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supplemented to account for the kinetic energy of the fluid particles that cross the control

surface.

Using the kinetic coenergy method the fluid inertia forces acting in both long and

short squeeze film dampers are determined. The inertia characteristics of the dampers are

presented and are shown to be nonlinear functions of the amplitude of the journal orbit. It

is also shown that the fluid inertia forces predicted by the solution of the Navier-Stokes

equations for the case of a small circular-centered whirl is the same as that predicted by the

kinetic coenergy method.

Finally this model of squeeze film dampers is incorporated in a dynamic analysis of

a Jeffcott rotor incorporating SFDs. The steady state unbalance response of the rotor is

obtained, and parametric studies of the system are presented. The nonlinear performance

of the system is illustrated by the occurence of the jump phenomenon. It is shown that

fluid inertia introduces higher critical speeds and reduces the tendency of the rotors to

exhibit the jump phenomenon.

Thesis Supervisor: Professor Stephen H. Crandall

Title: Ford Professor of Engineering
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Chapter 1

Introduction

Squeeze film dampers (SFDs) are damping devices used essentially in aircraft gas

turbine engines to damp the whirling vibrations of rotors. Their ability to attenuate the

amplitude of engine vibrations and to decrease the magnitude of the force transmitted to the

engine frame makes them an attractive rotor support.

Figure 1.1 shows the construction of squeeze film dampers. The damper consists

of an oil film in an annulus surrounding a rolling element bearing whose outer race is

constrained from rotating, usually by a squirrel cage. Thus the spinning of the rotor does

not reach the oil, and only when the rotor whirls does the oil film act to damp the motion.

The squirrel cage serves to center the journal in the sleeve as well as to keep the outer race

of the rolling element bearing from spinning.

1.1 Background

The earliest investigation of squeeze film dampers is probably that conducted by

Cooper [15]t in the early sixties, in which he concluded that squeeze film dampers are

adequate for damping the whirling vibration of rotating machinery. In his experiments he

observed "bistable" operation of the rotor, that is the rotor would exhibit a jump from a

certain whirling orbit to another at some frequency. This is the classical jump

t Numbers between brackets designate references in the bibliography at the end of the thesis.
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phenomenon, and perhaps this was the first indication of the nonlinear behavior of squeeze

film dampers. In the early seventies, White [101] studied theoretically and experimentally

the dynamics of a rigid rotor on squeeze film dampers. He was able to calculate the forces

acting in the damper based on Reynolds equation of fluid lubrication, and he calculated the

so called bearing* coefficients. He predicted, both theoretically and experimentally, three

steady state orbits of the rotor journal at the same frequency, but using a stability analysis

he found that only two of them were stable. This confirmed Cooper's predictions for the

jump phenomenon.

Since then squeeze film dampers have been widely used in aircraft gas turbine

engines, and consequently the squeeze film damper (SFD) literature is quite rich. In the

following we are going to highlight several of the investigations that are pertinent to this

thesis, while a more complete list can be found in the bibliography. The quest of the

previous investigations has been to faithfully describe the SFD theoretically, and to

determine its effects on the dynamics of rotors that incorporate SFDs. These are the goals

that this thesis tries to achieve. Other goals for previous investigations have been to

experimentally test SFDs to determine the accuracy of the available theories and explore

new configurations of SFDs.

Mohan and Hahn [57] studied the dynamics of a rigid rotor in squeeze film

dampers. They obtained the steady state response by assuming a circular whirl, and they

did parametric studies to determine the effect of the damper on the dynamics of the rotor,

and the force transmitted to the engine frame, and also to determine the maximum rotor

unbalance at which the damper is effective. They concluded that the squeeze film damper is

generally an effective damping device, but for a badly designed damper, the transmitted

* In the literature the words 'damper' and 'bearing' have been used interchangeably to refer to squeeze film
dampers, probably because of their similarity to journal bearings.
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force can be magnified rather than attenuated, and this could lead to the failure of the

engine.

Cunningham, et. al. [20], demonstrated the possibility of using design data for a

SFD designed on the basis of single mass flexible rotor analysis, and applying it for the

design of a SFD for a multi-mass flexible rotor. In an experimental parametric study,

Tonnesen [97] was able to show that the forces in the damper agree with the n-bearing

theory. Gunter, et. al. [29], numerically studied the nonlinear response of aircraft engines

incorporating SFDs, and they were able to show that the rotor exhibits the jump

phenomenon, and, under unidirectional loading, subharmonic whirl motion may exist.

This was later verified experimentally by Sharma and Botman [77], who observed

nonsynchronous whirl in their test rig, although they did not associate it with unidirectional

loading.

Rabinowitz and Hahn [65] studied the steady state orbits for a flexible rotor

incorporating SFDs. They did a parametric study to determine regions of unacceptable

behavior of rotors due to SFDs. They also did a stability analysis of the steady state orbits

they obtained [64]. Taylor and Kumar [85] did an investigation of the numerical

integration techniques used to determine the response of a rigid rotor in SFDs. They were

able to demonstrate the following drawbacks for numerical integration: a) only stable

solutions could be found, b) false convergence, c) in regions of multiple-valued response,

finding all possible solutions involves tedious trial and error, and d) the particular algorithm

and convergence criteria used in the iterative approach determine the accuracy and

credibility of the results. This motivated them [86] to find closed-form steady state

solutions for a rigid rotor in squeeze film dampers by assuming a circular orbit. More

recently, Guang and Zhong-Qing [27] used a similar technique to do a parametric study of

a flexible rotor incorporating SFDs.
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1.2 Fluid inertia

The above mentioned analyses are all based on Reynolds equation, which neglects

the effects of fluid inertia. This has been a good assumption, since the dampers are usually

operating at a very low Reynolds number. But as the speed of aircraft engines increases

and as the trend of using lighter viscosity oils prevails, the values of Reynolds number for

SFDs in practice have been continually increasing, and the need for a model that includes

fluid inertia becomes a necessity.

Recently, in their experiments on squeeze film dampers Tecza, et. al. [87] showed

that fluid inertia may be a significant factor in determining the dynamic characteristics of

squeeze film dampers. This has prompted several investigations of the effects of fluid

inertia in squeeze film dampers. Tichy [92] provided an explanation for the importance of

fluid inertia in squeeze film dampers versus journal bearings. He later published

experimental results to show the effect of fluid inertia [94].

Several identification techniques have evolved (especially in the United Kingdom)

in the last few years, to experimentally determine the dynamic forces in SFDs, including

fluid inertia. Amongst the workers in this field are Burrows et. al. [9] and Ramli et. al.

[69]. For a comparison of the identification techniques used for estimating SFD

coefficients see Ellis et. al. [22].

Perhaps one of the first attempts to study the effects of fluid inertia in

hydrodynamic bearings, is the work of Smith [80] in the mid sixties. Using a unique form

of Reynolds equation, he was able to obtain inertia force coefficients for journal bearings,

and his conclusion was that the effect of fluid inertia in oil film bearings is to introduce an

11



added mass to the rotor and this may affect the dynamics of the rotor especially for short

stiff rotors on wide bearings. Approximately a decade later Reinhardt and Lund [70] used

a perturbation solution for small Reynolds number to obtain the force coefficients of journal

bearings. They showed that fluid inertia introduces rather small corrections to the damping

and stiffness coefficients of journal bearings and they also provided plots of inertia

coefficients versus the eccentricity. They had to solve a set of differential equations

numerically to arrive at these plots. Another notable paper, is the work of Szeri et. al. [84].

They used a technique based on averaging the inertia forces across the film, to obtain the

force coefficients in a squeeze film damper. They also had to solve the resulting differential

equations numerically. A recent paper by Ramli et. al. [68] compares the results of Smith,

Reinhardt and Lund, and Szeri et. al.; and concludes that they are in good agreement,

especially for short bearings. It is pointed out, however, that Smith's approach has the

advantage of computational simplicity, and leads to fairly simple asymptotic analytical

expressions for very short, and very long bearings.

In the literature, the methods used to handle inertia effects in hydrodynamic

bearings can be divided into three categories. One method is to use a perturbation series in

Reynolds number. Representative of this category are Tichy and Wiener [96], Jones and

Wilson [42], and Reinhardt and Lund [70]. The solution thus obtained is valid for small

values of Reynolds number. A second category is based on averaging the inertia forces

across the film. Amongst those in this category are the work of Constantinescu [13],

Szeri, et. al. [84], and San Andr6s and Vance [71,72]. The third category represented by

Tichy and Modest [95,56] is based on a stream function approach to the linearized

momentum equation, thus convective acceleration terms are neglected. All these techniques

when applied to fluid film bearings result in quite a cumbersome solution, and the first two

techniques require the solution of a set of differential equations numerically ([70] and [84]).

12



The results of all these researchers indicate that the classical lubrication theory is in

error with respect to the pressure field and the inertia forces, which can dominate at higher

Reynolds numbers. On the other hand, they all seem to indicate that the velocity field

predicted by the classical lubrication theory is not greatly affected by fluid inertia for

Reynolds number in the range of usual application of squeeze film dampers. In fact, the

method of averaged inertia is based on the assumption that the velocity profiles predicted by

the classical lubrication theory are not changed much by fluid inertia.

1.3 Thesis goals and outline

The literature articles surveyed in the previous pages seem to indicate that fluid

inertia is an important factor in the dynamic characteristics of SFDs. It also seems that a

model of fluid inertia forces in SFDs, including forces due to convective acceleration, has

yet to be developed. This model should be simple enough to be easily used in

rotordynamic analyses. Also the effects of fluid inertia on the dynamics of rotors

incorporating SFDs, especially on the nonlinear behavior of the system, is yet to be

investigated.

The goals of this thesis are to obtain a better model of squeeze film dampers,

namely to include fluid inertia effects on the forces generated in SFDs, and to incorporate

this simple model in a dynamic analysis of a Jeffcott rotor incorporating squeeze film

dampers.

To achieve these goals, we start in chapter 2 by deriving the damping forces acting

in a squeeze film damper. Reynolds equation for fluid lubrication is first derived and both

the short and the long bearing approximations are used to obtain the pressure equation in

SFDs. The pressure is then integrated to obtain the damping forces. The damping forces

13



are sensitive to the cavitation effects in the oil. If the oil film is cavitated we use the n-

bearing theory, otherwise we use the full or 2n-bearing theory.

To include fluid inertia effects in the model, we find that the simplified Navier-

Stokes equations for SFDs are nearly impossible to solve, so we resort to an approximate

method. It is well known§ that if the kinetic coenergyt of the fluid could be calculated,

then the fluid inertia forces can be determined from the kinetic coenergy, by using

Lagrange's equations. But the kinetic coenergy is not known beforehand, so we assume

that the velocity profiles can be approximated by those obtained from the inertialess

solution based on Reynolds equation. As discussed in the previous section this

approximation is used in the method of averaged inertia. The inertia forces are then

calculated using Lagrange's equations of motion.

Before applying this approximate technique to obtain the inertia forces, to squeeze

film dampers, we apply it to more elementary squeezing flows. This is both to verify that

the approximate method based on calculating the kinetic coenergy is sufficiently accurate,

and to understand better the mechanics of squeezing flows. Chapter 3 starts by describing

two elementary cases of squeezing flows, namely the Poiseuille flow due to squeezing

motion and the direct squeeze flow, as limits of the flow in a SFD. The Poiseuille flow is a

linear problem and is solved completely including fluid inertia. It is shown that the velocity

profiles do not change much due to fluid inertia for Reynolds number in the range of usual

application of SFDs. This justifies the approximation of the kinetic coenergy based on the

velocity profiles of the inertialess solution. The fluid inertia force in Poiseuille flow

predicted by the approximate method, is shown to be the limit of the fluid inertia force as

§ See for instance Milne-Thomson [55].
* We are going to use this more accurate terminology for reasons that will become apparent later.
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Reynolds number goes to zero, and is also shown to be a good approximation for

Reynolds number in the range of usual application of SFDs.

The squeeze flow is more complicated since it is nonlinear because of the presence

of convective acceleration. Also the moving boundary results in time dependent boundary

conditions. The problem is linearized and the inertia force due to temporal acceleration only

is predicted and is shown to be in excellent agreement with that predicted by the

approximate method based on the kinetic coenergy, hereinafter called the kinetic coenergy

method, for Reynolds number in the range of usual application of SFDs. In this case

Lagrange's equations have to be supplemented to include the effects of the fluid particles

that leave the control volume carrying kinetic energy, as described in the appendix. Also

the kinetic coenergy method predicts an additional term, which is shown to be due to

convective acceleration, by an approximate solution of the nonlinear squeeze flow problem

by the method of averaged inertia. The conclusion of this chapter is that the kinetic

coenergy method adequately predicts the fluid inertia forces in squeezing flows for

Reynolds number in the range of usual application of SFDs.

In Chapter 4 the kinetic coenergy method is applied to both the short and long

squeeze film dampers. The dampers' inertia coefficients are derived and are shown to be

nonlinear functions of the eccentricity of the journal in the bearing. These inertia

coefficients represent the added mass to the journal. The fluid inertia forces are then

obtained by using Lagrange's equations of motion. For the short squeeze film dampers, as

in the squeeze flow case, Lagrange's equations have to be supplemented to include the

effects of the fluid particles that leave the control volume carrying kinetic energy. Finally,

the solution of the Navier-Stokes equations for the case of a small circular-centered whirl

orbit is presented, and it is shown that the fluid inertia forces predicted by the kinetic

15



coenergy method is a good approximation to the forces in the damper for Reynolds number

in the range of usual application of SFDs.

Chapter 5 discusses the dynamics of a Jeffcott rotor incorporating squeeze film

dampers. The equations of motion are derived and it is shown that the steady state

unbalance response can be obtained by assuming circular-centered whirling motions. Thus

the resulting nonlinear algebraic equations are solved to obtain the unbalance response of

the rotor. The simple solution for the steady state allows for parametric studies of the

system to be made, and the effect of fluid inertia on the steady state dynamics of a rotor

incorporating SFDs is explored.

Chapter 6 is the conclusion of the thesis. The problems attacked in this thesis are

reviewed and the contributions and conclusions of the thesis are presented. Suggested

topics for further research are also discussed.
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Chapter 2

Damping Forces In Squeeze Film Dampers

In this chapter, we present the basic analytical tools required for the analysis of

squeeze film dampers (SFDs). We first derive Reynolds equation for fluid lubrication from

basic principles, then we derive the damping forces obtained by both the long and short

bearing approximations of Reynolds equation. We also consider the effects of cavitation

on the damping forces.

To include fluid inertia in the analysis, we find that the simplified Navier-Stokes

equations for SFDs are nearly impossible to solve. To overcome this problem, we present

an approximate method based on calculating the kinetic coenergy of the fluid, and using

Lagrange's equations of motion to obtain the inertia forces in the damper. This method is

outlined here, and will be discussed in detail in subsequent chapters.

2.1 Reynolds equation

Reynolds equation for fluid lubrication is an equation that the pressure in the

damper has to satisfy. It is based on the solution of the continuity equation and the

simplified Navier-Stokes equations subject to the boundary conditions in the damper.

In a squeeze film damper (SFD), the ratio of the clearance c to the radius R is very

small, C/R = O(10-3), thus we can assume that the effects of curvature on the damper are

17



negligible and we can use a cartesian coordinate system in analyzing the flow in the

damper. In addition, the following assumptions are going to be made [82]:

1- The variation of the pressure across the film is small and can be neglected.

2- The flow is predominantly two-dimensional ( circumferential and axial).

3- The flow is laminar, and incompressible.

4- The flow is fully developed and steady.

5- The rate of change of any one velocity component along the film is small compared

to the rate of change of the same velocity component across the film.

6- Fluid inertia can be neglected.

y

t
0

r

'I X

x

Figure 2.1 Squeeze film damper

Figure 2.1 shows a SFD, and the coordinate system used. The film thickness h at

any given location is given by

h = c - e cos 0

where e is the eccentricity of the journal and 0 is measured from the positive r-axis of the

whirling coordinate system (r, t, z). The z-axis is perpendicular to the plane of the paper.

18
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Also shown in Figure 2.1, the stationary coordinate system (x, y, z) and the angle p which

is measured from the positive x-axis, and 0 = p - Nf. For a steady circular whirl N = ot,

where co is the whirling frequency of the journal and t is time.

Since we assumed that the effects of curvature can be neglected, we can use the

stationary cartezian (X, Y, Z) coordinate system shown in Figure 2.1, (with the Z-axis

perpendicular to the plane of the paper), to describe the flow. To an observer in this

coordinate system, because c/R is small, it appears as if the damper is unwrapped, as

shown in Figure 2.2. The upper surface in Figure 2.2 represents the journal, while the

lower surface represents the bearing. The motion of the journal, i.e. the upper surface in

Figure 2.2, results in the motion of the fluid in the clearance between the two surfaces.

Due to the motion of the journal, the upper surface in Figure 2.2 travels in a wave-like

fashion, and also changes its shape if the journal is moving radially. It should be noted that

since the flow in the damper is cyclic, i.e. the conditions at p = 0 are the same as those at p

= 2n, then the model of Figure 2.2 is repeated every 2 n R in the X-direction.

Y

4 R y

x

Figure 2.2 Unwrapped squeeze film damper

Using the coordinate system and the assumptions described above, the Navier-

Stokes equations reduce to

ap DIU(2.1)
ax 2
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= 0 (2.2)

(2.3)

where p is the pressure, u is the velocity of the fluid in the X-direction, w is the velocity of

the fluid in the Z-direction and p is its viscosity .

