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Abstract

This paper demonstrates a technique for computing the long-range sound pressure
field around a penetrable conical seamount. The pressure field is generated by a
harmonic point source. The seamount is positioned in a vertically stratified oceean.
It is modeled as an outgrowth of the sediment layer covering the ocean bottom.

First, the seamount is decomposed into superposed rings of diameters increasing
with the depth. Thus the problem reduces to a cylindrically layered system. Then,
the method of normal modes is used to compute the sound pressure field in each layer.

In order to maintain numerical stability, the Direct Global Matrix approach is
used. The radial eigenfunctions are expressed as functions of normalized Hankel and
Bessel functions, and the linear system that arise is organized in an unconditionally
stable matrix.

The results show a perturbation zone behind the seamount. It is bounded by two
lines going from the source and tangent to the ring that is at the depth of the source.
The values of the sound pressure inside the perturbation zone can be higher or lower
than the values outside of it, according to the dimensions of the seamount.

This work was supported by the United States Navy, Office of Naval Research,
under contract N00014-99-1-0087.

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Engineering,
Secretary of the Navy/Chief of Naval Operations
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Chapter 1

Introduction

This thesis describes my research on the long-range underwater acoustic field around

a conical seamount generated by a harmonic point source.

Long-range underwater acoustics is a particularly challenging field since usual

acoustic equations require special mathematical and computational treatments to

produce accurate results far from the source.

1.1 Motivation

My work was supported by the United States Navy, Office of Naval Research. Its

general goal is the improvment of our understanding of underwater sound propaga-

tion.

A specific application of my research is the help on the detection of illegal under-

water nuclear testing.

International organizations, like the Comprehensive Test Ban Treaty Organization

(CTBTO), monitor global environments to ensure the respect of treaties banning ex-

periments on nuclear weapons. Underwater nuclear tests release large amounts of

acoustic energy (frequency 1-100 Hz) into the water. Because sound energy in the

ocean is guided by temperature and density variations through the so-called SOFAR

channel, the signals from underwater explosions can travel many thousands of kilo-

meters and still have amplitudes large enough to be detected by underwater acoustic
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sensors (hydrophones). The CTBT specifies a network of six hydrophones stations

and five T-phase stations (island-based seismograph stations that can detect an ocean

acoustic wave when it converts to a seismic wave upon striking the ocean bottom near

the island). The hydroacoustic monitoring network has few sensors because of the

high efficiency of the propagation of signals into the ocean.

My research is part of understanding how low-frequency sound waves travel around

seamounts and thus determining if a seamount can screen the waves generated by an

explosion.

1.2 Previous work

Acoustic perturbation by seamounts can be examined through experimentation and

through theory. However, because of the complexity of the problem, both theories

and experimental results that can be found in literature fail to provide clear views of

the perturbation zones behind seamounts.

1.2.1 Experimental results

Nutile and Guthrie experimentally identified the acoustic shadowing by seamounts

located north of the Hawaiian Ridge and explained it as the blockage of propagating

rays by the seamounts [1].

More recently, Ebbeson and Turner measured the loss between a source and a

multi-hydrophone receiving system over the Dickins Seamount in the Northeast Pa-

cific Ocean [2]. Then Chapman and Ebbeson performed more measurements over

the Dickins Seamount and concentrated on the study of the shadow zone that ap-

pear behind it [3]. Jensen et al. compared theoretical predictions, obtained with a

Parabolic equation model, with the experimental transmission-loss data collected by

Chapman and Ebbeson [4]. The agreement between theory and experiment was seen

to be excellent.

All the measurements of the perturbation of the sound behind a seamount have

two things in common:

9



" The data were always collected along a straight line going from the source and

through the center of the seamount. Therefore, the results are insufficient to

describe the shape of the perturbation zone behind the seamount.

" Experimental results always show that the perturbation zone is a shadow zone,

i.e., a zone of lower sound pressure.

1.2.2 Theoretical approach of the problem

The effect of the seamount on long-range propagation can be qualitatively assessed

from ray diagrams. Harrison derives analytical ray paths and shadow zone boundaries

for some bottom topographies, including a seamount [5]. However, this method can

not be a substitute for detailed analysis of intensity by normal mode theory.

Athanassoulis and Prospathopoulos present a normal mode solution for the three-

dimensional problem of acoustic scattering from a nonpenetrable cylindrical island

in shallow water [6]. Although their numerical simulations do not have the same

dimensions as mine, their results about the number of azimuthal terms required to

achieve numerical convergence as a function of the dimension of the environment will

be useful to analyze the validity of my results (c.f. section 4.1.2).

The main inspiration for the modeling of the seamount and the normal mode

solution exposed in this thesis comes from Taroukadis's work on the decomposition

of the seamount into superposed rings [7]. Taroukadis's idea is to decompose the

range-dependent environment into a cylindrically layered system of range-independent

environments. However, this method can yield unstable equations and Taroukadis

fails to get significant numerical results.

1.2.3 Direct Global Matrix approach

In order to obtain a stable system from Taroukadis's model, I use the Direct Global

Matrix approach (DGM). DGM was developed for plane layered viscoelastic systems

by Schmidt and Jensen [8], and applied to spherically layered systems by Schmidt [9]

and to cylindrically layered system by Ricks and Schmidt [10].
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DGM method allows the production of an unconditionally stable linear system

by preventing the underflow and overflow of the solutions and by minimizing the

propagation of errors.

1.3 Roadmap

Chapter Two, The environment, describes the ocean environment where the seamount

is located.

Chapter Three, Analytical formulation, contains the analytical formulation of the

problem.

Chapter Four, Results, describes and discusses the results.

Chapter Five, Conclusion, summarizes the results and offers suggestions for future

work.

Appendix A contains the nomenclature followed in the mathematical develop-

ments.

Appendix B details the computing tools used to obtain the results.
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Chapter 2

The environment

2.1 The waveguide

The seamount is located in an ocean modeled as a vertically stratified medium.

The ocean is an acoustic waveguide limited above by the sea surface and below

by the sea floor. This waveguide can be modeled in many ways, according to what

aspect of the sound propagation we want to focus on [4], [11]. I consider a three-

layered waveguide as shown in Figure 2-1.

The waveguide is made of a surface, a bottom, a sediment layer, and a water

column.

2.1.1 The sea surface

I consider the sea surface as a perfectly free boundary, with a Dirichlet boundary

condition [12]. At the surface, the pressure becomes null:

p(surf ace) = 0. (2.1)

Above the surface, I model the atmosphere as a vacuum. Because the difference

between acoustic impedances in the water and in the air is large, there is no need for

a more sophisticated model of the atmosphere in the top half-space.

My interest is in sound propagation at long range (on the order of hundreds of
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Figure 2-1: The environment
z = 0 at surfaceAtmosphere / Pressure release boudary

Sea water

hE = 4000

Sediment layer

h = 5000
Rigid bottom

z axis

kilometers). Therefore I neglect surface scattering, which has significant effects only

at short range.

2.1.2 The bottom

I assume that the bottom of the sediment layer is perfectly rigid. It verifies a Neumann

boundary condition of the form

-- (bottom) = 0,
dz

(2.2)

which states that the normal component of the sediment particle velocity vanishes on

the bottom.

