22 AuG1939
LIBRARY

CREEP, ELASTIC HYSTERESIS AND DAMPING 1IN BAKELITE

by
Herbert Leaderman
B. A., Hons., Unlversity of Cambridge
1934
B. Sc¢. (Eng.), University of London
1934

Submitted in Partial Fulfilllment of the Requirements
for the Degree of
MASTER OF SCIENCE
from the

Masgachusetts Institute of Technology
1938

Signature of Author ... ... ... . ... ... .iiiiiiieeons
Depeartment of Mechanical Engineering, October 3, 1938.
Signature of Professor in

Charge of Research s...... s
Signature of Chalrman of Department Committee

on Graduate Students ....



Cambridge,
Masgssachusetts.

October 3, 1938,

Professor George W. 3Swett,
Secretary of the Faculty,
Massachusetts Institute of Technology.

Dear Professor Swett:
I submit herewith a thesis, in partial fulfillment of

the requlrements for the degree of Master of Science, entitled,

CREEP, ELASTIC HYSTERESIS AND DAMPING IN BAKELITE.

Your faithfully,

Herbert Leaderman.

230365



CONTENTS

Preface
Part I. Introduction
I. Importance of the Problem
II. Nature of Problem
III. Scheme of Thesls
IV. Conclusions
Part II. Theory
I. Creep Superposition and
Equivalent Time
II. Separation of Creep and Elastic
Hysteresis
III. Damping due to Hysteresis and Creep
Part III. Experimental
I. Description of Materials Used
II. Description of Apparatus
III. Method of Conducting Tests
IV. Results of Creep Tests
V. Results of Hysteresis Tests
VI. Damping Capacity Results
Part IV. Conclusion
I. Experiments on Non-Recoverable Creep
II. Suggestions for Further Work

III. List of References

29
37
37
39
44
47
69
85
94
94

100
10l

111



iv.

Preface.

This work deals with an experimental study of the
inelastic properties of four types of bakelite material. It is
shown that the damping of free torsional oscillations is
accounted for by two phenomena, namely logarithmic creep snd
elastic hysteresls. Due to the presence of creep, a theory has
to be developed to show how the existence of elastic hysteresis
may be determined experimentally. This theory is developed in
Part II. In Part III is given first an experimental proof of the
assumptions of the theory, and also the study of the inelastic
properties by both static and dynamic methods. Part IV deals
with a few experiments suggested by the results of Part III.
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CREEP, HYSTKRESIS, AND DAMPING IN BAKELITE.

fart I. Introduction.

I. Importance of the Problem.

An important property of materials which recently
has received much attentlon 1s damping csapacity, or the
abllity to dissipate mechanical energy as heat in the
working range. This dissipation, though small for ordinary
metals in the normal condition, 1s very sensitive to structure
and to strain history, and the study of damping capacity
18 throwing much light on the differences in behaviour of
materials under the same conditions.

The origin of damping in metals 1s understood to
be due malnly to two causes, elastic hysteresls and primary
creep. By elastic hystereslis 1s meant the appearance of a
narrow stress-strain loop when the stress 1s varled cyeclically
elther in steps or continuously; 1t is a phenomenon independent
of time. It has been shown by Rowettl that for cold drawn
steel, the energy dlssipated under free torsional oscillations
up to two-thirds of the elastic limit 1a exactly accounted
for by the areas of the hysteresis loops determined by

static experiments.
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By primery creep is meant that part of creep which
proceeds at a decreasing rate with time. It has been shown
by Bennew1t22 that the creep of glass 1s of this nature
and that the damping of glass 1s entirely accounted for by
primary creep.

Owing to the difficultles of experimentation,
the phenomenon of creep in metals at room temperature is
not well understood; similarly, the inelastic properties of
metals at stresses where both primary creep and elastic
hystereslis are present has not yet been explored. It is
therefore of interest to examine in detail the inelastic
properties of synthetic resins (in particular, bakelite)
where these properties, being of a large magnitude, can be
easlly studied. In addition, apart from the contribution to
the general understanding of the properties of materials a
study of bakelite would give, such a study would be of importanee
in the production of synthetic materials with better elastic
properties, and in giving a clearer knowledge of allowable

working stresses in such materials.

II. Nature of Problem.

If a hysteresls test be made on bakelite by taking
a specimen (esay) in torsion around a stress cycle, a stress-
strain loop will be obtained. The following questions then
arise:

1. Is the loop due to the action of primary creep, or is part
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III.

of 1t due to an elastic hysteresis, of a static nature as
explained above?

If the loop 1s due to creep, we must be able to demonstrate
that this is s0; to do this, we must know the law of primary
creep for load applied (or removed) in increments at different
times. This law we will call the superposition law of creep.
If both elastic hysteresis and creep are present, then the area
of the loop obtained from a stress-straln test made under
definite conditions 1s greater than the area due to creep
deduced from the superposition law. From such a test, we can
calculate the damping due both to creep and to elastic
hysteresis; this should agree with the damping measured by the

decrement of free oscillations of the specimen.

Scheme of Thesis.
It is now agreed that the creep of materials can

"be divided into two components, one proceeding at a decreasing

rate with time and proportional to the stress (primary creep)
and the other proportional to time but not to stress (plastic
flow). For the time being, we will neglect the second component;
we will show later that with certaln precautions we can
eliminate the effect of plastic flow. The main problem 1is
therefore to study the laws of superposition of primary creep,
and the application of these laws to the separation of creep
components from true elastic hysteresis in a cyclic stress-

strain test. This work 1s divided into a theoretical part
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(Part II) and an experimental part (Part III).

Part II is concerned firstly with devising
sultable means of testing the superposition law due to
Boltzmann, in such & manner that plastic flow will not be
an interfering factor in the experiment; and secondly with
the calculation of the deflections that would be obtained if
primary creep only were present, the load being varied cyclically
and in steps. By this means we can determine if elastic
hysteresls is present in additlon to creep. Finally, we
have to calculate the damping due to primary creep on the
basis of the superposition law, and then to calculate the
total damping due to primary creep and hysteresis.

On the experimental side, the problem was to devise
an apparatus by which creep, hysteresis, and damping could
be measured on the same specimen. The method chosen was
that of torsion of a cylindrical specimen with squared ends,
one end belng fixed and the other fastened to a torsion bar
pivoted sbout the axis of the specimen. The experimental
work in Part III 1s concerned, first, with the testing of
the superposlition law according to the schemes developed
in Part II for each of the materials investlgated; and secondly,
with stress-strain observations for loads applied
cycliceally, in increments. Damping measured directly is shown
to sgree well with that predicted from stress-strain

step-by~-step measurements.
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Part IV of this thesis gives an account of

experiments which shed some light on the nature of creep.

Previous Work.
4 5

De Bruyne and also Parzich have measured the
damplng of reinforced gakelite; they do not explaln the origin
of the demping. Jordan has studled the creep of soft metals
under pure bending with superposed loading. His results are
plotted on the baslis of the logarithm of time elapsed from the
beginning of the experiment. When replotted on the basis of
logarithm of equivalent time (see p. 7), his results

H
suggest that Boltzmann s law 1s true.

gonclusions.

Four types of material were tested in torsional shear.
Using a concept of equivalent time, it is shown that the creep
follows Boltzmann's superposition lsaw.
By means of observations of deflection obtained when the load 1s
varied cyclically in equal increments in equal intervals of time,
it is shown that the area of the stress-strain loop 1is greater than
that due to creep calculated from the Boltzmann law; hence
an elastic hysteresis exists in bakelite.
Measurement of the decrement of free oscillations shows that
the measured specific damping capaclty at a surface shear stress of
2520 1lbs./in? agrees well with the value deduced from the magnitude

of the primary creep and of the elastic hysteresis.



I.

6.

Part II. Theory.

Creep Superposition and Equivalent Time.

Boltzmann’s superposition law of primary creep
can be summarised as follows:
greep_under Single lLoad. The deflection at time t due to a
single load W applied at time to is given by:

X = W[b + a log(t - toﬂ cesesanea(l)

i.e., 1t consists of a part proportional to the losd and
independent of the time, and a part proportional to the load
and to the logarithm of the tlme elapsed since the load was
applied. In considering creep under complex locading, we may

omlt for simpliclity the quasli-elastic or time-independent

part of the deflection.

greep_Recovery. If at any subsequent time the load W be

removed there will be a creep recovery or negative creep. It is
assumed that the effect of removing the load W is that of
applying a negative load of magnitude W, at the sasme time the
creep due to the original loadlng continuing indefinitely. The
matefial 18 thus assumed to possess a memory for all past
loading actions. If the load be removed at time t, the creep

recovery at a subsequent time t will be given by:

Wb+ & log(t - t5)] - W[b+ alog(t - t;,)], 1L.e., by

Wa log (t - to)/(t = t1) .ivivenees.(2)



3. Increase or Decrease of l.ocad. If the load be increased or
decreased suddenly, then the effect on the creep is that of

adding the increment or removing the decrement of load, the creep
due to previous loading actions belng assumed as before to
continue indefinitely. If for example loads WQ, Wy, Wo be
applied at times to, Ty, t2, the creep at a subsequent time t,

neglecting the time-~independent deflection, 1is:

Woa log(t - ty) + (W1 - Wy)a log(t = t7) + (W, = Wy)alog(t - tp)
AN &)

If we apply a single load to a specimen of bakelite,
say in torsion, the creep deflection is not found to be
logarithmic with time. We can assume eilther that Boltzmann,s
law is untrue for bakellite, or that alternatively the
logarithmic ecreep is masked by en additional plastic effect.
This plastic effect might be analogous to fluid flow, and
therefore in exlstence whenever the specimen i1s under load;
alternatively, 1t might represent an initlial plastic adjustment.

If now we remove thls load that we have applied
above, the creep recovery indeed gives a straight line when
plotted agalnst log (t - ty5)/(t - t;) as indlcated by equation
(2); but this is not sufficient (as has been assumed many times
in the past) for assuming the correctness of Boltzmann,s
superposition law. If however we consider the creep and creep
recovery adue to repeated application and removal of the load
at difrerent time instants, then by comparison with the creep
and creep recovery as expected by the superposition law we

can determine the validity of the law.



