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ESTIMATION OF RANDOM-COEFFICIENT DEMAND MODELS:
TWO EMPIRICISTS’ PERSPECTIVE

Christopher R. Knittel and Konstantinos Metaxoglou™

Abstract—We document the numerical challenges we experienced estimat-
ing random-coefficient demand models as in Berry, Levinsohn, and Pakes
(1995) using two well-known data sets and a thorough optimization design.
The optimization algorithms often converge at points where the first- and
second-order optimality conditions fail. There are also cases of convergence
at local optima. On convergence, the variation in the values of the parame-
ter estimates translates into variation in the models’ economic predictions.
Price elasticities and changes in consumer and producer welfare following
hypothetical merger exercises vary at least by a factor of 2 and up to a factor
of 5.

I. Introduction

CONOMETRICS has become increasingly synony-

mous with the estimation of nonlinear models, where
the objective function may not be globally concave or con-
vex. This is very often the case in the so-called structural
approach, which attempts to infer relationships between
observable endogenous variables, and observable explana-
tory or unobservable variables based on optimizing behavior
dictated by economic theory (Reiss & Wolak, 2007). Obtain-
ing parameter estimates in these cases typically requires a
nonlinear-search algorithm with a set of starting values and
stopping rules for termination.

For the class of demand models introduced in the semi-
nal work of Berry, Levinsohn, and Pakes (1995, henceforth,
BLP), we find that convergence may occur in regions of the
objective function where the first- and second-order opti-
mality conditions fail. We also experience convergence at
multiple local optima, as well as instances of convergence
failure. Furthermore, parameter estimates and implied eco-
nomic predictions, such as price elasticities, and changes in
consumer welfare and firm profits due to hypothetical merger
exercises, exhibit notable variation on convergence of the
nonlinear search.

The difficulties surrounding proofs for the existence of a
global optimum of a criterion function for nonlinear extre-
mum estimators are widely known and well documented
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(McFadden & Newey, 1994). This is particularly true in
the case of nonlinear GMM estimators like the one con-
sidered here. At the same time, the estimation problem that
empirical economists like ourselves face often involves tech-
nical difficulties with material implications for the conclu-
sions of their analyses, which may not be publicized to the
extent that they should. Based on our reading of the litera-
ture, this has been largely the case for the class of demand
models we consider in this paper. The purpose of our work
is to show that a thorough optimization exercise and a clear
documentation of its design and challenges are potentially
as important to the conclusions of an empirical exercise as
the identification approach. The estimation of typical BLP
random-coefficient (RC) logit demand models based on two
widely known data sets for automobiles and cereals gives us
the opportunity to convey this message.

A typical BLP RC-logit demand model achieves more flex-
ible substitution patterns compared to the simple or nested
logit by allowing consumer heterogeneity in the valuation
of product characteristics for differentiated products. At the
same time, the model contains a product-specific demand
shock in each market capturing all product characteristics
that affect consumer choices but the econometrician can-
not control for. Berry et al. (1995) introduced an estimation
approach that also addresses endogeneity, as products with
higher unmeasured quality probably sell at a higher price,
using GMM and fixed-point iterations. These iterations allow
the researcher to retrieve the product-specific demand shock
in each market.

BLP RC-logit demand models, as well as their variants,
are among the most popular state-of-the-art discrete-choice
demand models and have provided answers to a variety of
important questions in numerous empirical studies.! Measur-
ing market power (Nevo, 2001), analyzing horizontal merger
effects (Nevo, 2000a), evaluating international trade policies
(Berry, Levinsohn, & Pakes 1999), welfare gains due to new
products (Petrin, 2002), and construction of price indices that
account for quality changes and product introductions (Nevo,
2003), to only name a few, are among the many important eco-
nomic questions that have been addressed using BLP-type
demand models. Table 1 lists articles using the same class
of models, which have been published in prominent general-
interest economic journals, as well as in the leading industrial
organization journal.

The articles cited in the top panel of table 1 reflect our
attempt to include only studies that used what we perceive
as the main ingredients of the BLP approach in demand

1 As of December 26, 2011, Berry et al. (1995) had 517 cites according
to the Social Sciences Citation Index (SSCI). On the same day, Nevo’s
“Practitioner’s Guide” (2000b), which popularized the BLP-type demand
models with its accompanying Matlab code, had 96 cites using SSCI.

© 2014 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
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TABLE 1.—PAPERS USING BLP-TYPE DEMAND MODELS WITH AGGREGATE DATA

Journal

Paper

American Economic Review
Econometrica

Journal of Political Econonty
Review of Economics and Statistics
Review of Economic Studies

Berry, Levinsohn, and Pakes (1999)

Berry et al. (1995); Goeree (2008); Nevo (2001)

Berry, Levinsohn, and Pakes (2004); Petrin (2002)

Nevo (2003); Rekkas (2007)

Berry, Linton, and Pakes (2004); Nakamura and Zerom (2010);

Villas-Boas (2007)

Rand Journal of Economics

Ackerberg and Rysman (2005); Armantier and Richard (2008);

Berry (1994); Bonnet and Dubois (2010); Chu (2010);
Copeland, Dunn, and Hall (2011); Davis (2006); Iizuka (2007); Nevo (2000);
Song (2007); Villas-Boas (2009)

Issues Discussed

Number of Papers

Optimization algorithm

Starting values

Fixed-point iteration settings
Market share evaluation draws
Gradient-based FOC diagnostics
Hessian-based SOC diagnostics
Multiple optima (Y/N)

6

NO OOV OoOWw

‘We focus on leading general interest journals and the top industrial organization journal. We list only the papers that contain the main ingredients of the BLP approach for the estimation of random-coefficient logit
demand models with aggregated data as discussed in section I. FOC and SOC refer, respectively, to first- and second-order conditions.

estimation for static models using aggregate data and a GMM
framework to address endogeneity. From our point of view,
these ingredients include heterogeneity in consumers’ val-
uation of product characteristics, as well as the unobserved
product- and market-specific demand shock and the asso-
ciated fixed-point iterations to retrieve it.2 There are also
papers that have been published in the journals in table 1,
such as Goolsbee and Petrin (2004) and Bayer, Ferreira, and
McMillan (2007), which contain some of the main ingredi-
ents of the BLP approach for demand estimation in a static
framework. We do not list these papers and, hence, we serve
less than justice to a broad definition of BLP-type demand
models. The bottom panel of table 1 indicates the number of
papers discussing a subset of the issues we raise surround-
ing the computational challenges of the BLP-demand models
throughout the paper; we refer to these entries in subsequent
sections.

As we have already hinted in the last sentence of the prev-
ious paragraph, using the desirable features of the BLP RC-
logit models requires the solution of a nontrivial optimization
problem whose computational complexity has been publi-
cized only recently. Starting with previous drafts of this paper,
which were largely contemporaneous with the earlier drafts of
Dube, Fox, and Su (2012), and more recently with the papers
of Judd and Skrainka (2011) and Skrainka (2011), the opti-
mization challenges underlying the estimation of this class
of models are by now well documented. These challenges
stem primarily from the combination of a nonlinear search
to obtain parameters capturing heterogeneity in consumers’
valuation for product characteristics and the fixed-point itera-
tions to infer the product- and market-specific demand shock.
This outer nonlinear search coupled with the fixed-point itera-
tions has been by far the most popular approach in estimating
BLP demand models to date.

2 We include articles that assume both a continuous and a finite distribution
for consumer heterogeneity.

To highlight the difficulties in the solution of the optimiza-
tion problem underlying the estimation of the BLP RC-logit
models, we use two widely known data sets, three classes of
optimization algorithms with fifty different sets of starting
values, and two different implementations of the fixed-point
iterations. The first data set, which is for automobiles, is the
one used in Berry et al. (1995). The second data set contains
the pseudo-real data for cereals used in Nevo (2000b). We
use eleven optimization algorithms that may be divided into
three categories: derivative based, deterministic direct search,
and stochastic direct search. The two implementations of the
fixed-point iterations differ in the tolerance that we use to
declare convergence—we use a loose and a tight tolerance.
Following the recommendations of McCullough and Vinod
(2003), we discuss a number of diagnostics regarding first-
and second-order optimality conditions at the terminal points
of the nonlinear searches.

Our findings point to substantial variation in the value of
the objective function of the underlying optimization prob-
lem both within and across algorithms for those combinations
of starting values and fixed-point tolerances that converge.
The variation is present in both data sets and slightly more
pronounced in the case of loose tolerances. Although the
derivative-based algorithms exhibit a superior performance
relative to their direct-search counterparts in the case of cere-
als, this does not seem to be the case for automobiles. Two of
the publicly available gradient-based optimization algorithms
give rise to the smallest objective function value in both data
sets. In addition, a nonnegligible number of combinations of
starting values, optimization algorithms, and fixed-point tol-
erances fail to converge; this is particularly true in the case
of cereals with an almost equal split between loose and tight
tolerances.

The variation in objective function values leads to sub-
stantial variation in parameter estimates even when we limit
our attention to the set of parameters that give rise to the
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smallest objective function value for each optimization algo-
rithm under tight tolerance for the fixed-point iterations.
Using the gradient norm, the Hessian eigenvalues, and a
scale-invariant weighted-gradient stopping criterion, we
identify several local optima in the case of automobiles. Using
the same criteria, we identify a single local optimum and a
saddle point in the case of cereals.

The variation in parameter estimates translates into vari-
ation in economic variables of interest for both data sets.
We use own-price elasticities to document the variation in
economic predictions at the product level. We use aggregate
elasticity, which we calculate simulating a price increase of all
products, as well as the change in consumer welfare and firm
profits following a hypothetical merger in the two industries
to document variation in economic predictions at the mar-
ket level. All of these economic variables exhibit substantial
variation even when we focus on those combinations of opti-
mization algorithms and starting values that converged under
tight tolerance for the fixed-point iterations and remove any
outliers.

In the case of automobiles, the range of the own-price elas-
ticity for the product with the highest market share is —3.48
to —0.93 with a mean of —2.77 and standard deviation of
0.53 when we exclude a handful of observations exceeding
0. When we limit our attention to those combinations of algo-
rithms, starting values, and fixed-point iterations under tight
tolerance that gaverise to the local optima, the own-price elas-
ticities for the same product are between —3.21 and —1.29,
excluding a single positive value associated with one of those
optima. In addition, the average aggregate elasticity across
twenty markets is between —1.74 and —0.41. The mean is
—1.20, and the standard deviation is 0.24. If we focus on the
aggregate elasticity values associated with the local optima,
we see the values between —1.39 and —0.41.

The average change in profits due to the hypothetical
merger for automobiles exhibits a range between $485 mil-
lion and $2,548 million with a mean of $787 million and
a standard deviation of $316 million. In the case of local
optima, the average change in profits is as low as $568 mil-
lion and as high as $1,697 million, excluding observations
associated with local optima that we treat as outliers. The
average change in consumer welfare for the same exercise is
between —$4,328 million and —$1,165 million. The mean is
—$2,183, and the standard deviation is $531 million. Limit-
ing our attention only to those values associated with the local
optima and excluding ones that we treat as outliers, the range
is between —$3,550 million and —$1,926 million. The values
of the economic variables discussed here that are associated
with the smallest local optimum appear to be outliers in the
corresponding distributions that emerge from combinations
of optimization algorithms, starting values, and fixed-point
iterations.