Since p is independent of Y (equation (2.2)) thus we can integrate equations (2.1)

and (2.3) with respect to Y using the boundary conditions

At Y=O u=0 w=O

At Y=h u=U w=O

Thus we get

U 1 ap 2 h Y (2.4)
2 =t 2DX ( Y Y h ) + TU(24

W = (Y2 -Yh) (2.5)
2 g a

For the continuity of flow
au iv aw (2.6)

x+ T-+ -5z= 0(2)

where v is the velocity of the fluid in the Y-direction. Instead of integrating equation (2.6)

over Y from 0 to h [62,82], to obtain Reynolds equation, (with the implication that the

continuity of flow is satisfied on the average), we are going to determine v from equation

(2.6). Thus
au a

v=- - dY - a dY+C

where C = C(X,Z) is yet to be determined. Substituting for u and w from (2.4) and (2.5),

we get

1 Z) y3 y2 h ) ap ]+a y3 y2 h ) 2p a (y2 U
2i a 3 2 aX aZ 3 2 aZ J X 2h C

20



The above equation has to satisfy the following boundary

conditions

At Y=O v=0

At Y=h v=V

The first boundary condition implies that C = 0, while the second gives us Reynolds

equation for fluid lubrication

D( h' Dp ) + h' ap h (2.7)
3X p3X + BZ BZ = 12 V+ 6U -L+ 6h a (.7

If the journal has a radial velocity 6 in the r-direction of Figure 2.1 and a tangential

velocity e* in the t-direction, then U and V, the velocities of the journal surface at any 0,

become (see Figure 2.3)
U = e * cos 0 - e sin 0

(2.8)
V = - e * sin 0- 6 cos 0

t U

V e

0 r

Figure 2.3 Journal velocities

Since X = Rp and Z = z, then Reynolds equation for a squeeze film damper, in the

(r, t) coordinate system, becomes

1 a h3 ap a hc3 ap os0
R 7~p p R a~p Tz+ - - 2 ( m)+e o 29

21
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after neglecting terms of order c/R in the right hand side of equation (2.9).

Equation (2.9) is quite difficult to solve in closed form. Infinite series solutions for

equation (2.9) exist [100], and it can be solved numerically [62]. Yet, for rotordynamic

applications, it is beneficial to have a closed form solution for the forces acting on the

journal, both to gain a better understanding of the dynamics of the rotors due to the oil film,

and to reduce computation time for more involved rotordynamic analyses. Fortunately,

two mathematical approximations to Reynolds equation exist that rely on the physical

dimensions of the damper. These are the short and long bearing approximations to

Reynolds equation and are presented in the following sections.

2.2 Short bearing approximation

For dampers with a length to diameter ratio up to 0.25, the short bearing

approximation is a good approximation to Reynolds equations [62]. In the short bearing

approximation, it is assumed that the damper is so short in the z-direction that the pressure

gradient in the p-direction is much smaller than that in the z-direction, and thus the flow is

essentially in the axial direction. The above statement is true even for sealed dampers, if

the dampers are short. The dynamic pressures that are present in the damper are so large

(of the order of a thousand psi) that no simple seal can stop the axial flow.

Using the short bearing approximation, Reynolds equation, equation (2.9) reduces

to

z (z h' = -12 ( e * sin 0 + e cos 0)

Integrating twice with respect to z with the boundary conditions

p = 0 at z = i IJ2

22



where L is the length of the damper, we get for the pressure

6 g L2 2) .. .
p = T- z (e sn 0 + e cos 0) (2.10)

h

and the flow velocities u and w can be obtained by substituting from (2.10) into (2.4) and

(2.5) respectively. For future reference the w velocity profile is given by
6 z(YY 2 ~

W = z h 2 ( e * sin 0 + e cos 0) (2.11)

The damping forces can be obtained by integrating the pressure, equation (2.10).

Thus the radial and tangential forces Frc and Ftc acting on the journal are given by (see

Figure 2.4)
L 

0- 02
Frc = J . p cos 0 R dO dz (2.12)

2 1
L 

02
Fe = - p sin 0 R dO dz (2.13)

2 1

Substituting for the pressure from equation (2.10) and integrating over z we get

p RL 3  02 cos 2 0 . RL3r 0 2 cos e sin d
Frc = 3 -30 dO6- 3 f3 O e*

c f1 (1-ecose) cJ 91 (1-Ecose)
(2.14)

pR 3 02 cosRL 3 0 2 sin2 0
_ jiR J 1cos in c3  1 (1-Ecos9)F = c 3  0 ol1 - FCs0) O - J o 6Cs0)3d e*r

(2.15)

where e = e/c is the eccentricity ratio. The limits of integration 01 and 02 represent the

extent of the fluid film.

If there is no cavitation in the damper the limits of the integration are 01 = 0 and 02

= 2n. This would be the case if we had a highly pressurized damper. For a cavitated

damper, we are going to use the ir-bearing theory. Cavitation is not a well understood

23



phenomenon, and there is a lot of research going into cavitation in fluid film bearings [59,

99] and more involved analytical models for cavitation exist, but the t-bearing theory is the

most acceptable theory in the literature of oil film bearings probably because of its

simplicity.

y
t

R

h

x

Figure 2.4 Forces on element in the damper

For a x-bearing, the oil film is assumed to extend in the region of positive pressure.

Since the fluid cannot sustain tension, the region of negative pressure is assumed to be at

zero pressure. The region of positive pressure is determined from equation (2.10), that is it

extends from 01 such that

01 = tan~1 (- (2.16)

to 02 such that

02= 01 + X (2.17)

24
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Thus the oil film boundaries are moving such that the journal velocity vector acts in the

direction of the center of the film. For a nearly circular whirl, the limits of integration can

be taken to be 01 = 0 and 02= R for a counter-clockwise whirl. For a circular clockwise

whirl the limits of integration can be taken to be 01 = x and 02= 2n. If the journal is

travelling radially outwards then the limits of integration are 01 = - n/2, and 02= K/2.

Returning to the forces Frc and Ftc of equations (2.14) and (2.15), which may be

written in the form

Frc = - Cr- C, e $ (2.18)

Frc = - C, i C, e $(2.19)

where the coefficients Crf, Ctt, Ctr and Crt are the damper's damping coefficients, and are

given by

R L3  02 cos2

c 3 1 ( 1 -C cos 0) 3

= R Lf 02 sin 0
c 3 1 f ( 1 -e cos 0)3

C= R L 92 cos 0 sin 0

c 0 (l 1 -C coS 0) 3

and Ct 1 = C

It can be seen from equations (2.18) and (2.19) that the damping coefficients represent a

symmetric tensor relating the force vector to the velocity vector. This means that the oil

film is not isotropic, we get different damping forces when the journal moves in different

directions. Also the cross-coupling damping coefficients Crt and Ctr imply that we get

both radial and tangential damping forces even if the journal is moving in the tangential

direction only, for instance.
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For a t-bearing, with a journal executing a nearly circular counter-clockwise whirl,

the coefficients Cfr, Ctt, Ctr and Crt take the form
pR L3 =* gRL 3  * = R L 3

3 Crr , Ctt 3 Ctt , Crt= 3 Crtc c c

Crr = - (2.20)2 ( 1±-2)/
* x 1

Ctt = - (2.21)
* 2 2 /

* = 
(2.22)

C ( 1 -E2 )2

These coefficients are plotted in Figure 2.5, versus the eccentricity ratio, from which it can

be seen that the damping coefficients increase drastically with the increase of the radius of

the orbit, and become infinite as e approaches 1. Thus as the journal executes a larger orbit

the fluid exerts a larger resisting force. For a 2n-bearing the coefficients Crr and Ctt are

double those for a i-bearing and Crt and Ctr are zero.

2.3 Long bearing approximation

The long bearing approximation is based on the assumption that the damper is

infinitely long in the z-direction such that the pressure gradient in the 6-direction is much

larger than that in the z-direction, and thus the flow is essentially in the circumferential

direction. The long bearing approximation is valid for dampers with L/D > 4, or for

tightly sealed dampers.

For long bearings, Reynolds equation, equation (2.9) reduces to

1 a L... h -- 12 ( e * sin 0 + e cos 0)
I T twi wt R t w

Integrating twice with respect to 0,we get

26



I

/
/

10. 0 -

9.0 -

8.0-

7.0-

6. 0

5. 0

4. 0 -

3.0-

2.0-

I
I/

Crr*

/ Ctt*

- 1- - I I

0. 00 0. 10 0. 20 0. 30 0. 40 0. 50 0. 60 0. 70 0. 80 0. 90 1. 00

Nondimensional damping coefficients for the short damper

Crt*

1.0-

0.0

/

Figure 2.5



12 g R2 r sin e 12 t R2  cos e
p 3 I 3 d0 e+ 3 3 dO e

c 0(1-Ecos6) C (1-Ecos6) 3

dO
+ f - oO) 3 C 1 + C2

(1-E Cos 0 )3

where C1 and C2 are constants of integration. With the aid of a table of integrals [4], the

above integrations can be performed, thus the pressure becomes

6 p R2

c ( 1 - cos ) 2

12 R2 sin e (1+2 62) sin 0
+ e 2 2

c 3 2(1 - 2) (1 - E coS O ) 2 (1 - E2 2 (1 - -ccos )

3 E- F 1 - + Cos 0
+2( 1 - 2)5/2 cos 1 -Eo2:I

C esin 0 3 c sin e

2(1 -2) (1 C-cos )2 2(1 -2)2 (1 - E coS )

(2+E2) 8 _1 - E + cos 0

2( - 2) 12  kA-Ecose + C 2

(2.23)

where 8 is defined as

S=1 1 sin 0 >! 0

-1 sin 0 0

The pressure has to satisfy the condition of periodicity, i.e. p(O = -R) = p(O = n). At 0 = 7

the film thickness is at its maximum and thus the lowest pressure occurs at this section.

Since we are interested in the dynamic pressures only, we can assume without any loss of

generality that the pressure at 0 = 7 is equal to zero. Thus the boundary conditions that

equation (2.23) has to satisfy are

at 0 = -7 p = 0

and at 0 = n p = 0
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Using these boundary conditions C1 and C2 are evaluated to be
212g R . 32

S C 3( 2 + 2 )
6p2

and C2 =- g3 1 2
cF e (1+E)2

Finally the pressure is given by

6l R2 10

C 3 E F( l - ECOSO 92

1

E (1l + E )2 I

S2 sin ( 2 - Ecos) ] e.)

2 + E-2) 1 _- E COS ( )2
(2.24)

The flow velocities u and w can be obtained by substituting from (2.24) into (2.4) and

(2.5) respectively. For future reference the u velocity profile (neglecting terms of O(c/R))

is given by

U = 6 R
Y
h

38 .1
sin6e-cos e V"+ e

( 2+e2 )
(2.25)

The damping forces, as in the short bearing case, are obtained by substituting the

pressure from equation (2.24) into equations (2.12) and (2.13).

tangential damping forces acting on the journal are

Frc 6 R3 L 0 2[ cos 2

C 3 fol E ( l -E coS 92

12

F = - 6gR3 L
3c

e.

Thus the radial and

cos 0 ]
E(1+ E)2 I

gR L J sin 0 cos 0 ( 2 - E cos)

C 3 f01 (2+e 2 )(1-EcoS0)
dO e Nf

2 sin 0 2 sin O

101 [ E (1-EcoSO) 2 E(1+E)2

12 R3 L 02
- 3 Ic 1

sin2 0 (2- EcCos )HA
2 2(2 2+ E2) (1l - E cos 0 )
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Equations (2.26) and (2.27) can be written in the form of equations (2.18) and

(2.19)

Frc = - C 6 Crt e  (2.18)

FtC = - Ctr- Ctt e Y (2.19)

where Crr, Ctt, Crt and Ctr are the damping coefficients and are given by

6 3 L 02 cos e cos 1
C3 =JI22 dO

c 0  l ( 1 -Ecos 0 ) E ( 1+ E)2

C = 12 gR3 L 02 sin ( 2 - e csOs ) 2d
c3  J 1 (2+F2)(1-E coSO)

C = 12 R 3L 02 sin0cos0(2-Ecos0) dO
c 3 fO,1 (2+e2)(1-CcoSO)2

6 R3 L 02 sin 0 sin 0 ~
C1 E(1-EcoS0) E(1+E)2 I

It can be seen from equations (2.18) and (2.19) that the damping coefficients represent an

unsymmetric tensor relating the force vector to the velocity vector. As for the short

bearing, this means that the oil film is not isotropic.

Also here we are going to adopt the n-bearing theory for the cavitated damper and

the 2it-bearing for the uncavitated damper. For a cavitated damper executing a nearly

circular whirl, the limits of integration are 01 = 0 and 02 = 7c. Thus the damping

coefficients become

pR3LR 3 L* c R 3R 3 L * c gR 3 L *
Crr = -3 Crr , Ctt = 3 Ctt ,Crt = 3 Ca , Ctr = 3 Ctr

c c c c
* 6n

C = 2)3(2.28)
( 2 73/2

* 12 7
tt = (2.29)

( 2 ) 2 1/2
* ( 2 4

Crt= 24 (2.30)
(2+ 2)( 2
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* 24
Ctr = (2.31)

( 1+)( 1-E )

These coefficients are plotted in Figure 2.6, versus the eccentricity ratio, from which it can

be seen that, as in the short bearing, the damping coefficients increase drastically with the

increase of the radius of the orbit, and become infinite as E approaches 1. Thus as the

journal executes a larger orbit the fluid exerts a larger resisting force. For a 2n-bearing the

coefficients Crr and Ctt are double those for a 7c-bearing and Crt and Ctr are zero.

Comparing the damping coefficients of the short damper with those of the long

damper, we find that the damping coefficients of the long damper are relatively larger than

those of the short damper, i.e.

Ciong =0 12RIn
Cshort 

hort

Thus for example, if Riong = Lshort, then Clong=1 2 Cshort. This is to be expected since the

oil in the short damper flows axially, and thus is squeezed out of the damper, while for the

long damper the oil flows circumferentially and is forced to resist the motion. Also the

damping coefficients of the short damper form a symmetric tensor, i.e. Crt = Ctr, while

those for the long damper form an unsymmetric tensor.

2.4 Fluid inertia

Historically, as mentioned in the introduction, fluid inertia was neglected in the

analysis of squeeze film dampers until it was demonstrated experimentally that fluid inertia

does affect the performance of the dampers [87].

To include fluid inertia in the analysis and assuming an unsteady flow, but still

retaining the rest of the assumptions, the Navier-Stokes equations become
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au Du au au 1 ap a2U
+u - +v -+w 2-- +(2.32)

- (2.33)

aw aw aw aw 1 ap a2w
+u T +v j + w -j- - + (2.34)

The above equations have to satisfy the following boundary conditions

At y=0 u=0 v=0 w=0

At y=h u=U v=V w=0

where U and V are given by equation (2.8). The above system of partial differential

equations, together with the continuity equation, equation (2.6), is nearly impossible to

solve analytically except in very special cases.

To circumvent this handicap, we resort to an approximate method to calculate the

fluid inertia forces in a squeeze film damper. Since the fluid in the damper moves only due

to the motion of the journal, then if we were able to calculate the kinetic coenergy of the

fluid, we can use Lagrange's equations of motion, with the velocities of the journal taken

as the generalized velocities [55], to predict the inertia forces in the damper.

The kinetic coenergy of the fluid is defined as

T*= 1 p ( u2 +v 2 + w 2 ) dV (2.35)

where V is the volume of the fluid in the damper. Thus to calculate the kinetic coenergy we

have to know the velocities of the fluid. But since we do not know the velocities of the

fluid beforehand, we are going to assume that the velocity profiles predicted by the classical

lubrication theory are a good approximation of the actual velocity profiles, even at relatively

high squeeze Reynolds numbers. This approximation has been used before in conjunction

with the method of averaged inertia [13], and is justified by the results of previous
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researchers t that indicate that the velocity field predicted by the classical lubrication theory

is not greatly affected by fluid inertia for Reynolds number in the range of usual application

of squeeze film dampers.

In the next chapter, it is going to be shown that this assumption is reasonable in

simple squeezing flows for Reynolds numbers in the range of usual application of squeeze

film dampers. The application of this technique, hereinafter called the kinetic coenergy

method, to obtain fluid inertia forces in squeeze film dampers is illustrated in chapter 4.
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Chapter 3

Fluid Inertia Effects In Squeezing Flows

As mentioned in the introduction, the results of previous researchers indicate that

the classical lubrication theory is in error with respect to the pressure field and the inertia

forces, which can dominate at higher Reynolds numbers. On the other hand, they all seem

to indicate that the velocity field predicted by the classical lubrication theory is not greatly

affected by fluid inertia for Reynolds number in the range of usual application of squeeze

film dampers.

The aim of this chapter is to study the basic constituents of the flow in a squeeze

film damper, namely, the Poiseuille flow produced because of squeezing motion, and the

direct Squeeze flow, both to understand the mechanics of squeezing flows and to illustrate

the effectiveness of the kinetic coenergy method introduced in the previous chapter. It will

be shown that this approximate method agrees favorably with the full solution, including

convective acceleration.

3.1 Poiseuille flow resulting from squeezing motion

Consider a block of a rigid material having length L, width D and thickness b

moving with a velocity e in a chamber filled with an incompressible fluid, as shown in

Figure 3.1. This can be considered as a simplified squeeze film damper (SFD). Figure 3.2

shows a SFD moving radially outwards with a velocity 6. Comparing Figures 3.1 and 3.2,
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Figure 3.1 Schematic of a block moving in a fluid-filled chamber.

we can see that the block in Figure 3.1 represents the journal in Figure 3.2, but is simpler

in the sense that the flow past the block in the clearances moves in a straight channel, while

the flow past the journal in the damper clearance moves in a curved channel. We assume

that, in the Poiseuille flow of Figure 3.1, the side chambers are large, such that the

pressure is uniform in these side chambers.

