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Abstract

This thesis describes a fast method to increase the information-content of intra-
operatively acquired images by tracking volumetric brain deformations during neuro-
surgical procedures. Image Guided Neurosurgery (IGNS) is employed to help surgeons
distinguish between healthy and diseased brain tissues, which can have similar visual
appearance. High-performance computing algorithms and parallel hardware configu-
rations are the key enabling technologies that allow this method to be quick enough
for clinical use.

A finite element based biomechanical model was used during IGNS procedures
to capture non-rigid deformations of critical brain structures. These structures, ex-
tracted from pre-operative data acquisition, were mapped onto intra-operative Mag-
netic Resonance (MR) images. This method meets the real-time constraints of neuro-
surgery and allows for the visualization of multi-modality data, otherwise not available
during surgery, together with intra-operative MR data.
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Chapter 1

Introduction

1.1 Context of the work

Medical image processing and analysis have evolved very quickly during the past

decade and have been raising new challenges for scientists and engineers. The pri-

mary importance of medical imaging is that it provides information about the volume

beneath the surface of objects. Indeed, images are obtained for medical purposes to

probe the otherwise invisible anatomy below the skin. This information may be in

the form of the two-dimensional projections acquired by traditional radiography, the

two-dimensional slices of ultrasound, single and biplane fluoroscopy (including Digital

Subtraction Angiography (DSA)), or full three-dimensional (3D) acquisitions, such

as those provided by Computed Tomography (CT), Magnetic Resonance Imaging

(MRI), Single Photon Emission Computed Tomography (SPECT), Positron Emis-

sion Tomography (PET), functional MRI (fMRI), Magnetic Resonance Angiography

(MRA), CT Angiography (CTA), Diffusion Tensor MRI (DTMRI) or 3D Ultrasound

(US) [37].

In medical imaging applications, it is often necessary to estimate, track, or char-

acterize complex shapes and motions of internal organs such as the brain or the heart.

In such applications, deformable physics-based modeling (which associates geometry,

dynamics and material properties in order to model physical objects and their inter-

actions with the physical world) provides the appropriate mechanism for modeling
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tissue properties, estimating, characterizing and visualizing the motion of these or-

gans, and for extracting model parameters which can be useful for diagnosis, surgical

planning, and surgical guidance [10].

The goal of this thesis was to use a physics-based biomechanical model, designed

and developed by Ferrant [10], to capture changes in the brain shape during Im-

age Guided Neurosurgery (IGNS). Such deformations were then applied to critical

structures extracted from pre-operatively acquired data of different modalities, in

order to make the information provided by such data available to the surgeon dur-

ing the procedure. We have used High-Performance Computing (HPC) to meet the

real-time constraints of neurosurgery, and this allowed for the visualization of multi-

modality data, otherwise not available during surgery, together with intra-operative

MR data. In the remainder of this chapter, the specific use of medical images during

neurosurgery (Section 1.2), the need for image fusion (Section 1.3) and for non-rigid

registration (S ection 1.4) during IGNS will be described.

1.2 Image Guided Neurosurgery (IGNS)

The development of image guided surgery methods over the past decade has permit-

ted major advances in minimally invasive therapy delivery. These techniques, carried

out in operating rooms equipped with special purpose imaging devices, allow surgeons

to look at updated images acquired during the procedure. This has been particularly

helpful for neurosurgical procedures, where the surgeon is faced with the challenge of

removing as much tumor as possible without destroying healthy brain tissue. Diffi-

culties here are caused by the similar visual appearance of healthy and diseased brain

tissue. This is not always the case, but for many lesions, like low-grade gliomas, it is

very difficult for the surgeon to visualize the lesion margins. Also, it is impossible for

the surgeon to see critical structures underneath the brain surface as it is being cut.

Some vital anatomical information, such as the orientation and the location of dense

white matter fiber bundles, may not be visible at all.

Images acquired intra-operatively can provide improved contrast between tissues,
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Figure 1-1: Open Magnet MR configuration in the MRT room at the BWH.

and enable seeing past the surface in order to give the surgeon a better appreciation

of the deeper structures of the brain. A number of imaging modalities have been

used for image guidance; MRI has an important advantage over other modalities due

to its high spatial resolution and superior soft tissue contrast, which has proven to

be particularly useful for IGNS [4]. Figure 1-1 shows the open magnet MR config-

uration in the Magnetic Resonance Therapy (MRT) operating room at the Brigham

and Women's Hospital (BWH). The MRT room is used to carry out particularly

challenging neurosurgical procedures. The surgeon can operate on the patient while

he/she is being scanned by the MR system (Signa SP, 0.5 Tesla, General Electric

Medical Systems, Milwakee, WI), which is used to acquire images as necessitated by

the procedure.

IGNS has largely been a visualization driven task. In the past, quantitative assess-

ment of intra-operative imaging data has not been feasible, but qualitative judgments

by clinical experts have been relied upon. Thus, effort was primarily focused on image
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acquisition, visualization and registration of intra-operative and pre-operative data,

to provide surgeons with a rich environment from which to derive such judgments.

Early work has established the importance of image guidance, which can provide

better localization of lesions, the improved localization of tumor margins, and the op-

timization of the surgical approach [20]. Algorithms for computer-aided IGNS have

been developed to improve image acquisition quality and speed, and to provide more

sophisticated and capable intra-operative image processing. This led to significant

progress in multi-modality image fusion and registration techniques. However, clini-

cal experience in IGNS in deep brain structures and with large resections has exposed

the limitations of existing registration and visualization approaches. This motivates

the investigation of improved visualization methods and registration algorithms that

can capture the non-rigid deformation the brain undergoes during neurosurgery.

1.3 Multi-Modality Image Fusion for IGNS

Due to the time constraints of an operating room, the inaccessibility of different

contrast mechanisms and the low magnetic field, intra-operative MRI usually results

in images with low signal-to-noise ratio. However, visualization during IGNS can

be enhanced by pre-operatively acquired data, whose acquisition is not limited by

any time restriction, and that can provide increased spatial resolution and contrast.

Thus, pre-operative data is able to provide more morphological and functional in-

formation than intra-operative data. Multi-modality registration allows pre-surgical

data, including modalities that cannot currently be acquired intra-operatively, such

as fMRI, MRA, DTMRI, and nuclear medicine scans, such as PET and SPECT, to

be visualized together with intra-operative data.

DTMRI, for instance, provides direct visual information about white matter tracts,

while it is difficult if not impossible to manually segment these tracts from conven-

tional MR images. Previous work [22] has shown that it is possible to track anatomical

structures, such as the corticospinal tract, even if diffusion tensor data is not avail-

able during surgery. This was achieved by aligning a deformable volumetric digital
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brain atlas onto brain scans of tumor patients that were acquired intra-operatively,

and by estimating spatial correspondence between atlas and patient's brain. Affine

registration and non-rigid registration based on 3D adaptive template matching tech-

niques enabled accurate matching of the corticospinal tract to the patient's brain

retrospectively.

1.4 Non-Rigid Registration for IGNS

During neurosurgical procedures, the brain undergoes non-rigid deformations [29];

in other words, the spatial coordinates of brain structures and adjacent lesions may

change significantly. The leakage of cerebrospinal fluid after opening the dura, the

administration of anaesthetic and osmotic agents, hemorrhage, hyperventilation, and

retraction and resection of tissue are all contributing factors to the so-called intra-

operative "brain shift". This makes information given by pre-operatively acquired

datasets more difficult to exploit during surgery.

Figure 1-2 shows three images acquired intra-operatively, in which the brain shift

is very evident. The left-most image was acquired before any skin incision, the center

image was acquired after skin incision, while the right-most image was acquired after

some degree of resection. Figure 1-3 shows another case, where the left image was

acquired before skin incision, the center image was acquired after skin incision, and

the right image was acquired after performing some degree of resection. Upper slices

show a region near the lesion; lower slices show that, even away from the lesion, the

brain shift is very pronounced.

Several image-based and physics-based matching algorithms are being developed

to capture these changes in the brain shape, and to create an integrated visualization

of pre-operative data in the configuration of the deformed brain. In this work, a

biomechanical model was employed, which ultimately may be expanded to incorporate

important material properties of the brain, once these are determined. The approach

was to use a Finite Element (FE) discretization, by constructing an unstructured grid

representing the geometry of key brain structures in the intra-operative dataset, in
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Figure 1-2: Intra-operative MR images. Left: initial image, acquired before skin
incision. Center: first intra-operative imaging update, acquired after skin incision.
Right: second intra-operative imaging update, acquired after performing some degree
of resection.