We also find that the variation in economic variables of
interest need not coincide with large differences in the objec-
tive function value. For example, we uncover two local
minima in the automobile data with highly comparable

objective function values, but the change in profits and con-
sumer welfare due to the hypothetical merger exercise at
these two minima are notably different by a factor of 2.5
and almost 2, respectively. This brings up the possibility of a
horse race between two local minima, where the lowest objec-
tive function value may oscillate between the two depending
on the sample.

In the case of cereals, the variation in the economic vari-
ables of interest is smaller compared to automobiles. The
own-price elasticity of the product with the highest market
shareis between —2.47 and —1.34 among those combinations
of optimization algorithms and starting values that converged,
with a mean of —1.98 and a standard deviation of 0.14. Simi-
larly, the average aggregate elasticity across the 94 markets is
between —1.78 and —0.84. The mean is —1.34, and the stan-
dard deviation is 0.11. The average change in profits across
markets due to the hypothetical merger is between $104.3
million and $229.7 million, with a mean of $170.8 million
and a standard deviation of $15.7 million. The average change
in consumer welfare across markets for the same exercise also
exhibits substantial variation: —$975 million to —$469 mil-
lion, with a mean of —$671 million and a standard deviation
of about $60 million.

The remainder of the paper is organized as follows. Section
IT provides an overview of the BLP RC-logit demand model.
Section III offers an outline of the methodology for the
merger simulation and the calculation of the implied change
in consumer welfare, along with a discussion of some recent
developments in issues surrounding this exercise. The details
of our optimization design are discussed in Section IV.
Section V is an overview of the data and the demand-model
specifications we employ. Section VI describes the optimiza-
tion results documenting the variation in objective function
values due to combinations of optimization algorithms, start-
ing values, and tolerances for the fixed-point iterations. In
Section VII we illustrate the implication of such variation
for economic variables of interest. We offer conclusions and
some recommendations to practitioners in the final section.
The online appendix provides a discussion of the parame-
ter estimates for the demand models and results for some
additional optimization exercises we considered.

II. The Demand Model

In this section, we describe the standard BLP-type RC-
logit demand model with aggregate data. Following standard
notation in the literature, we assume that a consumer i derives
utility from a product j in market # that may be written as

wje = XiBi — ipje + & + e = Vije + &ijrs (D
where p;; is the price of product j in market ¢ and x; is a
(row) vector of nonprice product characteristics. The vector
£;: captures the product-specific demand shock in each mar-
ket. Each individual is assumed to choose one of the 1,...,J
products available in the market or not to purchase at all.
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The no-purchase option is usually termed the outside good,
and its associated utility is u;y, = €;5,. The logit error term
g, 1s the first source of consumer heterogeneity in the utility
function. The second source of consumer heterogeneity, the
random coefficients o, and B;, may be written as

o a
|:B:| = |:B:| —|—HDi+EV,’, DimPD(D),VimPv(v)‘

The decomposition in equation (2) leads to terms that are
common across consumers, such as a and p, as well as to
terms D; and v;, which are vectors of observed and unobserved
consumer characteristics that affect purchasing decisions and
follow the distributions Pp and P,.. Although the random coef-
ficients are desirable because they generate more realistic
substitution patterns, their presence has direct implications
for the computational complexity of the model as we discuss
below. After combining equations (1) and (2), we obtain

uiir = 8j(Xj, Pjr &jrs 01) + Wit (Xj, Pjrs Diy vis 02) + €t
S = xiB — apjr + &jr, Wije = [pje, x;1'(TID; + Zvy).  (3)
We use [pjr,x;] to denote a column vector of appropriate
dimension. The mean utility associated with the consump-
tion of good j that is common across consumers in market
t is captured by 3. Deviations from this mean utility are
reflected in ;; and e;;. The vectors 6; and 6, differ in that
the former contains o and B, while the latter contains the
elements of matrices IT and X. Under independence of con-
sumer idiosyncrasies for characteristics, the market share of
product j is given by

it (X, P4, 8.4,02) = / dP(D,v,¢)

4j

_ / dP,()dP,(v)dPp(D),

A

4)
Y
A (x,p.ss 8.4502) = {(Di, vi, gl = ugeh,VIi=1,...,J.

In the share equation (4), x includes the characteristics of the
products, while p, = (py,...,ps) and 8., = y,,...,8;).
In the same equation, the error term € can be integrated
out analytically, giving rise to the well-known logit proba-
bilities. Given distributional assumptions for v and D, the
integral associated with market shares is commonly evalu-
ated using Monte Carlo integration assuming a number ns of
individuals:

1 ns
sz(x,Pt, 3.4302) = — Z Sijt
ns p
exp(8;; + W)

|-
—;ZZJ

i=1 2-j=0 eXP(sz + Mijt).

(&)

The shock &, that was Berry (1994) introduced plays the role
of the structural error in a demand system. In its absence, the

market shares given by equation (5) are smooth and continu-
ous deterministic functions of the product characteristics and
price. The presence of £ implies likely endogeneity of prices
because both consumers and firms observe &€, and therefore
its value enters into the firms’ pricing decisions. The standard
approach to address endogeneity is nonlinear GMM with the
moments implemented as

E[g - f(x5,2)] = 0, (6)
where z;; is an appropriate vector of excluded instruments
and f(-) is a known vector-valued function. Given a vector
of mean utilities 3, a sample analog of the moment condition
can be constructed and the researcher may proceed with esti-
mation. The vector of mean utilities 3 is retrieved by equating
the observed market shares from the data with those implied
by the model for a given vector of parameters 6,:

s =9 (P 8.3 02) @
As opposed to the simple logit and nested logit, where analyt-
ical solutions for 3 are available for the system of equations
in equation (7), the RC-logit requires a numerical solution
of a highly nonlinear system of equations whose dimension
equals the number of products in the market under consider-
ation. The econometrician may retrieve 8 using the following
fixed-point iterations,

3T =8 + s —Ins (x, pi, 8, 62), ®)

where 8(," ) denotes the kth iterate. For a given value of 6,, the
fixed-point iterations in equation (8) can be initiated with the
logit solution B(to ) = In(s.;) — In(sg;), where sq, is the share
of the outside good. The iterations continue until some norm
of the difference between two consecutive iterates is smaller
than some prespecified tolerance. Once 8 is retrieved, £ can
be inferred from

Eéjt = ESjt - ij — apj;. 9
The elements of 6;, namely, a and B, in equation (9) are
retrieved using linear instrumental variables (IVs). Having
defined 6 = (01, 6,), and with the aggregate demand shock
playing the role of a structural error term that is a function
of 6, the econometrician faces a nonlinear GMM problem
with objective function given by

0r(8) = {T~'5(6) ZYWr{T~'Z'5(6)) (10)

for an appropriate weighting matrix Wy assuming a sample
size T. Inference is performed using results in Berry et al.
(1995), with the asymptotics working as J/ — oo; Berry et al.
(2004) offer additional details. This methodology allows the
econometrician to perform a nonlinear search in the parame-
ter space only for 6, by concentrating out 6, . For a given value
of 0,, we infer § using equations (7) and (8). With 8 in hand,
we obtain 6; using linear IVs. Having 8 and 6, available, the
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researcher constructs the econometric error that appears in
equation (10). Draws from P, and Pp, required in equation (5)
are made once and are kept constant through the estimation
exercise.

The algorithm just described, which consists of an outer
loop that minimizes the objective function with respect to 6,
and an inner loop that uses fixed-point iterations to infer 8,
may be termed a nested fixed point (NFP) algorithm in the
language of Rust (1987). We follow this nomenclature in the
remainder of our discussion. The publication of computer
code by Nevo (2000b) undoubtedly contributed to the pop-
ularity of the NFP algorithm for the estimation of BLP-type
demand models for the last ten years or so. Recently studies
have identified issues regarding computational aspects of the
methodology outlined here.

Dube et al. (2012) show that the temptation to implement
loose stopping criteria for the fixed-point iterations to speed
up the estimation process may cause two types of problems.
First, the approximation error of the inner fixed-point itera-
tions propagates into the outer GMM objective function and
its derivatives that may cause an optimization routine to fail to
converge. Second, to induce the convergence of an optimiza-
tion routine, the researcher may then loosen the outer-loop
stopping criterion. Consequently, even when an optimization
run converges, it may falsely stop at a point that is not a
local minimum. The authors offer an alternative formulation
of the GMM problem as a mathematical program with equi-
librium constraints (MPEC) building on the results in Su and
Judd (2012), who show that the MPEC and NFP algorithms
produce estimators with similar statistical properties.

III. Merger Simulation and Consumer Welfare

In many empirical exercises, demand estimation serves as
an immediate input to study the effects of changes in the
structure of an industry, such as price increases implied by
a merger. Measures of changes in consumer welfare implied
by the new market structure, such as compensating variation,
are immediately available following the demand estimation
exercise, as the following discussion shows.

More specifically, with demand estimates available,
constructing a matrix of price derivatives emerging from
the first-order conditions implied by profit maximization is
straightforward. Combined with information on the owner-
ship structure of the market and a model of competition,
inferring marginal cost is possible. For example, under static
Bertrand and constant marginal costs, the first-order condi-
tions associated with the firms’ profit-maximization problem
imply

p—mc= @) 's(p), (11)

where p is the price vector, s(-) is the vector of market
shares, and mc denotes the corresponding marginal costs.
The dimension of these vectors is equal to the number of
products available in the market, say, J. The © matrix is the
Hadamard product of the (transpose) of the matrix of the share

derivatives with respect to prices and an ownership structure
matrix. The ownership structure matrix is of dimension J x J
with its (Z,j) element equal to 1 if products i and j are pro-
duced by the same firm and O otherwise. Because prices are
observed and demand estimation allows us to retrieve the
elements of €2, estimates of marginal costs, mc, are directly
obtained using equation (11).

A simple change of Os and 1s in the ownership structure
matrix, along with a series of additional assumptions, allows
the simulation of a change in the industry’s structure, as the
one implied by horizontal mergers among competitors (see
Nevo, 2001). Simply put, a merger simulation implies the
same Bertrand game with a smaller number of firms. The
vector of postmerger prices p* is the solution to the following
system of nonlinear equations:

p* _ I’I”'ZE' — onst (p*)—l 3 (p*)

The elements of QP reflect changes in the ownership struc-
ture implied by the hypothetical merger. Solving for the
postmerger prices is equivalent to solving a system of nonlin-
ear equations of dimension equal to the number of products
in the market under consideration. For example, using the
cereal data set, we have 94 markets with 24 products in each
market. As a result, solving equation (12) requires the solu-
tion of 94 systems of nonlinear equations of dimension 24.
An approximate solution for the postmerger prices, which
avoids the need to solve the systems of nonlinear equations
and is discussed in Nevo (1997), is given by

(12)

papprox — e + onst (ppre)—l S,(ppre)’ (13)
where §(p?’) is the premerger vector of market shares and
the elements of €2 associated with share price derivatives are
evaluated at the premerger prices. Thus, we avoid dealing
with issues related to the potential numerical instabilities of
Newton routines used in the solution of nonlinear first-order
conditions, as well as with issues related to the existence and
the uniqueness of equilibrium.