Eguivalent Time.

In carrylng out the experiments to confirm Boltzmann's
theory 1t is expedient to add or remove loads which are of the
same magnitude or at lesst simple multiples of each other;
for example, if in equation (3) above, Wy = 2W_, Wp = 3W,,
then the theoretical creep at time t is given by:

Woa log(t = t ) (t = t1)(t = t5),

i.e., the creep 18 proportional to the logarithm of a simple
function of time. A simple method of checking the superposition
law for any complex loading therefore presents itself; let

us plot the observed creep (or creep recovery) deflection
against the logarithm of the appropriate time function.

Then for any set of teats we should obtain a set of parsllel
straight lines, the distance between any two lines corresponding
to the elastlic together with any hysteretic deflection. We

thus have a very powerful means of checking the superposition
law.

Let us call this function of time the equivalent
time. The procedure 1é thus to calculate the equivalent time
corresponding to each observation, and to plot the acale
deflections agalnst equivalent times on semi-logarithmic paper.
In thls way, deviations from the superposition law can be

immediately observed during the course of the experiment.
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Confirmation of the Superposition Lew, Using the Concept

of Equivalent Time.
Three tests will be consldered which together

are sufficient to confirm the superposition law, and

to indicate the nature of the departures therefrom.

wl O) D) O

Fig. 1.

Test I. Repeated Loading.

Flg. 1 represents a load-time diagram for an

experiment in which a load W is applied and removed

repeatedly. The equivalent times are therefore as follow:

If t 1liesa in time interval: expression for equivalent time 1is:
O"‘tl ta
t) = 2ty t/(t - tq)
2ty = 3t; t(t - 2¢,)/(t - ty)
3ty - 4tg t(t - 2¢9)/(t = t)(t - 3t,)
4tl - Stl t(t - 2t1)(t - 4t1)/(t - tl)(t - Btl)
5t7 = 6tl t(t - 2t1)(t - 4%1)

(t - t3)(t = 3t1)(t - 5t,)
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If the theory is rigidly true, we expect that all the creep
deflectlons when plotted against the logarithms of the
corresponding equivalent times to fall on one straight line; and
the same be true for observations of creep recovery. These two
lines should be parsllel and separated by a distance
corresponding to the selastic deflection due to a load W.

Test II. Creep_and Stresa.

We can show that creep is proportional to load

by repeating any experiment, with, say, half the load.
We then expect the slopes of all the lines to be halved.

gwl O (]
wl ) )
0 + X 0 -+ X
0 tl 2t1 3ty 4tl 0 tl 2t 3t1 4t1
Fig. 2a. Fig. 2b.

Loadlng dlagrams according to figs. 2a and 2b represent
experiments which could be made to test the proportionality of
logarithmic creep with applied load. This proportionality 1is
important. If experiments carried out by torsion of cylindrical
specimens show & proportionality of creep with load, we can say
that the creep is proportional to stress; furthermore, the stress
must be always linearly distributed across any crossesection,

and therefore primary creep would ncot cause a redistribution of
stress. The results of a torslion experiment would then

be of significance.



est « Memory Action.
According to the superposition law, the creep due

to each loading action persists indefinitely, i.e., the
material remembera peast loading actions. The purpose of

the following experiment is to demonstrate this effect

in such s manner that plastic flow will not be an interfering
factor; the experiment is to show that 1f a specimen be
loaded first in one sense and then in the other, and then the
~load removed, the materlial will tend to recover in opposite
senses from the two loading actlons. The times can be so
arranged that in fact after a certain instant the memory

of the first loading actlion outweighs that of the second,
l.e., that creep recovery proceeds first in one direction

and then in the other. Such an experliment demonstrates
qualitatively the memory action, and 1s well known. We are
now going to use the concept of equivalent time to demonstrate

»
that in fact Boltzmann s law 1s obeyed quantitatively.

Mathematically, the conditlion that the creep recovery

11.

should stop and then reverse its direction 1s that the equivalent

time for the recovery should possess a maximum (or minimum).

W [0
0 8t19t110t; 12t
+ [ x v
]

Fig. 3.



The loading dlagram in fig. 3 represents the application
of a load W from t = 0 to t = 8t1, and the application

of & load =W from t = 9tl to t = 10t,. The equivalent time

1
for the subsequent recovery 1s therefore:

t(t - lotl)

This has a statlonary value at t = 12t1, hence at this
Instant we would expect the direction of the creep
recovery to reverse. Furthermore, we would expect all the
creep recovery obsgervations from t = lot1 onwards when
plotted agalnst the logarithm of the equivalent time
to fall on a straight line, retracing the line backwards
from t = 12t, onwards. This in fact happened in all the
materials tested. In an otherwlse ldeally elastic materisal,
the creep recovery observations from t = 8tl to t = 9t1
should fall on the same line. In actual fact, they fall
on a parallel line, indlcating the existence of an elastic
hysteresls loop.

The above 18 an account of the idesal behaviour
of a materlial under experiments to check the valldity
of the superposition law of primary creep. In Part III
1s given an account of the behaviour of various commercisal
types of bakellte under these tests. Resulis were such
a8 to show that plastic flow was not, after the first

application of load, a seriously interfering factor.

1l2.
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II. Separastion of Creep _and Elastic Hysteresis.

The next stage in the investigation is the demonstration
of the existence of an elastic hysteresis loop, and
the experlimental determination of its magnitude. Let
us assume first that elastic hysteresis is absent,
and let us imagine that a material which possesses the
property of primary creep obeying the superposition law
is loaded cyclically by applying (or removing) equal
increments of load in equal intervals of time. Then the
deflections due to creep at the end of each of these intervals
could be calculated, if the magnitude of the creep be
known; this latter can be obtained from a repeated loading
test. All the observed deflections obtained in the cyclic test
could be corrected for creep by meang of the calculated
creep deflectlions.In the absence of elastic hysteresis,
the experimentally observed loop widths at each load
station should be the same as the corresponding theoretically
calculated wldths, that is, the calculated stress-strain
loop due to primary creep should be the same as the experimentally
determined loop. If the width of the measured loop at any
load station is greater than the calculated width, the
difference must be the width of the loop due to elastic
hysteresis at that load.

Thus if we take a sufficient number of steps in the
cycle, it 1s possible to find the shape and area of the

elastic hysteresls loop. The area thus determined can be
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checked in two ways. First, we can repeat the experiment,
using different values of time interval between the load
increments. The observations corrected for creep should then
be the same for all tests, and the hysteresls loop area

should be the same; this has been found to be true within

the order of accuracy of the experiment. Secondly, the
internal energy sbsorption (or damping capacity) as messured
by the decrement of free oscillations should agree with the
area of the hysteresis loop and the magnitude of the

primary creep as measured statically: agaln in the experiments

reasonable agreement was found.

Stress-Strain Loop due to Creep.

We now have to calculate the deflections which would
be obtained, due to creep, if a material be loaded cyclically.
We assume:

Boltzmann’s superposition law to be true.

The load to be applied (or removed) in equal amocunts

in equal intervals of time.

The deflections to be read at the end of each time interval.
In the experimental work, there were four loadlng steps,
i.e., sixteen loading operations per cycle. However we will
at first keep the investigation general by assuming that
there are n loading steps, and that each load lncrement is of
magnitude W. The creep constant 1s to be a as before, and

the time interval between load changes tl.

14,



Time-variable part of deflection.

15.

At the outset, we are confronted by a great difficulty:

it appears impossible to sepsrate the deflection into
an instantaneous component and a subsequent creep component;
the deflection follows a logarithmic law with time, and this
seems to be true for the smallest measurable values of
deflection and time. In other words, the curve of deflection

against time is as shown in fig. 4(b) and not as shown in

fig. 4(a).
Deflection Deflection
Time Time
Fig. 4(a) Fig. 4(b)

O0f course the logarithmic law cannot hocld down to zero
time, since the deflection would then have an infinitely
negative value. It is not possible to say where the logarithmic
law ceases to hold, and therefore to find any value of
instantaneocus deflection.

Since the deflection due to a single load
according to Boltzmann’s law varies with time according

to the equation:

X = B + A log(t/T)



where t is the elapsed time and T 1s the value of the time

unit, then we may concelve the deflection as consisting

of a time-independent part B, and a time-dependent
part A log(t/T).

Y & Y4 Q

1|

P//////////

B3 Bl B2
O3 J 0y 05
0.1 1.0 10 mins.
Fig. 5.
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Let PQ in fig. 5 represent the relation between the deflection

(plotted vertically) and the logarithm of the elapsed time
in minutes (plotted horizontally). If the time unit T 1is
chosen to be 1 minute, we draw the axis of ordinates OlYl
through the point corresponding to t = 1 minute. The
intersection of this line with the line PQ glves us the
value of Bl’ the time-independent part of the deflection.

If however we choose our time unit T equal to 10 minutes or to

0.1 minute, the time-independent part of the deflection
becomes B2 or Bj. Thus the values of the time-independent
and timee-dependent parts of the deflection depend on the

value we choose for our time-unlt.



Only at one stage in this work is the choilce
of the time unit of welght. We will calculate the shape
of the hysteresis loop corresponding to the time-dependent
part of the deflection for cyclic step-by-step loading,
and use this loop to correct the observed loop. The
effect of variation of time unit is to shear over the
calculated loop, and consequently also the corrected
loop, without altering the actual areas. Furthermore,
if loops be traced with different values of time interval
between/the load increments, the calculated and corrected
loops will all be affected similarly. It therefore appears
that our problem 18 & purely philosophical one. In order
to assess the damping due to elastic hysteresis, however,
we have to choose a value of total strain range; unlike
loop aresa, this quantity is attected by the cholce of the

time unit.

! ‘Deflection
.F/

Tine

0 .11 10 0 .11 10
(a) (p)
Fig. 6.
Fig. 6 represents dlagrammatically the
relative creep behaviour of glass and bakelite. In glass

the change 1n deflection 18 relatively so slow that the

17.
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value of the time-unit is not of significance; in the
case of bakelite, however, where the deflection changes
relatively more rapidly with time, the problem is a
practical and not merely a philosophical one.