Poiseuille flow

Squeeze flow

Figure 3.2 Radial motion of SFD
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Let c be the clearance between the block and the chamber, with D/c >> 1, and

consider a stationary reference frame (x,y) attached to the chamber with the x-axis

coinciding with the lower surface of the chamber. Since the problem is symmetric the flow

in the upper and lower clearances is the same, and only the flow in the lower clearance will

be obtained. The classical lubrication theory solution (inertialess solution) will be

presented first, followed by the solution of the problem including the inertia of the fluid.

In the classical lubrication theory, i.e. neglecting fluid inertia, the x-momentum

equation reduces to
d2u _dp 0

d=0 (3.1)
dy2 dx

where t is the viscosity of the fluid, u is the velocity of the fluid in the x-direction and

dp/dx is the pressure gradient. The y-momentum equation is
dp = 0 (3.2)
dy

thus the pressure gradient dp/dx is independent of y. Equation (3.1) can be integrated

twice with respect to y, with the boundary conditions

at y=0 u=0 (3.3)

at y=c u=e

thus the velocity u is given by
2 ( 2

u = d - c dp y _ y (3.4)

To determine the pressure gradient recourse has to be made to the continuity of the flow in

the chamber. The fluid squeezed by the block has to flow through the clearances.

Therefore
C

- Dbi= 2 b u dy (3.5)
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Note that the negative sign in the left hand side of equation (3.5) is because the fluid and

the block are moving in opposite directions. Substituting (3.4) into (3.5), the pressure

gradient becomes (neglecting terms of order c/D)
dp pD .
d-= 6 -- e (3.6)
dx c3

and the velocity u becomes

u=-e-- -- l (3.7)c c c c2

Also, the force F resisting the motion is

F = - (pI-p2) D b

where pi and P2 are the pressures in front of the block and behind it, respectively. The

negative sign is because the force F opposes the motion. By using (3.6), the force F

becomes

p D 2 b L
F = -6 3 b (3.8)

c

The force F in equation (3.8) is proportional to the velocity of the block and is due to

viscous effects.

The above analysis was for the case when fluid inertia is neglected. If the effect of

fluid inertia is introduced equation (3.1) becomes

au 1 ap a2u
-=- -+x - (3.9)jat p Dx vay2

where p is the fluid density, v is its kinematic viscosity, and t is time. To solve equation

(3.9) , for an oscillating block, assume u, p and 6 to have an eiOt time behavior. Thus, let

u = U eiot, p = P eiOt, and i = UO eiot, and equation (3.9) becomes

1 dP d2U
i OU=---+V 2 (3.10)

pdx dy2

The pressure gradient is still independent of y, and we can solve the differential equation

(3.10) for U, using the boundary conditions (3.3)
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U i dP sinh (sy) - sinh (s(y - c)) - sinh (sc) sinh (sy) U (3.11)
o p dx sinh (sc) sinh (sc)

where

s= 1( 1+i ) (3.12)

and

Re = o(3.13)
V

is the Reynolds number. It can be shown that as Re -+ 0, equation (3.11) reduces to

equation (3.4). Substituting equation (3.11) into equation (3.5), the pressure gradient

becomes

i Uo w p - -0 i sc sinh (sc) + cosh (sc) - 1]
dP _ L (3.14)
dx [2 - 2 cosh (sc)+ sc sinh (sc)]

and the force F is
dP

F=-LDb--
dx

and thus the nondimensional force

=F cF* = 2  
(3.15)

becomes
1

i Re[ s sinh (sc)+ - cosh (sc) - -

F* = - 2 siD (3.16)
[2 - 2 cosh (sc) + sc sinh (sc) ]

It can be shown that as Re -* 0, F* has the form (neglecting terms of O(c/D))

lim F*=-6[1+i 0.lRe] (3.17)
Re--O

which shows that as Re -+ 0, F* has a real part equal to that of equation (3.8) predicted by

the classical lubrication theory. The real part of F* represents the viscous force, while the

imaginary part represents the force due to the inertia of the fluid. Equation (3.17) shows

that the inertia force, as Re -+ 0, is linear with Re, which is also nondimensional

frequency. Figure 3.3 shows the nondimensional force F* plotted versus Re, using

equation (3.16), for D/c = 1000. On the same figure the classical lubrication solution,
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equation (3.8), is plotted for a sinusoidal velocity. It can be seen that the real part of the

full solution deviates by only a few percent from the inertialess solution equation (3.8), for

Re up to 50, which is the range of Reynolds numbers found in practice for squeeze film

dampers [84]. The deviation increases to up to 50 per cent at Re = 100, but at that point the

flow is totally dominated by inertia rather than viscous effects. In fact, the viscous force is

equal to the inertia force at Re = 10, and for higher Reynolds numbers the inertia force is

larger. The imaginary part of the force in equation (3.16), which represents the inertia

force, is shown in Figure 3.3 to be nearly linear with Re. Also shown is the solution

predicted by the approximate method, discussed in the next section, for the inertia forces.

It should be noted that the total force F, acting on the block is the real part of F*

eiot, that is, from equation (3.17), the force acting on the block as Re -+ 0, is given by

F= - Lb 2 [ cos wt - 0.1 Re sin cot] (3.18)
c

As an example of the effect of fluid inertia, it can be seen from equation (3.17) that

the amplitude of the inertia force (for small Re) is given by
ULbD2 p 2

Fj I =0.6 Re gULbD = 0.6 pLbD ( o UO)
c 3 c

Thus the mass added to the block is

m = 0.6 p L b D (3.19)
c

while the mass of the block is

M= PbLbD

where Pb is the density of the block. Thus the ratio of the mass added to the block due to

fluid inertia to the mass of the block is
mDp
M 0.6Dp
M C Pb
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If the block is made of steel, its density would be about Pb = 7800 kg/m 3 and typically the

density of oil would be about p = 800 kg/M3, and for squeeze film damper applications

D/c is in the order of 1000, then m/M would be of the order of 60. This means that due

to the huge velocities and accelerations in the clearances the mass of the block, which is

made of steel, can be neglected with respect to the added mass due to the inertia of the oil.

Also it can be seen from the above relationship that m/M increases as the clearance c

decreases, this is because for smaller clearances the velocity and acceleration of the fluid in

the clearance increases, and thus the added mass increases, even though the actual mass of

the fluid film has decreased.

3.2 Kinetic coenergy method applied toPoiseuille flow

The flow velocity U in the full inertial solution can be obtained by substituting

equation (3.14) into (3.11). The velocity profile thus obtained is plotted in Fig. 3.4 for

D/c = 1000, and Re = 1, 10, 30, and 100. Plotted also is the inertialess velocity profile,

equation (3.7), and it can be seen that they match nearly identically for low Re. This was

expected, as discussed in the introduction, from the previous literature.

The approximate method is based on the assumption that the velocity profile is not

changed much by the inertia of the fluid. Thus the flow can be assumed to be that of the

classical lubrication theory, and the kinetic coenergy of the fluid can be calculated. The

inertia forces acting on the block can thus be obtained by the use of Lagrange's equations.

Assuming that the fluid velocity is given by the inertialess solution equation (3.7),

the kinetic coenergy stored in the fluid is then

T*= 2 f u2 dm
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where dm is the mass of an infinitesimal volume of fluid flowing in the clearance.

Therefore

T*= 2 p L b u2 dy

Substituting for u from equation (3.7), we get (neglecting terms of order c/D)

T*= 1[0.6 pLbD2 ] 2  (3.20)
21 c

The added mass to the block is represented by the quantity between brackets in equation

(3.20), which is exactly equal to the added mass predicted by equation (3.19). Equation

(3.20) represents the kinetic coenergy stored in the fluid, but it is only a function of the

velocity of the block d. The added mass to the block due to fluid inertia, means that we are

representing the fluid particles with a point mass at the center of the block. Thus we can

obtain the forces acting on the block due to fluid inertia by calculating the inertia force due

to the point mass. If we take the velocity of the block 6 as our generalized velocity, then

the generalized momentum in the direction of 6 is given by
S= 0.6 LbD2

ad c

Note that this generalized momentum acts in the opposite direction of the fluid velocity.

Using Lagrange's equation of motion, the force due to the inertia of the fluid is

d (T* DT* pLbD2

F-=-- - - +-=-0.6 e
dt + ; e c

For i = UO cos wt, then e= - o UO sin ct and

Fj = 0.6 o UO sin ot (3.21)c

which is exactly the same as that predicted by equation (3.18), for the full solution as Re -4

0. Equation (3.21) (in complex form) is plotted on Fig. 3.3 which shows the close

agreement, especially at low Re, between the exact solution equation (3.16) and the

approximate solution equation (3.21). The approximate solution has the advantage of

simplicity, since it only requires the knowledge of the velocity profile predicted by the

classical lubrication theory, without having to solve the partial differential equations of
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motion including the inertia terms. It should be noted that we did not have to consider the

kinetic energy of the fluid particles that leave and enter the system, since the fluid particles

that enter the system at one side have the same velocity distribution as the fluid particles that

leave the system from the other side. Thus there is no net gain or loss of kinetic energy.

We will have to consider the flux of the kinetic energy from the system when we obtain the

inertia force in the squeeze flow case.

3.3 Squeeze flow

The second constituent of the flow in a squeeze film damper is the direct Squeeze

flow. Consider a flat surface moving downwards towards a stationary flat surface, and

squeezing an
L

V

h 

Y 1
x

Figure 3.5 Squeeze flow between two flat surfaces

incompressible fluid, as shown in Figure 3.5. Let the distance between the two surfaces be

h and the length and width of the surfaces be L and b, respectively, and let h/L<<1.

Consider an (x,y) frame attached to the lower surface at its center. Let u and v be the

velocities of the fluid in the x-and y-directions, respectively, and p be the pressure. This

can also be considered as a simplified squeeze film damper, by comparing Figures 3.5 and

3.2. At the point of minimum thickness of the oil film in Figure 3.2, the oil flow divides,

and the oil flows in two opposing directions. This is very similar to the squeeze flow of
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Figure 3.5. As the plate moves downwards, it squeezes the oil, which divides and flows

in two opposing directions. Thus, the squeeze flow can be considered as a simplified

model of the squeeze film damper. This becomes clearer if we compare Figures 3.5 and

2.2. The upper flat surface of Figure 3.5 approximates the upper curved surface of the

unwrapped SFD of Figure 2.2, but it simplifies the analysis because the flat surface

simplifies the boundary conditions and also because it moves vertically only, while the

upper curved surface of Figure 2.2 moves both vertically and horizontally.

Here also the inertialess solution is presented first, followed by the full inertial

solution. In classical lubrication theory fluid inertia is neglected. The momentum equation

in the x- direction becomes

du _dp_

2 = 0 (3.22)
dy

where g is the viscosity of the fluid. The momentum equation in the y-direction reduces to
dp _

dy

Thus, the pressure is independent of y, and also the pressure gradient dp/dx is

independent of y. Integrating equation (3.22) twice with respect to y, with the boundary

conditions

u=0 at y=0
(3.23)

u=0 at y=h

we get for the velocity u
2 2

U h dp y y (3.24)2 g dxw h h 2

Notice that h is varying with time.

The continuity equation for a two dimensional flow is

+ = 0 (3.25)
)x ay

Integrating the continuity equation over y
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v=- - dy +C
ax

where C=C(x) is yet to be determined. Substituting for u from (3.24) we get
h2 d2(2 3

V = + C (3.26)2 pt dx2 (2h 3h 2 )

The boundary conditions that (3.26) have to satisfy are

at y = 0 v = 0
(3.27)

and at y = h v = dh/dt=li

The first boundary condition implies that C = 0, while the second gives us the following

equation that the pressure has to satisfy
2

d p= 12

dx2 h3

Integrating twice with respect to x, with the boundary conditions

at x = ± L/2, p = 0

assuming atmospheric pressure on the sides, the pressure becomes
L. L2  

2
P=-6 [ T-x h (3.28)

and the force F is
L

F = bJ pdx = h3bL (3.29)
2h

and from equation (3.24) the velocity u becomes

6=-6 -- (3.30)

Notice that the velocity profile u for Squeeze flow is parabolic as that of the Poiseuille flow

due to squeeze motion, equation (3.7).

To include the fluid inertia effects, the momentum equation in the x-direction

becomes

Du iu au 1 ap 32u
-+u-+v-=--- + -

3t 3x y p x
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where p is the density of the fluid and v is its kinematic viscosity. For a sinusoidal motion

with a small amplitude, h has the form

h = c - e cos ot

or in complex form

h = (c - e eit)

where c is the mean distance and e is the amplitude of the sinusoidal motion, and e/c << 1,

and thus fi = VO eiOt, where Vo = - i o e. For these conditions Tichy and Modest [95]

show that the convective acceleration terms can be neglected and the momentum equation

can be reduced to
DU 1 ap D2u

t p ax ay2(3.31)

which is a linear equation. If we assume u = U eiot, p = Pei(Ot and v = Veiot, equation

(3.31) becomes
1 dP d2U

i OU=- -- + (3.32)
pdx dy

where dP/dx is still independent of y. The boundary conditions that equation (3.32) has to

satisfy are given by (3.23) and (3.27). We cannot satisfy the boundary conditions (3.23),

(3.27) and still use the conventional techniques for solving linear differential equations,

because h is time dependent. But we can satisfy these boundary conditions "on the

average", by replacing h by its average value c, and we can still use these conventional

techniques. Thus, U becomes

i dP sinh (sy) - sinh (s(y - c)) - sinh (sc) (3.33)
o p dx sinh (sc)

where s and Re are the same as those of the Poiseuille flow. It can be shown that as Re -+

0, equation (3.33) reduces to equation (3.24) of the inertialess solution with h replaced by

c. Following the same procedure as in the inertialess case, we substitute (3.33) into the

continuity equation (3.25) and integrate over y , to get

i d 2P [ cosh (sy) - cosh (s(y-c)) - sy sinh (sc) ]

o P dx2 s sinh (sc)
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where C=C(x) is yet to be determined. The first boundary condition in (3.27) implies that
i d2P [ 1 - cosh (sc)]

Ci) P dx2  s sinh (sc)

while the second boundary condition in (3.27) when satisfied at the average position y = c

implies that
d 2p i VO o p s sinh (sc)

dx 2 - 2 cosh (sc)+ sc sinh (sc)]

Integrating twice with respect to x with the boundary conditions

at x = ± L/2 , p = 0 , then

i VO co p s sinh (se) - -2

p= _ 1T_ -1 (3.34)
2 [ 2 - 2 cosh (sc)+ sc sinh (sc)]

and the force acting on the surface is
L
2

F = b fLp dx

Therefore the non-dimensional force

F* = 3  (3.35)
V0 p b L3

becomes

F* = - iRe sc sinh (sc) (3.36)
12 [ 2 - 2 cosh (sc) + sc sinh (sc)]

As Re -+ 0, F* reduces to

lim F*-[ 1 + i 0.1 Re] (3.37)
Re-40

which shows that real part of F* reduces to that predicted by the inertialess solution

equation (3.29) (if h is replaced by c). The real and imaginary parts of F* from equation

(3.36) are plotted on Figure 3.6 versus Re. It can be seen that the inertia force (imaginary

part of F*) is equal in magnitude to the viscous force (real part of F*) at Re =10, and is

larger thereafter. Also shown are the results for the inertialess solution equation (3.29) and

the inertia force predicted by the kinetic coenergy method, which will be shown to coincide
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with the imaginary part of equation (3.37). These results are in close agreement with the

full solution for Re in the range of application of squeeze film dampers.

It should be noted that the total force F, acting on the surface is the real part of F*

eiCOt, that is, from equation (3.37), the force acting on the block as Re -> 0, is given by

FS b 3  [0.1 Recosot+ sin ot] eco (3.38)
c

or as a function of the moving surface velocity and acceleration

FS p b L3 5i + ov.

L c 

It is worth mentioning that the force predicted in the Poiseuille flow problem is 6

D/L times greater than that of the Squeeze flow (if we take L and c to be the same for each

case). If D=L, then the force in the Poiseuille flow problem, would be 6 times larger than

that of the Squeeze flow problem. This is because in the Poiseuille flow case all the fluid in

the clearances is trying to resist the motion in the same way, while in the case of the

Squeeze flow the fluid on the sides is resisting the motion harder than the fluid in the

middle. Also, as a consequence, the added mass in the Poiseuille flow case is 6 times the

added mass in the Squeeze flow case.

3.4 Kinetic coenergy method applied to Squeeze flow

In Figure 3.7, the velocity profiles of the inertialess solution, equation (3.30), and

that of the full solution obtained from equation (3.33) are plotted for Re=l, 10, 30, 100,

and x/h = 1. It can be seen that the profiles match, nearly identically, for small Re. The

kinetic coenergy method is based on the assumption that fluid inertia does not change the

velocity profile much.
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The kinetic coenergy stored in the fluid is

1 2dT* = u2 dr

where dm = p b dx dy is an infinitesimal mass of the fluid, thus

h L

T*=-f pb f L u2 
d x dy

2

and if we assume that u is given by the inertialess solution, equation (3.30), then

T* =1 0.1 pbL3 ]2 (3.39)
=2 1 h J

Equation (3.39) represents the kinetic coenergy stored in the fluid, but it is only a function

of the position and velocity of the surface h and fi, respectively. The quantity between the

brackets represents the "added mass" to the surface, that is we are representing the fluid

particles with a point mass located at the center of the surface. Thus, here also, we can

obtain the forces acting on the surface due to fluid inertia by calculating the inertia force due

to the point mass. If we take the velocity of the surface Ii as our generalized velocity, then

the generalized momentum in the direction of Ii is given by
_T* ( bL

- = 0.1 h h h (3.40)

Note that this generalized momentum acts in the perpendicular direction to the fluid

velocity. In obtaining the full solution, we were not able to satisfy the boundary conditions

(3.23), (3.27) as discussed earlier, and we had to replace h by its mean value c. To be able

to compare the approximate solution with the full solution, replace h by c in equation

(3.40). This is an approximation for small E=e/c. Thus in this case, we can neglect the

effect of the kinetic energy of the fluid particles that leave the system. Using Lagrange's

equation of motion, we find that the inertia force is given by

d ( aT* +T* ( pbL 3
F-= - -- +±--=- 0.1

dt af ah c

For Ii = e co sin cot, then i"= e co2 cos (t and

Fj = - . p0 b L3 eo2 cos cot (3.41)
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which is exactly the same as that predicted by equation (3.38). This result is plotted in

Figure 3.6 (in complex form) and it can be seen that we obtain excellent agreement with the

imaginary part of equation (3.36), especially at values of Re less than 50. Thus one may

conclude that the approximate kinetic coenergy method gives a reliable prediction of the

inertia force.