Figure 1-3: Intra-operative MR images. Left: initial image, acquired before skin
incision. Center: first intra-operative imaging update, acquired after skin incision.
Right: second intra-operative imaging update, acquired after performing some degree
of resection. Upper slices show a region near the lesion. Lower slices show that, even
away from the lesion, the brain shift is very pronounced.
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order to model important regions while reducing the number of equations that need

to be solved. The rapid execution times required by neurosurgical operations were

achieved by using parallel hardware configurations, along with parallel and efficient

algorithm implementations [41].

The deformation of the brain was rapidly and accurately captured during neu-

rosurgery using intra-operative images and a biomechanical registration algorithm

developed by Ferrant [10][11][12]. This model has allowed us to align pre-operative

data to volumetric scans of the brain acquired intra-operatively, and thus to improve

intra-operative navigation by displaying brain changes in three dimensions to the

surgeon during the procedure.

1.5 Previous Related Work

Methods for tracking the non-rigid deformation taking place within the brain dur-

ing neurosurgery, in order to visualize pre-operative data matched to intra-operative

scans, are in active development. Previous work can be categorized by algorithms that

use some form of biomechanical model (recent examples include [16][35][25][13][36])

and algorithms that apply a phenomenological approach relying upon image-related

criteria (recent examples include [19][17][18]). Purely image-based matching is ex-

pected to achieve a visually pleasing alignment, once issues such as noise and inten-

sity artifact rejection are accounted for. However, in this thesis a physic-based model

was favored for intra-operative matching, hence it can ultimately be expanded to

incorporate important inhomogenous and anisotropic material characteristics of the

brain. An investigation within the domain of physics-based models, ranging from less

physically plausible but very fast models to extremely accurate yet requiring hours

of compute time biomechanical models, has been carried out.

A fast surgery simulation method, described in [5], was able to achieve high speeds

by converting a volumetric FE model into a model with only surface nodes. The aim

of this work was to achieve interactive graphics speeds at the cost of the simulation

accuracy. Thus, such a model is applicable for computer graphics oriented visualiza-
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tions, but not for neurosurgical applications, where robustness and high accuracy are

an essential requirement. This thesis describes an accurate matching approach where

the clinically compatible execution speeds are achieved via parallel hardware, parallel

algorithm design and efficient parallel implementations of these algorithms.

The sophisticated biomechanical model for two-dimensional (2D) simulation of

brain deformation using a FE discretization described in [16] used the pixels of the

2D image as the elements of a FE mesh, and relied upon manually determined corre-

spondences. However, during clinical neurosurgical interventions 2D results are not

entirely useful. Also, manually determining correspondences is susceptible to operator

errors and can be time consuming, especially if a generalization to deal with volumet-

ric anatomy is attempted. In addition, such a discretization approach is particularly

computationally expensive (even considering a parallel implementation) if expanded

to three spatial dimensions, because of the large number of voxels in a typical intra-

operative MRI (256x256x60 = 3,932,160 voxels, implying 11,796,480 displacements

to determine), which leads to a large number of equations to solve. Downsampling

can provide fewer elements, however it leads to a crude approximation of the true

geometry of the underlying anatomy of interest. Instead, the use of a FE model with

an unstructured grid (described in Section 3.2) can allow an accurate modeling of

key characteristics in important regions of the brain, while reducing the number of

equations to be solved by using mesh elements that cover several image pixels in other

regions.

Skrinjar et al. [35] described an interesting system for capturing intra-operative

brain shift in real-time during epilepsy neurosurgery where the brain shift is rather

slow. Brain surface points were tracked to indicate surface displacement, and a sim-

plified homogeneous brain tissue material model was adopted. This model has 2088

nodes, 11733 connections, and 1521 brick elements, and typically required less than 10

minutes on an SGI Octane R10000 workstation with one 250 MHz processor. Follow-

ing the description of surface-based tracking from intra-operative MR images driving

a linearly elastic biomechanical model in [13], a new implementation was presented

in [36], which made use of a linear elastic model and surface-based tracking from
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intraoperative MRI scans with the goal of eventually using stereoscopic cameras to

obtain intra-operative surface data, and thus capture the brain shift.

A 2D three component model with the goal of tracking intra-operative deformation

was presented in [91. In this work, a simplified material model was employed aiming

at achieving high speeds. The initial multi-grid implementation on 2D images of

128x128 pixels converged to a solution in 2-3 hours when run on a Sun Microsystems

Sparc 20. This is obviously too slow to be practical in clinical neurosurgical practice.

Paulsen et al. [31] and Miga et al. [25][26] have developed a sophisticated FE

model to simulate brain deformation, including simulations of forces associated with

tumor tissues, and simulations of retraction and resection forces. A clinical appli-

cation of these models will be very interesting once intra-operative measurements of

surgical instrument and associated forces (for instance, the pressure applied by the

surgeon with the retractor) is possible. A potential limitation of this approach is that

the pre-operative segmentation and the tetrahedral FE mesh generation currently

take 5 hours of operator time.

Most meshing software packages used in the medical domain (see [33][14]) do

not allow meshing of multiple objects and often work best with regular and convex

objects, which is usually not the case for anatomical structures. Therefore, for the

purpose of this thesis a tetrahedral mesh generator specifically suited for labeled 3D

medical images has been employed. This mesh generator, fully described in [13], can

be seen as the volumetric counterpart of a marching tetrahedra surface generation

algorithm.

For prediction of brain deformation (rather than capture of brain deformation from

intra-operative MR images), more sophisticated models of brain material properties

would be required. Miller et al. [27][28] have carried out pioneering simulations and

comparison with in-vivo data. This study showed that a hyper-viscoelastic constitu-

tive model can reliably predict in-vivo brain deformation induced by a force applied

with constant loading velocity. This work has great potential for future research in

cases when intra-operative images are not available.

Together with physics-based models, mutual information based techniques have
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been developed for the purpose of non-rigid registration of medical images. A recent

example [32] presents the application of an intensity-based non-rigid registration al-

gorithm with an incompressibility constraint based on the Jacobian determinant of

the deformation. This approach provides high-quality deformations while preserving

the volume of contrast-enhanced structures. However, in order for such algorithm to

be useful in neurosurgical practice, noise and intensity artifacts are issues that still

need to be completely solved.

1.6 Organization of Thesis Document

This work presents a method for tracking non-rigid brain deformations during IGNS

procedures. The first part of the thesis (Chapters 2 to 4) elaborates a step-by-

step description of the intra-operative methodology used during several neurosurgical

cases. The second part (Chapters 5 to 7) presents results obtained using generic and

patient-specific atlases for mapping critical structures during IGNS. The last part of

this document (Chapter 8) provides an in-depth discussion of the results and describes

directions for future research related to this work.

Chapter 2 gives an overview of the methodology, and describes the methods used

for the segmentation of intra-operative images and for the rigid registration of pre-

to intra-operative data.

Chapter 3 describes the FE based biomechanical model of brain deformation

used for non-rigid registration of intra-operative images.

Chapter 4 describes the visualization environment available in the MRT operat-

ing room.

Chapter 5 shows results obtained by matching a generic deformable volumetric

brain atlas during IGNS procedures.

Chapter 6 shows results obtained by matching patient-specific MRA data to

intra-operatively acquired MR images.

Chapter 7 shows results obtained by matching patient-specific fMRI data to

intra-operatively acquired MR images.
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Chapter 8 presents a discussion of the results described in this thesis. In addition,

this chapter draws conclusions and provides directions for future research related to

this work.
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Chapter 2

Intra-Operative Methodology:

Segmentation and Rigid

Registration

This chapter first gives an overview of the methodology used for tracking volumetric

brain deformations during IGNS, then it describes two different approaches that have

been taken in order to segment intra-operative image data and rigidly register pre-

to intra-operative images. This rigid registration is needed because the physics-based

deformable registration is more accurate if the images have been previously aligned.

The first approach consists of obtaining a segmentation of the intra-operative

scan first, and then using a fast affine registration algorithm to register pre- to intra-

operative masked brain segmentations. The second approach consists of rigidly reg-

istering pre- to intra-operative grayscale data first, then obtaining a segmentation

of the intra-operative data based on that of the pre-operative by means of a tissue

classifier.

2.1 Methodology Overview

The steps, both pre- and intra-procedural, of the method used for this thesis, can be

summarized as follows:

25



1. Pre-operative image acquisition and processing: segmentation and plan-

ning of surgical trajectory.

2. Intra-operative image acquisition (open magnet MR scanner).

3. Intra-operative segmentation: the patient scan is segmented either through

an automated multi-channel tissue classifier [44] or through a binary curvature

driven evolution algorithm [48]. When this approach is employed, the region

identified as brain eventually needs to be interactively corrected to remove any

portion of misclassified skin and muscle [15]. Next, this is repeated to obtain a

segmentation of the lateral ventricles of the subject.

4. Intra-operative rigid/affine registration: the pre-surgical data is registered

to the intra-operative patient scan by means of a parallel implementation of an

affine registration algorithm [43].