2.1.3 The sediment layer

In the case of a three-dimensional propagation, an acoustic medium is characterized

by its sound speed profile and its density.
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I assume that the sediment layer is an isovelocity medium (i.e., the sound speed

remains constant at any depth and range) with the following characteristics:

Table 2.1: The sediment layer environment

Top depth 4000 m
Bottom depth 5000 m
Sound speed 1600 m/s
Density 1100 kg/M

2.1.4 The seawater

In the seawater, I consider a constant density and a depth-dependent sound speed

profile.

Table 2.2: The seawater environment

Top depth 0 m
Bottom depth 4000 m
Sound speed c(z)
Density 1000 kg/m

Measurements have provided an empirical function for the sound speed profile c

as a function of Temperature T, Salinity S, and depth z [13].

c =1448.96 + 4.951 T - 5.304 x 10-2 T2 + 2.374 x 10- T3

+ 1.340 (S - 35) + 1.630 x 10-2 z + 1.675 x 10- 7 z 2

- 1.025 x 10-2 T (S - 35) - 7.139 x 10 1 3 T z3  (2.3)

where T and S are functions of z.

I consider salinity to be constant: S = 34.8 parts/1000. I use a generic tempera-
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ture profile in the open ocean [14]: T(z) in 'C is

(2.4)T(z) = OOO0 ~10 z + 15 f or z < 1000m

(h-OO) (1000 - z) + 5 for z > 1000m

where h is the depth of the sediment layer (h = 4000 m.) It produces a simple profile

(Figure 2-2).

Figure 2-2: Temperature profile

500

1500

2500

3000

3500

0 5 10 15

Temperature ( C)

Again, I am interested in sound propagation at long range so I neglect temperature

irregularities at the surface. The model does not take into account the temperature

profile in the mixed layer (between 0 m and 100 m) where temperature varies greatly

with the seasons.

The sound speed profile produced by such temperature and salinity profiles is

shown in Figure 2-3. It forms a SOFAR duct at 1000 meters below the surface.

The existence of a SOFAR duct allows long-range sound propagation since rays of

sound launched above a certain angle will travel without bouncing on the waveguide

boundaries and thus propagate with a lower transmission loss [15]. For this reason, I

15
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Figure 2-3: Sound speed profile
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1500-
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S2500-
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Sound Speed (m/s)

usually position my source at depth zo = 1000 m.

2.2 The seamount

Taroukadis's model [7] is the benchmark for my research. Therefore, for the whole

thesis, I will use the same notation as he does. The seamount in the ocean waveguide

is under an acoustic wave generated by a point source, as depicted in Figure 2-4. It is

modeled as an outgrowth of the sediment layer that covers the ocean bottom. I use

the cylindrical-polar coordinates T = (r, 0, z) with the z-axis oriented downward.

The variables used to describe the environment follow:

16
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Figure 2-4: The seamount

0
R0i

source
(RO,0, zo)

inner region
r

external region

n

hE

Ih

z

h = depth of the sea bottom

hE = depth of the sediment layer

'r = radius of the base of the seamount

Pi = density of water

P2 = density of the sediment layer

= unit normal vector outside the sediment layer

Som = surface of the seamount

Sb = surface of the sediment layer

(RD, 0, zo) = coordinates of the source

k = wavenumber = w/c(z)

The top of the seamount is 50 meters below the sea surface. The radius of the

seamount R, is equal to 10 kilometers.

For all numerical applications, I consider the source as a harmonic point source

of frequency f = 20Hz.
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The waveguide can be divided into two regions:

* an inner region for r < R[, where the seamount is located,

* an external region for r > RI.

We will see in chapter 3 how the waveguide can be further decomposed in order

to solve the problem.

18



Chapter 3

Analytical formulation

Solving long-range sound propagation problems poses important mathematical chal-

lenges. Indeed, before any computation can be performed, it is important to find a

way to handle the unstable equations that arise. Far from being restricted to my

particular subject, the mathematical method described in this thesis can easily be

applied to most acoustics problems involving multiple layers.

In the first part of this chapter, I will follow Taroukadis's work [7] for the analytical

formulation of the pressure field. In the second part, I will provide details about the

numerical treatment of loss mechanisms. In the third part, I will solve the equations

obtained by Taroukadis using Schmidt and Jensen's normalization of the Hankel and

Bessel functions [4]. Finally, in the fourth part, I will describe the linear system to

solve and I will discuss the numerical stability of the method.

3.1 Taroukadis's approach to the problem

The benchmark for my research is the work of Taroukadis on sound propagation

around conical seamounts [7]. Therefore, this subsection is just an application of

Taroukadis's approach to the problem.

Assuming harmonic time-dependence for both the pressure field and the source,

19



the inhomogeneous wave equation governing the pressure field p is given by

02p l Ip 1 2 2p 1 dp ip 2 1 + -- -+ + {k(r, z)} p = -- J(r - Ro)J(O)J(z - zo).
ar2  r Or r2 a02 0z 2  p(z) dzOz r

(3.1)

There are many methods to solve Helmoltz equation. Among them, the normal

modes theory is the most appropriate to solve problems in horizontally stratified

media.

Using the method of normal modes, the solution of the wave equation is expressed

in terms of radial and depth eigenfunctions:

00 00

p(r, z, #) = 1 1 Rmn(r)Un(z) 0 m(#),
n=1 m=O

with V#m being a basis of sine functions, namely,

(3.2)

'bm(o) = em sin(m), m = 0,1, ...

where em is defined as follow

em = /,

-,

M = 0

M f 0

The circumferential eigenfunctions Om are orthogonal:

Irem cos m .en sin no do = 6mn. (3.5)

-i

The depth eigenfunctions Un satisfy the eigenvalue equation

d
p(z) d

dz
] dUn(z)

+ {[k(z)] 2 - (kn)2} Un(z) = 0
p(z) dz

(3.6)

where kn are discrete values of the horizontal wavenumber (or radial wavenumber)

20
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associated with eigenfunctions U.

The depth eigenfunctions U, can be scaled arbitrarily. I scale them so the norm

C, is unity, so the orthonormality of U, with respect to the weighting function 1

yields

hI l U,(z).U,(z) dz = 6n,.
p(z)

0

(3.7)

Each mode has a non-vanishing field in the bottom. This is illustrated in figure 3-1

where the eigenfunction for the 38th mode is shown, as an example, in both the water

column and the sediment layer for r > RI. We will see in section 4.1.1, Number of

Figure 3-1: Eigenfunction for the 38th mode at r > R1

-0.05 -0.04 -0.03 -0.02 -0.01 (
U 3 (Z)

0.01 0.02 0.03 0.04 0.05

vertical modes, how this behavior allows us to

for the convergence of the double series 3.2.

lower the number of modes required

At this point, Taroukadis defines an inner region for z < IRr and an external

region for z ;> IRI (c.f. Figure 2-4), in which he solves the homogeneous version of

equation 3.1.

21
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3.1.1 The inner region

The inner region, indicated by superscript I, contains no real source. Therefore, the

wave equation to solve is the homogeneous Helmholtz equation, given by

a 2p1 1 dp Op'
+Z2 p(z) dz Oz

+ { k'(r, z)}2 p 0.

