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Abstract

We consider a single product multistage serial inventory system with several installations, say
N -1,..,1. Installation NV — 1 intakes exogenous supply of a single commodity. For ¢ €
{1,...N — 2}, installation ¢ is supplied by shipments from installation 7 + 1. Demands for the
finished good occur at installation 1. Demands that cannot be filled immediately are backlogged.
We assume holding costs at each installation which are linear functions of inventory, as well as
a constant cost for each unit of backlogged demand, per period.

Clark and Scarf (1960) showed that over a finite horizon an echelon basestock policy is
optimal. Federgruen and Zipkin (1984) extend their result to the infinite-horizon case for both
discounted and average costs.

We present a new approach to this multistage serial inventory management problem, and
give new proofs of these results by introducing and solving a simple Travel Time problem, using
Dynamic Programming.

This approach is motivated by the fact that the exact cost-to-go function of the related Travel
Time problem can be easily computed using a straightforward recursive procedure (instead of
using the typical value iteration or policy iteration methods).

Moreover, this cost-to-go function gives various insights useful for a group of more complex
multistage inventory problems. In this regard, we discuss how this cost-to-go function can be
used to develop good Approximate Dynamic Programming algorithms for a number of complex
multistage serial inventory problems.

The results obtained suggest that the idea of introducing a related ”Travel Time” problem
and our algorithm to solve this problem can be used as a building block of a new approach to
solve large scale multistage inventory management problems.

This thesis was part of a research effort to find a fast algorithm to get very good robust
suboptimal solutions to large scale multistage inventory management problems.

Thesis Supervisor: John N. Tsitsiklis
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

1.1 Preliminary Discussion

A supply chain is a network of facilities that performs the functions of procurement of material,
transformation of material to intermediate and finished products, and distribution of finished
products to customers.

Different sources of uncertainty exist along a supply chain. They include demand (volume
and mix), process (yield, machine downtimes, transportation and reliability) and supply.

Inventories are often used to protect the chain from these uncertainties. Inventories stored
at different points of the supply chain have differing impacts on the cost and service performance
of the chain.

Inventories at various points have different values (a higher value for finished goods and
a lower value for raw materials). Also, inventories at various points have different degrees of
flexibility (more flexibility in the form of raw materials because they can be turned into different
alternative finished products without incurring a significant penalty). Finally, inventories at
various points have different levels of responsiveness (finished goods can be shipped to customers
without delay, whereas some lead time is needed to transform materials into finished goods
before shipments can be made).

A major challenge to supply chain managers is how to control inventories and costs along
the chain while maximizing customer service performance. They have a difficult time deter-

mining how much safety stock to hold and when to initiate orders for material from upstream



sites. Indeed, incoming part availability and part delivery performance are the most important
problems managers face today and they have to be addressed with decision support models.
Since incoming parts at one site are often supplied from another site within the company, one’

can characterize the problem as one of managing leadtime uncertainties throughout'the supply

chain.

1.2 Problem Statement
Consider a serial multistage inventory system, with the following characteristics.

e There are several stages, or stocking points, arranged in series. The first stage receives
supplies from an external source. Demand occurs only at the last stage. Demands that

cannot be filleu immediately are backlogged.
e There is only one product.

e To move units to a stage from its predecessor, the goods must pass through the supply
system, representing production or transportation activities. The cost for a shipment to

each stage is linear in the shipment quantity.

e There is an inventory holding cost at each stage and a backorder penalty cost at the last
stage. The horizon is infinite, all data are stationary, and the objective is to minimize

total (discounted or average) cost. Information and control are centralized.

We focus on a basic system, where time is discrete, demand is a Poisson process, and each
stage’s supply system generates a constant leadtime. However, virtually all the results
remain valid for a system with i.i.d demands. Also, since an assembly system can be

reduced to an equivalent series system (Rosling 1989), the results apply there too.

1.3 Literature Review

We refer the reader to the review by Graves (1988) on production planning models in a multisite
network, and to the paper by Gallego and Zipkin (1999) on stock positioning and performance

estimation in serial production-transportation systems.
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The analysis of multisite inventory networks can be categorized in two ways: those that are
managed with complete centralized control, and those that are managed through decentralized
control. Clark and Scarf’s (1960) paper on centralized control forms the basis of most sub-
sequent work. They considered a series system, assuming discrete time with a finite horizon
and nonstationary data. Under periodic review inventory control with no setup costs, they
were able to show that an order-up-to policy at each node is optimal. Federgruen and Zipkin
(1984) adapted the results to the stationary, infinite-horizon setting and pointed out that the
algorithm becomes simpler there. Rosling (1989) and Langenhoff and Zijm (1990) provided
streamlined statements of the results.

The continuous review version of this problem has been addressed by Debodt and Graves
(1985), where a reorder-point, fixed-lot size inventory control mechanism is used. Reorders are

triggered on the echelon inventory position. Chen and Zheng (1994) further streamlined the

results.

1.4 Summary of Contributions

In this thesis, we present a new approach to the multistage serial inventory management problem
(see chapter 3), and give a new proof of the optimality of an echelon basestock policy (see chapter
5).

We introduce and solve a related ”Travel Time” problem using Dynamic Programming (see
chapter 4). We show how the exact cost-to-go function of this related " Travel Time” problem
can be easily computed using a straightforward recursive procedure (instead of using the typical
value iteration or policy iteration methods).

We have implemented our new approach on a simple example and show how convenient and
simple to use this approach is (see chapter 6).

Finally, we discuss how this new approach can be used to develop good Approximate Dy-
namic Programming algorithms for a number of complex multistage serial inventory problems

(see chapter 7). We discuss systems in which:
o The installations have different leadtimes

e The echelons have capacity constraints



e We are restricted to Open Loop policies

The installations have stochastic leadtimes

e We have access to the actual demand a few periods before the due date

There are two classes of customers with different Priority levels

The results obtained suggest that the idea of introducing a related ” Travel Time” problem
and our algorithm to solve this problem can be used as a building block of a new approach to

solve large scale multistage inventory management problems.



Chapter 2

Background

2.1 Overview

In the following sections one can find a short analysis of the theories, methods and tools assumed
as known in the rest of the thesis.

The basic tool used is the theory of Dynamic programming. We refer the reader to the book
Dynamic Programming and Optimal Control by Dimitri P. Bertsekas [1].

2.2 Exact Dynamic Programming

The Dynamic Programming methods presented here concern a discrete-time finite-state system.
They assume a cost function which is additive over time and depends on the states visited and
possibly on the controls chosen.

Consider a decision making problem. Assume that time is broken down into a series of
stages, and a control decision is made at the beginning of each stage. Let us assume that at
time k all the information about the current state of the system is summarized in a variable
z(k). Also, let u(k) be the control chosen. Let N be the total number of state transitions in

the system (horizon). Suppose that we are given the dynamics of the system:
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z(k + 1) = f(z(k),u(k),w(k)), where k = 0,1, ..., N — 1 is the time index,
z(k) is the state vector at time k, u(k) is the control input at time k, (2.1)

and w(k) is a random disturbance.

The control u(k) is constrained to be in a set of admissible controls Ux(z(k)) and is usually

chosen by a rule of the form:

u(k) = p(z(k)) (2.2)

A policy m = {9, 11, ...} is a collection of functions p;. A policy is admissible if the functions
p are such that p, (z(k)) € Ux(z(k)) for all states z(k).

The probability distribution of w(k) is allowed to depend on z(k) and u(k), but not on
z(k —1),...,z(0),u(k - 1),...,u(0), w(k — 1), ..., w(0).

At each stage k, a cost a*g(z(k),u(k), w(k)) is incurred, where g is a given function (cost
per stage) and a a positive scalar with 0 < a < 1 (discount factor). Having a discount factor
a < 1 means that future costs matter less than if the same costs were incurred at the present
time.

Given an initial state z(0) and an admissible policy 7, Equations (2.1) and (2.2) make
z(k),u(k),w(k) random variables with well-defined distributions. Moreover, the sequence
z(0), z(1), ... is a Markov process.

Given an initial state £(0) and an admissible policy 7, the cumulative cosi-to-go J™(z(0))

is the expected cost:
J™(2(0)) = B éa"g(x(k),um(k)), w(k)} (2.3)

When there is explicit knowledge of cost structure and the transition probabilities, we say
that we have a model of the system. In problems with a moderate number of states, a Lookup
Table representation of the cost-to-go function is used, in the sense that a separate variable

J(z) is kept in memory for each state z.

11



When the cost accumulates indefinitely, we say that we have an infinite horizon problem.
There are four principal classes of infinite horizon problems. In this thesis, we consider mainly
stochastic shortest path problems or discounted problems with bounded cost per stage. In the
case of stochastic shortest path problems, & = 1 but there is a special cost-free termination
state; once the system reaches that state, it remains there at no further cost. In the case
of discounted problems with bounded cost per stage, @ < 1 and the absolute cost per stage
lg(., u,w)| is bounded.