To the best of our knowledge, in the case of Bertrand
competition with multiproduct firms facing RC-logit demand
functions of the type discussed here, there is no result show-
ing the (a) existence of an equilibrium in pure strategies and
(b) whether the equilibria are unique solutions to the system
of equations implied by the first-order conditions (FOCs) of
the underlying game. In the papers we are aware of, both
existence and uniqueness have been assumed (for example,
note 12 in Berry et al., 1995).3

3 Allon, Federgruen, and Pierson (2011) provide a sufficient condition
under which a Bertrand equilibrium exists and the set of Bertrand equilibria
coincides with the solutions of FOCs in the case of single-product firms
facing RC-logit demand functions. This condition precludes a very high
degree of market concentration: no firm captures more than 50% of the
potential market in any of the consumer segments that it serves. A somewhat
stronger version of the same condition, firm shares below 30%, establishes
uniqueness. Allon et al. also provide a sufficient condition for a (unique)
equilibrium for markets with an arbitrary degree of concentration in the
presence of an exogenous price limit. However, in this case, the equilibrium
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TABLE 2.—OPTIMIZATION ALGORITHMS

Class Description Source Acronym
Derivative-based Quasi-Newton 1 MathWorks DER1-QN1
Quasi-Newton 2 Publicly available DER2-QN2
Conjugate gradient Publicly available DER3-CGR
SOLVOPT Publicly available DER4-SOL
KNITRO Ziena Optimization DERS-KNI
Deterministic direct search Simplex MathWorks DIR1-SIM
Mesh adaptive direct search MathWorks DIR2-MAD
Generalized pattern search MathWorks DIR3-GPS
Stochastic direct search Simulated annealing Publicly Available STO1-SIA
Genetic algorithm GADS MathWorks STO2-GAL
Simulated annealing GADS MathWorks STO3-SIG

With the postmerger prices in hand, we can estimate
expected consumer welfare changes due to the mergers under
consideration. One such measure of change in consumer wel-
fare is the compensating variation. Assuming away nonlinear
income effects, as is the case in the demand models we con-
sider here, following McFadden (1981) and Small and Rosen
(1985), the compensating variation for individual i is given by

v In [Z;zé exp (VI(;OSZ)] —In [ijé exp (Vil;re)] |
) (14)

where V/" and Vg"‘” are defined in equation (1) using the pre-
and postmerger prices. Integrating over the density of con-
sumers and multiplying by their total number (market size)
yields the average compensating variation in the population.

IV. Optimization Design

We estimated the automobile and cereal demand models
adapting the code used by Nevo (2000b), written in the Matlab
matrix language developed by Mathworks.4 The main body
of Nevo’s code had to be altered to accommodate the setup
of an exercise that involved eleven optimization algorithms
using fifty sets of starting values and various stopping rules
described below.

The starting values for the mean utility vector 3 are the fitted
values of a simple logit after adding draws from a zero-mean
normal distribution with a standard deviation equal to the
standard error of the logit regression; therefore, the variation
in the starting values represents regression error plausibly
obtained across researchers. The starting values for the vector
0, entering the nonlinear part p;; of the utility function in
equation (3) are draws from a standard normal distribution;
this represents the fact that little is known about the magnitude
of 6, a priori.

Table 2 lists the eleven optimization algorithms we used to
estimate the cereal and automobile demand models. The table

may not necessarily reside in the interior of the feasible price region and,
hence, not be characterized by the FOCs.

4Nevo’s original code is available at http://faculty.wcas.northwestern
.edu/~ane686. Our adaptation of Nevo’s original code is available at
http://web.mit.edu/knittel/www.

also contains an acronym for each of the algorithms that we
will use for the remainder of our discussion when we refer to
them. Five of the algorithms are derivative based. The remain-
ing six are either deterministic or stochastic direct search. The
derivative-based algorithms use some information about the
steepness and the curvature of the objective function with-
out necessarily keeping track of information associated with
the Hessian matrix while searching for a minimum of the
objective function. The direct-search algorithms are based
on function evaluations and are divided into deterministic
and stochastic depending on whether they include a random
component in their searches of the optimum of the objective
function.

All of the algorithms are coded in Matlab. Seven of the
algorithms are commercially available as part of the Mat-
lab Optimization and Genetic Algorithm and Direct Search
(GADS) toolboxes. The codes for the remaining four of
the algorithms are publicly available from their authors.
Two of the derivative-based algorithms (DERI1-QN1 and
DER2-QN2) are quasi-Newton, the third (DER3-CGR) is a
conjugate gradient, and the fourth (DER4-SOL) is an imple-
mentation of Shor’s r-algorithm. The last of the derivative-
based algorithms (DERS5-KNI) implements interior point
and active set methods for solving continuous, nonlinear
optimization problems.

The Matlab routines for the two quasi-Newton algorithms,
DER1-QN1 and DER2-QN?2, are available in the Matlab opti-
mization toolbox and on the website maintained by Hans
Bruun Nielsen, respectively. The routine for the conjugate-
gradient algorithm, DER3-CGR, is also posted on Nielsen’s
website. Alexei Kuntsevich and Franz Kappel provide the
routines for DER4-SOL.5 The KNITRO routines for DERS-
KNI are available in the Matlab optimization toolbox as
add-ons. For the purpose of estimation, the derivative-based
algorithms were implemented using analytical gradients and
numerical Hessians (when necessary).

The routines for the three deterministic direct-search algo-
rithms are available in the Matlab optimization and GADS

5Burke, Lewis, and Overton (2008) provide a compact self-contained
discussion of Shor’s r-algorithm. See Kappel and Kuntsevich (2000) for
additional details. Furlong (2012) reported a better performance for DER4-
SOL relative to DER1-QN1 and DIR1-SIM in estimating a BLP-type
demand model for hybrid vehicles.
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toolboxes, respectively. They include an application of the
Nelder-Mead simplex, DIR1-SIM, the Mesh adaptive direct
search (MADS), DIR2-MAD, and the generalized pattern
search (GPS), DIR3-GPS. (We refer readers to Lagarias,
Reeds, & Wright, 1998, for the mechanics of the Nelder-
Mead simplex.) Torczon (1997) provides a detailed descrip-
tion of the GPS. Material related to MADS, a generalization
of the GPS algorithm, is available in Audet and Dennis
(20006).

The stochastic direct search routines implement one
genetic and two simulated-annealing algorithms. The code
for the first simulated-annealing algorithm, STO1-SIA, is our
translation of the code originally developed for the GAUSS
matrix language by E. G. Tsionas. The routines for the sec-
ond simulated-annealing algorithm STO3-SIG, as well as for
the genetic algorithm STO2-GAL, are available in the Matlab
GADS toolbox. We refer to Dorsey and Mayer (1995) and
Goffe, Ferrier, and Rogers (1994) for a compact discussion of
the genetic and simulated annealing algorithms in the context
of econometrics, respectively.

We experimented with a number of stopping rules for the
various optimization algorithms we employed. For the major-
ity of the algorithms, convergence is dictated by the change
in the objective function and the parameter vector (in some
norm) between two consecutive iterations of an algorithm
on the basis of a specified tolerance; the gradient norm is
another metric. A maximum number of iterations or function
evaluations are also employed as stopping rules. We used a
tolerance of 1E-03 for changes in both the parameter vec-
tor and the objective function. We limited the number of
function evaluations to 4,000. Imposing an upper bound on
the number of function evaluations was largely dictated by
the use of the direct-search algorithms, which tend to be more
time-consuming relative to the gradient-based algorithms. If
an algorithm exceeded the maximum number of function
evaluations, it was terminated.¢

A stopping rule is also required for the NFP iterations (see
equation [8]), which introduce an additional layer of compu-
tational burden given their linear rate of convergence. More
specifically, the NFP rate of convergence is measured by the
Lipschitz constant, which is the norm of a matrix involving
the own- and cross-demand elasticities with respect to the
demand shock & (Dube et al., 2012). We present results using
a loose and a tight tolerance for the fixed-point iterations.
The loose tolerance reflects the approach in Nevo (2000b).
More specifically, the tolerance is initially set to IE-06. After
that, the tolerance level becomes less stringent by a factor of
ten every 50 iterations if ||9]§Jrl - 6’§|| > 0.01, where k and
k 4+ 1 are used to denote two successive iterates of 0,. If
||6'§Jrl - 6’§|| < 0.01, then the tolerance level is set to 1E-09
and no adjustment takes place. As a result, a loose (tight)
tolerance is implemented when the parameter estimates are

6 The online appendix provides results using a tolerance of 1E-06 for
changes in the parameter vector and the objective function value for the
derivative-based algorithms for both cereals and automobiles.

far from (close to) the solution. We also present results fixing
the tolerance associated with the automobile and cereal data
to 1E-16 and 1E-14, respectively, imposing an upper bound
of 2,500 NFP iterations.”

We simulated the market shares using fifty and twenty
individual draws from a standard normal distribution for the
automobile and cereal data, respectively. For automobiles,
the number of draws is representative of what we perceive
to be a standard approach among practitioners.8 The number
of draws in the case of cereals reflects the setting in Nevo’s
code. The standard-normal draws are made once in the begin-
ning and are held fixed during estimation such that the limit
theorems of Pakes and Pollard (1989) hold. Following Nevo
(2000b), we use Monte Carlo integration to approximate the
integrals associated with the market share calculations.

Concluding this section, we mention that various aspects
of the optimization design discussed in this section are also
discussed in various papers listed in table 1. Six papers pro-
vide information regarding the optimization algorithm used
in estimating the demand models.® Three explicitly men-
tion the use of multiple starting values for their optimization
algorithms, and nine discuss the number of draws for the
simulation of the market share integrals. None of the papers
provide any details regarding the settings of the fixed-point
iterations.

V. Data and Specifications

We use two data sets for implementing the BLP GMM
algorithm: the automobile data set used by Berry et al. (1995,
1999) and the cereal pseudo-real data set from Nevo (2000b).
Much of our motivation for the use of these data was due to
the fact that they were publicly available at the time of our
first draft.10 Readers should also keep in mind that none of the
exercises undertaken throughout the paper should be viewed
as replication or validation exercises.

The automobile data consist of 2,217 observations for all
models marketed between 1971 and 1990 in the United States
Each model-year combination is treated as a separate prod-
uct, and each year between 1971 and 1990 is treated is a
separate market. The number of products, in each market
lies between 72 (market 4, 1974) and 150 (market 18, 1988).
The 2,217 model/years represent 997 distinct models. We use

7Dube et al. (2012) recommend a best-practice tolerance of 1E-14 for the
fixed-point iterations. The script invertshares.m in the most recent
version of their Matlab code indicates an upper bound of 2,500 NFP
iterations.

8For example, Jiang, Manchandab, and Rossi (2009) argue that the
commonly used values in the literature are between 20 and 50 in their
note 1.

9 For two of the papers, we had to refer to a journal online appendix and
the NBER working paper version to retrieve such information.

10To the best of our knowledge, the code for BLP (1995) is not publicly
available. However, GAUSS code for BLP (1999) was publicly available at
James Levinsohn’s website at the University of Michigan at the time of the
first draft of this paper, circa fall 2005. We used the GAUSS code to extract
the data used in this paper. Table 1 in BLP (1995) and table 2 in BLP (1999)
contain descriptive statistics indicating that the authors used the same data
for both papers.
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four observable product characteristics other than price when
we model the demand for automobiles: (a) the ratio of the
vehicle’s horsepower to its weight (HP/WT); (b) the vehicle
space, which is measured as length times width (space); (c) a
dummy indicating whether air-conditioning is standard; and
(d) tens of miles per gallon of gasoline (MPG).!1

Our specification of the automobile demand model is not
identical to the specification in either BLP 1995 or BLP 1999.
In addition, both BLP 1995 and BLP 1999 estimate demand
jointly with supply, but we do not.!2 In our specification, a
constant term, the price, and the four product characteristics
of the previous paragraph, enter the utility function. All of
these variables with the exception of space are also assigned
random coefficients that correspond to the standard devia-
tion of normal draws. Based on our specification, the outer
loop of the BLP GMM algorithm for automobiles involves a
parameter vector 6, of dimension 5. The six coefficients cor-
responding to the elements of the vector 0; are concentrated
out and are retrieved using linear I'Vs.