In this region, Taroukadis models the seamount as a superposition of I vertical

rings of radii R,. An example of the decomposition of the seamount into three rings

is depicted in figures 3-2 and 3-3.

Figure 3-2: Decomposition of the seamount into three rings - side view

Re:

source
(R0, 0, z )

inner region

0
rexternal region

Z

Obviously, the more the rings taken in the decomposition, the better the approx-

imation.

For each ring i, it is thus possible to write the pressure field pf as

pf (rz,#) =

Or2 + Op
r Or

1 6 2 p a
+ - (3.8)

0= m0

22
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Figure 3-3: Decomposition of the seamount into three rings - top view

external region

R3= R,

4ource

Inner region

Substituting equation 3.9 in equation 3.8 gives

U (z)m(#)
0= =0

+ Rf,(r)V)m(q()

d2 R(r) 1 dRmn (r
dr2 r dr

d2 U|I(z)

dz
2

1 dU| (z)

pdz dz

m2

r2 Rm(r)

(k')2U[I(z)

Inserting equation 3.6, multiplying by -yU'l,,(z), integrating from 0 to h and using

the orthonormality of the depth eigenfunctions 3.7, it is found that

1 dRfi(r) 2m 2

+ + (k,,)2 Rjg(r) =0.
r dr r2

(3.11)

Multiplying by @/(#), integrating from -7r to 7r and using the orthogonality of the

23
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circumferential eigenfunctions 3.5, it follows that

Rd(r) + )2RI() [(k )2 - R (r) 0 (3.12)
dr r rdr 14" [v~

for rei K r < R, and i = 1, 2,... I, where kf are the discrete values of the horizontal

wavenumber associated with the eigenfunctions U (z) of the ith ring.

Equation 3.12 is a Bessel equation of order p for the function R,,'(r) [16].

Taroukadis solves this equation with Hankel functions:

R2(r) = E (k ,.r) + F' Hj (kr). (3.13)

where E and FV are some coefficients to be determined with the boundary condi-

tions.

This solution is numerically unstable because of the behavior of Hankel func-

tions for short ranges and high circumferential orders: if p. is greater than kvr, then

H1 (kyr) and H (kvr) approach infinity very quickly. Therefore, this method re-

quires special numerical efforts to maintain numerical stability for large values of P.

In section 3.3, I will demonstrate how numerical instability can be avoided using

Schmidt's and Jensen's normalization of the Hankel functions.

3.1.2 The external region

In the external region, indicated by superscript E, the source must be taken into

account. Therefore the equation to solve is the inhomogeneous wave equation 3.1.

Equation 3.2 can be re-written as

00 00

pE(r, z, R.) = (U ( (3.14)
n=1 m=O

The general method used in the calculus of equations 3.10, 3.11 and 3.12 still

holds true, but the effects of the source must now be considered.
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Substituting equation 3.14 in equation 3.1 gives

d2 R.. (r)
dr2

d2 U (z)

dz 2

1 dR E(r)

r dr
r2

- nRE (r)\

1 dpdU(z) k2UE(Z]
pdz dz + (k, n )

1
= -- J(r - Ro)6(q)J(z - zo).

r
(3.15)

Plugging equation 3.6, multiplying by 1 U (z), integrating from 0 to h and using

the orthonormality of the depth eigenfunctions 3.7 yields

[d 2RK E(r)
1.$ dr2"

1 dR, (r)
+d +

r dr { kf 2 r2} Rm,(r) =- (r
r

- Ro)6(0)U (zo).

(3.16)

Multiplying by i/($), integrating from -7r to 7r and taking into account the orthog-

onality of the circumferential eigenfunctions 3.5, it follows that

+ d R ,(r)
r dr 01,(0) U (zo)I P2 R[,(r)]

v2 g(0) U (ZO)
[ )2

+ [(kV)

where kE are the discrete values of the horizontal wavenumber associated with the

eigenfunctions UE (z) of the external field.

Again, equation 3.17 is a Bessel equation of order p for the function RE()

As for the internal field, Taroukadis solves Bessel equation with Hankel functions

of the first and second kind:

(3.18)R E()

,01 (0) UVE (ZO) 1"1

for R < r < R, and

R(r) 

V),(0) UE (ZO)
(3.19)
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R(r) 1 1
- 6(r
r

- Ro)

(3.17)
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for r > RO.

As I indicate in section 3.1.1, these solutions are unstable for large values of y.

I use different solutions in section 3.3.

3.2 Numerical treatment of loss mechanisms

Complex wavenumber

We must take volumetric absortion into account in the computation of the sound

pressure field. This is easily achived by manifesting the loss with a complex sound

speed: c(z) = co(z) + ici(z), where co corresponds to the unperturbed sound speed

profile. The wavenumber then becomes k2(z) = k2(z) + ik2(z) = , that is,

k2 2 W 2 _+2iW2  COC[ (3.20)
c2 + c [c c]2  (3.

Computation of the imaginary part of the sound speed

Equations for material absorption in the water column are summarized by Urick [19].

If we assume that c2 < c2, then ci ~ 2c2 where a is the absorption coefficient in

nepers/m.

A simplified expression of the absorption coefficient in the seawater as a function

of the frequency f in kHz is

1 0.11f2 44f 2 [nprm]
a = 1 3.3 x 10-3+ 1 + f2 + 44f2_ + 3 x 10-4f2 [nepers/m.1000 x 8.68589 + f2 4100+f2

(3.21)

Thus in the water, a = 3.8550 x 10-7 nepers/m for f = .02 kHz. The equivalent in

dB/A is a = 2.5113 x 10-4 dB/A.

In the sediment layer, the absorption coefficient as a function of f in kHz is

1
a = 8 0.1f [nepers/m]. (3.22)1000 x 8.68589
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Thus in the sediment layer, a = 2.3026 x 104 nepers/m for f = 20 Hz. The

equivalent in dB/A is a = 0.1500 dB/A.

Computation of the imaginary part of the radial wavenumber

The introduction of a complex part to the wavenumber naturally affects the radial

wavenumber, which becomes kn= kO + iknl.

For the details of the computation of the imaginary part of the radial wavenumber

kni, refer to Jensen et al. [4]. It is found that

h k 2(Z)Ul)
kai = dz. (3.23)

Sp(z)

Thus the radial wavenumber, which appears as an argument of the Hankel func-

tions, is a complex number. Therefore, the solutions of Bessel equations 3.12 and 3.17

will decrease as the range r increases. This behavior represents the natural attenua-

tion of sound as a function of range.

3.3 Normalization of Hankel functions

Problems of unstability that arise for large circumferential orders can be avoided

by using the direct global matrix approach (DGM). DGM was developed for plane

layered viscoelastic systems by Schmidt and Jensen [8], and applied to spherically

layered systems by Schmidt [9] and to cylindrically layered systems by Ricks and

Schmidt [10].

In our problem, since the seamount is decomposed into rings, the model reduces

to a cylindrically layered system. (Cylindrical layers are visible in the top view of the

seamount 3-3.) Therefore, DGM is well suited for the problem.