In infinite horizon problems, the total expected cost (cost-to-go) associated with an initial

state z(0) and a policy ™ = {ug, iy, ...} is defined by
N
T (a(0) = Jim B3 a*g(a(h).s(alk), w(k)} (24)

The optimal cost starting from state z(0), that is, the minimum of J™(z(0)) over all 7, is
denoted by J*(z(0)). Of particular interest in infinite horizon problems are stationary policies,
which are policies of the form 7 = {u, i, ...}. For brevity, we refer to {t, g, ...} as the stationary
policy u. The corresponding cost from state z(0) is denoted by J#(z(0)). We say that u*
is optimal if J* (z(0)) = J*(z(0)) for all states z(0). In infinite horizon problems, one can
typically find an optimal policy which is stationary.

For most finite state space infinite horizon problems of interest and in particular for all

models discussed in the subsequent sections, the following holds for all states z,

T(@) = min Blg(@,u,v) + ol (f(z,u,))) (2.5)

The above equation is known as Bellman’s equation. It can be viewed as a functional

equation for the cost-to-go function J*.

In particular, Bellman’s equation holds for all discounted problems with bounded cost per

stage.

In case of stochastic shortest path problems, if we can guarantee that at least under an

optimal policy, termination occurs with probability 1, then the Bellman’s equation holds.
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Chapter 3

The Multistage Serial Inventory
System

3.1 Overview of the Problem

We consider a single product multi-echelon inventory system. The higher echelon, referred to
as installation V —1, intakes exogenous supply of a single commodity. Installation # is supplied
by shipments from installation ¢ + 1, ¢ € {1,..N — 2}. The demand for the finished good occurs
at the lower echelon, called installation 1.

Besides the IV — 1 physical installations, we have two artificial installations in our model.
Stage N refers to the exogenous supply installation feeding installation N — 1 and we assume
that this stage contains an infinite number of parts waiting to enter the system. Stage 0 refers to
the terminal installation containing all the parts that have already been delivered to customers.

Stocks in each installation are reviewed and production decisions are made periodically.
Instantaneous, perfect information about inventory at all levels is assumed. Unfilled demand
at installation 1 is backordered incurring a linear penalty cost, at a rate of p per backordered
part at each period. A linear holding cost of h; per part is assessed on inventory at installation
i, 1 =0,..N. We assume that the system does not incur holding cost for parts located at the
terminal installation (Stage 0) and at the exogenous supply installation (Stage N). Moreover, it
is less expensive to hold a part at installation ¢ than to hold it at installation ¢—1,i € {2,..N—1}.

The underlying assumptions on the sequence of events are:

13
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Figure 3-1: Holding as well as penalty costs are incurred after demand is observed in each
period. Moreover, in each period, the current decisions are taken before demand is observed.
Shipments arrive at the beginning of a period after costs are assessed in the prior period, and
before the current decisions.

Condition 1 Holding as well as penalty costs are incurred after demand is observed in each

period. Moreover, in each period, the current decisions are taken before demand is observed.

Condition 2 Orders and shipments arrive, following their respective leadtimes (assumed to be
one time unit in our model), at the beginning of a period, that is, after costs are assessed in the

prior period, and before the current decisions.

Condition 3 Demand (actual and backlogged) is satisfied immediately as long as you have

enough stock available in installation 1.

The cost parameters are:

h; = holding cost rate per part and per period, for installation ¢ (3.1)
p = penalty cost rate per backordered part and per period

a = discount rate, 0 < a <1

hy =ho=0

0<hyy L.

O0<p

The demand parameters are:
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¢ = distribution function of the demand d in each period. (3.2)
Demands in different periods are assumed independent.

A = average demand per period.

The state variables are:

X = (b,x1,Z9,...,zn_1) € {0,1,...}V~! where (3.3)
b = cumulative backlogged demand.

T; = inventory at installation 3.

The control variables are:

S = (s2,...,sn) € {0,1,..}V~1 where (3.9)
s; = shipment from installat'ion ttos—1.

si = vi(b, 71,72, ..., TN_1)

v; = shipment rule for installation ¢, i € {2, ..., N}

p=(ve,....,uN)

p = shipment rule for the system

= {""9 K, "-}

7 = stationary shipment policy

The constraints are:

b:E]—“iO
xiZO

s; >0

(3.5)

T; > 8;

15



The first constraint states that, demand (actual and backlogged) is satisfied immediately if
and only if you have enough stock available in installation 1 (see page 2). The last constraint,
states that, it is impossible to ship from installation ¢ more than the current stock at installation
i (see Equation (3.5)).

The following equation specifies the dynamics of the system at time ¢, under a particular

policy:

b(t) = —min{0, z1(t — 1) + s2(t — 1) —d(t — 1) — b(t — 1)}
z1(t) = max{0,x1(t — 1) + s2(t — 1) —d(t — 1) — b(t — 1)}
z;(t) = zi(t — 1) + si41(t — 1) — si(t — 1), i=2,....N—-1

The problem is to find an optimal shipment policy 7, which minimizes the expected total
inventory and penalty costs incurred by the system. Actually, the optimal policy defines a rule
to transfer in the most cost-efficient way, the parts from installation NV to installation 0.

Clark and Scarf (1960), assuming a finite planning horizon, show that an optimal policy for
a two echelon inventory system can be computed by decomposing the problem into separate
single-echelon problems. The problem for the lower echelon includes only its “own” costs,
ignoring all others. The optimal policy and expected cost function for each period are then
used to define a convex “induced penalty cost” function for each period. This function is added
to the higher echelon’s holding and ordering costs to form the second problem. The optimal
policy for the system can be interpreted as prescribing a largely decentralized (“pull”) system,
where each outlet “orders” up to its ¢wn critical number s, whenever its inventory falls below
that critical number. Federgruen and Zipkin (1984) show that the qualitative result of Clark
and Scarf extends to the infinite horizon case under the criterion of discounted cost and for the

long-term average cost.
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Chapter 4

A new Approach

4.1 Overview of the New Approach

We treat the demands in a different way. We consider an infinite list of orders waiting to be
submitted to the system. The idea is to view each single demand as the submission of one order
to the system. Indeed, when an order is submitted to the system, a demand occurs and the
order is deleted from the list of orders waiting to be submitted. Then, when there is a product
available at installation 1, the demand is filled. Otherwise, the order is backordered and we pay
a penalty. The number of orders submitted to the systein in each period is a random variable
drawn according to the distribution of the demand. Moreover, we view the list of orders as a
typical ordered waiting list in the sense that we submit first, orders located at the beginning of
the list.

This approach appears to be very powerful because we can use the dynamics of the evolution
of the rank of each specific order in our list of orders to monitor our inventory system. Indeed,
we consider a specific order in the list of orders waiting to be submitted. At the beginning of
the first period (t = 0), we assign one part to this order. Assume that, at ¢ = 0, this specific
order is the K** on the list and that the assigned part is located at installation N. In the
subsequent periods, a number of orders will be submitted to the system and erased from the
list; therefore the rank of that specific order will never increase. Thus, after a finite number of
periods, this specific order will be submitted (when the rank reaches 0), eventually backordered
(if the assigned part has not yet reached installation 1) and filled (when the assigned part

17



becomes available at installation 1).

We then use dynamic programming to find an optimal movement scheme in the inventory
system for the corresponding part, so as to minimize the total cost incurred to fill this specific
order, given the dynamics of the evolution of the rank of the specific order, period after period.

We prove that the optimal movement scheme for the assigned part can be easily computed
using a straightforward recursive procedure (instead of using the typicai value iteration or
policy iteration methods). We then show how to deduce from this optimal 1novement scheme,

an optimal policy for the original multistage inventory management problem.

Description of the “Travel Time’ Problem

Delivery state
(x,y)=(0,0)
control=“move” demand= j-1
O-.. OO0 OO0 --0-0
N S’ - -~ -~~~ N N N
=i x=4 x=3 x=2 x=1 y=0 y=1 Y=j
_ — ~ "", = T - - _ - “I’,‘ - - e —
Production System List of Future Orders

N.B: one part in the production system is assigned to one specific order (in
the list of future orders to be submitted to the system).

Figure 4-1: The delivery state (0,0) can be reached in a period k if and only if in the prior
period, the state was (1,7), j > 0, the demand di, satisfied dx_; > j and the control Up_]
was " Move if possible”. These conditions correspond to a situation in which the part was
ready (i = 1), the decision has been to deliver the part (ux_; = 1) and the customer shows up

(dx—1 > 7).

4.2 Description of the Related “Travel Time” Problem

Let us formally introduce the related “Travel Time” problem that will serve as the building
block of our approach to multistage serial inventory systems.

We consider the problem of finding an optimal movement scheme for the part assigned to

18



a specific order in the list of orders. Assume that this specific order is the K** on the list of
orders at the beginning of the period t = 0. Assume also that demands in each period (number

of customer arrivals) are i.i.d.

The essence of the problem is to trade off moving the part too early and incurring high
inventory costs with starting moving too late and incurring high penalty costs. We start oper-
ating our system at the beginning of the period ¢ = 0 with only one part in the inrentory system
(the part assigned to the specific order). Recall that in the subsequent periods, a number of
orders will be submitted to the system and erased from the list; Thus, after a finite number of
periods, the rank of the order will reach 0 (submission).

The cost data of the problem are:

h; = holding cost rate for installation i inventory. (4.1)

P = penalty cost rate for backorders at installation 1.

We assume that these cost factors are positive. Later, we will also assume that they are

related in certain ways, depending on other factors, that preclude it being optimal never to

order (see Equation (4.15)).