In the case of cereals, the data consist of 2,256 observations
for 24 products (brands) in 47 cities over two quarters. The 24
brands are present in each of the 94 markets. Our specification
of the demand equation is identical to Nevo’s. More precisely,
the specification includes cereal brand dummies, which sub-
sume product characteristics other than prices, as well as
unobservable consumer characteristics interacted with a con-
stant term, price, sugar content (sugar), and a mushy dummy
indicating whether the cereal gets soggy in milk (mushy).

The specification also includes interactions of product
characteristics with consumer demographics drawn from the
Current Population Survey. For example, the price is inter-
acted with the individual’s log of income (income), the
log of income squared (income sq), and a child dummy
indicating whether the individual is less than 16 years old
(child). The constant, sugar, and mushy are all interacted
with income and age. The mean taste parameters associ-
ated with the constant, price, sugar, and mushy are retrieved
using a minimum-distance procedure given the presence of
the brand dummies.!3 The interaction of the product charac-
teristics with the consumer unobservables and demographics
gives rise to thirteen terms in total. Therefore, the outer loop
of the BLP GMM algorithm involves a parameter vector 6, of
dimension 13. The 24 coefficients associated with the brand
dummies, corresponding to the elements of the vector 0, are
concentrated out and are retrieved using linear I'Vs.

Our identification strategy regarding automobiles is sim-
ilar to that in BLP 1995. Our instruments consist of the
five nonprice automobile characteristics, their sums across
other automobiles produced by the same firm, and their sums

11 For additional details regarding the data, see section 7.1 in BLP (1995).

12The demand and supply specifications in the two papers are highly
similar but not identical. See table IV on page 876 in BLP (1995) and table
5 on page 416 in BLP (1999) for comparisons.

13 See section 4 in Nevo (2000b) for additional information regarding the
data and variables used in the demand specification. The results are available
in table I. See section 3.5 for additional details about the minimum-distance
procedure used to retrieve the mean taste parameters in the same paper.

across automobiles produced by the rival firms. In the case of
cereals, we use the 44 instruments readily available in Nevo’s
data set.

In terms of inference, the econometrician faces in prin-
ciple three sources of error in the BLP demand models:
sampling error in estimating market shares, simulation error
in approximating the shares predicted by the model, and the
underlying model error. There is no doubt that addressing
all three sources of error is necessary to obtain the correct
standard errors (see BLP, 1995, and Berry et al., 2004, for a
detailed discussion). We report standard errors that account
only for heteroskedasticity in the underlying model error for
both the cereal and the automobile data. In section A.1.1 of
the online appendix, we use the standard errors for a subset
of the automobile parameter estimates to compare their vari-
ation due to the underlying model error with their variation
due to the optimization design.

VI. Optimization Results

A. Objective Function Values

Figure 1 contains box-and-whisker (BaW) plots of the
objective function values by optimization algorithm and NFP
tolerance. The top panel refers to automobiles and the bot-
tom panel refers to cereals.!4 The naming convention for the
algorithms on the vertical axis follows table 2. Each point in
a BaW plot is a combination of a starting value and an NFP
tolerance for which the optimization algorithm under con-
sideration converged on the basis of some stopping criteria.
Depending on the algorithm’s implementation, convergence
does not necessarily imply that the first- and second-order
conditions for a local minimum are met (see our discussion
below). The prominent vertical lines on the left part of the
figures indicate the smallest objective function values across
all such combinations.

The various algorithms implemented here use a number
of similar but not identical stopping criteria. These criteria
include, for example, the change in the parameter vector or
the associated gradient, the change in the objective func-
tion value, the maximum number of iterations, or function
evaluations. Based on such stopping criteria, the algorithms
generate exit codes to indicate the conditions under which
they stopped. The algorithms in the Matlab optimization and
GADS toolboxes produce a 0 exit code to indicate that the
maximum number of iterations or function evaluations was
reached and a negative exit code to indicate their failure to
converge. We use such exit codes to declare convergence.
In the case of the deterministic and stochastic direct-search
algorithms in these two toolboxes, we used exit codes

14 For each of the BaW plots, the boxes cover the interquartile range, from
the lower quartile to the upper quartile, and contain a vertical white line
indicating the median. The whiskers, denoted by horizontal lines, intend to
cover most or all the range of the data. The left whisker extends to a value that
is the lower quartile minus 1.5 times the interquartile range, or the minimum
should this be smaller. The right whisker extends to a value that is the upper

quartile plus 1.5 times the interquartile range, or at the maximum, if this is
smaller. Data points outside the whiskers are represented with dots.
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FIGURE 1.—BOX-AND-WHISKER PLOTS OF THE OBJECTIVE FUNCTION VALUE
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The naming convention of the optimization algorithms on the vertical axis of the box-and-whisker plots (BaW) in this figure follows table 2. “Loose” and “tight” refer to the alternative nested fixed-point (NFP)
tolerances described in section IV. The vertical line indicates the smallest objective function value for the combinations of optimization algorithms, NFP tolerances, and starting values that converged. We implemented
DERS-KNI using a lower bound of 0 on the parameter vector over which the algorithm performed the nonlinear search.
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exceeding 0 to declare convergence.!5 Once again, conver-
gence is not necessarily synonymous to termination at a
point where the first- and second-order conditions of a local
minimum are met.

In the case of automobiles, 988 out of 1,100 combinations
converged, with more than half of them (513) associated with
tight NFP tolerance. For cereals, 883 combinations of starting
values, optimization algorithms, and NFP tolerances led to
convergence. Almost half of them (440) were associated with
tight NFP tolerance. All 100 combinations for the STO1-SIA
algorithm did not converge for the cereal data set, while 50 of
them failed to converge in the case of the automobiles. In all
50 cases for automobiles, STO1-SIA reached the maximum
number of function evaluations: 22 times under loose NFP
tolerance and 28 times under tight NFP tolerance. Further-
more, DIR1-SIM did not converge 69 times in the case of
cereals—33 times under loose NFP tolerance and 36 times
under tight NFP tolerance. DIR1-SIM did not converge 50
times in the case of automobiles—49 times under loose NFP
tolerance and 1 time under tight NFP tolerance. In all these
instances, DIR1-SIM reached the maximum number of func-
tion evaluations. In addition, DIR2-MAD did not converge
in 28 cases for the cereal data set. The algorithm reached the
maximum number of function evaluations in all 28 cases with
an equal split between loose and tight NFP tolerances.!6

The BaW plots in figure 1 account for extreme objective
function values due to rather meaningless stopping points of
various combinations of optimization algorithm and starting
values. They also account for combinations of algorithms
and starting values that gave rise to extraneous observations
for market shares (for example, NaNs). For example, in the
case of automobiles, the maximum across the 988 observa-
tions lies above 62,000, the median is 213.37, and the 90th
percentile is 336.17. The minimum value is 157.79. Hence,
we constructed that BaW plots excluding values above 340,
which is very close to the 90th percentile. For cereals, the
maximum across the 883 observations exceeds 89,000, the
75th percentile is 882.81, and the median is just 101.09.
The minimum value is 4.56, which is consistent with the
value reported by Dube et al. (2012). As a consequence,
we constructed the cereal BaW plots using values that lie
below 110, a value very close to the median under tight
tolerance (105.53). By truncating the distributions, we are
obviously understating the variation in the values of the
objective function.

In the case of automobiles, we see substantial variation
in the objective function values both across and within

I15Refer to our publicly available code for a detailed treatment of exit
codes of the various algorithms in order to declare convergence.

16 Tn the case of automobiles, DER5-KNI generated the exit codes —100
(—101) 41 (18) times. According to appendix A in Waltz and Plantenga
(2009), exit codes —100 to —199 indicate that “a feasible approximate
solution was found.” More specifically, the exit code —100 implies that
“no more progress can be made, but the stopping tests are closed to be
satisfied (within a factor of 100) and so the current approximate solution
is believed to be optimal.” The exit code —101 implies that “it is possible
the approximate feasible solution is optimal, but perhaps the stopping tests
cannot be satisfied because of degeneracy, ill-conditioning or bad scaling.”

optimization algorithms. Overall, the derivative-based algo-
rithms do not exhibit a superior performance relative to the
their deterministic or stochastic direct-search counterparts in
terms of reaching regions of the parameter space, with low
objective function values once we focus on values not exceed-
ing 340. There are 890 observations with values less than 340,
with 475 of them associated with the tight NFP tolerance.
Four combinations of optimization algorithms and starting
values under tight NFP tolerance led to the smallest objec-
tive function value of 157.79, with two others (DIR3-GPS and
STO3-SIG) reaching the same parameter space, achieving an
objective function value below 158.21. Two of the algorithms
are derivative based: DER2-QN2 and DER4-SOL. The other
two algorithms are deterministic direct search: DIR1-SIM
and DIR2-MAD. None of the 100 values for DER5-KNI falls
below 254.76.

The pattern of substantial variation in the objective func-
tion value across and within optimization algorithms is also
present in the cereal data. In contrast with the automobile
data, the derivative-based algorithms exhibit superior perfor-
mance, in terms of reaching regions of the objective function
with low values, relative to their deterministic or stochas-
tic direct-search counterparts. Among the 464 values not
exceeding 110, 238 of them are related to combinations with
loose NFP tolerance. Only six (two) combinations of start-
ing values, and NFP tolerance for DIR3-GPS (STO3-SIG)
lead to objective function values that do not exceed 110.
Six combinations of optimization algorithms, starting values,
and NFP tolerances achieve the smallest objective function
value of 4.56. All six combinations are associated with the
derivative-based algorithms DER2-QN2, DER4-SOL, and
DERS-KNI. Three of the six combinations use tight NFP tol-
erance. Recall that DER2-QN2 and DER4-SOL also led to
the smallest objective function value for the automobile data.
Interestingly, all 100 combinations of starting values and NFP
tolerances for DER4-SOL give rise to the value of 4.56.

For DER1-QN1, the objective function values are between
19.55 and 105.82. The last of the derivative-based algo-
rithms, DER3-CGR, exhibits values between 19.62 and
32.15. The deterministic direct-search algorithms achieve
objective function values between 17.22 and 90.78. The val-
ues for DIR1-SIM range from 17.22 to 66.46, while those for
DIR3-GPS are between 50.99 and 90.78. Although DIR1-
SIM was able to identify the point with the smallest objective
function value for the automobile demand model, this is not
the case for the cereal demand model. The objective function
values for the stochastic-search algorithms also exhibit sub-
stantial variation—between 31.59 and 109.16. This range,
which is similar to that of DER1-QN1, is largely attributable
to 56 values associated with STO2-GAL. The two values
associated with STO3-SIG equal 108.13.

Overall, the box-and-whisker plots for the objective func-
tion values in figure 1 show variation both within algorithm
and across algorithms. This variation, although ameliorated
to some degree, continues to be present even with tight NFP
tolerance. It is difficult to judge the relative performance
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of classes of algorithms since converging to points in the
objective function that have low values, but are not the con-
sistent root, does not necessarily yield results that are closer
to the truth. Given the variation that continues to exist even
under tight NFP tolerances, we would recommend practition-
ers to experiment not only with multiple starting values, but
also with more than one class of algorithms when estimating
BLP-type demand models and report their experiences.