5. Intra-operative non-rigid registration: active surface matching and a biome-

chanical model for volumetric deformation are used to calculate the deformation

field and to apply it to the data acquired pre-operatively (see Chapter 3).

6. Intra-operative visualization: the matched data is visualized using an in-

tegrated system that allows for the display of intra-operative images with pre-

operative data together with surface models of key brain structures [15] (see

Chapter 4).

Once the next set of scans is obtained and segmented, a new deformation field is

calculated and applied to the previously matched data. In this manner, successive

images are matched during the procedure. A rigid registration of the intra-operative

scans is repeated in the event of patient movement. The flowchart presented in

Figure 2-1 shows the intra-operative part of the methodology (items 2-6), which has

been the focus of this thesis work.
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Figure 2-1: Schema for intra-operative segmentation and registration.

2.1.1 Pre-Operative Imaging

Before surgery, an MRI examination is performed using a 1.5-Tesla clinical scan-

ner (Signa Horizon; GE Medical Systems, Milwakee, WI). The standard protocol at

the BWH for IGNS cases (the so-called Protocol 55) includes the acquisition of the

following:

" A Ti-weighted, spoiled gradient echo (SPGR) volume (124 1.5mm thick sagittal

slices, TR=35msec, TE=5msec, Flip Angle=45, FOV=24cm, matrix=256 x 192,

NEX=1),

" A T2-weighted fast spin echo (FSE) volume (124 sagittal slices, TR=600msec,

TE=19msec, FOV=22cm, matrix=256 xl92, NEX=1),

" A phase-contrast MR angiogram (PC-MRA, 60 sagittal slices, TR=32msec, Flip

angle=20, FOV=24cm, matrix=256 x128, NEX=1),

* An fMRI exam (HORIZON EPIBOLD sequence, 21 contiguous 7mm coronal

slices, TE=50msec, TR=3sec, FOV=24cm, matrix=64x64, 6 alternating 30-
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seconds epochs of stimulus and control tasks), given to patients whose pathology

is located within the vicinity of the motor cortex.

2.1.2 Intra-Operative Imaging

MRI scans are acquired intra-operatively through an open-configuration MR system

(Signa SP; GE Medical Systems, Milwakee, WI), shown in Figure 1-1. These images

are collected 3 to 5 times throughout the duration of every craniotomy, as necessi-

tated by the procedure. These volumes are 3D SPGR (60 2.5mm thick axial slices,

TR=28.6msec, TE=12.8msec, FOV=24, matrix=256 x128, NEX=1), with imaging

times of about four minutes.

2.2 Intra-Operative Segmentation and Rigid Reg-

istration

2.2.1 Motivation

The approach described in the next section allows for a very fast segmentation of

the intra-operative data. Both brain and lateral ventricles are segmented. The brain

segmentation is then used for a fast parallel implementation of an affine registration

algorithm. The main motivations for such approach are the speed and the utilization

of affine registration, which allows for scaling, in addition to rotation and translation.

2.2.2 Segmentation of Intra-Operative Images

After the acquisition of an intra-operative image, the patient scan is segmented during

the neurosurgical procedure either through an automated multi-channel tissue clas-

sifier [44] or through a binary curvature driven evolution algorithm [48]. The latter

approach (the Riemannian surface evolver, as described by Yezzi et al. in [48]) is the

fastest, as it takes only a few seconds to select a threshold and to click inside a region

of the brain (or the ventricles). However, it is not as robust as the first approach,
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which is a little slower (the tissue classifier is later described in Section 2.3.3). Then,

the region identified as brain eventually needs to be interactively corrected to remove

any portion of misclassified skin and muscle, using the software described by Gering

et al. [15] (this may take a few more minutes).

This procedure is repeated to obtain a segmentation of the lateral ventricles of the

subject. Such method allows the neurosurgeon to inspect the segmentations as they

are constructed during the surgery and enhances the surgeon's confidence in their

quality.

2.2.3 Affine Registration of Pre- to Intra-Operative Images

After the segmentation of the brain is obtained, this data is masked and used to

obtain an affine transformation of the pre-surgical data, so that it is aligned to the

intra-operative image. The software used for such alignment is a fast (about 40 sec-

onds) parallel implementation of an affine registration algorithm (minimization of

binary entropy) developed by Warfield [43]. This algorithm measures alignment by

comparison of dense feature sets (tissue labels) and optimum alignment is found by

minimizing the mismatch of the segmentations. The alignment generated minimizes

the binary entropy of the aligned data. The parallel implementation distributes re-

sampling and comparison operations across a cluster of symmetric multiprocessors,

where the work is load balanced with communication implemented by MPI (Message

Passing Interface). This allows the achievement of execution times within a clinically

compatible range.

In addition to translation and rotation, accounted for by rigid registration meth-

ods, affine registration algorithms also allow for scaling and shearing in images. Since

our first tests were conducted with generic atlas data, as a surrogate for pre-operative

images, and the head sizes were slightly different, scaling was very important. How-

ever, if patient's pre-operative data is available, the scaling factor can be discarded

and a rigid registration algorithm can be used instead, as explained in Section 2.3.
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2.2.4 Discussion

While the approach described above is very fast, it is not optimal for surgical appli-

cations. In order to use the affine registration algorithm, a previous segmentation of

the brain is needed. It is desirable, though, to perform the registration first. The seg-

mentation of the intra-operative image, if previously registered to the pre-operative

image, becomes then an easier problem. However, the alignment of a statistical atlas

of material characteristics, to improve biomechanical modeling, or of a prior model for

tissue distribution, to aid in segmentation, would still require an affine registration.

2.3 Intra-Operative Segmentation and Rigid Reg-

istration: an Alternative Approach

2.3.1 Motivation

The affine registration method is a very fast algorithm to register pre- to intra-

operative images. However, a previous segmentation of the intercranial cavity is

required to achieve high speeds. Thus, we have successfully experimented with a

different approach (not shown in the flowchart), which does not require a previous

segmentation of the data for registering the images. Such approach is more robust

and more appropriate for surgical applications.

2.3.2 Rigid Registration of Pre- to Intra-Operative Images

During surgery, the pre-surgical data is aligned with the intra-operative grayscale

data using a Mutual Information (MI) based rigid registration method developed by

Wells and Viola [46]. This technique attempts to find the registration by maximizing

the information that one volumetric image provides about the other. MI is defined

in terms of entropy, which is estimated by approximating the underlying probability

density. The entropy approximation is then used to evaluate the MI between the two

volumes. Finally, a local maximum of MI is found by using a stochastic analog of
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gradient descent.

A detailed description of this method can be found in [46]. This approach is slower

(a few minutes) than the affine registration approach, but it is more robust and it can

be further optimized to obtain the high speeds required by neurosurgical procedures.

2.3.3 Segmentation of Intra-Operative Images

Once rigidly registered to the pre-surgical data, the intra-operative data is segmented

by means of a tissue classifier as described in [44]. Intra-operative segmentation pro-

vides quantitative monitoring of the progress of therapy (allowing for a quantitative

comparison with a pre-operatively determined treatment plan), enables the identi-

fication of structures not present in previous images, such as surgical probes and

changes due to resection, and provides intra-operative surface rendering for rapid 3D

interactive visualization.

The image segmentation algorithm we employed takes advantage of an existing

pre-operative MR acquisition and segmentation to generate a patient-specific anatom-

ical model for the segmentation of intra-operative data. As the time available for

segmentation is longer, images acquired before surgery are segmented through the

most robust and accurate approach available for a given clinical application. Each

segmented tissue class is then converted into an explicit 3D volumetric spatially vary-

ing model of the location of that tissue class, by computing a saturated distance

transform of the tissue class [44].

During surgery, the intra-operative data together with the spatial localization

model forms a multichannel 3D data set. A statistical model for the probability

distribution of tissue classes in the intensity and anatomical localization feature space

is also built, then the multichannel dataset is segmented with a spatially varying

classification.
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2.3.4 Discussion

The only drawback of this alternative approach is that it is slower than the first

one. However, as mentioned above, the MI based rigid registration algorithm can be

tuned to achieve higher speeds in the future. In conclusion, this is the best approach

for IGNS applications as both the rigid registration and the tissue classifier are very

robust. Also, as we will always use patient's data (the atlas was only used as a first

test, to prove that the method was fast enough for surgical applications), an affine

registration will not be needed, and the first approach is not suitable.
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Chapter 3

Intra-Operative Methodology:

Non-Rigid Registration

A physics-based biomechanical simulation of brain deformation [12][11][13] was em-

ployed to non-rigidly register pre- to intra-operative data. This can be summarized

as a four-step process (all the required steps are depicted in the flowchart shown in

Figure 3-1).

1. An unstructured surface mesh was generated, where an explicit representation

of the surface of the brain and lateral ventricles was extracted based on the

pre-operative segmentation. Also, a volumetric unstructured mesh was created

using a multiresolution version of the marching tetrahedra algorithm (see Sec-

tion 3.2).