If we retain h in equation (3.39), then using Lagrange's equations the inertia force

becomes
Fj d / ( T* DT* (0.1pb 3  [ i ] (3.42)

F d= - f + =-(. bL)h 2 h2 (.2

but in this case it is necessary to consider the effect of the kinetic energy that leaves or

enters the control volume, which is defined to be the volume between the two surfaces.

One possible approach is to use the transformation between a system of fixed identity and a

control volume with fixed boundaries[102]. This transformation for any extensive

property of the fluid N, is given by [102]

DN= - p 1 dV + J 1P Von dS (3.43)

where TI is the extensive property per unit mass, V is the volume of the control volume, S

is the area of the control surface, V is the vector velocity distribution on the control surface,

and n is the unit normal on the control surface. The first term on the right hand side of the

above equation represents the rate of change of the extensive property within the control

volume, and the second term on the right hand side of the above equation represents the

flux of the extensive property through the control surface. If we consider our extensive

property to be the inertia force predicted by Lagrange's equations, and defining t* to be the

kinetic coenergy per unit volume within the control volume, such that

T* =1 t* dV (3.44)

then applying equation (3.43), we get
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[d T* DT*1 F t* ^ a(V n 1)Fj .= + V~ -~ -fS n dS + t* a~ dS (3.45)

where j is our generalized coordinate. The first term on the right hand side of the above

equation represents the inertia force within the control volume, and the second term on the

right hand side of the above equation represents the inertia force due to flux of the kinetic

coenery through the control surface.

Evaluating the terms in equation (3.45), using h as our generalized coordinate, we get

h 17 h -
F = - (O0.1 Pb L h[ 7 h2 (3.46)

which is the inertia force, including the effect of the flux of kinetic energy through the

control surface.

Another approach to obtain the full inertia force is to perform an energy balance on

our system. Thus the rate of work done by the inertia force is equal to the rate of change of

kinetic energy within the control volume plus the flux of energy crossing the control

surface. For this system the kinetic energy T is equal to the kinetic coenergy T* (see

appendix), and we can write the following:

Rate of work done by the inertia force = - Fii

Rate of change of kinetic energy within the control volume = DT/Dt
h

Flux of energy crossing the control surface = 2 J p u/ 2 b u 2 dy

where uu2 is the velocity distribution at x=L/2.

Thus

- jf T + h 1 Pu2
-- Fi li = + 2U/2 b uL/2 dy

or

3 f 1 f2 . 27 3 i2
- Fj fi =(0. 1 p b L3 h -2 h 2 hi 140 p b L2 h i (3.47)
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Therefore

F - (0.1 p b L)[ h 7 h2 (3.48)

which is the final form for the inertia force. That is the inertia force of equation (3.42) has

to be corrected to take into account the kinetic energy that leaves or enters the control

volume, to arrive at the inertia force of equation (3.48). But it is instructive to see the

process of obtaining the inertia force. It can be seen from equation (3.47) that the rate of

work done by the inertia force obtained by Lagrange's equations, equation (3.42), is equal

to the negative of the rate of change of kinetic energy within the control volume aT/at.

Thus the correction to the inertia force predicted by Lagrange's equations can be obtained

only by considering that the rate of work done by this correction to the inertia force is equal

to the flux of energy crossing the control surface. It should be noted that the inertia forces

predicted by equation (3.46) and equation (3.48) are the same.

Perhaps it would be a good idea to summarize the procedure for obtaining the

inertia force, for systems that lose kinetic energy through the flux of particles crossing the

control surface. First define the control surface and the generalized coordinates for the

system. Next calculate the kinetic coenergy for the fluid within the control surface, then

use Lagrange's equations to predict (part of) the inertia force. A correction to this inertia

force can be obtained by considering that the rate of work done by this correction to the

inertia force is equal to the flux of energy crossing the control surface. This approach is

valid only for a single component of inertia force, for a multi component inertia force we

should use the first approach in the last step, that is we should use the transformation

between a system of fixed identity and a control volume with fixed boundaries.

For f=e c 2 cos ot, li = e o sin ot and h =c - e os ot, then (3.48) becomes

F. = b- -_--____ (3.49)Fj p0c oscot 1 7 1sn E cot J ) o2 2[0 (1-E-Cos cot) 7 _1F COS Cot )2
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where e = e/c.

In order to be able to compare the inertia forces predicted by equations (3.49) and

(3.38), let us first recall the assumptions upon which each is based. Equation (3.38)

represents the force obtained from the solution of the differential equations governing the

fluid flow, and assuming

a) c = e/c << 1,

b) convective acceleration is neglected,

c) the boundary conditions at the moving boundary are satisfied at an average

position.

While equation (3.49) represents the inertia force calculated from the kinetic coenergy of

the fluid assuming that the velocity profiles predicted by the classical lubrication theory are

a good enough approximation, even with the presence of fluid inertia. The restrictions a)

and c) above are not assumed.

Because of the assumptions made in obtaining equation (3.38) (outlined above), the

effects of convective acceleration and the moving boundary cannot be estimated from this

kind of formal solution of the differential equations of motion using the techniques of linear

theory.

On the other hand, the kinetic coenergy method should, in principle, be able to

determine the effects of convective acceleration on the total inertia force as well as the

temporal acceleration. Comparing equations (3.38) and (3.41) it is clear that the kinetic

coenergy method determines the effects of temporal acceleration quite accurately. But this

was done by adding the restriction that h is replaced by c. Leaving in h, as was done in

obtaining (3.49), should at least account for the time varying nature of the boundary

conditions.
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The first term inside the brackets in equation (3.49), as E-+0, is the same as the

inertia force predicted by equation (3.38), so it may be considered to be a correction to

equation (3.38) for large e. The second term inside the brackets in equation (3.49) is of the

same order of magnitude as the first term if E is large, but can be neglected for small E.

This second term is not present at all in equation (3.38). In the next section we are going to

show that this term is due to the combined effect of the moving boundary and convective

acceleration.

3.5 Convective acceleration and moving boundary

An alternative approximation to the solution of the Squeeze flow problem that will

enable us to estimate the effects of convective acceleration and the moving boundary is

described below. An assumed velocity profile is inserted into the momentum equations

which are then integrated to obtain the forces. Let us consider the full x-momentum

equation

au au au 1 ap a2u
-+u-+v-=- +v -- (3.50)at ax ay p ax ay2

while the y-momentum still implies that the pressure gradient ap/ax is independent of y.

Also the continuity equation is still
au v (3.51)
ax ay

Let us assume that the x and y dependence of the u velocity is similar to that of the classical

lubrication theory. That is let

u = Uxy 1 -Y- (3.52)

where U is a still undetermined function of time. This assumption will facilitate the

solution of the problem.
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Substituting (3.52) in the continuity equation (3.51) and integrating over y from 0

to h, we get
h

Uf y(1 -dcy + li = 0

from which we can determine U to be
6.

h2

and substituting in (3.52), u becomes

u= -h x y 1- (3.53)
h

Substituting (3.53) into the continuity equation (3.51) and integrating over y, we find that

V= 2- + C

where C=C(x,t) is yet to be determined. The above equation has to satisfy the following

boundary conditions

at y = 0 v = 0

and at y = h v = 1i

we find that a value of C = 0 satisfies both boundary conditions, thus v becomes

= i y - (3.54)

Integrating the x-momentum equation (3.50) over y from 0 to h and substituting for

u and v from equations (3.53) and (3.54) respectively, we get
op 1 .2.4 .2 12 v

Sp xh h2 h fi

The above equation can be integrated over x, with the boundary conditions

p=0 at x=+L/2

Thus

p [1 _ 2.4 fi2 +312V3 3 i 2 L 2

2 fc h F2 ai o x 

The force F acting on the surfaces is
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L

F = b L p dx
2

p bL 3 L . 2.4i2l+V fi (3.55)
12 h h 2 h3

If we let h = c - e cos cot , then F becomes

b (1 sin ot Re cos ot 2.4 Re E sincot

C 3 - cos Cot )3  12 ( 1 - e scos (t) 12 (- cos Cot )2

(3.56)

where Re is given by equation (3.13).

Equation (3.56) represents the force acting on the moving surface, including the

effects of the moving boundary. The first term represents the contribution of the viscous

force, the second term is the force due to temporal acceleration, and the third term is the

force due to convective acceleration. The (1 - e cos cot) terms in the denominators of each

of these three terms represent the effect of the moving boundary. The denominators all

tend to a value of 1 as the amplitude of oscillations tends to zero.

Comparing equation (3.56) with equation (3.38), we find that, apart from the effect

of the moving boundary described in the previous paragraph, the viscous terms are the

same (which are also the same as the viscous force predicted by the classical lubrication

theory solution, equation (3.29)), and the terms due to temporal acceleration differ only by

a factor of 1.2. This is because we assumed that the velocity profile, equation (3.52), is

that of the classical lubrication theory, and thus the effect of larger Reynolds numbers is not

taken into account. Equation (3.38) does not contain the term due to convective

acceleration present in equation (3.56) as it was neglected.

Comparing equation (3.56) with the kinetic coenergy method result equation

(3.49), we find that both the temporal and convective acceleration terms differ
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approximately by a factor of 1.2, (the 17/7 term in (3.49) is equal to 2.43 versus 2.4 in

(3.52)). In fact the difference between (3.49) and (3.56) is 16.67% in temporal

acceleration terms, and 17.65% in convective acceleration terms. Now we have to keep in

mind that both of the techniques that led to equations (3.49) and (3.56) are approximate,

thus these differences should be expected, and we cannot determine if one of them is more

accurate, but one can say that both techniques account for the convective acceleration terms

and they both show the nature of the effect of convective acceleration on the inertia force

approximately.

It was shown earlier that the temporal acceleration term predicted by the kinetic

coenergy method is the limit as Re -> 0 of the temporal inertia force acting on the surfaces,

in the case that e<<1, and it was also shown that this limit is quite accurate for Re up to

about 50. This seems to give the inertia force predicted by the kinetic coenergy, equation

(3.49), an edge over that predicted by equation (3.56), since equation (3.56) will not

predict the temporal acceleration term correctly (there is a factor of 1.2) as e<<1.

Thus it may be concluded that the kinetic coenergy method is capable of finding the

forces due to the inertia of the fluid, due to both temporal and convective accelerations,

rather simply and accurately.
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Chapter 4

Fluid Inertia Forces In Squeeze Film Dampers

In the previous chapters we introduced the kinetic coenergy method as a simple and

effective tool for calculating the fluid inertia forces in squeezing flows. In this chapter we

use the kinetic coenergy method to calculate the inertia coefficients of squeeze film

dampers. Both the long and short bearing approximations are considered.

The fluid inertia forces acting on the journal for both the long and the short dampers

are calculated by using Lagrange's equations, which should be supplemented to account for

the effects of the fluid particles that leave (and enter) the control surface carrying kinetic

energy.

Finally, the fluid inertia forces are calculated by solving the governing equations for

a squeeze film damper executing a small circular centered whirl. It is shown that in this

case, the kinetic coenergy method correctly predicts the fluid inertia forces.

4.1 Inertia coefficients for short dampers

The kinetic coenergy of the fluid was defined in chapter 2 as

T*= Jvp( u2 +v 2 +w 2 ) dV (2.35)

where V is the volume of the fluid in the damper. Thus to calculate the kinetic coenergy we

have to know the velocities of the fluid. But since we do not know the velocities of the
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fluid beforehand, we are going to assume that the velocity profiles predicted by the classical

lubrication theory are a good approximation of the actual velocity profiles, even at relatively

high Reynolds numbers, as we did in the previous chapter.

For dampers described by the short bearing approximation, the circumferential (u)

and radial (v) velocity profiles are O(c/R) smaller than the axial (w) velocity profile, thus u

and v can be neglected with respect to w, and the kinetic coenergy becomes

02 fh L

T* = p w2 R d dY dZ (4.1)
2

The axial velocity, w, was calculated in chapter 2 to be

W = 6 ( e * sin 0 + 6 cos 0) (2.11)

Substituting in (4.1), and integrating over Y and Z, the kinetic coenergy becomes

1 pRL3 0 2 cos20 d 2 1 pR L 3  02 sin9 2
2 10c Jf ( 1 - Fcos 0 ) 2 10c fo (1-Ecos )

pRL3  2 sin 0 cos 0 o .
+ 10 c J 0 ( 1 -Ecos6) de eCeo

(4.2)

Equation (4.2) can be written in the form
1 M 2 1 a 2 43

T* = m e +- m (e$)2+ mite e$ (4.3)

where m, mtt and mrt represent the inertia coefficients of the short damper and are given

by

p R L3 2 Cos2 d
mrr TO c J0  1 - e os 0 )

m pR L3 2 sin2 do
m" lOc J0  1 - E cos 0 )

SR pRL f2 sin 0 cos0 dO
ma 10c fo 1, 1 - e Cos 0 ) d
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The limits of integration 01 and 02 represent the extent of the fluid film in the damper.

Thus for a full film 01 = 0 and 02= 2r. For a cavitated damper we are going to assume

the n-film theory, which we discussed in chapter 2. Although the ic-film theory does not

describe accurately the conditions in the damper, we have used it in obtaining the damping

coefficients for lack of a better theory. Including inertia in the analysis, we anticipate that

the extent of the positive pressure in the film should be different from n, yet because we do

not fully understand cavitation, and to have results compatible with the damping analysis in

chapter 2, we are going to use the n-film theory here also. The discussion in chapter 2

about the limits of integration for the damping coefficients apply here also for the inertia

coefficients. Thus for a general motion the inertia coefficients of a ic-bearing will depend

on the velocity of the journal, as well as its position.

For a i-bearing, with a journal executing a nearly circular counter-clockwise whirl,

the limits of integration can be taken to be 01= 0 and 02= 7t, and the coefficients mr, mtt

and mrt take the form
3 pR3 3RpRL * _pRL * _pRL *

= c m , mtt c mtt, mrt c mit

where
M 1ic 1212 (4.4)

( 1 2 2 1/2

1 2 1/2 (4.5)

1 1 F 
m1= - - - log +2 (4.6)

These coefficients are plotted in Figure 4.1, versus the eccentricity ratio, from which it can

be seen that the inertia coefficients increase with the increase of the radius of the orbit, and

mrr and mrt become infinite as e approaches 1. Thus as the journal executes a larger orbit a

larger amount of kinetic coenergy is stored in the fluid. For a 2ic-bearing the coefficients

mrr and mtt are double those for a n-bearing and mrt is zero.
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The inertia coefficients mr, mtt and mt are quite similar to those obtained by Smith

[80]. In fact they are only 20% larger than the coefficients he derived through a heuristic

argument [70]. In section 4.4, we are going to show that the inertia coefficients derived

here provide the correct inertia forces in some limiting cases.

Equation (4.3) implies that we are modeling the fluid particles by a point tensor

mass (whose components are mrn, mtt and mrt) at the center of the journal. This tensor

mass represents the inertia coefficients in the control volume which contains the fluid in the

damper. To see that the added mass has the characteristics of a tensor, let us calculate the

momentum vector P of the point mass

P= Pr ur + pt ut

where pr and pt are the radial and tangential components of the momentum vector and ur

and ut are unit vectors in the radial and tangential directions respectively, and
T* a1 aT*

Pr=- and Pt=--

On calculating the above quantities, assuming that mrr, mtt and mrt are velocity

independent, we find that

IPr Mrr MrtJ}

Pt (Mt mtt e

from which it can be seen that the point mass is a tensor relating the momentum vector to

the velocity vector. Having a mass tensor representation of a particle implies that the

particle has different inertia characteristics in different directions, that is it is non-isotropic.

We had seen earlier that the damping characteristics of the damper are non-isotropic too.