B. Gradients and Hessians

In this section, we investigate whether the objective func-
tion values reported in tables A2 and A4 in the online
appendix correspond to local minima as opposed to other
critical points, such as saddles, by examining the gradi-
ent (g) and the Hessian (H) of the objective function. We
focus on results associated with tight NFP tolerance given
the findings in Dube et al. (2012). As in the previous
section, our discussion excludes STO1-SIA for automobiles
and DIR2-MAD plus STO1-SIA for cereals because these
algorithms stopped by exceeding the maximum number of
function evaluations with tight NFP tolerance. When dis-
cussing our results, readers should keep in mind that finding
the global optimum of a function, or even proving that a given
local optimum is a global optimum, is a difficult problem.!7
Furthermore, the discussion of gradient and Hessian diag-
nostics almost never appears in empirical work involving
BLP-type demand models (for a notable recent exception, see
Goldberg & Hellerstein, 2013). As table 1 indicates, none of
the papers listed provides any diagnostics regarding the gradi-
ent or the Hessian of the objective function when they discuss
estimation results.

We measure the length of the analytical gradient using its
inf-norm ||g||s. The inf-norm is equivalent to finding the
maximum of the absolute values of the gradient elements.
We refer to ||g|l as the gradient norm for the remainder
of our discussion. While Nevo’s code provides analytical
expressions for the gradient, it does not provide analyti-
cal expressions for the Hessian of the objective function.
Following what we perceive to be common practice, we
evaluated H using the DERI1-QNI1 algorithm that offers
numerical approximations to the Hessian as a by-product. In
addition, we constructed a scale-invariant weighted-gradient
stopping criterion, g’H 'g.18 Using the Matlab built-in

17 There are three cases in which the problem is somewhat easier: when the
objective function has one critical point in its domain, when the function is
globally concave or convex in its domain (see Simon & Blume, 1994, p. 55),
and when the domain of the objective function is a compact subset, say C of
R”, assuming an nth-dimensional parameter space. Based on Weierstrass’s
theorem, every continuous function whose domain is a compact subset C
achieves its global maximum and its global minimum on C (see Simon &
Blume, p. 823).

18 Section 7.3 in McFadden and Newey (1994) provides an illustrative
numerical Hessian approximation. See also section 9.2.5 in Davidson
(2000). The weighted-gradient stopping criterion is largely inspired from
ML estimation. See the discussion about stopping criteria in section 6.3 in
Quandt (1983) and in section 16.5 in Ruud (2000). Figure 16.5 in Ruud pro-
vides an intuitive explanation for the use of the criterion. Dube et al. (2012)
derive analytically the elements of the Hessian for the GMM estimation
approach employed here in an online appendix.

eigenvalue function (eig), we calculated the eigenvalues of
H to determine whether it is positive definite.

We also examined the condition number of the Hessian at
various optima because an ill-conditioned Hessian puts the
accuracy of the reported results into question. More specif-
ically, the Hessian condition number is given by k(H) =
Nmax (H) / Mmin (H), where hyax and iy are the largest and the
smallest Hessian eigenvalues, respectively. McCullough and
Vinod (2003) recommend that solutions for which the Hes-
sian condition number exceeds 1/4/€, where € is the machine
precision, should not be accepted uncritically. For Matlab,
€ = 2.2E—16, such that 1/,/€ = 6.7E+07.19 However, we
caution that the Hessian eigenvalues often seem to be partic-
ularly sensitive to small changes in the parameter estimates
in terms of their magnitudes and signs.

For automobiles, the implied gradient norm for the esti-
mates in table A2 of the online appendix is between 0.08
for DIR1-SIM and 440.39 for STO2-GAL (see the ‘“auto-
mobiles” section of table 3). The weighted-gradient criterion
does not exceed 0.001 for the four algorithms that stopped
at 157.79: DER2-QN2, DER4-SOL, DIR1-SIM, and DIR2-
MAD. The Hessians for all four algorithms are positive
definite, and their condition numbers, which do not exceed
7.35E4-03, are of the same order of magnitude. The Hessian
condition number does not seem to raise concerns regard-
ing the numerical precision of the solution, at least based
on the metric proposed by McCullough and Vinod. There-
fore, the point at 157.79 may be treated as a local minimum.
We may call the minimum at 157.79 the global minimum
although we have not proved or formally tested that we have
indeed found a global minimum. To the best of our knowl-
edge, although tests for the null of whether a global optimum
of a criterion function has been identified are available, they
are not widely used by practitioners. This statement is partic-
ularly true for practitioners undertaking empirical exercises
involving BLP-type demand models.20

None of the other terminal points, which correspond to
objective function values between 180.51 (STO2-GAL) and
254.83 (DER5-KNI), can safely be treated as local minima.

19For a matrix A, the rough rule of thumb is that as k(A) increases by
a factor of 10, you lose one significant digit in the solution of the linear
system Ax = b (see Judd, 1998, p. 68). Judd argues that a condition number
is small if its base 10 logarithm is about 2 or 3 for a computer that carries
about sixteen significant decimal digits. The implications of ill conditioning
for a wide class of optimization algorithms can be seen using the iterations
in Newton’s method given by x4, = x; — H ™' (x;)g(x;), where H is the
Hessian and g is the gradient. In the linear system Ax = b, k(A) indicates
the maximum effect of a perturbation in b or A in the solution. It can be
lﬁll;;wr; ﬁgatl [13x[1/1xl] = K(A) x [18b11/11b]] and [[8x[]/[|x + 8x|| = k(A) x

20 According to Andrews (1997), the best-specified definitions of GMM
estimators in the literature require a value 6 of the estimator that is close to
minimizing the criterion function. For example, Pakes and Pollard (1989)
require that 6 yield a value of the criterion function that is within o, (1)
of the minimum for consistency and within o, (n~'/?) of the minimum for
asymptotic normahty of 6. Veall (1990) prov1des a diagnostic test of the
null that a maximum already found is global using results from extreme-
value asymptotic theory due to de Haan (1981). Andrews (1997) identifies
a serious problem with the power of Veall’s test and proposes a stopping
rule (SR) procedure for the computation of GMM estimators.
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TABLE 3.—GRADIENT AND HESSIAN DIAGNOSTICS USING TIGHT NFP TOLERANCE

Algorithm Objective Function Value |1glls0 gH g K(H)
Automobiles
DER1-QN1 192.751 7.661 18.700 1.52E4-04*
DER2-QN2 157.786 0214 0.000 7.35E+03*
DER3-CGR 192.541 7.337 13.987 9.51E+403*
DER4-SOL 157.786 0.109 0.000 3.70E+03*
DERS5-KNI 254.825 24.006 —27.550 —8.00E + 02
DIR1-SIM 157.786 0.082 0.000 3.77E403*
DIR2-MAD 157.787 0.596 0.001 6.31E+03*
DIR3-GPS 157.797 16.281 0.024 3.83E+03*
STO1-SIA 163.629 138.377 14.306 8.02E4-03*
STO2-GAL 180.505 440.386 42.376 4.02E+03*
STO3-SIG 158.206 83.909 0.691 3.81E+03*
Cereals

DER1-QN1 19.554 1.088 26.747 3.97E+07*
DER2-QN2 4.562 0.230 0.000 5.80E4-08*
DER3-CGR 19.929 13.231 39.737 2.88E+407*
DER4-SOL 4.562 0.009 0.000 5.76E+08*
DERS5-KNI 4.562 0.041 0.000 5.82E4-08*
DIR1-SIM 17.549 7.787 15.865 1.00E+08*
DIR2-MAD 16.055 17.302 15.513 1.51E+08*
DIR3-GPS 50.993 472.767 34.194 8.72E4-06*
STO1-SIA 131.320 493.765 365.304 2.53E+07*
STO2-GAL 31.594 86.113 25.822 —2.25E + 06
STO3-SIG 108.130 412.090 —2.850 —9.61E + 01

The naming convention for the optimization algorithms in the “Algorithm” column follows table 2. We use g and H to denote the gradient and the Hessian of the objective function value evaluated at the parameter
estimates in table A2 for automobiles and in table A4 for cereals in the online appendix. k(H) denotes the Hessian condition number. * indicates a positive definite Hessian.

Their weighted-gradient criterion exceeds 13, and in the case
of DER5-KNI, the Hessian is not positive definite.

The global minimum at 157.79 associated with the 49th set
of starting values for DIR1-SIM implies .y = 2.30E404
and A\pin = 6.11E400, such that k(H) = 3.77E+03. The
eigenvector corresponding to the smallest eigenvalue has an
extremal element of —0.7747 in the direction of the standard
deviation term of HP/WT. The eigenvector corresponding to
the largest eigenvalue has an extremal element of —0.9992
in the direction of the standard deviation term for price. The
Hessian condition number does not seem to raise concerns
regarding the numerical precision of the solution, at least,
based on the metric proposed by McCullough and Vinod.

For cereals, the implied gradient norm for the estimates
in table A4 of the online appendix is between 0.009 (DER4-
SOL) and 472.77 (DIR3-GPS) (see the “cereals” section of
table 3). The Hessian is positive definite for all the algo-
rithms that terminated successfully with the exception of
STO2-GAL and STO3-SIG. The weighted-gradient criterion
is almost identical to 0 for DER2-QN2, DER4-SOL, and
DERS5-KNI. Therefore, based on the first- and second-order
optimality conditions, the objective function value of 4.56
implied by the parameter estimates in table A4 of the online
appendix corresponds to a local minimum. In the spirit of
our earlier discussion for automobiles, we may call the local
minimum at 4.56 a global minimum, although we have not
proved formally that we have found a global minimum.

The global minimum at 4.56 corresponding to the 42nd set
of starting values for DER2-QN2 implies hyx = 1.65E4+04
and hpin = 2.84E—05, which in turn give k(H) =
5.80E+08. The eigenvector corresponding to the smallest
eigenvalue has an extremal element of 0.9986 in the direc-
tion of the interaction of price with the log of income. The

eigenvector corresponding to the largest eigenvalue has an
extremal element of 0.9861 in the direction of the standard
deviation term for sugar. This Hessian condition number
exceeds the threshold in McCullough and Vinod by almost
an order of magnitude.

To sum up, we provided diagnostics for the analytical gra-
dients and the numerical Hessian of the objective function
for the estimates in tables A2 and A4 of the online appendix
that gave rise to the smallest objective function value using
tight NFP tolerance across all starting values. For automo-
biles, the point at which the objective function value equals
157.79 satisfies the criteria of a local minimum. Six of the ten
algorithms that converged stopped at or near this minimum.
The other four algorithms converged at points in the param-
eter space that cannot be treated as local minima. In the case
of cereals, the point at which the objective function value is
4.56 satisfies the criteria of a local minimum. Only four of the
nine algorithms that converged achieved this minimum. The
Hessian condition number may raise some concerns about
the numerical precision of the solution based on the metric
suggested by McCullough and Vinod (2003).

C. Additional Local Optima

In this section, we examine whether any terminal points of
the nonlinear searches for the various algorithms beyond the
ones reported in tables A1 through A4 qualify as local optima.
We do so by using the first- and second-order diagnostics that
we discussed in the previous section. We first discuss our
findings with tight NFP tolerance. We subsequently provide
adiscussion of our findings with loose NFP tolerance. Before
moving to any of these details, we offer a brief motivation for
our discussion of the local optima.
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Overall, it can be difficult to show that the criterion function
of an extremum estimator attains a unique (global) minimum
at the true parameter vector. For example, in nonlinear GMM,
conditions for identification are like conditions for unique
solutions of nonlinear equations that are known to be dif-
ficult (see section 2.2.3 in McFadden & Newey, 1994). In
addition, it is often challenging to find the unique global
minimum of a criterion function setting aside the case of
a globally convex criterion function, where there can be at
most one local minimum that is also the global minimum. As
a result, two consistency theorems for extremum estimators
are available—one for a global optimum and one for a local
optimum.2!