2. The surfaces of the brain and of the ventricles were iteratively deformed using

a dual active surface algorithm (see Section 3.3).

3. The displacements obtained by the surface matching were applied to the vol-

umetric model generated in Step 1. The brain was treated as a homogeneous

linearly elastic material (see Section 3.4).

4. Finally, the volumetric deformation fields were applied to the pre-surgical data,

from which critical structures were extracted to be displayed to the surgeon (see
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Figure 3-1: Schema of the deformable registration algorithm illustrating the matching
of an input image onto a target image.

Section 3.5).

The detailed implementation of Step 1 to Step 3 is fully described in [10]. As the

solution of the volumetric biomechanical model requires a great amount of computing

resources, a parallel implementation of this algorithm, described in section 3.6, was

employed to carry out the non-rigid registration during surgery.

3.1 Finite Element Modeling of Elastic Membranes

and Volumes

Assuming a linear elastic continuum with no initial stresses or strains, the deformation

energy of an elastic body submitted to externally applied forces can be expressed as

[49]:

E -U T ed + FTudQ (3.1)
2
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where u = u(x) is the displacement vector, F = F(x) the vector representing the

forces applied to the elastic body (forces per unit volume, surface forces or forces

concentrated at the nodes), and Q the body on which one is working. In the case of

linear elasticity, with no initial stresses or strains, the relationship between stress and

strain, using a vector notation for a (stress) and E (strain), can be expressed by the

generalized Hooke's law as:

a = (Or, Oy Iz, Txy, Tyz, TXZ)T = De , (3.2)

where D is the elasticity matrix characterizing the properties of the material [10] and

c is the strain tensor (written as a vector for notation simplicity) defined as:

e = (EX, Ey 7, , Y , ,Xz) = Lu , (3.3)

with L being the following matrix:

/A 0 0

'0 0
Dx

0 -j 0D9y

00 
L az . (3.4)

D Y 0

0 a a
Dz Dy

aD 0  aQ
\z DX

The matrix is symmetric, due to the symmetry of the stress and strain tensors

[49]; thus there are 21 elastic constants for a general anisotropic material. In the case

of an orthotropic material, the material has three mutually perpendicular planes of

elastic symmetry [40]. Hence there are three kinds of material parameters

" the Young moduli Eiy relate tension and stretch in the main orthogonal direc-

tions,

" the shear moduli Gij relate tension and stretch in other directions than those
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of the planes of elastic symmetry,

* the Poisson ratios vij represent the ratio of the lateral contraction due to longi-

tudinal stress in a given plane.

For a material with the maximum symmetry, i.e. an isotropic material, the mate-

rial properties are the same in every direction. The elasticity matrix of an isotropic

material then has the following symmetric form:

V V 0 0 0

1 V 0 0 0* 1 (1-u)

E(1 - v) . . 1 0 0 0 ()
(1 + v)(1 - 2v) 1-2v 0 02(1-v)

1-2v 0
2(1-v)

1-2v
2(1-v)

where Young's modulus and Poisson's ratio are the same in any direction: E =

Ex = Ey = E2, a = oxy = axz = a,2. There are no independent shear moduli, as the

material parameters are the same in every direction. This therefore reduces the total

amount of material parameters to be determined to two.

We model our active surfaces, which represent the boundaries of the objects in the

image, as elastic membranes, and the surrounding and inner volumes as 3D volumetric

elastic bodies. Within a finite element discretization framework, an elastic body is

approximated as an assembly of discrete finite elements interconnected at nodal points

on the element boundaries [10]. This means that the volumes to be modeled need

to be meshed, i.e. divided into elements, as described in Section 3.2. The elements

we use are tetrahedra (where the number of nodes per element is 4) for the volumes

and triangles (where the number of nodes per element is 3) for the membranes, with

linear interpolation of the displacement field.

For the discretization, the finite element method is applied over the volumetric

image domain so that the total potential energy can be written as the sum of potential
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energies for each element:

Nnodes

E(u) = 1: E'(u') .(3.6)
e=1

The continuous displacement field u within element e of the mesh is defined as

a function of the displacement at the element's nodes u weighted by the element's

interpolating functions Nie(x):

Nnodes

U(x)e = INi (x)Ue (3.7)

In order to define the displacement field inside each element, the following linear

interpolating function of node i of tetrahedral element e is used:

1
Nf(x) = 6We (a + bex + cjy + diz) . (3.8)

The computation of the volume of the element Ve and the interpolation coefficients

are described in full details in [49].

For every node i of each element e, the following matrix is defined:

Be = LiNf , (3.9)

where Li is the matrix L (see Equation 3.4) at node i.

The function (Equation 3.1) to be minimized on each element e can thus be

expressed as:

.Nnodes Nnodes Nnodes

E(UL,..,U'yde) U B DBeudQ+ E FNeu'dQ . (3.10)
Z=1 j=11

Once the minimum of this function is found at 0 =, Equation 3.10 becomes:Ifu
Nnodes

Z B TDB uedQ = FNedQ; i 1, .. , Nnodes . (3.11)
j=1
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This last expression can be written as a matrix system for each finite element:

KU = F , (3.12)

where K' and F' are defined as:

K e = jB§DBedQ
F = FNjedQ . (3.13)

The coefficients i,j of the local matrices (corresponding to a pair of i,j nodes within

the local element) are summed up at the locations g(i) g(j) in the global matrix (where

g(i) represents the number of the element's node in the entire mesh). The assembly of

the local matrices into large matrices characterizing the entire simulation then leads

to the global system:

Ku = -F . (3.14)

The solution to this system will provide the deformation field corresponding to

the global minimum of the total deformation energy.

These are constitutive equations that model surfaces as elastic membranes and

volumes as elastic bodies. Given externally applied forces F to a discretized body

characterized by a rigidity matrix K, solving Equation 3.14 provides the resulting

displacements, which can then be used to characterize the deformation the brain has

undergone during the course of surgery [10].

3.2 Mesh Generation

Medical images are represented by an array of a finite number of image samples, or

voxels. These could be used as discretizing elements of a FE model; however, to limit

computational complexity, it is desirable to work with fewer elements. This implies

that many elements will cover several image samples. For computational ease and

because they provide better representations of the domains, triangular elements are

38



chosen to represent surfaces and tetrahedral elements to represent volumes.

A new tetrahedral mesh generator, specifically suited for meshing anatomical

structures using 3D labeled images, has been developed by Ferrant [10]. This ap-

proach combines the ideas of volume tetrahedralization proposed by Nielson and

Sung [30] (iso-voluming) and recursive mesh subdivision (octree subdivision).

An initial multi-resolution, octree-like tetrahedral approximation of the volume

to be meshed is computed depending on the underlying image content. Next, an iso-

volume tetrahedralization is computed on the initial multi-resolution tetrahedraliza-

tion, such that it accurately represents the boundary surfaces of the objects depicted

in the image [10].

The algorithm first subdivides the image into cubes of a given size, which deter-

mine the resolution of the coarsest tetrahedra in the resulting mesh. The cubes are

then tetrahedralized, and at locations where the mesh needs better resolution (i.e.

smaller edges), the tetrahedra are further divided adaptively into smaller tetrahedra,

yielding an octree-like mesh. This subdivision causes cracks for tetrahedra that are

adjacent to subdivided tetrahedra. In this case the neighboring tetrahedra are re-

meshed using a precomputed case table. The resulting mesh contains pyramids and

prisms, which are further tetrahedralized. Finally, the labels of the vertices of each

tetrahedron are checked in a marching tetrahedra fashion. If the tetrahedron lies

across the boundary of two objects with a different label, it is subdivided along the

edges on the image's boundary so as to have an exact representation of the boundary

between the objects. The resulting mesh contains prisms, which are further tetrahe-

dralized [10].

3.3 Active Surface Deformation

The equations modeling elastic membranes presented in Section 3.1 can be used to

solve tracking problems in 3D images by means of deformable surface models. De-

formable or active contours were introduced by Kass et al. [21], and have been

used increasingly in the fields of computer vision and medical image analysis for seg-
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mentation, registration and shape tracking or shape recovery. An active contour is

characterized by three parts [10]:

" internal forces - elasticity and bending moments describing the contour as a

physical object, designed to hold the curve together, and locally smooth (first

order terms) as well as keeping it from bending too much (second order terms);

" external forces - forces describing how the active contour is attracted to the

desired features of the image data;

" iterative procedure - process which attempts to find the configuration that best

matches both the internal and external forces.