The other parameters are:

a = discount rate, 0 < a < 1. (4.2)

¢ = distribution function of the demand in each period.

The state variables are:

(z,9) € {1,..,N} x {0,..,K} U {(0,0)} with (4.3)
z = location of the part in the inventory system.

y = current rank of the specific order in the list.

Indeed, at the beginning of the period ¢, x(t) is the location of the part and y(t) is the

19



current rank of the specific order.

The control policy p(z,y) is constrained to be in the set of admissible controls:

u(z,y) € {0,1} where (4.4)
0 means "keep part in current installation”

wz,y) = { “move part to the next installation, if possible”, for z = 1
1 means

“move part to the next installation”, otherwise

When p(1,y) = 1 in the above equation, the part actually moves only if the customer shows up
(see Equation (4.6)). Later, we show that the option p(1,y) = 0 is never chosen (see Equation
(4.13)).

From the state (z(t),y(t)) we move to the state

(‘T(t + 1): y(t + 1)) = f(l'(t), y(t)r ﬂ(:t(t), y(t))’ d(t))

(4.5)
= (fz(z(t), y(2), w(z(t),y(t)), d(2)), fy(z(t), y(t), (z(t), y(2)), d(¢)))
with:
y(t+1) = { 0ify(t) =0 (4.6)
max{y(t) - d(t),0} if y(t) > 1

0 if (z(2),y(t)) = (0,0)
z(t+1)=4q lifz(t)=1andy(t+1)>1
z(t) — u(z(t), y(t)) otherwise

where the demand d(t) is a random variable with distribution ¢.

The initial state of the system is (z(0),y(0)). The transition probabilities can be easily
derived from Equation (4.6).

20



The cost incurred at state (z(t),y(t)) is given by:

0if (z(t +1),y(t +1)) = (0,0)
9(z(t),y(), w(z(t),y(t)),d(t)) = § p+hyyry ify(t+1)=0and z(t+1) > 1 (4.7)

hz(t+1) otherwise
ie.:

[ 0if i = 0 (part delivered)

Oifi=1,u=1, j —d <0 (delivering)
o J hi+pifi=1,u=0,j—d <0 (part & customer ready, delivery not ordered)

9(i,j,u,d) =

hi1ifi=1, j —d > 1 (part waiting for the customer)

hioy+pifi>2,i—u>1,j~d<0 (customer waiting)

hiwifi>2,i—u>1,j—~d>1 (part not ready, customer not waiting)
(4.8)
In the following table, we spell out the sequence of states and the costs for the (3) scenarios
in which the part is ready at the same time (case 1), after (case 2) and before (case 3) the

customer shows up:

Period State Control Demand Cost Delivery ?
casel k=0 (2,3) u(2,3)=1 do=1 ¢(2,3,1,1)=h no

k=1 (1,2) p(1,2)=1 d=2 ¢(1,2,1,2)=0 yes; state = (0,0)
case2 k=0 (2,3) wu(2,3)=1 dp=1 g9(2,3,1,1) = h no

k=1 (1,2) w(1,2)=0%* d1=2 ¢(1,2,0,2) =p+h; no;part late

k=2 (1,0) p(1,00=1 d; g(1,0,1,d2) =0 yes; state = (0,0)
case 3 k=0 (2,3) pu(2,3)=1 dp=1 ¢(2,3,1,1)=h no

k=1 (1,2) w(1,2)=1 d=1* g(1,2,1,1)=hn no; part ready

k=2 (1,1) p(,1)=1 dp=1 g(1,1,1,1) =0 yes; state = (0,0)

(4.9)

We now formulate the problem as an optimization of the expected cost over all admissible
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stationary policies:

min B {3 ao(a(t),u(®), w(e(0), ), d(e)} (410)

Let J*(z,y) denote the optimal cost to transfer the part from state (z,y) to the delivery
state (0,0). For 0 < a < 1, we have a discounted problem with bounded cost per stage and
Bellman’s equation holds (see page 12). For a = 1, we have a stochastic shortest path problem.
We can notice from Equation (4.6) that the state (z,y) = (0, 0) is an absorbing state. Moreover,
0<z(t+1) <x(t) < Nand 0 <y(t+1) < y(t) < K. Finally, when a = 1, the only stationary
policies that do not yield an infinite cost are the policies which lead, in a finite number of
steps, the system from the initial state (x(0),y(0)) to the absorbing state (z,y) = (0,0) (see
Equations (4.8) and (3.1)). Therefore, Bellman’s equation holds for the case a = 1 as well.

We may now state Bellman’s equation for this problem:

J*(0,0) =0

J*(z,y) = uér{lg)g}g{g(m,y,u, d) + oJ*(f(z,y,u,d))}

(4.11)

4.3 From the Layered Structure of Bellman’s Equation to an

Efficient Algorithm

Recall that the state (z,y) = (0,0) is the only absorbing state. Moreover, 0 < f;(i,j,u,d) < %
and 0 < fy(i,j,u,d) < j. Indeed, Bellman’s equation defined for the " Travel Time” problem
has a special layered structure in the sense that, from state (z,y) = (4,;) the system can not
reach any state (z,y) = (¢, ') with ¢ > i or j' > j. Therefore, the exact optimal value function

and the optimal policy can be (algebraically) computed by using the following recursion over
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the state space:

J*(0,0) =0
Fori=1toN,forj=0to K

Elg(i,,0,d) + aJ*(£(i,5,0,d))] (4.12)
J*(i,5) = min{ Elg(i,,1,d) +aJ*(f(,5,1,d)]

with d the number of arrivals
Definition 4 Define py, = Py=(d(t) = dp).

The previous equations can be expanded as shown below:

J*(0,0) =0
j-1 ) 00
> pa(hi +aJ*(1,j —d)) + Y pa(p+ h1 + aJ*(1,0))
J*(1,§) =min{ 9% g~
dZPd(hl +aJ*(1,j - d)) + 3" pa(0+ aJ*(0,0))
=0 =
j=1 o]
Ypa(hi + aJ*(i,j — d)) + 3-pa(p + hi + aJ*(3,0))
J*(3,5) =min{ 577 = ifi>2
2 pd(hi-1+aJ*(i—1,j —d))+ 3> pa(p+ hi-1 + aJ*(i — 1,0))
d=0 d=j

(4.13)

Recall that it was specified in Equation (4.6) that for the special case of states (1,7), the
part is ready to be delivered but we have to hold it (in the system) at installation 1 until the
customer shows up. Moreover, in the next section, we prove that J*(1,0) = J*(0,0) = O (see
Equation(4.16)). Therefore, as stated earlier, it is always optimal to have u*(1,j) = 1 because
in Equation (4.13)

. -
F(L,3) = S paly +aJ*(1,5 — d)) + 3 pa(0+aJ*(0,0)) (4.9)
d=0 d=j
4.4 An Efficient algorithm to solve Bellman’s Equation

e For (,0):

23



The part is late and the customer is waiting to be served (order backordered). For a < 1,
we have to impose a condition on the penalty cost p to make it always optimal to transfer

the part, i.e. p*(7,0) = 1.
Condition 5 When a < 1, we want p*(i,0) = 1 for all i. So we have to impose:

i-1 i Y
Yo b +p) < 30 @ F (B + p) for alli € {2,..N} (4.15)
k=1 k'=1

Using the above condition, Equation (4.13) yields J*(0,0) = 0, J*(1,0) = min{%’—_‘ff,()} =
0 and:

(
J*(0,0) =0
J*(1,0) = min{222 0} = 0
{ J*(2,0) = min{22L hy + p+ a0} = by +p (4.16)

i~1
J*(2,0) = kZ o1k (hy + p)
=1

\

It turns out that the above result is also true for a = 1.

e For (1,5) with j > 1:
The part is ready to be delivered but the customer has not yet shown up. As stated

in Equation (4.13), 4*(1,7) = 1. Indeed, from Equation (4.14), we see that J*(1,1) =

poh1/(1—apo). Moreover J*(1,5) = z_:(Pd)(hl+0J‘(1,j—d))+(1*‘]glpd)(ho+aJ‘(0, 0)).
Thus: -

i%’ui;; forj=1
. N j=1
J*(1,5) = ;(Pd)(hl'f-a.f‘(l,j—d))"‘mhl (4.17)
=1

1-apo

otherwise

e For (7,j) withi>2and j > 1:
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At each iteration of the recursion defined by (4.13), the J*(4, ) equation involves on the
right hand side only J*(¢',5’) with ¢/ < i and 5 < j. Indeed, at each iteration, there is
only one unknown in the equation for J*(¢,j) and we have to solve a generic equation of
the form:

¢ +po(9(2,5,0,0) + aJ*(3, 5)) with ¢; > 0,0 < po < 1

J*(i,7) = min (4.18)
cg with cp >0

In the above equation, c; represents the cost-to-go from (z,j) to (0,0) for the policy 7 =
{Pemaxs 1%, %, ...} with p . (77, 57) = 1 for all (', j'), and with u* an optimal policy. po represents
the probability of having zero arrivals. ¢; represents the cost to go from (3, ) to (0,0) given at
least one arrival, for the policy 7 = {pin, #*, 1%, ...} with pp, (7,5") = 0 for all (¢, ).