Two values of time unit suggest themselves.
The first is that value corresponding to the stiffness
as given by the natural frequency of oscillation; the
gecond 1s the period of this oscillation. In general,
a value of time unit T of 1 minute will be chosen except
(as in the case sbove) where this unit is of importance;
it will then be taken to be lo.'3 minute, which is of the
order of magnlitude of the natural period of oscillation.

In the experiments, stress-strain loops were
measured by applying four equal loads in equsal intervals
of time, which were 2, 1, or 0.5 minuteas. The general
investigation assumes that there are n loading steps,
at intervals of time t,. Each increment of load 1s of
magnitude W.

Let deflection due to load W applied at zero time be

Wb + a log t)

at current time t. Let an addltlional load W be applied at

a gubsequent time t_ . Then the deflection at time t, where

1
2t1> t >tl, is

W[2b + alogt + a log(t - tlﬂ
Similarly, deflection at time t, where 3t;>t >2tl, is

W[ﬁb + 8logt + a log(t - tl) + 8 log(t = 2t1ﬂ
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After the n th load increment has been applied, deflection
at time t where (n = L)t1<t<ntl, is

winb + alogt + a log(t - t1) +....+ & log (t - H“:—Ttlﬂ
From these expresslons, we can find the deflections at
the end of each time interval, by substituting the appropriate
value of t. The first three deflectlons are given in the

table below.

Time. Load. Deflection.
' (
t Wb + a log t,)
1 oW 1l
2t 2Wb + Wa(log 2t; + 1log tl)
3W
Btl 3Wb  + Wa(log 3t; + 1log 2t + log tl)

This last expresslon can be written:
(b + a log tl) + W.a log\3

The above table can thus be rewritten as follow:

Time. Deflection

t wlo + a(log tl + log\;{]
2t, wl2b + a(2log ty o+ 1og\gi]
3t W[3b + a(3log t; + log|3)]
nty Wb + a(n log t, + log |n)]

These are the deflectlons for a material which
possesses the property of primary creep only, for the
first quarter of the first loading cycle. It is observed
that the deflection at a load k.W is givem by the time-
independent deflection k.W.b together with a time-

dependent deflection W.a(k log ty + log F), where F



1s an expresslon containing factorial quantities, dependent

on the loading history.

Unloading, n.W to 0.
Proceeding similarly, we can find the deflections

from t = ntl to t = 2ntl, during which period the load is
being reduced in steps from n.W to Q.
Deflection at time %, where (n + l)t1> t)»ntl, is

W.b(n - 1) + W.a[iog t +eeo+ log(t = n - 1 tl) - log(t - ntlﬂ
Deflection at time t, where (n + 2)t1> t> (n + l)tl, is

W.b(n - 2) + W.a[log t +...4 log(t = n =1 tl)

- log(t - nty) - log(t - o + I ty)]
#lnally, deflection at time t, where 2ntl> t>(2n - l)tl, is

W.allog t +...+ log(t -0 - 1 t)

- log(t - nty) -....- log(t - 2n - 1 t,)]
Substituting t = (n + l)tl, (n + 2)t1, --.2nt,;, 1in the

above expressions (corresponding to the elapsed time at
the end of each of the time intervals), we obtain the

corresponding deflections if primary creep only is present.

lapsed Time. Load. _ Deflection.
(n -.1)w
(n+ 1)t ( o W.b(n-1) + W.a[(n-1)1log b+ log |n+l]
N -
(n + 2)tq W.b(n-2) + W.a[(n-Q)log t, + log 2 ]
22
0
ant, W.a log( (2n/ n|n)




21.

Comparing these deflections with the deflections
for the loading period, we see that the deflections
during unloading are greater; in other words, a stress-
strain loop due to creep has begun to appear. At any
glven stress level, the time-independent deflections are
the same, and proportional to load. It 1s clear then,
as stated previously, that the effect of change of time-
unit is to alter the time-~independent and time-dependent
parts by amounts proportional to the loed, i.e., to
shear over the dlagram of time-dependent deflectlons.
For the time being, we are interested only in hysteresis
loop widthse, and hence we need not be interested in the
value of the time unit.

For the first half-cycle, the tlme-dependent
part of the deflection, dropping the factor W.a, can

be tabulated as follow:

Deflection.
Load. Load Increasing. | Load Decreasing.
n.w n log tl + log\n
(n-1)Ww (n-1)log b, o+ log|n=-1 (n-1)log t; + log|n+l
oW 2 log t, + logl2 2log tq + log( |2n-2/ |n-2(n-2)
W log t; + log |l log tq + logﬂ?n-l/\n-;ln-l)
0 0 log( \2n/|n|n)
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The dlfference between these pairs of guantities
1s the loop width due to creep, and this difference is
seen to be merely the logarithm of a function of factorial
quantities dependent on the load history, multiplied
by the slope of the logarithmic creep plot W.a. The
unit of time measurement T and the time interval tl
are eliminated; we can thus say that the loop width due
to creep is indsependent of time considerations, and must
be the same (if plastic flow 18 not an interfering factor)
irrespective of the value chosen for the time interval;
furthermore, the tlme-dependent deflectlions at zero load
appear to be independent of the time interval, but dependent
on the lcad history. Thus we can conclude:

Due to primary creep, a stress-straln loop appears. The
observations at zero load depend upon the loadling history,
but are independent of tl.

The observatlions at other loads depend on the time interval
also. The loop widths are always independent of time
interval, the effect of change of tl being merely to shear
over the observed loop by an amount proportional to the
logarithm of the time interval. In this way loops traced
with different values of tl can be compared.

The next section will show how these theoretical
predictions are borne out by experimental results. Ry
continuing now the theoretical development, we will trace
the variation of the time~dependent deflectlions for the

first two complete loadling cycles. From these deflectlons
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the loop widths at each station and hence the loop area
due to primary creep can be obtained. Attentlion in the
experimental section will be concentrated on the second
complete loop: it will be assumed that in the actual
experiment all plastic adjJustment takes place in the
first loading cycle, and that the second loading cycle
represents solely the action of elasticity, primary
creep, and elastlic hysteresis. If the observed loop width
at any station is greater than the calculated value,
the difference must be due to the static effect which
we call elastic hysteresis.

Oour obJject therefore is to find the values
of time dependent deflections for the first two complete
loading cycles, at firet generally with n loadlng steps
at intervals tl apart, and then with four loading steps
at intervals 0.5, 1, and 2 minutes apart. This time dependent
deflection, as has been remarked above, contains a part
kK.W.a log tq (when the losd 18 k.W) and a part W.a log F
where F 18 a factorlal function. In the calculatlons, we
may omit the firset term, and reintroduce 1t later,
for the cases where the time interval tl differs from
one minute. The following are the factorlal expressions

for the first complete loadling cycle.



Tine. Load. Factorial.
" B
t 1
1 2W
2t L2
1 3w
nt, iLn
Unloading, nW to C.
(n - 1)W
(n + l)tl in + 1
(n - 2)W v
(n+ 2)ty ln + 2/1212
(n - 3)W
2nt.l [2n/ |n\n
Loadin 0 to -nW.
& w 12n + 1
(en + 1)tl \n + 1in + 1
2w
(en + 2)':.l i2n + 2
n+ 2in + 2
3nt, 2n
12n [2n
Unloeding, -nW to O.
4nt, {4ninin
3n LBn

The third quarter of the loading cycle
is obtained as before by adding the appropriate terms
to the memory function and substituting for the current
value of time t as before. It will be noticed that the shape
of the factorial expression changes on passing through
the maximum load points, where g discontinuity in the
loading occurs, but not when passing through the zero points.

24'
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From this observation, it is possible to write down

the factorial expressions for the zero and maximum load
points for the second cycle. The factorial expression

for any intermediate loading can then be obtalned from the

nearest subsequent expression tabulated.

Second Ioading Cycle.

Time. Factorial.

5nty (15n\2n {2n)/( \4n |4n)
ént (161130 130) /( (50 150 10 \n)
Tnt, (17ni4n140)/( 16n160120 20)
8nt, 8o [(15010)/( (70 3]

Numericsasl Evalustion.
The following table gives the value of the factorial

function F evaluated for n = 4 for the first two loading cycles.

First Cycle. Second Cycle.
Time/tq F Time/tl F
1 1 17 1/7.57
2 2 18 1/2.29
3 6 19 1.81
4 24 20 9.04
5 120 21 53.2
6 180 22 90.2
7 140 23 TT3
8 70 24 41,7
9 25.2 25 16.0
10 7.0 26 4,67
11 1.57 27 1.1
12 1/3.4 28 1/4.67
13 1/21.2 29 1/28.1
14 1/37.8 30 1/48.8
15 1/33.9 31 1/42.7
16 1/19.1 32 1/23.6




The values of 1oglOF are tabulated below. These figures,

multiplied by the slope of the logarithmic creep plot

for load W (that is, W.a), give the time-dependent deflections

for step~by-step cyclic loading, when the time interval

18 equal to one minute.

26.

Load. First Cycle. Second Cycle.

4w 1.380 .956

3w .T78 2.079 « 257 1.725

2W « 301 2.255 ~. 360 1.954

W 0 2.146 -.879 1.888

0 1.845 -1.280 -1.280 1.620 ~1.376
"W 10401 "10530 loml}‘ -10630
~2W . 845 "l . 577 - 668 "l . 688
-3W «196 -1.326 «041 -1.449
"'4W - Sm "0671

When tl differs from 1 minute, we have toc add

the quantity k.Walog tl when the load 18 k.W to obtailn

the coefficients of time-dependent deflection. The values

for tl = 2 minutes and for tl = 0,5 minute for the second

loading cycle are given below.

