.6) into Eq.(5.7) leads to

OaEafai = vf3- + ,+ rx + Z(5.8)

Therefore, Eq.(5.1) can be re-written as

T9O $tV/4 + ,,+tXXI,, + j,,dS (5.9)

where the integration is taken over the surfaces of the tube. It should be noted that

bending and warping resistances are neglected in the current analysis.
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5.1.2.2 The Deformation Modes

As observed in numerical simulations, sectional buckling occurs when the end rotation

reaches a certain angle (critical twisting rotation) and an inward sectional deformation

mode is developed in the tube (see Fig.5.5), which reduces stresses and changes the

geometry so that the torsional resistance considerably drops. The amplitude of the

sectional buckling deformation increases with the increase of twist. At a certain

rotation angle, internal touching occurs at the most deformed cross-section which

locally stiffens the section. As a result, a most-deformed section is formed. From that

point on, this deformation will spread along the length of the tube and thus form a

most-deformed area. With these physical understandings, a three-phase deformation

mechanism is proposed in the current approximate analysis. The three phases are

namely, pre-buckling, cross-section buckling and collapse-spreading. They will be

described in the following.

In each phase, a velocity field is assumed and the principle of virtual velocities (

Eq.(5.9)) is applied to evaluate the torsional resistance of the tube. The shell of the

tube is assumed to be inextensible in the hoop direction. Thus, ey, = 0.

Pre-buckling

In this phase, all sections rotate as rigid bodies without sectional deformation. It is

assumed that the rotation angles at sections from the fixed end to the free end are

varying linearly from 0 to the end rotation angle 0. Therefore, the walls of the tube

become spiral surfaces, as illustrated in Fig.5.7.

Figure 5.7: Theoretical pre-buckling deformation of a square tube under torsion
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Consider the upper flange of the tube, the components of the displacement vector

(u, v, w) at a cross-section with longitudinal coordinate x can be found from the

assumption of the spiral-shape deformation

u= 0
00 b b o

v y Cos (Tx)+ g si(Tx) - y
b 00 00 b

w = cos (-x) - ysin(Tx) --

where 0 is the end twisting rotation; y denotes the coordinate in hoop direction.

The Lagrangian strain tensor can then be calculated

(5.10)

09u+1 (9u 197 (W 2
EXX [(5X)2+ (_-)2 +( 2

= x 20x OX Ox
10u v Oudu Ovd0v

E = +-+( 7y+Ox Oxy+

Sg2y
2  b2g

22 +82
oq ow bOo

x ay 41

and the strain rates

ixx = [(Y)2 + ()2]00 0

4lb
ixy = -(-)00

41

The other components of the strain and strain rate tensor are zero.
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Figure 5.8: An axially free tube with displacement UO

If the tube is axially free at the loaded end, there will be an axial displacement Uo,

as shown in Fig.5.1.2.2. The strain and strain rate in X direction will become

og2y2  629g UO

S212 +812 1

iz = (1)2 l+ (b)20 6 O-0 (5.13)

Applying the principle of virtual velocities and substituting the above expressions of

strain rate into Eq.(5.9) finally results in the following expression for the torsional

resistance. The algebraic details can be found in Appendix A of reference [76] and

more details in reference [77].

r = 0.58 + 0.05r2 64 (5.14)

where 0 is the end twisting rotation angle; r is the width-length ratio of the tube,

r = b (5.15)

and r is the dimensionless twisting moment defined by

T
Ir = - (5.16)

2aob2t
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where T is the physical twisting moment; Oo denotes the plastic flow stress of the

material; b and t are width and wall thickness of the tube, respectively.

Cross-section Buckling

Sectional buckling will begin when the twisting rotation reaches a certain angle (crit-

ical twisting rotation). During buckling, the walls deform inward. This relieves

the membrane strains and reduces the load-carrying capacity of the tube. In the

present analysis, a sinusoidal sectional buckling mode is assumed (see Fig.5.9) and a

sinusoidal-spiral deformation is developed in the tube(see Fig.5.10 and Fig.5.11), The

sectional distortion is the largest at the mid-section of the tube and it decreases to

zero at the two ends. Meanwhile, the collapsing sections rotate with angles assumed

to vary linearly from one end to the other. The amplitude of the sectional deforma-

tion at each section is related to the rotation angle via the geometry of the problem

and an assumption of inextensibility in the hoop direction of the wall.

r
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I ' '..
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Figure 5.9: Theoretical buckling deformation of the cross-section under torsion

Consider a buckling section shown in Fig.5.9. The dotted lines denote a virtually

deformed section before twisting rotation. The solid lines represent the buckling

section with a rotation angle 9. From the geometry, the displacement of the upper

flange at this section can be obtained
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Figure 5.10: Buckling deformation of a square tube under torsion

lry b
v = (y - 6sin b-)cos +( - A

bb 2yb = Y o ) cosO - (y - W A cos

7rycosb 6) sinO - y

y b
sin ) sin - b

where 0 is the rotation angle at current section, 0 = f0; A and 6 are two param-

eters which can be calculated by considering the geometry of the section and the

deformation characteristics (see reference [77] for details):

b vf-46 = -(1 - )-,
4 2 7. -

6 = ()4 2w

(0 < X < -)2

(-< X < )
2 -

and the amplitude A can be approximated by the expression (details can be found in

reference [77]):

A 640'

b = 0.24(1 - e- b)(5.19)

The expressions for Lagrangian strain and strain rate tensor can be derived in the

same manner as in the pre-buckling phase.
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Figure 5.11: Deformed sections along the tube

By employing Eq.(5.9), the torsional resistance in the buckling phase can be found

as a function of the twisting rotation 9o(algebraic details can be found in reference

[77]):

7 = 0.58 - 0.21r- 2 2 0  (5.20)

where r is width-length ratio of the tube.

Collapse-spreading

At a certain transverse deflection amplitude and corresponding twisting rotation angle

(transitional twisting rotation), internal touching occurs at the mid-section of the

tube, which is the most-deformed section in this theoretical model. It is hypothesized

that the most-deformed section is formed when the twisting rotation 0 = E, i.e.,the

transitional twisting rotation Om = . Fig.5.12 shows the most-deformed section.
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From this point on, the most-deformed section will spread towards two ends from the

mid-section and a most-deformed area will be formed centering at the mid-section

with length 2 (see Fig.5.13).
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Figure 5.12: Most-deformed section

From the point of view of energy, the tube in this phase is equivalent to a tube with

twisting rotation 0,m and a most-deformed area 2 . With the increase of twisting

rotation, additional work is done by spreading the most-deformed area, the effect of

which is equivalent to the reduction of the length of the tube and thus the growth

of the width-length ratio r. Therefore, the effect of deformation spreading can be

considered by introducing an equivalent width-length ratio R

R = Lo r (5.21)
Lo- - Om#

Hence the torsional resistance in the deformation-spreading phase can be evaluated

by replacing the original width-length ratio r in Eq.(5.20) with the above-defined

equivalent width-length ratio R

00.6-022
r = 0.58 - 0.21R'-0 2 90 34 = 0.58 - 0.21-M rm ~000.22
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Figure 5.13: Equivalent tube with spreaded most-deformed area when 9o > 0.

5.1.3 Critical Twisting Rotation for Plastic Buckling

The critical twisting rotation 0, can be estimated by using an analogy of the cur-

rent problem to the buckling problem of a cylindrical shell undergoing torsion, the

governing equation of which is [78]

1 - V 2 2N
DV8w + 1- 2 CaX-- V4W,,8 = 0 (5.23)

a2  a

where w is the deflection function; D and C are, respectively the bending and axial

rigidity of the shell;a denotes the radius of the cylinder; N , is the pre-buckling shear

force.

Under torsional loading, the buckling deformation of a cylindrical shell consists of

a number of circumferential waves that spiral around the cylinder from one end to

the other ( nodal lines of helical form). Such waves can be represented by a radial
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deflection function of the form

(5.24)w = Clsin(finx - n9)

where C1 is a constant and i = mira/L.

Substituting Eq.(5.24) into Eq.(5.23) yields the following expression

(5.25)N0-(fn2 + n 2)2 D + fn3 22( 2
S-n -+ (1 - v2 )C

* 20nna 2 2(i 2 + n2)2,

where C = Et/(1 - v 2 ); D = Et3 12(1 - V2).

For long cylinders, the shell buckles in two circumferential waves; i.e., the smallest

values of Nxe0 corresponds to n = 2 (Fig.5.14).

Figure 5.14: Torsional buckling of a cylindrical shell (n=2)

In the case of a thin-walled square tube, the presence of four right corners will induce

a different torsional buckling mode from that of a cylindrical shell. A reasonable

assumption is that the tube will buckle in the way as shown in Fig.5.15. This corre-

sponds to n = 4.

On employing Eq.(5.25), introduction of n = 4 gives

32Et3  fn3 Et
12(1 - v2)fna2 2048
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Figure 5.15: Torsional buckling mode of a cylindrical shell (n=4)

as long as the analogy between the square and circular tube holds.

The value of i- for which Neo, is a minimum may be determined by analytical mini-

mization of No 0, with respect to fn-. It leads to

t2
fl = 6.53( P 2)0.25

(1 - V2)a2
(5.27)

Introduction into the expression for NO9 and rearrangement now yields

_cr 0.55E t
Tc = 2) 0 (7 5 () 1 5 (5.28)

Accordingly, the critical shear strain to buckling is

Tcr 0.55(1 + V) t 1.5
Ccr = G - (1 - V2)0. 75 (a) (5.29)

It was suggested by Rhodes [79] that the strain to buckling is the same in the plastic

and elastic range. The shear strain in pre-buckling phase of thin-walled square tube

undergoing pure torsion is related to the rotation angle 0 by Eq.(5.11)

Oob
=Xy = 41

(5.30)
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where 0 is the end twisting rotation; b and I denote the width and length of the tube,

respectively.

Equating Eq.(5.29) and Eq.(5.30) results in the critical twisting rotation G, for tor-

sional plastic buckling of a square tube

2.2(1+v) t) .5 1.(.1
(1- 2 )0 75  a (5.31)

For a square tube with Poisson ratio v = 0.3 and geometrical parameters = 5 - 6

and k = 50, if a is taken approximately as b/2 (inscribed circle inside a square),

Eq.(5.31) gives the critical twisting rotation 0, = 7*", 8*. It is quite close to the

angle predicted numerically in Ref.[9] and predicted analytically in Ref.[80], which

both give 0Gzc::10*.

5.1.4 Comparison Between Theoretical Solution and Finite

element Solution

In the previous section, analytical expression for the torque in three successive phases

were obtained:
-r = 0.58+0.05r 2 00 (0O G< SG e)

- 0.58 - 0.21r-( <8 o S Gm)

r = 0.58 - 0.21R-0 22 % 34  (o>Gm) (5.32)

where 0 is the twisting rotation(in radian); 0m = ,; R is defined in Eq.(5.21); r

denotes the width-length ratio, r = b/l.

The critical twisting rotation for plastic sectional buckling can be evaluated by Eq. (5.31).

The physical twisting moment is related to the dimensionless twisting moment by

T = 2aob2 tr (5.33)

Taking, for instance, that the tube material is AA6063 T7 with plastic flow stress

of oo = 105.4N/mm2 , and taking b = 50mm, = 50, the twisting moment in
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pre-buckling, post-buckling and collapse-spreading phase are plotted in Fig.5.16(solid

lines) for tubes with length-width ratio varying from 4 to 6.5. The results of finite

element analysis are also shown in the figure for comparison (dashed lines).
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Figure 5.16: Plastic resistance of square tubes of alloy AA6063 T7

lines:analytical model; dotted lines: FEM results. To normalize, plot T
2-,rb

2 t

with o-O = 105.4MPa, t = 1mm and corresponding b and 1)
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vs bOg

As can be seen in the figure, the analytical solutions agree well with the numerical

results. The torsional resistance reaches the ultimate value at approximately 100 at

which point the sectional buckling initiates. After that, crushing mechanism take

place at sections and the loading resistance drops considerably due to the plastic sec-

tional buckling. At large rotations, the twisting moments appear to assume constant

values, which correspond to a stabilized crushing.

181

(1) Vb=4
(2) Vb = 4.5

(3) Vb=5

(4) /b= 5.5

(5) Vb=6

. (6) Vb = 6.5

6

Qrn



5.2 Plastic Resistance of Thin-walled Rectangular

and Hexagonal Tubes

The analytical solution obtained in the previous section for a square tube will be ex-

tended to rectangular and hexagonal tubes. Numerical simulations will be conducted

for rectangular and hexagonal tubes and results will be compared with theoretical

solutions.

5.2.1 Theoretical Solution

Now consider the torsional crushing of rectangular and hexagonal tubes (shown in

Fig.5.17). Due to the similarity in the geometry, we can expect that the torsional

behavior of these two tubes will be similar to that of a square tube. Thus, we can

assume for simplicity that the dimensionless twisting moments and the critical twist-

ing rotation of rectangular and hexagonal tubes are the same as those of square tube.

Therefore, Eq.(5.31) and Eq.(5.32) can be readily applied to the cases of rectangular

and hexagonal tubes, with a new width-length ratio r defined as T for rectangular

tubes.

Figure 5.17: Rectangular and hexagonal tubes subjected to torsion

However, Eq.(5.33) should be revised to calculate the physical twisting moment of

non-square tubes. One can note that the b2 term in Eq.(5.23) represents the area

enclosed by the cross-section of a square tube [81]. Employing the counterparts of

this in rectangular and hexagonal tubes, we can obtain the torsional resistance of a
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rectangular tube

T = 2rcobht (5.34)

and hexagonal tube

T = 30iroob2 t (5.35)

where r denotes the dimensionless twisting moment expressed in Eq.(5.32) for pre-

buckling, cross-section buckling and collapse-spreading phases.

More generally, the torsional resistance of a prismatic tube can be calculated

T = 27raoAt (5.36)

where A is the area enclosed by the cross-section of the tube.