The 2D active contour model has been extended to 3D surfaces by Cohen and

Cohen [6], who also proposed to discretize the resolution of the equations governing

the behavior of the surfaces using finite elements. In this way, the iterative variation of

the surface can be discretized using finite differences, provided the time step T is small

enough. Image-derived forces F"t (forces computed using the surfaces nodal position

v at iteration t) are applied to the active surface to deform it. The constitutive

equation for elastic membranes for the active surface (see Equation 3.14) yields to

the following iterative equation:

v -v + Kvt = -F , (3.15)
T

which can be rewritten as [10]:

(I + TK)v' = vt-' - TFv . (3.16)

The external forces driving the elastic membrane towards the edges of the image

structure are integrated over each element of the mesh and distributed over the nodes

belonging to the element using its shape functions (see Equation 3.7). The image

force F is computed as a decreasing function of the gradient such that it is minimized

at the edges of the image [21][6]. For correct convergence, the surfaces need to be
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initialized very close to the edges of the object to which they need to be matched.

Prior information about the surface to be matched (e.g for atlas matching, or in the

case of tracking) gives an initial global repositioning of the surface and can be very

useful to account for global shape changes such as rescaling and rotation [10]. The

distance measure can be efficiently computed by precomputing the distance from any

pixel to the reference surface using the Distance Transform algorithm described in

[7]. Such a transform provides a good initialization for running an active surface

algorithm next that can then account for local shape changes of the surface.

To increase the robustness and the convergence rate of the surface deformation,

the forces are computed as a gradient descent on a distance map of the edges in the

target image. This distance map is computed using a fast distance transformation

algorithm [7]. In addition, the expected gradient sign of the edges is included in

the force expression [10]. Thus, the external force can be described by the following

expression:

F(x) = SminGexpV(D X))) , (3.17)

where D(I(x)) represents the distance transformation of the target image at point

x. Smin is chosen so that the gradient points towards a point with a smaller distance

value, while Gexp is the contribution of the expected gradient sign on the labeled

image [10].

3.4 Biomechanical Volumetric Deformation

Physically realistic models for surgical planning and image registration have recently

gained increased attention within the medical imaging community. In fact, purely

image-based statistical methods do not take into account the physical properties of the

objects depicted in the image and often cannot predict changes in the image, especially

when dealing with medical image data. Different objects present in the image have

different properties and react in ways defined by their material charateristics (e.g.

bone and soft tissue have a very different behavior when submitted to equivalent

stresses). Thus, a model developed by Ferrant [10], which incorporates the objects
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physical characteristics, has been chosen for the purpose of this thesis, in order to

improve the accuracy of the deformable registration.

During IGNS procedures, it can be useful to deform volumes rather than just

surfaces, as surfaces are used to represent volumetric objects. Thus, it is possible to

deform an initial image onto a target image by imposing regularity constraints, which

maintains the spatial relationship between the objects depicted in the initial image.

An algorithm for doing elastic image matching using a finite element discretization

was developed [10][13][12][11], with the idea of modifying the constitutive equation

of volumetric bodies described in Section 3.1 to incorporate the image similarity

constraint into the expression of the potential energy of an elastic body submitted to

external forces (Equation 3.1). The elastic potential energy then serves as a physics-

based regularity constraint to the image similarity term. The full details of the

mathematical formulation of the volumetric elastic image matching using the FE

method can be found in [[10], Section 5.2].

Thus, the solution of this method for doing physics-based registration of images

is to use boundary deformation of the important structures to infer a volumetric

deformation field. The algorithm presented in Section 3.3 was used to track the de-

formation of boundary surfaces of key objects and that deformation was used as input

to a volumetric FE elastic model, such as described in Section 3.1. This approach

yields a deformation field satisfying the constitutive equations of the body, and can

be used to characterize the deformation the body has undergone from the initial to

the target image [10].

3.5 Application of Volumetric Deformation Fields

to Image Data

Finally, the volumetric deformation fields are applied to image datasets, usually the

initial intra-operative image (grayscale or segmentation) and other pre-operative im-

ages (such as MRA, fMRI, etc.). Such deformed data can then be visualized using
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an integrated visualization system as described in Chapter 4.

Once the next set of scans are obtained and segmented, new meshes are gener-

ated, the next set of surfaces are matched, and a new deformation field is calculated

and applied to the previously matched data. In this manner, successive scans can

be matched during the neurosurgical procedure. The entire method, including seg-

mentation, rigid and deformable registration, is usually completed in less than 12

minutes.

3.6 HPC Implementation

The displacements generated by the active surface model are used as boundary condi-

tions, such that the surface displacements of the volumetric mesh are fixed to match

them. The volumetric deformation of the brain is then computed by solving for the

displacement field that minimizes the energy described by Equation 3.1. Typically,

the brain meshes we use have around 25,000 discretization nodes, leading to 75,000

unknown displacements to solve for.

For each element of the finite element mesh, three variables must be determined,

which represent the x, y and z displacements. Each variable corresponds to one row

and one column in the global K matrix. The rows of the matrix are divided equally

among the processors that are available for computation, and the global matrix is

assembled in parallel. Each element in the subdomain of the local Ke matrix is

assembled by each CPU (Central Processing Unit). Following matrix assembly, the

boundary conditions determined by the active surface matching algorithm are applied.

The global K matrix is adjusted such that rows, which are associated with variables

that are determined, consist of a single non-zero entry of unit magnitude on the

diagonal.

When solving such large systems, the connectivity count of the nodes in the mesh

plays an important role: the lower it is, the less elements the matrix will have. In

addition, to optimize the parallelization of the assembly and resolution of large sys-

tems, the connectivity count needs to be constant throughout the mesh to avoid load
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balancing problems: the no des managed by a processor have a higher connectivity

than those of another processor, this CPU will have to do more computations to

perform the system assembly. Therefore, even if each processor has an equal number

of rows to process, because of the irregular connectivity of the mesh, some processors

may perform more work that others.

The MPI was used to parallelize the assembly of the matrix systems, and to opti-

mize memory allocation of the different processors across the matrix system. Both the

active surface membrane model and the volumetric biomechanical brain model system

of equations are solved using the Portable, Extensible Toolkit for Scientific Compu-

tation (PETSc) package [1][2] using the Generalized Minimal Residual (GMRES)

solver with Jacobi preconditioning. During neurosurgical procedures, the system of

equations was solved on a Sun Microsystem SunFire 6800 Symmetric Multiprocessor

(SMP) system with 12 750MHz UltraSPARC-III (8MB Ecache) CPU's and 12 GB of

RAM (more details about the computing resources available at the SPL can be found

in Appendix B). This architecture provides sufficient compute capacity to execute the

intra-operative image processing prospectively during neurosurgery.
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Chapter 4

Intra-Operative Methodology:

Visualization

The last step of our method for tracking non-rigid changes in the brain anatomy dur-

ing IGNS involves the visualization of such deformations in the operating room. We

chose to use the 3D Slicer [15], an integrated surgical guidance and visualization sys-

tem which provides capabilities for data analysis and on-line interventional guidance.

The 3D Slicer allows for the display of intra-operative images along with pre-surgical

data, including surface renderings of previous triangle models and arbitrary interac-

tive resampling of 3D grayscale data. This system also provides the visualization of

virtual surgical instruments in the coordinate system of the patient and patient image

acquisitions. The images we constructed were presented on the LCD monitor in the

MRT operating room, and increased the information available to the surgeon as the

operation progressed.

The 3D Slicer is the platform of choice for IGNS procedures in the MRT room.

It was developed mainly by Gering and O'Donnell [15] at the SPL. It allows to

selectively display the information available in the system, which may be in the form

of MR scans, surface models, etc. A screen shot of the system windows is shown in

Figure 4-1. More information can be found at http://www.slicer.org.
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Figure 4-1: Screen shots of the 3D Slicer.
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Figure 4-2: Multi-modality image fusion: Surface models of brain (white) and residual
tumor (green), generated from an intra-operative image acquired after some degree of

resection, are shown together with surface models of arteries (red) and veins (blue),
generated from pre-operative MRA data.

4.1 Multi-Modality Image Fusion

Intra-operative images provide the neurosurgeon with a great deal of information.

However, for difficult surgical procedures, it is beneficial to present the surgeon with

not just one diagnostic scan, but with an array of information derived from fusing

multi-modality datasets containing information on morphology (MRI, CT, MRA),

cortical function (fMRI), and metabolic activity (PET, SPECT). A shortcoming of

this approach is that pre-operatively acquired images do not account for changes in

brain morphology that occur during the procedure. Applying a non-rigid deformation

algorithm, as described in Chapter 3, to the pre-operative data, allows this visualiza-

tion system to actually provide reliable information during IGNS procedures. Results
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of the deformable registration of multi-modality data are shown in Chapters 5 to 7.

Various pre-procedural scans (T1- and T2-weighted MRI, MRA, fMRI) are fused

and automatically aligned with the operating field of the interventional MR system

by a rigid registration first (see Chapter 2) and a deformable registration after (see

Chapter 3). Pre-operative data is segmented in order to generate 3D surface models

of key brain structures, such as brain, ventricles, tumor, skin, arteries, veins, etc.