This class of generic equations can be solved in a closed form and we obtain:

€1+pog(7,7,0,0)
J*(3,7) = min 1-apo (4.19)
C2 }
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Chapter 5

Characteristics of the Optimal
Policy

5.1 Main Result: Optimal Policy for the “Travel Time” Prob-

lem

Definition 6 Recall that the state space S is {1,..,N} x {0,.., K} U {(0,0)} and that a policy
p is a mapping of S into {0,1}. The "Move” Zone Z}, of a policy p is {(3,7) € S)u(i,j) =1}
and the "Wait” Zone Z%, is {(i,7) € S|u(i,7) = 0}.

The following result will allow us to describe, using a dividing line (see the next section, page
(42)), the qualitative structure of an optimal policy for the "Travel Time” problem. This key
result is actually the main result of the thesis because we will use it to establish the optimality

of basestock policies in the original multistage inventory problem (see the next section, page

(42)).

Claim 7 Let u* be an optimal policy in which we break ties by setting pu*(¢,j) = 1. Then:
e For alli € {0,..,N}, (i,0) € Z& .
o If (i,51) € Z¥ and j < jy then (3,5) € Z;.
o If(i,j1) € Z& and j > ji then (i,) € Zy .
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Definition 8 The dividing line is the function I*” :i € {0,..,N} — I(i) = m;x“' J-
ezl

The idea behind the proof of this result is based on the (intuitive) fact that it is never
optimal to have the part assigned to the j** prospective customer in a lower location than the
current location of the part assigned to the (j — 1)**. Mathematically, we will establish that
9(i,7 — L,uy,d) + g(i — 1,,u2,d) = g(3,j,u1,d) + g(i — 1,5 — 1,up,d), for every uy,us, and
JUE G =D+ T (i - 1,5) > J*(4,5) + J*(E— 1,5 - 1).

Proof.

Remark 9 Recall that (see Equation (4.8)):

( ho =0ifi—u <0 andj—d <0 (part delivered)

o hy if i —u <0 and j —d > 0 (part waiting for the customer)
9(i,j,u,d) = 4
hiw+pifi—u>0andj—d <0 (customer waiting)

| hi—u if 1 —u >0 and j —d > 0 (part not ready and customer not waiting)

(5.1)
Therefore for i — 1 > 1, and for every choice of uy,us:
9(4,j — Liuy,d) + g(i — 1,5,u2,d) = hi—yy + hi1-u, + P(1{j-1-a<0} + 1{j-d<0}) (5.2)
9(4,5,u1,d) + g(i — 1,5 — Lug,d) = by, + hi1—y, + p(1{j—a<0y + 1{j-1-a<0})
So for i —1 > 1, and for every choice of uy,usy:
g(zaJ - l»ulad) '*-g(2 - 1>j,u21d) = g(iuivulvd) +g(2 - 1,] - I,UQ,d) (53)
Remark 10 Recall that (see Equation (4.6)):
04fy(t)=0
y(t+1) = fy(z(t), y(t), u(z(t),y(t)),d(t)) = ‘
max{y(t) — d(t),0} if y(t) > 1
0 #f (z(t),y(t)) = (0,0)
o(t+1) = fo(z(t),y(t), w(z(t),y()),d(t)) = { 1ifz(t)=1andy(t+1)>1
z(t) — u(z(t),y(t)) otherwise
(5.4)
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Therefore fori —1 > 1:

(

. iforuy=0 .
fz(zrj - l,ul’d) = = fz(3,7, uy,d)
i—-1 foru; =1
< ny 0 (5.5)
. . - oruz = . .
fz(z - I!J’uz’d) = = fz(l - 11] - l,‘U2,d)
{ i—2 forus =1
fy(i’j - l,ul,d) = max(] -1- d,O) = fv(z - 1,.7 - lau21d) (5 6)
fy(i - 1’j7u2)d) = ma'x(] - d’ 0) = fy(i’jy ul,d)
So we can combine the above result to get, fori —1> 1:
L,j—luw,j-1)= 1,J,u1,]
fG.j 1,J— 1) = f(3,j,m,j) 5.7)
f(l - 11] - 17“2:.7- - 1) = f(l - l;jv"'?aj)

Definition 11 Define

Q(isjvu) d);Pd(g(l ]auvd) +aJt(f(z Ju, d))) + Zpd(g(z 7y, d} +ClJ‘(f(2 Iy, d))) (5 8)

=j

Remark 12 We have (see equation (4.8), (4.6)):

9(i,j,u,d) = g(3,4,u,5) ford > j (5.9)

Therefore:

Q(i’jyu) Zpd(g(z Ju, d) +(1J*(f(l Jru, d))) + Epd(g(z,],u .7) +ClJ'(f(‘l Jr, ])))

= Z:Pd(g(z,a,u d) + aJ*(f(i, j,u,d))) + (1 — ZPd)(Q(l Jw,j) +aJ*(f(i,4,u,5)))
(5.10)

Definition 13 Define fori > 2

Wi:j— Wi(j) = J*(i,§) - I*(i - 1,5) (5.11)
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Remark 14 We have

J*(3,5) = ufgng(z,J, up)

. (5.12)
i0s) — . .. _ . .
Wi(j) = mip max Q(i,j,wm) - Q(i - 1,j,u2)
Lemma 15
W : j — W'(j) is nonincreasing over {0,.., K} for alli € {2, -, N} (5.13)

We will prove the above lemma by induction over k € {3,4, ...} that for all i such

that 2 <i <k -1, we have:
W*(.) is a non increasing function of j, for j € {0,..,k — i} (5.14)
le.:
Wij — 1) > Wi(j), for j € {0,..,k — i} (5.15)
which is equivalent to (see Equation (5.11)):

J* (6,5 —1) = J*(i~1,j—1) > J*(i,5) - J*(i—1,5), for2< i< k—1and j € {0,...k — i}
(5.16)

which can be rewritten as:
J'(iaj - 1) + J‘(i - 17.7) 2 Jt(%]) + J'(’L -1,5- 1) (517)

Let us assume the induction hypothesis to be true for k = kg — 1. For all 7 such as

.2 < i< ko—2, Wi(.) is a non increasing function of j, for j € {0,.., kg —1 -1}, ie:

J' @i -1+ I -1,5) 2 J*(6,5) + I (i - 1,5~ 1) (5.18)
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Consider i,j suchas 2< i< kp—1and 0 < j < kg — i. We want to prove that:
J*(inj - 1) + J’t(z - la]) 2 J‘(z,]) + J‘(’l - 17.7 - 1) (519)

We notice from Equation (5.18) that the above result is true for all (i, j) such that i+j < kg—1.
Therefore, we have to establish the result only for i,j such that 2 < i < kg — 1,
0<j7<ko—iandi+j=ko. First, we start withthecase 3<i<ky—1,0<j<ky—1i
and ¢+ j = ko. Then, we deal with the case i = 2,j = kg — 2 (see page (34)). It
is convenient to treat this case separately due to the specificity of the dynamics
of the system for x = 1. Third, we prove the validity of the induction hypothesis
for ko = 3 (see page (37)). Finally (see page (40)), we use the lemma to prove the

claim (7).
e First, assume that 3<i<kyp~1,0<j<ko—iandi+j=kp.

(@7 = L,w) + QUi — 1, 12)) ~ (Qir ) + QUi = 1,5 — 1,ug)) =
g;rd<g<i,j = L)+ (6= 1 jvn, @) = - palg(in,d) + g(i = 1,5 ~ ,2,)
+(1 - Z;l)pd)(g(i,j ~Luy,j—1)+g(i~1,j,uz,7))
(- :g;pd)(ga,j, ut, ) + 90— 1,7 - Lug,j — 1))
+:§;pdau*(f(i,j ~Lu,d) + (G~ 1w, d))
-gpda<J'<f<i,j,ux,d)) FI(f = 1,5~ 1ug,d)))
+(1- gpd)a(r(f(i,j “Lur, = 1) + (G - 1,4,u2,5))

~( = S palT (o gu,3) + (7~ 1,3~ 12,5~ 1)
= (5.20)
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Then, by using Equation (5.3) to cancel all the terms involving g(.), we obtain:
(Q(zs] - 17“1) + Q(i - 1yj1 u2)) - (Q(l,], ul) +Q(t - l’] - lauz)) =
j—1
T paa(I" (167 = 11, d) + T = 1,5, 3,)
-1
=S aalI" (flis g, d) + I = 1,5 = 1z, ) (5.21)
=
+(l - :z:opd)a(‘].(f(z’] e I,U1,j - 1)) + J.(f('l - lsjyu2rj)))
’-fl
“(l - :_z:opd)a(‘].(f(lv]’ uhj)) + J‘(f(z - 11] - l’u27j - 1)))
Then, by r:sing Equation (5.7), we obtain:
(Q(Z,] - lyul) + Q(Z - l,j,‘ll.2)) - (Q(zvjaul) + Q(’l« - 1’.7 - 11“2)) =

5 paald (1663 = Lun,d) + I/ ~ 1,5,02,) (522)

—gpdamf(z’,j, wp,d)) + J*(f(i = 1,5 - 1, u3,d)))

From now on (and until Equation (5.41)) we let (u1,u2) be such that (see Equation (5.12)):