The foregoing analytical solutions of rectangular and hexagonal tubes with material

AA6063 T7 are plotted in Fig.5.20 and Fig.5.21, respectively. Numerical study was

conducted for comparison.

5.2.2 Numerical Study

Rectangular tubes of b = 50mm, 1 = 250mm and t = 1mm with three different

aspect ratios b/h = 2; 1.5 and 1.25 were analyzed numerically using the PAM-CRASH.

Numerical simulations were also carried out for hexagonal tubes of I = 250mm and t =

1mm with three different width of flanges, b = 30mm, 40mm and 50mm respectively.

In all cases, a clamped boundary condition is applied at one end of the tube, while

the other end is connected to a rigid body mechanism (therefore no warping at the

end section). which is allowed to move axially. The twisting rotation is applied quasi-

statically at the center of the rigid section. The tube material is aluminum extrusior
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AA6063 T7, with tensile parameters of Young's modulus E = 6.9 x 104N/mm2 and

initial yield stress a-, = 86.94N/mm2 .

The plastic deformation of rectangular and hexagonal tubes at 900 twisting rotation

are illustrated in Figs.5.18 and 5.19 respectively. It can be seen that, similar to the

case of square tubes, inward sectional buckling mode is developed and propagated

along the length of the tubes. The moment responses are shown in Fig.5.20 and

Fig.5.21, together with the analytical solutions derived above.

Figure 5.18: Plastic deformation of a rectangular tube at 90' rotation

Figure 5.19: Plastic deformation of a hexagonal tube at 90' rotation

As can be seen from the figures, the torsional behavior of thin-walled rectangular

and hexagonal tubes can also be characterized by three distinct phases, as in the

case of square square tubes, namely pre-buckling, buckling and collapse-spreading
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phases. In the pre-buckling phase, the tubes show high load resistance which drops

significantly when tubes buckle and appears to assume a nearly constant value in the

collapse-spreading phase.

The analytical solution for rectangular tubes compares very well with the numerical

results, as can be seen from Fig.5.20, while for hexagonal tubes, it predicts smaller

pre-buckling response and critical twisting rotation than numerical results give. It

is due to the fact that the analytical solution is based on the geometry of a square

tube. The rectangular tube deforms in a similar way as the square tube and the

deformation mode of a hexagonal tube is differed.

It should also be noted that, because a hexagonal section has larger corner angles(120 0 )

than a square section(90*), it can deform inward more than a square section can.

Consequently, the collapse-spreading will be delayed in the hexagonal tube and the

transition angle 0m (which defines a kink in the stabilized phase of response) will be

larger than ir/2. This can be observed in the numerical results shown in Fig.5.13 but

this property has not been taken into account in the present analytical solution.
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Figure 5.20: Torsional resistance of rectangular tubes(l/b = 5, b/t = 50)
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Figure 5.21: Torsional resistance of hexagonal tubes(l = 250mm, t = 1mm; The unit

for b in figure is also mm)

5.3 Foam-filled Thin-walled Tubes

From the viewpoint of weight-efficient crashworthy structural design, it is of interest

to study the torsional behavior and plastic resistance of thin-walled columns filled

with ultralight crushable metal core. An earlier numerical study [9] showed that the

light metal filler has the significant effect on the torsional resistance and is preferable,

in terms of specific energy absorption, to the conventional way of strengthening by

means of increasing the wall thickness.

We shall consider in the following the torsional crushing behavior of square tubes filled

with aluminum foam. It is expected that the foam will provide lateral support to the

flanges of the column and therefore change the collapse mechanism of the column.

The mechanics of the process involves the collapse of the flanges, the crushing of the

foam and the interactions between the outer skin and the filler. It is very difficult

to take into account all these complicated factors in a simple analytical model, even

though the mechanics behind them are well understood. However, we still can, by

reasonable assumptions and simple analysis, obtain some useful results.
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5.3.1 Upper Bound of Torsional Resistance

Consider a thin-walled square tube with width b, thickness t and length I undergoing

torsion. The tube material is assumed to satisfy the Von Mises yielding condition.

The equivalent plastic stress d is defined by

-2 = o2 + 2 -aar ry+ 3- 2
a =a O; 7; (5.37)

Noting that the shear stress r,, resulting from torsion is the main component of

the stress tensor in a tube undergoing pure torsion, Eq.(5.37) can be reasonably

approximated as

=r, = -&(5.38)

It is assumed that the strain hardening of the material obeys the power law

(5.39)

where C and n are material constants. Denoting by t the equivalent plastic strain,

Eq.(5.39) gives

TX, = C"n (5.40)

In previous sections, a pre-buckling configuration of square tube subjected to torsion

was studied and the shear strain in tube was given by Eq.(5.30).

Substituting Eq.(5.30) into Eq.(5.40) yields the following expression for -r along the

entire tube before sectional buckling

(5.41)
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It is straightf:lrward then to get the twisting moment T on the sections (81](Fig.5.22).

T = 2rybt = -- ( )n(5.42)

Figure 5.22: Shear stress distribution on a square section

It should be noted that the above solution applies to empty tubes with rigidly rotating

cross-sections or for the tubes with infinite strong filler inside. Therefore, Eq.(5.42)

establishes approximately an upper bound for the torsional resistance of the tube.

5.3.2 Lower Bound on Torsional Resistance

As pointed out earlier, the foam filler can provide lateral support to the tube sections

and thus changes the torsional collapse mechanism of the tube. Further investigation

shows that, rather than buckling inward as in empty tubes, the foam-filled sections

may buckle outward due to the presence of the foam functioning as elastic-plastic

foundation. This higher order deformation mode will increase the torsional rigidity

and hence lead to a higher twisting resistance.

Assuming an inward sectional collapse mode (observed in empty tubes) and introduc-

ing the power law stress-strain relationship into the torsional resistance formulation,

with Eq. (5.20), (5.33), we can get the following equation for the torsional resistance,

which should form a lower bound of the twisting resistance of foam-filled tubes.

T = 2 0.58 - 0.21 )0"] C(kt b2t (5.43)
b 41
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5.3.3 Torsional Resistance of the Foam Core

So far, we have established the upper and lower bounds on the torsional resistance

which foam-filled tubes can provide without taking into account the load carrying

capacity of the foam core itself, which also contributes to the total torsional resistance

of the tube.

The numerical analysis shows that aluminum foam inside tubes is subjected only to a

limited crushing. This suggests that the resistance of the foam filler can be decoupled

from the resistance of the column. For simplicity, we shall consider an equivalent

solid cylinder with the same radius of gyration as the solid foam core, which gives

R = 0.57b, where R is the radius of the equivalent cylinder (Fig.5.23).

dx

Figure 5.23: An equivalent foam cylinder subjected to torsion

The shear strain Exo at current radius r in the cylinder is

r
E r0 A (5.44)

1

where 0 is the end twisting rotation.

and the rate of shear strain

r -
CX0 =A (5.45)

1

Denoting by rf the flow stress of the foam in shear and applying the principle of

virtual velocities to calculate the twisting moment

TOO = 2 T5 f EodV (5.46)
V3s x
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where T is the twisting moment and the integration is over the whole volume.

Substituting Eq.(5.45) into Eq.(5.46) and performing the integration result in the

following equation

T = 0.225rft (5.47)

It is evident that T depends only on the plastic shear stress r of the foam and the

sectional dimension b.

Finally, we can set forth the upper and lower bounds of the torsional resistance of

a foam-filled tube including the contribution from the shear resistance of the foam.

The upper bound is obtained by assuming no sectional collapse and adding the con-

tribution of Eq.(5.47) to Eq.(5.42)

2Cb 2 tI bGO"
T T -41_ +0.225rfb 3  (5.48)

'/3 41/

Similarly, the lower bound is calculated taking into account the "inward" sectional

collapse.

T= 2 [0.58 - 0.21 ( ) b0.2t + 0.2257b 3  (5.49)

It should be noted that the strength contribution from the shear of the foam is

relatively small, usually of an oder of less than 10%. Corresponding plots of lower

and upper bound solutions are given in Fig.5.30.

We have thus far established the lower and upper bounds of the torsional crushing

resistance of foam-filled tubes. Due to the complexity of the problem, one must resort

to numerical method for more detail and accurate solutions. We shall present some

numerical results in the next section.
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5.3.4 Numerical Simulations

Santosa and Wierzbicki [9] have conducted non-linear finite element analysis on foam-

filled square tubes subjected to large twisting rotation. Chen and Wierzbicki [82] later

on continued the analysis and carried out more detail studies on this problem. Both

unbonded and bonded filling were considered and different aluminum foam, with

strength from 50psi(O.345MPa) to 250psi(1.723MPa) were used to analyze the effect

of foam filler. The results of the above analyses are summarized in the following.

5.3.4.1 Finite Element Modeling

Square box tubes of 50x5Omm cross section with thickness 1mm, length 250mm are

considered in the numerical simulation. The column wall was modeled with 4-node

shell element using material type 103 of the PAM-CRASH material library. The

foam core was modeled with 8-node solid element using material type 41. Clamped

boundary conditions are applied at one end of the column, while the other end is

connected to a rigid body mechanism, which is allowed to move in two-degree of

freedom so that it can perform rigid rotations and axial displacements. By connecting

to this rigid body mechanism, warping at the end section was not allowed. The

twisting rotation is applied at the center of the rigid body. See Fig.5.24.

Figure 5.24: A foam-filled tube subjected to torsion

The column material is aluminum extrusion AA6063 T7, with mechanical properties

of Young's modulus E = 69GPa, yield stress a- = 86.94MPa. The foam core is

Hydro Aluminum foam. A simplified foam model is used in the current study based

on an uncoupled compressive and shear strength of the foam (-, Tf), see Fig.2.7.
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Mechanical properties of aluminum foam for various relative densities were given in

Chapter 2 via Eq.(2.1) - Eq.(2.6).

5.3.4.2 Failure Modes

Examples of deformed square tubes at 450 rotation calculated using the above model

are shown in Fig.5.25 to Fig.5.27 corresponding to the empty, unbonded foam-filled

and bonded foam-filled columns, respectively. Cross-sectional deformation of the

same tubes in the mostly deformed sections are shown in Fig.5.28. The following

conclusions can be drawn from the numerical analysis:

Figure 5.25: Deformed shapes of square tubes at 450: empty

Figure 5.26: Deformed shapes of square tubes at 450: unbonded foam filling (of =

0.689MPa)
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Figure 5.27: Deformed shapes of square tubes at 450:

0.689MPa)

Bonded foam-filling(of -

Figure 5.28: Evolution of shapes at the mostly deformed cross-sections. Upper row

empty tube; Middle row unbonded filling; Lower row bonded filling

(i) In the pre-buckling stage, all sections rotate as rigid bodies. The resistance is

derived from shear stresses that increases with the rotation angle because of strain-

hardening;

(ii) After an onset of buckling, the walls collapse inwards with an increasing amplitude
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of the transverse displacement function. This reduces both shear strains and stresses

so that the torsional resistance considerably drops relative to the pre-buckling state;

(iii) Unbonded filler provides one-sided crushable foundation to the side plates causing

them to buckle in the second or higher modes (Fig.5.29). Higher buckling modes are

generated in tubes filled with more dense foams. The foam restricts the inward

collapse thus keeping the torque high;

(iv) Bonded filler provides a double-sided crushable foundation which for relatively

low dense foam retards the cross-section deformation.

n=O n=1 n=2 n=3

Figure 5.29: Possible modes of cross-sectional deformation. Shaded areas denote the

crushed foam.

5.3.4.3 Plastic Resistance

The numerical results of torsional resistance of foam-filled square columns with i/b = 5

and b/t = 50 ant t = 1mm are shown in Fig.5.30. The lower and upper bounds on

torsional resistance established earlier are also plotted in the same figure. One can

see that the two bounding curves bracket the actual resistance of the columns, as

predicted by numerical solutions.
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Figure 5.30: Torsional resistance of foam-filled square tubes

5.3.5 Strengthening Effect of Foam Filling

In order to quantify the strengthening effect of foam filling on the plastic resistance

of thin-walled tubes undergoing torsion, a series of numerical simulations were car-

ried out with a wide range of foam density (1%.- 20% relative density). A simple

strengthening model was proposed, and the solutions to twisting moment and critical

twisting rotation of foam-filled tubes were derived based on the numerical results.

5.3.5.1 Twisting Moment Elevation due to Foam Filling

The presence of the foam filler provides the support from within to the tube wall and

thus retards the inward sectional collapse. As a result, the critical twisting rotations

to sectional buckling will be increased for foam-filled tubes compared to the non-

filled ones. In the post-buckling state, the foam filler functions as an elastic-plastic

foundation. It induces higher buckling mode (see Fig.5.29), and therefore results in

a higher torsional resistance.
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It is assumed accordingly that the torsional resistance of a foam-filled tube in the

pre-buckling phase is the same as that of a non-filled tube, while its critical twisting

rotation angle is increased. In the post-buckling phase, the torsional resistance of a

foam-filled tube is elevated, and is of the additive form of the resistance of a non-

filled tube and a torque elevation resulting from filling, which is in turn a function of

the cross-sectional dimension and foam properties. Thus, the twisting moments and

critical twisting rotation take the following form

T f = Ti (5.50)

Tf = T+AT(bcof,-) (5.51)
Ps

Ocf = 0 + AC9( 0) (5.52)
Ps

where Tif and T14 are the torsional resistance of foam-filled tubes in pre-buckling

and post-buckling phase, respectively; T2 is the torsional resistance of empty tube in

pre-buckling phase, and was given by Eq.(5.32) and Eq.(5.33)

T = 2aob2t(0.58 + 0.05r2 0g) (5.53)

Tp is the mean twisting moment in the post-buckling phase calculated by averaging

the torque in the range of [0c, 0m]

/1.34 _ 91.34
T, = 2aob2 t 0.58 - 0.16r-0 .22 m / (5.54)

AT is the twisting moment elevation due to the filling; Qcf is the critical twisting

rotation to buckling for filled tubes; AO is an angle shift in critical twisting rotation

due to filling. Such a strengthening behavior is illustrated in Fig.5.31
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Figure 5.31: Strengthening effect of foam filling

5.3.5.2 Quantifying the Strengthening Effect

In order to quantify the twisting moment elevation AT and critical rotation shift

AG, numerical simulations were conducted using PAM-CRASH. The same finite el-

ement model as that described in section 5.3.4.1 is used. The tube wall material

was aluminum extrusion AA6063 T7, with mechanical properties of Young's modulus

E = 69GPa, yield strength a, = 86.9MPa, and Poisson's ratio v = 0.3. The strain

hardening data from tensile test are given in Table 5.1. The constitutive behavior of

the thin shell element was based on an elastic-plastic material model with Von Mises

isotropic plasticity algorithm with piecewise linear plastic hardening. The mechani-

cal properties of the foam material are related to its density via Eq.(2.1)- Eq.(2.6).