Load. t; = 0.5 min. t, = 2 mins.
4w ' -« 248 2.160
3W bt 646 0822 10160 2-628
2w -.962 1.352 242 2.556
W -lc 180 l- 587 -e 578 20 189
O "lo 280 10620 -10376 "1.280 106% "'1-376
-'W 10505 "l. 329 0903 -10931
-2W 1.270 -1.086 066 -2+ 290
"’3W 0944 - 546 "0862 "20 352
-4 «533 -1.875




FIG. 7
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Fig. 7 18 a plot of the first table on p. 26; fig. 8 1s a plot
of the second. Each point represents of course a time-
dependent deflection, which i1s the difference between the
deflection obtained at a given load after the loading history
corresponding to the point in question, and that deflection
which would be obtalned one minute after an equal load were
placed instantaneously in position (the time-independent
deflection). This assumes primery creep according to
Boltzmann’s law to be the only inelastic effect. In Part III
it will be shown that only part of the observed loop

can be accounted for by creep, and the remainder nust

therefore be ascribed to elastic hysteresis.

Damping due to Hysteresis and Creep.

The decrement of free torsional oscillations of a
system, of which the material under test in the form of a
cylinder forms the elastic member, is due in the absence of
mechanical friction and alr damping (and these can be made very
small) to the material damping cf the specimen. In the case of
the bakellte specimens under conslderation, damping appears to
be due to primary creep and to elastlic hysteresis. To conflrm
this quantitatively, we wish to measure the damping directly,
and compare thig with the value computed from the magnitudes
of the primary creep and of the elastic hysteresis

obtained from the cyclic loading test.



Specific Damping Capaclty.

A measgure of damping 1s the specific damping

capacity Wp, which 1s the ratio of the energy dissipated

in a cycle at a given strain range to the maximum strain
energy in the cycle. In the case of torsional shear of solid
cylindrical specimens, each annulus is working through a
straln cycle of different range. The ratio of the energy
dissipated in one cycle to the maximum strain energy in the
specimen at a gliven range of surface shear strain thus

represents a mean value over the cross-sectlon; this value we

refer to as the mean gpecific damping capacity \yh. If we
conslider a thin tube of the same diameter working through the
same range of twlst per unit length, the damping capacity of
the tube will be different from that of the solid cylinder,
though they be working through the same strain range, since the
damping capacity of the thin tube represents the value for the
annulus of material on the surface only of the scllid c¢ylinder,
and therefore we expect this to be different from the mean
specific damping capacity \ﬁi. The damping capacity of this

surface annulus i1s called accordingly the gurface sgpecific

damping capacity Y. The Y, curve can be derived from the

Wpa curve.While in general the \Po curve 1s of greater gscientific
importance, we are here interested only in the 1Pm curve,

gince we are measuring the mean value of elastic hysteresis

over the cross-section.
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Logarithmic Decrement.

If Al and A, are guccessive amplitudes of free
osclllation, then the logarithmic decrement is
d = 1n A /Ay
This value 18 taken to refer to the strain corresponding
to 1/2(A1 + A), though this may not be strictly true when
the decrement is high, as in bakelite. If we write 6

according to the formula:

§ = A =~ Ap - Difference in Amplitude
1/2(Ay + Ap) Mean Amplitude

then ¢ represents the value of the logarithmic decrement
within 1% up to & = 0.35; the expression
§(1+ &°%/12)
represents the decrement accurately over the whole working range.

Logarithmic Decrement and Mean Specific Damping Capacity.
If the damping 1s small, then Hooke’s Law

i8 very nearly obeyed, and the strain energy 1s therefore
proportional to the square of the amplitude. The strailn

2
energles corresponding to amplitudes Al and A2 are k.Al

and k.Ag, say. The mean specific damping capacity 1is then
2 2
koAl hd k.Az

Yy =
1/2.k(A° + A3)

referred to a strain corresponding to 1/2(A; + A2).



Then W_ = (A} - A2)(Aq + Ap)
/4 [ (A + )"+ (Ap = 49" ]

- (A1 « AQ)
2
1/4(A) + Ap) [1 +(A1 - Ae) ]
Al + A2

1+ 52/4

where & 1is as before the ratio of the difference in
amplitude to the mean amplitude. Thus the mean specific
damping capacity 1s equsl to twice the logarithmic
decrement within 1% if § 1s less than .20, provided
that the strain energy 1s proportional to the square of
the amplitude; the reasons we have for assuming that
thies 18 8o are given below. We will find in our tests
that & will not exceed +X0, and hence we will use the
above formula for finding Ve

Relatlon between Strain Energy_sand Strain.
We wish to show that in the case of bakellte,

1t is reasonsable to assume that the straln energy for
gpecific damping capacity purposes is proportional to the
square of the strain. If we can do this, then we may use
the formula obtained above for the mean specific damping
capacity. Furthermore, we have a basis for assessing the
strailn energy corresponding to the observed hysteresis
loop, so that the contribution of elastlic hysteresis

to the specific damping capacity may be computed.

32.



The Static Loading Curve and Free Oscillations.

Let us assume at first that creep 1s absent.
When the damping due to hysteresis is high, Hooke’s
Law 18 no longer even approximately obeyed, and the strain
energy given to the specimen in loading up to a
given value of surface stress 1s appreclably greater
than the strain energy recovered on unloading, the difference
of course corresponding to half the area of the hysteresis
loop. Let us consider the known behaviour of metals which
possess the property of elastic hysteresis to a large degree.
Load ;T A

I |
ZAWa
/ l '
| |

! I

| [

I |

| I

Deflection

le—— © — <\ e>l

Fig. 9.

If the materlial originally free from any permanent set

be loaded from O to A, then on unloading a permanent set OB
18 produced. If on the other hand the specimen be provided
with a mass or inertlia bar so that it can execute free
osclllations with a starting amplitude correaponding to A,
the oscillations will graduslly die away, and the specimen

will finally be left without any permanent set; this 1is



analogous to the demagnetisation of a magnetised specimen
by placing it in an alternating field of intensity
decreasing to zero.

It 1s assumed that the successive amplitude
maxima of the free oscillation, when plotted on the load=
extension diagram (fig. 9), lie on the original static loading
curve OA. We take the mean strain energy corresponding
to any given deflection to be equal to the area
under the original loading curve up to that deflsction.

In the case of metals, this curve is linear up to a

certaln point and then (under certain conditions)

becomes distinetly curved. It is assumed that the total
strain consists of an elastic part e and an inelastic part Ae,
the ratio N increasing rapidly at a c¢ritical stress.

In the case of bakelite, N appears to be nearly constant,

and therefore the tips of successlve hysteresis loops

lie on a straight line passing through the origin. The

strain energy is then proportional to the square of the
amplitude.

The reason for this statement is as follows.

If ¢ 18 the ratio of the mean to the maximum width of the
hysteresis loop, then we have approximately
Vg = 8.c. N\
and ¢ 1s a function of N. Damping tests show that
for bakellite 1s nearly constant over & wide range of stress;

hence N may be assumed nearly constant.



Specific Damping Capacity due to Creep.

The specific damping capacity due to logarithmic
creep following the superposition law of Boltzmann has been
calculated for sinusoidal QScillations by different methods,
by Boltzmann? by Bennewitzf and by Becker? Boltzmann
calculated the decrement of free (torsional) oscillations.
Bennewltz and Becker calculated the specific damping capacity
under forced harmonlc vibrations. The conclusions were
the same: the specitic damping capaclty was lndependent
of amplitude and of frequency. If the logarithmic creep
be given by:

X = B + A loglot
where B 1s the deflection in unit time, then the specific

damping capacity due to creep 1s glven by:

Yo = n®A , where M = log l0.
K.B
Then , = 4.28 A/B.

Here B will be taken to be the elastic part
of the deflection, that is, half the difference between
the total straln range and the hysteresis loop width at
zero load. The total strain range will be the value observed
in the hysteresis tests, corrected for time-dependent

“5
deflection and with the time unit adjusted to 10 minutes.



Specific Damping Capacity due to Elastic Hysteresis.

The difference between each palr of observations
at the same stress level, corrected for time-dependent
deflection, gives the elastic hysteresls loop width;
the sum of these widths multiplied by the mean distance
between the statlons glves a measure of the area of the
loop. If P 18 the total corrected strain range,
ad Justed for a time unit of 10“3 minute, and 4W the
maximum load, the value of the strailn energy corresponding
to the maximum load can be represented by P.W. The specific
damping capaclty due to hysteresis is then given by

loop area. .
\#h

strain ares

The mean damping at a given stress range computed
from the creep and from the elastic hystereslis tests
thus becomes V_ + V). Owing to the theoretical and
experimental difficulties involved, we would expect
only a fair sgreement of the computed value with the

observed value of dampling at the same stress range.

36.
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Part III. Experimental.

I. Description of Materlials Used.

Four types of material with bakelite (phenol
or cresol formaldehyde) base were used: transparent
resin, woocd-flour filled resin, cord-reinforced material
and fabric-filled moulding materisl. To explain the
differences 1n structure of these materials, it would be
well to describe briefly the mode of manufacture.

Phenol feormaldehyde and c¢resol formaldehyde
resins are made by heating phenol (or crescl) with an
aqueous solution of formaldehyde in the presence ot a
sultable catalyst. After some tlme an amber-coloured
fluld separates out: this fluld 1s formed by a polymerisation
process, and has the characteristics of a resin in that
it has no definite melting point or molecular weight,
and that when solid 1s amorphous in structure. On
further heating, the degree of polymerisation increases,
and this resin solidifies to a brown mass which 1s inscluble
in most solvents and infusible, but which chars slowly
at an elevated temperature. This 1s called the ¢ stage
resin; the first stage 1s referred to as the A stags.
In practice, the process is arrested at the first

stage, and the resin run off and allowed to solidify.
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It can then be cast or moulded under temperature and

pressure to the desired shape. This is the usual transparent

bakellite resin as used for photoelasticity work. One

of the specimens tested was of this type. It 18 doubtful

whether the material as supplied 1s completely polymerised.
Alternatively, the A stage resin can be ground, and

mixed with wood flour, accelerator, and dye, thus forming

the commercial moulding powder. From a slab of material

moulded from such a powder a second specimen was prepared.

In order to obtaln higher strength, 1t is possible to

reinforce the resin with textlle material. The A stage

resin ia dissolved in alecohol, and the textile reinforcement

drawn through the solution until sufficiently impregnated;

it is then baked in ovens to remove the solvent and to

cause a partlal polymerisation. The textile materlal 1s

then moulded under pressure and temperature in the usual

way; the resin changes to the infusible form, acting

as a bond for the textile reinforcement. By using cotton

cloth, the familiar lamlnated material is obtained.