Intra-operative data is segmented as well (brain and ventricles are needed for the non-

rigid registration algorithm) and models are combined in a three-dimensional scene,

as shown in Figure 4-2. The structures displayed in this figure have been rigidly

registered (the results of the deformable registration of vessels onto intra-operative

data are shown later in Chapter 6).

Reformatted slices of MR images acquired during surgery can be also shown along

with the models. Surface models are generated from the segmentations using the

marching cubes algorithm and decimation; each model is colored differently and ren-

dered with adjustable opacity [15]. Thus, pre-surgical data, non-rigidly aligned to

intra-operative images, augments interventional imaging to expedite tissue character-

ization and precise localization and targeting.

4.2 Intra-Operative Navigation

The scene presented to the surgeon consists not only of models of critical brain struc-

tures, as explained in Section 4.1, but also of reformatted slices that are driven by

a tracked surgical device. The location of the imaging plane is specified with an

optical tracking system (Flashpoint; Image Guided Technologies, Boulder, CO). The

spatial relationship (position and orientation) of this system relative to the scanner

is reported with an update rate of 10Hz. A visualization workstation (Ultra 30; Sun

Microsystems, Mountain View, CA) is connected to the MR scanner with a TCP/IP

network connection, and contains two Sun Creator 3D graphics accelerator cards.

One drives the 20-inch display in the control area of the surgical suite, and the other

outputs the 3D view to color LCD panels inside the scanner gantry.
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Figure 4-3: Intra-operative navigation: Surface models of the brain (white), the
ventricles (blue), the corticospinal tract (red) and the tumor (green), generated from
pre-operative and intra-operative data, are displayed aligned with an intra-operative
SPGR scan and together with the virtual surgical instrument tracked in the coordinate
system of the patient's image acquisition.

Whenever the position and orientation of the optical tracking system change, or a

new image is acquired, a server process sends the new data to the 3D Slicer software

resident on the visualization workstation. In this way, surface models, generated

from pre- and intra-operative data, are visualized together with the tracked surgical

instrument as shown in Figure 4-3. In this case, surface models of the brain (white),

the ventricles (blue), the corticospinal tract (red) and the tumor (green), generated

from pre-operative and intra-operative data, are displayed aligned with an intra-

operative SPGR scan and together with the virtual surgical instrument tracked in

the coordinate system of the patient's image acquisition.
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Chapter 5

Deformable Atlas-based Tracking

of Critical Brain Structures during

IGNS

The work presented in this chapter is also described in [39], which was published

in the proceedings of the VISIM: Information Retrieval and Exploration in Large

Medical Image Collections workshop, held in conjunction with MICCAI 2001: the

Fourth International Conference on Medical Image Computing and Computer Assisted

Intervention, in Utrecht, the Netherlands, on October 14-18, 2001. This work was

orally presented at the VISIM workshop as well.

5.1 Motivation

As an initial test, a deformable volumetric brain atlas, based on MR imaging of a

single normal male where each voxel was labeled according to its anatomical mem-

bership [23], was used to map brain structures onto images acquired during three

neurosurgical procedures. This allowed for the visualization of complex anatomical

information that would otherwise require the use of additional modalities during neu-

rosurgery. However, as this is a generic atlas, it has limited clinical value. It was

used as a surrogate for patient-specific pre-surgical data, in order to prove that this
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method meets the real-time constraints of neurosurgery.

5.2 Description

Previous work by Kaus [22] has shown that it is possible to track anatomical struc-

tures, such as the corticospinal tract, even in cases when DTMRI data is not available

during neurosurgery. Tracking the corticospinal tract can be useful if the tumor is

located in its proximity. Such cases are frequent, however it is not an unusual situa-

tion that other critical structures are situated near the tumor site, and thus need to

be tracked during a neurosurgical procedure. Examples of such structures are parts

of the visual system: the optic radiation and the lateral geniculate body. Here we

show the application of our method to one case where the tumor was located anterior

to the pre-central gyrus, very close to the corticospinal tract, and to another case,

where the tumor was located in the posterior left temporal lobe, in close anatomical

relationship to the optic radiation.

Our approach uses a finite element model, which simulates brain elastic properties,

to infer the deformation fields captured from the intra-operative image updates and to

compensate for brain shift during neurosurgery. This algorithm was designed to allow

for improved surgical navigation and quantitative monitoring of treatment progress

in order to improve the surgical outcome and to decrease the time required in the

MRT room. To our knowledge, this represents the first time such an approach has

been applied prospectively, rather than retrospectively using images acquired during

the surgical procedure for post-processing purposes. High-performance computing is

a key enabling technology that allows the biomechanical simulation to be executed

quickly enough to be practical in clinical use during neurosurgery.

A deformable volumetric brain atlas was used to track critical brain structures

onto intra-operative images acquired during three neurosurgery cases. Images of

head muscles and central nervous system structures, which are part of the generic atlas

employed for this thesis, are shown in Figure 5-1 [34]. A close look at the visual system

is presented in Figure 5-2 [34] at the top. For the purpose of hierarchical registration, a
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Figure 5-1: Head muscles (top) and central nervous system structures (bottom) of
the generic brain atlas used for intra-operative matching.

52



Figure 5-2: Top: Visual system extracted from the generic brain atlas used for intra-

operative matching. Bottom: Image of structures such as corticospinal tract and optic

radiation, which were needed for neurosurgical cases, and were therefore extracted

from the generic atlas.
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separate template volume containing only one structure (i.e. the corticospinal tract or

the optic radiation) was extracted. Images of such structures are shown at the bottom

of Figure 5-2 [34]. The results of the intra-operative match, shown in the next section,

were displayed to the neurosurgeon in the operating room. Such visualizations allowed

the surgeon to make judgments based on the anatomical information contained in the

matched image.

5.3 Results

In this section, results of two different cases are presented. In the first case, the

optic radiation was tracked during the surgical procedure, as the tumor was located

in its proximity. The second case required the matching of the corticospinal tract.

Figure 5-3 shows post-resection models of the brain (white), the ventricles (blue), the

tumor (green), and the optic radiation (yellow). The tumor is clearly located next to

the optic radiation. It is also to be noticed that, after most of the resection, the brain

has shifted significantly. While the top images are useful for engineering purposes,

they do not contain any "real" data to be eventually referenced. On the other hand,

the bottom images show the models along with the intra-operatively acquired MR

dataset. Such views are much more valuable to the surgeon, who can still make

judgments based on the raw anatomy.

Figure 5-4 shows another view which is very important for surgical practice, and

which presents the navigation capabilities of the 3D slicer as well. This picture

shows an intra-operative MR dataset acquired during the second case aligned with

the corticospinal tract extracted from the deformed atlas, displayed with the virtual

surgical needle, interactively tracked within the patient's coordinate system.

In Figure 5-5 pre- and post-resection models of the brain (white), the ventricles

(blue) and the corticospinal tract (pink) are shown respectively on the left and on

the right. The top images present only models of the brain, in order to show how

significant the brain shift is during a neurosurgical procedure. The bottom images

show the same views with all other models, so that it is evident that the tumor was
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Figure 5-3: Post-resection models of the brain (white), the ventricles (blue), the
tumor (green) and the optic radiation (yellow). The tumor is clearly located next to
the optic radiation. After most of the resection, the brain has shifted significantly. In
the bottom images, the models are shown along with the intra-operatively acquired
MR dataset.
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Figure 5-4: Intra-operative MR dataset aligned with the corticospinal tract extracted
from the deformed atlas, displayed with the virtual surgical needle, interactively
tracked within the patient's coordinate system.

located in close anatomical relationship to the corticospinal tract.

Figure 5-6 presents different visualization of deformation fields that were calcu-

lated during the matching of the first intra-operative scan volume onto the second

intra-operative scan volume of the second case. The top images show deformation

fields on the surface of the brain, while the middle and bottom images show defor-

mation fields across the whole brain volume. In the bottom images, the volumetric

deformation fields are shown aligned with the corticospinal tract (blue). The color-

coding indicates the magnitude of the deformation at every point on the surface or

cuts of the deformed volume, and arrows indicate the magnitude and direction of the

deformation.

As shown in the figures, the deformation was accurately calculated and it was

possible to register the atlas corticospinal tract or optic radiation to the patient

anatomy. A small registration error is present due to the fact that patient's and atlas

brain have a very different morphology, as the atlas is not specific to the patient [39].