When there is more than one local optimum, the consis-
tency theorem for a local optimum states that one of the local
optima is consistent, but provides no guidance to which one
is consistent.22 Therefore, although any of the plausible, from
an economic-theoretic viewpoint, local optima can be a con-
sistent root, the studies in table 1 seem not to have examined
the possibility of such local optima with two exceptions.23
At least, they do not discuss such a possibility explicitly.
As we mentioned in the previous section, we are not aware
of a study formally testing that has indeed found a global
minimum following, say, the procedure in Andrews (1997),
either.

In the case of cereals, we did not identify any local minima
that were different from the one at 4.56 with tight NFP tol-
erance. For automobiles, 59 terminal points of the nonlinear
searches indicate an objective function value of 204.56 when
rounded to the second decimal point. Six algorithms reached
this parameter space: DER1-QN1 (3 times), DER2-QN2
(9), DER4-SOL (32), DIR1-SIM (11), DIR2-MAD (3), and
DIR3-GPS (1). The associated parameter estimates are qual-
itatively very similar across these 59 points. The maximum
gradient norm across the 59 terminal points is 0.1, the max-
imum weighted gradient criterion is 0.001, and the implied
Hessians are all positive definite. For the same set of local
minima, the range for k(H) is 2.61E+03 to 2.66E+4-03. We
also identified additional local optima with objective func-
tion values of 167.63, 211.36, 218.56, 226.59, and 248.14.
Across all of these six local optima, the maximum of the
implied gradient norms does not exceed 0.001, the weighted-
gradient criterion is below .0001, and the implied Hessians

21 Seetheorems4.1.1and4.1.2 in Amemiya (1985) or theorems 5.1 and 5.2
in Cameron and Trivedi (2005). Amemiya (p. 230) states that identification
is synonymous with “the existence of a consistent estimator.”

22 Cameron and Trivedi (2005, p. 127) argue that it is best in such cases
to consider the global optimum and apply their theorem 5.1. According to
McFadden and Newey (1994, p. 2117), as long as the extremum estima-
tor is consistent and the true parameter is an element of the interior of the
parameter space, an extremum estimator will be a root of the first-order con-
ditions asymptotically and hence will be included among the local optima.
Amemiya (1985, p. 111) suggests two ways to gain some confidence that
a local optimum is a consistent root. First, the solution gives a reasonable
value from an economic-theoretic viewpoint. Second, the iteration by which
the local optimum was obtained started from a consistent estimator.

23 For one of the papers, the possibility of local optima is discussed in one
of the footnotes.

are all positive definite, with, kK(H), between 2.08E+03 and
2.51E+404.

Our results using a loose NFP tolerance underscore the
findings in Dube et al. (2012). In the case of automobiles with
loose NFP tolerance, a single set of starting values for DER2-
QN2 gave rise to an objective function value of 204.54 when
rounded to the second decimal point. Although the gradient
norm and the weighted-gradient criterion are 0.08 and 0.02,
the Hessian exhibits both positive and negative eigenvalues,
which is consistent with a saddle point. As a note of caution,
both the size and the sign of the Hessian eigenvalues seemed
to be particularly sensitive to parameter estimates generat-
ing objective function values very close—within decimal
points—to 204.54.

In the case of cereals with loose NFP tolerance, the DER5-
KNI algorithm hovered around an objective function value
of about 15.5. More precisely, sixteen sets of starting val-
ues gave rise to function values between 15.46 and 15.60
when rounded to the second decimal point. The coefficient
estimates implied by these sixteen sets of starting values are
largely identical with the exception of the two coefficients
associated with the interaction of price with log income and
log income squared. The range of these two coefficients is
—1.42 t0 2.00 and 0.09 to 0.27, respectively.

In all sixteen instances, although the gradient norm
(weighted-gradient criterion) is between 0.0393 (—0.0002)
and 0.0968 (0.0007), the Hessians exhibit both positive and
negative eigenvalues. These diagnostics are consistent with
a saddle point.24 The range of the condition number k(H)
is between —1.50E+403 and —2.75E+02 across the sixteen
points. Hence, the numerical accuracy of the solutions does
not seem to be a concern.?

VII. Implications for Economic Variables of Interest

A. Preliminaries

In this section, we examine the implications of the variation
in the terminal points of the nonlinear searches for economic
variables of interest routinely studied in the literature, such
as elasticities, consumer welfare, and firm profits. Following
our extensive optimization exercise, the number of obser-
vations for the analysis of the variation in such variables,
especially at the product level, is immense. Every combina-
tion of parameter starting values, optimization algorithm, and
NFP tolerance yields an elasticity matrix for each market; of

24 More specifically, KNITRO generated the exit code of 0 (—100) in 14 (2)
instances. According to appendix A in Waltz and Plantenga (2009), the exit
code 0 indicates that “the final solution satisfies the termination conditions
for verifying optimality,” while exit codes —100 to —199 indicate that “a
feasible approximate solution was found.”

25 Recently, Judd and Skrainka (2011) show that Monte Carlo integration
for evaluating the market share integrals creates ripples in the surface of the
objective function that generate spurious local maxima. Skrainka (2011)
argues that when instruments are highly collinear, which is often the case
for the BLP-type instruments based on product characteristics, the GMM
weighting matrix has a high condition number and the outer-loop nonlinear
solver finds many local optima.
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course, not all of these combinations are meaningful. In the
case of the automobile data, there are 20 markets, with the
number of products in each market being between 72 and 150,
leading to 2,217 product-market combinations. In the case of
the cereal data, there are 94 markets with 24 products in each
market, leading to 2,256 product-market combinations.

At the product level, we focus on the implication for the
own-price elasticities for two products in each data set. The
first is the product with the largest observed quantity sold—
the top product. The second is the product with the median
observed quantity sold—the median product. For each of the
two products of interest, our analysis is based on 459 observa-
tions for automobiles and 240 observations for cereals. In the
former data set, the top product appears in market 2 (1972),
and its market share is about 1%. The median product appears
in market 16 (1986), and its market share is 0.05%:.26 In the lat-
ter data set, the top product is brand 5, a Kellogg’s brand, that
appears in market 53, and its market share is 45%. The median
product is brand 13, a General Mills brand, that appears in
market 89, and its market share is 1%.

Atthe market level, we examine the implications for aggre-
gate elasticity, as well as the change in profits and consumer
welfare, for two hypothetical mergers. We calculated the
aggregate elasticity by simulating a 1% price increase for
all products. We use compensating variation as a measure
of change in consumer welfare. For automobiles, we assume
GM and Chrysler merge. In the case of cereals, we assume
Kellogg’s and General Mills merge. As we discussed earlier,
we use the approximate solutions for the postmerger prices
of equation (13). Similar to the analysis at the product level,
we work with 459 observations in the case of automobiles
and 240 observations in the case of cereals.

We limit our attention to results implied by those sets of
starting values that allowed the optimization algorithms to
converge using tight NFP tolerance excluding some addi-
tional sets of results. First, we excluded all of the results
implied by combinations of starting values and optimization
algorithms that gave rise to problematic pre- and postmerger
market shares (for example, NaNs). Second, in the case
of automobiles (cereals), we excluded results associated
with combinations of starting values and optimization algo-
rithms producing objective function values larger than 282.99
(134.92).27 The process just described led to 459 observations
for automobiles and 240 observations for cereals.

According to our findings, the variation across the set of
candidate estimates for cereals is much smaller than the vari-
ation in the automobile data. This is not surprising given that
three of the algorithms nearly always converge at the GMM
objective value of 4.56 for cereals. However, it is important
to keep in mind that only these three algorithms attained

26 Using the NEWMODV field in the automobile data, the top (median)
product is BKRIVE72 (NIPULS84).

27 For automobiles, 282.99 is the 95th percentile of the objective function
value distribution. The 99th percentile is 1,691.29, and the maximum is in
excess of 4,700. In the case of cereals, 134.92 is the 75th percentile. The
90th percentile is 314.58, and the maximum is 1,904.78.

such an objective function value. Therefore, if a researcher
were to rely only on parameter estimates for the other eight
algorithms, the variation would be more pronounced.

B. Product Level

Panel A of figure 2 provides a histogram of the own-price
elasticity (own elasticity, henceforth) for the top automobile
product, where we see values as low as —3.48 and as high
as —0.93, when we restrict ourselves to only negative elas-
ticities. The mean across the 453 observations for which the
elasticity is negative is —2.77, which is similar to the median
of —3.03, and the standard deviation is 0.53. Using the abso-
lute value of the mean, the implied coefficient of variation
(CoV) equals 0.19. We see substantial variation in the distri-
bution of the own elasticities with a rather prominent spike
around —3.2.

The variation is notable even when we limit our attention
to the 78 observations for the local optima. Recall from our
earlier discussion that we identified seven local optima with
objective function values of 157.79, 167.63, 204.56, 211.36,
218.56, 226.59, and 248.14. The implied own elasticities for
these seven local optima are —2.30, 2.17, —3.21, —2.59,
—2.50, —2.33, and —1.29. The own elasticity for the small-
est objective function value of 157.79 is slightly below the
75 percentile, which is —2.34.

The histogram of own elasticities for the median automo-
bile product is available in panel A of figure 3. In this case,
the minimum across the 459 observations is smaller than the
maximum by almost a factor of 5: —4.91 versus —1.03. Once
again, we observe substantial variation in the own-elasticity
distribution with a prominent spike in the neighborhood of
—3.1. When we exclude own elasticities below —3.28 (5th
percentile), the mean is —2.62 and the median is —2.85
across the remaining 437 observations. The standard devi-
ation is 0.6, and the implied CoV is 0.23. Similar to the
top product, the variation is substantial when we limit our
attention to the observations associated with the seven local
optima: —3.22 (157.79), —3.29 (167.63), —3.14 (204.56),
—1.60(211.36), —1.95 (218.56), —2.85 (226.59), and —1.71
(248.14). The own elasticity for the smallest objective func-
tion value of 157.79 may be viewed as an outlier given that
the 5th percentile is —3.28.