By using a material consisting almost entirely of parallel

cotton cords, we obtain a moulded material of increased

gtrength and stiffness; this 1s cord material, a speclmen

of which was used for the tests. Finally, if small pleces
of fabric be used instead of cotton cloth, the resulting
material possesses a certain amount of flow when under
pressure and temperature. It is therefore marketed as

shock-proof fabric moulding material, since its resistance
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to mechanical shock 18 much greater than that of the
wood flour materiasl. Of the four specimens used,
three were lsotropic, and the fourth (cord material)

had an axlis of symmetry along the axls of the specimen.

Description of Apparatus.

The method of reversed torsion was chosen
as being the simplest method of obtaining reversed statlc
and dynamic loading, in which creep, elastic hysteresis,
and damping could all be measured without removing the
specimen. Possible trouble from temperature fluctuations
was greatly reduced by the use of specimens in shear;
this method enabled the deflections to be projlected
optically on to a large graduated scale, so that corresponding
values of time and deflection could be observed and recorded
by a single observer. Solid cylindrical specimens,

with squared ends, as shown in fig. 10, were used.

} KA
58" 3(8’
! ? ] h! " IL‘_’ ‘_‘_T

Fig. 10.
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Iorsion Apparatus.

A sketch of the apparatus, approximately half
slze, 18 shown in fig. 11. A photograph of the apparatus
1s shown in flg. 12. The specimen A was in many cases
double~ended. The specimen was clamped to the bar B
by meeans of the plece C. The lower surface of the plece
D contailned the axis of the specimen produced. This
plece rested on a knife-edge E consisting of a razore
blade, the razor-blade being fixed in a holder F which in
turn was fixed to a length of duralumin girder G. The
fixed end of the speclmen lay on a block H. A stiff brass
strip K was passed through a hole in the web of the girder,
and another strip L was laid on top of the squared end of
the specimen and on & block J (not shown in the front
elevation in fig. 11). This block was of the correct height
so that the bar L was horizontal. By means of two clamps
(not shown in fig. 11) over the block J and the specilmen
respectively, the fixed end of the specimen could be firmly
clamped to the girder. Before clamping down, care was
teken to align the speclmen accurately so that the axis
of the specimen produced lay along the edge of the blade.
A small steel ball M was fixed to one end of the bar B. The

frontesilvered mirror P was attached to the bar in such a way

that 1t could easlly be removed without disturbing the

42,
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specimen. The bar B was provided on 1its upper surface
with two grooves exactly 7.5 inches from the vertical plane
containing the axlis of the specimen; a scale pan with
knife edge support wighing exactly 2 ozs. was constructed.
The gilrder G was clamped down to a lathe-bed, where it was
free from disturbance and reasonably free from building
vibration.
Optical Arrangement.

All observations were obtained using optical
methods: the creep and hysteresis readings were made on a
long graduated scale, the mirror P belng used to reflect
a light beam: the damping tests were recorded on 35 mm,
cinematograephic film, a highe«light reflected from the
steel ball tracing the record.

A metal plate having a sharp stralight lower
edge was used to cover the upper half of the lens of a
projection lamp. The light from the lamp was passed through
a focussing lens on to the mirror P, and then reflected
back to a vertlical scale about five feet long divided into
gradations of .05 inch. By means of the focussing lens a sharp
image of the horizontal edge of the metal plate could be
focussed on the scale, and thus deflectlons corresponding to
.01 inch on the scale could be read. The optical lever arm was
148.4 inches. Hence a deflection of .01 inch on the scale
corresponded to a twist of 6.73 x lO-.5 radian, and to a surface
shear strain (bar diameter .312 inch) of 5.25 x 10-6.

For the damping tests, the lamp was placed several
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feet away, in the left hand directlon with respect to

the front elevation in fig. 11l. The light was adjusted to
shine on the steel ball. A box placed over the apparatus

was provided with two vertical slits, one at the side to
allow the light from the lamp to fall on the steel ball,

and one at the front facing the end of the bar B. An
electrically driven cinematograph camers with the intermittent
motion removed was placed in front of this slit, and focussed
so that a sharp image of the high~light on the ball was
formed on the film. In order to obtain a reference line,

a pin was fixed to an iron rod clamped to the girder, so that
the head of the pin lay as near as possgsible to the steel
ball, and also reflected light from the lamp into the camera.
This 1light from the pin traced a straight line on the fillm,

which was used as & reference line.

Method of Conducting Tests.

In the hysteresls tests, the load increments
were 8 ozs. each, the weights being applied and removed in
the same order. In the case of high creep materials, difficulty
was experienced when the specimen was carrying large torque.
The theory requires that the load be changed immedlately
the scale be read. In practice, two or three seconds were

required to effect this change, by which time the deflection
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must have altered appreciably. With the low damping

materials each change of load set up a slight vibration

wnich caused some difficulty in making the subsequent

reading. The former difficulty could have been overcome by

meking the readings 1in the middle of the load interval,

and modifying the theory accordingly. In all the creep

tests a load of 2 lbs. was used (corresponding to a torque of

15 1bs. ins. and a nominal surface shear stress of 2520 1lbs./sq.in.).

Before conducting a damping test, the laboratory
wag darkened as far as possible. In order to take a record
a length of cotton was attached to the scale pan and to the
torsion bar, the cotton being lightly secured by plasticine
in the groove in the bar. The motor driving the camera was
started, and the scale pan allowed to hang freely. The
load was released by burning through the cotton with a match.
The oscillations of the bar were then recorded on the moving
film by means of the high light reflection from the steel ball.
The runs were usually repeated several times, good agreement
being obtained between successive runs.

Since the static hystereslis tests were carried out
with a maximum load range of +2 lbs. on the torsion bar, 1t
was required to find the damping at a deflection corresponding
to this load range. It will be realised that with high
damping materials, a certalin amount of extrapolaticn is
necessgary to cbtain the damping at the stress range corresponding

to the deflecting load. The precaution was usually taken,
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therefore, of making damping runs with a deflecting load
slightly in excess of 2 1lbs. One or two dummy runs

were made before the recorded runs in order to condition
the gpecimen.

Reduction of Observations.

The developed film was placed 1n a photographic
enlarger and the record focussed on to a sheet of
paper. The succesgive deflectiona as well as the base line
were then marked on the paper. From this record, the
perpendicular dlstances of the marked points from the
bagse line were megsured, and hence the successive amplitudes
obtained. By measuring also the dlstances from the base
line of the originasl deflection and of the ultimate
positlion of rest, a length corresponding to the applied
load could be obtalned. Since linear distribution of
stress has been assumed in the theoretical section,
this length gives a scale for surface stress, since
the length corresponding to a deflecting load of 2 1bs.
is equivalent to a surface shear stress of 2520 1lbs./sq.lin.
By comparison, an actual photographic enlargement
was made of one record, and the damping calculated from
measurements taken from this enlargement. No appreclable
divergence was found between this and the other method.
It was accordingly decided that the preparation of

photographic enlargements was unnecessary.
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Neither the speed of the film, frequency of vibration,
nor the actual magnitude of the deflectlions have been measured,
since these quantities were not essential.

Arrangement of Experimental Work.

The first part of the experimental work 1is concerned

with the testing of the superposition lawa of creep by

means of the three creep tests of Part I (figs. 1, 2, and 3)
for eachh of the four materials. The second part of the
experimental work involved for each material three tests,
the tests for each material being carried out on the

same day, to reduce the effect of temperature and humidity
variations. These tests comprised at least two step-by-step
cyclic loading tests of two complete cycles. A creep test
was carried out with the maximum load, followlng the acheme
of 1rig. 2(a), to determine the creep constant for correcting

the observations, and finally a damping test was made.

Results of Creep Tests.

In figs. 13 to 24 are shown the results of creep
tests I, II, and III (figs. 1, 2, and 3) on cord material,
fabric moulding materisal, wood-flour filled materlal,
and transparent (unfilled) resin. For Test I, each loading
period was of 10 mins. duration, the load beilng 2 1lbs. at 7.5 lns.
radius, except in the case of bakelite resin, when the load

was 1.5 lbs. In Test II, the experiment was carried out with
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loads of 21bs. and of 1 1lb., the lcad being appllied and
removed twice. The creep and recovery intervals were of
10 mins. each, with the exceptlon of the case of the
bakelite resin, when they were of 15 mins. duration. In
this test, observations in the first creep periocd have not
been plotted. In Test III, a lcad of 2 1lbs. was applied
from t = O mins. to t = 16 mins., end then removed; the lcad
wag then applied on the opposite arm of the torsion bar from
t = 18 mins. to t = 20 mins., and then removed. Deflections were
obtained for the original and reversed creep, and for the
first and second recovery perilods.

The creep results show the connection between
scale reading in inches and equivalent time. The tables below
give the equivalent times corresponding to the observed times
for Test I, Test II (time interval 15 mins.), and Test III.
The table for Test I refers also to Test II for the first
three materials. In all cases, the scale or scales of
deflection referring to creep are plotted on the left-hand
gide, and those referring to recovery on the right-hand
side. Semi-logarithmic paper was used to facilitate plotting,
the equivalent times of 0.1, 1, 10, and 100 mins. belng marked in.

A consistent symbollsm was used on all the graphs;
the symbol referring to each creep or recovery period will
be found on reference to figs. 1, 2, and 3. The arrows on

each line indicate thne direction in which the equivalent

time is changing.



Qbgerved and Equivalent Times.

Test I and Test II.

Loading and recovery lntervals

are of 10 mins.

duration.

Time from Equivalent Times in Minutes.
beglinning
of loading] First Second Second Third Third
interval, | Recovery Creep Recovery | Creep Recovery
mins.
«J3 31 .66 46,2 .87 57.6
«50 21 .98 31.2 1.3 39
75 14.3 1.45 21.2 1.92 2644
1.0 11 1.91 16.2 245 20.2
1.5 TeT 2.8 11.2 3.7 14.0
2 6 3T 8.7 4.8 10.8
3 4,3 5¢3 6.2 6.9 TT
5 3 843 4,2 10.7 5.1
T 2.43 1l.1 3633 14.1 4.03
9.75 2 4.7 2.7 18.4 342
Test II.