In these initial experiments, a generic atlas was used as a surrogate for pre-operative

data from different imaging modalities (MRA, fMRI, etc.). More rigorous validation
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Figure 5-5: Pre- (left) and post-resection (right) models of the brain (white), the
ventricles (blue) and the corticospinal tract (pink). The top images present only
models of the brain, where the brain shift is very pronounced. The bottom images
show the same views with all other models, here it is evident that the tumor was
located next to the corticospinal tract.
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Figure 5-6: Visualization of surface (top) and volumetric deformation fields (middle
and bottom) of the first intra-operative scan volume onto the second intra-operative
scan volume of the second case. In the bottom images, the volumetric deformation
fields are shown aligned with the corticospinal tract (blue). The color-coding indicates
the magnitude of the deformation at every point on the surface or cuts of the deformed
volume, and arrows indicate the magnitude and direction of the deformation.
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studies based on the use of segmented pre-surgical data to create a patient-specific

atlas are currently being carried out. The next chapter presents the application of

our method to cases where patient's pre-operative MRA data was available, thus it

was possible to track vascular structures during IGNS. The fusion of patient-specific

multi-modality data provides more accurate intra-operative matches.
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Chapter 6

Tracking of Vascular Structures

during IGNS

6.1 Motivation

During a neurosurgical procedure, the tumor is often located in proximity of critical

brain structures, which in turn may be accidentally damaged by surgical instruments.

In the previous chapter, structures such as the corticospinal tract and the optic ra-

diation were tracked during IGNS procedures by means of a deformable brain atlas.

However, such a dataset is generic, i.e. not specific to the patient, which means that

some anatomical differences are inevitably present. For this reason, we have created

patient-specific datasets by acquiring patient's scans pre-operatively, and then by

tracking structures extracted from these datasets during surgery.

This chapter presents a method and the results for the matching of intra-cranial

vascular structures, i.e. veins and arteries, extracted from pre-operative MRA data to

intra-operative MRI scans. Vascular structures are extracted from pre-surgical PC-

MRA scans by means of 3D adaptive filtering and segmentation. Also, such datasets

are rigidly registered to other pre-operative scans before surgery. During surgery,

these vascular structures are tracked (deformable registration) and visualized in the

operating room, so that the surgeon can judge how to progress with the resection.
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6.2 Description

MRA techniques produce a 3D dataset, which is processed to selectively display the

vascular structures of interest. Angiograms based on both phase-contrast [8] and time

of flight [38] can be reconstructed from the 3D dataset using a maximum intensity

projection, which creates a 2D image by recording the intensity of the brightest

voxel along each projection ray through the volume [24]. High-resolution MRA scans

often have a high noise level which obscures important diagnostic information in the

angiograms [47]. A method to enhance vascular structures and reduce noise in MRA

image data, based on the theory of multidimensional adaptive filtering, has been

developed by Westin et al. [47]. This technique is based on local structure estimation

using six 3D orientation selective filters and adaptive filtering controlled by the local

structure information.

Our surgical case presented a left posterior temporal low-grade oligodendroglioma,

of which great part was removed during surgery. Models of arteries (red) and veins

(blue), extracted from the pre-surgical MR angiogram and rigidly registered to the

pre-operative SPGR scan, are presented in Figure 6-1. The top image displays only

the models, while the bottom image shows the same view but together with orthogonal

cuts of the pre-operative SPGR acquisition.

Our method for tracking arterious and veneous brain structures is based on the

acquisition and filtering of the patients MRA dataset, followed by a segmentation

step which is carried out using thresholding and manual correction provided by the

3D slicer [15]. Since many different scans are acquired before surgery, they all need

to be rigidly registered. We normally register a PC-MRA scan to a Ti-weighted,

SPGR volume of the same patient using the method described in [46]. Together with

the phase-contrast scan, an intensity based scan is also acquired during the usual

MRA acquisition at the BWH (following the Protocol 55 procedure). This dataset

is used when rigidly registering the angiogram to the SPGR, as they contain similar

anatomical information on the brain.

These steps can be time consuming, but they are all carried out before surgery,
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Figure 6-1: Models of arteries (red) and veins (blue) rigidly registered to the pre-
operative SPGR scan (shown in the bottom figure).
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as the data is already available. During surgery, the methodology we used is the

same as described in Chapters 2, 3 and 4, with the pre-operative data being the MR

angiogram. Results of some initial experiments carried out retrospectively are shown

in the next section. Since vascular structures are usually very thin, the resampling

steps following the pre- and intra-procedural registration of vessels data to MR images

turned out to require extra processing time. However, the intra-operative timing of

such experiments did not exceed 15 minutes, which demonstrates the feasibility and

the usefulness of our method during neurosurgery. Such work is currently being

carried out at the SPL.

6.3 Results

A rigid registration of arteries and veins to an intra-operative scan was shown in

Figure 4-1, where models of arteries and veins extracted from the pre-operative PC-

MRA dataset were shown together with models of brain and residual tumor extracted

from the MRI scan acquired during surgery. Here we present results for the non-rigid

case, where the FE biomechanical model was used to obtain the deformation fields

from intra-operatively acquired scans and applied them to pre-surgical images.

Figure 6-2 shows models of arteries (red) and veins (blue) resulting from the non-

rigid registration of MRA data onto an intra-operative SPGR acquired after some

degree of resection (also shown in the picture). The registration was accurate and

provided useful information for surgical planning. It can be noticed in Figure 6-2

that the arteries in proximity of the resection cavity were registered correctly as they

overlap with the flow voids present in the intra-operative MR image. In a brain SPGR

acquisition, these flow voids correspond to vascular structures and are thus a useful

and reliable landmark for validation purposes.

In spite of the accuracy of the registration, the quality of the models is not as

good as for the cases presented in Chapter 5, because of the thin nature of vascular

structures, which are in turn greatly affected each time the data is resampled. In ideal

circumstances, resampling would not be needed. Also, in this case the tumor was not
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Figure 6-2: Models of arteries (red) and veins (blue) deformed onto an intra-operative
SPGR image acquired after some degree of resection and also shown in the picture.

Note that the arteries in proximity of the resection cavity overlap with the flow voids

present in the intra-operative MR image.
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located particularly cluse Lu any major vessel, only a few arteries were located near

the resection site, so the non-rigid registration has not been as useful as for other

situations. However, in some neurosurgical procedures the tumor can be located in

close anatomical relationship to major vessels, thus in such cases it is important to

track these structures during the resection.
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Chapter 7

Tracking of Cortical Structures

during IGNS

7.1 Motivation

In Chapter 6, our method for intra-operative matching was applied to pre-surgical

MRA data. Similarly, in this chapter a surgical case where a patient's pre-operative

fMRI scan was non-rigidly matched to intra-operative images is presented. The mo-

tivation behind the employment of this modality is that neurosurgical cases would

normally benefit from the tracking of cortical structures extracted from fMRI acqui-

sitions more often than from the tracking of vascular structures extracted from MR

angiograms, as tumors are rarely located in proximity of a major vessel.

Functional MRI is a recently discovered technique used to measure the quick,

small metabolic changes that take place in an active part of the brain. This imaging

method provides high-resolution, non-invasive reports of neural activity detected by a

blood oxygen level dependent signal, and can be very useful in neurosurgical practice.

Currently, it is not feasible to acquire fMRI sequences during a surgical case. However,

our method can provide the surgeon with comparable, as well as reliable information

by matching pre-operative fMRI data during an IGNS procedure.
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7.2 Description

In cases where the patient's pathology is located near the motor cortex, functional

MR scans are usually acquired pre-surgically. The fMRI technique determines which

parts of the brain are activated by different types of physical sensation or activity,

such as sight, sound or the movement of a subject's fingers. This "brain mapping"

is achieved by setting up an advanced MRI scanner in a special way so that the

increased blood flow to the activated areas of the brain shows up on fMRI scans. One

mechanism depends upon the fact that the microvascular MR signal on T2-weighted

images is strongly influenced by the oxygenation state of the blood, also known as

Blood Oxygenation Level Dependent or "BOLD" effect that can be observed by non-

invasive MR imaging at high magnetic fields [3].

During a pre-surgical image acquisition, a high resolution single scan is taken

first, which is used later as a background for highlighting the brain areas which were

activated by the stimulus. Then, a series of low resolution scans is taken over time;

for some of these scans, the stimulus is present, while for other scans, the stimulus is

absent. The low-resolution brain images in the two cases can be compared, in order to

see which parts of the brain were activated by the stimulus. The final statistical image

shows up bright in those parts of the brain, which were activated by this experiment,

then shown as colored blobs on top of the original high resolution scan.

In our surgical case, these colored blobs corresponded to areas of activation of

hand functions (activated by a finger tapping task during the fMRI acquisition). The

patient had a small tumor involving the premotor (supplementary motor area) and

partially the motor cortex. Only the anterior part of the tumor was removed, while the

portion which involved the motor strip was left in place. During surgery, the patient

got a motor deficit of the right hand and wrist, which improved in the following hours

(the so-called "supplementary motor area syndrome"). The brain shift was visible,

though not marked.

