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Preface.

This work deals with an experimental study of the

inelastic properties of four types of bakelite material. It is

shown that the damping of free torsional oscillations is

accounted for by two phenomena, namely logarithmic creep and

elastic hysteresis. Due to the presence of creep, a theory has

to be developed to show how the existence of elastic hysteresis

may be determined experimentally. This theory is developed in

Part II. In Part III is given first an experimental proof of the

assumptions of the theory, and also the study of the inelastic

properties by both static and dynamic methods. Part IV deals

with a few experiments suggested by the results of Part III.
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and advice Professor A. V. de Forest gave me during the course

of this work. I also wish to acknowledge the assistance of

Professor J. T. Norton, Mr. R. Fanning, and Mr. W. Walsh.

I am indebted to Messrs. Bakelite Limited of England and

the Bakelite Corporation of America for the supply of materials.

In particular, I wish to express my gratitude

to the London County Council for the award of a Robert

Blair Fellowship, enabling me to undertake this work.



gREEP, HYSTERESIS, AND DAMPING IN BAKELITE.

Part I. Introduction.

I. Importance of the Problem.

An important property of materials which recently

has received much attention is .dmping_capacity, or the

ability to dissipate mechanical energy as heat in the

working range. This dissipation, though small for ordinary

metals in the normal condition, is very sensitive to structure

and to strain history, and the study of damping capacity

is throwing much light on the differences in behaviour of

materials under the same conditions.

The origin of damping in metals is understood to

be due mainly to two causes, elastic hysteresis and primary

creep. By elastic hysteresis is meant the appearance of a

narrow stress-strain loop when the stress is varied cyclically

either in steps or continuously; it is a phenomenon independent

of time. It has been shown by Rowett that for cold drawn

steel, the energy dissipated under free torsional oscillations

up to two-thirds of the elastic limit is exactly accounted

for by the areas of the hysteresis loops determined by

static experiments.
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By primary creep is meant that part of creep which

proceeds at a decreasing rate with time. It has been shown
2

by Bennewitz that the creep of glass is of this nature

and that the damping of glass is entirely accounted for by

primary creep.

Owing to the difficulties of experimentation,

the phenomenon of creep in metals at room temperature is

not well understood; similarly, the inelastic properties of

metals at stresses where both primary creep and elastic

hysteresis are present has not yet been explored. It is

therefore of interest to examine in detail the inelastic

properties of synthetic resins (in particular, bakelite)

where these properties, being of a large magnitude, can be

easily studied. In addition, apart from the contribution to

the general understanding of the properties of materials a

study of bakelite would give, such a study would be of importanoe

in the production of synthetic materials with better elastic

properties, and in giving a clearer knowledge of allowable

working stresses in such materials.

II. Niature of Problem.

If a hysteresis test be made on bakelite by taking

a specimen (say) in torsion around a stress cycle, a stress-

strain loop will be obtained. The following questions then

arise:

1. Is the loop due to the action of primary creep, or is part



of it due to an elastic hysteresis, of a static nature as

explained above?

2. If the loop is due to creep, we must be able to demonstrate

that this is so; to do this, we must know the law of primary

creep for load applied (or removed) in increments at different

times. This law we will call the superwposition law of creep.

3. If both elastic hysteresis and creep are present, then the area

of the loop obtained from a stress-strain test made under

definite conditions is greater than the area due to creep

deduced from the superposition law. From such a test, we can

calculate the damping due both to creep and to elastic

hysteresis; this should agree with the damping measured by the

decrement of free oscillations of the specimen.

III. Scheme of Thesis.

It is now agreed that the creep of materials can

be divided into two components, one proceeding at a decreasing

rate with time and proportional to the stress (primary creep)

and the other proportional to time but not to stress (plastic

flow). For the time being, we will neglect the second component;

we will show later that with certain precautions we can

eliminate the effect of plastic flow. The main problem is

therefore to study the laws of superposition of primary creep,

and the application of these laws to the separation of creep

components from true elastic hysteresis in a cyclic stress-

strain test. This work is divided into a theoretical part



(Part II) and an experimental part (Part III).

Part II is concerned firstly with devising

suitable means of testing the superposition law due to
3

Boltzmann, in such a manner that plastic flow will not be

an interfering factor in the experiment; and secondly with

the calculation of the deflections that would be obtained if

primary creep only were present, the load being varied cyclically

and in steps. By this means we can determine if elastic

hysteresis is present in addition to creep. Finally, we

have to calculate the damping due to primary creep on the

basis of the superposition law, and then to calculate the

total damping due to primary creep and hysteresis.

On the experimental side, the problem was to devise

an apparatus by which creep, hysteresis, and damping could

be measured on the same specimen. The method chosen was

that of torsion of a cylindrical specimen with squared ends,

one end being fixed and the other fastened to a torsion bar

pivoted about the axis of the specimen. The experimental

work in Part III is concerned, first, with the testing of

the superposition law according to the schemes developed

in Part II for each of the materials investigated; and secondly,

with stress-strain observations for loads applied

cyclically, in increments. Damping measured directly is shown

to agree well with that predicted from stress-strain

step-by-step measurements.
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Part IV of this thesis gives an account of

experiments which shed some light on the nature of creep.

Previous Work.
4 5

De Bruyne and also Parzich have measured the

damping of reinforced bakelite; they do not explain the origin
6

of the damping. Jordan has studied the creep of soft metals

under pure bending with superposed loading. His results are

plotted on the basis of the logarithm of time elapsed from the

beginning of the experiment. When replotted on the basis of

logarithm of equivalent tme (see p. 7), his results

suggest that Boltzmann s law is true.

IV. Conclusions.

Four types of material were tested in torsional shear.

l. Using a concept of equivalent time, it is shown that the creep

follows Boltzmann a superposition law.

2. By means of observations of deflection obtained when the load is

varied cyclically in equal increments in equal intervals of time,

it is shown that the area of the stress-strain loop is greater than

that due to creep calculated from the Boltzmann law; hence

an elastic hysteresis exists in bakelite.

3. Measurement of the decrement of free oscillations shows that

the measured specific damping capacity at a surface shear stress of

2520 lbs./in! agrees well with the value deduced from the magnitude

of the primary creep and of the elastic hysteresis.
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P art -II. Theory.-

I. Creep SuperPosition and Equivalent Time.

Boltzmann a superposition law of primary creep

can be summarised as follows:

1. Creep under Single Load. The deflection at time t due to a

single load W applied at time to is given by:

x = Wlb + a log(t - to)] ........ (1)

i.e., it consists of a part proportional to the load and

independent of the time, and a part proportional to the load

and to the logarithm of the time elapsed since the load was

applied. In considering creep under complex loading, we may

omit for simplicity the quasi-elastic or time-independent

part of the deflection.

2. Creep Recovery. If at any subsequent time the load W be

removed there will be a creep recovery or negative creep. It is

assumed that the effect of removing the load W is that of

applying a negative load of magnitude W, at the same time the

creep due to the original loading continuing indefinitely. The

material is thus assumed to possess a memory for all past

loading actions. If the load be removed at time tj the creep

recovery at a subsequent time t will be given by:

W[b + a log(t - to)] - W[b + a log(t - tl)J , i.e., by

Wa log (t - to)/(t - ti) ........... (2)
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3. Increase or Decrease of Load. If the load be increased or

decreased suddenly, then the effect on the creep is that of

adding the increment or removing the decrement of load, the creep

due to previous loading actions being assumed as before to

continue indefinitely. If for example loads WQ, W1, W2, be

applied at times to, tl, t2, the creep at a subsequent time t,

neglecting the time-independent deflection, is:

Woa log(t - to) + (WI - WO)a log(t - tl) + (W2 - Wl)alog(t - t2)

.*0 . .*. . (3)

If we apply a single load to a specimen of bakelite,

say in torsion, the creep deflection is not found to be

logarithmic with time. We can assume either that Boltzmann s

law is untrue for bakelite, or that alternatively the

logarithmic creep is masked by an additional plastic effect.

This plastic effect might be analogous to fluid flow, and

therefore in existence whenever the specimen is under load;

alternatively, it might represent an initial plastic adjustment.

If now we remove this load that we have applied

above, the creep recovery indeed gives a straight line when

plotted against log (t - to)/(t - ti) as indicated by equation

(2); but this is not sufficient (as has been assumed many times

In the past) for assuming the correctness of Boltzmann a

superposition law. If however we consider the creep and creep

recovery due to repeated application and removal of the load

at difterent time instants, then by comparison with the creep

and creep recovery as expected by the superposition law we

can determine the validity of the law.



squivalent Time.

In carrying out the experiments to confirm Boltzmann s

theory it is expedient to add or remove loads which are of the

same magnitude or at least simple multiples of each other;

for example, if in equation (3) above, W1 = 2W,, W2 = 3W0,

then the theoretical creep at time t is given by:

Woa log(t - to)(t - tl)(t - t2)o

i.e., the creep is proportional to the logarithm of a simple

function of time. A simple method of checking the superposition

law for any complex loading therefore presents itself; let

us plot the observed creep (or creep recovery) deflection

against the logarithm of the appropriate time function.

Then for any set of tests we should obtain a set of parallel

straight lines, the distance between any two lines corresponding

to the elastic together with any hysteretic deflection. We

thus have a very powerful means of checking the superposition

law.

Let us call this function of time the equivalent

time. The procedure is thus to calculate the equivalent time

corresponding to each observation, and to plot the scale

deflections against equivalent times on semi-logarithmic paper.

In this way, deviations from the superposition law can be

immediately observed during the course of the experiment.

8.
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Confirmation of the-Superposition Law, Usi ce

of -Equivalent Time.