Loading and recovery intervals of 15 mins. duration.

Time from Equivalent Times.
beginning
of loadingl Flrst Second Second
interval, | Recovery Creep Recovery
mins.
«33 46 .66 68.8
«50 31 .98 46,3
75 21 1.46 31.2
1.0 16 1.94 23.8
1.5 11 2.86 16.2
2 8.5 3.76 12.5
3 i 5.5 8.72
8. 71
'? 3.14 ].1.35 2.42
10 2.5 16.0 3.44
14.75 2 22.5 2.67
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Test III.

ime from beglnning

of test,

ming.

Equivalent time,

mins.

First
Recovery

16,17
16.33
16.50
16.75
17
17.5
17.75

Reversed
Loading

18,17
18.33
18,50
18.75
19

19.5
19.75

Second
Recovery

20.17
20433
20.50
20.75
21
21l.5
22

23

24

26

28

30

32

36

4o

50

60

70

37
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Discussion of Results.

Test I: In the case of cord materisl (fig. 13) 1t seems
at first sight that the superpositlon law is not obeyed.
Though the recovery curves do indeed give parallel straight
lines when plotted against equivalent times on semi-logarithmic
paper, these llines are not coincident. The curves for the second
and third creep periods are straight over part of their range,
and parallel to the recovery lines, while the first creep curve
does not exhiblit any linearity at all.

On closer inspection of the creep curves, however, it
is seen that the second creep curve is linear up to
the maximum strain reached in the first creep period.
Above this strain an additional non-logarithmic creep
takes place. The same applies to the creep curve for the
third loading period. Examination of the recovery curves sgshows
us that this additicnal non=-logarithmic creep which takes
place when the previocus maximum strain 1s exceeded, 1is in
fact non-recoverable. The recovery lines are straight,
indicating that the memory actlion is following the laws
previously enunciated. Furthermore, we see that the
displacement in the direction of the strain axis between each
palr of recovery lines is nearly equal to the plastic flow
occurring in the intermediate creep stage.

We can thus enunciate the following law:
For loads applied in one sense, the creep recovery obeys
Boltzmann’s law; the creep obeys this law only if the previous
maximum strain is not exceeded, otherwise an additional

non-recoverable non=logarithmic creep takes place.



64,

This additionel creep appears to be of the
nature of a plastic flow, i.e., proportional to time.

It was not possible to investigate this further with
long-time creep tests with the specimens used, since

the secondary creep appeared not to be proportional to
stress. After a long-time creep test a redistribution of
stress across the cross-section was caused; the subsequent
recoverijas therefore non-logarithmic. To investigate
this plastic flow, tubular specimens would be required.

Plastic flow proportional to time but not
necessarily to stress is a phenomenon which in metals
has been studlied intensively in recent years. It is now
considered to be a diffusion process, and therefore the
gsecondary creep rate must be a function of temperature
only end not of strain history. In these tests this interfering
factor to the logarithmic creep appears to be of the
nature of plastic flow and yet dependent on the strain,
history of the specimen. If this phenomenon is a resl
effect, and not & result of the experimental method,
then it must be concluded that secondary creep in
polycrystalline materials is different from that found
in amorphous bodles.

Some Justificatlon 1s required for drawing the
creep curves in fig. 13 in the manner shown. On the
evidence of one or two pcints we have drawn straight
creep lines up to the previous maximum strain, and then

continued these along an extenslon of the original creep



65.

curve. This Jjustification is found in an experiment
in Part IV, in which the deflections at the upper end
of the second creep curve were taken very frequently to
determine the exact course of the upper part of the curve. In
order to test that the displacements between the recovery
curves are due to the plastic flow in the intervening
creep test, a speclal repeated loading test was deviséd in
which the maximum"equivalent time in the creep test was
nearly the same for all three loading periods, the same
applying to the minimum equivalent time in the recovery perilods.
In this case the displacements between the three recovery
tests, and the second and third creep tests were very small,
and were probably due to experimental error (p. 94).

In a2ll cases, the slopes of the recovery lines
and of the straight parts of the creep lines are nearly
the same. All the game conclusions apply to thlis test on
the other three materials; in the case of the wood~flour
material and the unfilled resin the plastic flow appears tc be
of a much smaller order. The general conclusion of this test
18 that with the above provisos, the material remembers
past loading actions; this memory appears to persist indefinitely.
Test II. In this test for all materials, the mean slope of the
lines for full load (2 x 7.5 1lbs.ins.) was approximately
double that for the half load (1 x 7.5 lbs.ins.), indicating
that the logarithmic creep is proportional to stress in the

experimental range.
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Test III. In this test, there are two creep perlods and two
recovery periods. From the results of Test I, we understand
why the creep under the first loading 1s not linear. The
creep under reversed loading from 18 mins. to 20 mins. we
must also ignore; first, owing to the rapid increase in
deflection, these points in this part of the test are not
as accurate as the other observations; though these points
appear in some caseg to fall on a straight line, this 1is probably
due to the nature of the time function. The time tunctlon for
the second recovery has a maximum at an elapsed time (from the
beginning of the test) of 24 mins. i.e., 4 mins., after the
reversed load has been removed. We find in all cases that the
creep recovery does reverse its direction at this instant.
Theoretically, 1t should retrace the line corresponding to the
creep recovery from 20 mins. to 24 mins. Usually this 1s so.
Cord material is &an exception in that it retraces a line
parallel and very close to the earller part of the recovery
curve (tig. 15), thus forming & very narrow loop. This
displacement of the line corresponding to observations from
t = 24 mins. onwards from the line corresponding to observations
up to 24 mins. might be due to an internal friction effect.
In the other three materials, the creep deflections from
t = 24 mins. onwards does retrace as accurately as can be
determined the creep from t = 20 mins. to 24 mins. Thus the
correctness of the memory action law 1s strikingly shown.

We remember that the ideal theory predicted that the

ghort recovery period from t = 16 mins. to t = 18 mins.



should glve the same line as that yielded by the second
recovery period (t greater than 20 mins.). We obtain two
parallel lines in fact. The displacement between these two
lines is due to elastic hysteresis, since these two lines
represent the recovery from creep due to equal loads 1in

opposlite directions.

The geparation of Creep and Elastlc Hysteresis.

The creep experiments on specimens of each of the
four materials show that Boltzmann,s superposition law
is a gufficient working hypotheslas. We are thus Jjustified in
using the theory developed in Part II of this thesis, to
determine the area of the hysteresis loop. The method was
as follows. Loads were applied or removed in four increments
of 8 ozs. each, the loading being applied cyclically and in
equal intervals of time; these intervals of time were in the
various tests 0.5 min., 1 min., and 2 mins. In each test, two
complete cycles, involving 32 steps, were traced. It was
endeavoured to read the scale as near as possible to the
instant when the load was changed. A certain amount of error
was lnevitable, especislly when the creep was rapid. In each
case the step-by-step cyclic loading test was repeated with
at least one other value of time-interval.

Following the hysteresis test, a repeated loading
creep test was carried out; this involved two creep periods

of 10 mins. each, and two recovery periods also of 10 mins.

67.

The second creep and the two recovery deflections when plotted
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against equlvalent time gave nearly parallel straight lines.
Since a load of two pounds was used in the creep tests,
the mean slope was divided by four to obtain the value
cf W.a.

Tc obtain quantitative confirmation of the
values of creep and hysteresis obtalned by this test,
a decrement test was then made as described on p. 45,
In the reduction of the hysteresis results, the corrections
were evaluated by means of the tables on p. 26, and of
the value of W.a obtained from the creep test. These corrections
are of course not creep corrections, which we have shown
are impossible to obtain, but represent what we have called
time-dependent deflections, that is, referred to the
behaviour of a specimen under a given load for unit time.
As far as hysteresis locop width is concerned, the value
of time unit 1ls lmmaterial; this is also the case if we
wisn to compare loops obtalned by using different time-
intervals, sgince the effect of altering the time unit
18 to shear over all the loops by an equal amount.

In order to assess the damping capaclty due
to the hysteresis loop however, we have to know the total
strain range, and this must be a value corresponding to
a time unit of the order of the period of vibration.
Except for the determination of this quantity, all values

are expregsed in terms of a time unit of one minute.
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V. Results of Hysteresgsis Tests.

The observations (scale reading in inches) are
recorded for the first two loading cycles for each of the
four materials. For cord material and fabric moulding material
tests were carried out with three values of time interval
(0.5 min., 1 min., 2 mins.). For the wood flour material énd the
bekellte resin only two tests were made.

In all cases the corrections for the second loop
heve been calculated from the mean slope of the creep
curves, and applied to the observations. The corrected loop
width at each station and loop area (in units of inches of
gcale multiplied by lbs. load on beam) were calculated. In the
czse of the second test recorded (cord materisl, time
interval 1 minute), the corrections have been applied to both
first and second cycles. Good agreement appears to be
obtalined between corresponding observatlions for the first
and second loops. The agreement between the areas of the
first and second loops (2.305 and 2.34 units respectively)

is also good.



Cord Material. Time Interval 0.5 minute.

Qbservations.
Load, 1lbs.
2 52.83
1.5 48.49 49.12
1 44,28 45,22
C.5 40,22 41.19
0 36433 37.07
«Qe5 32.89
"1 28 . 58
=1l.5 24,14
-2

Corrections, Second Cyele.

Creep Factor .189

Load,
1bs.

2
1.5
1l
0.5
0
-0.5
-1
""105
-2

bl 12
"018
- 22
-.23

“005

.16
. 26
« 30
31
.28
o 24
.18

- 26

e 25

e 21

- 10
.10

52.81
48,44 49.11
44,15 45.20
39.91 41.16
3573 3T.04
31.57 32482
27.45 28.53
23.43 24.07

19

35470

31

«53

2742

23
4T

« 38

T0.

Second Cycle, Corrected Obsans.

48,56
44,33
40.13
35.96

52.86
48,95
44,94
40 .86
36.73
52.54
28.29
23.89

19.37

35.96
31.78
27.63
25.48

o



cord Material. Time Interval 1 Minute.