4.2 Inertia coefficients for long dampers

For dampers described by the long bearing approximation, the radial (v) and the

axial (w) velocity profiles are O(c/R) smaller than the circumferential (u) velocity profile,
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thus v and w can be neglected with respect to u, and the kinetic coenergy, equation (2.35)

becomes

T*= 1p u2 R dO dY dZ (4.7)
1 2

The circumferential velocity, u, was calculated in chapter 2 to be

6R Y Y2[ ._.._3 .1
u = h 2 sin6 e-cos 0 e+ 2 e+ 3 (2.25)

h (2 +E )
Substituting in (4.6), and integrating over Y and Z, the kinetic coenergy becomes

3 023 02 3 2 -c
02 2 '2- Cos0

1 12pR3L sin20 D2 1 12pR3L ( 2+2T* = 2 10 C J ( 1 - E Cos d e + 2 10 C ( - E O 0 dcos )

0sin 0 - Cos 0
12 p R3 L f 2 s 2+E 2  cos o

10 C (1-Ecos) dO e

(4.8)

Equation (4.8) can be written in the form of equation (4.3) where in this case mr, mtt and

mt represent the inertia coefficients of the long damper and are given by

M =12 p R 3 L 02 sin 2 0 d
mm 10 C fo ( 1 - e Cos 0 ) d

3 02 e 22- l~~c -cos)d

12 p R3 L 2 2+ E2 s)1 d
m"- 10 c J0  (1-e cos)

0 sin 0 3 -coso
12 p R 3 L f 2 2+ E2

Mc 10 C f( - e cos ) dO

As discussed in the previous section, the limits of integration 01 and 02 represent the extent

of the fluid film in the damper. Thus for a full film 01= 0 and 02= 2x. For a cavitated

damper we are going to use the n-film theory, and in general the limits of integration will

depend on the velocity of the journal.
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For a 7r-bearing, with a journal executing a nearly circular counter-clockwise whirl,

the limits of integration can be taken to be 01 = 0 and 02= n, and the coefficients mrr, mtt

and mrt take the form
p R3L * pR3 L * pRL *

c m r , mtt mtt , Mrt c nit

where
* 12 2 1/2 (4.9)

mff = - ( - - 2)1/ I 410e2

* 12 71 4 ( 1 - 2 )3/2 2
mtt = - +((25+E -2) (4.10)

10 e2 (2+e2 ) ( 2+ E2

* 12 2 2(1- 2)1 (4.11)
mrt = - + 2 log( I(4.)10 6 E2 ( 2 + E2 ) 1 +6

These coefficients are plotted in Figure 4.2, versus the eccentricity ratio, from which it can

be seen that the inertia coefficients increase with the increase of the radius of the orbit. For

a 2n-bearing the coefficients mrr and mtt are double those for a it-bearing and mrt is zero.

It should be noted that, unlike for the short damper, the inertia coefficients for the

long damper presented here, are different from those of Smith's [80], but the coefficients

derived here provide the correct inertia forces in some limiting cases (see section 4.4).

4.3 Fluid inertia forces

In sections 4.1 and 4.2, we have calculated the kinetic coenergy of the fluid as a

function of the velocity of the journal. For both the long and short dampers the kinetic

coenergy takes the form of equation (4.3) which indicates that the fluid particles are

modeled as a tensor mass at the center of the journal.

As discussed in chapter 3, the fluid inertia force consists of two components, one

component is due to the inertia of the fluid within the control volume and the other
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component is due to the flux of the fluid at the control surface. The inertia force predicted

by Lagrange's equations is the component due to the inertia of the fluid within the control

volume. Thus the fluid inertia forces take the form (see equation (3.45))

a(V * )
Fi,r = Fri - -C V-n dS + ft* dS (4.12)

1 f t 1 fc a(V- )
and Fi t = Fti - - - V * n dS + - t* n dS (4.13)

- ~ C e Is* e s a$

where Fi,r is the radial inertia force and Fi,t is the tangential inertia force, t* is the kinetic

coenergy per unit volume, V is the velocity of the fluid with respect to the control surface

S, n is the outward normal vector on the control surface, and Fri and Fti are obtained by

Lagrange's equations and are given by
d ( DT* ) aT*
dt -i '+-e
i d ( T* 1 BT*

and Ft = - - d t + - --- (4.15)
S e dt a* e DV

Before calculating the inertia forces, we note that in general cavitation has the effect

of making the inertia coefficients depend on velocity as well as position. For uncavitated

dampers and for cavitated dampers whose journals execute nearly circular centered whirls,

the inertia coefficients are position dependent only. This is the case that we are interested in

in this thesis (see chapter 5). Thus we are going to neglect the velocity dependence of the

inertia coefficients when we calculate the inertia forces.

First we calculate the compoments of the inertia forces given by equations (4.14)

and (4.15). Thus we get
.. 1 amrr e2 .. ( 1 amtt

and rman e -m (V m + ) e 2 (4.16)

and Fti=-mrtems- mrt +e - mt+ -'e 2 $ mtt e (4.17)

Equations (4.16) and (4.17) indicate that the Fri and Fti components of the fluid inertia

forces are a function of the accelerations of the journal, namely the radial acceleration e, the
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tangential acceleration e V, the centripetal acceleration e $2, and the coriolis acceleration 2 i

*, and a radial acceleration d2/e which is not an acceleration of the journal, but the journal

"feels" its effects due to the inertia of the fluid. This acceleration requires more

investigation, since the techniques we employ here do not give us a clear understanding of

its origin.

am amtt Dmrt
The quantities e , e , and e j--, which are present in equations (4.16)

and (4.17) are plotted versus the eccentricity ratio E (in nondimensional form), for a ir-

bearing, whose journal executes a nearly circular centered whirl, in Figures 4.3 and 4.4 for

short and long dampers, respectively. From these plots it can be seen that these quantities

are nearly zero up to e = 0.1 and then increase. Thus these quantities can be neglected in

the analysis of dynamic systems in which e is relatively small.

To calculate the flux terms in equations (4.12) and (4.13) for the short squeeze film

damper, we note that the velocity vector V depends on the axial velocity profile at z=L/2

and z = -112, termed wL and w-L respectively. Substituting z = L/2 in equation (2.11) for

wL then

WL = 3 - Y cosO + e * sinO) (4.18)

and substitutuing z = -L/2 for w-L then
W-L J- - ( 6 cos + e * sine) (4.19)

and thus the kinetic coenergy per unit volume at z=L/2 and z=-L/2, termed t*L and t*-L

respectively are given by

t*L = t*-L 2 2( cos2  + 2sinecos iee*+sin2 e 2 2

(4.20)

The velocity V. n is given by
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-e J < 0<01 + 71

01 + u < 0 < 01 + 27

at z=L/2

(V. )-L

01 + 7C <

}
<0<01 + <01

0 < 01 + 2r

and at z=-L/2

If we define Ri and Rti as the inertia forces due to the flux of the fluid particles

across the control surface in the r- and t- directions respectively, and substituting equations

(4.18-4.22) into equations (4.12) and (4.13) respectively, we get

Rri = - mil
-2
e-2 M21 6*- M12 e * (4.23)

- 2 M 12 6 * - M 2 2 e *2

where

54 pRL
11140 c

54 pRL3

M 54 pRL
12 140 c

1+7C cos3 0'a

J 0 ( E1 - cosO )2

01+ 7CsinO cos2e
'a

J 1 ( 1 - E CoSO )2

01 sin2 0 cos0

Jo1 ( 1 - E CoS) 2

27
dO - -- 2

140
pRL 3

c

27 p R L3

140 c

27 pRL 3
d ---140 c

01+ 21E

501+

cos 0

(1 - c cos0 )2

.01+2n sinO cos2 0

01+H ( 1 - E coso )2
dO

01+2n sin2 0 cos0

f1+71 (1-FE coSO) 2
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(V * n )L

-wL)

01 = tan 1

01 = tan~1

(4.21)

(4.22)

and

Rti = - M21

62

e (4.24)
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22 54 pRL3 E 1+R sin30 27 pR L3 E 1+2n sin3542 --- E dO -- E in dO2140 c 01 ( 1 -e CosO )2  140 c j 1 + 7 ( 1 - E cosO )2

For a it-bearing, with a journal executing a nearly circular counter-clockwise whirl,

the limits of integration can be taken to be 01 = 0 and 02= it, and the coefficients mi1 ,

M22, m12 and m21 take the form

pRL3 * pRL * p RL * p R 3
mi i = C iM22 M Ei2 2 , M12  M i 12 , i 2 1  21

where

* 27 i ( 2 -3 82)]-27x 2- (2 15] (4.25)
m ~140 F2 2 ) 1.5 (.5

* 27 iF 2 / 1E
m22 7 140 [4+ - log( (4.26)

* 27 (2-E2) ~M2 - 2 - 4.7140 2 . , ( + - 2 /

* 27 1 2 2 e(1-4i.27
2 7+ - log 1 'i )+ 2 ] (4.28)140 eI ( 1 - e2 ) E 1 + E_

These coefficients are plotted in Figure 4.5 versus the eccentricity E. For a 2ir-bearing the

coefficients m21 and m22 are twice those for a it-bearing, while m11 and m12 are zero.

To calculate the flux terms in equations (4.12) and (4.13) for the long squeeze film

damper, we note that the long uncavitated damper has no fluid flux through its control

surface, thus there is no flux terms in the inertia forces for the long uncavitated damper.

For the long cavitated damper, the control surface is determined by the boundaries of the

cavitated film and there is fluid flux through those boundaries. Thus the flux terms for the

cavitated damper depend heavily on the cavitation theory being used and the orbit the

journal is executing in the damper bearing. Here, as discussed earlier, we are interested in

the it-film theory and circular centered whirl of the journal in the bearing, and in this case
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the velocity vector V depends on the circumferential velocity profile at 0 = 0 and 0 = x,

termed uo and us, respectively, and on the velocity of the control surface R $.

For a circular centered whirl 6 is zero and the circumferential velocity profile u ,

equation (2.25), at 0 = 0 becomes

6R Y Y2  3 E-uo = h h 2 - 1 )Je (4.29)o h o h k2 2+e

and at 0 = n , u becomes

u- 2+2 + e (4.30)

where ho is the the film thickness at 0 = 0, and hn is the film thickness at 0 = n. Thus the

kinetic coenergy per unit volume at 0= 0, to*, becomes

1 36 R2  Yy 2 2 3 e je 2 2 (4.31)
to=gP 2 ho 2 -2(-1

ho ( ho 2+

and at 0 = n, t,*, becomes

1 36 R2 Y y 2 2 3 +) e 2 2 (432* 2 h 2
h1+ln he 2+e2 )

The velocity V n is given by

UO + R 0, 9 0

V . n=
Rj 0=~ (4.33)

{ue+-R4, 0 =0

Substituting in (4.13), the component of the tangential inertia force due to the flux of the

fluid through the control surface is

R= - M22 e 2
(4.34)

where
p3L

a 22 LM22

and
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3e3 3 )31F 2 23~

54 2 2+e2 (2+E 2  32 (2 +2
M22* =5 F + -

35 '_ 2 (+E()2 (L +E) j

(4.35)

Figure 4.6 shows a plot of m22* versus e.

For future reference, the general form of the forces acting on the journal of a

squeeze film damper is given below. The radial force, from equations (2.18), (4.16) and

(4.23), is

.. _1 amr e2 .. 1 amtt .VFr =-mrr e - ae 1 + )i - - -M21 2 + ( mtt + e -M12 eV

- mrt e #-Crr d-Crt e

(4.36)

while the tangential force, from equations (2.19), (4.17) and (4.24), is

.. amrt e2 amtt...
Mrt e - e + 21 ) me + e m12 )2e -m 22 eiV

- mt e 4 - Ctr 6 - Ctt e if

(4.37)

Equations (4.36) and (4.37) are valid for both the long and short dampers, provided that

coefficients of each model are used, and with the understanding that m11 = M22 = M12=

M21 = 0 for the long uncavitated dampers. These equations are the most general form of

the forces acting on the journal of a SFD, except for the assumption that the inertia

coefficients are velocity independent.

The centrifugal inertia force is determined by the quantity
1 amtt

mt = mtt + e - m M12, as can be seen from equation (4.36). Figure 4.7 shows a plot

of mt versus e for a short SFD with i-film, from which it can be seen that mt is nearly
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constant for small to moderate values of e, but for excessively high eccentricities (F > 0.8),

mt becomes negative. Thus for high eccentricities, the centrifugal inertia force reverses its

direction, and acts inwards. This is due to the M12 coefficient, thus it occurs only in

cavitated short squeeze film dampers.

4.4 Solution of the governing equations for a small circular centered whirl

In this section we are going to present the solution of the partial differential

equations describing the fluid in the damper for one of the few special cases in which these

equations are solvable, namely a small circular centered whirl of the journal. Then we will

show that the inertia forces predicted by the kinetic coenergy method described above, are

the same as that of the solution of the partial differential equations in this special case.

For a small circular centered whirl, that is with e << c, the convective acceleration

terms in the Navier-Stokes equations can be neglected, and equations (2.32 - 2.34) become

au 1 ap a2u (4.38)
t p aX + Y 2

P 0 (4.39)

aw 14 ap2w- - - + - (4.40)
at p Z ay2

Furthermore, the boundary conditions on the upper surface of Figure 2.2, can be satisfied

on the average. Thus the boundary conditions that equations (4.38 - 4.40) have to satisfy

are

At y=0 u=0 v=0 w=0
(4.41)

At y=c u=U v=V w=0

where, for a circular whirl U and V are given by ( see equation (2.8))

U = e * cos 6
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V= - e* sin e
or

U = Real { e co ei }

V= Real { i e o elO }

where i = (-1)1/2 and co = * is the frequency of the whirl. In this case 0 = (P - cot which

suggests that the upper surface of Figure 2.2, travels like a wave, and thus we should seek

a solution in the form

u = UO eiO v = VO ei0 w = WO eie p = PO ei0 (4.42)

where Uo, VO and WO are functions of Y and Z, while Po is a function of Z only.

Substituting (4.42) into (4.38), we get

d2U0 i pco

dY2  p Uo0 TR PO

which can be solved for Uo using the boundary conditions (4.41), thus, neglecting terms

of O(c/R), we get

U0 = Po
Sp co R

sinh(s(Y-c))-sinh(sY)+ sinh(sc)

[ sinh (s c ) J
(4.43)

where
1 Re

s=- -- (1-i)c V 2

and Re = p co c2/g is the Reynolds number. Substituting (4.42) into (4.40), we get

d 2W+

dY2

1 dPO
W -

p~ d Z

which can be solved for Wo using the boundary conditions (4.41), thus
i dPO sinh(s(Y-c))-sinh(sY)+ sinh(sc)

p o dZ I sinh ( s c )
(4.44)

Substituting (4.42), (4.43) and (4.2

aVo i d2PO 1
2 2

44) into the continuity equation, equation (2.6), we get

PO J [ sinh ( s (Y - c ) ) - sinh ( s Y ) + sinh ( sc)
sinh ( s c ) J

The above equation can be integrated over Y to obtain
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VO M
d2Pd2 P

dZ2

1

R 2
0

Butat Y =0, Vo=O, thus

d 2P0

dZ 2

Icosh ( s ( Y - c ) ) - cosh ( s Y ) + s Y sinh ( sc )
s sinh ( s c )

C1 = )- C
and Vo becomes

1
PO [cosh ( sc )1

s sinh ( sc)JI

1

R 2 [cosh ( s (Y - c) ) - cosh (s Y ) + s Y sinh (sc )+ 1
s sinh ( s c )

- cosh ( sc ) ]

The other boundary condition that Vo has to satisfy, namely, at Y=c the velocity VO=i e o,

gives us

d2

2 R2
P 2 [ s c sinh ( s c.)

c 2-2cosh(sc)+scsinh(sc)

which is a differential equation that the pressure PO has to satisfy together with the

boundary conditions

PO = 0 at Z = ± L/2

and on solving (4.45) we get

POp e (o2 R2
= p=ecR

[ s c sinh ( s c )
L 2-2 cosh(sc)+scsinh(sC) IIcosh( 2 Z

c L
cosh (

where D = 2R is the diameter of the damper. Equation (4.46) is a finite length solution for

the pressure Po in a squeeze film damper whose journal executes a small circular-centered

whirl, which is valid for all Re ( in the laminar region ).

The pressure in the damper is given by

p = Real [p e co2 R2

c
s c sinh ( s c)

2 - 2 cosh ( sc ) + sc sinh ( sc )

cosh ( 2Z

cosh(L
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The pressure in equation (4.47) depends on Re only through the terms inside the first

square bracket, namely

f(Re) pe
s c sinh ( s c )

2 - 2 cosh ( sc ) + sc sinh (

If we take the limit as Re -+ 0 of equation (4.48) we get

Em f(Re) = 12 R2 ge i+ Re
Re-O-> c3 10

(4.49)

Figure 4.8 shows a plot of the real and imaginary parts of f(Re) versus Re as predicted

from equation (4.48). Also plotted on Figure 4.8 are the real and imaginary parts of the

limit of f(Re) as Re --> 0, equation (4.49), from which it is clear that equation (4.49) is a

good approximation of equation (4.48) for Re up to about 50.

The forces acting on the journal can be obtained by integrating equation (4.47), thus

(see Figure 2.4)
L

Fr= - J p cos 0 R dO dZ
2 1
L

Ft=f 2 f2
- L

p sin 0 R dO dZ

Now using the limit of f(Re), equation (4.49), in equation (4.47), the forces acting on the

journal become

Fr = 12 3 ecoc

Ft = 12 3
c

1

1

tanh (L

L

tanhQ(L

L
D

}[ -2

o 1
sin 0 cos 0 dO +

02

- 1 sin 2 dO
0J

Re
+0

'S

Re

02

f02

01
cos2 0 dO

(4.50)

sin 0 cos 0 dO
J01 I

(4.51)
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where the quantity

KL={ I tanh( }
KL L

has been termed a leakage factor by Warner [100] which accounts for the finiteness of the

damper. Equations (4.50) and (4.51) represent a finite length solution to the governing

equations. To be able to compare the results of the kinetic coenergy method with the above

equations, we have to consider the limiting cases of long and short dampers. For a long

damper L/D -> O thus KL -+ 1, and for a short damper L/D - 0 thus KL -* 1( L

For a long 27r-bearing equations (4.50) and (4.51) become

Fl piR3L 2Fr = 12 10c 7r e co

p 3L
Ft = - 12 3 L e o

c

The radial force is the centrifugal force and the tangential force is the damping force. These

forces are the forces acting on the journal when it executes a small circular-centered orbit in

a 2ii-bearing. These are the same forces as those predicted by equation (4.36) for Fr and

(4.37) for Ft, if we take the limit as e tends to zero of the inertia and damping coefficients,

which is the condition of a small orbit. It can be shown that for the n-bearing we get half

the forces for a 2n-bearing, when we apply each of the above techniques.