The first idea in DGM is the normalization of Hankel and Bessel functions. Bessel

equation in the inner region (3.112) and in the external region (3.17) must be solved

using particular sets of functions.
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3.3.1 Solution in the inner region

General solutions to Bessel equation

Theoretically, solutions to Bessel equation in the inner region (3.12) can be any linear

combination of two of the functions J,(x), Y (x), H( (x), and H 2)(x) [17]. However,

as explained by Ricks [18], only one pair can be chosen to avoid loss of distinction

between asymptotic behaviors.

For lxi > M (c.f. figure 3-4),

H( 1)(x) ~ #2/-(7rx) e'(x-,ox/2-7r/4)

H I2)(x) ~2J() ~ 2,x 2(r)ei(x-jAr/2-7r/4)

The loss of distinction between the functions J,, Y,, and H 2) is illustrated in figure 3-

4, where the functions of order p = 1 are drawn along the axis {x = a + ib}b.=.

Figure 3-4: Hankel and Bessel functions for p = 1
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And for |p| > jxj,

J,(x) (x/2)14/ F(p + 1)

Y,(x) ~ -iH,(')(x) ~- i H, .2(x) ~ -(1/7r) F(p)(x/2)-1

Therefore, the only pair of function that preserves linear independence for both

jxI > p and IpI > xj is Hi' (x) and J,L(x).

Normalization

I solve Bessel equation 3.12 with the following set of functions:

S H (k[ r)
R,'J(rW) = E( ' + F,,J, (k,,r) H4' (kivR for r E [0; R1]. (3.24)

In the first ring i = 1, the sound pressure must be finite for r = 0. So the solution

keeps only the Bessel function J,:

R4'J(r) = A1,J, (kf,,r) H(' (k,,R1) for r E [0; R1]. (3.25)

Note that solution 3.25 is part of the set of solutions 3.24 if we consider Eu1 = 0 and

a= Ali.

These normalized solutions provide numerical stability by doing two things:

1. For p >Ik,,rl, they cancel the overflow of H(1 and the underflow of J,.

2. For Ik[,rI > p, they reduce the influence of one boundary on an other when

there is evanescence across layers.

I explain these two points in more details below.

To illustrate the first point, let us examine a numerical example. We will see

in section 4.1.2, Number of circumferential modes, that p can take values as high

as 2600. For this numerical example, I take parameters that produce numbers that

clearly represent the benefit of normalization: p = 1000, and I = 20. Without
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normalization, we would have

HJ000 (kfO, 1Ri0) -3.3610 x 10+25 + i x -8.0828 x 10+259

and J1ooo (kf0 ,1Rio) = 4.3431 x 10-26 + i x 1.8064 x 10-266.

The overflow of the Hankel function and the underflow of the Bessel function lead

to unstability in the system since computers can not multiply or divide such num-

bers without a significant loss of precision. The same numerical coefficients with

normalization are

H ]5M (kf, Rio)
H00 (k1 ) =1.1926 x 10-42 + i x 1.0102 x 10-46

and J1000 (kf0,1Rio) HIJ) 0o (kf0,1Rio) = 3.4828 x 10-10 + i x -3.5105 x 10-4.

Thus, the number obtained are far enough from the computational limits of the

computers.

To better understand the second point, let us consider as an example the case

where lk,,rl > p. If there is evanescence across boudaries i.e., if Im(k,,r)| > 1,

then close to the boundary r = R, between cylinder i and (i + 1),

H (k r )
H< J (k,,r) H([) (k!ri) (3.26)

This means that the effect of boundary r = R, does not propagate far from it.

The same can be observed at boundary r = R,_ 1 . If Ik[,r I > p and Im(kf,,r) > 1,

then close to the boundary,

HM (k! r)
H I (k, _) > J (k,,r) H() (k ,R). (3.27)

Again, in case of evanescence across boundaries, the effect of boundary r = R,_ 1 does

not propagate.
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These solutions respect the physical idea that the effect of a boundary should not

be perceveid far from it. In case of evanescence i.e., if the imaginary part of the

wavenumber is great compared to 1, this reduces the propagation of errors from one

boundary to an other and therefore maintains numerical stability.

In section 3.5 and figure 3-5, we will see how the final mapping of the system can

implement the decoupling described above.

3.3.2 Solution in the external region-

Equation 3.17 is solved similarily to equation 3.12.

For r E [RI; Ro],

H(k Er)RHi(rl = B C,,J, (kr) H ' (k? Ro)] V$',(0) U (zo). (3.28)

For r > RO, the sound pressure must go as H,') (kir) to satisfy the radiation

condition at infinity [16]. Therefore, the solution for r > RO is

RE(r) = Dill, r () U ( zo). (3.29)
HM (k ERO) 04o Z

As explained in section 3.3.1, these solutions provides numerical stability since

they reduce the effects of boundaries into each other. To illustrate this behavior, let

us take Ik'r > p and r ~ RI. Then, in the evanescent case where Im(k Er) > 1,

Ht~ (k~r)< J) (kEr) H(') (kERo). (3.30)
H(' (kIR,) M V

And for r ~ RO,

HI(l (k Er)
V >J, ( k Er) HM) (k ERo) .(3.31)

H(') (klR,)

Thus, as in the inner region, these solution maintains numerical stability by:

1. Canceling the overflow of H(') and the underflow of J,, when p >IkErl.
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2. Reducing the propagation of errors in case of evanescence across boundaries.

3.4 The source and boundary conditions

By replacing solutions 3.24, 3.25, 3.28 and 3.29 into the expression of the pressure 3.2,

we have:

pf (r, z, #) = AmJm (k,=r) H) (k,,R)
n=1 m=O

for r E [O; Ri],

(3.32)

000 cc H' (
H() (k r)

E= = Hm") (kj, _1)
+ FmnJm (kinr) Hm) (kiARi)]

for r C [Ri; Rj],

PE (r, z,#) =
00 00 H mS) (k Er)

Bmn H(') (kE Rr CmnJ

(3.34)

for r C [RI; RO], and

Hm) (kEr)
PE (r, z, )= Dmn H UE (zo) Om(0) UE (z) 4'm(0)

p1 m=O HY(k R0 )
(3.35)

for r > RO.

Note that equations 3.32, 3.33 and 3.34 can be summarized in a single equa-

tion. If we define E =Amn, F - , EA 'I=+Bm U(ZO)' m(0), F4' -

Cmn Un (zo) Vbm(0), 1P1+1E = =Eand R1~ RO, we obtain an expression of the pressure
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similar to equation 3.33 that is true for all r E [0; Ro]:

pi(r, z,/ = E (kr + FmnJm (ki,nr) H() (kinRi) U(z) 'm(q)-
n=1 m=o 

Ui- HZ) (kVn~ _

(3.36)

To solve the problem, we need to approximate the solutions by taking a finite

number of vertical modes n and circumferential modes m in the expression of the

pressure field. If we take N vertical modes and M + 1 circumferential modes, then

we have 2 x N x (I+1) x (M +1) unknown coefficients A, E, F, C, and D. We need

the same number of source and boundary conditions to be able to solve the problem.

3.4.1 The boundary conditions

Continuity of pressure

At boundary r = 1I, the continuity of pressure yields

pj(R , z, #) = pi+1(Ri, z, #) for i = 1, 2, . .. ,J. (3.37)

This means that the acoustic pressure must be continuous between the rings.