Three tests will be considered which together

are sufficient to confirm the superposition law, and

to indicate the nature of the departures therefrom.

0 +

ti 2ti 3ti 4ti 5ti 6ti

Fig. 1.

Test I. Repeated LoadinA.

Fig. 1 represents a load-time diagram for an

experiment in which a load W is applied and removed

repeatedly. The equivalent times are therefore as follow:

If t lies in time interval: expression for equivalent time is:

0- ti t

t - 2t 1  t/(t - t 1)

2t, 3t t Mt - 2t )/( t - ti

3tl 4ti t( t - 2t1)/( t -tl) (t - 3tj)

4t, -5t, t( t -2tj) '( t - 4tl) /(t - tl) t - 3tl)

5ti 6tl t( t - 2tl) (t -4tl)

( t - tl) (t - 3tl) (t - 5ti)
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If the theory is rigidly true, we expect that all the creep

deflections when plotted against the logarithms of the

corresponding equivalent times to fall on one straight line; and

the same be true for observations of creep recovery. These two

lines should be parallel and separated by a distance

corresponding to the elastic deflection due to a load W.

Test II. Qreep and Stress.

We can show that creep is proportional to load

by repeating any experiment, with, say, half the load.

We then expect the slopes of all the lines to be halved.

2W0

0 4-+ x

0 t1  2ti 3ti 4t, 0 ti 2ti 3ti 4t1

Fig. 2a. Fig. 2b.

Loading diagrams according to figs. 2a and 2b represent

experiments which could be made to test the proportionality of

logarithmic creep with applied load. This proportionality is

important. If experiments carried out by torsion of cylindrical

specimens show a proportionality of creep with load, we can say

that the creep is proportional to stress; furthermore, the stress

must be always linearly distributed across any cross-section,

and therefore primary creep would not cause a redistribution of

stress. The results of a torsion experiment would then

be of significance.
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Test III. Memory Action.

According to the superposition law, the creep due

to each loading action persists indefinitely, i.e., the

material remembers past loading actions. The purpose of

the following experiment is to demonstrate this effect

in such a manner that plastic flow will not be an interfering

factor; the experiment is to show that if a specimen be

loaded first in one sense and then in the other, and then the

load removed, the material will tend to recover in opposite

senses from the two loading actions. The times can be so

arranged that in fact after a certain instant the memory

of the first loading action outweighs that of the second,

i.e., that creep recovery proceeds first in one direction

and then in the other. Such an experiment demonstrates

qualitatively the memory action, and is well known. We are

now going to use the concept of equivalent time to demonstrate

that in fact Boltzmann s law is obeyed quantitatively.

Mathematically, the condition that the creep recovery

should stop and then reverse its direction is that the equivalent

time for the recovery should possess a maximum (or minimum).

W

oi 8t 9tl0tF 12t

Fig. 3.
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The loading diagram in fig. 3 represents the application

of a load W from t = 0 to t = 8ti, and the application

of a load -W from t = 9t1 to t = lOt1 . The equivalent time

for the subsequent recovery is therefore:

t(t - lo 1 )

(t - 8t 1)(t - 9t 1)

This has a stationary value at t = 12t 1 , hence at this

instant we would expect the direction of the creep

recovery to reverse. Furthermore, we would expect all the

creep recovery observations from t = lot1 onwards when

plotted against the logarithm of the equivalent time

to fall on a straight line, retracing the line backwards

from t = 12ti onwards. This in fact happened in all the

materials tested. In an otherwise ideally elastic material,

the creep recovery observations from t = 8ti to t = 9t 1

should fall on the same line. In actual fact, they fall

on a parallel line, indicating the existence of an elastic

hysteresis loop.

The above is an account of the ideal behaviour

of a material under experiments to check the validity

of the superposition law of primary creep. In Part III

is given an account of the behaviour of various commercial

types of bakelite under these tests. Results were such

as to show that plastic flow was not, after the first

application of load, a seriously interfering factor.

-'U
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II. Separation of Creep and Elastic Hysteresis.

The next stage in the investigation is the demonstration

of the existence of an elastic hysteresis loop, and

the experimental determination of its magnitude. Let

us assume first that elastic hysteresis is absent,

and let us imagine that a material which possesses the

property of primary creep obeying the superposition law

is loaded cyclically by applying (or removing) equal

increments of load in equal intervals of time. Then the

deflections due to creep at the end of each of these intervals

could be calculated, if the magnitude of the creep be

known; this latter can be obtained from a repeated loading

test. All the observed deflections obtained in the cyclic test

could be corrected for creep by means of the calculated

creep deflections.In the absence of elastic hysteresis,

the experimentally observed loop widths at each load

station should be the same as the corresponding theoretically

calculated widths, that is, the calculated stress-strain

loop due to primary creep should be the same as the experimentally

determined loop. If the width of the measured loop at any

load station is greater than the calculated width, the

difference must be the width of the loop due to elastic

hysteresis at that load.

Thus if we take a sufficient number of steps in the

cycle, it is possible to find the shape and area of the

elastic hysteresis loop. The area thus determined can be



14.

checked in two ways. First, we can repeat the experiment,

using different values of time interval between the load

increments. The observations corrected for creep should then

be the same for all tests, and the hysteresis loop area

should be the same; this has been found to be true within

the order of accuracy of the experiment. Secondly, the

internal energy absorption (or damping capacity) as measured

by the decrement of free oscillations should agree with the

area of the hysteresis loop and the magnitude of the

primary creep as measured statically: again in the experiments

reasonable agreement was found.

Stress-Strain LooP due to Creep.

We now have to calculate the deflections which would

be obtained, due to creep, if a material be loaded cyclically.

We assume:

1. Boltzmann s superposition law to be true.

2. The load to be applied (or removed) in equal amounts

in equal intervals of time.

3. The deflections to be read at the end of each time interval.

In the experimental work, there were four loading steps,

i.e., sixteen loading operations per cycle. However we will

at first keep the investigation general by assuming that

there are n loading steps, and that each load increment is of

magnitude W. The creep constant is to be a as before, and

the time interval between load changes t



Time-variable part of deflection.

At the outset, we are confronted by a great difficulty:

it appears impossible to separate the deflection into

an instantaneous component and a subsequent creep component;

the deflection follows a logarithmic law with time, and this

seems to be true for the smallest measurable values of

deflection and time. In other words, the curve of deflection

against time is as shown in fig. 4(b) and not as shown in

fig. 4(a).

Deflection Deflection

Time Time

Fig. 4(a) Fig. 4(b)

Of course the logarithmic law cannot hold down to zero

time, since the deflection would then have an infinitely

negative value. It is not possible to say where the logarithmic

law ceases to hold, and therefore to find any value of

instantaneous deflection.

Since the deflection due to a single load

according to Boltzmann's law varies with time according

to the equation:

x = B + A log(t/T)
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where t is the elapsed time and T is the value of the time

unit, then we may conceive the deflection as consisting

of a time-independent part B, and a time-dependent

part A log(t/T).

Y Y YQ

P

B 3 B23 B2

0 0 02

0.1 1.0 10 mins.

Fig. 5.

Let PQ in fig. 5 represent the relation between the deflection

(plotted vertically) and the logarithm of the elapsed time

in minutes (plotted horizontally). If the time unit T is

chosen to be 1 minute, we draw the axis of ordinates 0 Y

through the point corresponding to t = 1 minute. The

intersection of this line with the line PQ gives us the

value of B1 , the time-independent part of the deflection.

If however we choose our time unit T equal to 10 minutes or to

0.1 minute, the time-independent part of the deflection

becomes B, or B . Thus the values of the time-independent

and time-dependent parts of the deflection depend on the

value we choose for our time-unit.



Only at one stage in this work is the choice

of the time unit of weight. We will calculate the shape

of the hysteresis loop corresponding to the time-dependent

part of the deflection for cyclic step-by-step loading,

and use this loop to correct the observed loop. The

effect of variation of time unit is to shear over the

calculated loop, and consequently also the corrected

loop, without altering the actual areas. Furthermore,

if loops be traced with different values of time interval

between the load increments, the calculated and corrected

loops will all be affected similarly. It therefore appears

that our problem is a purely philosophical one. In order

to assess the damping due to elastic hysteresis, however,

we have to choose a value of total strain range; unlike

loop area, this quantity is attected by the choice of the

time unit.

Deflection

Time

O 1 " 10 0 .11 10

(a) (b)

Fig. 6.

Fig. 6 represents diagrammatically the

relative creep behaviour of glass and bakelite. In glass

the change in deflection is relatively so slow that the

17.
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value of the time-unit is not of significance; in the

case of bakelite, however, where the deflection changes

relatively more rapidly with time, the problem is a

practical and not merely a philosophical one.

Two values of time unit suggest themselves.

The first is that value corresponding to the stiffness

as given by the natural frequency of oscillation; the

second is the period of this oscillation. In general,

a value of time unit T of 1 minute will be chosen except

(as in the case above) where this unit is of importance;
"03

it will then be taken to be 10 minute, which is of the

order of magnitude of the natural period of oscillation.

In the experiments, stress-strain loops were

measured by applying four equal loads in equal intervals

of time, which were 2, 1, or 0.5 minutes. The general

investigation assumes that there are n loading steps,

at intervals of time ti. Each increment of load is of

magnitude W.

Let deflection due to load W applied at zero time be

W(b + a log t)

at current time t. Let an additional load W be applied at

a subsequent time t . Then the deflection at time t, where

2t17 t >t, is

W[2b + a log t + a log(t - ti)]

Similarly, deflection at time t, where 3t 1 >t >2t1 , is

W[3b + a log t + a log(t - t 1 ) + a log(t - 2)]
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After the n th load increment has been applied, deflection

at time t where (n - ±)t 1 t<nt, is

W jnb + a log t + a log(t - ti) +....+ a log (t - n - t 1 )]

From these expressions, we can find the deflections at

the end of each time interval, by substituting the appropriate

value of t. The first three deflections are given in the

table below.