Its constitutive behavior is based on the maximum principal stress yielding model

described in the Chapter 2. The foam material used in the analysis is CYMAT alu-

minum foam, which has the plastic flow stress a00 = 98.3MPa, and Young's modulus

E, = 70GPa.

The twisting moment-twisting rotation responses of the empty tube and the tubes

filled with foams of various densities are shown in Fig.5.32. One can see that two
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strengthening effects exist due to the foam filling: a delayed sectional collapse, and a

higher plastic resistance in post-buckling range.
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Figure 5.32: Torque responses of empty and filled tubes up to 900 twisting rotation

As discussed earlier in this chapter, the torsional plastic resistance of a foam-alone

bar can be approximated by

T = 0.225brf b (5.55)

It is evident that T only depends on the shear strength r of the foam and the sectional

width b. Following the same procedure as in the cases of compression and bending

addressed in Chapter 3 and Chapter 4, the strengthening effect of the foam filling in

torsion is assumed to be related to the contribution from foam alone with a coupling

(interaction) factor. Because the shear strength rf is in turn a function of the foam

density, the twisting moment elevation AT can therefore be written in the form of

AT = caof b (&
(Pse
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where a and 3 are two coefficients to be determined by fitting the numerical results

obtained above, which gives

a= 0.06

S= 0.45 (5.57)

Figure 5.33 shows that

Eq.(5.57) are very close,

the AT predicted by

indeed.

the finite element analysis and by

0.05 Relative &4-r1 oa /) 0.15

0.25

02

S0.15

0.1

II0.2 0 005 01 0.15Relative Defsty of Foam (pjp -

Figure 5.33: Curve-fitted AT and AO

In a similar manner, the angle shift AG predicted by numerical simulations is fitted

as a function of the relative density of the foam filler (see Fig.5.33)

AO = 3.8 QL)) 

ps )

- 17.4 (-S

One can see that the AG is an increasing function of E initially, because the sectional

collapse was delayed due to the presence of the filler. However, when the foam density

increases and the foam is strong enough, higher sectional buckling modes readily

develop, which leads to decreasing critical rotation angles as foam density increases.

199

45 ,F roi

400

.350

6-00

250

200

150Jso

A T = 0.06001b V pt 'Par
SNumerkWa Resufts

-0

0-

0 0.2

(5.58)

0.31 1 9 1

--a0 = 3.8(p/p,)--17.4(p/p

- NumericalResults

0.05



5.4 Experimental Study

Torsional experiments on empty and foam-filled thin-walled square tubes have been

performed to validate the analytical and numerical solutions discussed earlier in this

chapter. The specimens used in the test were provided by Norsk Hydro ASA, Norway.

The experiments were carried out at University der Bundeswehr Munchen, Germany.

5.4.1 Experimental Design

Pilot tests were conducted with a torsional actuator with maximum capacity of

2kNm. But calculations of peak twisting moments showed that such a torsional

actuator was not sufficient for the current testing program. In addition, there was

not enough axial displacement available on the torsional actuator which is necessary

to compensate the shortening of specimen during twisting. Therefore, a completely

new testing rig was designed and manufactured, which uses a linear actuator.

Figures 5.34 and 5.35 show the testing apparatus. A simple lever arm design is

applied allowing an axial DOF of the loading end of the specimen using a ball bearing.

On the other end of the specimen, a clamped fixture represents the loading boundary

condition. The linear actuator is connected with the top of a cardan joint and thereby

has all necessary DOFs for the kinematics. The lever arm itself is hinged with the

actuator. Care was taken to release any axial force that might have developed during

the process of large rotation.

The force and displacement associated with the linear actuator are recorded by force

sensor and displacement sensor, respectively. From the kinematics of the system,

these data can be easily converted to twisting moment acting on the specimen and

the corresponding twisting angle. The testing rig is integrated into a stiff frame. The

fixture of the specimen is mounted on a stiff plate horizontally. The linear actuator

is displacement-controlled and powered by a hydraulic supply. The maximum stroke

of the actuator is 600mm and its maximum loading capacity is 40kN. Fig.5.35 shows

the details of the lever arm. The range of the twisting angle of the lever arm is

-30' ~ +300.
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Figure 5.34: Testing rig design

Figure 5.35: Design details of the lever arm

The tests were run quasi-statically with an actuator velocity at about 0.8mm/s. The

data sampling frequency is 1Hz.
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Figure 5.36: Engineering stress-strain curve of AA6063 T7

5.4.2 Specimens

The aluminum extrusions and aluminum foams were provided by Norsk Hydro ASA,

Norway. The extrusions are square sections with dimension 80mm x 80mm, thickness

3mm and length 270mm. The material is AA6063 T7. An engineering stress-strain

curve of this material is shown in Fig.5.36.

The aluminum foam has geometry 270 x 77 x 77mm and were filled into the extru-

sion sections. Four different foam densities were tested. Table 5.2 summarizes the

specimen information.

5.4.3 Testing Results

The tests were run quasi-statistically. One end of the tube was clamped while the

other end was axially free and was subjected to twisting rotation up to 32*. Some

interesting observations were made from the experiment:

(i) The twisting deformation and sectional deformation pattern of empty tube agree

generally with the numerical predictions and the analytical model(see Fig.5.37 and

Fig.5.38);
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Table 5.2: Specimen summary

Specimen Type Foam Weight Foam Density Foam Crush-

No. [g] [g/cm 3 ] ing Strength

[MPa]

S1 empty 0 0 0

S2 empty 0 0 0

S3 filled 220 0.14 1.78

S4 filled 240 0.15 1.97

S5 filled 300 0.19 2.81

S6 filled 300 0.19 2.81

S7 filled 380 0.24 3.99

S8 filled 380 0.24 3.99

Figure 5.37: Torsional deformation shapes: experimental and numerical

(ii) The torsional resistance responses of an empty tube obtained in the test is shown

Fig.5.39. The resistances predicted by numerical simulation and analytical solution

are shown in the same figure for comparison. It can be noted that the numerical re-

sult and analytical solution have reasonably good agreement while the experimental

result gives much smaller twisting resistance after the peak moment. This is due to

an improper design of the end fixture plate of the specimen, which resulted in an un-

expected welding failure under large torque, as shown in Fig.5.44. The welding crack,
developed in all but one specimen, diminishes significantly the twisting resistance of

the specimen after the peak moment.

(iii) The sectional transverse deflection was retarded by the foam-filler, which resulted
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Figure 5.38: Sectional deformation: experimental, numerical and model

in a smaller deflection amplitude. The sectional deformations of foam-filled tubes are

more localized than that of empty tube. Fig.5.40 and Fig.5.41 show the deformation

shape and sectional deformation pattern of one foam-filled tube observed in exper-

iment and predicted numerically. It is evident that the numerical simulation gave

fairly good prediction on the deformation;

(iv) Numerical simulations were carried out on two foam-filled tubes with foam filler

of density 0.14g/cm 3 and 0.24g/cm 3, respectively. The moment responses are shown

in Fig.5.42 together with testing results for comparison. As can be seen, two sets of

results agree fairly well up to the angle of the peak moment. After that, numerical

results predict an increasing resistance while the experiments were stopped because

of the fixture failure.

(v) Torsional resistance of all tested tubes vs. twisting rotation are plotted in Fig.5.43.

Although the tubes lost much of their twisting capacity due to a premature weld-

ment failure during experiment, substantial increase in the energy absorption are

still achieved for the foam-filled tubes. This bears an important implication of the

attractive potential of the foam-filled thin-walled members as weight-efficient energy-

absorbing and force-maintaining structures in collision of a vehicle.

(vi) There are welding failures occurring at the end fixture plate of specimens (Fig.5.44),

which resulted in a considerable loss of post-buckling torque of the tubes. A careful

re-design of the end fixture for specimens is needed in later experiments of this kind.
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Figure 5.41: Sectional deformation of foam-filled tubes: experimental and numerical
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Figure 5.44: Welding failure of the end fixture of a tube

5.5 Summary

An analysis by applying the principle of virtual velocities to assumed displacement

fields was used to predict the torsional behavior of thin-walled square tubes with

large plastic deformations. Three successive deformation phases, namely pre-buckling,
cross-section buckling and collapse-spreading phase were identified based on the phys-

ical understanding of the torsional behavior of thin-walled prismatic tubes. The ana-

lytical model was then extended to the cases of thin-walled rectangular and hexagonal

tubes. Numerical simulations were carried out and the results are compared with the

analytical solutions, giving good agreement.

The torsional crushing behavior of foam-filled square tubes under large rotation was

studied in the second part of this chapter. The upper and lower bounds on the tor-

sional resistance were established approximately and compared with the numerical

results. It was noted that the presence of the core material changes the collapse

mechanism and gives rise to higher sectional collapse modes and therefore increases

the plastic resistance of the tube. The analysis also showed that, there are two basic

mechanisms through which the core material is increasing the energy absorption of

thin-walled tubes. The main mechanism is to prevent or reduce the inward sectional

collapse of the cross-section and ensure the full membrane stress to be developed in

the wall. The second mechanism for increasing the energy absorption is a direct con-

tribution from the torsion of the core material, which is proved to be a small fraction
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compared with the aforementioned main mechanism. Based on the numerical results

within a wide range of foam densities (1% - 20% relative density), the strengthening

effects of foam filling were quantified. The solutions will be used in the optimization

study in the next chapter.

Torsional experiments on empty and foam-filled square tubes were carried out and

results were compared with finite element solutions, and analytical models. A new

testing rig was designed, which was able to convert the force on linear actuator to

twisting moment on specimen by a specially designed lever arm. Although the end

platens of specimens were not properly designed and unexpected welding failure oc-

curred on those fixtures in testing, which diminished significantly the twisting moment

of the tubes, the deformation shape and sectional deformation pattern of empty tdbes

revealed in the experiment agree well with the numerical predictions and analytical

models. The experimental results show increase in plastic resistance and energy ab-

sorption for foam-filled tubes compared to empty ones, thus offering potential for

thin-walled members with ultralight metal filler as weight-efficient energy-absorbing

structures.

In the simple analytical model, the sectional buckling was assumed to initiate at the

center of tube and then propagate towards two ends. The most-deformed section

was also developed at the center of the tube (see Fig.5.10 and Fig.5.11). In contrast,

the finite element solution (see Fig.5.4) and experimental result (see Fig.5.37) exhibit

different deformation patterns, in which the initiation of sectional buckling and the

most-deformed section are shifted from the center of tube towards one end. Such

an assumption on the deformation mode in the approximate model simplified the

analysis while sacrificing to some extent the accuracy of the solution.

More experiments are needed with re-designed end platens to ensure its integrity

under large twisting moment. Furthermore, the present model is restricted to the

cases of torsional deformations without warping. In addition to the deformation

considered so far, a nonuniform axial displacement may give rise to a warping of the

cross-section.

In real applications, torsion seldom acts alone. Usually it is combined with compres-

sion and/or bending. The interaction of torsion with compression and bending should

be considered in the continuation of the present research.
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Chapter 6

Design Optimization of Ultralight

Structures

In the previous chapters, we studied the crushing behavior of thin-walled structures

filled with the ultralight metal filler. This fundamental work is of great importance in

achieving a clear physical understanding of the crushing mechanics of ultralight struc-

tures. The strengthening effect and interaction effect between the filler and the metal

skin under compression, bending and torsional loadings were revealed and quantified,

which led to some simple design formula for predicting the crush resistance and energy

absorption of the ultralight core filled structures. With a full understanding of the

crushing mechanics of filled members, it is possible to select among all feasible options

an optimum design of structural geometry and material properties for the minimum

weight while satisfying the requirements of structural integrity and crashworthiness.

Structural optimization has been a topic of interest for many years and is now a rea-

sonably mature technology for weight efficient or cost efficient structural design. How-

ever, not much work has been directed toward problems of vehicle crashworthiness.

This is primarily because of the inherent and significant nonlinearity due to large de-

formation, material plasticity and the presence of contact during a crash event. In an

early attempt at structural optimization with crashworthiness constraints, Bennett,

et al [83] used a lumped parameter structural model to find feasible designs. Song [84]
created a direct link between the thickness of a rectangular member and the safety in-
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dex in the nonlinear force-deformation curve of the spring-mass model, which allowed
the determination of the component dimensions for minimum mass while meeting
given safety criteria. Lust [85] combined this approach with linear elastic structural
optimization to produce an integrated structural design system. DeVries et al [86]
presented a methodology to incorporate the concept modeling, structural optimiza-
tion, and the beam section analysis code SECOLLAPSE for the automated structural
optimization of thin-walled beam sections for minimum weight design. Bennett et al
[87] reviewed some optimal design strategies in crashworthiness and occupant pro-
tection and examples were given addressing the idea of creating approximate design
problems based on a small number of system analyses. Other attempts of structural
optimization for crashworthiness problem involved the direct coupling of optimization
techniques with the discretized field models such as nonlinear finite element method
[88, 89, 90]. The issue relating to this approach is that it is usually computationally
intensive. Regarding the thin-walled component with lightweight filler, few attempts
have been made on the sizing optimization of foam-filled sections for minimum weight
with crashworthiness constraints. In a study which involves optimizing the compo-
nent geometries and the polyurethane foam density, Lampinen and Jeryan [4] found
that the range of wall thickness for which foam reinforcement is weight effective if of
no practical use. Recently, Hanssen et al [91] investigated the optimum design for
energy absorption of aluminum foam filled square colur : and indicated that signif-
icant mass, length and volume reductions are possible by utilizing aluminum foam
filler.