Similarly, for a short 2n-bearing equations (4.50) and (4.51) become

pRL3 2Fr = 0Cneo

Ft=- 3 _ c (
c

The radial force is the centrifugal force and the tangential force is the damping force. These

forces are the forces acting on the journal when it executes a small circular-centered orbit in
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a 2n-bearing. These are the same forces as those predicted by equation (4.36) for Fr and

(4.37) for Ft, if we take the limit as E tends to zero of the inertia and damping coefficients,

which is the condition of a small orbit. It can be shown that for the n-bearing we get half

the forces for a 2n-bearing, when we apply each of the above techniques.

Thus in this section we have shown that the forces acting on the journal when it

executes a small circular-centered orbit in a squeeze film damper, obtained by taking the

limit as Re -+ 0 of the solution of the governing partial differential equations, are the same

as those predicted by the kinetic coenergy method. Also it was shown that the limit as Re

-* 0 of the pressure, and thus the forces, is nearly constant up to Re = 50, which is the

region of application of squeeze film dampers in practice. Thus we may conclude that the

kinetic coenergy method reliably predicts the inertia forces in squeeze film dampers.

Concluding this chapter, we have now completed the development of the squeeze

film damper model, including both the damping forces (chapter 2) and the inertia forces

(this chapter), and for both the long and short dampers. This model is going to be

employed in the next chapter to study the dynamics of a rotor incorporating squeeze film

dampers.
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Chapter 5

Dynamics of Rotors Incorporating
Squeeze Film Dampers

In this chapter we employ the model we derived in chapters 2 and 4, for a squeeze

film damper (SFD), in the analysis of the steady state whirl of a rotor incorporating SFDs.

We consider a simplified rotor system which consists of a massive disk and a massless

flexible shaft. This model is referred to as the Jeffcott rotor. The Jeffcott rotor can be

considered as a one degree of freedom rotor system, thus it is valid below the second

bending critical speed of the rotor.

The main emphasis is going to be on the effect of fluid inertia on the dynamics of

the rotor. In particular, the effect of fluid inertia on the critical speeds, jump resonance

characteristics, and on the stability of the steady state.

5.1 Jeffcott rotor incorporating a SFD

Figure 5.1 shows a Jeffcott rotor mounted on two identical ball bearings, each of

which is surrounded by a squeeze film. The outer race of each ball bearing, which is

assumed rigid and massless, is constrained from rotating by a retainer spring of stiffness

Kr, which also acts to center the journal in the clearance of the oil film. The rotor has mass

2m, stiffness 2K, and damping acting at its center with a damping coefficient of 2C .
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The rotor is spinning in the bearings but this spinning does not reach the oil film,

because of the constraint on the outer races of the ball bearings. Also the rotor can

experience bending vibration.
Disk

Retainer Spring Squeeze Film

Ball Bearing

Engine 
Rotor

Frame

Figure 5.1 Jeffcott Rotor on squeeze film dampers

The oil film acts to damp this bending vibration. The rotor can experience bending

vibration both in the horizontal and vertical planes. If the frequencies of vibration in both

planes are the same, then the resulting motion is a whirling orbit.

The whirling vibration can either be a free vibration due to disturbances, or a forced

vibration due to a force applied to the rotor. The most common force applied to rotating

machinery is the centrifugal force arising from an unbalance. This occurs when the mass

center of the rotor does not coincide with the geometric center.

Usually high speed rotating machinery are well balanced, but there is always some

residual unbalance in the machine (which usually degrades with operation), that causes the

rotor to resonate as it passes the critical speed. This is the main reason that dampers are

used in rotating machinery, to aid in passing the critical speeds and to reduce the forces
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acting on the bearings and the engine frame due to unbalance. Also dampers dissipate

energy from the free vibration of the rotor. In the rest of the chapter, we study the

unbalance response of the Jeffcott rotor of Figure 5.1, with particular emphasis on the

performance of the squeeze film dampers.

ra/
d

e E
0

Disk

S

Figure 5.2 Side view of rotor

Figure 5.2 shows a side view of the Jeffcott rotor of Figure 5.1. Point 0

represents the center of bearings, while point E represents the center of the journal. Thus

the distance OE is equal to the eccentricity (e) of the journal in the damper. Point S

represents the geometric center of the disk, thus the distance SE is the deflection (d) of the

rotor at its midspan; and point G represents the center of mass of the disk, thus the distance

GS is the unbalance (u). Since the rotor is symmetrical, the eccentricities of the journals in

each bearing are the same.

Figure 5.3 shows the notation and the coordinate frames used in the analysis of the

rotor. The (x,y) frame is a stationary frame whose center is at the bearings center 0. The

rotating (r,t) frame is rotating at the whirl frequency of the journal in the damper. The
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positive r-axis joins the center of the bearing 0 and the center of the journal E, and makes

an angle N' with the positive x-axis. The rotor deflection d can in general be in a direction

making an angle a with the positive r-axis, and the unbalance u makes an angle f with

positive r-axis as shown in Figure 5.3.

t

x

Figure 5.3 Coordinate Frame for Jeffcott rotor

5.2 Equations of motion

We can consider the (x,y) plane of Figure 5.3 to be a complex plane, in which the

position vector of a point in the plane is determined by a complex number z = x + i y.

Using this complex notation the equations of motion for the Jeffcott rotor of Figure 5.1,

become

2 m G =-2 K( ZS - ZE ) -2 C s

2 K ( ZS -ZE) - 2 KrzE+2 (Fr+iFt ) e1 -O

(5.1)

(5.2)

91

y #

u

S
d

e E



where zG, zS, and ZE are the position vectors in the complex plane of the points G, S and E

respectively. The dot implies differentiation with respect to time, and Fr and Ft are the

forces acting on the journal due to the squeeze film damper. Equation (5.1) is the equation

of motion of the disk, while equation (5.2) represents the force balance at the center of the

journal. The position vectors zG, zs, and ZE are given by

zE = e e

ZS = ( e + d ei ) iv

zG = (e +d e M + u ep) eiv

Thus equation (5.1) becomes

m{ e-e$2+i(e +2 )+[(d-d (c+$)2)+i (d (o+ )+2d (&+ ))]e

+ [-u(3+$) 2 +iu(+ )]e }+CI+ ie$+[ d+id(&+$)]e ia

+Kde ia =0

(5.3)

and equation (5.2) becomes

K d e - Kr e + Fr+ i Ft = 0 (5.4)

where the forces Fr and Ft are given by equations (4.36) and (4.37). Also the condition

that the unbalance u is rotating at the speed of rotation of the rotor Q, is given by

0 + * = K2 (5.5)

which gives an additional condition on the motion of the system.

It is desirable to nondimensionalize equations (5.3), (5.4) and (5.5) to generalize

the analysis and to reduce the number of independent parameters. To do so, we divide

each of equations (5.3) and (5.4) by m On2 c, where c is the clearance of the damper, On2

= (Keq/m) is the natural frequency of the rotor-bearing system and Keq = Kr K/(Kr+K) is

the equivalent stiffness of the rotor and the retainer spring. We also define the following

nondimensional parameters:

e = e/c = eccentricity ratio
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D = d/c = nondimensional deflection

U = u/c = nondimensional unbalance

K* = K/m on2 = nondimensional rotor stiffness

Kr* = Kr/m On 2 = nondimensional retainer spring stiffness

Q*= /con = nondimensional rotor speed

T1 = C/m On = damping loss factor

Rk = Kr*/ K* = stiffness ratio

Fr* = Fr/m c On2 = nondimensional radial damper force

Ft* = Ft/m c on2 = nondimensional tangential damper force

x = con t = nondimensional time

It should be noted that since we chose to nondimensionalize the parameters by using the

natural frequency on, then K* and Kr* are determined completely by the knowledge of Rk,

since Keq*=l, then

K*= 1 + l/Rk

and Kr* 1 + Rk

This is a restriction that conveniently results in a reduction of the number of parameters

under investigation. It is not necessary to use such a nondimensionalizing scheme, we

could have chosen any other datum frequency (although in this case the undamped critical

speed will not be at Q*=1), if it is required to study the effects of the rotor stiffness and the

retainer spring stiffness separately.

Thus equations (5.3) and (5.4) become

E" - E- Nf2 + i ( e "+ 2 e' V' )

+ [D"f - D ( a',+ ')2 + i (D ( oc" + ")+ 2 D' ( oc'+ e' ) i"

+ [- U ( $'+ V,' )2+ i U (" + V" ) ] eip

+i{ E' +ieV+[D'+iD(a'+iK)]e ei }+K*De i =0 (5.6)

and
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K* D eic - Kr* e + Fr* + i Ft* = 0 (5.7)

Dividing equation (5.5) by oin,we get

P'+ V'= K2* (5.8)

where ()' denotes differentiation with respect to t.

Substituting for N' from equation (5.8) into equations (5.6) and (5.7), they become

two complex differential equations, i.e. four real differential equations, in four unknowns:

E, D, a and P. They are nonlinear equations since Fr* and Ft* are nonlinearly dependent

on the position of the journal in the damper. These equations are difficult to solve

analytically, and it has been reported [85] that they exhibit the following problems, when

solved numerically:

a) false convergence to steady state.

b) regions of multiple solution tend to involve a tedious and time consuming trial

and error.

c) only stable solutions can be found, and

d) the particular algorithm and convergence criteria used in the iterative approach

determine the accuracy and credibility of the results.

Also if these algorithms are used for multi-mass rotor systems, they will become very time

consuming.

5.3 Steady state unbalance response

Fortunately since the rotor of Figure 5.1 is symmetric, we can assume that at steady

state, the points E, S and G execute circular centered whirling orbits, at the frequency of

the rotation of the rotor Q* (since this is a forced response due to unbalance). Thus the

polygon OESG of Figures 5.2 and 5.3 is locked at steady state and is not changing, and

rotating at a constant frequency Q*. Also at steady state e' = e" = D' = D"= '= a" = =
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"= 0. Applying these conditions and substituting (5.8) into equations (5.6) and (5.7),

their real and imaginary parts become

n*2 U cos $= -e K*2+ (K* - n*2 ) D cos a - 1 K* D sin a (5.9)

n*2 U sin $= n* * E + (K* - n*2 ) D sin a + 71 Q* D cos a (5.10)

K* D cos a =Kr* E + B Ct* E * - M mt* E n*2  (5.11)

K* D sin a = B Ct* E Q* + M m22* E n*2 (5.12)

where
1 mtt*

mt* =mtt 2 ME E*

B = bearing parameter

= p R L 3/m On c3 for short dampers

= R3 L/m on c3 for long dampers

M = Inertia parameter

= p R L3/m c for short dampers

= p R3 L/m c for long dampers

The nondimensional damping and inertia parameters C*ij and m*ij are given by equations

(2.28-2.31), (4.9-4.11) and (4.35) for long dampers, and by equations (2.20-2.22), (4.4-

4.6) and (4.22-4.25) for short dampers.

Equations (5.9) - (5.12) are four nonlinear algebraic equations in the four

unknowns E, D, a and $. Instead of solving these equations numerically using a

nonlinear equation solver like the Newton-Raphson technique, which will involve a tedious

trial and error in regions of multiple solution, we are going to manipulate equations (5.9-

5.12) further. The goal is to obtain a polynomial in Q* whose coefficients are functions of

c. Taylor and Kumar [86] were successful in doing so, for a rigid rotor mounted on

squeeze film dampers. They solved the resulting fourth order polynomial in closed form to

obtain the unbalance response.
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Squaring (5.9) and (5.10) and adding, we get
U 2 f*4 _ 01 2 + 2* 2 ) E2 Q*2+ [ ( K* - Q* 2 )2 + T12 Q*2 D2 (COS2(X + sin 2X

+2E Q* [ l K*D sin a+Q*(ri 2 -K*+ Q*2 )D cos a]

Substituting for D cos a and D sin a from (5.11) and (5.12), respectively, into the above

equation, and after some extensive algebraic manipulation we get

a, 1 *8 + a2 K* + a3 Q*6 + a4 9*5 + a5 Q*4+ a6 Q*3 + a7 K*2+ a8 Q* + a9 = 0

(5.13)

where

a, = (mt* 2 + m22* 2 )
K*

a2 = 2 (Ctt* m 2 2 * CA* m *)
K*

a3 = [B 2 ( Ctt*2 + C 2 ) - 2 M Kr*
K*3

mt* + M2 (12 - 2 K* ) (mt* 2 + M22*2 )

- 2 M K* mt* ]
2B 2

a4 = 2 [ Crt* (K* + Kr*)+ M (1 - 2 K*)( Ctt* m 22* - Crt* mt*)]
K*

U 2 MI 2 mt* 2 Kr*
a E = 1-K* +2Mmt*+ K*EK

Kr*2  
2

+ +(mt 2 + M22

+ 2 - 2K* ) [ B 2 ( CH *2 + Crt*2 )- 2 M Kr* mt*
K*2

2 B Crt* 2  2 (T12 - 2 K*) Kr* B Crt*
a6 = 2 M m 22* r + K* 2 B Crt* + K*2

+ 2 M B ( Ctt* m22* - Crt* mt*)

a7 = T2 2 i 2 Kr*a 7 =~ 2B~t~1+2 ~Kr* + B2 ( Ctt* 2 + Crt*2 ) - 2 M Kr* mt*

Kr* 2

+(2 2 K* ) K* 2

K*2

a8 = 2 Kr* B Crt*

a9 = Kr* 2
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Equation (5.13) is an eighth order polynomial in n*, whose coefficients are

functions of e. This polynomial was solved numerically by the IMSL subroutine ZPOLR,

which uses the Laguerre algorithm to obtain the roots of the polynomial. A value of 6 is

assumed and the subroutine is called to obtain the roots of (5.13). Complex roots were

neglected, since they would not indicate a steady state. Since the rotor can rotate both in

the clockwise and the counter-clockwise directions, the routine obtained both positive and

negative roots which were mirror image. Knowing that, only the positive roots were

retained, for counter-clockwise rotation. If the rotor rotates in the clockwise direction, then

the system will exhibit similar behavior as when the rotor rotates in the counter-clockwise

direction.

Knowing E and fl*, it is possible to obtain the deflection D from equations (5.11)

and (5.12), by squaring and adding, thus
2

D2 = 2 { M2 ( mt*2+ m 22 *2) Q*4 + 2 M B ( Ctt* m 22* - Crt* mt* ) Q*3

K*

+ [B (C tt* 2 + Ct,*2 ) - 2 M Kr* mt*] Q* 2 + 2 Kr* B Crt* Q* + Kr*2

(5.14)

Also if we divide (5.12) by (5.11), then x is

Cc=tn-1 B Ctt* K2* + M M22* g2(.5

Kr*+BCrt*Q*-Mmt *Q*2

Similarly, dividing (5.10) by (5.9), then P is
tn-1 l K2* E_ + (K* - Q* 2 ) D sin (x+i K 2* Dcosa (5.16)

- F j2*2+ (K* _ 0*2 ) D cos a - il Q* D sin a

It is sometimes convenient to describe the motion of the rotor by the runout at the

rotor center, r, which is the distance OS in Figure 5.3. If we define R* = r/c, as a

nondimensional runout, then

R*+D +D sina (5.17)
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Another quantity that is important in determining SFD performance is the

transmissibility Tr. It is defined as the ratio of the magnitude of the force transmitted to the

engine frame with SFD support, to the magnitude of the force transmitted to the engine

frame if the support was rigid. Thus

4Fr* 2+ Ft* 2
Tr = 2 (5.18)

d'( K* - *2 ) 2 + T2 2* 2

If Tr < 1, then the squeeze film damper is successful in attenuating the force transmitted to

the engine frame. On the other hand, if Tr > 1, then the SFD magnifies the force

transmitted to the engine frame. The transmissibility serves to determine the regions of

successful SFD operation.

It should be noted that in this analysis we are assuming that the eccentricities in both

dampers have the same phase, thus we are neglecting the excitation of the odd modes for

this system. One would expect that this system would have three modes because of the

three lumped masses: one due to the disk, and one each due to fluid inertia in the two

dampers. Thus we expect that we have two even modes and one odd mode, while the

analysis here provides only the two even modes. For this system the odd mode, because

of symmetry, would result in no whirl at the disk center and whirl primarily in the journals.

It appears that this mode would be unimportant since the motion essentially occurs in the

dampers, and thus would be highly damped, which would result in relatively small

amplitudes, and thus its neglect would not affect the unbalance response.
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5.4 Parametric studies of unbalance response

The unbalance response of the system was obtained by a program UNBRES that

employed the techniques described in the previous section. The program was extremely

efficient, such that typically it took approximately 20 seconds to obtain the full steady state

unbalance response on a PDP-11/44 computer. It has been reported [85] that, using

numerical integration, the unbalance response of a simpler system ( rigid rotor, no fluid

inertia ) took about 15 minutes on a PDP- 11/34 computer.

In performing the parametric studies, we took a datum system, whose parameters

are close to those reported in [85], and varied each parameter of interest to determine its

effect on the unbalance response. This datum system exhibits the generic behavior

resulting from the nonlinear characteristics of SFDs. The unbalance response of this

generic system is shown in Figure 5.4, for a n-film short damper. The parameters defining

the generic system are: B = 0.1, M = 0.2, U = 0.3, Rk= 0.1 and 11 = 0.01.