Further support for the variation in own elasticities due to
combinations of starting values and algorithms is provided
by the histogram in panel A of figure 4. This histogram is
based on the own-elasticity CoV for each of the 2,107 auto-
mobile product-market pairs across the 459 combinations of
optimization algorithms and starting values we considered.28
The hump of the distribution covers the 0.16 to 0.27 range,
and a long right tail is prominent. The mean and median
of the CoV distribution are very similar—0.25 and 0.23,

28 The number of product-market pairs is fewer than 2,217 because we
exclude observations exceeding the 95th percentile of the CoV distribution,
which is 0.67. Each of 2,217 coefficients of variation is calculated using
459 observations.
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FIGURE 2.—OWN-PRICE ELASTICITY HISTOGRAM FOR THE TOP PRODUCT
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The top product is the product with the largest observed unit market share. For automobiles, the top product is BKRIVE72 in 1972 with a market share of 1%. For cereals, the top product is brand 5 in market 53 with
market share of 45%. The histograms are based on 453 (240) observations in the case of automobiles (cereals). Observations exceeding 0 are excluded in the case of automobiles. The number of observations reflects
the sets of starting values that allowed the optimization algorithms to converge using tight NFP tolerance, the removal of extraneous observations discussed in section VIIA, and any thresholds discussed here. The
vertical lines indicate the value of the own-price elasticity when the objective function value is 157.79 (4.56) for automobiles (cereals).
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FIGURE 3.—OWN-PRICE ELASTICITY HISTOGRAM FOR THE MEDIAN PRODUCT
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The median product is the product with the median observed unit market share. For automobiles, the median product is NIPULS84 in 1986 with a market share of 0.05%. For cereals, the median product is brand
13 in market 89 with a market share of 1%. The histograms are based on 437 (240) observations in the case of automobiles (cereals). Observations falling below —3.28 are excluded in the case of automobiles. The
number of observations reflects the sets of starting values that allowed the optimization algorithms to converge using tight NFP tolerance, the removal of extraneous observations discussed in section VIIA, and any
thresholds discussed here. The vertical lines indicate the value of the own-price elasticity when the objective function value is 157.79 (4.56) for automobiles (cereals).
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FIGURE 4.—OWN-PRICE ELASTICITY COEFFICIENT-OF-VARIATION HISTOGRAM FOR ALL PRODUCTS
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An observation is the ratio of the standard deviation to the absolute value of the mean for a product-market combination. The number of observations used to calculate the two moments is 459 (240) for automobiles
(cereals). Coefficients of variation exceeding 0.67 (0.18) for automobiles (cereals) are excluded. These upper bounds are the 95th percentiles of the corresponding distributions. The number of observations reflects the
sets of starting values that allowed the optimization algorithms to converge using tight NFP tolerance, the removal of extraneous observations discussed in section VIIA, and any thresholds discussed here.
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respectively. Overall, using CoV as a metric, we see sub-
stantial variation in the own-elasticity distribution for a large
number of product-market pairs due to combinations of
algorithms and starting values.

Panel B of figure 2 provides a histogram of the own elas-
ticity for the top cereal product. The own elasticity across the
240 observations is between —2.47 and —1.34 with a mean
of —1.98 and a standard deviation of 0.14—the CoV equals
0.07. Although we see notable variation, given the number
of routines that terminated at an objective function value of
4.56, the variation is not extreme. The median own elasticity
(—1.99) is essentially identical to the own elasticity for the
smallest objective function value of 4.56.

We provide a histogram of the own elasticity for the median
cereal product in panel B of figure 3. The own elasticity across
the 240 observations is between —5.44 and —2.59 with a
mean of —3.49 and a standard deviation of 0.73. The implied
CoV is 0.21, and the median is —3.47. Similar to the largest
product, the variation is notable. The 75th percentile of the
distribution, which equals —2.62, is the own elasticity for the
smallest objective function value of 4.56.

Finally, the CoV histogram for cereals is available in panel
B of figure 4. This histogram is based on the own-elasticity
CoV for each of the 2,144 cereal product-market pairs across
the 240 combinations of optimization algorithms and start-
ing values we considered.?° The CoV values range from about
0.02 to around 0.18 with a mean of 0.08 that is indistinguish-
able from the median. Similar to automobiles, but to a lesser
extent, the histogram indicates a nonnegligible amount of
variation in the distribution of own elasticities for a large
number of product-market pairs.

Product level: Optimization vs. sample variation. Try-
ing to assess whether the variation in economic variables of
interest due to the optimization design is different from the
variation due to the underlying sample error, we focus on the
own elasticities for the automobile products of the previous
section.30 To show the sample variation, we constructed the
kernel density of own elasticities implied by 10,000 draws
from a N(6,, g, ) distribution. We first used the estimates 6,
and the variance-covariance matrix X that correspond to the
objective function value of 157.79 in table A2 in the online
appendix for DIR1-SIM to generate 10,000 sets of parameter
estimates. We then calculated the own elasticities implied by
each of these sets of parameter estimates. To show the opti-
mization variation, we constructed the kernel density using
the 453 (437) own elasticities of the histograms in the bottom
panel of figure 2 (figure 3).

For the top automobile product, as panel A of figure 5
indicates, the two densities overlap partially, roughly in the

29 The number of product-market pairs is fewer than 2,256 because we
exclude observations exceeding the 95th percentile of the CoV distribution,
which is 0.175. Each CoV is calculated using 240 observations.

30 We will refer to the variation due to the optimization design (sample
error) as “optimization” (“sample”) variation. We use the term optimization
design to refer to the combination of optimization algorithm, starting values,
and NFP tolerance.

range —3 to —1.5. The density capturing the sample variation
is less dispersed. The mean of the own elasticities implied
by the 10,000 draws is —2.31, and the standard deviation
is 0.27. The mean of the 453 own elasticities capturing the
optimization variation is —2.77, and the standard deviation is
0.53. The kernel density capturing the optimization variation
exhibits two distinct modes, which correspond to elasticities
of —3.21 and —2.47. The first modal own elasticity is very
close to the one implied by the parameter estimates for the
local optimum at 204.56, while the second one is close to the
one implied by the parameter estimates for the local optimum
at 218.56.

The partial overlap of the two densities also holds in the
case of the median automobile product in panel B of figure 5.
Across the 10,000 draws, the mean own elasticity is —3.23,
and the standard deviations is 0.54. The mean of the 437 own
elasticities capturing the optimization variation is —2.62, and
the standard deviation is 0.59. The kernel density capturing
the optimization variation has a distinct peak at —3.11 and a
plateau around —2.23. The own elasticity of —3.11 is very
close to the one implied by the parameter estimates for the
local optimum at 204.56, while the own elasticity of —2.23
is similar to the elasticity implied by the parameter estimates
for the local optimum at 218.56.

C. Market Level

We start our discussion in this section with the histogram
of the average aggregate elasticity for automobiles in panel
A of figure 6. We calculated the average aggregate elasticity
implied by each of the 459 sets of estimates in two steps. In the
first step, we calculated a market-specific aggregate elasticity
following a price increase of 1% across all products.3! The
average aggregate elasticity ranges from —1.74 to —0.41 with
a mean (median) of —1.20 (—1.29) and a standard deviation
of 0.24. The ratio of the minimum to the maximum exceeds
4, and the aggregate elasticity exceeds —1 in 105 instances.
The variation is still substantial when we exclude the top and
bottom 5% of the distribution, that is, values below —1.46 and
above —(0.65. Limiting our attention to values associated with
the local optima, we get the following: —0.57 (157.79), —1.01
(167.63), —1.39 (204.56), —0.82 (211.36), —1.18 (218.56),
—0.93 (226.59), and —0.41 (248.14).

The distribution of the average change in profits due to a
hypothetical merger between GM and Chrysler is available
in panel A of figure 7. We calculated the average change in
profits implied by each of the 459 sets of parameters in two
steps. In the first step, we approximated the postmerger prices
in each market using equation (13) in section III. In the sec-
ond step, we calculated the quantity-weighted average change
in profits across the twenty markets. Excluding the top 5%
and bottom 10% of the distribution, which is equivalent to

31 The automobile data contain information about the total market size—
that is, including the outside good. We constructed our quantity-weighted
average across the twenty markets for each of the 459 sets of estimates using
the units associated with all inside goods for all three economic variables
of interest.
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FIGURE 5.—SAMPLE VERSUS OPTIMIZATION VARIATION OF THE OWN-PRICE ELASTICITY FOR AUTOMOBILE PRODUCTS
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To show the variation due to the underlying sample error, we constructed the kernel density calculating own-price elasticities for 10,000 draws from a N(E)Az, )Igz) distribution. We used the estimates GAZ and the
variance-covariance matrix Xg; that correspond to the objective function value of 157.79 for DIR1-SIM in table A2 in the online appendix. To show the variation due to the optimization design, we constructed the
kernel density using the 453 (437) own-price elasticities in the top panel of figure 2 (figure 3).
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FIGURE 6.—AVERAGE AGGREGATE ELASTICITY
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The histogram is based on 459 (240) observations in the case of automobiles (cereals). Each observation corresponds to a weighted average aggregate elasticity across 20 (94) markets using premerger quantities
of the inside goods as weights. The number of observations reflects the sets of starting values that allowed the optimization algorithms to converge using tight NFP tolerance, the removal of extraneous observations
discussed in section VIIA, and any thresholds discussed here. The details of the aggregate elasticity calculation are available in section VIIC. The vertical lines indicate the value of the average aggregate elasticity
when the objective function value is 157.79 (4.56) for automobiles (cereals).
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FIGURE 7.—AVERAGE CHANGE IN PROFITS ($ MILLIONS)
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The histogram is based on 392 (240) observations in the case of automobiles (cereals). For automobiles, values below $485 million (10th percentile) or above $2,548 million (95th percentile) are excluded. Each
observation corresponds to a weighted average change in profits across 20 (94) markets using premerger quantities of the inside goods as weights. The number of observations reflects the sets of starting values that
allowed the optimization algorithms to converge using tight NFP tolerance, the removal of extraneous observations discussed in section VIIA, and any thresholds discussed here. The details of the compensating variation
calculation are available in section VIIC. The vertical lines indicate the value of the average change in profits when the objective function values is 157.79 (4.56) for automobiles (cereals).
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FIGURE 8. —AVERAGE MARKET COMPENSATING VARIATION ($ MILLIONS)
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The histogram is based on 433 (240) observations in the case of automobiles (cereals). For automobiles, values below —4,328 million (5th percentile) or above 0 are excluded. Each observation corresponds to a
weighted average compensating variation across 20 (94) markets using premerger quantities of the inside goods as weights. The number of observations reflects the sets of starting values that allowed the optimization
algorithms to converge using tight NFP tolerance, the removal of extraneous observations discussed in section VIIA, and any thresholds discussed here. The details of the compensating variation calculation are available
in section VIIC. The vertical lines indicate the value of the average market compensating variation when the objective function values is 157.79 (4.56) for automobiles (cereals).
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discarding values below $485 million and above $2,548
million, leaves us with 392 observations. Following the trun-
cation of the distribution just described, the mean (median)
is $787 million ($669 million) and a standard deviation
of $316 million. The change in profits associated with the
local optima varies widely: $2,658 million (157.79), $1,697
million (167.63), $668 million (204.56), $1,427 million
(211.36), $568 million (218.56), $1,080 million (226.59), and
$3,729 million (248.14).

We provide the histogram of the average market compen-
sating variation (MCV) in panel A of figure 8. We calculated
the average MCV implied by each of the 459 sets of param-
eters in two steps. In the first step, we obtained MCV by
multiplying the total market size by the average compensat-
ing variation (ACV). We derived ACV using equation (14)
in section III and averaging across individuals. In the sec-
ond step, we calculated the quantity-weighted average MCV
across the twenty markets. After dropping the observations in
the bottom 5% of the distribution or exceeding 0, which leads
to 433 observations, we see values between —$4,328 million
and —$1,165 million. The mean (median) is —$2,183 million
(—$1,975 million), and the standard deviation is $531 mil-
lion. The change in consumer welfare captured by MCV at
the seven local optima is —$5,093 million (157.79), —$2,739
million (167.63), —$1,926 million (204.56), —$3,550 mil-
lion (211.36), —$1,977 million (218.56), —$2,731 million
(226.59), and —$7,369 million (248.14).