In this chapter, a methodology was proposed which combined structural optimization
techniques with the recent achievements in the crushing mechanics of ultralight struc-
tures. The optimization formulations were constructed on a component level for the
minimum weight with the constraints of crashworthinss and elastic bending stiffness.
Design optimization of various sections were carried out using proposed methodology
to decide the most weight efficient design for crash energy management in axial crush-
ing, bending collapse and torsional crushing loadings. The proposed methodology is
suitable for early-stage design of crash members with very little computational effort.

210



6.1 General Formulation

Optimum design of a structural system like a car is a complex task. It involves many

factors which often lead to conflicting needs and make the optimization procedure

hard and seemingly insurmountable. However, we can start this broad project by

addressing a relatively simple problem, such as sizing and shape optimization of

the cross-section of one structural component subjected to a given type of crush

loading. The above simple problem will provide a much needed understanding of the

crashworthiness optimization process. This in turn will help to move on into multi-

component subsystem optimization and system optimization considering combined

load sets and finally achieve a computer-based knowledge system for optimum design

with regarding to mass, stiffness, safety, manufacturability, NVH, and many other

factors.

In the present study, we consider the optimization problems of ultralight structures on

a component level for minimum weight under structural integrity and crashworthiness

constraints. A general problem of structural optimization for minimum weight can

be stated: find the set of design variables, X, that will,

Minimize m(X)
subject to

g,(X) 0, j= 1,m

XiL < X < XJ, i = 1,n (6.1)

The function m(X), which is referred to as the objective or merit function, is the

mass of the structural member. The gj(X) are referred to as constraints, and they

provide bounds on various response quantities. The region of search for the optimum

is limited by the side constraints X$ 5 Xi 5 Xf.

For a proper crash energy management, a crash member is usually required to absorb

during a crash event certain amount of kinetic energy (target energy absorption), that

is,

En ;> En (6.2)
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where E is the actual energy absorption of the crash member during the crash

deformation; E is the target value.

On the other hand, the cross-section of the structural member must provide enough

elastic bending stiffness for normal loading condition and for ensuring the global

stability in axial crush loading as well. Thus, a lower bound of the sectional bending

stiffness must be set

EI> EI (6.3)

where E is the Young's modulus; I denotes the second moment of inertia of the

cross-section. El is a target value.

Therefore, the optimization problem of a structural component for minimum weight

under crashworthiness and bending stiffness constraints can be formulated in the

following way

Minimize m(X)

subject to

gI(X) = -En + E,-s0

9 2 (X) = -EI+EI<O

XL 5 X5 X,, i= 1,t n(6.4)

We shall in the following solve such optimization problems under various crash loading

conditions.

6.2 Solution Algorithms

The problem formulated above is a constrained optimization problem with both ob-

jective function and constraints being nonlinear. A solution of the nonlinear opti-

mization problem generally requires an iterative procedure to establish a direction of
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search at each major iteration. This is usually achieved by the solution of a Linear

Programming (LP), a Quadratic Programming (QP), or an unconstrained subprob-

lem.

6.2.1 Graphical Approach

A two-variable design problem can be solved using the graphical optimization ap-

proach [92]. In this approach, each constraint function is plotted on a graph. This

gives a curve that divides the design space into two parts. One side of the curve rep-

resents all the design points that satisfy the constraint (feasible design) and the other

side represents the design that violate the constraint (infeasible designs). The feasible

region represents a set of designs that satisfy all the constraints of the problem.

Next is to locate the best possible design in the feasible region. A few iso-cost curves

are drawn through the feasible region and a point that gives least value to the cost

function (objective function) is identified as the optimum solution. The coordinates

for the optimum point are read directly from the graph. The constraints that govern

this design are called active or critical, whereas others are called inactive or noncriti-

cal. We shall use the graphical approach to solve some simple two-variable problems

in this chapter.

6.2.2 Sequential Quadratic Programming

Closed form analytical and/or graphical solutions for practical optimization problems

are difficult to obtain if the number of design variables is more than two and/or the

constraint expressions are complex. Therefore numerical methods must be used to

solve most optimization problems. In these methods, an initial design for the system

is selected which is iteratively improved until no further improvements are possible

without violating any of the constraints.

In the present study, a Sequential Quadratic Programming(SQP) method was used to

solve the optimization problem. Given the general nonlinear problem, the principle

idea of SQP is the sequential linearization and formulation of a quadratic program-
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ming sub-problem based on a quadratic approximation of the Lagrangian function.

This quadratic subproblem is then solved to find a search direction so that a suf-

ficient decrease in a merit function is obtained. For details readers are referred to

reference [93].

The SQP algorithm was implemented in the present study using Matlab Script Lan-

guage [94].

6.3 Optimization for Axial Crushing

6.3.1 Formulation

A foam-filled square column subjected axial crushing is investigated first. The column

has length 1, width b and wall thickness t. The material properties of the tube are

mass density po, Young's modulus E and plastic flow stress co. The filler inside the

tube is aluminum foam with density pf(see Fig.6.1).

Figure 6.1: A foam-filled thin-walled column subject to axial crushing

The axial crushing behavior of the column were extensively studied, as summarized in

Chapter 3. Useful design formula were derived to predict the mean crushing force and

energy absorption with sufficient accuracy in the neighborhood of realistic designs.
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Fig.6.2 is a schematic of a force-deflection curve which shows the essential behavior

exhibited by thin-walled columns. The energy absorption during the crushing can be

evaluated

En = Pmd (6.5)

where Pm is the mean crushing force and d is the crush distance.

'Di /
PM l// &

d s

Figure 6.2: An illustration of crushing force response

If we assume that the crush distance d or the so called stroke efficiency d/l doesn't

change much within the range of tube and foam parameters we select, we can neglect

the effect of length and simplify our task to the cross-sectional optimization. Hence

the energy absorption capacity of the column is equivalent to considering the mean

crushing force level Pm. Therefore, a requirement for the column to absorb the kinetic

energy during a crash event can be satisfied by setting a target mean crushing force

level Pm which must be provided by the column

(6.6)

Additionally, the peak impact force P. is usually restricted to ensure the structural

integrity of the passenger compartment. Then, a constraint should be set on the

maximum crushing force

PU <; P (6.7)
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Four design variables are identified: the width b, the wall thickness t, the plastic flow

stress ao of the tube material, and the foam density p, that is,

XT = {b, t,ao, pf} (6.8)

where these design variables are allowed to vary within prescribed limits

bL <6b < bU

t5 < t < tu

CL 00: rU0o 03013Jo

LUp1  5pf <P U(6.9)

The sectional mass (mass per unit length) of the column can be expressed by design

variables

m(X) = 4btpo + b2p (6.10)

The formulation of Eq.(6.4) can then be re-stated in the following for foam-filled

square sections undergoing axial crushing

Minimize m(X)

subject to

9 1 (X) = -Pm+Pm 0

9 2 (X) = -EI+EI < 0

9 3(X) = Pu-Pu <0

X' < Xi < Xiu, i = 1,4 (6.11)

Obviously, this formulation can also be applied to other sections with different geom-

etry, such as hexagonal, double-hat rectangular, double-hat hexagonal and double-

walled sandwich (Fig.6.3).

An accurate prediction of the response functions used in the optimization formulation

is essential for a successful optimization calculation. The prediction of the mean

crushing force and peak impact load of various sections will be addressed in the

following.
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. .P, or P,

Figure 6.3: Various foam-filled sections

6.3.2 Summary of Crush Resistance of Thin-walled Columns

with Ultralight Filler

A successful optimization heavily relies on the accurate prediction of the crushing

behavior of structural members. The axial crushing behavior of thin-walled metal

tubes has been studied extensively for several decades. The folding deformation of

the tubes are known to be an efficient energy absorbing mechanism. Wierzbicki and

Abramowicz [53] derived theoretically a solution of the mean crushing force of a

thin-walled square column, see Section 3.1.

Pm = 13.06uObit3 (6.12)

where b and t are width and wall thickness of the tube, respectively; uO is referred to

as the energy equivalent flow stress of column material and was given in Eq.(3.10).

The theory was improved later leading to the Superfolding Element theory which can

be applied for arbitrary multi-corner sheet metal columns [54]. For instance, the

mean crushing force of a hexagonal column (Fig.6.4(i)) can be calculated

Pm = 20.23uot 6 b 4  (6.13)

and a double-hat rectangular (Fig.6.4(ii))

Pm = 13.06-ot3 (C1
3 + C) (6.14)
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where C1 = s+ 4h; C2 = !b+ 1h

and a double-hat hexagonal(Fig.6.4(iii))

Pm= 13.49cot'-6(C1.4 + C2.4)

where C1 = s + 4b; C2 = b

b

(i) (ii)

(6.15)

1,

(iii)

Figure 6.4: Empty thin-walled sections (i) hexagonal; (ii) double-hat rectangular; (iii)
double-hat hexagonal

Extensive studies have been carried out by Santosa and Wierzbicki [39, 95, 5,10] to
investigate the crushing behavior of thin-walled structures with an ultralight filler.
Based upon their theoretical solutions and numerical results, they developed practical
design formulas to predict the mean crushing forces of various foam-filled sections.
Summing up in the following are the formulas which will be used for current opti-
mization calculation.

Foam-filled square section (Fig.6.5)

Pm = 13.06obitd + 1.8or b2

Foam-filled hexagonal section(Fig.6.5)

Pm = 20.23aot 1-6 b 4 + 4.68o'jb2

(6.16)

(6.17)
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Figure 6.5: Geometry of foam-filled square and hexagonal section

Foam-filled double-hat rectangular section(Fig.6.6)

Pm = 13.06o-ot (C3 + C2) + 1.8ufbh (6.18)

where C1 = s+ h; C2 = 1b+ 1h.

b

tthI

Figure 6.6: Geometry of foam-filled double-hat rectangular section

Foam-filled double-hat hexagonal section(Fig.6.6)

Pm = 13.490-ot 6(C?-4 + C204) + 4.68Ufb 2  (6.19)

where C, = s + 1b; C2 = b

In the above equations, b, t,s and h are geometrical parameters of sections defined

in the figures. The plastic flow stress of the foam filler which is related to its mass

density is denoted by af
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More recently, a concept of a double-walled sandwich column to be used as a weight ef-

ficient crashworthy structure was proposed by Santosa and Wierzbicki [6]. The mean

crushing force of double-walled honeycomb sandwich and aluminum foam sandwich

can be predicted by the following formulas.

Double-walled honeycomb sandwich(Fig.6.7)

Pm = 13.06uO(2tj)3b + 60.48Cb0rh (6.20)

where Uh is the flow stress of the honeycomb core; tj denotes the thickness of inner

and outer wall; C is the core height.

Double-walled foam sandwich(Fig. 6.7)

Pm = 13.06uO(2tj)bI + 20.57Cb1Tf (6.21)

where cf is the flow stress of the aluminum foam core.

b 
d

t
b

Pf or Ph

Figure 6.7: Geometry of double-walled sandwich section

The mechanical properties of aluminum foam and aluminum honeycomb were dis-

cussed in Chapter 2. They are related to their mass densities via Eq.(2.1)- Eq.(2.6)

and Table 2.1. For instance, the mechanical properties of Hydro aluminum foam are

as follows: Eq =69GPa; oof=150.4MPa; psf = 2.7g/cm 3. For the 5056 Hexcel alu-

minum honeycomb, the parameters are: ESh=69GPa; cOh=285MPa; PAM = 2.7g/Cm 3 .
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6.3.3 Optimization of Foam-filled Square Section

For one-variable objective functions and some multi-variable linear objective func-

tions, it is mathematically straightforward to carry out an optimization (maximiza-

tion or minimization) procedure. However, the crashworthiness optimization involves

highly non-linear objective functions and constraints, which makes analytical opti-

mization enormously difficult, if not impossible. Therefore we have to resort to some

numerical optimization techniques for our task. The graphical approach is one of

these methods which is very useful and easy to interpret for a two-variable optimiza-

tion problem. In this section, the simplest case of an empty thin-walled square section

will be investigated analytically. Then the graphical approach is used to study the

reduced problem of foam-filled section with some variables fixed. Finally, a general

foam-filled square section problem is solved by Sequential Quadratic Programming

and results are discussed.

6.3.3.1 Empty Square Section

1. Constraint on Peak Impact Load

For the simple case of an empty square section, the objective is to minimize the

sectional mass

m = 4btpo (6.22)

where b and t are width and wall thickness, respectively; po is the mass density of the

column material.

The constraint on the mean crushing force is

gi = 13.06-Ob1A - PM = 0 (6.23)

where Pm denotes the target mean crushing force.
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If we take into consideration as well the constraint on the peak impact load P., then

the second constraint is introduced

92 = Pu - P<O; 0 (6.24)

where Pu is the maximum allowable peak load.

The peak impact load P. of an empty thin-walled square column can be well approx-

imated by Von Karman effective width theory [96]

PF = 7.6t2/Eo (6.25)

where E0 and ao are the Young's Modulus and plastic flow stress of the column

material, respectively.