Figure 5.4 (a) illustrates the basic features of the unbalance response of the generic

system. The eccentricity ratio e is plotted versus the nondimensional frequency Q*. The

jump phenomenon can be clearly seen in the figure, and also two high eccentricity steady

state branches can be seen at K* between 2.5 and 3.5. Regions II and III [85] in the figure

are unstable steady states, while regions I, IV and V represent stable steady states that the

rotor can achieve. Figure 5.4 (b) shows the nondimensional deflection D versus L2*.

Regions III and IV are at a much larger amplitude (of the order of 3. to 5.) than regions I,

II and V, and are not shown in the figure. Comparing Figures 5.4 (a) and (b), it can be

seen that the rotor deflection D is much smaller than c for regions I, II and V, but for

regions III and IV the deflection is much larger than e and consequently the rotor will

probably be deflected beyond its limit if it were to operate in region IV. Figures 5.4 (c) and
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(d) show the angles a and $ versus Q*, respectively. These figures help in visualizing the

mode shape and the phase differences for the rotor. Figure 5.4 (e) shows the

nondimensional runout at the rotor center R* versus Q*, from which the large deflections

of the rotor in regions III and IV can be appreciated. Figure 5.4 (f) shows the

transmissibility Tr versus Q*, from which it can be seen that the SFD will be a superior

rotor support if it operates on branch V.

5.4.1 Short squeeze film dampers

In this sub-section we explore the effects of various parameters on the unbalance

response of the rotor system with short squeeze film dampers. Long squeeze film dampers

are discussed in the next sub-section. We are going to investigate the effect of each

parameter essentially on three variables: E, R* and Tr. In each case we kept all the

parameters at the values of those of the generic system, and changed only the parameter of

interest.

Figure 5.5 shows the effect of employing the 2n-film model on the unbalance

response of the generic system. This would be a good model for a highly pressurized

damper. It can be seen that the jump resonance disappeared and the peaks become smaller

in magnitude. Overall, pressurization improves the performance of the damper. Yet at

high frequencies it can be seen that the amplitudes start to build up for a second critical that

is due to fluid inertia. This second critical will be investigated in detail later.

Figures 5.6, 5.7 and 5.8 illustrate the effects of changing the bearing parameter B

on the unbalance response of the generic system. The bearing parameter, which was

identified previously in the literature [101,57,85], is a measure of the amount of damping

the SFD can provide. Figure 5.6 illustrates the effect of changing B on e. For low values
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of B, regions III and IV disappear, and the jump resonance attains large amplitudes. The

value of B=0.09 is interesting, regions III and IV are starting to appear, and are connected

to regions I and II. It can be seen that region III is a continuation of region H and region IV

is continuation of region I. Thus it is no surprise that region III is unstable, while region

IV is stable. Increasing B further, the amplitude of the jump resonance decreases and

regions 1Il and IV separate from regions I and II. At large values of B, the jump resonance

disappears and regions III and IV also decrease in size and eventually disappear. The same

sequence is seen in Figure 5.7 which illustrates the effect of changing B on R*. Figure 5.8

shows the effect of changing B on Tr. For low values of B the transmissibility is high in

region I, and in region V the transmissibility is nearly zero. Thus low values of B result in

a large speed range with low transmitted force. For large values of B the transmissibility is

larger than 1.0 in region I, (but with values less than those for small B), and the jump

resonance does not occur. Regions III and IV diminish, although they exhibit large

transmissibilites. Region V has sizable Tr, but still less than 1. Thus in the useful speed

range, large values of B result in larger Tr than low values of B.

Figures 5.9, 5.10 and 5.11 illustrate the effects of changing the inertia parameter M

on the unbalance response of the generic system. Figure 5.9 illustrates the effect of

changing M on e. For low values of M, as for B, regions III and IV disappear and the

jump resonance attains large amplitudes. the value of M=0.00002 should be considered to

be similar to the case of no fluid inertia. We were not able to reduce M to zero, since the

coefficient a,, of equation (5.13) would be zero and in this case the routine ZPOLR was

not able to obtain the roots of the polynomial. For large values of M, regions III and IV

appear and as M is increased they diminish, and the jump resonance magnitude also

decreases until it disappears. Thus it may be concluded that large values of M are beneficial

with regards to the jump resonance. Also for large values of M, a second mode appears in

the frequency range under consideration. This mode is essentially due to fluid inertia in the
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dampers, and it exhibits a smaller peak relative to that due to the first mode. Figure 5.10

illustrates the effect of changing M on R*, and it shows the same effects as for E. Perhaps

it should be pointed out that looking at the second critical speed (mode) from the point of

view of E and R* would be quite misleading as illustrated in Figure 5.12 which shows the

deflection D versus K* at M=2.0. From which it is clear that the rotor is undergoing

relatively large deflections at this mode which have to be taken into consideration when

designing the rotor. Nevertheless these deflections are much smaller than those

corresponding to regions III and IV, and a rotor should not be allowed to operate in region

IV (region III is unstable so the rotor will never operate there). Figure 5.11 illustrates the

effect of changing M on Tr. It is clear that for large M, the useful transmissibility rang

(Tr<l) is reduced because of the second mode. For low values of M its effect is similar to

that of B.

Another important parameter in determining the unbalance response of the rotor

system, is the unbalance. An important question in the design of a rotor is how much

unbalance would that rotor tolerate. Figures 5.13, 5.14 and 5.15 show the effect of

changing the unbalance U on the unbalance response of the system. Figure 5.13 illustrates

the effect of changing U on e. It can be seen that for low values of U the jump resonance is

reduced in magnitude, but not totally eliminated for this system. Probably as we go to

lower values of U than those shown in Figure 5.13, the jump resonance would be

eliminated. It has been reported in the literature [101,57,85] that decreasing the unbalance

decreases the jump resonance, and would at a certain point disappear. Rotors incorporating

SFDs are designed to operate at an unbalance that does not cause the rotor to exhibit the

jump phenomenon. But apparently our generic system would exhibit the jump

phenomenon at relatively low values of U. ( Further investigation revealed that the jump

could be eliminated by increasing B). For large values of U, the jump becomes

pronounced and regions III and IV appear, and as U is increased regions III and IV unite
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with regions II and I, respectively, to form an even sharper resonance. At even larger

values of U, the rotor exhibits a totally unacceptable response. Figure 5.14 shows the

effect of changing U on R*, which exhibits the same characteristics as for E. The same

effects are illustrated in figure 5.15, which shows the effect of changing U on Tr and it

reveals that, at low U, the SFD has a low transmissibility for nearly all the speed range,

except at resonance. Curiously this large Tr at resonance increases with the decrease of U.

This is because the force in the damper depends on E and Q* only, which do not change

much with decreasing U, (see Figure 5.13), but the damperless system would have a much

lower force, and since we divide by the force in the damperless system to obtain the

transmissibility, thus Tr increases. At large values of U, the transmissibility appears to be

acceptable (Tr<1) in a large range of speeds, but this is deceiving, since the amplitudes of

motion were judged to be excessive.

Finally, for the short damper, we investigate the effect of changing the stiffness

ratio Rk on the unbalance response of the rotor. Figure 5.16 shows the effect of changing

Rk on e. It can be seen that low values of Rk result in the decrease of the magnitude of the

jump resonance and the gradual elimination of regions, III and IV, i.e. a damper without a

retainer spring, exhibits a superior unbalance response for the parameters used in our

generic system. For large values of Rk, the jump resonance becomes more pronounced.

The same characteristics are illustrated in Figure 5.17, which shows effect of changing Rk

on R*. Figure 5.18 shows the effect of changing Rk on Tr, from which it can be seen that

a softer retainer spring results in better transmissibility characteristics.

5.4.2 Long squeeze film dampers

For the long SFDs we chose the same parameters for the datum damper as those of

the datum damper of the short SFDs, to be able to compare both system. This is only for
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illustration purposes. The unbalance response of the datum system for the long SFD is

shown in Figure 5.19. In Figure 5.19 (a) e is shown versus Q*, which when compared

with Figure 5.4 (a) reveals that for the long damper the first critical is well damped and the

second critical occurs at a much lower frequency than for the short damper. The second

critical has a larger amplitude than that of the first critical and regions III and IV appear only

as a few points at e approximately equal to 1, between the frequencies Q*=3 and Q*=4,

and no jump occurs. Although the second critical appears at a lower frequency, yet it may

be concluded that, as far as e is concerned, the unbalance response of the long damper is

much better than that of the short damper. Figure 5.19 (b) shows D versus Q*, from

which it can be seen that, as pointed out earlier, the second mode results in large deflections

of the rotor. This second mode is essentially due to fluid inertia, and it affects the

unbalance response of the long damper at a much lower speed, as will be illustrated in the

following parametric studies. Figures 5.19 (c) and (d) show the angles (X and 0,

respectively, versus Q*. Figure 5.19 (e) shows R* versus Q*, and it shows the same

characteristics as those for E. Now, Figure 5.19 (f) shows that the transmissibility is large

(Tr > 1) for the second mode, thus this results in a narrow speed range in which the long

SFD would be a good isolator (Tr < 1).

Figure 5.20 shows the effect of a full 2n-film on the unbalance response of the

datum system. It can be seen, that pressurization results in more damping of the first

mode, but the second mode becomes sharper and it moves closer to the first mode. No

jump occurs and no regions III and IV. Also, as can be seen from the Tr plot, the vibration

isolation capability of the damper (Tr < 1 region) is limited to a narrower speed range than

that of the datum system.

Figures 5.21, 5.22 and 5.23 illustrate the effects of changing the parameter B on

the unbalance response of the datum system. Figure 5.21 shows the effect of changing B
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on E, from which it can be seen that for low values of B the response becomes sharper at

resonance. For large values of B, the first mode is suppressed, and only the second mode

shows appreciable response. The same characteristics are displayed in Figure 5.22 which

shows the effect of changing B on R*. For large B it is clear that the excited mode is the

second mode since it results in large deflections of the rotor, which has been demonstrated

to be a characteristic of the second mode. Figure 5.23 shows the effect of changing B on

Tr. As B is increased the region of successful vibration isolation (Tr<l) is narrowed.

While for low B the force transmitted to the engine frame is larger at the critical speeds.

For very large B the damper acts as a hard mount (Tr=1) for most of the speed range.

Figures 5.24, 5.25 and 5.26 show the effects of changing M on the unbalance

response of the datum system. The effect of changing M on the eccentricity ratio e is

shown on Figure 5.24, from which it can be seen that for very low values of M only one

mode is excited and it is well damped. A few points appear near E=1, which are in regions

III and IV. For large values of M the second mode is excited and regions III and IV

diminish. For larger M, the second mode exhibits a sharp resonance and regions III and IV

disappear. The same characteristics are displayed in Figure 5.25 which shows the effect of

changing M on R*. Figure 5.26 illustrates the effect of changing M on Tr, and it can be

seen that for large values of M the region of successful vibration isolation (Tr<1) is

narrowed, and the force transmitted to the engine frame near the second critical is large.

The effect of the unbalance U on the unbalance response of the datum system is

illustrated in Figures 5.27, 5.28 and 5.29. The effect of changing U on E is shown in

Figure 5.27, from which it can be seen that the datum system attenuates both critical speed

well for low values of U (the response of the system for U=0.01 is very small and is not

shown). For larger values of U the response becomes more pronounced and regions III

and IV appear and increase in size. For even larger values of U, regions III and IV unite
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with regions I and II and a large eccentricity prevails for most of the frequency range.

Comparing Figures 5.27 and 5.13 for the short damper, we can see that the long damper is

better at attenuating the amplitude of the response. Figure 5.28 shows the effect of

changing U on R*, which exhibits the same characteristics as for C. Figure 5.29 illustrates

the effect of changing U on Tr, and it can be seen that except for regions III and IV, the

vibration isolation capability of the damper is not affected for most values of U. At large

values for U the system exhibits a small region of successful vibration isolation.

Figures 5.30, 5.31 and 5.32 illustrate the effects of changing the stiffness ratio Rk

on the unbalance response of the datum system. The effect of changing Rk on C is

illustrated in Figure 5.30, from which it can be seen that low values of Rk (i.e. no retainer

spring) lead to the elimination of the second resonance from the speed range under

consideration. Large values of Rk lead to the appearance of regions III and IV. Also the

second mode occurs at a much lower speed, and it exhibits a sharp resonance. The same

general results are illustrated in Figure 5.31 which shows the effect of changing Rk on R*.

Figure 5.32 shows the effect of changing Rk on Tr. Here also it can be seen that low

values of Rk result in a large region of good vibration isolation (Tr<1). For large Rk the

region of good vibration isolation diminishes.

5.5 Conclusions

The following may be concluded from this chapter:

1- Using the technique described in section 5.3 in obtaining the steady state unbalance

response results in considerable savings of computer time and avoids the trial and error

procedures in regions of multiple steady states.
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2- The requirements of good vibration isolation (Tr<1) and attenuation of amplitude of

response may conflict. In this case a compromise has to be made. In general the short

squeeze film damper exhibits better vibration isolation capabilities, while the long squeeze

film damper is better at attenuating the amplitude of the whirl.

3- The long squeeze film damper did not exhibit the jump resonance within the range of

parameters studied here.

4- Fluid inertia introduces a second mode to the response of the Jeffcott rotor. This mode

is well damped for short squeeze film dampers, but may exhibit a sharp resonance for the

long squeeze film damper.

5- Fluid inertia tends to decrease the possibility of jump resonance for the first mode in

short squeeze film dampers. For long dampers fluid inertia tends to decrease the amplitude

of response of the first mode.

6- Fluid inertia results in a decrease of the useful range of vibration isolation (Tr<1) for

both short and long dampers.

7- For both the short and long dampers, a system with no retainer spring (or a soft retainer

spring) exhibits better steady state unbalance response and vibration isolation capability

than that with a retainer spring. This may not be the whole story since a system with no

retainer spring would probably exhibit worse transient response than a system with a

retainer spring.
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8- The increase of the bearing parameter B results in better attenuation of vibration and

worsens the vibration isolation capabilities of the damper, while a small B results in worse

attenuation of amplitude of vibration and better vibration isolation.

9- An uncavitated damper results in better overall performance of the damper, although the

second mode due to fluid inertia is excited at a lower speed.
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Chapter 6

Conclusions

The dynamics of rotors incorporating squeeze film dampers was studied in this

thesis. The main emphasis is on modelling fluid inertia forces in squeeze film dampers

(SFDs), and their effect on the dynamics of a Jeffcott rotor.

6.1 Review of thesis contents

The thesis starts by reviewing the pertinent literature that indicates that the nonlinear

effects produced because of the squeeze film damper can have a significant effect on the

dynamics of rotors incorporating SFDs. It was also indicated that fluid inertia may be an

important factor in determining the dynamics of the rotor.

The damping forces that are produced in a squeeze film damper are derived in

chapter 2. Reynolds equation is first derived and both the short and long bearing

approximations are used to obtain the pressure equation in SFDs. The damping forces are

then obtained by integrating the pressure. For cavitated dampers the x-film theory was

used. The nonlinear characteristics of the damper are illustrated by the damping

coefficients which are nonlinearly dependent on position for a 2ir-film, and on position and

velocity, in general, for a cavitated damper.

To determine the fluid inertia forces, the kinetic coenergy method is introduced. It

is based on the assumption that the velocity profiles of the oil film do not change much due

to fluid inertia. Thus the kinetic coenergy can be determined and Lagrange's equations of
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motion are used to determine the inertia forces from the kinetic coenergy. For systems with

fluid particles crossing the control surface, the forces determined by Lagrange's equations

have to be supplemented to account for the kinetic energy leaving the control volume.

In chapter 3, the kinetic coenergy method is applied to two simplified squeezing

flows, namely, the Poiseuille flow due to squeezing motion, and the direct squeeze flow.

This is both to better understand the mechanics of squeezing flows and to illustrate the

validity of the kinetic coenergy method. It is shown that in the Poiseuille flow case, the

fluid inertia force predicted by the kinetic coenergy method is the limit as Reynolds number

goes to zero, of the fluid inertia force predicted by the solution of the differential equations

governing the flow. It is also shown to be a good approximation for Reynolds number in

the range of usual application of SFDs. For the squeeze flow case an additional term is

predicted in the inertia force obtained by the kinetic coenergy method. It is shown that this

additional term is due to convective acceleration, by an approximate solution of the partial

differential equations governing the flow. This approximate method is based on the

assumption of the velocity profiles to be those of the inertialess solution, and the

momentum equations are integrated across the film.

The kinetic coenergy method is applied to both the short and long squeeze film

dampers, in chapter 4. The inertia coefficients of the dampers are presented and are shown

to be nonlinear functions of the amplitude of the journal orbit. The fluid inertia forces are

then obtained by using Lagrange's equations. For the short squeeze film dampers and

cavitated long squeeze film dampers, Lagrange's equations are supplemented to account for

the kinetic energy that leaves the control volume. It is also shown that the fluid inertia

forces predicted by the solution of the Navier-Stokes equations for the case of a small

circular-centered whirl, is closely approximated by the fluid inertia forces predicted by the

kinetic coenergy method, for Reynolds number in the range of usual application of SFDs.
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In Chapter 5, the dynamics of a Jeffcott rotor incorporating SFDs is presented. The

equations of motion are derived and it is shown that the steady state unbalance response can

be obtained by assuming circular-centered whirling motions. The resulting algebraic

equations are manipulated to obtain a polynomial, which is solved numerically to obtain the

unbalance response. This is to avoid trial and error in obtaining solutions of the algebraic

equations in regions of multiple solutions. Parametric studies of the steady state unbalance

response are also performed.

6.2 Conclusions

The following may be concluded from the thesis:

1- The kinetic coenergy method is a powerful tool, that predicts the fluid inertia forces

acting on a surface, if the velocity profiles can be estimated beforehand. It has been

demonstrated that it predicts fluid inertia forces accurately, including both temporal and

convective effects, in squeezing flows.