Qbservations.

35.64
31.41
27« 24
25.15

econd

T1.

cle

Loop Width.

Load, 1lbs.
2 53.08 53.04
1.5 48.66 49,32 48,59 49,27
1 44,32 45,36 44,23 45,32
0.5 40.07 41.28 39.93 41.24
0 36403 37.10 35.68 37.04
-l.5 23.97 23.23 23.89
-2 19.28 19.19
Corrected QObservations. Creep Factor .189 S
Load, 1lbs.
2 52.82 52.86
1.5 48,51 48,93 48,54 48.94
1 44,26 44 .88 44,730 44,95
0.5 40.07 40.87 40,10 40.88
0 36.75 35.92 56473
Q.5 32.60 31.76 32,56
-1 28.3%6 27.61 28.28
-105 23.93 25.48 23088
"2 19038 19-32

3590
31.72
27.56
23.42

«40
«65
.78
.83
.84
.72
46



Cord Material. Time Interval 2 liinutes.

Qbservations.

Load, lbs.
2 53433 53.28
1.5 - 48,82 49,51 48,75 49 .47
1l 44,40 45,51 44,31 45,48
0.5 40.09 41.37 39.94 41 .34
0 35.99 ST.12 35463 37.10 55.62
Q.5 32.82 3133 3277 31l.32
-1 28.37 27.12 28.32 27.10
-1.5 23.78 22.98 23.73 22.94
-2 18.98 18.93

Second Cyele.

Gorrected Qbservations. Creep Factor .189 Loop width.
Load, lbs.

2 52.87 0

1.5 48.53 48.97 A4

1 44,26 45.00 CT4

0.5 40.05 40.93 .88

o) (35.67) 36.79 35.88 .91

Q.5 32.54 31.68 .86

-1 28.30 27.53 ST

-1.5 23.89 23.38 .51

T2.



73.

cord material.

Calculation of Specific Damping Capacity from Cyclic Loading Tests.

tl = 0.5 min. t, = 1 min. t, = 2 mins.

1 1-
Elastic hysteresis 2.17 2.34 2.51
loop area
Strain range: obs. 33,54 33.85 34,35
corrected, T = 1 min. 33.49 33.54 33.59
corrected, T = lo-amin. 28.96 29.01 29.06
A = .5(strain range 14.10 14.09 14.08
- max. loop width)
Strain area 14.48 14,51 14.53
W, = 428 x .T55/A % 22.9 22.9 22.9
Vs % 15.0 16.1 17.3

Computed ¥, % 37.9 39.0 40.2



T4

Fabric ioulding Material. Time Interval 0.5 Minute.

Qbservations.

Load, lbs.
2 50.79 50.78
1.5 46.87 47.37 46.84 47.36
1 42.99 43,82 42,91 43,81
005 39-30 40018 39-06 40016
o} 35.75 36 44 35.27 36.41 35.26
“Q¢5 32.63 31.54 32.57 31.52
"l 28069 27083 28.64 27.80
—105 24.68 24.16 24.62 24c 12
-2 2.55 20.49

Second Cycle.

Corrected Qbservations. Creep Factor .145 [Loop Width.
Load, 1lbs.

2 50.82 0

1.5 46.93 47,24 31
1 43,05 43,61 .56
0.5 39.23 39.93 «70
0 35.46 36.18 35.46 .72
-0.5 32.35 31.71 .64
-1 28.46 27.96 +50
-1.5 24 .48 24,20 .28



Eabric Moulding jaterial. Time Interval 1 Minute.
Qbservations.
Load, 1lbs.
2 51.06 51.00
1.5 47.06 47,58 47,00 47,53
1 43.08 43.98 43,02 43,94
0.5 39.20 40.30 39.11 40.25
o] 35.51 36.49 35.27 36.45 35.23
-0.5 32.63 31.49 32.58 31.44
"105 24055 24.01 24.50 23095
"2 20035 20028

Second gycle.

gorrected Qbservations. Creep Factor .145 Loop Width.

Load, 1bs.
2 50.86 o]
1.5 46.96 47,28 32
1 43,07 43,66 .59
0.5 39.24 39.98 T4
0 (35.46) 36,22 35.43 .79
Q.5 32.41 31.68 )
-1 28.47 27.92 55
=1l.5 24,49 24,16 33

"2 20038 0

5.



FPabric Moulding Material. Time Interval 2 Minutes.

Qbservatlions.
Load, 1lbs.
2 51.37
1.5 47.58 47.86 47,21
1 43,69 44,23 43,19
Q.5 40.00 40,51 39.23
0 36.43 3670 35436
Q.5 32.82 31.54
-l 28.77 27074
-1.5 24,62 23.98
"2 20 * 27

Second Cycle.
gorrecteda Qbservations. Creep Factor .1l45

Load, lbs.

2
1.5
1
0.5
0
“'005
-1
"105
-2

50496
47.04
43,15
39.31

(35.55)

47,37
43,75
40,08
36434
32.53
28,61
24,59

51.27

47.75
44,12
40,40
36.57 3529
32.66 31.46
28.62 27.65
24 4T 23.89
20.18
Loop Width.
0
33
.60
<77
.85
<79
.63
.36
0

6.
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Fabric Moulding Material.
Calculation of Specific Damping Capacity from Cyclic Loading Tests,

tl = 0.5 nmin. tl = 1 min. tl = 2 mins.

Elastic hysteresis 1.81 2.03 2.17
loop area

Strailn range: obs. .29 30.72 31.09
corrected, T = 1 min. 30.41 30.48 30.51
corrected, T = lO-Bmin. 26.93 27.00 27.03

A = .5(strain range 13.11 13.11 13.09
- max. loop width)

Strain Area 13.47 13.50 13.52
WV, = 428 x .58/A, % 18.9 18.9 18.9
Vi B 13.4 15.0 16.0

Computed ¥, % 32.3 33.9 34,9



Hood plour Material. Time Interval 0.5 Minute.

Qbservations.

Load, 1lbs.

2 51.43 51.41

1.5 47.72 48.06 47.60 48.03

1 44,06 44,60 43,79 44,57

0.5 40.49 41.08 39.88 41.04

0 36.98 3T 45 35495 3741 35.93
0.5 33.72 32.27 33.67 32.25
‘105 25. 65 25000 25; 59 24099
-2 21.40 21.39

Second Cyecle.

gorrected Qbservations. Creep Factor .11lQ Loop Width.
Losad, lbs.

2 51.44 o}

1.5 47.67 47.94 27

1 43,90 44y, 42 .52

0.5 40.01 40.87 .86

Q (36.09) 37.23 36.08 1,15

-0.5 33.50 32.40 1.10

"1 29059 28074 085

~1l.5 25.49 25.05 A4

-2 21.33 0

78.



Wood Flour Jjaterial. Time Interval 1 Minute.

Qbservations.

47,66
43,82
39.87
35.92
32,22
28.55
24,90

36405
32437
28.69
25.01

51.47

Load, 1lbs.
2 51.51
1.5 47.71 48.10
1 43,88 44,62
0.5 39.95 41.06
o) 36.06 37.40
0.5 33.65
"l 29068
-1.5 25.52
-2 21.28
Second Cycle.
gorrected Qbservations. Creep Factor .11l0
Loed, lbs.
2 51.36
1.5 47,63 47.88
1l 43.86 44,36
005 39'97 40-81
o) (36.06) 37.19
~0e5 33.48
"'1 29-56
1.5 25.46
"2 21030

48.07
44,58
41.02
37437 35.90
33,61 32.19
29.63 28,51
25.46 24.85
21,23
Loop Width.
0
.25
«50
084
1.14
1.11
.89
45
0
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Wood Flour Material.

Calculation of Specific Damping Capacity from Cyclic Loeding Tests.

t = 005 mino tl = 1. mino

1
Elastlic hysteresis loop area 2.60 2.59
Straln range: observed 20.02 30. 24
corrected, T = 1 min. 30.11 30.06
corrected, T = lO-3 min. 27.46 27T .41
A = .5(strain range - max. 13.16 13.14
loop width)
Straln area 13.73 15.71
Vo = 428 x J44L/A, % 14.4 1404
WV % 18.9 18.9

Computed WV, % 33.3 33.3



Bakelite Resin. Time Interval 1 Minute.

Qbservationsg.
Load, 1lbs.
2 57.22 57.18
1.5 51.17 51.45 51.14 51.42
1 45,29 45,71 45,23 45,68
0.5 39.47 39.94 39.29 39.92
0 33,72 34,13 33,58 34.10 33.57
“Qe5 28.24 27.73 28.22 27.71
-1 22.20 21.76 22.15 21.72
'105 15091 15064 15088 15060
""2 9-30 9026
gSecond Cycle.
Corrected Qbservations. Creep Factor .086 Loop Width.
Load, 1lbs.
2 57.10 0
1.5 51.12 51.27 .15
1l 45,26 45,51 .25
0.5 39.47 39.76 . 29
o} (33.69) 33,96 33469 <27
0.5 28.12 27.85 27
-] 22.09 21.87 .22
"105 15088 15072 016

"2 9032 O



Bekelite Resin. Time Interval 2 Minutes.

Qbservations.

Load, 1lbs.
2 57 .47
1le5 51.32 51.64
1 45,37 45,78
Q.5 39.52 39.99
0 33.T3 34.18
Q.5 28.27
-1 22.14
‘105 15089
-2

Second Qycle.
Corrected Qbservations. Creep Factor .086

Loead,

2
1.5
1
0.5
0
0.5
-1
“105
-2

lbs.
57.11
51,13 51.30
45,28 45,55
39.48 3979
(33.71) 34,02
28017
22.15
15.90

9.25

934

51.23
45.30
39.43
33.60
27.72
21.72
15.58

33.T1
27.87
21.89
15.75

5720

51,53

45,77

39.98

34,16 33.59

28.25 27.70

22.16 21.69

15.83 15.55
8

LLoop Width.

.17
27
31
.31
« 0
.26
015

82.
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Bakelite Resin.
Calculation of Specific Damping Capaclity from Cyvelic ILoading Tests.

tl = 1 min. tl = 2 mins.