It is evident that a limit on the peak load actually imposes a restriction on the

maximum wall thickness given the column material constants E0 and Uo. On the

other hand, a higher plastic flow stress ao will lead to smaller width b and thickness t

and thus is always favorable for minimum weight. For given material property of ao

and Eo, the optimum b and t can be obtained through simple derivation considering

the constraints i and g2. Eliminating b in Eq.(6.22) results in

P~3

71= 549.3c70t4  (6.26)

One can see that a largest feasible wall thickness t, which should be deteriined by

Eq.(6.25), will result in a minimum sectional mass. Therefore, an optimum thickness

* is decided by

t* = Pu (6.27)
V7.6:/Eoao
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The optimum width b* can then be found from Eq.(6.23)

~3

PM
b*= '" (6.28)

(13 .06 0o)3t* 5

Take, for instance, a square column made of aluminum extrusion AA6060 T4. The

material properties are: yield stress o, = 80 MPa; ultimate stress a = 173 MPa;

Young's Modulus Eo = 6.82 x 104MPa; power law index n = 0.23.The energy equiv-

alent flow stress can be found to be oo=10 6 .1 MPa by Eq.(3.10).

Assuming that the target mean crushing force is 1OkN and the highest allowable peak

load is 20kN, the optimum design of width and thickness can be calculated as

{b*, t*} = {380mm, 1mm} (6.29)

As can be seen, the value of selected width is well beyond the practical range of

interest. Practically, a high peak impact force can be eliminated by introducing a

trigger on the top of the crash member, as described in the experimental study in

Chapter 3. Therefore, we shall not consider the peak load constraint in the following

analysis. Instead, a constraint on bending stiffness will be imposed.

2. Constraint on Bending Stiffness

In order to ensure enough elastic sectional stiffness and prevent global buckling of the

column during axial crushing, a constraint on the bending stiffness should be imposed

EI;> EI (6.30)

where El is the target bending stiffness.

The bending stiffness EI of a thin-walled non-filled square section can be expressed

by design variables (neglecting 3rd order term of t)

EI = - 2 E bat (6.31)
3
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From Eq.(6.22), Eq.(6.23), Eq.(6.30) and Eq.(6.31), the optimum solution of b and t

can be obtained through simple derivation

E14
~bp } 2Eo

t* P (-E~-14(6.32)
(13.06ao ) 3EI

Take, for instance, the mechanical properties of the column material are: oo=106.1MPa,

EO=68.2GPa, po = 2700kg/m3 . The target values are taken as: P=60kN, EI =

25kNm 2 . Solving Eq.(6.32) yields

{b*,t*} = {50.1mm, 4.4mm} (6.33)

which is more reasonable for real application than the previous result from peak load

consideration.

6.3.3.2 Foam-filled Square Sections

1. graphical approach

An optimization problem with only two design variables can usually be solved by

graphical method. The graphical method is helpful to gain a physical understanding

and to properly interpret the optimization procedure. In the following, three different

cases will be considered. In each case, two of the design variables XT = {b, t, 0o, pf}

are fixed and the other two are left active. In all cases, the mass density of the column

material po is taken as 2700kg/M. The filler is assumed to be Hydro Aluminum foam.

The bending stiffness of a foam-filled section can be expressed by design variables as

EI = Eobt +A1 Ef(b - 2t)4 (6.34)
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where Young's Modulus of the foam E1 is related to the foam density p via Eq.(2.1).

Case 1: b and 0o fixed, t and pf variable

Figure 6.8 shows the solutions to the optimization problem of a foam-filled column

having a cross section width b=84mm and plastic flow stress o0 =106.IMPa (AA6060

T4). In the figure, the contours of mean crushing force, bending stiffness and the sec-

tional mass are plotted as functions of foam density p and wall thickness t. Straight

lines represent the combinations of foam density and wall thickness that give constant

values of sectional mass while the circle-like contours represent the combinations of

p1 and t that yield constant values of Pm. Two contours of EI = 25kNm2 and

EI = 50kNm2 are also plotted. One can see that, with the increase of foam den-

sity and wall thickness( moving from lower left corner of the figure to upper right),

the mean crushing force and sectional mass are increasing as well. Some important

features of the optimization problem can be discovered based on this figure.

Firstly, if a target mean crushing force is set, for example, 60kN, we can find in the

figure the 60kN Pm contour, curve ECF. It can be observed that point F, which

represents a foam alone column(t = 0), gives a value of mass around 1.5 kg/m.

Meanwhile, point E, which corresponds to an empty column(p1 = 0) gives a value

of mass around 3.5kg/m, higher than point F. Due to the convex shape of the Pm

contour and linearity of the mass contour, all other points on the 60kN contour give

mass higher than point F. Therefore, it can be concluded that, for columns with given

width and material property, a column made of foam alone will exhibit, among all

possible combinations of wall thickness and foam density, the highest Specific Energy

Absorption (SEA, energy absorption per unit mass).

However, a foam-alone column is not practically feasible because the column usually

functions as a structural member which must provide strength and stiffness under

normal working condition. Therefore, a constraint on the bending stiffness EI is in-

troduced. Take, for instance, EI > 25kNm2 , an optimum point S can then be found

at the intersection of Pm= 60 contour and EI=25 contour, which gives the mini-

mum weight design while satisfying both mean crushing force and bending stiffness

requirements.

It is also interesting to note in the figure that, from point E to point C on 60kN
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contour (0 < Pi < 0.16, correspondingly), foam-filled columns have larger mass

therefore lower specific energy absorption than that of non-filled column (point E).
Only if the density of the foam filler is larger than a critical value (point C), foam-filled

columns will be superior to non-filled column in terms of specific energy absorption.

b=50 mm,cr0=106.1 MPa

4.5[

4

E3.5
E

S3

02.5

.2
cc

1.5

1

0.5F

ai

0 0.1 0.2 0.3
foam density Pf (g/cm 3)

0.4 0.5

Figure 6.8: Graphical approach for optimization with fixed b and 0o

Case 2: t and 0 o fixed, b and pf variable

Figure 6.9 shows the optimization solution of columns with given wall thickness

t=0.8mm and flow stress oo=106.1MPa. The width of columns is varying from 50
to 100 mm and the range of foam density is 0%-0.5g/cm3 . In the same manner as in
the previous figure, the contours of constant values of mass, Pm and EI are plotted

as functions of the combinations of width and foam density. As can be seen, for a

given target force Pm=60kN, point A, which is corresponding to the highest possible

foam density, yields the smallest mass hence highest SEA. However, the constraint

on bending stiffness EI >25 rules out this choice and results in the optimum solution

at point S.
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t=0.8 mm, 0=106.1 MPa
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Figure 6.9: Graphical approach for optimization with co = 106.1 MPa and t=0.8mm

Case 3: b and t fixed, ao and py variable

It is obvious that the mean crushing force will increase with the increase of the flow

stress 0o without any additional weight penalty. Therefore, a high flow stress Uo is

always favorable for crash member design, assuming the failure mode remains the

same and without taking the material cost into consideration.

2. Numerical Optimization of Foam-filled Square Section with Prescribed Material

As indicated in above discussion, within a material group of same mass density, the

one with the highest flow stress aO is always the choice for weight efficient crashworthy

design. Therefore, the flow stress ao will not be considered as a design variable in the

following analysis. The optimization formulation of foam-filled square sections can

then be re-stated as

Find a set of design variable X = {b, t, pj} to
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Minimize m(X) = 4btpo + b2 p

Subject to

g,(X) = -(13.06aobit I + 1.8of2) + PM < 0
2 1 ~4

9 2 (X) = -(5 Eobst + A2Ef(b- 2t)4)+EI<0

XP _<Xi 5 Xf, i = 1,3 (6.35)

where 0f and E1 are related to foam density pf via Eq.(2.4) and Eq.(2.1), respectively.

The above problem has only three design variables and two constraint functions. It

can be solved by numerical method such as Sequential Quadratic Programming with

only limited computations required.

The column material is assumed to be aluminum alloy AA6060 T4 with mass density

2700kg/M 3 and plastic flow stress o0=106.1MPa. The filler is Hydro Aluminum foam.

Several levels of target mean crushing force are specified with a constant target bend-

ing stiffness EI = 25kNm 2 . For the purpose of investigating the effect of wall thick-

ness on the specific energy absorption (SEA), different feasible ranges of thickness t

are specified. The optimized results are listed in the following tables. Similarly, opti-

mization problems of non-filled square sections are also solved and optimum solutions

are listed in same tables for comparison.

A few observations can be made based upon the above optimization results:

" The optimized specific energy absorption (SEA) of non-filled square section is

generally lower than that of foam-filled section, unless the wall thickness of the

non-filled section can reach un-practically large values. In that case, the SEA of

empty section is about 8% higher than that of filled one while the wall thickness

of empty section reach as large as 5 - 6mm;

" Due to the manufacturability, the largest allowable wall thickness t." of thin-

walled members is usually limited. If tma, is set to be 4mm, the SEA of filled

section is 34% higher than that of non-filled section for a medium target force
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Table 6.1: Optimization solutions with t unconstrained

Variables Constraints

t (mm) no constraint

b (mm) no constraint

P1 (g/cm 3) 0-0.5
EI (kNm

2
) 25

Pm (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 87.9 52 83.8 50 80.5 48.4 77.9 47

t* (mm) 0.7 3.9 0.8 4.4 0.9 4.8 1.0 5.3

p* (g/cm3 ) 0.213 0 0.256 0 0.299 0 0.342 0

m* (kg/m) 2.35 2.19 2.56 2.37 2.76 2.53 2.93 2.68

Specific energy

absorption (kJ/kg) 21.3 22.8 23.4 25.3 25.4 27.7 27.3 29.9

Table 6.2: Optimization solutions with t = [0,4]

Variables Constraints

t (mm) 0-4

b (mm) no constraint

Pj (g/cm 3) 0-0.5

I (kNm2 ) 25

P(kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 87.9 52 83.8 79.3 80.5 125.9 77.9 187.9

t* (mm) 0.7 3.9 0.8 4 0.9 4 1.0 4

(g/cm3 ) 0.213 0 0.256 0 0.299 0 0.342 0

m* (kg/m) 2.35 2.19 2.56 3.43 2.76 5.44 2.93 8.12

Specific energy

absorption (kJ/kg) 21.3 22.8 23.4 17.5 25.4 12.9 27.3 9.9
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Table 6.3: Optimization solutions with t = [0,3]

Variables Constraints

t (mm) 0-3

b (mm) no constraint

pf (g/cm
3

) 0-0.5

EI (kNm
2

) 25

Pr, (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

1? (mm) 87.9 193.3 83.8 334.1 80.5 530.5 77.9 791.9

t* (mm) 0.7 3 0.8 3 0.9 3 1.0 3

p (g/cmn 3) 0.213 0 0.256 0 0.299 0 0.342 0

m* (kg/m) 2.35 6.26 2.56 10.83 2.76 17.19 2.93 25.66

Specific energy

absorption (kJ/kg) 21.3 8.0 23.4 5.5 25.4 4.1 27.3 3.1

Table 6.4: Optimization solutions with t = [0,2]

Variables Constraints

t (mm) 0-2

b (mm) no constraint

pf (g/cm3 ) 0-0.5

EI (kNm2 ) 25

Pm (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 87.9 1468.2 83.8 2537.0 80.5 4028.7 77.9 6013.7

t* (mm) 0.7 2 0.8 2 0.9 2 1.0 2

0.213 0 0.256 0 0.299 0 0.342 0

m* (kg/m) 2.35 31.71 2.56 54.8 2.76 87.02 2.93 129.90

Specific energy

absorption (kJ/kg) 21.3 1.6 23.4 1.1 25.4 0.8 27.3 0.6
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Figure 6.10: Specific energy absorption under various conditions

(60kN). This gain of SEA for filled section compared to non-filled one will reach

as high as 175% for a larger target force (80kN);

* When the feasible range of wall thickness shrinks, the SEA of non-filled section

drops significantly, which consequently results in an increasing high superiority

for filled sections in specific energy absorption, as can be seen in Fig.6.10. For

instance, the SEA of filled section is four times higher than that of non-filled

section for Pm=60kN and t in the range of 0 - 3mm;

" With the increase of the target force level, the SEA of filled section increases as

well while the SEA of empty section is decreasing;

* For the target force levels specified in calculation, the optimized solution of filled

section usually yields relatively small wall thickness (0.6 .- 1.0mm), a medium

foam density (0.2 - 0.3g/cm3 ), and a width 80 - 90mm. In comparison, the

optimum design of a non-filled section will take a relatively large wall thickness.

If the selection of large wall thickness is restrained, a large width will be con-

sequently resulted in to meet the target force requirement. For example, in the

case of t = 0 - 3mm and Pm=60kN, the optimized width of empty section is

334.1mm, which is four times larger than the width of filled section (83.8mm).
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Therefore, in addition to significant weight saving, dramatic volume reduction
can also be achieved by utilizing aluminum foam filler;

* It can be concluded that the wall thickness is the most sensitive variable in the
design of square-section crash members;

* It should be underlined that some optimization results for empty sections with

2mm wall thickness (Table 6.4) give huge values in width. The design formula
of the mean crushing force used in the current optimization formulation may

not be valid any more for such sections. Hence, the optimization results for

those sections might not be sufficiently accurate. However, the trend revealed

in above analysis should be still valid;

Table 6.5: Optimization solutions with EI varying

Variables Constraints

t (mm) 0-3

b (mm) no constraint

pf (g/cm
3

) 0-0.5

P, (kN) 60

EI(kNm2 ) 10 20 30 40

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 59.4 334.1 77.0 334.1 89.8 334.1 100.2 334.1
t* (mm) 0.9 3.0 0.9 3.0 0.8 3.0 0.8 3.0

p* (g/cm 3) 0.405 0 0.286 0 0.233 0 0.202 0
m* (kg/m) 2.01 10.83 2.42 10.83 2.69 10.83 2.90 10.83

Specific energy

absorption (kJ/kg) 29.9 5.5 24.8 5.5 22.3 5.5 20.7 5.5

Let us set the target mean crushing force at a specified value, for example, 60kN,

and make the target bending stiffness vary in a certain range. The corresponding

optimization results are shown in Table 6.5. The feasible range of wall thickness is

set in the calculation to be 0 - 3mm, as commonly used in real applications. Fig.6.11

shows the optimized specific energy absorption of filled and non-filled sections.
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As can be noted in the Fig.6.11, the specific energy absorption of foam-filled section

is a decreasing function of the target bending stiffness. The constraint on the bending

stiffness retarded the selection of high density foam. The higher the requirement of

bending stiffness is, the lower the resulted foam density is. This is consistent with

what was observed in graphical approach discussed earlier.