{ Qj —Lw) =J*(4,j - 1) (5.23)

Q(i - 11.7)“2) = J‘(i - 17j)

Then given u; (respectively uz) needs not be optimal for (i, j) (respectively (¢ — 1,5 — 1)).
We have (see Equation (5.12)):

Q(l -1,5- 11”2) 2 J‘(t -1,j- 1)

From Equations (5.5),(5.6), we can see that fori >3and 0<d<j—-1:

[ f(i,§ - Laur,d) = (i—w,j— 1-d)
fli=1,5,u5,d) = (i — 1 = uz,j — d)
f(@,J,u1,d) = (i —uy,5 — d)

| fi-1,j-Lugd)=(i—1-upj—1-d)

(5.25)

A
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We will consider four (4) different cases, and prove Equation (5.19) for each
case.
Case 1: (u; =1l,up=1)

We see from Equation (5.25) that we can use the induction hypothesis for d € {0, ..,j — 1}:

J‘(f(l,] - l,UI,d)) + J‘(f(‘l - 1’j1u2,d)) 2 J'(f(ivj»ul',d)) + Jt(f(z - 11.7 - 17u2vd))

(5.26)
In that case, we can then conclude from Equation (5.22) that:
Q(,j — 1,w1) + Qi — 1,5,u2) 2 Q(i,j,w1) + Qi — 1,5 — 1, u2) (5.27)
By using Equations (5.23),(5.24):
-+ T G- 1L5) 2 IG5 +J(E-1,7-1) (5.28)

Case 2: (u; = 1,up =0)
We see from Equation (5.25) that for d € {0, ..,j — 1}:

Jt(f(zvj - I,U],d)) + J‘(f(2 - 11jau23d)) = J‘(f(ivjauhd)) + J‘(.f(?’ - 1?] - 1,U2,d)

(5.29)
In that case, we can then conclude from Equation (5.22) that:
Q(i,5 —1,u) + Q(i — 1,j,u2) = Q(i, j,w1) + Q(i — 1,j — 1,u2) (5.30)
By using Equations (5.23),(5.24):
JE -0+ I G- 1,5) =TG5+ I (E-1,5-1) (5.31)

Case 3: (u; = 0,u2 =0)
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We see from Equation (5.25) that we can use the induction hypothesis for d € {1,..,7 — 1}:

J‘(f(tij - 19u13d)) + J.(f(l - 11j7u2od)) 2 J‘(f(i’j!ulad)) + J‘(f(l - 1?] - 1,"2,d))
(5.32)

In that case, we can then conclude from Equation (5.22) that:

QUirj = 1,u1) + QUi = 1,7, uz) — poa(J*(5d = 1) + J*(i = 1,5)) 5.33)
> Qivd,u1) + QUi = 1,5 = 1,uz) = poa(J*(i4) + J*(i = 1,j = 1)

By using Equations (5.23),(5.24):
(1 = poa)(J*(5,5 = 1) + J*(i - 1,5)) 2 (1 = poa)(J*(3,5) + J*(i - 1,5 — 1)) (5.34)

Since (1 — ppa) > 0, we can cancel the (1 — ppa) factor in the above expression, which yields
the desired inequality.

Case 4: (u; =0,up =1)

In that case, fz(,5,u1,d)— fz(i — 1,7 — 1,u2,d) = 2. We see from Equation (5.25) that by
using the induction hypothesis twice for d € {1,..,7 — 1}:

J* (7 — L, d)) + I (f(i — 1,5,u2,d)) 2 J*(f(6, 5,1, d)) + J*(f(i — 1,5 — 1, uz,d))

(5.35)
In that case, we can then conclude from Equation (5.22) that:
Q(“r] - 1: ul) + Q(l - I’j’u2) -—poa(J‘(i,j - 1) + J‘(i - 27.7)) (5 36)
> Q(i,5,wm1) + Qi — 1,5 ~ 1,u3) — poa(J*(4,5) + J*(i — 2,5 — 1))
By using Equations (5.23),(5.24) and by subtracting:
poa(J°(i = 1,5) + J*(i = 1,5 - 1)) (5.37)
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from both sides of the previous inequality, we obtain:

(1-poa)(J*(i,j — 1) + J*(i - 1,5)) —poa(J*(i — 1,5 — 1) + J*(i — 2,5))

2 (1=poa)(J*(5,5) + J*( - 1,j — 1)) - ppa(J*(i - 1,5) + J*(1 - 2,5 — 1)) &3
Using the induction hypothesis at (i — 1, j), we have:
JE-1,i-1)+J(G-2,j) 2 J(-1,5)+J(i-2,j-1) (5.39)
We can then conclude that:
(1 =poa)(J*(i,j = 1) +J"(i - 1,5)) 2 (1 = poa)(J*(3,5) + J*( — 1,5 — 1)) (5.40)

Again, we can cancel the positive term (1 — ppa) to obtain the desired inequality.
We have proven that the induction step is valid for 3 < kp -1, 3 <1 < ks -1,

0<j<kp—iandi+j=ke
(J*G, -1+ J'(i-1,5) > (J*(G,5) +J* (i -1, - 1)) (5.41)

e Second, let’s treat the special case i = 2,j = ky — 2. Recall that we treat this
case separately due to the specificity of the dynamics of the system for z = 1.

As in the general case, we can derive an equality similar to Equation (5.22):

(Q(Z,J - 13”1) +Q(1’ - l’ja 'U.2)) - (Q(i,j,'lll) + Q(l - 1’.7 - 17“2)) =
pj—l(g(i’j - lauhj - 1) +g(l - lajvu:!vj - 1))

—pj-l(g(irjaulaj - 1) +g(" - 1,] - 1:"2)j - 1)) (542)
j—1
+:z_:opdau'(f<i,j — Luy,d)) + J*(f( ~ 1,5, u,d)))

-1
—:gopda(r(f(i,j, un, d)) + J*(fi - 1, — 1,u2,d))
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From now on (and until Equation (5.55)) we let (u;,u2) be such that (see Equation (5.12)):

Q(l,] - 1,1.!1) = J‘(Z,] - 1) (543)
Q(Z - lajﬁuz) = J.(” - 17.7)

Then given that u; (respectively uz) need not be optimal for (i, j) (respectively (i—1,j—1)),
we have (see Equation (5.12)):

{ Q(i, jyw) > J*(i, 5) 5,44
Q(2 - 1:] - l,‘!lq) > J‘(l - la] - 1)

Recall that in the last installation, the optimal control is to move the part if possible, so:

Moreover, recall that in the last installation the part actually moves only if there is delivery, i.e.
if the prospective customer actually shows up (see Equation (4.6)). Therefore, from Equations

(5.5),(5.6), we can see that fori=2and 0 <d < j-1:

([ f(i,5~Lur,d) = (i — w1, — 1 - d)

fi—1,j,uz,d) = (i — 1,5 — d)

{ fGjvur,d) = (i ~w1,j - d) (5.46)
(i—-1-up,j—1-d)ifd=j—1

f(i -1,5- 111"21‘1) =
(i 1,7 ~ 1 — d) otherwise

\

We will consider two (2) different cases, and prove Equation (5.19) for each case.
Case 1: (u; =0)
We see from Equation (5.25) that we can use the induction hypothesis for d € {1, ..,5 — 2}:

J* (@5 - 1w, d)) + J*(f(i — 1, 5,u2,d)) 2 T*(f(3,4,w1,d)) + J*(f(i — 1, — 1,uz,d))
(5.47)
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In that case, we can then conclude from Equations (5.42) and (5.46) that:

Q.7 — 1,u) + Q( - 1,5,u2) — (Q(3,5,u1) + Q(i ~ 1,5 — 1,up))

2 pj-1(9(5,J — Liup,j — 1) + g(i — 1,j,u2,5 — 1))

-Pi-1(9(, j,ur,j —1) +9(i — 1,5 - 1,up,5 — 1))

+pj-10(J* (i — uy,0) + J*(i — 1,1))

—pj—1a(J*(i — w3, 1) + J*(i — 1 — uy,0))

+poa(J*(i —uy,j— 1)+ J*(i - 1,7))

—poa(J*(i —u1,j) + J*(i—1,j - 1))

=pj-1((p+ h2) + h1) — pj—1(h2 +0)

+pj—1a(J*(4,0) + J*(i — 1,1) — (J*(3,1) + J*(i — 2,0)))

+poa(J*(i,5 — 1) + J*(i — 1, 5)) — poa(J*(3,5) + J*(i — 1,5 — 1)) given that (u;,uz) = (0,1)

(5.48)
We can use again the induction hypothesis:
J*(3,0)+ J* (i~ 1,1) — (J*(5,1) + J*(: - 1,0)) > 0 (5.49)
We can use the fact that (see Equation (4.16)):
J*(i —2,0) = J*(0,0) = 0 = J*(1,0) = J*(i - 1,0) (5.50)
By using Equations (5.23), (5.24) and (5.48):
(I =poa)(J*(5,5 = 1) + J*(i = 1,5)) = (1 = poa)(J*(5,5) + J*(i — 1,5 ~ 1))
> pi—1(p + h1) + pi—1a(J*(3,0) + J*(i — 1,1) = (J*(3, 1) + J*(i — 1,0))) (5.51)