Time. Load. Deflection.
W

ti 2W W(b + a log t 1 )

2t1  2Wb + Wa(log 2t1 + log t1 )

3t1 3Wb + Wa(log 3ti + log 2t 1+ log t1)

This last

The above

expression can be

3W(b + a log

table can thus be

written:

t 1 ) + W.a lobL3

rewritten as follow:

Time. Deflection

t Wlb + a(log t + logl)L

2t WE2b + a(2log tj + log2)]

3t1  W[3b + a(3log ti + log3)

nt1  W[nb + a(n log t 1  + log R)]

These are the deflections for a material which

possesses the property of primary creep only, for the

first quarter of the first loading cycle. It is observed

that the deflection at a load k.W is givem by the time-

independent deflection k.W.b together with a time-

dependent deflection W.a(k log tj + log F), where F
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is an expression containing factorial quantities, dependent

on the loading history.

Unlo-adIng n.W to 0.

Proceeding similarly, we can find the deflections

from t = nti to t = 2nt1 , during which period the load is

being reduced in steps from n.W to 0.

Deflection at time t, where (n + 1)t 1 > t> nt, is

W.b(n - 1) + W.allog t +...+ log(t - n - 1 t 1 ) - log(t - nt1)

Deflection at time t, where (n + 2)t > t> (n + 1)t1 , is

W.b(n - 2) + W.a log t +...+ log(t - n - 1 t 1 )

- log(t - nt 1 ) - log(t - n + 1 ti)]

iinally, deflection at time t, where 2nt 1 > t> (2n - 1)tj, is

W-allog t +...+ log(t - n - 1 t )

- log( t - nti) -....- log( t - 2n - 1 t 9

Substituting t = (n + 1)tl, (n + 2)t 1 , ... 2nt1 , in the

above expressions (corresponding to the elapsed time at

the end of each of the time intervals), we obtain the

corresponding deflections if primary creep only is present.

lElapsed Time. Load. Deflection.

(n + 1) ti ( 1)W Wb(n-1) + W.a[(n-l)log t 1+ log I

(n + 2)t 1  (n -2)W W.b(n-2) + W.a[(n-2)log t 1 + log n+2.

0
2nt

1
W. a log( (22n/ Ln in)
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Comparing these deflections with the deflections

for the loading period, we see that the deflections

during unloading are greater; in other words, a stress-

strain loop due to creep has begun to appear. At any

given stress level, the time-independent deflections are

the same, and proportional to load. It is clear then,

as stated previously, that the effect of change of time-

unit is to alter the time-independent and time-dependent

parts by amounts proportional to the load, i.e., to

shear over the diagram of time-dependent deflections.

For the time being, we are interested only in hysteresis

loop widths, and hence we need not be interested in the

value of the time unit.

For the first half-cycle, the time-dependent

part of the deflection, dropping the factor W.a, can

be tabulated as follow:

Deflection.

Load. Load Increasing. Load Decreasing.

n.W n log tj + login

(n-l)W (n-l)log t + log~nl (n-l)log t1 + log ln+.

2W 2 log t 1 + log L 2log t1 + log( 2n-2 -2In-2)

W log t 1 + log GL log t1 + log(jn-l/ iIn-)

0 0 log( [?/jnjn)
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The difference between these pairs of quantities

is the loop width due to creep, and this difference is

seen to be merely the logarithm of a function of factorial

quantities dependent on the load history, multiplied

by the slope of the logarithmic creep plot W.a. The

unit of time measurement T and the time interval t

are eliminated; we can thus say that the loop width due

to creep is independent of time considerations, and must

be the same (if plastic flow is not an interfering factor)

irrespective of the value chosen for the time interval;

furthermore, the time-dependent deflections at zero load

appear to be independent of the time interval, but dependent

on the load history. Thus we can conclude:

1. Due to primary creep, a stress-strain loop appears. The

observations at zero load depend upon the loading history,

but are independent of ti.

2. The observations at other loads depend on the time interval

also. The loop widths are always independent of time

interval, the effect of change of t 1 being merely to shear

over the observed loop by an amount proportional to the

logarithm of the time interval. In this way loops traced

with different values of t1 can be compared.

The next section will show how these theoretical

predictions are borne out by experimental results. By

continuing now the theoretical development, we will trace

the variation of the time-dependent deflections for the

first two complete loading cycles. From these deflections
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the loop widths at each station and hence the loop area

due to primary creep can be obtained. Attention in the

experimental section will be concentrated on the second

complete loop: it will be assumed that in the actual

experiment all plastic adjustment takes place in the

first loading cycle, and that the second loading cycle

represents solely the action of elasticity, primary

creep, and elastic hysteresis. If the observed loop width

at any station is greater than the calculated value,

the difference must be due to the static effect which

we call elastic hysteresis.

Our object therefore is to find the values

of time dependent deflections for the first two complete

loading cycles, at first generally with n loading steps

at intervals t, apart, and then with four loading steps

at intervals 0.5, 1, and 2 minutes apart. This time dependent

deflection, as has been remarked above, contains a part

k.W.a log t1 (when the load is k.W) and a part W.a log F

where F is a factorial function. In the calculations, we

may omit the first term, and reintroduce it later,

for the cases where the time interval t differs from

one minute. The following are the factorial expressions

for the first complete loading cycle.



Time.

tl

2t1

nt1

Unloading,

(n + 1)ti

(n + 2)ti

2nt 1

Loading, 0

(2n + 1)t1

(2n + 2)t 1

3nt 1

Unloading,

4nt 1

Load.

W

2W

3W

nW to 0.
(n 1)W

(n -2)W

(n-3) W

to -nW.
W

2W

-nW to 0.

Factorial.

L

Sn .+ _1

n + 2/ L2

12n + 1
In + lln + 1

12n + 2

n + 2 1n + 2

12n 12n

U~n Qn

The third quarter of the loading cycle

is obtained as before by adding the appropriate terms

to the memory function and substituting for the current

value of time t as before. It will be noticed that the shape

of the factorial expression changes on passing through

the maximum load points, where a discontinuity in the

loading occurs, but not when passing through the zero points.

24.
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From this observation, it is possible to write down

the factorial expressions for the zero and maximum load

points for the second cycle. The factorial expression

for any intermediate loading can then be obtained from the

nearest subsequent expression tabulated.

Zecond Loading__Cycle.

Factorial.

Numerical Evaluation.

function

The following table gives the value of the factorial

F evaluated for n = 4 for the first two loading cycles.

First Cycle. Second Cycle.

Time.

5nt (Lijn \2Ln Lgn) /(L-n ALn)

6nti (~ n1n 5n1nL

nn () 17
8nt 5L

T ime/t F Time/tl F

1 1 17 1/7.57
2 2 18 1/2.29
3 6 19 1.81
4 24 20 9.04
5 120 21 53.2
6 180 22 90.2
7 140 23 77.3
8 70 24 41.7
9 25.2 25 16.o

10 7.0 26 4.67
11 1.57 27 1.1
12 1/3.4 28 1/4.67
13 1/21.2 29 1/28.1
14 1/37.8 30 1/48.8
15 1/33.9 31 1/42.7
16 1/19.1 32 1/23.6
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The values of log10F are tabulated below. These figures,

multiplied by the slope of the logarithmic creep plot

for load W (that is, W.a), give the time-dependent deflections

for step-by-step cyclic loading, when the time interval

is equal to one minute.

Load. First Cycle. Second Cycle.

4w 1.380 .956
3W .778 2.079 .257 1.725
2W .301 2.255 -.360 1.954
W 0 2.146 -.879 1.888
0 1.845 -1.280 -1.280 1.620 -1.376
-W 1.401 -1.530 1.204 -1.630

-2W .845 -1.577 .668 -1.688
-3W .196 -1.326 .041 -1.449
-4W -.- 530 -.671

When t differs from 1 minute, we have to add

the quantity k.W.alog t1 when the load is k.W to obtain

the coefficients of time-dependent deflection. The values

for ti = 2 minutes and for t1 = O.5 minute for the second

loading cycle are given below.

ti = 0.5 min.

.822
1.352
1.587
1.620
1.505
1.270

.944

ti = 2 mins.

-1.376
-i. 329
-1.086

-. 546
.533

1.160
.242

-. 578
-1.280

2.160
2.628
2.556
2.189
1.620 -1.376

.903 -1.931

.066 -2.290
-.862 -2.352

-1.875

Load.

-. 248
-. 646
-.962

-1.180
-1.280

4w
3W
2W
W
0
-W
-2W
-3W
-4w
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Fig. 7 is a plot of the first table on p. 26; fig. 8 is a plot

of the second. Each point represents of course a time-

dependent deflection, which is the difference between the

deflection obtained at a given load after the loading history

corresponding to the point in question, and that deflection

which would be obtained one minute after an equal load were

placed instantaneously in position (the time-independent

deflection). This assumes primary creep according to

Boltzmann's law to be the only inelastic effect. In Part III

it will be shown that only part of the observed loop

can be accounted for by creep, and the remainder must

therefore be ascribed to elastic hysteresis.

III. Damping due to Hysteresis and Creep.

The decrement of free torsional oscillations of a

system, of which the material under test in the form of a

cylinder forms the elastic member, is due in the absence of

mechanical friction and air damping (and these can be made very

small) to the material damping of the specimen. In the case of

the bakelite specimens under consideration, damping appears to

be due to primary creep and to elastic hysteresis. To confirm

this quantitatively, we wish to measure the damping directly,

and compare this with the value computed from the magnitudes

of the primary creep and of the elastic hysteresis

obtained from the cyclic loading test.