2- For flow situations in which the fluid particles cross the control surface encompassing

the system, the effect of the kinetic energy lost through the particles leaving the control

volume should be considered, and Lagrange's equations should be supplemented to include

such an effect. A power balance on the system proved to be fruitful in obtaining the inertia

force due to the loss of kinetic energy with the particles leaving the control volume.

3- Fluid inertia forces can be important in squeezing flows in cases where the squeeze

Reynolds number is approximately equal to 10. At Re= 10, the fluid inertia force is equal to

the viscous force, above Re=10 the inertia force is larger than the viscous force.
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4- Convective acceleration contributes to the inertia force significantly when the amplitude

of motion is large. For small amplitudes of motion (E << 1), the inertia forces due to

convective acceleration can be neglected.

5- The inertia forces increase as the clearance is decreased even though the actual mass of

the fluid film has decreased, as illustrated in the Poiseuille flow case. This is because of

the huge velocities and accelerations that the fluid undergoes in smaller clearances.

6- Both the damping and inertia characteristics of squeeze film dampers are in the form of a

tensor. This implies that the squeeze film damper is an anisotropic device. Thus because

of the tensor inertia characteristics the momentum vector is not in the same direction as the

velocity vector.

7- A radial acceleration (62/e) is predicted to contribute to the inertia forces in a squeeze

film damper. This is not a journal acceleration nor a fluid acceleration, but it affects the

journal. This acceleration needs to be investigated further.

8- For cavitated short squeeze film dampers, the centrifugal inertia force reverses its

direction at large eccentricities due to the fluid particles leaving the damper.

9- The fluid inertia forces predicted by the kinetic coenergy method are in excellent

agreement with the solution of the Navier-Stokes equations for a small circular-centered

whirl.

10- Using the technique described in section 5.3 in obtaining the steady state unbalance

response results in considerable savings of computer time and avoids the trial and error

procedures in regions of multiple steady states.
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11- The requirements of good vibration isolation (Tr<1) and attenuation of amplitude of

response may conflict. In this case a compromise has to be made. In general the short

squeeze film damper exhibits better vibration isolation capabilities, while the long squeeze

film damper is better at attenuating the amplitude of the whirl.

12- The long squeeze film damper did not exhibit the jump resonance within the range of

parameters studied here.

13- Fluid inertia introduces a second mode to the response of the Jeffcott rotor. This mode

is well damped for short squeeze film dampers, but may exhibit a sharp resonance for the

long squeeze film damper.

14- Fluid inertia tends to decrease the possibility of jump resonance for the first mode in

short squeeze film dampers. For long dampers fluid inertia tends to decrease the amplitude

of response of the first mode.

15- Fluid inertia results in a decrease of the useful range of vibration isolation (Tr<1) for

both short and long dampers.

16- For both the short and long dampers, a system with no retainer spring (or a soft

retainer spring) exhibits better steady state unbalance response and vibration isolation

capability than that with a retainer spring. This may not be the whole story since a system

with no retainer spring would probably exhibit worse transient response than a system with

a retainer spring.
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17- The increase of the bearing parameter B results in better attenuation of vibration and

worsens the vibration isolation capabilities of the damper, while a small B results in worse

attenuation of amplitude of vibration and better vibration isolation.

18- An uncavitated damper results in better overall performance of the damper, although

the second mode due to fluid inertia is excited at a lower speed.

6.3 Suggestions for future research

A model of squeeze film dampers that includes fluid inertia effects was presented in

this thesis. This model can be incorporated in several ways to enhance our understanding

of squeeze film dampers and their effects on the dynamics of rotors. Some suggestions of

possible areas of investigation follow:

1- A design procedure for multi-mass flexible rotors incorporating squeeze film dampers

needs to be developed. One possible route would be to determine the critical speeds of the

rotor system that are within the operating speed range and then determining the modal mass

and modal stiffness corresponding to these undamped modes. Using these data and the

program UNBRES developed here, a squeeze film damper may be designed to obtain the

required response for each mode. An optimization technique may be employed to select the

design that meets the required specifications.

2- In determining the dynamics of the Jeffcott rotor in chapter 5, we assumed circular

centered whirl. which is an idealization. In the real world, the rotor would be

unsymmetrical and would not be centered, thus an analysis of the dynamics of a rotor

whose journals execute non-centered, and non-circular whirl is called for. The technique

of equivalent linearization [11] should prove to be rewarding in determining the forces in
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the squeeze film dampers in this case. This technique also can be employed in programs

that determine the dynamics of rotating machinery, which are usually programs based on

linear analysis (transfer matrix method, component mode synthesis method,...etc.)

3- Numerical and experimental investigation of the fluid inertia forces in squeeze film

dampers, both to verify the model presented here and to investigate the (62/e) acceleration

predicted in chapter 4. A numerical solution of the simplified Navier-Stokes equations

(2.32-2.34) would be necessary.

4- Further investigation of cavitation in squeeze film damper is necessary. A more

accurate model of cavitation and the extent of the oil film is essential in determining the

forces in squeeze film dampers.

5- Investigation of the nonsynchronous orbits that may occur in squeeze film dampers.

This has been observed experimentally [37,77] and should be investigated to determine the

possibility of subsynchronous resonances. A possible technique would be to use a Fourier

series expansion of the forces in squeeze film dampers, and keeping the components that

are of interest. Using orthogonality of Fourier coefficients the subsynchronous motions

can be investigated.

6- A long term project would be to develop a nonlinear program that would determine the

dynamics and stability of multi-mass flexible rotors that incorporate squeeze film dampers

and other nonlinear effects like clearances, rub between rotor and stator, seals,...etc.
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APPENDIX

LISTING OF PROGRAM UNBRES

C PROGRAM UNBRES TO OBTAIN THE UNBALANCE RESPONSE OF A

C FLEXIBLE ROTOR MOUNTED ON A SQUEEZE FILM DAMPER,

C INCLUDING INERTIA COEFFICIENTS, USING THE IMSL ROUTINE

C ZPOLR

C----------------------------------------------------------------------------------------------------------

DIMENSION A(9),D(2,380),C(2,380)

DIMENSION TR(380),RS(380)

COMPLEX Z(8)

REAL MTT,M,M12,M22,MTf1

OPEN(FILE='ALY.DAT',UNIT=3,STATUS='OLD')

READ(3,*)RK,SK,B,U,M,CD,L,L1

CLOSE(UNIT=3)

NDEG=8

OPEN(FILE='UNBRES.DAT',UNIT=4,STATUS='OLD')

WRITE(4,*)RK,SK,B,U,M,CD,L,L1
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PI=3.141592654

C1=CD**2-2.*SK

1=1

DO 10 J=1,99

E=FLOAT(J)/100.

IF(L1.EQ.1)THEN

CRT=2.*E/((1.-E**2)**2)

CTT=PI/(2.*(1.-E**2)*SQRT(1.-E**2))

MTT=PI*(1.-SQRT(1.-E**2))/(10.*E**2)

M22=-27.*(4.+2.*ALOG(ABS((1.-E)/(1.+E)))/E)/(140.*E)

M12=-27.*PI*(2.-(2.-E**2)/SQRT(1.-E**2))/(140.*E**2)

EDM=.I*PI*(1./SQRT(1.-E**2)-2.*(1.-SQRT(1.-E**2))/E**2)

IF(L.EQ.2)THEN

CRT=0.

M22=2.*M22

M12=0.

MTT=2.*MTT

CTT=2.*CTT

EDM=2.*EDM

END IF

MTT=MTT+0.5*EDM-M12

GOTO 5
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END IF

IF(L1.EQ.2)THEN

CRT=24.*E/((2.+E**2)*(1.-E**2))

CTT=12.*PI/((2.+E**2)*SQRT(1.-E**2))

MTT1=(5.*E**2-2.)+4.*(1.-E**2)**1.5/(2.+E**2)

MTT=MTT1*1.2*PI/(E**2*(2.+E**2))

M22=((3.*E/(2.+E**2)-1.)**3/(1.-E)**2)

M22=54.*(M22+((3.*E/(2.+E**2)+1.)**3/(1.+E)**2))/35.

Al=((3.*E/(2.+E**2)-1.)**2/(1.-E))

M22=M22+.6*(A1-((3.*E/(2.+E**2)+1.)**2/(1.+E)))

M12=0.

EDM1=-1.2*PI*4.*(1.+E**2)*MTT1/(E*(2.+E**2))**2

EDM2=-12.*(2.+E**2)*SQRT(1.-E**2)-8.*(1.-E**2)**1.5

EDM=1.2*PI*(10.+EDM2/(2.+E**2)**2)/(2.+E**2)+EDM1

IF(L.EQ.2)THEN

CRT=O.

M12=0.

M22=0.

MTT=2.*MTT

CTT=2.*CTT

EDM=2.*EDM

END IF

MTI'=MTI'+0.5*EDM-M12

GOTO 5

END IF
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5 A(1)=(M22**2+MTT**2)*(M/SK)**2

A(2)=2.*B*M*(-CRT*MTT+CTT*M22)/(SK**2)

A(3)=(CRT**2+CTT**2)*(B/SK)**2-2.*RK*M*MTT/(SK**2)

A(3)=A(3)-2.*M*MTT/SK

A(3)=A(3)+C1*M**2*(M22**2+MTT**2)/(SK**2)

A(4)=2.*RK*B*CRT/(SK**2)+2.*B*CRT/SK

A(4)=A(4)+2.*B*M*C1*(CTT*M22-CRT*MTT)/(SK**2)

A(5)=1.-(U/E)**2+2.*M*MTT+2.*RK/SK+M**2*(M22**2+MTT**2)

A(5)=A(5)+C1 *(B**2*(CRT**2+CTM**2)-2.*RK*M*MTI)/(SK**2)

A(5)=A(5)+(RK/SK)**2-2.*M*CD**2*MTT/SK

A(6)=2.*B*(M*(-CRT*MTT+CTT*M22)-CRT+C1*RK*CRT/(SK**2))

A(6)=A(6)+2.*(M*M22*CD+B*CRT*CD**2/SK)

A(7)=B**2*(CRT**2+CTT**2)-2.*RK*(M*MTT+1.-Cl*RK/(SK**2))

A(7)=A(7)+CD**2*(1.+2.*RK/SK)+2.*B*CTT*CD

A(8)=2.*RK*B*CRT

A(9)=RK**2

CALL ZPOLR(A,NDEG,Z,IER)
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C OBTAIN ROOTS OF INTEREST

DO 20 K=1,8

IF(ABS(AIMAG(Z(K))).GT. 1.E-4)GOTO 20

IF(REAL(Z(K)).LT.0.)GOTO 20

OM=REAL(Z(K))

D(1,I)=OM

D(2,I)=E

I=I+1

20 CONTINUE

10 CONTINUE

C ORDER THE DATA

DO 30 K=1,I-1

Y=1.E+5

DO 40 J=1,I-1

IF((D(1,J).EQ.0.0).AND.(D(2,J).EQ.0.0))GOTO 40

IF(D(1,J).LT.Y)THEN

Y=D(1,J)

IJ=J
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END IF

40 CONTINUE

C(1,K)=Y

C(2,K)=D(2,IJ)

D(1,IJ)=1.E+6

30 CONTINUE

C FIND DEFLECTION,ALFA,BETA,TRANSMISSIBILITY,RUNOUT

DO 100 11=1,1-1

OM=C(1,II)

E=C(2,II)

IF(L1.EQ.1)THEN

CRT=2.*E/((1.-E**2)**2)

CTT=PI/(2.*(1.-E**2)*SQRT(1.-E**2))

MTT=PI*(1.-SQRT(1.-E**2))/(10.*E**2)

M22=-27.*(4.+2.*ALOG(ABS((1.-E)/(1.+E)))/E)/(140.*E)

M12=-27.*PI*(2.-(2.-E**2)/SQRT(1.-E**2))/(140.*E**2)

EDM=.1*PI*(1./SQRT(1.-E**2)-2.*(1.-SQRT(1.-E**2))/E**2)

IF(L.EQ.2)THEN

CRT=0.

M22=2.*M22

M12=0.

MTT=2.*MTT
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CTT=2.*CTT

EDM=2.*EDM

END IF

MTT=MTT+0.5*EDM-M12

GOTO 55

END IF

IF(L1.EQ.2)THEN

CRT=24.*E/((2.+E**2)*(1.-E**2))

CTT=12.*PI/((2.+E**2)*SQRT(1.-E**2))

MTT1=(5.*E**2-2.)+4.*(1.-E**2)**1.5/(2.+E**2)

MTT=MTT1*1.2*PI/(E**2*(2.+E**2))

M22=((3.*E/(2.+E**2)-1.)**3/(1.-E)**2)

M22=54.*(M22+((3.*E/(2.+E**2)+1.)**3/(1.+E)**2))/35.

Al=((3.*E/(2.+E**2)-l.)**2/(1.-E))

M22=M22+0.6*(A1-((3.*E/(2.+E**2)+1.)**2/(1.+E)))

M12=0.

EDM1=-1.2*PI*4.*(1.+E**2)*MTT1/(E*(2.+E**2))**2

EDM2=-12.*(2.+E**2)*SQRT(1.-E**2)-8.*(1.-E**2)**1.5

EDM=1.2*PI*(10.+EDM2/(2.+E**2)**2)/(2.+E**2)+EDM1

IF(L.EQ.2)THEN

CRT=O.

M12=0.

M22=0.

MTT=2.*MTT

CTT=2.*CTT
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EDM=2.*EDM

END IF

MTI'=MTT+0.5*EDM-M12

GOTO 55

END IF

55 D(1,II)=OM

F=(SK-OM**2)**2+(CD*OM)**2

Gi=B*CTI*OM+M*M22*OM**2

G=RK+B*CRT*OM-M*MTI'*OM**2

H=RK**2+2.*RK*B*CRT*OM+OM**2*(B**2*(CTT**2+CRT**2)-
2.*M*RK*MTT)

H=H+2.*M*B*(CTT*M22-
CRT*MTT)*OM**3+M**2*(MTT**2+M22**2)*OM**4

ALPHA=ATAN2(G1,G)

AF=ALPHA*180./PI

IF(H.LT.O.)THEN

WRITE(5,*)OM,E,H

D(2,II)=0.

GOTO 15

END IF

D(2,II)=E*SQRT(H)/SK

15 G2=(SK-OM**2)*D(2,II)*SIN(ALPHA)+CD*OM*D(2,II)*COS (ALPHA)
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G3=(SK-OM**2)*D(2,II)*COS(ALPHA)-CD*OM*D(2,II)*SIN(ALPHA)

G22=G2+CD*OM*E

G33=G3-E*OM**2

BT=ATAN2(G22,G33)*180./PI

FT=E*SQRT(G**2+G1**2)

FT1=SK*U*OM**2/(SQRT(F))

TR(II)=ABS(FTIFT1)

RS(II)=SQRT(E**2+D(2,II)**2+2.*E*D(2,II)*COS (ALPHA))

WRITE(4,*)C(1,II),C(2,II),D(2,II),AF,BT

100 CONTINUE

CLOSE(UNIT=4)

WRITE(5,101)

101 FORMAT(' DO YOU WANT EPSILON? (1=Y,2=N)')

READ(5,*)N1

IF(N1.EQ.2)GOTO 110

CALL AXES(C,I-1,1,'OMEGA','EPS.','UNBAL. RESP.',2)

CALL PLTDAT(C,I- 1,1)

CALL PTQURY(N)
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IF(N.EQ.0)GOTO 110

CALL PTOPEN

CALL PTSCLE(C,I-1,' ',' ',' ',2)

CALL PTPLOT(C,I- 1,7,1,0)

CALL PTCLSE

110 WRITE(5,102)

102 FORMAT(' DO YOU WANT D? (1=Y,2=N)')

READ(5,*)N1

IF(N1.EQ.2)GOTO 120

CALL AXES(D,I-1,1,'OMEGA','D','UNBAL. RESP.',2)

CALL PLTDAT(D,I- 1,1)

CALL PTQURY(N)

IF(N.EQ.0)GOTO 120

CALL PTOPEN

CALL PTSCLE(D,I-1,' ',' ' ',2)

CALL PTPLOT(D,I- 1,7,1,0)

CALL PTCLSE

120 WRITE(5,105)

105 FORMAT( DO YOU WANT TRANSMISSIBILITY? (1=Y,2=N) ')

READ(5,*)N1
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IF(N1.EQ.2)GOTO 150

DO 65 K=1,I-1

D(2,K)=TR(K)

65 CONTINUE

CALL AXES(D,I-1,1,'OMEGA','TR','UNBAL. RESP.',2)

CALL PLTDAT(D,I- 1,1)

CALL PTQURY(N)

IF(N.EQ.O)GOTO 150

CALL PTOPEN

CALL PTSCLE(D,I-1,' ',' ',' ',2)

CALL PTPLOT(D,I-1,7,1,0)

CALL PTCLSE

150 WRITE(5,106)

106 FORMAT(' DO YOU WANT R? (1=Y,2=N)')

READ(5,*)N1

IF(N1.EQ.2)GOTO 160

DO 66 K=1,I-1

D(2,K)=RS(K)

66 CONTINUE

CALL AXES(D,I-1,1,'OMEGA','R','UNBAL. RESP.',2)
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CALL PLTDAT(D,I- 1,1)

CALL PTQURY(N)

IF(N.EQ.0)GOTO 160

CALL PTOPEN

CALL PTSCLE(D,I-1,' ',' ',' ',2)

CALL PTPLOT(D,I-1,7,1,0)

CALL PTCLSE

160 CALL PQUERY

CALL EXIT

STOP

END
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