We replace the pressure by its series expression 3.36 and we limit the calculus to

the first N vertical modes and M+1 circumferential modes. Multiplying equation 3.37

by elcos#, integrating from --w to 7r and using the orthogonality of the circumferential

eigenfunctions, we obtain a set of M + 1 equations,

[E n H') (knJ4) F n J (kAn R) H(') (k1~R ) Usn(z) =
n=1 H (k ,R1_ 1) T

N

E ni + F JA (+,nl ) H() (kj+1,n1 '+1)] Ui,n(Z). 3.8

Multiplying equation 3.38 by QUi,,, integrating from 0 to h and exploiting the
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orthonormality of the vertical eigenfunctions, we get a set of N x (M + 1) equations

HE' (k ,RJ?)Ea + F JA (k1,vRi ) H l (k ,-R1) =

N N

E +1Z.'+1 + EF Jy (k 1 ,nJZ%) H(1 (kj+ 1,1 R+1 ) Zg'.+1.
n=1 n=1

Continuity of the normal component of fluid particle velocity

The continuity of the normal component of fluid particle velocity at interface r =

produces

(3.39)

1 pi
pi Or

1 OPi+1( ,Z7
Pi+1 Or

for i = 1, 2, ... , I.

By doing the same operations as between equations 3.37 and 3.39, we obtain

+ F,, ki,v-- (ki,vRz) H( ) (kj,VR ) =
dr

E +nki1, (kj+1,vR%) A)4+

N

+ +kV (k+ 1,nT) Hn (k1+1,nRi+1) A Z$,+ 1.
n=1

(3.41)

For each interface, there are N x (M + 1) equations 3.39 and N x (M + 1) equa-

tions 3.41. The continuity conditions at the boundaries thus yield 2 x N x I x (M +1)

equations.

3.4.2 The source condition

If we multiply equation 3.17 by r, we obtain a Sturm-Liouville equation of the form

sV 2u + VsVu - qu = -pF (3.42)
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E R(r)
where s(r) = r and u(r) = ,-(O) U (zo). Equation 3.42 implies two continuity condi-

tions at r = RO [20]:

u(R+) = u(R-) (3.43)

and

du
dr

du 1
dr = s(Ro) (3.44)

Replacing R',(r) by its expressions 3.28 and 3.29, equation 3.43 becomes

HBt (kvR0) + C J
B ,yL 1 (kq R+C ,Jy(kvR0)H f')(kvR0) =D,Hffyl (kvR,) 1 (3.45)

and equation 3.44 becomes

Sdr dHl 1(kvRo)

H (kv R )

1
(3.46)

To compute the derivatives of J and H, we use the recurrent relation

C'(z) = -CA+ 1 (z) + -CA(z)z
(3.47)

where C denotes J or H [17].

Solving the set of equations 3.45 and 3.46, we find that CL, can be separated and

expressed as a function of the Wronskian of J, and H,:

C-C W=
-1

kvRo W [Hjj(kvRo); Jgj(kvRo)]'

A trivial calculation gives W [H ,(kRo); J,(kRo)] = "i, and thusCrk =Ro

-nr
CV 2

(3.48)

(3.49)
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We can also compute B,, as a function of D,, and C,

Blv = Dtv HF) (_kR - C14 J, (kRo) H' (kLRI) (3.50)
HA (kVRO)

Thus, at the interface r = RO, we have a total of 2 x N x (M + 1) equations 3.49

and 3.50. With equations 3.39 and 3.41, we have a total of 2 x N x (I+1) x (M +1)

source and boundary conditions, for the same number of unknown. Therefore, the

linear problem can be solved.

As we can see in equation 3.50, B,, and D,, are directly related since we know

the value of C,,. So in order to decrease the dimension of the system, we can exclude

the unknowns D,, and equations 3.50 of the system. The dimension of the system

then reduces to N x (21 + 1) x (M + 1).

3.5 The matrices

Equations 3.39, 3.41 and 3.49 form a linear system for the unknowns A, E, F, and

C. Therefore, they can be put on the form

A.X = B (3.51)

A is a matrix of dimension [N x (21 + 1) x (M + 1)]2 and 13 are vectors of dimension

N x (21 + 1) x (M + 1). X is the vector of the unknowns and B is the vector of the

forcing terms due to the presence of the source.

3.5.1 Decoupling of the system

We can see that the system is uncoupled among circumferential orders jt or m. There-

fore, it can be split into M + 1 sub-systems of dimension N x (21 + 1). For each

circumferential order p = 0,1,... , M, we need to solve a system of the form

AI.X, = BI (3.52)
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A, are matrices of dimension [N x (21+1)]2. X, are the vectors of the unknowns

AA, E,,, F,,, and C,, for v = 1, 2, ... , N and p fixed.

3.5.2 Mapping of the matrices

For a given p, I take X, as follow:

[Ap,N]

E ,N

F1 ,1

XI = (3.53)

F,11_ iE[2;N]

[B,N]

C,N
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Therefore matrix A, is a combination of lines L',, AL , AL', and C'+'

The lines are described below.

38

iE[2;N]

pN

LI

L%

A~,N

L~ 1

[i+J

(3.54)



' =, {J(k1,R1)H,,(k1.R1)} -
v-1 N-v

( ; )n=,...,N (-J (k 2vR,)H(k 2vR 2)Zi2)=1.N
2N(I-1)

N d J
AL'v = [ 0d (k1 R1)H,,(ki. R1)0..0

V-1 N-v

dH,, (vRi)
k2 k R AZ; - JA (k2vR1)HA(k 2vR 2)Z;2)n=1 ,... ,N

N=*,.. 2N(I-1)

N

(3.56)

'2i [ O.*O
2Ni-3N~v- 1

H A(kjvRi_ 1 ) (JA(kjvRi)HA(kjvI)) N(H4kv,,)N-I N-v

(-Z +1)n= 1,...,N (-J i+1,vA IAk~, A+1, i +1 ~l.., I

N N 2N(I-1)

(3.57)

L\- =[ Q
2Ni-3N+v-1

dH- (k 1)
-ki d + AdZii+1

+, HA( ki+1, R 17) n"

N

-ki+ 1,V -- (ki+14R )HA (ki+l,vP4+1) AZn v+l
d=1,..,

2N(I-1)

N

1  = [ OO
2N1I-v-1

1 O .. O
N-v

BA is a simple vector containing zeros and values of C,v that we calculated in
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k1v H kivRi_)
N-1 N-v

] (3.58)

(3.59)

.

kivd (kjIRi)HA(kjv Rt)



equation 3.49:

0

B,= 0 (3.60)

-i7r
2

As an example of the form of the matrices obtained, Figure 3-5 shows matrix

Ai for a decomposition of the seamount into 4 rings and N = 110. It displays the

logarithm of the absolute value of the dimensionless terms of the matrix. Except for

the first and last blocks in the diagonal, the matrix is diagonal with blocks of the

form of G, H, I and J (c.f. Figure 3-5). G is made of the terms

(-Zi+ 1 ) Nand -ki+ d 
9(ki+,v ) AZi)i+1 Znvu n=1,..., N + ,vnv+,~

4(kj~~vRn=1, ... ,N

H is composed of

(-J (kj+1,v1 )Hjj(ki+1,vlz+1) Zni'v+1) n=1, ... ,N

and (-k+,v (ki+,7v )H/i(ki+1,vRi+1)AZi,+1
r /n=1,...,N

I is a diagonal line of the terms

HO(kivR ) an i T-(kjvR-)
and k Hk~

HjA(kivR _1) " HjA(kjvRz_1)

and J is a diagonal line of the terms

d R
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Figure 3-5: Example of a matrix A,,: Matrix A1 for a decomposition of the seamount

into 4 rings
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In this example, the imaginary part of the wavenumber is too small to consider

that there is enough evanescence to reach the conditions of inequalities 3.26 and 3.27

in section 3.3.1. If there were a stronger evanescence, the values in block I would

have been less than the values in block J. Thus, because the values in G are greater

than the values in H, all the blocks of highest values would have been located along

the diagonal of the matrix, making the solution more stable.