29.



Specific DampIn _-9apacity

A measure of damping is the specific damping

capacity '\/, which is the ratio of the energy dissipated

in a cycle at a given strain range to the maximum strain

energy in the cycle. In the case of torsional shear of solid

cylindrical specimens, each annulus is working through a

strain cycle of different range. The ratio of the energy

dissipated in one cycle to the maximum strain energy in the

specimen at a given range of surface shear strain thus

represents a mean value over the cross-section; this value we

refer to as the mean specific damping capacity \V . If we
m

consider a thin tube of the same diameter working through the

same range of twist per unit length, the damping capacity of

the tube will be different from that of the solid cylinder,

though they be working through the same strain range, since the

damping capacity of the thin tube represents the value for the

annulus of material on the surface only of the solid cylinder,

and therefore we expect this to be different from the mean

specific damping capacity '\/. The damping capacity of this

surface annulus is called accordingly the surface specific

dampIng apacity '\O. The ^9e curve can be derived from the

ap curve.While in general the Wcurve is of greater scientific

importance, we are here interested only in the 4  curve,

since we are measuring the mean value of elastic hysteresis

over the cross-section.
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Logarithmic Decrement.

If A1 and A2 are successive amplitudes of free

oscillation, then the logarithmic decrement is

S = ln A1/A 2 .

This value is taken to refer to the strain corresponding

to 1/2(A1 + A2), though this may not be strictly true when

the decrement is high, as in bakelite. If we write 6

according to the formula:

S= Al - A2  = Difference in Amplitude

1/2(Al + A2) Mean Amplitude

then S represents the value of the logarithmic decrement

within 1% up to 8 = 0.35; the expression

6(1 + 6 2/12)

represents the decrement accurately over the whole working range.

Loqgarithmic Decrement and Mean Specific Damping Capacity.

If the damping is small, then Hooke's Law

is very nearly obeyed, and the strain energy is therefore

proportional to the square of the amplitude. The strain
2

energies corresponding to amplitudes A1 and A2 are k.A1
2

and k.A2, say. The mean specific damping capacity is then

2 2

1/2.k(A + A2
d A2

referred to a strain corresponding to l/2(A1 + A2)9
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Then V = (A, - A2)(A, + A2 )

1/4 (A, + A2) + (A, -A 2

(Al A2)

1/4(Al + A2) 1 (Al A2]
Al + A 2

26 2S
1+ 6/

where & is as before the ratio of the difference in

amplitude to the mean amplitude. Thus the mean specific

damping capacity is equal to twice the logarithmic

decrement within 1% if 8 is less than .20, provided

that the strain energy is proportional to the square of

the amplitude; the reasons we have for assuming that

this is so are given below. We will find in our tests

that S will not exceed .20, and hence we will use the

above formula for finding .

Relgtion between Strain Ener n Strain

We wish to show that in the case of bakelite,

it is reasonable to assume that the strain energy for

specific damping capacity purposes is proportional to the

square of the strain. If we can do this, then we may use

the formula obtained above for the mean specific damping

capacity. Furthermore, we have a basis for assessing the

strain energy corresponding to the observed hysteresis

loop, so that the contribution of elastic hysteresis

to the specific damping capacity may be computed.
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The Static Loading Curve and Free Oscillations.

Let us assume at first that creep is absent.

When the damping due to hysteresis is high, Hooke' s

Law is no longer even approximately obeyed, and the strain

energy given to the specimen in loading up to a

given value of surface stress is appreciably greater

than the strain energy recovered on unloading, the difference

of course corresponding to half the area of the hysteresis

loop. Let us consider the known behaviour of metals which

possess the property of elastic hysteresis to a large degree.

Load A
/I I

0 Deflection

Fig. 9.

If the material originally free from any permanent set

be loaded from 0 to A, then on unloading a permanent set OB

is produced. If on the other hand the specimen be provided

with a mass or inertia bar so that it can execute free

oscillations with a starting amplitude corresponding to A,

the oscillations will gradually die away, and the specimen

will finally be left without any permanent set; this is
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analogous to the demagnetisation of a magnetised specimen

by placing it in an alternating field of intensity

decreasing to zero.

It is assumed that the successive amplitude

maxima of the free oscillation, when plotted on the load"

extension diagram (fig. 9), lie on the original static loading

curve OA. We take the mean strain energy corresponding

to any given deflection to be equal to the area

under the original loading curve up to that deflection.

In the case of metals, this curve is linear up to a

certain point and then (under certain conditions)

becomes distinctly curved. It is assumed that the total

strain consists of an elastic part e and an inelastic part Xe,

the ratio & increasing rapidly at a critical stress.

In the case of bakelite, N appears to be nearly constant,

and therefore the tips of successive hysteresis loops

lie on a straight line passing through the origin. The

strain energy is then proportional to the square of the

amplitude.

The reason for this statement is as follows.

If c is the ratio of the mean to the maximum width of the

hysteresis loop, then we have approximately

"pm =8..

and c is a function of Xt. Damping tests show that V.

for bakelite is nearly constant over a wide range of stress;

hence )k may be assumed nearly constant.



35.

g~pecific Damp._g_;apacity due to Creep.

The specific damping capacity due to logarithmic

creep following the superposition law of Boltzmann has been

calculated for sinusoidal oscillations by different methods,
3 2 7

by Boltzmann, by Bennewitz, and by Becker. Boltzmann

calculated the decrement of free (torsional) oscillations.

Bennewitz and Becker calculated the specific damping capacity

under forced harmonic vibrations. The conclusions were

the same: the specific damping capacity was independent

of amplitude and of frequency. If the logarithmic creep

be given by:

x = B + A log 10t

where B is the deflection in unit time, then the specific

damping capacity due to creep is given by:

- -A , where M = loglO.
M.B

Then = 4.28 A/B.

Here B will be taken to be the elastic part

of the deflection, that is, half the difference between

the total strain range and the hysteresis loop width at

zero load. The total strain range will be the value observed

in the hysteresis tests, corrected for time-dependent

deflection and with the time unit adjusted to 10 minutes.
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Specific Dam agpacity due to Elastic Hysteresis.

The difference between each pair of observations

at the same stress level, corrected for time-dependent

deflection, gives the elastic hysteresis loop width;

the sum of these widths multiplied by the mean distance

between the stations gives a measure of the area of the

loop. If P is the total corrected strain range,
--3

adjusted for a time unit of 10 minute, and 4W the

maximum load, the value of the strain energy corresponding

to the maximum load can be represented by P.W. The specific

damping capacity due to hysteresis is then given by

loop area.,
strain area

The mean damping at a given stress range computed

from the creep and from the elastic hysteresis tests

thus becomes 'a + k'h. Owing to the theoretical and

experimental difficulties involved, we would expect

only a fair agreement of the computed value with the

observed value of damping at the same stress range.
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Part III. Experimental.

I. Description of Materials Used.

Four types of material with bakelite (phenol

or cresol formaldehyde) base were used: transparent

resin, wood-flour filled resin, cord-reinforced material

and fabric-filled moulding material. To explain the

differences in structure of these materials, it would be

well to describe briefly the mode of manufacture.

Phenol formaldehyde and cresol formaldehyde

resins are made by heating phenol (or cresol) with an

aqueous solution of formaldehyde in the presence or a

suitable catalyst. After some time an amber-coloured

fluid separates out: this fluid is formed by a polymerisation

process, and has the characteristics of a resin in that

it has no definite melting point or molecular weight,

and that when solid is amorphous in structure. On

further heating, the degree of polymerisation increases,

and this resin solidifies to a brown mass which is insoluble

in most solvents and infusible, but which chars slowly

at an elevated temperature. This is called the C stage

resin; the first stage is referred to as the A stage.

In practice, the process is arrested at the first

stage, and the resin run off and allowed to solidify.
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It can then be cast or moulded under temperature and

pressure to the desired shape. This is the usual transparent

bakelite resin as used for photoelasticity work. One

of the specimens tested was of this type. It is doubtful

whether the material as supplied is completely polymerised.

Alternatively, the A stage resin can be ground, and

mixed with wood flour, accelerator, and dye, thus forming

the commercial moulding powder. From a slab of material

moulded from such a powder a second specimen was prepared.

In order to obtain higher strength, it is possible to

reinforce the resin with textile material. The A stage

resin is dissolved in alcohol, and the textile reinforcement

drawn through the solution until sufficiently impregnated;

it is then baked in ovens to remove the solvent and to

cause a partial polymerisation. The textile material is

then moulded under pressure and temperature in the usual

way; the resin changes to the infusible form, acting

as a bond for the textile reinforcement. By using cotton

cloth, the familiar laminated material is obtained.

By using a material consisting almost entirely of parallel

cotton cords, we obtain a moulded material of increased

strength and stiffness; this is cord material, a specimen

of which was used for the tests. Finally, if small pieces

of fabric be used instead of cotton cloth, the resulting

material possesses a certain amount of flow when under

pressure and temperature. It is therefore marketed as

shock-proof fabric moulding material, since its resistance
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to mechanical shock is much greater than that of the

wood flour material. Of the four specimens used,

three were isotropic, and the fourth (cord material)

had an axis of symmetry along the axis of the specimen.

II. Description-of Apparatus.

The method of reversed torsion was chosen

as being the simplest method of obtaining reversed static

and dynamic loading, in which creep, elastic hysteresis,

and damping could all be measured without removing the

specimen. Possible trouble from temperature fluctuations

was greatly reduced by the use of specimens in shear;

this method enabled the deflections to be projected

optically on to a large graduated scale, so that corresponding

values of time and deflection could be observed and recorded

by a single observer. Solid cylindrical specimens,

with squared ends, as shown in fig. 10, were used.