Overall, the distributions of the automobile economic vari-
ables of interest at the market level indicate that the values of
such variables associated with the smallest objective function
value of 157.79 are outliers. In addition, parameter estimates
that lead to very similar objective function values can have
extremely different economic predictions. For example, when
we compare the two local minima at 211.36 and 218.56, the
change in profits is larger for the parameter values associated
with 211.36 by a factor of 2.5, while the change in consumer
welfare is almost twice as large. This underscores our discus-
sion of the potential for a horse race even when the researcher
is convinced that the global minimum is the consistent root.
One could imagine a situation where, for a slightly different
sample, the parameter values associated with the minimum
at 218.56 yield a smaller objective value than the parameter
values associated with the minimum at 211.36.

The histogram of the average aggregate elasticity for
cereals is available in panel B of figure 6. Following the
same approach with automobiles, we calculated a quantity-
weighted average aggregate elasticity across the 94 markets
for each of the 240 sets of parameter estimates. Given that
the cereal data do not contain information about the market
size, we assumed a total market size (including the outside
good) of 250 million servings per day. When expressed in
million servings per day, the quantity weight for each mar-
ket is equal to the share of the inside goods times 250.32 The

32The U.S. population was approximately 250 million based on Cen-
sus figures for July 1990; see http://www.census.gov/popest/data/national
/totals/1990s/tables/nat-agesex.txt. The assumption about the total market
size is admittedly somewhat arbitrary. However, it is inconsequential for

average aggregate elasticity is between —1.78 and —0.84,
with its distribution having a prominent peak at about —1.3,
which is very close to the mean and the median. This is also
the value of the average aggregate elasticity if we limit our
attention to the minimum with objective function value of
4.56. The standard deviation is 0.11. Given that the 95th per-
centile is —1.25, we would conclude that the average market
is inelastic only for a handful of estimates. The variation is
less pronounced if we exclude observations in the top and
bottom 5% of the distribution—in this case, the elasticity
values are between —1.56 and —1.25.

We also calculated a quantity-weighted average annual
change in profits following a hypothetical merger between
Kellogg’s and General Mills. The histogram of such profit
changes is available in panel B of figure 7. We calculated the
annual change in profits in each market multiplying the mar-
ket size by 365. Following the same steps with automobiles,
we calculated the quantity-weighted average annual change
in profits across the 94 markets for each of the 240 sets of
parameter estimates. Similar to the histogram for the average
aggregate elasticity, we do not see a single mass point; actu-
ally, we observe substantial variation. The average annual
change in profits due to the merger ranges from $104.3
million to $229.7 million with a mean (median) of $170.8
million ($177.1 million) and standard deviation of $15.7 mil-
lion. When we limit our attention to the estimates that give
rise to the objective function value of 4.56, the change in
profits is about $177.1 million. The variation in profit change
when we exclude the top and bottom 5% of the distribution
is still substantial: $138.3 million to $182.1 million.

Finally, we calculated a quantity-weighted average annual
change in consumer welfare for cereals due to the hypotheti-
cal merger using MCYV; the associated histogram is available
in panel B of figure 8. We first calculated a market-specific
annual MCV ($million) as ACV x 250 x 365. We then cal-
culated an average across the 94 markets using the units of
the inside goods as weights for each of 240 sets of esti-
mates. As it was the case with the aggregate elasticity and
change in profits, we see substantial variation in MCV. The
range is from —$975 million to —$469 million with a mean
(median) of —$671 million (—$651 million) and standard
deviation of approximately $60 million. The change in con-
sumer welfare corresponding to the objective function value
of 4.56 is almost identical to the median. Even after exclud-
ing the top and bottom 5% of the MCV distribution, the
MCYV exhibits substantial variation, namely, —$744 million
to —$569 million.

VIII. Conclusion

Empirical industrial organization has been increasingly
relying on highly nonlinear structural models and proba-
bly more so compared to other neighboring fields, such as

the variation of the results reported here because the market size operates
as a scaling factor.
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public and labor economics. The reasons for such divergence
have been discussed in a rather lively manner in Angrist and
Pischke (2010) and Nevo and Whinston (2010). At the same
time, a prominent class of such models, the demand models
for differentiated products of the Berry et al. (1995) tradition,
are becoming increasingly popular in trade, education, hous-
ing, health, and environmental economics and shedding light
on a wide spectrum of important economic questions.

Nonlinear models are often synonymous with an objective
function that is not globally concave or convex. Obtaining
parameter estimates and performing inferences is possible,
in principle, using a nonlinear search algorithm along with
a set of multiple starting values and stopping rules. Both
exercises, however, can be particularly challenging when it
comes to implementation. In this paper, we document some of
the challenges we experienced estimating BLP-type demand
models using two widely known data sets, numerous search
algorithms, a large number of starting values, and differ-
ent tolerances of the fixed-point iterations that allow the
researcher to infer the structural econometric error.

Our findings point to instances of convergence at points
where the first- and second-order optimality conditions fail.
We also find that various combinations of optimization algo-
rithms, starting values, and fixed-point iterations may lead to
convergence at multiple local optima, as well as to instances
of convergence failure. Even on convergence under tight
tolerance for the fixed-point iterations, we find substantial
variation in the objective function value both within and
across optimization algorithms. Although derivative-based
algorithms seem to perform better in the case of the cereal
data set, there appears to be a tight race between derivative-
based and direct-search algorithms for the automobile data
set. This variation goes in hand with variation in parameter
estimates and translates into variation of the demand models’
economic predictions, such as price elasticities, consumer
welfare, and firm profits.

In the automobile data set, the range of the own-price elas-
ticity for the product with the highest market share is such that
the smallest to the largest values differ by a factor of about
4. The same factor is of similar magnitude in the case of the
aggregate elasticity and over 5 for the change in firm prof-
its due to a hypothetical merger. The range of the change in
the consumer welfare in our merger exercise is wide too. All
of these economic variables of interest exhibit notable varia-
tion across multiple optima that we identify through a careful
review of first- and second-order optimality conditions.

In the cereal data set, the value of the own-price elasticity
of the product with the largest market share exhibits a range
such that the smallest and largest values differ by a factor of 2
depending on the combination of optimization algorithm and
starting values. At the market level, the range is qualitatively
similar for the aggregate elasticity, as well as for the change
in consumer welfare and firm profits following a hypothetical
merger in the industry.

Drawing from our experience, we offer a number of sug-
gestions to empiricists using (not only) BLP-type demand

TABLE 4.—OPTIMIZATION-DESIGN DETAILS AND DIAGNOSTICS CHECKLIST

Step Details and Diagnostics

1. Optimization design Optimization algorithm
Starting values
Objective function value tolerance
Parameter vector tolerance
Other optimization settings
Fixed-point iteration settings
Market share evaluation draws
2. Convergence and local optima Multiple optima (Y/N)
Number of runs converged
Algorithm exit code
Objective function value
Parameter estimates
Gradient-based FOC diagnostics
Hessian-based SOC diagnostics
3. Implications for Variation due to multiple optima, if any, for:
economic variables of interest e Objective function value
e Parameter estimates
e Own- and cross-price elasticities: statistics
e Other economic variables of interest:
statistics

models. We abstract from the typical robustness checks to the
baseline results of an econometric exercise, such as alterna-
tive samples, model specifications, and explanatory variables
or instruments, to name a few. These important robustness
checks receive the proper attention in empirical exercises that
are carefully executed. In nonlinear models, there is a second
checklist that typically receives less attention, but researchers
should go through, and report, to feel confident for her results.
We not that the typical robustness checks may change the
shape of the underlying objective function and, hence, the
nature of the optimization problem in hand. In the next para-
graphs, we discuss how to navigate through this checklistin a
stepwise manner (see also table 4). Goldberg and Hellerstein
(2013) provide a very good example of how some of these
suggestions can be implemented in empirical work.

Step 1: Optimization design. Estimate the objective func-
tion using multiple optimization algorithms, ideally from
different classes, with a large number of starting values.
Things to consider include different settings for the algo-
rithm’s tunning parameters and stopping rules based on tight
tolerances. In the absence of any prior information for start-
ing values, which may come from economic theory, random
draws are as good as anything else. Alternatively, use a large
number of random draws (10,000) and evaluate the objective
function. Among these draws, pick the ones that give rise to,
say, the fifty smallest objective function values and use them
as the starting values for the nonlinear search. Another possi-
bility is to divide the optimization problem in hand in smaller
ones. For example, assume that we can split the parameter
vector, say, Y, into two parameter vectors of smaller dimen-
sion, say, y; and y,. First, fix the elements of y, at some
reasonable values and estimate y;. With estimates of y; in
hand, estimate the elements of y,. Iterate this process until the
objective function value changes very little. Finally, estimate
v1 and y; simultaneously.
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Consider the possibility of combining optimization algo-
rithms: initiate a random direct search algorithm from the
terminal point of a gradient-based algorithm. Analytical
gradients and Hessians are highly recommended, but their
computation can be demanding in terms of computer code
and tedious debugging. Make sure the parameters over which
the nonlinear search is performed are of similar magnitudes
because improper scaling may affect the progress of the opti-
mization algorithm (numerical issues); there are tips and
tricks about preconditioning and scaling in most optimization
books and manuals that accompany optimization software. It
is a good idea to plot the objective function value against each
of the parameters over an interval around the final estimate,
while holding the remaining ones constant, and make sure
that you pass the “ocular” identification test. Use tight tol-
erance and potentially multiple starting values for the NFP
iterations if employed. Section VIA offers some guidance for
this step. The accuracy in the evaluation of the market share
integrals using Monte Carlo (MC) simulation improves as
\/E, where R is the number of draws—the empiricist must
increase the number of draws by 100 to gain a digit in accu-
racy. Finally, recent work has identified alternatives to (MC)
simulation for the evaluation of market share integrals.

Step 2: Convergence and local optima. Once estimation
is complete, collect the parameter estimates, objective func-
tion values, and the algorithms’ exit codes across the various
combinations of the optimization design in step 1. Based
on the algorithms’ exit codes and documentation, first dis-
card those combinations for which there is a clear indication
that the algorithm did not converge. It is important to main-
tain and review carefully log files recording the algorithm’s
progress during the nonlinear search and make sure that they
follow their rate of convergence. Second, examine whether
the objective function values and the parameter estimates
that pass the convergence test correspond to local minima
by examining the associated gradient vectors and Hessian
matrices using diagnostics similar to the ones we discussed
in section VIB. Most of the practitioners tend to focus only on
the global minimum despite the well-documented literature
that any of the plausible from economic-theoretic viewpoint
local optima can be a consistent root. As we discussed in
section VIC, it is often difficult to find the global minimum
of a criterion function aside from the case of a globally convex
criterion function. We suggest that in the presence of multi-
ple local minima, the results of all other optima should be
reported. If the researcher can eliminate some set of results
on economic, or statistical grounds, this discussion should
also be included.

Step 3: Implications for economic variables of interest.
Summarize the variation in the economic variables of inter-
est implied by the underlying sample error and the nature
of the underlying objective function if needed. Regarding
the sample error, each economic variable of interest is a

function of the estimated parameters, and its standard error
can be obtained using bootstrap (see, for example, figure 5).
Regarding the nature of the underlying objective function, we
suggest the following “fire-detection” test: after step 2, con-
struct a histogram of the objective function values; if there
is no a single mass point (‘“smoke”), look for variation in the
variables of interest focusing on local optima (“fire”). In the
case of the BLP-type demand models, own- and cross-price
elasticities can serve as a natural starting point for docu-
menting such variation (see our discussion in section VIIB).
After all, the variation in substitution patterns implied by
the demand system should translate into variation in eco-
nomic variables of interest that are application specific, such
as profits, or consumer welfare. Even when the values of
the objective function differ by a small amount, variables of
economic interest can vary considerably.
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