>0

Case 2: (u1 =1)
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We see from Equation (5.25) that for d € {0,..,j — 2}:

J.(f(lu’ - I,UI,d)) + J‘(f(’l - 11j$u2’d)) - (J.(f(ivjaul,d)) +J.(f(z - la.’ - l,‘ltz,d))) =
paa(J*(i—uy,j—1-d)+J*(i-1,j —d)) —pga(J*(i —u1,j —d) + J*(i — 1,5 — 1 — d))
=pi-1a(J*(i-1,j-1-d)+ J*(i- 1,j ~d)) —psa(J*(i = 1,j —d) + J*(i — 1,5 — 1 — d))
=0

(5.52)
In that case, we can then conclude from Equations (5.42) and (5.46) that:
Q(zrj - I,U1) + Q(l - l,j:u2) - (Q(’a]vul) +Q(Z - 1’] - lyuZ)) =
pJ—l(g(1'1.7 - l,UI,j - 1) +g('l - lvj:u?’j - l))
-pj—l(g(i'lj?ul’j - 1) +g(1. - 11] - ly"’?)j - 1))
+pj—10(J* (7 — vy, 0) + J*(i - 1,1)) — pj1a(J* (i —uy, 1) + J*(i - 1 - uz,0)) (5.53)
=pj—1((p+h1) + h1) — pj—1(h1 + 0)
+pj-1a(J*(i — 1,0) — J*(i — 2,0)) given that (u1,u2) = (1,1)
= pj-1(p + h1) given that J*(1,0) = J*(0,0) = 0 (see Equation (4.16))
>0
By using Equations (5.23),(5.24):
JEF-1)+I(i-1,7) 2T (6,5) + I (i—-1,5-1) (5.54)
We have proven that the induction hypothesis is valid for i = 2, j = kg — 2:
(J*Gj =)+ J'(i-1,5) 2 (J*(G,§) + J*(i-1,j - 1)) (5.55)

e Third, let’s prove the validity of the induction hypothesis for ky = 3. We have
to check that W? is non increasing over {0,1}, i.e. W2(0) - W 2(1) > 0. We know
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that:

J*(2,1) = min Q(2,1,u1) with
Q(z! I,U1) = pO(g(2, 1, u, 0) + aJ‘(f(2a l,‘U.],O))) (556)
+(1 - PO)(Q(2, l’uv 1) + aJ‘(f(27 l’uv 1)))

We will consider two (2) different cases, and prove Equation (5.19) for each

case.

Case 1:
u] = arg u?;i(l)llQ(Z Ly)=1 (5.57)

Then:

J*'(2,1) = Q(2,1,1) =
Po(9(2,1,1,0) + aJ*(£(2,1,1,0))) + (1 — po)(9(2,1,1,1) + aJ*(f(2,1,1,1)))

5.58
= po(h1 + aJ*(1,1)) + (1 — po)(h1 + p+ aJ*(1,0)) (see Equations (4.8),(5.25)) (559)
= po(h1 + aJ*(1,1)) + (1 — po)(h1 + p + a0) because J*(1,0) = 0 (Equation (4.16))
From Equations (4.17), (4.16):
W(0) - W2(1) = J*(2,0) ~ J*(1,0) - (J*(2,1) = J*(L,1)) =
(hl +P) -0- (Q(z’lau; = 1) - J.(l, 1))
= (h1 +p) = ((poh1 + poaJ*(1,1) + (1 - po)(p + h1) — J*(1,1))
= (b1 +p) = ((epo — 1)J*(1,1) + h1 + (1 — po)p)
= (1 - apo)J*(1,1) + pop
=(1- aPO)ﬁOT:,,LO + pop because J*(1,1) = —1@;’% (Equation (4.17))
= po(h1 + p)
>0
We obtain the desired inequality:
W2(0) - W?(1) >0 (5.59)

38



Case 2:
uy = argurlx_l___ing(Z 1,9) =0
Then:
Q(2,1,1) - Q(2,1,0) >0

But:

Q(2v 1,111) = po(g(2, l,ulao) +C¥J'(f(2, 17u1v0)))
+(1 = po)(9(2,1,u,1) + aJ*(f(2,1,u,1)))

By using the above with Equations (4.8),(5.25):

Q(2,1,1) - Q(2,1,0) =

po(h1 — h2) + apo(J*(1,1) — J*(2,1))

+(1 = po)(h1 +p — (h2 + p)j + a(1 — po)(J*(1,0) — J*(2,0))
= apo[(J*(2,0) - J*(1,0)) — (J*(2,1) = J*(1,1))]

—(h2 = h1) — a(J*(2,0) - J*(1,0))

Equations (5.61),(5.63) yield: )

apo[(J*(2,0) — J*(1,0)) - (J*(2,1) — J*(1,1))]
> (hz — b)) + a(J*(2,0) — J*(1,0))

= (hg — h1) + a(h1 + p) (see Equation (4.16))
= (h2 + p) — (h1 +p) + a(hy +p)

Recall that by hypothesis, we have (see Equation (4.15)):

(h2+p) — (ha +p)+a(hy +p) >0
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Recall that app > 0 aud W2(0) - W2(1) = (J*(2,0) - J*(1,0)) — (J*(2,1) — J*(1,1)). Therefore
from Equation (5.64):

w2(0) - W3(1) >0 (5.66)

We have proven that the induction hypothesis is valid for kg = 3, i.e. that W? is non
increasing over {0,1}. This result completes the proof of the lemma (5.13). ®

Proof. Finally, let’s now finish the proof of the claim (7). We have:

u*(1,5) =1 for all j € {0,.., K} g
p*(i,0) =1for all i € {0,..., N}

(5.67)

Indeed, the optimal control is 1 when the customer is waiting for the part or when the part is

waiting for the customer (see (4.15)).
For a given 7 € {2,.,,N}, let us consider the biggest jo such as u*(i,7) = 1 for all j €
{0, ...,J0}. We then have:

L (,jo+1) =0 (5.68)
For all k € {1,...,N — 1 — jo},

Q. jo+1+k,0)~QG,jo+1+k,1)=
e
:z:fopd(hi —hici+a(J* (G jo+1+k—d) - J* (G- 1,5o+1+k —d)))
+ 5 palhi— iy +a(J*(5,0) - J(i - 1,0)))
d=jo+1+k (5.69)

Jotk ) 0 )
=hi—hi1+ Y piaW'(jo+1+k—d)+ 3 paWi(0)
d=0 d=jo+1+k

Jo . Jo+k ) 00 .
Shi—hioi+ Y pacW'(jo+1-d)+ 3 psaWi(0)+ > paaW(0)
d=0 d=jo+1 d=jo+1+k

= Q(Z’JO + 13 O) - Q(%JO + 1’ 1)
But p*(i,jo + 1) = 0, so:
Q(%,jo+1,0) - Q(, 50 +1,1) <0 (5.70)
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Description of the Dividing Line of the “Travel Time”

Problem
1 2 T S K y=rank of the order
1 ==, !
2 ’aﬂ— T — _-I-‘—b—--_—n-——
\
! ~N
1]
| -
i
i \\ “Don’t Move” Zone
!
! 7
i e
z i
| X
i \
T
e~
| b
N-1 “Move” Zone A
N T T T Policy Dividing Line
[ i ] — o o] e ——

v x =part location

Figure 5-1: If the state (3, j) is in the "Don’t Move” zone (respectively "Move”), the optimal
control is u = 0 (respectively u = 1).

Therefore:

J*(i, 50 + 1+ k) = Q(:,50 + 1+ k,0) (5.71)

And:

prGjo+1+k)=0 (5.72)

Thi_s result completes the proof of the claim (7). =
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5.2 Optimal Policy for the Multistage Serial Inventory Man-

agement Problem ¢

We explain now how an optimal policy for the original multistage serial inventory management

problem (see Equation(3.4)) can be read from the dividing line of the related "Travel Time”

problem.

Claim 16 For each physical installation i, where i € {1,..,N — 1}, a critical-number policy is
optimal. The critical number is given by I*° (i + 1) where I¥ (.) is the dividing line obtained by

solving the related ” Travel Tin.e” problem.

Proof. Let X be the state of the system. For a given installation ¢, where i € {1,.., N — 1},
i
define n = ) xx, where i is the inventory at installation K. n is the number of parts in

k=1
echelon i.

Ifn+1>0#(i+1) then p*(i + 1,n + 1) = 0. Therefore, from the definition of I[#°(.) we
have p*(i + 1,n1) = 0, for n; > n + 1. In that case, it is optimal to request no shipment from
installation 7 + 1 to 7.