5/16" 38

K- <[~

Fig. 10.
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F ig. 12.
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Torsion Apparatus

A sketch of the apparatus, approximately half

size, is shown in fig. 11. A photograph of the apparatus

is shown in fig. 12. The specimen A was in many cases

double-ended. The specimen was clamped to the bar B

by means of the piece C. The lower surface of the piece

D contained the axis of the specimen produced. This

piece rested on a knife-edge E consisting of a razor-

blade, the razor-blade being fixed in a holder F which in

turn was fixed to a length of duralumin girder G. The

fixed end of the specimen lay on a block H. A stiff brass

strip K was passed through a hole in the web of the girder,

and another strip L was laid on top of the squared end of

the specimen and on a block J (not shown in the front

elevation in fig. 11). This block was of the correct height

so that the bar L was horizontal. By means of two clamps

(not shown in fig. 11) over the block J and the specimen

respectively, the fixed end of the specimen could be firmly

clamped to the girder. Before clamping down, care was

taken to align the specimen accurately so that the axis

of the specimen produced lay along the edge of the blade.

A small steel ball M was fixed to one end of the bar B. The

front-silvered mirror P was attached to the bar in such a way

that it could easily be removed without disturbing the

L
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specimen. The bar B was provided on its upper surface

with two grooves exactly 7.5 inches from the vertical plane

containing the axis of the specimen; a scale pan with

knife edge support wighing exactly 2 ozs. was constructed.

The girder G was clamped down to a lathe-bed, where it was

free from disturbance and reasonably free from building

vibration.

OptIal Arrangement.

All observations were obtained using optical

methods: the creep and hysteresis readings were made on a

long graduated scale, the mirror P being used to reflect

a light beam: the damping tests were recorded on 35 mm.

cinematographic film, a high-light reflected from the

steel ball tracing the record.

A metal plate having a sharp straight lower

edge was used to cover the upper half of the lens of a

projection lamp. The light from the lamp was passed through

a focussing lens on to the mirror P, and then reflected

back to a vertical scale about five feet long divided into

gradations of .05 inch. By means of the focussing lens a sharp

image of the horizontal edge of the metal plate could be

focussed on the scale, and thus deflections corresponding to

.01 inch on the scale could be read. The optical lever arm was

148.4 inches. Hence a deflection of .01 inch on the scale

corresponded to a twist of 6.73 x 10-5 radian, and to a surface
-16

shear strain (bar diameter .312 inch) of 5.25 x 10 -

For the damping tests, the lamp was placed several

43.
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feet away, in the left hand direction with respect to

the front elevation in fig. 11. The light was adjusted to

shine on the steel ball. A box placed over the apparatus

was provided with two vertical slits, one at the side to

allow the light from the lamp to fall on the steel ball,

and one at the front facing the end of the bar B. An

electrically driven cinematograph camera with the intermittent

motion removed was placed in front of this slit, and focussed

so that a sharp image of the high-light on the ball was

formed on the film. In order to obtain a reference line,

a pin was fixed to an iron rod clamped to the girder, so that

the head of the pin lay as near as possible to the steel

ball, and also reflected light from the lamp into the camera.

This light from the pin traced a straight line on the film,

which was used as a reference line.

III. Method of Conducting Tests.

In the hysteresis tests, the load increments

were 8 ozs. each, the weights being applied and removed in

the same order. In the case of high creep materials, difficulty

was experienced when the specimen was carrying large torque.

The theory requires that the load be changed immediately

the scale be read. In practice, two or three seconds were

required to effect this change, by which time the deflection
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must have altered appreciably. With the low damping

materials each change of load set up a slight vibration

which caused some difficulty in making the subsequent

reading. The former difficulty could have been overcome by

making the readings in the middle of the load interval,

and modifying the theory accordingly. In all the creep

tests a load of 2 lbs. was used (corresponding to a torque of

15 lbs. ins. and a nominal surface shear stress of 2520 lbs./sq.in.).

Before conducting a damping test, the laboratory

was darkened as far as possible. In order to take a record

a length of cotton was attached to the scale pan and to the

torsion bar, the cotton being lightly secured by plasticine

in the groove in the bar. The motor driving the camera was

started, and the scale pan allowed to hang freely. The

load was released by burning through the cotton with a match.

The oscillations of the bar were then recorded on the moving

film by means of the high light reflection from the steel ball.

The runs were usually repeated several times, good agreement

being obtained between successive runs.

Since the static hysteresis tests were carried out

with a maximum load range of +2 lbs. on the torsion bar, it

was required to find the damping at a deflection corresponding

to this load range. It will be realised that with high

damping materials, a certain amount of extrapolation is

necessary to obtain the damping at the stress range corresponding

to the deflecting load. The precaution was usually taken,
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therefore, of making damping runs with a deflecting load

slightly in excess of 2 lbs. One or two dummy runs

were made before the recorded runs in order to condition

the specimen.

Reduction of Observations.

The developed film was placed in a photographic

enlarger and the record focussed on to a sheet of

paper. The successive deflections as well as the base line

were then marked on the paper. From this record, the

perpendicular distances of the marked points from the

base line were measured, and hence the successive amplitudes

obtained. By measuring also the distances from the base

line of the original deflection and of the ultimate

position of rest, a length corresponding to the applied

load could be obtained. Since linear distribution of

stress has been assumed in the theoretical section,

this length gives a scale for surface stress, since

the length corresponding to a deflecting load of 2 lbs.

is equivalent to a surface shear stress of 2520 lbs./sq.in.

By comparison, an actual photographic enlargement

was made of one record, and the damping calculated from

measurements taken from this enlargement. No appreciable

divergence was found between this and the other method.

It was accordingly decided that the preparation of

photographic enlargements was unnecessary.
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Neither the speed of the film, frequency of vibration,

nor the actual magnitude of the deflections have been measured,

since these quantities were not essential.

Arrangement of Experimental Work.

The first part of the experimental work is concerned

with the testing of the superposition laws of creep by

means of the three creep tests of Part I (figs. 1, 2, and 3)

for each of the four materials. The second part of the

experimental work involved for each material three tests,

the tests for each material being carried out on the

same day, to reduce the effect of temperature and humidity

variations. These tests comprised at least two step-by-step

cyclic loading tests of two complete cycles. A creep test

was carried out with the maximum load, following the scheme

of fig. 2(a), to determine the creep constant for correcting

the observations, and finally a damping test was made.

IV. Results of Creep Tests.

In figs. 13 to 24 are shown the results of creep

tests I, II, and III (figs. 1, 2, and 3) on cord material,

fabric moulding material, wood-flour filled material,

and transparent (unfilled) resin. For Test I, each loading

period was of 10 mins. duration, the load being 2 lbs. at 7.5 ins.

radius, except in the case of bakelite resin, when the load

was 1.5 lbs. In Test II, the experiment was carried out with
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loads of 21bs. and of 1 lb., the load being applied and

removed twice. The creep and recovery intervals were of

10 mins. each, with the exception of the case of the

bakelite resin, when they were of 15 mins. duration. In

this test, observations in the first creep period have not

been plotted. In Test III, a load of 2 lbs. was applied

from t = 0 mins. to t = 16 mins., and then removed; the load

was then applied on the opposite arm of the torsion bar from

t = 18 mins. to t = 20 mins., and then removed. Deflections were

obtained for the original and reversed creep, and for the

first and second recovery periods.

The creep results show the connection between

scale reading in inches and equivalent time. The tables below

give the equivalent times corresponding to the observed times

for Test I, Test II (time interval 15 mins.), and Test III.

The table for Test I refers also to Test II for the first

three materials. In all cases, the scale or scales of

deflection referring to creep are plotted on the left-hand

side, and those referring to recovery on the right-hand

side. Semi-logarithmic paper was used to facilitate plotting,

the equivalent times of 0.1, 1, 10, and 100 mins. being marked in.

A consistent symbolism was used on all the graphs;

the symbol referring to each creep or recovery period will

be found on reference to figs. 1, 2, and 3. The arrows on

each line indicate the direction in which the equivalent

time is changin6
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Observed and EQuivalent Times.

Test I and Test II.

Loading and recovery intervals are of 10 mins. duration.

First
Recovery

31
21
14.3
11
7.7
6
4.3
3
2.43
2

Second
Creep

.66

.98
1.45
1.91
2.8
3.7
5.3
8.3
11.1
14*7

Second
Recovery

46*2
31.2
21.2
16.2
11.2
8.7
6.2
4.2
3*33
2.7

Third
Creep

.87
1.3
1.92
2.5
3.7
4.8
6.9

10*7
14*1
18.4

Third
Recovery

57.6
39
26.4
20.2
14.0
10.*8
7.7
5.1
4.03
3.2

Test II.

Loading and recovery intervals of 15 mins. duration.

Equivalent Times in Minutes.ime from
eginning

of loading
interval,
mins.

.33
.50
.75

1.0
1.5
2
3
5
7
9*75

Time from Equivalent Times.
beginning
of loading First Second Second
interval, Recovery Creep Recovery

mins.

.33 46 .66 68.8
.50 31 .98 46.3
.75 21 1.46 31.2

1.0 16 1.94 23.8
1.5 11 2.86 16.2
2 8.5 3.76 12.5
3 6 5.5 8.72
5 4 8.75 5.71
7 3.14 11.8 .42
10 2.5 16.0 3.44
14.75 2 22.5 2.67



Time from beginning
of test, mins.

Equivalent
mins.