The SEA of
the bending
sections.

the non-filled section is a horizontal line in Fig.6.11. It indicates that

stiffness constraint is not active in the optimization process of empty

10 15 20 25 30 35
Bending Stiffness El (kNm2)

40 45 50

Figure 6.11: Specific energy absorption vs. target bending stiffness

6.3.4 Optimization of Other Sections

Similarly as in the case of foam-filled square sections, other types of cross-sections,

such as hexagonal, double-hat rectangular, double-hat hexagonal and double-walled

sandwich sections, can also be optimized for minimum weight using the proposed

methodology. We shall consider these cases in the following. In call cases, the

wall material is assumed to be Aluminum alloy AA6060 T4 with plastic flow stress

a0 =106.1Mpa and mass density po = 2700kg/m3. A practically feasible range of wall
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thickness t = 0 - 3mm is specified for all sections except for double-walled sandwich

sections. The foam filler is Hydro Aluminum foam. The honeycomb core in double-

walled honeycomb sandwich is 5060 Hexcel Honeycomb. The mechanical properties

of these two ultralight core material can be found in Chapter 2.

6.3.4.1 Foam-filled Hexagonal Section

A foam-filled hexagonal section with width b, wall thickness t and foam density pf is

considered (Fig.6.12).

b

Pf

Figure 6.12: Geometry of a foam-filled hexagonal section

The optimization formulation can be constructed by applying the corresponding ex-

pressions of mass, mean crushing force and bending stiffness into the general formu-

lation with crashworthiness and stiffness constraints:

Find a set of design variable X = {b, t, p4} to

Minimize m(X) = 6btpo + !b2pf
Subject to:

91(X) = -(20.23uoblt- 4 + 4.68f b2 ) + P< 0

g2 (X) = -[Eo( b3t+ 1bt') + 5 b Ef] + EI < 0

X" Xi _ Xu, i = 1,3 (6.36)

where c-f and Ef are related to foam density pf via Eq.(2.4) and Eq.(2.1).
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An optimization problem of non-filled hexagonal section can be solved by setting
pf=0 in Eq.(6.36). Results of both filled and non-filled sections are listed in Table 6.6
for comparison. Fig.6.13 shows the specific energy absorption vs. target force levels.

Table 6.6: Optimization solutions of hexagonal sections

Variables Constraints
t (mm) 0 %^3
b (mm) no constraint
p9 (g/cm3 ) 0,-,0.5
EI (kNm 2) 25

Pm (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 37.0 37.0 36.5 51.0 36.4 75.0 36.3 104.7
t* (mm) 2.9 2.9 3.0 3.0 3.0 3.0 3.0 3.0
12L5 .)0 0 0.108 0 0.191 0 0.260 0

m* (kg/m) 1.74 1.74 2.15 2.48 2.43 3.64 2.65 5.09

Specific energy
absorption (kJ/kg) 28.7 28.7 27.9 24.2 28.8 19.2 30.2 15.7

40r

35

o.

.30

=25
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w
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S
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Figure 6.13: Specific energy absorptions of hexagonal sections
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One can note from the optimum solutions that the foam-filled hexagonal section

exhibits up to 100% higher specific energy absorption than non-filled one at a high

target force level(80kN). The dimensions of filled section are much smaller than empty

section, which leads to significant volume reduction of structural members, which is

beneficial from the packaging point of view.

6.3.4.2 Foam-filled Double-hat Rectangular Section

Similarly, the weight optimization problem of foam-filled double-hat rectangular sec-

tion with width b, wall thickness t, height h, flange s and foam density pf (see Fig.6.14)

can be formulated as follows with design variables X = {b, t, h, s, pf}. To ensure a

stable progressive folding mechanism in axial crushing of double-hat rectangular sec-

tions, a constraint on height h is imposed as h < 1.5b defined as g(X).

Minimize m (X) = po(4s + 2h + 2b) + pfbh

Subject to:
3ii 1 i+

g1 (X) = -{13.06oot [(s + 4h)I + ( b + 4 + 1.8-fbh} + Pm 0

g2 (X) = -[E 0 ( st3+ th" + 1bth2) + Abh3Ef] + _l < 0

93 (X) = h-1.5b<0

X <L Xi < X', i =1,5 (6.37)

b

Pf

h ... .

Figure 6.14: Geometry of a foam-filled double-hat rectangular section

Again, the problem was reduced to a non-filled one by setting pf=0 in Eq.(6.37).

Optimized solutions are shown in Table 6.7 and Fig.6.15.
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Table 6.7: Optimization solutions of double-hat rectangular sections

Variables Constraints

t (mm) 0___3

b (mm) no constraint
h (mm) < 1.5b
s (mm) 20 -%30

pf (g/cm3) 0-0.5

EI (kNm 2) 25

Pm (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty
b* (mm) 66.7 42.8 66.7 49.8 65.6 82.4 63.6 136.3

* (mm) 0.7 2.8 0.6 3.0 0.6 3.0 0.7 3.0
h* (mm) 100.0 64.3 100.0 67.4 98.4 123.5 95.4 204.5
3* (mm) 20 20 20 24.9 20 30 20 30

p (g/cm 3 ) 0.230 0 0.264 0 0.302 0 0.344 0

m* (kg/m) 2.26 2.19 2.46 2.71 2.64 4.31 2.81 6.49

SEA (kJ/kg) 22.1 22.8 24.4 22.1 26.5 16.2 28.5 12.3

3 5
1

30

~15

ti10 45 0 557 
75 5 65 0

mean &SNng Fore m (knM)

Figure 6.15: Specific energy absorption of double-hat rectangular sections
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As can be seen, significant weight and volume savings can be achieved by introducing

foam filler into thin-walled double-hat rectangular sections.

6.3.4.3 Foam-filled Double-hat Hexagonal Section

Optimization formulation of foam-filled double-hat hexagonal section with width b,

wall thickness t, flange s and foam density pf (see Fig.6.16) can be constructed by

applying the corresponding expressions for mean crushing force and bending stiffness

and identifying the design variables X = {b, t, s, pf}:

Minimize m(

Subject to:

g1(X)

g2 (X)

X/'

X) = pot(4s + 6b) + 3 pfb2

2

= -{13.49aot 6 [(s + b) 4 + bo-4] + 4.68o-fb2} + Pm < 0

5 31 t3j+4SbE 5f]+i<= [E ( 2b 4+ bt* s3 + 16 b E k]E~T< 0

S X'1 _ XZ, i = 1,4

Figure 6.16: Geometry of a foam-filled double-hat hexagonal section

Table 6.8 and Fig.6.17 show the optimization solutions for filled and non-filled sec-

tions. It is interesting to note that foam-filled sections provide specific energy absorp-

tion about 15% lower than the non-filled sections, except at a high target force level

of 80kN. The reason for this is, the double-hat hexagonal section itself is a weight

efficient energy absorber due to its multi-corner features in geometry. The foam-filler

can not improve the specific energy absorption unless at high target force levels.

238

(6.38)

a



Table 6.8: Optimization solutions of double-hat hexagonal sections

a0
125
i

Co

5

40 45 50 55 C n 65 70 75
Mean Crushing Forme Pm (kM)

so 65 90

ligure 6.17: Specific energy absorptions of double-hat hexagonal sections
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Variables Constraints

t (mm) 0 -3
b (mm) no constraint

s (mm) 20 - 30

pg (g/cm3) 0-0.5

EI (kNm 2 ) 25

P; (kN) 50 60 70 80

Optimized Solutions filled empty filled empty filled empty filled empty

b* (mm) 53.9 39.5 52.4 37.9 51.1 36.6 50.0 51.0
t* (mm) 0.9 2.4 0.9 2.7 1.0 3.0 1.0 3.0

s* (mm) 20 20 20 20 20 20 20 25.5
0.192 0 0.229 0 0.266 0 0.302 0

m* (kg/m) 2.41 2.04 2.63 2.23 2.84 2.41 3.03 3.30

Specific energy
absorption (kJ/kg) 20.7 24.5 22.8 26.9 24.6 29.0 26.4 24.2

n I t



6.3.4.4 Double-walled Sandwich

The weight optimization problem of double-walled sandwich section with width b,

inner and outer wall thickness t, core height C, honeycomb density Ph or foam density

pf(see Fig.6.18) can be formulated by introducing the corresponding expressions of

mean crushing force and bending stiffness into the general optimization formulation.

The results of this optimization problem should be considered tentative because the

formula for the mean crushing force was obtained only from a limited number of

computer runs and was restricted to a limited range of design parameters.

b

- --- c

t
b

t

_l _ P, or P.

Figure 6.18: Geometry of double-walled sandwich section

Aluminum Honeycomb Sandwich

Minimize m(X) = pot[4b + 4(b - 20)] + phC[2b + 2(b - 2C)]

Subject to:

g1 (X) = -[13.06o-0(2t)IbI + 60.48C0]I + Pm < 0

92 (X) = -EI+EI<0 (6.39)

XP < XZ < X', i = 1,4

where bending stiffness EI can be expressed as

EI = 2E0t[!(A - C)3 + (A)3 + -(b - 2C)t2 + (b - 2C)({ - C)2 + -Lbt2 + lb3]

+2EhC[ (A) 3 + (b - 2C)(A - !)2 + -(b - 2C)C2] (6.40)

The formula for the function g, were developed by Santosa [6].
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Design variables in this problem are X = {b, t, C, ph }; ah and Eh are related to

honeycomb density in Table 2.1.

aluminum Foam Sandwich

To find a set of X = {b,t,C,p1 } to

Minimize m(X) = pot[4b + 4(b - 2C)] + pjC[2b + 2(b - 2C)]

Subject to:

9 1 (X) = -413.06co(2t)Ibk + 20.57Cibio] + <P~<0

92(X) = -EI+EI<0 (6.41)

XiL < Xi<sX%, i = 1,4

where EI can be evaluated by Eq.(6.40) with Eh being replaced by Ef;

The problems are solved for the specified target bending stiffness and target force lev-
els. Results are shown in Table 6.9 and Fig.6.19. The optimum solutions of non-filled

square sections are also shown in Fig.6.19 for comparison. One can see that compared
to the traditional non-filled square section, the double-walled aluminum foam sand-

wich section can provide 5-10 times higher specific energy absorption. Even higher

is the double-walled honeycomb sandwich section. Significant volume reductions are
achieved as well by these double-walled sandwich sections. The dramatic weight

saving and volume reduction potentials of double-walled sandwich section justify its
promising future as efficient crash structural members.

However, it should be noted that the formula for the mean crushing force used in

the optimization formulation was obtained only from a limited number of analyses
and assuming that the core is not crushed. It was observed in the experiments [52]
that the core generally crushed in a transverse shear or in an in-plane failure mode.

Therefore, the optimization results might overpredict the energy absorption capacity
and the gain in specific energy absorption of the double-walled sandwich sections.
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Figure 6.19: Specific energy absorptions of double-walled sandwich sections

Table 6.9: Optimization solutions of double-walled sandwich sections (H:honeycomb;

F: foam)

Variables Constraints

t (mm) 0.5 %--N3

b (mm) no constraint

C(mm) 0-10

ph (g/cm 3 ) 0-0.8

pf (g/cM3) 0%-0.5

EI (kNm 2 ) 25

Pm (kN) 50 60 70 80

Optimized Solutions H F H F H F H F

b* (mm) 82.0 82.4 81.1 82.5 80.3 82.6 79.6 82.7

t* (mm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

C* (mm) 10.0 4.5 10.0 5.3 10.0 6.0 10.0 6.8
oph* (g/cm 3) 0.108 0.5 0.122 0.5 0.136 0.5 0.148 0.5

m* (kg/r) 1.09 1.54 1.12 1.65 1.14 1.75 1.17 1.85

Specific energy

absorption (kJ/kg) 45.9 32.5 53.7 36.4 61.3 40.0 68.7 43.3
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6.3.5 Discussions

A study on optimization for minimum weight of foam-filled sections and double-walled

sandwich section of crash members undergoing axial crushing was carried out in this

section. A methodology was proposed which combined the structural optimization

technique with the recent achievements in crushing mechanics of ultralight structures.

The optimization problems of foam-filled square, hexagonal, double-hat rectangular,

double-hat hexagonal sections and double-walled sandwich sections were formulated

and solved with crashworthiness and bending stiffness constraints. The proposed

methodology requires relatively simple computations and is suitable for early stage

of crash member design. Some conclusions can be made based upon the optimization

results of above mentioned cross-sections:

" Significant weight saving and volume reduction can be achieved by introducing

ultralight metal filler into thin-walled crash members, especially when a large

energy absorption level is required;

* The specific energy absorption (energy absorption per unit mass) of foam-filled

sections are generally 50% to five times higher than that of non-filled sections,

depending on the sectional geometry and target crushing force level;

* Among all studied sections, double-walled sandwich sections exhibit the highest

specific energy absorption, see Fig.6.20.

Crash optimization for bending collapse will be addressed in the next section.

6.4 Optimization for Bending Collapse

The bending collapse behavior of thin-walled foam-filled or honeycomb-filled beams

were studied in Chapter 4. The strengthening effects of foam filling and honeycomb

filling were quantified, and design formula were derived to predict the bending re-

sistances of thin-walled beams filled with ultralight filler. Structural optimization
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Figure 6.20: Specific energy absorption vs. target force level for various sections

technique can now be employed to select the most weight efficient design for crash

energy management.

A general problem of structural optimization for minimum weight was stated in

Eq.(6.4). In the case of sizing optimization of a filled square section, three design

variables can be identified: the width b, the wall thickness t, and the mass density of

filler p1 (for foam filling) or ph(for honeycomb filling), that is,

X={b,t,pf or pA} (6.42)

The constraints considered in the present study are the requirement of energy absorp-

tion(target energy absorption) for proper crash energy management, and the require-

ment of cross-sectional elastic bending stiffness(EI) for integrity in normal loading

condition.
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The optimization problems of foam-filled and honeycomb-filled sections are solved in

the following.