Ifn+1<1#¥(i+1) then p*(i + 1,n + 1) = 1. Moreover, from the definition of [#*(.) we
have p*(i 4+ 1,n;) = 1, for ny < I¥"(i +1). In that case, it is optimal to request shipment of

I*"(i + 1) — n parts from installation i + 1 to i. m

Claim 17 Let Jy be the optimal cost per part delivered. Then:
Jo= K-l—]eTooJ (N,K) (5.73)

Proof. Recall that the holding cost at installation NV, hyy = 0. By definition of J*, the cost

to go function of the related "Travel Time” problem, KliT J*(N,K) is the lowest expected
400

cost to transfer a part from installation N (exogenous supply) to installation 0 (delivery) if we

were given an infinite amount of time to execute the transfer. ®

Remark 18 Let Jy be the optimal cost per part delivered and A a positive integer. Recall that
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A ts the average demand in each period.

if A is very large relative to 1, then J*(N, AN) is a very tight, practical approrimation of Jy
(5.74)

Let us conclude this section with a few results on the convergence of Klir_x: J*(N,K).
—+co

From Equation (5.73), we have Jp = KliT J*(N,K). Recall that (see Equation (5.10))
—»+4-00

F(NK) = 5 palg(V, K, ut,d) + o (f(N, K, u, )
K1 d=0
+(1 - dZ pa)(g(N, K, u*, K) + aJ*(f(N, K, u*, K))) (5.75)
=0

where u* = u*(N, K)

o If hy_; > 0 then it is not optimal to order an infinite amount of parts at installation

N — 1. Therefore, for K large enough, we have:

1 (N,K)=0 (5.76)

Moreover, we have:

g9(N,K,0,d) + aJ*(f(N,K,0,d)) =0+ aJ*(N,K —-d) for 0<d < K -1 (5.77)
9(N,K,0,K) + aJ*(f(N,K,0,K)) = p+ aJ*(N,0)
Then:
K-1 . K-1
J'(N,K) = 3 paaJ*(N,K —d) = (1- Y pa)(p+aJ*(N,0))
d=0 d=0
We also have:
K-1
lim (1~ 3 pa)(9(NV,K,0,K) +aJ*(f(N,K,0,K))) =0 (5.78)
K—+00 d=0
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Therefore:

K

-1
Jo = xlﬂ“imﬁ paaJ*(N,K — d) (5.79)

® Moreover, if hjy_; = 0 it can be shown using similar argument (with x*(V, K) = 1) that:

K-1
Jo= lim 3" pjaJ*(N -1,K —d) (5.80)
K—+o0 42p
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Chapter 6

Numerical Results

In the previous chapter, we have explained how an optimal policy for the original multistage
serial inventory problem can be read from the dividing line. Thus, having a clear idea of the

shape of the dividing line is an important issue.

6.1 Shape of the Dividing Line

The dividing line can take various shapes, depending on the holding cost function, the penalty
cost rate, the discount factor and the customer arrival rate.

To illustrate this result, we have applied our algorithm to the following classical inventory
optimization problem. We consider a two-echelon inventory system. Installation 2 is the depot
and installation 1 is the retail outlet. The depot places orders for exogenous supply of a single
commodity. We introduce two artificial installations and assume that this exogenous supply
is delivered from installation 3. Moreover, we represent the action of delivering a part to a
customer by moving that specific part to installation 0. 'We assume that demands in each
period are Poisson with parameter A\. Our model is consistent with the actual dynamics of the
real system described, if we assume infinite capacity for each installation and a leadtime of one

time unit for all shipments.

In the examples, h3 = 0, ho = holdingCostIncrement, hy = 2 x holdingCostIncrement,
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ho = 0, p = hy + penaltyCostIncrement, a = alpha and A = arrivalRate.

hz3 =0
hy = holdingCostIncrement

hy = 2 x holdingCostIncrement

ho =0 (6.1)
P = h; + penaltyCostIncrement
a = alpha

A = arrival Rate

J*(0,0) = 0 and for (i,5) € {1,2,3} x {0,..,9}, J*(i,5) is given by the Optimal cost-to-go
function. J*(4,j) — J*(i — 1,7) is given by the cost-to-go gradient function. This important
function gives us the cost of any inappropriate control decision. The optimal policy map gives
all the states belonging to Z*’, the Move Zone of the optimal policy. It gives also the dividing
line function I#"(.). For each physical installation, i.e. 1 and 2, the critical-number can be read

from the optimal policy map (see next chapter).
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arrival Rate=1 holding Cost Increment=1
penalty Cost Increment=-1.5 alpha=0.9

optimal cost-to-go

cost-to-go gradient

"Move Zone" of the optimal policy
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0 2 4 6 8 10

customer position

Impact of having p < h; on the shape of the "Dividing Line” and the cost-to-go. In this
example, p = 0.5, hy = 2, h; = 1 and a = 0.9. First, the basestock levels (claim (7)) are 2
units for installation 1 (depot) and 1 unit for installation 2 (warehouse). Second, the
cost-to-go along the plane i = 1 (part waiting) is steeper than along the plane j = 0 (part

late). Third, the cost-to-go gradient (lemma (5.13)) is non increasing along each plane i = 1.
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arrival Rate=1 holding Cost Increment=1
penalty Cost Increment=3 alpha=0.9

optimal cost-to-go

cost-to-go gradient

"Move Zone" of the optimal policy
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Impact of having p > hy on the shape of the "Dividing Line” and the cost-to-go. In this
example, p =5, by = 2, hp =1 and a = 0.9. First, the basestock levels (claim (7)) are 3 units
for installation 1 (depot) and 4 units for installation 2 (waiehouse). Second, the cost-to-go
along the plane i = 1 (part waiting) is less steep than along the plane j = 0 (part late). Third,

the cost-to-go gradient (lemma (5.13)) is non increasing along each plane i = ig.
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arrival Rate=1 holding Cost Increment=1
penalty Cost Increment=3 aipha=0.7

optimal cost-to-go
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"Move Zone" of the optimal policy
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Impact of having a smaller discount factor a, on the shape of the ”Dividing Line” and the
cost-to-go. In this example, p =5, hy = 2, ho = 1 and a = 0.7. First, the basestock levels
(claim (7)) are 3 units for installations 1 (depot) and 2 (warehouse). Second, the cost-to-go
along the planes i = 1 (part waiting) and j = 0 (part late) are less steep than in the previous

example. Third, the cost-to-go gradient is non increasing along each plane ¢ = ig.
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In the following example, we consider the case where the depot holding cost is null, i.e.

h3 =0, hy = 0, hy = 2 x holdingCostIncrement, hg = 0 and p = h; + penaltyCostIncrement.

h3 =0

ho=0

hy = 2 x holdingCostIncrement

ho =0 (6.2)
p = hy + penaltyCostIncrement

a = alpha

A = arrival Rate

In that case, the critical-number for the depot is infinite and (in terms of polices) installation

2 becomes the "external supplier”.
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arrival Rate=1 holding Cost Increment=2
depot Holding Cost=0
penalty Cost increment=-1.5 alpha=0.9

optimal cost-to-go

cost-to-go gradient

2 ©

installation number

N S S e

customer position

Impact of having hy = h3 = 0, on the shape of the ”Dividing Line” and the cost-to-go. In this
example, p = 2.5, h; =4, hg = 0 and a = 0.9. First, the basestock levels (see claim (7)) are 1
unit for installation 1 (depot) and an infinite amout for installation 2 (warehouse). Second,

the cost-to-go gradient (see lemma (5.13)) is non increasing along each plane i = ig.
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Chapter 7

Useful Insights on a Class of More
Complex Multistage Serial

Inventory Problems

The previous approach appears to be powerful as it provides us with useful insights on various
more realistic multistage serial inventory models. The following sections highlight the flexibility

of our approach.

7.1 What if the Installations have Different Leadtimes?

Recall that in the previous chapters, each installation was assumed to have a leadtime of one
time unit, for all shipments (see pagel4). Let assume now that the leadtime for all shipments

from installation ig is two time units.

The idea to deal with this constraint is to introduce one additional installation, installation

itransit, Detween installation ip and installation g — 1. Let
hi'.ra-uu = ht'o—l (7.1)

We then have to restrict the set of admissible controls at installation #ransit, in the definition

of the related "Travel Time” problem:
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#(itransit,y) € {1} where (7.2)
0 means keep part in current installation
ulzy) = . _
1 means move part to the next installation
With these modifications, the leadtime between installation ig and installation ig — 1 is two
time units and it is not possible to have a part stored in installation i;rqnsi¢ in the related ”travel

time” problem. Our new approach can therefore be applied to the modified multistage serial

inventory system.

7.2 What if the Echelons have Capacity Constraints?

Let assume now that echelon i3 has a maximum capacity of C parts. The idea to deal with this
constraint is again to restrict the set of admissible controls at all installations of the echelon in

the definition of the related "travel time” problem:

u(i,y) € {0} forie {1,..,i+1} and y > C where (7.3)
0 means keep part in current installation
wzy) =
1 means move part to the next installation
With these modifications, the states (7,y), with 7 € {1,..,40} and y > C, would never be

reached in the related " Travel Time” and the capacity constraint is enforced. Our new approach

can therefore be applied to the modified multistage serial inventory system.

7.3 What if we are Restricted to the Class of Open Loop Poli-
cies?

Let assume now that we want to find the best policy within the class of open loop policies.
This category of policies are special because they are easy to implement. The idea to deal

with this constraint is again to restrict the set of admissible controls at all installations except
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installation IV, in the definition of the related “travel time” problem:

u(i,y) € {1} forie {1,.,N —1} where (7.4)
0 means keep part in current installation
wz,y) =
1 means move part to the next installation
With these modifications in the related " Travel Time” problem, the production on any part
located in echelon N — 1 can never be paused. Thus, each policy is determined only by the
production starting time. Qur new approach can therefore be applied to the modified multistage

serial inventory system.