First 16.17 97
Recovery 16.33 49

16.50 33
16.75 22.3
17 17
17.5 11-7
17.75 10.1

Reversed
Loading 18.17 50.3

18.33 23.6
18.5o 14.8
18.75 9.1
19 6.3
19.5 3.7
19.75 3.0

Second 20.17 .37
Recovery 20.33 .67

20.50 .91
20.75 1.19
21 1.4
21.5 1.67
22 1.83
23 1.97
24 2.00
26 1.95
28 1.87
30 1.79
32 1.68
36 1.60
40 1.51
50 1.38
60 1.30
70 1.25

500

time,

Test ILI.
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Discussion of Results.

Test -: In the case of cord material (fig. 13) it seems

at first sight that the superposition law is not obeyed.

Though the recovery curves do indeed give parallel straight

lines when plotted against equivalent times on semi-logarithmic

paper, these lines are not coincident. The curves for the second

and third creep periods are straight over part of their range,

and parallel to the recovery lines, while the first creep curve

does not exhibit any linearity at all.

On closer inspection of the creep curves, however, it

is seen that the second creep curve is linear up to

the maximum strain reached in the first creep period.

Above this strain an additional non-logarithmic creep

takes place. The same applies to the creep curve for the

third loading period. Examination of the recovery curves shows

us that this additional non-logarithmic creep which takes

place when the previous maximum strain is exceeded, is in

fact non-recoverable. The recovery lines are straight,

indicating that the memory action is following the laws

previously enunciated. Furthermore, we see that the

displacement in the direction of the strain axis between each

pair of recovery lines is nearly equal to the plastic flow

occurring in the intermediate creep stage.

We can thus enunciate the following law:

For loads applied in one sense, the creep recovery obeys

Boltzmann's law; the creep obeys this law only if the previous

maximum strain is not exceeded, otherwise an additional

non-recoverable non-logarithmic creep takes place.
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64.

This additional creep appears to be of the

nature of a plastic flow, i.e., proportional to time.

It was not possible to investigate this further with

long-time creep tests with the specimens used, since

the secondary creep appeared not to be proportional to

stress. After a long-time creep test a redistribution of

stress across the cross-section was caused; the subsequent

recovery was therefore non-logarithmic. To investigate

this plastic flow, tubular specimens would be required.

Plastic flow proportional to time but not

necessarily to stress is a phenomenon which in metals

has been studied intensively in recent years. It is now

considered to be a diffusion process, and therefore the

secondary creep rate must be a function of temperature

only and not of strain history. In these tests this interfering

factor to the logarithmic creep appears to be of the

nature of plastic flow and yet dependent on the strain.

history of the specimen. If this phenomenon is a real

effect, and not a result of the experimental method,

then it must be concluded that secondary creep in

polycrystalline materials is different from that found

in amorphous bodies.

Some justification is required for drawing the

creep curves in fig. 13 in the manner shown. On the

evidence of one or two points we have drawn straight

creep lines up to the previous maximum strain, and then

continued these along an extension of the original creep



curve. This justification is found in an experiment

in Part IV, in which the deflections at the upper end

of the second creep curve were taken very frequently to

determine the exact course of the upper part of the curve. In

order to test that the displacements between the recovery

curves are due to the plastic flow in the intervening

creep test, a special repeated loading test was devised in

which the maximum equivalent time in the creep test was

nearly the same for all three loading periods, the same

applying to the minimum equivalent time in the recovery periods.

In this case the displacements between the three recovery

tests, and the second and third creep tests were very small,

and were probably due to experimental error (p. 94).

In all cases, the slopes of the recovery lines

and of the straight parts of the creep lines are nearly

the same. All the same conclusions apply to this test on

the other three materials; in the case of the wood-flour

material and the unfilled resin the plastic flow appears to be

of a much smaller order. The general conclusion of this test

is that with the above provisos, the material remembers

past loading actions; this memory appears to persist indefinitely.

Test II. In this test for all materials, the mean slope of the

lines for full load (2 x 7.5 lbs.ins.) was approximately

double that for the half load (1 x 7.5 lbs.ins.), indicating

that the logarithmic creep is proportional to stress in the

experimental range.
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Test III. In this test, there are two creep periods and two

recovery periods. From the results of Test I, we understand

why the creep under the first loading is not linear. The

creep under reversed loading from 18 mins. to 20 mins. we

must also ignore; first, owing to the rapid increase in

deflection, these points in this part of the test are not

as accurate as the other observations; though these points

appear in some cases to fall on a straight line, this is probably

due to the nature of the time function. The time tunction for

the second recovery has a maximum at an elapsed time (from the

beginning of the test) of 24 mins. i.e., 4 mins. after the

reversed load has been removed. We find in all cases that the

creep recovery does reverse its direction at this instant.

Theoretically, it should retrace the line corresponding to the

creep recovery from 20 mins. to 24 mins. Usually this is so.

Cord material is an exception in that it retraces a line

parallel and very close to the earlier part of the recovery

curve (fig. 15), thus forming a very narrow loop. This

displacement of the line corresponding to observations from

t = 24 mins. onwards from the line corresponding to observations

up to 24 mins. might be due to an internal friction effect.

In the otfer three materials, the creep deflections from

t = 24 mins. onwards does retrace as accurately as can be

determined the creep from t = 20 mins. to 24 mins. Thus the

correctness of the memory action law is strikingly shown.

We remember that the ideal theory predicted that the

short recovery period from t = 16 mins. to t = 18 mins.
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should give the same line as that yielded by the second

recovery period (t greater than 20 mins.). We obtain two

parallel lines in fact. The displacement between these two

lines is due to elastic hysteresis, since these two lines

represent the recovery from creep due to equal loads in

opposite directions.

The Separation of Creep and Elastic HIysteresis.

The creep experiments on specimens of each of the

four materials show that Boltzmann s superposition law

is a sufficient working hypothesis. We are thus justified in

using the theory developed in Part II of this thesis, to

determine the area of the hysteresis loop. The method was

as follows. Loads were applied or removed in four increments

of 8 ozs. each, the loading being applied cyclically and in

equal intervals of time; these intervals of time were in the

various tests 0.5 min., 1 min., and 2 mins. In each test, two

complete cycles, involving 32 steps, were traced. It was

endeavoured to read the scale as near as possible to the

instant when the load was changed. A certain amount of error

was inevitable, especially when the creep was rapid. In each

case the step-by-step cyclic loading test was repeated with

at least one other value of time-interval.

Following the hysteresis test, a repeated loading

creep test was carried out; this involved two creep periods

of 10 mins, each, and two recovery periods also of 10 mins.

The second creep and the two recovery deflections when plotted
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against equivalent time gave nearly parallel straight lines.

Since a load of two pounds was used in the creep tests,

the mean slope was divided by four to obtain the value

of W.a.

To obtain quantitative confirmation of the

values of creep and hysteresis obtained by this test,

a decrement test was then made as described on p. 45.

In the reduction of the hysteresis results, the corrections

were evaluated by means of the tables on p. 26, and of

the value of W.a obtained from the creep test. These corrections

are of course not creep corrections, which we have shown

are impossible to obtain, but represent what we have called

time-dependent deflections, that is, referred to the

behaviour of a specimen under a given load for unit time.

As far as hysteresis loop width is concerned, the value

of time unit is immaterial; this is also the case if we

wisn to compare loops obtained by using different time-

intervals, since the effect of altering the time unit

is to shear over all the loops by an equal amount.

In order to assess the damping capacity due

to the hysteresis loop however, we have to know the total

strain range, and this must be a value corresponding to

a time unit of the order of the period of vibration.

Except for the determination of this quantity, all values

are expressed in terms of a time unit of one minute.
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V. Results of Hysteresis Tests.

The observations (scale reading in inches) are

recorded for the first two loading cycles for each of the

four materials. For cord material and fabric moulding material

tests were carried out with three values of time interval

(0.5 min., 1 min., 2 mins.). For the wood flour material and the

bakelite resin only two tests were made.

In all cases the corrections for the second loop

have been calculated from the mean slope of the creep

curves, and applied to the observations. The corrected loop

width at each station and loop area (in units of inches of

scale multiplied by lbs. load on beam) were calculated. In the

case of the second test recorded (cord material, time

interval 1 minute), the corrections have been applied to both

first and second cycles. Good agreement appears to be

obtained between corresponding observations for the first

and second loops. The agreement between the areas of the

first and second loops (2.305 and 2.34 units respectively)

is also good.



70.

Cord Material. Time Interval 0.5 minute.

observations.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-1
-1.5
-W2

48.49
44.28
40.22
36.33

52.83
49.12
45.22
41.19
37.07
32.89
28.58
24.14

19.53

48.44
44.15
39.91
35.73
31.57
27.45
23.43

52.81
49.11
45.20
41.16
37.04
32.82
28*53
24.07

19.47

35*70
51.53
27.42
23*.58

Corrections, Second Cycle. Second Cycle. Corrected Obans.

Creep Factor .189

Load,
lbs.

2
1.5
1
0.5
0

-0.5
-1

N-.05
-. 12
-. 18
-. 22
-. 23

19.37 0

52.86
.16
.26
.30
.31
.28
.24
.18

Looo
Widths.

48 * 56
44.33
40.13
35.96-. 26

-. 25
-. 21
-. 10

.10

48.95
44.94
40.86
36.73
52.54
28*29
23.89

0
.39
.61
.73
.77
.76
.66
.41

35.96
31.78
27.63
25.48

-02
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Cord Material. Time Interval 1 Minute.

observattons.

Load, lbs.