6.4.1 Optimization of Foam-filled Sections

The optimization problem of a foam-filled section for minimum weight with target

energy absorption in bending collapse mode can be formulated in the following way

Find a set of design variables X = {b, t, pjr} to

Minimize m(X) = 4btLpo + (b - t)2pf Lf
Subject to

9 1 (X) = -En+E <0

9 2 (X) = -EI + EI <0

XL C X XY, i = 1,3 (6.43)

where L is the beam length; Lf is the effective filling length given in Eq.(4.13);

po is the mass density of the wall material; En and EI denote the target energy

absorption and bending stiffness, respectively; En is the actual energy absorption

during bending collapse up to bending rotation 0o (smaller than the jamming angle),

defined by (neglecting the small contribution from elastic deformation)

En= j M1(G)dG (6.44)

with bending moment M1(O) given in Eq.(4.21).

and EI is the elastic bending stiffness of the cross-section

EI = E(2b 3t +1bt)+A(b - t)4Ef (6.45)

where E0 is the Young's modulus of the wall material; Ef is the elastic modulus of

foam material and is related to the foam density pf via Eq.(2.1).
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The above optimization problem has only three design variables and two constraint

functions. Both objective and constraint functions are continuous and differentiable

in the design domain. With pf = 0, the problem reduces to a non-filled one.

As a case study, let us consider an extruded square foam-filled beam, with length

L = 400mm, wall material being aluminum alloy AA6060 T4(po = 2.7g/cm3 , Eo =

69GPa, 0o = 106.1MPa) and the foam material being Hydro aluminum foam(p8 =

2.7g/cm 3 , E, = 69GPa, oof = 150.4MPa). Several values of target energy absorption

are specified, while the target bending stiffness remains constant El = 25kNm 2 .

The feasible range of the wall thickness t is [0.5, 3], which is practical for aluminum

automotive structures. The foam density is within the range of pf = (2.5% - 20%)p,.

The optimum solutions are listed in Table 6.10. The optimization problems of non-

filled square sections are also solved and results are shown in the same table. In all

cases, the bending collapse is assumed to stop at 8o = 30*.

Table 6.10: Optimum solutions for foam-filled and empty sections

Variables Constraints

b (mm) no constraint

t (mm) 0.5 -3

pf (g/cm3 ) 0.0675-0.54
EI (kNm2 ) 25

I (J) 1000 1500 F 200 2500 3000

Solutions F E F E F E F E F E

b* (mm) 95.8 73.3 89.8 98.1 98.6 120.7 100.4 141.9 100.0 162.0

t* (mm) 0.97 3.0 1.31 3.0 1.32 3.0 1.74 3.0 1.92 3.0

pr (g/cm3 ) 0.109 0 0.169 0 0.179 0 0.184 0 0.215 0

m* (kg) 0.606 0.950 0.812 1.271 0.986 1.564 1.151 1.839 1.310 2.099

SEA(kJ/kg) 1.651 1.053 1.846 1.180 2.028 1.279 2.173 1.359 2.290 1.429

Note: F=Filled; E=Empty

A few observations can be made based upon the above optimization results

* The optimized specific energy absorption(SEA, energy absorption per unit mass)

of foam-filled beams is about 60% higher than that of non-filled beam for the
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specified target energy absorption levels, see Fig.6.21. This substantiates the

argument that the foam-filled members are superior to non-filled ones in the

light of weight-effective energy absorption.

* The optimum wall thickness of a filled section is generally smaller than that of a

non-filled section (0.97,,- 1.92mm vs. 3mm). It indicates that the wall thickness

of the foam-filled section has to be reduced compared with traditionally designed

non-filled section if increase of specific energy absorption is to be achieved.

* Another consequence of foam filling is the reduced sectional width compared

to non-filled sections. The reduction in width is 18% at a medium energy ab-

sorption level(2k3), and it reaches as high as 62% at a higher level of energy

absorption(3kJ). Therefore, in addition to the significant weight saving, con-

siderable volume reduction can also be achieved by utilizing aluminum foam

filler.

" For the target energy absorption levels considered in calculation, the optimum

solutions of filled section yield relatively low foam density (0.11 - 0.22g/cm3).

* For bent angles larger than 0 = 30*, touching occurs and second fold develops.

Results of the optimization process might be different.

6.4.2 Optimization of Honeycomb-filled Sections

Same methodology can be applied to optimize the honeycomb-filled sections for min-

imum weight. The formulation is stated in Eq.(6.43), with the mass density of foam

pf being replaced with the mass density of honeycomb Ph.

The energy absorption E can be calculated by (neglecting the small contribution

from elastic deformation)

0/0n =bd oMh(9)dO (646)

with bending moment Mft(O) given in Eq.(4.29).
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The expression of EI is given in Eq. (6.45), with E1 being replaced with Eh formulated

in Table 2.1.

Take, for instance, honeycomb-filled square beam with length L = 400mm, the wall

material being AA6060 T4, and the honeycomb material being 5256 Hexcel aluminum

honeycomb (E, = 69GPa, o0h = 285MPa, p, = 2.7g/cm3 ). The bending collapse

stops at 9o = 30'. With ph = 0, the problem reduces to a non-filled one. The

optimized results at specified energy absorption levels are shown in Table 6.11.

Table 6.11: Optimum solutions for honeycomb-filled and empty sections

Variables Constraints

b (mm) no constraint

t (mm) 0.5-3

ph (g/cm3) 0.0675-0.54
EI (kNm

2 ) 25

En (J) 1000 1500 2000 2500 3000

Solutions F E F E F E F E F E

b* (mm) 99.8 73.3 100.0 98.1 100.0 120.7 100.1 141.9 100.2 162.0

t* (mm) 0.55 3.0 1.0 3.0 1.49 3.0 1.94 3.0 2.36 3.0

p* (g/crn3 ) 0.068 0 0.096 0 0.113 0 0.130 0 0.145 0

m* (kg) 0.441 0.950 0.675 1.271 0.886 1.564 1.081 1.839 1.265 2.099

SEA(kJ/kg) 2.267 1.053 2.222 1.180 2.259 1.279 2.314 1.359 2.371 1.429

The specific energy absorption of optimized honeycomb-filled beams at specified levels

of energy absorption are shown in Fig.6.21. The SEA of filled section is 66% -

115% higher than that of non-filled section, depending on the energy absorption level.

Similar to the case of foam filling, the optimum solutions of honeycomb-filled section

usually yield, compared to the non-filled case, smaller wall thickness(0.55 - 2.36mm

vs. 3mm), smaller width, and relatively low density honeycomb(0.068 " 0.145g/cm 3 ).

Therefore, significant weight saving and volume reduction can also be achieved by

honeycomb filling.

As can be noted in Fig.6.21, the honeycomb-filled section offers the highest specific

energy absorption, compared to the foam-filled section and traditional non-filled sec-
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Figure 6.21: Specific energy absorptions at various energy absorption levels

tion. This is also evident if we study the strengthening effect of two filling methods,

see Fig.4.53. The moment elevation resulting from honeycomb filling is larger than

that from foam filling for the relative density of filler up to 8%, which is the range

that optimum solutions of both foam and honeycomb fall in.

6.5 Optimization for Combined Compression/Bending

Loading

The axial crushing behavior of thin-walled metal tubes has been studied extensively

over the past twenty years. The axial folding deformation of the tubes are known to be

an efficient energy absorbing mechanism. However, the truth is that axial progressive

folding is easily reproducible only in laboratory experiments, and it seldom acts alone

in real crash events. The progressive buckling of crash members will almost inevitably

transit to a global bending collapse mode in the advanced stage of crash, as illustrated

in Fig.6.22. This transition is also called "stability of progressive collapse" and has

been studied only by few authors [97, 98J.
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Figure 6.22: Transition from axial progressive crushing to global bending collapse

An important parameter is the ratio = g-, with L, being the length of tube under-

going axial crushing, and L being the total length of the crash member. The transition

parameter depends on the initial inclination of the member, boundary conditions,

the bending stiffness and the opening characteristics of the collapse section, and so

on.

The optimization problem for minimum weight of foam-filled beam-column undergo-

ing such combined loading is formulated, with constraints on energy absorption and

elastic bending stiffness. The optimization study is performed with various values of

transition parameter , and the optimized results are discussed in this section.

6.5.1 Optimization Formulation

Consider a foam-filled square tube with sectional width b, wall thickness t, length L.

The mass density of wall material is po, and the mass density of foam filler is pf.

The tube undergoes axial progressive collapse at the incipient stage of the crash. The

length of the axial crushing part of the tube is La

La = L (6.47)
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Following the progressive crushing is a global bending collapse with three plastic

hinges formed at the center and two ends of the otherwise intact part of the tube, see

Fig.6.22. Accordingly, the optimization formulation can be stated by Eq.(6.43), with

E, being the actual energy absorption during the crash, which can be calculated by

the following equation (neglecting the small contribution from elastic deformation)

E = Pm6 +2] M1 (8)dO + j M 1(O)dO (6.48)

The first term in Eq.(6.48) is the energy absorption during the axial progressive

collapse at the incipient stage of the crash. The second and third terms are the

energy absorption during the subsequent global bending collapse, with the second

term corresponding to the two end plastic hinges and the third term corresponding

to the center plastic hinge (see Fig.6.22).

The Pm in Eq.(6.48) is the mean crushing force of axial crushing and was given in

Eq.(6.16). The J is the effective crushing distance

6 = LaSE (6.49)

where SE is the so-called "stroke efficiency", and it varies from 0.7 to 0.75 for thin-

walled square tubes [54, 99].

Mf(O) in Eq.(6.48) is the plastic bending resistance of the foam-filled section, and

was given in Eq.(4.21). 00 denotes the bending rotation at the end of crash. The

upper limit of the 0 is the jamming angle of the generalized plastic hinges.

With pf = 0, the problem reduces to a non-filled one.

6.5.2 Optimum Solutions

Take, for example, a foam-filled beam with length L = 400mm. The wall material

and foam material are the same as those used in the example for bending collapse.
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The stroke efficiency SE is assumed to be 0.7, and the transition parameter 4 is taken

to be 0.2. The target energy absorption levels E,, are set to be 6 - 10kJ . 0 = 30*.

The optimized results are shown in Table 6.12.

Table 6.12: Optimum results (SE = 0.7,4 = 0.2,00 = 300)

Variables Constraints

b (mm) no constraint

t (mm) 0.5 -^3

pf (g/cm3 ) 0.0675-0.54
EI (kNm

2
) 25

En (ki) 6 7 8 9 10

Solutions F E F E F E F E F E

b* (mm) 99.5 106.4 95.0 123.9 93.1 140.8 88.0 157.4 85.0 174.7

t* (mm) 0.50 3.0 0.56 3.0 0.58 3.0 0.68 3.0 0.73 3.0

P! (g/cm 3) 0.188 0 0.225 0 0.256 0 0.304 0 0.346 0

m* (kg) 0.951 1.380 1.035 1.606 1.112 1.825 1.184 2.038 1.252 2.250

SEA(kJ/kg) 6.311 4.349 6.766 4.358 7.196 4.384 7.601 4.416 7.990 4.445

A few observations can be made based upon the above optimum solutions

* The optimized SEA of a filled section is 45% - 80% higher than that of a

non-filled section, depending on the energy absorption level, see Fig.6.23. The

gain in SEA in such a combined loading is similar to that in pure bending case,

where the SEA gains about 60% increase by foam filling.

* Width b is reduced by foam filling, especially at high energy absorption levels,

which results in significant volume reduction for crash members.

* The wall thickness of non-filled section takes the upper bound(3mm) as the op-

timum solution, while the filled section has much thinner one (0.50 - 0.73mm).

* Medium density foams(pf = 0.188 - 0.346g/cm 3) are selected as optimum

solutions at energy levels considered in the calculation.
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Figure 6.23: Specific energy absorption at various energy absorption levels

e From the optimization results of the pure bending, the combined loading, and

the pure axial crushing, a general tendency can be observed: compared to tra-

ditionally designed non-filled section, filled section yields a significant increase

in specific energy absorption, a smaller sectional width, a thinner wall, and a

medium dense foam (of about 10% relative density).

Let us now consider the effect of transition parameter . Set the target energy ab-

sorption at a specified value, for example, E = 8k3, and make vary in the range of

0.1 % 0.5. The corresponding optimum solutions are shown in Table 6.13. Fig.6.24

shows the optimized specific energy absorption of filled and non-filled sections.

As can be noted in Table 6.13 and Fig.6.24, the SEAs of both filled and non-filled

members are increasing functions of transition parameter i. The reason for this is

that the axial progressive crushing is more efficient in energy absorption than bending

collapse. With the increase of , more material is involved in axial crushing, and thus

higher specific energy absorption is achieved. This again emphasizes the importance

of proper design of crash members to get the maximum advantage of weight efficiency

of axial progressive crushing.
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Table 6.13: Optimum results (SE = 0.7, E, = 8kJ, 0 = 30*)

Variables Constraints

b (mm) no constraint

t (mm) 0.5 %^3

pf (g/cm 3) 0.0675,0.54
EI (kNm2) 25

0.1 0.2 0.3 0.4 0.5

Solutions F E F E F E F E F E
b* (mm) 93.0 162.4 93.1 140.8 95.0 120.9 97.5 101.8 98.5 84.7
t* (mm) 0.53 3.0 0.58 3.0 0.57 3.0 0.54 3.0 0.54 3.0

p* (g/cM3 ) 0.318 0 0.256 0 0.211 0 0.179 0 0.158 0
m* (kg) 1.301 2.104 1.112 1.825 0.989 1.564 0.901 1.319 0.834 1.097

SEA(kJ/kg) 6.151 3.803 7.196 4.384 8.091 5.114 8.883 6.065 9.598 7.289
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7
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Figure 6.24: Specific energy absorption at various transition ratio
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6.6 Optimization for Torsional Crushing

Based on the results obtained in Chapter 5, structural optimization technique can

be similarly employed to select the most weight efficient design for crash energy

management of foam-filled thin-walled square members in torsional loading. Three

design variables can be identified: the width b, the wall thickness t, and the mass

density of filler pi, that is,

X = {b, t, p 1} (6.50)

The optimization formulation is the same as that in the bending case (Eq.(6.43)),

with E being the actual energy absorption during torsional collapse up to twisting

rotation 0m, and is defined by

En = Tf dO +J T 1 dO (6.51)

with twisting moments Tif and T 1 given in Eq.(5.50) and Eq.(5.51), respectively, and

Oej given in Eq.(5.52).