However, this is not the case here: The evanescent condition Im(ki) > 1 is

reached for greater wavenumbers (higher frequencies) or greater absorption coeffi-

cients. Thus, for the values that I use in the numerical applications, normalization of

the Hankel and Bessel functions is mainly useful to avoid overflow of Hankel functions

H and underflow of Bessel functions J.
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Chapter 4

Results

I recall that, for all computations, I took f = 20 Hz.

4.1 Discussion of the number of modes

In order to compute the pressure, we must find the modes for which there is conver-

gence of the double series 3.2.

4.1.1 Number of vertical modes

To compute the vertical eigenfunctions in the waveguide, I used the Kraken Normal

Mode Program [21]. The maximum number of modes in the waveguide increases with

the depths of the rings. The maximum number of modes in the region of the inner

ring (r < R1 ) is 125 and the maximum number of modes in the region outside the

seamount (r > Ro) is 132. Therefore, the maximum number of modes that I can

consider is 125.

Two different minimum mode numbers are required in the problems:

* The minimum number of modes needed to fill the matrices A, and solve the

linear systems AA.X, = B, (3.52),
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* The minimum number of modes needed to compute the double series 3.2 with

enough precision.

Number of vertical modes in the matrix

In order to compute the unknowns E,, and F,, we need to fill the matrices A, and

to solve the corresponding linear systems. The more vertical modes N we include in

the computation, the more accurate the results. I noticed that the convergence of

the vector of unknowns X,, as a function of the number of modes is rather slow: It

occurs only after the 110th mode. Therefore, I take 110 modes into account to fill

the matrix and solve the linear systems 3.52.

Number of vertical modes in the double series

In order to reduce the dimension of the system (and therefore reduce the time of the

computation), we need to determine the minimum number of vertical modes required

to achieve computation of the double series 3.2 with enough accuracy. The double

series 3.2 converges quickly when the vertical eigenfunctions hit the sediment layer;

that is, when the attenuation becomes strong enough to cancel propagation. Thus,

there exist a vertical mode N for which

N mo

P('r, Z, 4) ~ 1 Rmnr)UnW)Om (0). (4.1)
n=1 m=O

This happens when the imaginary part of the wavenumber is great enough: if

Im(kf,,r)I > 1, the sound propagation attenuates very rapidly.

As an example, figure 4-1 shows Im(ki,,) as a function of modes for a decompo-

sition of the seamount into 4 rings.

The greater the ring number, the deeper the sea bottom. Therefore, when the

ring number i increases, the mode number N at which the loss becomes significant

increases. Thus, the minimum mode to take into account is the mode for which there

is strong attenuation in the region r > RI, where the sea floor is the deepest. From

figure 4-1, we see that N = 35. The depth of region r > R does not change with the
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Figure 4-1: Imaginary part of the radial wavenumber in function of modes, in m-1
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number of rings so the maximum number of vertical modes taken into account in the

double series remains 35 for other computations with different numbers of rings.

4.1.2 Number of circumferential modes

To determine the maximum circumferential order M to take into account in the com-

putation of the pressure, I compute the pressure for fixed circumferential orders:

N

p,(r, z, #) = [ Ryn(r)Un(z)@,(#).
n=1

(4.2)

Figure 4-2 is an example of the results obtained at the position of the source,

for I = 20 rings and N = 125. In this example, p,, becomes negligible after the
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Figure 4-2: Pressure at the source as a function of circumferential order
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2600th circumferential order. There are similar results for all other points in the

environment, so considering M = 2600 for computing the pressure at every range

and depth produces precise results.

Athanassoulis and Prospathopoulos studied the minimum number of circumferen-

tial orders M required to achieve numerical convergence as a function of the dimension

of the problem, in the case of a cylindrical island [6]. They found that M increases

proportionally to kRj. They studied some environments for which kRf E [4; 84] and

determined M E [20; 200].

Our problem is larger since kR1 = 838 for R, = 10 km, but I still find that the

value of M increases with the dimensions of the problem. For example, we would

need to take M = 5400 for a seamount of base radius R, = 15 km. However, I did

not study seamounts with base radius greater than 10 km because they would have

been physically unrealistic.
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4.2 Special cases

In order

necessary

to check the validity of both the theory and my computer code, it was

to apply them to particular well-known cases.

4.2.1 Back scattering

Figure 4-3: Back scattering
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Parameters: I = 1. Ri = 50 m. Depth = 1000 m. Source at (-250 m, 0, 1000 m).

When the sound field hits the seamount, a pencil of sound is beamed backward

and its anglewidth is proportional to '. Therefore, if we take R1 small enough, we

can observe the back scattering of the sound. This is illustrated in figure 4-3, in a case

where the seamount is reduced to a cylinder of diameter R, = 50 m. The source is

positioned at RO = -250 m and the receivers are at the depth of the source (1000 m).
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The results are expressed in terms of transmission loss, defined as

TL = -20 logio , (4.3)
Pref

where Pref is a pressure reference: pref = 1 Pa.

The sound field looks perturbed between the source and the cylinder, which proves

that the model is precise enough to compute the effects of back scattering. In later

examples, I use a much greater R1 , so back scattering becomes too small to be ob-

served.

4.2.2 No seamount in the waveguide

Figure 4-4: No seamount in the waveguide
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Figure 4-4 shows the results obtained when the seamount is a small cylinder of

radius 50 cm. A black dot indicates the position of the cylinder.

The cylinder is too small compared to the wavelength to have a noticeable effect

on the computation of the sound propagation. Therefore, this case is equivalent to

the case where there is no seamount in the waveguide.

In figure 4-4, we can notice some perturbation zones, indicated by arrows. They

are only due to the precision of the grid: the more points in the grid, the less visible

these "perturbations." Because the time of the numerical simulation increases with

the precision of the grid, it has to be limited. I am using 600 points in the grid, which

is the limit precision for which I can obtain results in a reasonable amount of time.

In cylindrical coordinates, the spreading loss between the source and a point

(r, 0, z) is H = 10 x log ' where ref = 1 m. In the case of figure 4-4, the right-hand

limit of the region under consideration is at r = 200 km, so H should be in the order

of 50 dB there. The results show the transmission loss varying from about 80 dB at

the source to 125 dB at 200 km far from the source, which corresponds to H ~_ 45 dB.