2 53.08 53.04
1.5 48.66 49.32 48.59 49.27
1 44.32 45.36 44.23 45.32
0.5 40.07 41.28 39.93 41.24.
o 36.03 37.10 35.68 37.04 35.64

-0.5 32.86 31.47 32.79 31.41
-l 28.48 27.31 28.41 27.24
-1.5 23.97 23.23 23.89 25.15
0-2 19.28 19.19

Corrected Observations. Creep Factor .189 Second Cycle
Loop Width.

Load, lbs.

2 52.82 52.86 0
1.5 48.51 48.93 48.54 48.94 .40
1 44.26 44.88 44.30 44.95 .65
0.5 40.07 40.87 40.10 40.88 .78
0 36.75 35.92 56.73 35.90 .83

-0.5 32.60 31.76 32.56 31.72 .84
-1 28.36 27.61 28.28 27.56 .72
-1.5 23.93 23.48 23.88 23.42 .46

19.38-V2 19.32 0
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Cord Material. Time Interval 2 Minutes.

Observations.

Load, lbs.

2
1.5
1
0.5
0
-0.5
-1
-1.5
-2

48*82
44.40
40.09
35.99

53.33
49.51
45.51
41.37
57.12
32.82
28.37
23*78

18.98

48.75
44.31
39.94
35.63
31.33
27.12
22.98

53.28
49.47
45.48
41.34
37.10
32.77
28.32
23.73

18.93

35.62
31.32
27.10
22.94

Second Cycle.

Corrected Observations. Creep Factor .189 Loop Width.

Load, lbs.

52.87
48.53
44.26
40.05

(35.67)

48.97
45.00
40.93
36.79
32.54
28.30
23.89

35.88
31.68
27.53
23.38

19.28

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

0
.44
.74
.88
.91
.86
.77
.51

0



F
Cord Uaterial.

Calculation of 5pecific DamPing gapacjty from Cyclic Loading Tests.

Elastic hysteresis
loop area

Strain range: obs.

corrected, T = 1 min.
-3

corrected, T = 10 min.

A = .5( strain range
- max. loop width)

strain area

= 428 x .755/A %

Computed N!), %

ti = 0.5 min. t 1 = 1 min. t = 2 mins.

2.17

33.34

33.49

28.96

14.10

14.48

22.9

15.0

37.9

2.34

33.85

33.54

29.01

14.09

14.51

22.9

16.1

39.0

2.51

34.35

33.59

29.06

14.08

14.53

22.9

17.3

40.2

73.



Fabric Moulding Material. Time Interval 0.5 Minute.

observations.

Load, lbs.

46.87
42.99
39.30
35.75

50.79
47.37
43.82
4o..18
36.44
32.63
28.69
24.68

20.55

50.78
46.84
42.91
39.06
35.27
31.54
27.83
24.16

47.36
43.81
40.16
36.41
32.57
28.64
24.62

2o.49

35.26
31.52
27.80
24.12

Second Cycle.

CorrectedQbservations. Creep Factor .145 Loop Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

2
1.5
1
0.5
0

-0.5
-1
-1*5
-2

50.82
46.93
43.05
39.23
35.46

47.24
43.61
39.93
36.18
32.35
28.o46
24.48

35.46
31.71
27.96
24.20

0
.31
.56
.70
.72
.64
.50
.28

020.41

74.
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bablic Mouldng aterial. Time Interval 1 Minute.

bservations.

Load, lbs.

47.06
43.08
39 * 20
35.51

51.06
47.58
43.98
4o.30
36.49
32.63
28.62
24.55

20.35

51.00
47.oo 47.53
43.02 43.94
39.11 40.25
35.27 36.45
31.49 32.58
27.73 28.57
24.01 24.50

20.28

35.23
31.44
27*68
23.95

Second Cycle.

Corrected bservations. Creep Factor .145 Loop Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-1
-1.5
-2

2
1.5
1
0.5
0

-0.5
-1,5-1.5
-2

50.86
46.96
43.07
39*24

(35.46)

47.28
43.66
39.98
36.22
32.41
28.47
24.49

35.43
31.68
27.92
24.16

0
.32
.59
.74
.79
.73
.55
.33

020.38
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k'abric Moulding Material. Time Interval 2 Minutes.

Observations.

Load, lbs.

2
1.5
1
0.5
0

-0.5
o-1
-1.5
-2

51.*37
47.58 47.86
43.69 44.23
4o.oo 40.51
36.43 36.70

32.82
28.77
24.62

20.27

47.21
43.19
39.23
35.36
31.54
27.74
23.98

51.27
47.75
44.12
40.40
36.57
32.66
28.62
24.47

20.18

35.29
31.46
27.65
23.89

econd Cycle.

Gorrectea observations. Creep Factor .145 Loop Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-l

47.04
43.15
39.31

(35.55)

50.96
47.37
43.75
4o.o8
36.34
32.53
28.61
24.59

20.45

35.49
31.74
27.98
24.23

0
.33
.6o
.77
.85
.79
.63
.36

0



Fabric Mouldinw Material.

Calculation of Specific Damping Capacity from Cyclic Loading Tests.

Elastic hysteresis
loop area

Strain range: obs.

corrected, T = 1 min.
-3

corrected, T = 10 min.

A = .5(strain range
- max. loop width)

Strain Area

vc = 428 x .58/A, %

ti = 0.5 min. ti = 1 min. ti = 2 min&.

1.81

30.29

30.41

26.93

13.11

13.47

18.9

13.4

2.03

30.72

30.48

27.00

13.11

13.50

18.9

15.0

2.17

31.09

30.51

27.03

13.09

13.52

18.9

16.0

32.3 33.9

77.*

Computed s, % 34.9
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Wood Blour Material. Time Interval 0.5 Minute.

Observat ions.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-l
-1.5

47.72
44.06
4o.49
36.98

51.43
48.06
44.60
41.08
37.45
33.72
29.79
25.65

21.40

47.60
43.79
39.88
35.95
32.27
28.62
25.00

51.41
48.03
44.57
41.o4
37.41
33.67
29.73
25.59

21.39

35.93
32.25
28.62
24*99

Second Cycle.

Corrected Observations. Creep Factor .110 Loon Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-1
-1*5
-2

51*44
47.67
43.90
4o.01

(36.09)

47.94
44.42
40.87
37.23
33.50
29.59
25.49

36.08
32.40
28.74
25.05

0
.27
.52
.86

1.15
1.10

.85

.44
021.33

L



Wood Flour Material. Time Interval 1 Minute.

Observations.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-l
-1.5

47.71
43.88
39.95
36.06

51.51
48.10
44.62
41.06
37.40
33.65
29.68
25.52

21.28

47.66
43.82
39.87
35.92
32.22
28.55
24.90

51.47
48.07
44.58
41.02
37037
33.61
29.63
25.46

21.23

35.90
32.19
28.51
24.85

Second Cyqce.

Corrected Observations. Creep Factor .110 Loop Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-1*
-1.5

51.36
47.63
43.86
39.97

(36.o6)

47.88
44.36
40.81
37.19
33.48
29.56
25.46

36.05
32.37
28.69
25.01

0
.25
.50
.84

1.14
1.11

.89

.45
021.30

79.



Calculation of Specif.c Dampin- CaPacity from Cyclic Loading Tests.

Elastic hysteresis loop area

Strain range: observed

corrected, T = 1 min.
-3

corrected, T = 10 min.

A = .5(strain range - max.
loop width)

Strain area

%Pc = 428 x .441/A, %

Computed \P, %

t = 0.5 min.

2.60

30.02

30.11

27.46

13.16

13.73

14.4

18.9

33.3

tj = 1 min.

2.59

30.24

30.06

27.41

13.14

13.71

14.4

18.9

33.3

8o.

Wood Flour Ylaterial.



Bakelite Resin. Time Interval 1 Minute.

Observations.

Load, lbs.

51.14
45.23
39.39
33-58
27.73
21.76
15.64

9.30

57.18
51.42
45.68
39.92
34.10
28.22
22.15
15.88

33.57
27*71
21.72
15.60

9.26

Second Cycle.

Corrected Observations. Creep Factor .086 Loop Width.

Load, lbs.

51.27
45.51
39.76
33.96
28.12
22.09
15.88

33.69
27.85
21.87
15.72

9.32

57.222
1.5
1
0.5
0
-0.5
-2.
-1*5
-2

51.17
45.29
39.47
33.72

51.45
45.71
39.94
34.13
28.24
22.20
15.91

57.102
1.5
1
0.5
0

-0.5
-1
-1.*5
-2

51.12
45.26
39.47

(33.69)

0
.15
.25
.29
.27
.27
.22
.16

0

81.
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Bakelite Resin. Time Interval 2 Minutes.

-bservations.

Load, lbs.

51.64
45.78
39.99
34.18
28.27
22.14
15.89

51.23
45.30
39.43
33.60
27.72
21.72
15.58

9.25

57.30
51.53
45.77
39.98
34.16
28.25
22.16
15.83

33.59
27.70
21.69
15.55

9.18

Second. Cycle.

Qorrected Observations. Creep Factor .086 joop Width.

Load, lbs.

2
1.5
1
0.5
0

-0.5
-.1
-1.5
-2

57.472
1.5
1
0,.5
0

-0.5
-l
-1*5
-2

51.32
45.37
39.52
33.73

57.11
51.13
45.28
39.48

(33.71)

51.30
45.55
39.79
34.02
28.17
22.15
15.90

33.71
27.87
21.89
15.75

0
.17
.27
.31
.31
.30
.26
.15

0
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Bakelite Resin.

Calculation of Specific Damping Capacity from Cyclic Loading Tests.

Elastic hysteresis loop area

Total strain ran6e: observed

corrected, T = 1 min.
'"3

corrected, T = 10 min.

A = .5( strain range - max.
loop width)

Strain area

\kc = 428 x .343/A, %

Chpu %

Computed 'NP, %

t = 1 min.