As a case study, let us consider a square foam-filled beam, with length L = 250mm,

tube wall material being aluminum alloy AA6060 T4(po = 2.7g/cm 3 , E0 = 69GPa, ao =

106.1MPa) and the foam material being Hydro aluminum foam(p, = 2.7g/cm 3 , E

69GPa, aof = 150.4MPa). Take 0., = 90*.

First, let us assume that the width b is fixed and leave pf and t as active design

variables, Take b = 80mm, for instance. Since there are only two active design

variables, we can use a graphical approach to solve the optimization problem. In

Fig.6.25, the contours of energy absorption E (1000, 2000, 3000, 4000 J), bending

stiffness EI (25, 50 kNm2 ) and the structural mass (0.4, 0.6 0.8 1.0 kg) are plotted

as functions of foam density pf and wall thickness t. When a design point moves

from lower left corner of the figure to upper right corner, both the energy absorption

and the mass are increasing. If a target energy absorption value is set, for instance,

3000J, and the target bending stiffness is set to be 25 kNm 2 , we can find in the figure

255



the 3000 E, contour. It is evident that point S on this contour gives the smallest

value of the mass (point S also satisfies the bending stiffness requirement). Point S
represents a design of pr = 0.11g/cm3 and t = 1.9mm.

b=80mm

3.5

3

E 2.5

2

1.5

1

0.5

0.1 0.2 0.3 0.4
foam density p1 (g/cm )

0.5

Figure 6.25: Graphical approach to solve the optimization problem with two active

design variables

If a target bending stiffness is set, for example, 25kNm 2 , one can see that only when
the energy absorption requirement is low (2000J, for example) is the bending stiffness
constraint active. The EI constraint is not active any more when the E, requirement

gets higher. Because of the very demanding requirement of crash, it is thus plausible

that the crush criteria will dominate structural design of a car body. Well designed

crashworthy structures will generally meet the general stiffness criteria set by other

requirements such as NVH.

Now let us consider a general case, with all three design variables active in optimiza-

tion procedure. The side constraints are set as b E [40,80]mm, t E [0.5,5]mm and

pf E [0.054, 0.54]g/cm3. The optimum solutions of foam-filled and non-filled sections
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are listed in Table 6.14 for various target energy absorption levels. The corresponding

Specific Energy Absorptions (SEA, energy absorption per unit mass) are also listed

in the table and shown in Fig.6.26 as well. Note that the kink in the SEA curve of the

filled sections is due to the transition of the bending stiffness constraint from active

to inactive with the increasing target energy absorption.

Table 6.14: Optimum solutions for foam-filled and empty sections

Variables Constraints

b (mm) 40 -80

t (mm) 0.5,,,5

pf (g/cm3 ) 0.054-0.54

EI (kNM2) 25

E. (J) 1500 2000 2500 3000 3500

Solutions F E F E F E F E F E

b* (mm) 80 80 80 80 80 80 80 80 80 80

t* (mm) 1.07 1.94 1.07 2.58 1.05 3.20 1.90 3.79 2.50 4.35

p* (g/cm3) 0.054 0 0.058 0 0.139 0 0.110 0 0.136 0

m* (kg) 0.315 0.419 0.321 0.558 0.444 0.692 0.578 0.819 0.744 0.940

SEA(kJ/kg) 4.757 3.583 6.230 3.584 5.630 3.614 5.190 3.662 4.703 3.722

Note: F=Filled; E=Empty

A few observations can be made based upon the above optimization results

* The SEA of foam-filled sections is up to 70% higher than that of non-filled

section. This substantiates the argument that the foam-filled members are

superior to non-filled ones in the light of weight-effective energy absorption.

* The maximum allowable width (b = 80mm) is selected as optimum solution in

all studied cases.

* The optimum wall thickness of a filled section is generally smaller than that of a

non-filled section. It indicates that the wall thickness of the foam-filled section

has to be reduced compared with traditionally designed non-filled section if

increase of specific energy absorption is to be achieved.
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Figure 6.26: Specific energy absorption of filled and non-filled tubes

* For the target energy absorption levels considered in the calculation, the op-

timum solutions of filled section yield low foam density (2% - 5% relative

density).

6.7 Discussions

A study on optimization for minimum weight of ultralight crash members undergoing

various loading conditions was carried out in this chapter. A methodology was pro-

posed which integrates the fundamental results of crushing mechanics of ultralight

structures discussed in the previous chapters with the numerical optimization tech-

niques to minimize the weight of the crash members with crashworthiness and elastic

bending stiffness constraints. The proposed methodology requires relatively simple

computations and is suitable for early stage of crash member design.

From the results of the case studies performed in this chapter for axial crushing, pure

bending, combined compression/bending, and torsional loadings, a general tendency

can be observed: compared to traditionally design non-filled sections, filled section
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yields a significant increase in specific energy absorption, a smaller sectional width and

a thinner wall (the resulting width-to-thickness ratio of the filled section is generally

larger than that of non-filled section), and a low to medium dense filler (5% %^10%

relative density).

The gains in the Specific Energy Absorption for the filled sections compared to non-

filled sections vary depending on the loading conditions. A highest gain is expected

in the axial crushing deformation where the SEA of foam-filled sections is on aver-

age 300% higher than that of non-filled sections, while in the bending collapse and

combined axial crushing and bending collapse deformation, the gains in SEA are re-

spectively 60% and 80%. The SEA gains would be as high as 70% under torsional

loading. It is clear therefore that the foam-filled structures provide potentials of

significant weight savings.

The present work focused on the crushing behavior and the reinforcement effects of

foam filling on a single component subject to a simple type of loading. As more

application-oriented cases, the reinforcement effects and potential weight savings of

filled structures should be studied on a subsystem and system level.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Extensive theoretical, numerical and experimental studies were carried out on the
axial crushing, bending collapse and torsional deformation of thin-walled structures
filled with lightweight metal core materials-ultralight structures. The weight effec-
tiveness of such ultralight structures in crash energy management was discussed. The
strengthening effects of the filling were revealed and quantitatively assessed, closed-
form solutions were developed to predict the strengthening effects. With this, an
optimization methodology was developed, which combines the above results with nu-
merical optimization techniques, to minimize the weight of ultralight structures while
satisfying crashworthiness and structural integrity requirements.

Axial Crushing of Empty and Foam-filled Multi-cell Extrusions

The axial crushing of hollow multi-cell columns were addressed first in the thesis by
analytical and numerical approaches. Based on the Superfolding Element theory, an
analytical solution for the mean crushing force of multi-cell section was derived, and
the solution was compared very well with the numerical predictions. The gain in the
specific energy absorption of the double cell and triple cell is about 15% compared
to the single cell. Numerical studies were also carried out on the axial crushing of
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foam-filled double-cell and triple-cell columns. From dimensional analysis, numerical

results and analytical solutions, closed-form expressions were developed to predict

the mean crushing strength of the foam-filled multi-cell sections. It was found that

the interaction effects between the foam core and the column wall contribute to the

total crushing resistance by the amounts equal to 140% and 180% of the direct foam

resistance for double cell and triple cell, respectively. The foam-filled sections gener-

ally exhibit higher specific energy absorption values and thus higher weight efficiency

in energy absorption, while the triple cell is no better than the double cell in terms

of SEA, either filled or non-filled.

Tests on Foam-filled Hat Profiles subjected to Axial Crushing

An experimental study was carried out on aluminum hat profiles filled with aluminum

foam and subjected to axial crushing loading. The foam fitting methods of adhesive-

bonding and pre-compression investigated in the study could be conducive to high

volume production of foam-filled closed-hat structural members. Joint techniques

should be the point of concern in the design of aluminum closed-hat members. Spot-

welding becomes more problematic in foam-filled members than in empty ones. The

premature joint failure of foam-filled members to large extent jeopardizes their relative

merit as weight-efficient crash members compared to empty ones. Riveting can be

applied together with spot-welding and weld-bond to improve the strength of joint.

The experiments indicate an 20% increase in specific energy absorption for foam-filled

columns compared to non-filled ones.

Bending Collapse of Filled Structures

The deep bending collapse of thin-walled empty and foam-filled hat profiles were stud-

ied experimentally and numerically. Salient features of crushing behavior of empty

and foam-filled hat members with large bending rotation were revealed. The moment-

rotation characteristics for the generalized plastic hinges with the rotation angle up

to 1500 were found to be similar to the case of axial folding of thin-walled members,

with peaks and troughs corresponding respectively to the initiation of buckles and

formation of subsequent folds all the way to jamming. It was found in the experimen-

tal study that foam-filled members with the current design of sectional geometry and

material properties can achieve 30-40% increase in the specific energy absorption,

compared to non-filled members. Numerical results were compared with the experi-
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mental results showing good agreement in terms of force responses and deformation

patterns, which validates the finite element modeling techniques used in the analysis.

Subsequently, series of numerical analysis were conducted with a wide range of fillers

densities to study and quantify the reinforcement effects of foam filling and honey-

comb filling. The lightweight filler prevents or reduces the bending moment drop after

the local buckling, and the closed-form expressions for the bending moment elevation

due to filling were developed based on the numerical results, experimental data and

theoretical considerations.

Torsional Crushing of Empty and Filled Tubes

The torsional crushing behavior of empty and foam-filled square tubes under large

rotations was studied theoretically, numerically and experimentally. An analytical

solution for empty square tubes was derived using a kinematic approach. Three suc-

cessive deformation phases, namely pre-buckling, cross-section buckling, and collapse-

spreading phase were identified. The analytical model was then extended to the cases

of thin-walled rectangular and hexagonal tubes. Numerical simulations were carried

out and results were compared with the analytical solutions giving good agreement.

It was noted that the presence of the core material changes the collapse mechanism

and gives rise to higher sectional buckling modes and therefore increases the plastic

resistance of the tube. The analysis showed that there are two basic mechanisms

through which the core material is increasing the energy absorption of thin-walled

tubes. The main mechanism is to prevent or reduce the inward sectional collapse of

the cross-section and ensure a full membrane stress to be developed in the wall. The

second mechanism for increasing the energy absorption is a direct contribution from

the torsion of the core material, which was proved to be a small fraction compared

with the aforementioned main mechanism. Based on the analytical solution and nu-

merical results, the twisting moment elevation due to foam filling was quantified, and

the closed-form expressions was to be incorporated into the optimization methodology

developed in the next chapter.

The results of torsional experiments on empty and foam-filled square tubes were

compared with finite element solutions and analytical models. Although the end

platens of specimens were not properly designed and unexpected welding failure oc-

curred on those fixtures during testing, which diminished significantly the twisting

moment of the tubes, the deformation shape and sectional deformation pattern of
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tubes observed in the experiments agree fairly well with the numerical predictions

and analytical models. The experimental results show increase in plastic resistance

and energy absorption for foam-filled tubes compared to non-filled ones.

Optimization Study

With the above results, an optimization methodology was proposed, which combines

the closed-form solutions of crush resistances of ultralight structures developed in the

previous chapters with numerical optimization techniques, to minimize the structural

weight with crashworthiness and bending stiffness constraints. Because all the objec-

tive and constraint functions are explicitly expressed, continuous and differentiable,

the proposed methodology requires relatively simple computations and is suitable for

early-stage component design.

From the results of case studies of the optimization problems in axial crushing, pure

bending, combined compression/bending, and torsional loading, a general tendency

was observed: compared to traditionally non-filled section, filled section yields a

significant increase in specific energy absorption, a smaller sectional width and a

thinner wall, and a low to medium dense filler (5-10% relative density). The gain

in the SEA for the filled sections compared to non-filled ones vary depending on

the loading conditions. A highest gain is expected in the axial crushing deformation

where the SEA of foam-filled sections is on average 300% higher than that of non-

filled sections, while in the bending collapse and combined axial crushing and bending

collapse deformation, the gains in SEA are respectively 60% and 80%. The SEA

gains would be as high as 70% under torsional loading. It is clear therefore that the

ultralight structures provide potentials of significant weight savings.

7.2 Future Research

It is suggested that further research should be conducted on the following issues:

* The axial crushing behavior of multi-cell columns were studied analytically and

numerically in the present research. Experiments need to be conducted on

multi-cell members to validate the analytical and numerical models.

264



* Joint techniques are vital for aluminum foam-filled closed-hat members. Various

joining techniques should be further investigated to ensure the joint integrity

during the crushing deformation.

* It was observed in the experiments that some foam-filled specimens failed pre-

maturely by developing necking and fracture during crash deformation, which

diminished energy absorption. This underlines the importance of fracture in

filled structure as subject of further research.

" More torsional experiments should be carried out with properly designed end

platens to ensure their integrity under large twisting moment.

* The present work focused on the crushing behavior and the reinforcement effects

of foam filling on a single component subject to a simple type of loading. As

more application-oriented cases, the reinforcement effects and potential weight

savings of filled structures should be studied on a subsystem and system level.

* Structural energy absorption is only one portion of overall vehicle crash perfor-

mance. Weight, packaging, and other factors should be assessed in any trade-off

decision. Therefore, the discussions presented in this thesis apply to design only

in a very restricted way. Design for crash energy management is of necessity a

multi-faced process involving very close interaction of many diverse engineering

disciplines.
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