Thus the cylindrical spreading loss is within the order of the theoretical predictions.

Moreover, these results are close to those obtained for similar problems [4].
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Filling of the environment as a function of circumferential orders

We can notice the way the sound is computed as a function of circumferential orders

by comparing figures 4-5, 4-6, and 4-7. Figure 4-5 shows the results for p varying from

0 to 100. Figure 4-6 shows the results for g varying from 0 to 400. Figure 4-7 shows

the results for p varying from 0 to 1300. As p increases, the computation produces

results that fill the environment starting from axis q = 0 and cylindrically spreading

toward axes #= and q = -.

Figure 4-5: No seamount. p = 0 ... 100
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Parameters: I = 1. R1 = .5 m. Depth = 1000 m. Source at (-3000 m, 0, 1000 m).

We can see that the results inside the zones of high sound pressure level near axis

= 0 are identical to final results. In other words, the computation for circumferential

orders greater than a given Pi have little effect on the results obtained in the zone of

high sound pressure level for p varying between 0 and p1.
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Figure 4-6: No seamount. p = 0 ... 400
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Figure 4-7: No seamount. p = 0 ... 1300
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4.3 Cylinders

The simplest case is the modeling of the seamount into one cylinder of radius equal

to the base radius of the seamount. Of course, this case is not physically realistic,

but it helps to determine the validity domain of the code.

4.3.1 Validity domain of the results

Figure 4-8 shows the results obtained for a cylinder of radius R = 5000 m.

Figure 4-8: Cylinder of radius R1 = 5000 m
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Parameters: I 1. R= 5000 m. Depth = 1000 m. Source at (-3000 m, 0, 1000 m).

Three different regions can be observed in the figure.

* The coaxial circular patterns in the unperturbed region, indicated by arrows 1,
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are attributed to the sound propagation in the waveguide between the sea sur-

face and the sea bed, as illustrated in figure 4-4.

" The perturbation zone inside and behind the cylinder, labelled number 2, is

attributed to the presence of the cylinder.

" The edge of the perturbation zone, indicated by arrows 3, is attributed to the

reflection and diffraction at the cylinder surface.

The perturbation zone

The perturbation zone does not end abruptly but vanishes as the distance from the

seamount increases. Far from the seamount, the sound pressure inside this zone just

takes the values of the unperturbed region.

It is contained in a region bounded by two lines going from the source and tangent

to the cylinder.

In this case, the perturbation zone 2 is a shadow zone: the sound pressure level

is lower than in zone 1. We will see in later figures that this is not always the case.

Sometimes the perturbation zone contains a higher sound pressure level than outside

of it.

Computational discontinuity

To understand how the pressure is computed in the case of a decomposition into

several rings, we must know how the pressure is computed as a function of circum-

ferential orders in the simple case of a cylinder. In the example of figure 4-8, the

coefficients of the solution vectors X, become null for M > 561, except for coefficients

(Cv)vE[1;N] (this result is of course obtained by numerical computation). I designate

the "critical u" (= 561) as p,. In a more mathematical expression,

Vp > p,,Vv = 1... N,Vi = 1... I, E = F = B,, = 0

and Vp>u,pV= 1...N,C,,v= 2
2
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This indicates that, for p > p, the numerical computation yields results as if there

were no cylinder. The results for p = 0 ... 561 are in figure 4-9.

Figure 4-9: Cylinder of radius R, = 5000 m. = o... 561

X 105 880

-1

90
-0.8

-0.6 100

-0.4 5

110
~~ ii

0 ) 120
CC

0140

150

160
0 5 10 15 20

Range (m) X 10'

Parameters: I = 1. RI = 5000 m. Depth = 1000 m. Source at (-3000 m, 0, 1000 m).

I showed in the previous section that the computation produces results that fill the

environment starting from axis # =0 and spreading toward axes # = 1 and 0 = -.

Since the perturbation region is behind the seamount and along axis # = 0, it is

filled by computations made for low circumferential orders. By comparing figures 4-8

and 4-9, we see that the perturbation zone behind the cylinder stops around P = 561.

For M > 561, the results are similar to those in figure 4-4.

For ya < 561 and p close to 561 (i.e., at the edge of the perturbation zone), coeffi-

cients Ei,, F, and B, are close to 0 (in the order of 10-40). Thus the discontinuity
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is not easy to notice.

This discontinuity in the numerical results happens when systems 3.52 are solved.

In order to solve them, I used subroutines from the LAPACK package, the best

available tool for solving systems of simultaneous linear equations [22].

In conclusion, the results both inside and outside the perturbation zone are acu-

rate, but the results along the frontier of the perturbation zone are subject to numer-

ical discontinuity. On the scale of my problem, the discontinuity is not noticeable.

4.3.2 Example of perturbation zone with a high sound pres-

sure level

In some cases, I obtain perturbation zones in which the sound pressure level is higher

than outside of it, for the same distance from the source. For instance, it happens for

a cylinder of radius R, = 10 km, as illustrated in figure 4-10. In this case the edge of

the perturbation zone has a lower sound pressure.

Figure 4-10: Cylinder of radius RI = 10 km. Depth = 1000 m
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Parameters: I = 1. R, = 10 km. Depth = 1000 m. Source at (-3000 m, 0, 1000 m).
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Three-dimensional solution

Figure 4-11 shows the results at 500 m below the surface, and figure 4-12 shows the

results at 3000 m below the surface.

The mapping of the sound propagation is obviously not the same in figures 4-10,

4-11 and 4-12. Thus, the model effectively takes the three-dimensional character of

the problem into account. The general aspect of the perturbed zone remains the

same: it is about the same width and there is still a higher sound pressure inside of

it than outside for the same distance from the source.
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Figure 4-11: Cylinder of radius R, = 10 km. Depth = 500 m
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Figure 4-12: Cylinder of radius R, = 10 km. Depth = 3000 m
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4.4 Decomposition of the seamount into several

rings - Final results

The dimension of the system is N x (21 + 1) x (M + 1), so the more rings in the

decomposition, the bigger the dimension and the longer it takes to solve the problem.

For this reason, I did not decompose the seamount in more than 10 rings.

Figure 4-13 shows the results for a decomposition of the seamount into 2 rings.

Figure 4-13: Decomposition of the seamount into 2 rings
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The cylinder at the depth of the receiver (1000 m) has a diameter equal to 5000 m.

The system behaves like described in section 4.3: at a certain Ac,, the solutions

will become the same as if there were no seamount. This happens outside of the
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perturbation zone generated by the cylinder of diameter 5000 m. The problem here is

that coefficients E' and F are used to compute the sound pressure field in the inner

region (r < RI), so when they become null, the sound pressure becomes null in the

inner region. It creates some zones on the sides of the seamount that are filled with

a sound pressure level that is lower than it should. This problem is just a numerical

problem and has no physical meaning.

In this case, the results are valid in the same regions than the results for cylinders

(section 4.3): Results are valid inside the perturbation region and outside of it. The

discontinuity occurs near the edge of the perturbation region. However, it is small

enough to be invisible for r > R, i.e., in the external region.