.80

47.92

47.78

45.72

22.73

22.86

6.5

3.5

ti = 2 mins.

.89

48.12

47.77

45.71

22.70

22.86

6.5

3.9

S10.410.0
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Discussion of Hysteresis Results.

The following general conclusions are seen to

hold for the hysteresis tests.

1. Steady State. Excepting the first quarter of the first

cycle, there is good agreement between the observed

deflections for the first and second cycles. The slight

difference appears to be accounted for within the order

of accuracy of the experiment by the slight difference

between the corrections due to creep for the two cycles

(fig. 7).

2. Uncorrected Qbservations. Considering the second cycle

tne zero load observations appear to be almost unaffected

by the time interval of the cycle. This is not the case with

the other observations. The greater the time interval,

the greater is the total strain range.

3. Qorrected observations. After applying to the second cycle

observations the corrections for time dependent deflection,

it is seen that good agreement is obtained between the

corresponding observations for different time intervals. In spite

of the fact that the observations at the maximum load points are

likely to be in error for reasons already mentioned, they are

pulled nearly into agreement on applying the corrections.

Whereas the observed total strain ranges for different

time intervals differ greatly, these ranges when adjusted

by the theory are found to be nearly equal. The results thus

bear out the theoretical conclusions that the cycles for

different time intervals are sheared over by amounts
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proportional to the logarithm of the time interval.

4. Elastic Hysteresis Loops. The difference between pairs of

corrected observations gives the hysteresis loop width in terms

of inches of scale. The sum of these widths for the nine

stations (i.e., eight intervals) when divided by two

gives the loop area in terms of lbs. wt. on beam x inches

on scale. The loop widths represent the difference between

two nearly equal magnitudes, the observations being taken

rapidly and without any possibility of a check. Because

of this and some other unknown causes, there is only a

fair agreement between the sizes and areas of the hysteresis

loops; the width at each station and the total area is slightly

greater the greater the time interval. Agreement is good

between the two values of loop area in the case of the wood

flour material and the unfilled resin. Except in the case

of the wood flour material, the loop widths are roughly

symmetrical with respect to the load.

VI. Damiing CaDacit Results.

The logarithmic decrement & was evaluated from

an amplitude record by means of the simple formula, and the

mean specific damping capacity obtained by multiplying by two.

The stress scale was determined by assuming linear distribution

of stress, the initial semi-amplitude thus giving a

connection with surface stress.

Fig. 25 shows amplitude records as obtained

for the various materials. Figs. 26 - 29 show the relation
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Qord Material

Fabric Moulding
Material

Wood Flour Material

Bakelite Resin

Fig. 25.

Amplitude of Free Oscillation

(Contact Print from Film Record)
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between mean specific damping capacity in torsion and

nominal surface shear stress for the four materials in the

as received condition. In many cases two runs are recorded;

tne agreement is usually close. Fig. 30 shows on one

diagram how the faired records compare. An example of the

calculation of decrement for cord material is given below.

Stress Scale. 2 lbs. load = 2520 lbs./in! 2.25 lbs. = 2 x 3.47 ins.

hence 1 in. on record = 408 lbs./in!

Cycle Amplitude, Ampl. Mean Log. Dec., Stress,
ins. Difference Ampl. lbs./in2 .

x 6.23
1.02 5.72 17.85 2340

2 5.21
1.33 4.55 14.6 1860

4 3.88
.51 3.63 14.0 1480

5 3.37
.43 3.16 13.6 1290

6 2.94
.38 2.75 13.8 1120

7 2.56
.34 2.39 14.2 976

8 2.22
.51 1.97 12.95 805

10 1.71
.39 1.505 12.95 614

12 1.32
.51 1.065 12.00 435

16 .81
.29 .665 11.1 272

20 .52
.17 .435 9.78 178

24 .35
.17 .265 8.02 108

32 .18
.07 .145 6.03 59

40 .11
.o4 .09 5.56 37

48 .07
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Comparison of Dynamic and Static Results.

The following table gives the value of '\Pm

at a surface shear stress of 2520 lbs./in! (corresponding

to a load on the torsion bar of 2 lbs. at 7.5 ins, radius)

obtained from the damping curves, extrapolation being resorted

to where necessary. This table gives also the values

of \m statically determined at this stress-range by the

cyclic step-by-step loading tests.

Material Cord Fabric Mldg. Wood Flour Resin

Dynamic Test 36.6 33.2 31.1 8.9

Static Test
t 1= 0.5 37.9 32.3 33.3

ti = 1 39.0 33.9 33.3 10.0

t = 2 40.2 34.9 ---- 10.4

The static and dynamic tests in the above table are in

reasonable agreement, indicating that the theory is probably

correct, and therefore that damping in bakelite in the as

received condition is due partly to elastic hysteresis and partly

to primary (logarithmic) creep. At the stress range considered,

for three materials rather more than half the damping was due

to creep; for the fourth material (wood flour filler) the

reverse was true.
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Part IV. Conclusion.

I. Bxperiments on Jon-Recoverable CreeP.

Three experiments will be dealt with, which

represent a preliminary study of the nature of the non-

recoverable creep. The cord material specimen was used in

these tests.

Test 1.

This is a repeated loading test similar to Test I

of Part II, with the difference that the loading and

unloading instants are so adjusted that the equivalent time

of 15 minutes is not exceeded during the creep periods,

and that the equivalent time never falls below 2.0 minutes

during the recovery periods. The loading diagram is

shown in fig. 31. The equivalent times are given below;

the observations are plotted against equivalent time as

before in fig. 32.

2 lbs.

0 15 30 39 56 64 85
mins.

Fig. 31.
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The equivalent times up to t = 39 minutes are the same

as in Test II (p. 49). The subsequent times are given below.

Recovery Creep Recovery

Iime from Equiv. Time from Equiv. Time from Equiv.
beginning time. beginning time. beginning time.
of test. of test. of test.

39.33 45.3 56.33 .68 64.33 44.2
39.50 30.6 56.50 1.03 64.50 30
39.75 20.9 56.75 1.52 64.75 21.4
4o 16.o 57 2.o4 65 15.75
40.50 11.1 57.50 3.02 65.50 11.0
41 8.68 58 3.98 66 8.63
42 6.22 60 7.6 67 6.23
43 5.00 63.75 13.8 70 3.84
45 3.75 75 2.70
47 3.12 80 2.26
50 2.6 85 2.01
55.75 2.1

It is seen that the displacements between the

recovery lines, and between the second and third creep lines

are very much reduced (Cof. fig. 13). The slight displacement

that remains might be due to defects in the apparatus.

Test 1-.

This experiment deals with the creep following an

initial creep and intermediate recovery. Fig. 33 shows the

loading diaEram; the equivalent times are of course the same as

for Test II of Part II up to 45 minutes from the beginning of the

test. This test was continued for 70 minutes.

2 lbs. 0

0 _ _ _ 4-

0 15 30 70 minutes.

Fig. 33.
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The results in fig. 34 snow that the second creep curve

is represented by a straight line parallel to the recovery

line up to an equivalent time of 8.6 mins. This line when

extrapolated to 15 mins. intersects the original creep curve

at the deflection corresponding to the termination of the

first creep. From about 25 mins. onwards, the second creep

curve lies on a continuation of the first. Between these

points the second creep curve follows a transition curve

between the straight line and the continuation of the first

curve. In the curves in Part III the transition curve

has been replaced by the broken line shown in fig. 34.

Test II.

This test represents an extension of Test II of

Part II (with 10 minute loading periods) in which the second

recovery is observed for a further 60 minutes. The loading

diagram is shown in fig. 35; the creep and creep recovery

observations are plotted against the corresponding equivalent

times in fig. 36.

2 lbs.

0 4
0 10 20 30 100 mins.

Fig. 35.

After about 35 minutes from the beginning of the

second recovery period (corresponding to an equivalent time

of 1.52 minutes) the creep appears to recover at a much

faster rate than expected. The extrapolation of the second
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recovery curve to unit equivalent time (i.e., infinite

elapsed time) suggests a final additional recovery of the

order of magnitude of the non-logarithmic creep in the first

and the latter part of the second creep periods. The experiment

suggests therefore that the non-recoverable creep deflection

does probably recover after a long period of time.

II. Suggestions for Further Work.

During the course of the work several improvements

to the apparatus suggested themselves. First, thin tubular

specimens would have been preferable to solid cylindrical

ones, since the stress-distribution would then be nearly

uniform across the cross-section. The enlarged squared ends

of the specimen are best clamped between V-blocks. A pivot

which would be an improvement on a knife-edge would be one

consisting of two flat strips at right angles in flexure.

The greatest experimental difficulty in the cyclic

loading tests was the application of the loads at the exact

time instants, without disturbing the loads already on the

beam. A possible solution would be to apply the loads by

some electromagnetic device, leaving the observer's attention

free for making scale readings.

The static and dynamic tests have been compared

on the basis of specific damping capacity. Difficulty and

uncertainty arises both in the translation of loop area and

of logarithmic decrement into this unit. If a machine be

devised for measuring unit damping (i.e., the energy
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dissipated per unit volume per cycle) the results can

immediately be compared with the hysteresis loop area,

and thus the difficulties disappear.

The experimental work has been concerned only in

snowing that at a particular stress range the damping is due to

hysteresis and primary creep. According to the theory, the

specific damping capacity due to hysteresis may be a function

stress, whereas that due to creep should be nearly constant.

That the variation in damping capacity over the stress range

is due to variation in tie nysteresis component is yet to be

shown. The effect of annealing at say, 1000 C., the effect of

overstrain, and the relations between moulding pressure, nature

of filler, and type of damping curve afford further interesting

problems in the damping of bakelite materials.
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