Elastic hysteresis loop area «80 .89

Total strain range: observed 47.92 48,12
corrected, T = 1 min. 47.78 47.77
corrected, T = lOanin. 45,72 45,71

A = .5(strain range - max. 22.73 22.70

loop width)

Strain area 22.86 22.86
WV, = 428 x .343/4, 6.5 6.5

'\ph, % 3.5 3.9

Computed “P, % 10.0 10.4
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84.

Dlscussion of Hysteresis Results.

The following general conclusiocns are seen to
hold for the hysteresis tests.
Steady State. Excepting the first quarter of the first
cycle, there 1s good agreement between the observed
deflections for the first and second cycles. The slight
difference appesars to be accounted for within the order
of accuracy of the experiment by the slight difference
between the corrections due to creep for the two cycles
(fige 7).
Uncorrected Qbservations. Consldering the second cycle

the zero lcad observatlions asppear to be almost unaffected

by the time interval of the cycle. Thieg i1s not the case with

the other observations. The greater the time interval,

the greater is the total straln range.

gorrected Qbservations. After applying to the second cycle
observations the corrections for time dependent deflectlon,

it is seen that good agreement is obtained between the
corresponding observations for different time intervals. In splte
of the fact that the observatlions at the maximum load points are
likely to be in error for reasons already mentioned, they are
pulled nearly into agreement on applying the corrections.
whereas the observed total strain ranges for different

time intervals differ greatly, these ranges when adjusted

by the theory are found to be nearly equal. The results thus
bear out the theoretical conclusions that the cycles for

different time lntervals are sheared over by amounts
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proportional to the logarithm of the time interval.

Elastic Hysteresis Lcops. The difference between pairs of
corrected observations gilves the hysteresis loop width in terms
of inches of scale. The sum of these widths for the nine
stations (i.e., eight intervals) when divided by two

bgives the loop area in terms of lbs. wt. on beam x inches

on scale. The loop wldths represent the difference between

two nearly equal magnitudes, the observations belng taken
rapidly and without any possibility of a check. Because

of this and some other unknown causes, there is only a

falr agreement between the slzes and areas of the hysteresis
loops; the width at each station and the total area 1s slightly
greater the greater the time interval. Agreement is good
between the two values of loop area in the case of the wood
flour material and the unfilled resin. Except in the case

of the wood flour material, the loop widths are roughly
gymmetrical with respect to the load.

Damping Capacity Results.

The logarithmic decrement & was evaluated from
en amplitude record by means of the simple formula, and the
mean specific damping capacity obtained by multiplying by two.
The atress scale was determined by assuming linear distribution
of stress, the initiel seml-amplitude thus glving a
connectlion with surface stress.

Fig. 25 shows amplitude records as obtained

for the various materials. Figs. 26 - 29 show the relation
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Cord Material

Fabric Moulding
Material

Wood Flour Material

Bakelite Resin

Fig. 25.

Amplitude of Free Oscillation
(Contact Print from Film Record)
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between mean speciflc damping capacity in torsion and
nominal surface shear stress for the four materials in the
as received condition. In many cases two runs are recorded;
the agreement is ususlly close. Fig. 30 shows on one
diagram how the falred records compare. An example of the
calculation of decrement for cord material is gilven below.
Stress Scale. 2 lbs. load = 2520 1bs./in? 2,25 1bs. = 2 x 3.47 ins.
hence 1 in. on record = 408 1lbs./in?

Cycle |Amplitude, Ampl. KMean .0g. Dec., Stress,
ins. Differencel  Ampl. % 1bs./in®.

1 6423
1.02 5.72 17.85 2340

2 5.21
1.33 4,55 14.6 1860

4 3.88
+51 3463 14.0 1480

5 337
43 3.16 13.6 1290

6 2.94
38 2.75 13.8 1120

7 2.56
o 54 2.39 14.2 976

8 2.22
51 1.97 12.95 805

10 1.71
« 39 1.505 12.95 614

12 1.32
.51 1.065 12.00 435

16 81
.29 665 11.1 272

20 .52
«17 435 9.78 178

24 ¢35
17 «265 8.02 108

32 .18
Q7 . 145 6.03 59

40 .11

48 0037
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Gomparison of Dynsmic and Static Results,

The following table gives the value of \bm
at a surface shear stress of 2520 lbs./in? (corresponding
tc a load on the torsicn bar of 2 1lbs. at 7.5 ins. radius)
obtained from the damping curves, extrapolatlon being resorted
te where necessary. This table gives also the values
of \Pm statically determined at this stress-range by the

cyclic step-by-step loading tests.

Material Cord Fabric Mldg.| Wood Flour Resin
Dynamic Test 3646 3362 3l.1 8.9
Static Test

t, = 0.5 37.9 32.3 333 -

;=1 39.0 33.9 333 10.0

t, =2 4Q.2 34.9 ————— 10.4

The static and dynamic tests in the above table are in
ressonable agreement, indicating that the theory 1s probably
correct, and therefore that damping in bakelite in the as
received condition 1is due partly to elastlic hysteresls and partly
to primary (logarithmic) creep. At the stress range considered,
for three materials rather more than half the damping was due
to creep; for the fourth material (wood flour filler) the

reverse was true.
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Part IV. Conclusion.

L. Experiments on Non-Recoverable Creep.

Three experiments will be dealt with, which
represent a preliminary study of the nature of the non-
recoverable creep. The cord material specimen was usgsed in
these tests.

Test 1.

Thils 1s a repeated loading test simllar to Test I
of Part II, with the difference that the loading and
unloading instants are so adjusted that the equivalent time
of 15 minutes 1s not exceeded during the creep perlods,
and that the equivalent time never falls below 2.0 minutes
during the recovery periods. The loading diagram 1s
gshown in fige. 31. The equivalent times are glven below;
the observations are plotted sgainst equivalent time as

before in fig. 32.

2 lbs. © &3 <
a 4 x " -
Q 15 3Q 39 56 64 85

mins.

Flgo 31,
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The equivalent times up to t = 39 minutes are the same

as in Test II (p. 49). The subsequent times are given below.

Recovery Creep Recovery
Time from | Equiv. [Time from | Equiv. |[Time from Equiv.
beginning | time. beginning time. beginning time.
f teat. of test. of test.
59433 45,3 56433 .63 64.33 44,2
39050 3006 560% 1003 64050 30
39.75 0.9 56.75 1l.52 64.75 21.4
40 16.0 57 2.04 65 15.75
40.50 1l.1 57.50 3.02 65.50 11.0
41 8.68 58 3.98 66 8.63
42 6.22 60 T.6 67 623
45 375 75 2.70
47 3.12 80 2.26
50 2.6 85 2.01
55.75 2.1

It 1s seen theat the dlsplacements between the

recovery lines, and between the second and third creep lines

are very much reduced (cf. fig. 13). The slight displacement

that remains might be due to defects in the apparatus.

est .

This experiment deals with the creep following an

initial ereep and intermediate recovery. Fig. 33 shows the

96.

loading dlagram; the equivalent times are of course the same as

for Test II of Part II up to 45 minutes from the beginning of the

test. This test was continued for 70 minutes.

2 1bs, QO

B3]

Y

Q 15

0
Figo 33-

70 minutes.
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The results in fig. 34 show that the second creep curve

is represented by a straight line parallel to the recovery
line up to an equivalent time of 8.6 mins. This line when
extrapolated to 15 mins. intersects the original creep curve
at the deflectlion corresponding to the termination of the
first creep. From about 25 mins. onwards, the second creep
curve lies on a continuation of the first. Between these
points the second ¢reep curve follows a transition curve
between the straight line and the continuatlion of the first
curve. In the curves in Part III the transition curve

has been replaced by the broken line shown in fig. 34.

est .

This test represents an extension of Test II of
Part IT (with 10 minute loading periods) in which the second
recovery is observed for a further 60 minutes. The loading
diagram 1s shown in fig. 35; the creep and creep recovery
observations are plotted agalnst the corresponding equivalent
times in fig. 36.
2 lbs. =

Q + X _
0 10 20 ) o) 100 mins.

Fig. 35.
After about 35 minutes from the beginning of the

gecond recovery perlod (corresponding to an equivalent time
of 1.52 minutes) the creep appears to recover at a much

faster rate than expected. The extrapolation of the second

98.
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recovery curve to unit equivalent time (1l.e., infinite

elapsed time) suggests a final additional recovery of the

order of magnitude of the non-logarithmic c¢reep in the first
and the latter part of the second creep periods. The experiment
suggests therefore that the non-recoverable creep deflection

does probably recover after a long period of time.

II. Suggestions for Further Work.

During the course of the work several improvements

to the apparatus suggested themselves. Filrst, thin tubular
specimens would have been preferable to solid cylindrical
ones, since the stregs-distribution would then be nearly
uniform across the cross-sectlion. The enlarged squared ends
cf the speclmen are best clamped between V-blocks. A pivot
which would be an improvement on a knife-edge would be one
consisting of two flat strips at rignt angles in flexure.

The greatest experimental difficulty in the cyclic
loading tests was the application of the loads at the exact
time instants, without dlsturbing the loads already on the
beam. A possible sclution would be to apply the loads by
some electromagnetlic device, leaving the observer’s attention
free for making scale readings.

The static and dynamlic tests have been compared
on the basis of specific damping capacity. Difficulty and
uncertainty arises both in the translation of loop area and
of logarithmic decrement into this unit. If a machine be

devised for measuring unit damping (i.e., the energy
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dissipated per unit volume per cycle) the results can
immediately be compared with the hysteresis loop areas,
and thus the difficulties disappear.

The experimental work has been concerned only in
snowing that at a particular stress range the damping is due to
hysteresls and primary creep. According to the theory, the
speciflic dampling capaclty due to hysteresis may be a function
stress, wnereas that due to creep shculd be nearly constant.
That the varlation in damping capacity over the stress range
is due to varisastion in the nysteresis component is yet to be
shown. The effect of annealing at say, 100° C., the effect of
overstrain, and the relatlons between mouldling pressure, nature
of flller, and type of damping curve afford further interesting

problems in the damping of bakelite materials.
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