By comparing Figure 4-8 and Figure 4-13, we can notice that, even if the diameters

of the cylinders at depth 1000 m are the same, the perturbation zones look very

different. In the case of Figure 4-13, where the seamount is decomposed into two

rings, the perturbation zone contains much higher values of the sound level than in

Figure 4-8 where the seamount is reduced to a cylinder. Thus we can see that the

model is sensitive to the number of rings taken in the decomposition.
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Figure 4-14 is another example in which discontinuity in the solution of linear

systems 3.52 produces wrong results for r < R1 . In this case, the seamount is decom-

posed into 10 rings. The cylinder that is at detph 1000 m has a diameter of 3000 m.

Figure 4-14: Decomposition of the seamount into 10 rings
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Parameters: I = 10. R, = 10 km. Depth = 1000 m. Source at (-3000 m, 0, 1000 m).

There is the same problem as previously: outside the perturbation zone, coefficients

E' and F become null and there appear some regions in the sides of the seamount

where the pressure is 0 for p > p,.

However, the discontinuity is too small to be visible in the external region.
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4.5 Conclusion

The computation is limited by the precision of the computational tools available to

solve linear systems A,.X, = Bt, (3.52). However, some conclusions can be deduced

from the results we obtain.

Filling of the environment as a function of circumferential order

The computation produces results that fill the environment starting from axis q = 0

and cylindrically spreading toward axes = and q =- as the circumferential2 2

order increases.

The shape of the perturbation zone

The perturbation zone behind the seamount is computed without being disturbed by

the discontinuity in the calculus at pc,.. It fills the region enclosed in two lines going

from the source and tangent to the cylinder that is at the depth of the receiver. It

does not end abruptly but vanishes with distance.

The values inside the perturbation zone

The sound pressure level inside the perturbation zone can be either higher or lower

than the sound pressure outside. Although the difference between the sound pressure

levels of the two zones varies, it always stays in the order of 10 dB.

Validity of the method

By comparing Figure 4-13 and 4-8, we can conclude that the model is sensitive to the

number of rings in the decomposition. Moreover, the mathematical method employed

always produces stable systems to solve.

The discontinuity that occurs after M,. is simply due to the fact that the subrou-

tines used to solve the system are not precise enough to compute results below 10-40.

The discontinuity is only visible in some regions on the sides of the seamount but for

all r > RI, it is small enough to consider that the results are valid.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, I compiled two mathematical models to compute the sound propagation

around conical seamounts:

" Taroukadis's modeling of the seamount as a superposition of rings [7],

* Schmidt and Jensen's Direct Global Matrix approach [4].

The mathematical models lead to an analytically well conditioned system of linear

equations. This ensure stability when solving the system for long range.

Satisfying results can be obtained in the case of cylinders: we can see a pertur-

bation zone behind the seamount and analyze its shape and values. It is bounded by

two lines going from the source and tangent to the cylinder. It can contain values

that are higher or lower than outside of it for the same distance from the source. (In

the later case, it can be called a "shadow zone.")

A discontinuity occurs in the solution, because even the best subroutines available

to solve the system lose precision for small numbers. This discontinuity is too small

to be noticeable at the scale of our problem.

If we decompose the seamount into several rings, the same kind of discontinuity in

the solutions prevents us from getting valid results inside the region of the seamount.
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However, as in the cases of cylinders, the discontinuity is small enough to be invisible

outside of the region of the seamount.

The results obtained show that the model is sensitive to the decomposition into

rings. The perturbation zone behind the seamount has the same characteristics than

in the case of cylinders.

5.2 Future work

Opportunities to extend the work described in this thesis abound. Two areas can be

emphasized: simulation and real-world acoustics. This document dealt entirely with

a fictitious simulated ocean. Areas which can be improved are:

" Use of different subroutines to solve the system. Although I used the best

available subroutines for solving this kind of systems [22], a subroutine especially

designed for the problem may be able to avoid the numerical discontinuity at y,

" Experimental verification. One could conduct deep water experiments to verify

the data that I obtain by numerical simulation, especially the results about

the shape of the perturbation zone. Most of the experiments that have been

done for such environments just provide measurements of the sound pressure

along axis 0 = 0. It could be interesting to verify the triangular shape of the

perturbation region by taking measurements along lines perpendicular to axis

0 = 0.
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Appendix A

Nomenclature

p = acoustic pressure

c = sound speed = co + i c,

T = temperature

S = salinity

h = depth of the sea bottom

hE = depth of the sediment layer

R = radius of the base of the seamount

PI = density of water

P2 = density of the sediment layer

- = unit normal vector outside the sediment layer

Sbm = surface of the seamount

Sb = surface of the sediment layer

(Ro, 0, zo) = coordinates of the source. zo = 1000 m

f = frequency = 20 Hz

k = wavenumber = w/c(z) = ko + iki

kn = radial wavenumber for the mode n = knO + ikni

Rmn(r) = radial eigenfunction for the circumferential mode m and the vertical mode n

Un(z) = depth eigenfunction for the vertical mode n

Om (#) = circumferential eigenfunction for the circumferential order m
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R7 = radius of the ith ring

hi= depth of the ith ring

a= absorption coefficient

H( =-H = Hankel function of the first kind of order p

J = Bessel function of order P

N = number of vertical orders in the normal decomposition

M = number of circumferential orders in the normal decomposition

Subscripts

m, = circumferential order

n, v = vertical order

i= ith ring

Superscripts

E = I + 1 = external field

I = inner field

i = ith ring
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Appendix B

Computing technical details

This thesis was done entirely using IBM-PC compatible computers running the Linux

operating system. Linux is a free OS for computers using the Intel and Alpha micro-

processors. More information on Linux can be obtained from http://www.linux.org/.

The acoustic propagation code that was employed is the KRAKEN Normal Mode

Program [21], by Mike Porter of Naval Research Laboratory. The sources were ob-

tained from http://oalib.saic.com/pub/oalib/AcousticsToolbox/at.tar.Z, and compiled

on PCs using gcc and f77.

The subroutines used to solve systems 3.52 come from the LAPACK pack-

age [22]. The main subroutine used was ZGBSV, the driver routine for solv-

ing double precision complex band matrices. The sources were obtained at

http://netlib2.cs.utk.edu/lapack/. They were compiled using f77 on PCs and fort on

Alpha workstations.

The subroutines used to compute Hankel and Bessel functions come from the

package ZBSUBS [23], by Donald Amos of Sandia National Laboratories. To compute

Hankel functions, I used the subroutine ZBESH and to compute Bessel functions, I

used the subroutine ZBESJ. They were compiled using f77 on PCs and fort on Alpha

workstations.

My code was entirely written in ANSI C and compiled with gcc on PCs and ccc

on Alpha workstations.

I used MATLAB to display the results. MATLAB is a technical computing
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environment for numerical computation and visualization, marketed by The Math

Works (http://www.mathworks.com/).

The code was running in parrallel on 7 computers among which were six PCs (one

333 MHz Pentium II, two 400 MHz Pentium II, two 600 MHz Pentium III, and one

600 MHz K7 microprocessors), and one Alpha workstation (with a 667 MHz EV67

microprocessor). The code was taking a great amount of time to run: between one

week and ten days were necessary to obtain the results presented in chapter 4.
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