7.4 What if the Installations have Stochastic Leadtimes?

Let assume now that for any given installation, the mechanism of part transfer is not determin-
istic but follows a geometric probability law with parameter 6. Indeed, any "move” order will
be a "success” with probability § and a "fail” with probability 1 — §, with the understanding
that a part is transferred to the next installation only after a "success”.

We can modify and use our approach to get a very good approximately optimal policy.
The idea is to change the transition probabilities in the definition of the "related travel time”
problem. However, the resulting "dividing line” will yield a policy that need not be optimal
because the decision applied to a given part and its associated customer does not depend
explicitly on the state of the other parts and associated customer.

Let z(t) be the location of the part and y(t) the current rank of the specific order, at the
beginning of the period t. The control policy u(z,y) is constrained to be in the set of admissible

controls:

u(z,y) € {0,1} where (7.5)
0 means "keep part in current installation”

wz,y) = . _ (7.6)
1 means "try to move part to the next installation”
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From the state (z(t),y(t)) we may move to the state:

(=(t+1),y(t + 1)) = f(z(t).y(t), u(z(t), y(t)), d(t))

(1.7)
= (fz(=(t), y(t), u(z(2), y(2)), (1)), fy(z(t), y(t), u(z(t), y(t)), d(t)))
with:
y(t+1) = { 0ify(t) =0 (78)
max{y(t) - d(t),0} if y(t) > 1

0 if (z(2),y(t)) = (0,0)
z(t+1) =4 lifz(t)=1landy(t+1)>1
z(t) — g(t) x p(z(t),y(t)) otherwise
where the demand d(t) is a random variable with distribution ¢ and

g(t) is a bernouilli random variable with parameter §&.

We notice that from state (z,y) = (3,5) the system can not reach any state (z,y) = (¢, j/)
with ¢ > i or 5/ > j. Therefore the layered structure of the modified related ” Travel Time”
problem is maintained. Thus, the exact optimal value function and the optimal policy of the
modified "travel time problem” can be (algebraically) computed by using the following recursion

over the state space:

J*(0,0)=0
Fort=1toN,forj=0to K

Elg(3,5,0,d) + aJ*(f(, ,0,d)] (7.9)
J*(i,j) =min g Elg(i,5,1,d) + aJ*(f(i,4,1,d))]

with d the number of arrivals

For (3,7) with ¢ > 2 and j > 1, at each iteration of the recursion defined by (7.9), the J*(i,7)
equation involves on the right hand side only J*(#/, ;') with / < i and j' < j. Indeed, at each

iteration, there is only one unknown in the J*(i,7) equation and we have to solve a generic
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equation of the form:

a1+ po(9(3,7,0,0) + aJ*(i,5)) withe; >0,0<pp <1
6 x cg + (1= 6) x (c1 + po(9(,4,0,0) + aJ*(i, 7)) with co > 0

J*(3,5) = min { (7.10)

In the above equation, c; represents the cost-to-go from (%, j) to (0,0) given that the first
attempt to move is a success, for the policy m = {p .\, #, i, ...} with p .. (i/,7") = 1 for all
(¥,3")- po represents the probuability of having zero arrival. ¢; represents the cost to go from
(¢,7) to (0,0) given at least one arrival, for the policy 7 = {tin, 2, 2, ...} with p;0(#,7) = 0
for all (7, j').

This class of generic equations can be solved in a closed form and we obtain:

c1+p0g(i,j,0,0

J*(i,7) = min 1-apo 7.11

(@.J) c1+p0g(4,1,0,0)+8 % (c2—¢1 ~pog(i.7,0.0)) ( )
1-apg—dxapp

Our new approach can therefore be applied to obtain very good insights on the behavior of

multistage serial inventory systems with geometric leadtime.

7.5 What if we have access to the Actual Demand a few periods
before the Due Date?

Let assume now that for an order submitted to the system at time ¢, the due date is tg + fo,
with fo being the customer lead time (a given positive integer). Indeed, the customer expects
to be delivered a part exactly fo periods after having submitted his order to the system. If the
part is ready before fp periods, the system incurs storage costs. On the other hand, if the part
is not ready to be delivered after exactly fo periods, the system incurs a penalty fee. We can
notice that the case fy = 0 corresponds to case described in the previous chapters.

We can use our approach to get an optimal policy. The idea is to introduce a "related travel
time” problem which takes into account the dynamics of the system described above.

The state variables for the "related travel time” problem are:
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(#,9) € {1, N} x {~fo, . K} U {(0, - fo)} with (7.12)
x = location of the part in the inventory system.

y = current rank of the specific order in the list.

Indeed, at the beginning of the period t, z(t) is the location of the part and y(t) is the
current rank of the specific order.

The control policy u(z,y) is constrained to be in the set of admissible controls:

u(z,y) € {0,1} where (7.13)
0 means "keep part in current installation”

wx,y) = . (7.14)
1 means "move part to the next installation”

From the state (z(t),y(t)) we may move to the state:

(ot + 1), (¢ + 1)) = F((8), y(2), u(=(0), 9(8), d(®) 1)
= (fele(0), y(2), a(0), y(0)), d(E)), £, a(0), y(0), w(z(8), y(2), A1)

with:

[ —foify(t) = —fo

yt+1)={ yt)-1if - fo<y(t)<1 (7.16)
| max{y(t) ~d(t),0} if y(t) > 1

[ 0if (z(t),3(t)) = (~f0,0)

zt+1)=4¢ lifz(t)=1landy(t+1)> —fo+1

| z(2) — p(z(t),y(t)) otherwise

where the demand d(t) is a random variable with distribution ¢.

The initial state of the system being (z(0),y(0)). These equations are consistent with the
characteristics of the modified problem. Indeed, when y(t) > 1 the order has not yet been
submitted to the system. The order is submitted to the system when y(t) = 0. For y(t) < 0 the
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dynamic of the system is deterministic. We start incurring the penalty cost exactly fo periods
after the submission date.

The cost incurred when (z,y) = (¢, j) is given by:

0if f(¢,5,u,d) = (0,—fo)
9(i,j,u,d) = p+ hf,(i,j,u,d) if fy(i,j,u,d) = —fo and f(3, 7, u,d) >1 (7.17)

hyt. (i.5ud) otherwise

Our new approach can then be apply because the "related travel time” problem still has a
special layered structure. We have to use the procedure (4.13) three times.

First, we have J*(0, - fo) =0, J*(1,~fo) = min{%‘;%,O} =0 and:

J*(2,~fo) = min{bﬁ}'f,hl +p+al}=h;+p
: (7.18)
i-1
J*(i,—fo) = kZ a1k (hy + p)
=1
It turns out that the above result is also true for a = 1.

Then, we can also notice that J*(1,—fo + 1) = min{h; + p + a0,0 + a0} = 0. We can
therefore get J*(7,5) for —fo <7 <0,i>1.

o Finally, we can get J*(i,j) for 0 < j, i > 1 and our new approach can be used to get an

optimal policy.

7.6 What if there are Two Classes of Customers with Different

Priority Levels?

Let assume now that, in addition to the normal demand distribution ¢, the system incurred
from time to time exceptional high priority demands. Assume also that the exceptional demand
have to be served first, i.e. before any regular customer. Our new approach can be used to
gain very good insights on the impact of these exceptional demands on the operating delays.

penalty and holding costs.
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For example, assume that at time ¢, the state of the system is X (t) = (), z3, .., n_1) (see
(3.3)) and we have ! exceptional high priority customers that have to be served first. We assign
the first [ parts to the exceptional high priority customers, the (I + 1)** to the N** parts to the
first regular customers and [ parts from the exogenous supply installation, i.e. installation N,

to the last {** regular customers.

N-1
Claim 19 Let X(t) = (z1,x2,..,ZN-1) the state of the system at time t. Let n = ST . Let
=1

ik be the location of the k*® part, k =1,.m, i, < .. < i,. The impact of serving | exceptional

high priority customers on the operating cost is:

]

Icgl(g(zk’ k’ “‘(ika k), l) + a']‘(f(ik’ k5 I‘.(ik’ k)v l))) (7'19)
+ 3 (T (koK — 1) = T (i, k)
k=141
+ S PNk =) - I R)
=n+1

Our new approach can therefore be applied to obtain very good insights on the behavior of

multistage serial inventory systems with two classes of customer priority level.
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Chapter 8

Conclusion

We have presented a new approach to solve inventory management problems in a multistage
serial supply chain. In this regard, we have introduced and solved a related ” Travel Time”
problem. The algorithm used is very fast due to the special structure of the related » Travel
Time” problem. We have also proved that the optimal solution of the of the multistage serial
inventory management problem can be read from the optimal solution of the simple related
"travel time” problem. Finally, we have shown how powerful our approach was by explaining
how it can be used to get some very useful insight for a class of more complex multistage serial
inventory management problems.

The results obtained suggest that the idea of introducing a related " Travel Time” problem
and our algorithm to solve this problem can be used as a building block of a new approach to
solve large scale multistage inventory management problems.

Indeed, this thesis was part of a research effort to find a fast algorithm to get very good

robust suboptimal solutions to large scale multistage inventory management problems.
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