Figure 7-1 shows pre-surgical fMRI images. The top pictures show models of the

brain (white), the ventricles (blue), the tumor (green), and the fMRI activation areas

67



Figure 7-1: Top: Models of the brain (white), the ventricles (blue), the tumor (green),
and the fMRI activation areas (red) extracted from the pre-operative fMRI scan.

Bottom: Models of the tumor and fMRI activation areas shown along with the pre-

surgical SPGR image provide a closer look at the region near the tumor. The strong

anatomical relationship of the tumor and the hand movement control areas can be

clearly noticed.
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(red) extracted from the pre-operative fMRI scan. The bottom picture provides a

closer look at the region near the tumor by displaying models of the tumor and

fMRI activation areas shown along with the pre-surgical SPGR image. The strong

anatomical relationship of the tumor and the hand movement control areas can be

clearly noticed. In such case, the neurosurgeon has to be extremely careful in not

damaging those areas when resecting the tumor. However, these images allow the

neurosurgeon to plan the procedure accordingly.

The fMRI activation areas were segmented pre-surgically using the 3D slicer [15].

Next, the fMRI image was rigidly registered to other pre-operative acquisitions, such

as SPGR, T2-weighted and diffusion scans, using the MI-based method presented in

[46]. During surgery, the methodology we used was the same as described in Chapters

2, 3 and 4, with the pre-operative data being the functional MR scan.

Results of some initial experiments carried out retrospectively are shown in the

next section. The intra-operative timing of such experiments was below 12 minutes,

since fMRI cases require the same amount of processing as the atlas matching cases (on

the other hand, MRA cases are more time demanding due to the unique processing

of thin vascular structures). This demonstrates the usefulness of our method also

in the case of functional MR imaging. Experiments of such technique, carried out

prospectively during IGNS, are currently a strong research interest at the SPL.

7.3 Results

Intra-operative results are shown in Figure 7-2, which displays models of the brain

(white), the ventricles (blue), and the fMRI activation areas (yellow) extracted from

the pre-operative scan after matching it to an intra-operative image acquired af-

ter some degree of resection. The bottom picture also displays a slice of the intra-

operative SPGR scan.

Figure 7-3 presents a 2D axial view of pre- and intra-operative grayscale MR

images overlaid such that the pre-operative is shown with a threshold (yellow-green)

in order to visualize the direction of the brain shift. Since it is difficult to compare
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Figure 7-2: Models of the brain (white), the ventricles (blue), and the fMIRI activation

areas (yellow) extracted from the pre-operative scan after matching it to an intra-

operative image acquired after some degree of resection. The bottom picture also

displays a slice of the intra-operative SPGR scan.
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two I-weighted grayscale images by simply overlaying them, the pre-surgical scan

was thresholded such that its contours are clearly visible on top of the intra-operative

image. By looking at the whole brain, one can notice that the left part has not shifted

much, as the pre- and intra-operative sulci still overlap consistently. On the other

hand, as the tumor was located towards the middle of the right side of the brain, this

part has shifted in two directions. The part above the tumor has shifted posteriorly,

while the part below the tumor has shifted anteriorly. As an example, red arrows

show that the central sulcus has shifted anteriorly by a few millimeters.

Models of the brain (blue), the tumor resection cavity (white), pre-operative fMRI

activation areas (red), and the fMRI activation areas extracted from the pre-operative

scan after matching it to an intra-operative image acquired after some degree of resec-

tion (yellow) are shown in Figure 7-4. This view is opposite to that of Figure 7-3 such

that the brain shift is on the left. One can notice the significant difference between

the fMRI activation areas extracted from the pre-surgical scan and those extracted

from that scan deformed onto the intra-operative MR image. Such difference may

be critical for the surgical outcome, thus it is very important to track these brain

structures during neurosurgery.

In conclusion, a visual inspection of the non-rigid registration shows that it was

indeed very accurate and therefore provided useful information for neurosurgical plan-

ning. More cases need to be carried out in order to fully validate this method. How-

ever, both this and the MRA case (see Chapter 6) were the first attempts of applying a

non-rigid technique for the intra-operative tracking of patient-specific multi-modality

datasets. The results presented here and in the previous chapter show the great po-

tential of the method described in this thesis for the real-time tracking of critical

brain structures during IGNS procedures.
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Figure 7-3: 2D axial view of pre- and intra-operative grayscale MR images overlaid
such that the pre-operative is shown with a threshold (yellow-green) in order to
visualize the direction of the brain shift. Red arrows show that the central sulcus has
shifted anteriorly by a few millimeters.
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Figure 7-4: Models of the brain (blue), the tumor resection cavity (white), pre-

operative fMRI activation areas (red), and the fMRI activation areas extracted from

the pre-operative scan after matching it to an intra-operative image acquired after

some degree of resection (yellow).
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Chapter 8

Conclusions and Future Work

8.1 Discussion of Results

A physics-based biomechanical model provided the means to accurately capture the

volumetric deformation the brain undergoes during neurosurgery and the application

of this deformation to several image datasets allowed for the fusion of multi-modality

image data. Real-time tracking of critical brain structures during IGNS was shown

in three different situations:

1. A generic volumetric brain atlas was deformed intra-operatively during some

neurosurgical cases, and provided additional information on structures (such

as the corticospinal tract and the optic radiation), that were critical for each

specific case. These experiments were performed during the procedures, in order

to demonstrate the real-time capabilities of the method presented in this thesis,

but, due to the employment of a generic atlas, did not attempt to provide an

accurate description of the patient's anatomy.

2. Brain vascular structures (i.e. arteries and veins), extracted from a pre-surgical

patient-specific MRA scan, were deformed onto intra-operatively acquired im-

ages. While the match to the patient's anatomy was very accurate, this first

test was performed retrospectively and required some extra computing time due

to the special processing needed by the thin nature of the vessels. However, the
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timing was still feasible for future intra-surgical employment of this method.

3. Brain cortical structures, corresponding to the activation areas (of hand func-

tions) of a patient-specific pre-operative fMRI scan, were also deformed onto

images acquired intra-operatively. Again, the match to the patient's anatomy

was very accurate. Although this first test was performed retrospectively, the

timing was as good as for the atlas matching cases which makes it very feasible

to employ this method for future neurosurgical procedures.

These results show that tracking volumetric brain deformations intra-operatively

and using them to match multi-modality pre-operative data during IGNS procedures

can improve the information-content of the images visualized by the surgeon in the

operating room.

8.2 Major Achievements and Contributions

This thesis was driven by the belief that non-rigid registration through a physics-based

model could accurately capture the deformation of the brain during neurosurgical

procedures. The final aim was to apply this deformation to pre-operatively acquired

data so the visualization environment available during surgery could be improved.

The display of multi-modality image data could then provide the surgeon with useful

information from which to determine the course of the tumor resection.

Therefore, the major contributions of this work are:

" A prospective evaluation of a FE based biomechanical model for the purpose of

deformable registration of brain images during IGNS procedures. This method

meets the real-time constraints of neurosurgery through the application of fast

HPC algorithms.

" A proof of the concept that multi-modality registration is feasible during IGNS

procedures, in particular using MRA and fMRI pre-operative scans, from which

critical brain structures can be visualized during surgery.
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* A reliable improvement of the information-content of intra-operatively acquired

images by the tracking of volumetric brain deformation (accounting for the

"brain shift") when mapping pre-operative data during neurosurgery. This is a

major step forward, as previously it was possible to only rigidly register image

data during a surgical procedure.

8.3 Perspectives and Future Work

In Chapter 5, we showed that it is possible to track anatomical structure extracted

from a generic deformable brain atlas and that the method presented in this thesis is

fast enough to be practical for clinical use during neurosurgery. In Chapters 6 and 7,

we also showed two cases where patient's angiography and fMRI data were matched

to intra-operative neurosurgical images. However, these latter cases were performed

retrospectively to demonstrate the clinical usefulness of the method proposed in this

thesis. More rigorous prospective validation studies, using segmented pre-operative

MRA and fMRI data to create a patient-specific atlas, are currently being conducted

at the SPL. In the future, it would be desirable to also incorporate diffusion tensor

images to better visualize white matter tracts.

As computers continue to get faster and computing resources continue to quickly

improve over time, the algorithms used in this thesis will be even more efficient. When

more CPU's will be available the time required by the deformable registration will

decrease accordingly. However, this part of the method has already been optimized

and, although it is the most computational demanding, it is also the fastest. Some

algorithmic improvements would be eventually required by the segmentation and the

rigid registration techniques.

For instance, image segmentation algorithms, which are currently used to identify

key surfaces for the biomechanical simulation of deformation, rely upon image signal

intensities. A strong model of the prior probability of the spatial distribution of

brain and ventricles would help to improve the robustness and the speed of the image

segmentation. Such a model could be derived by aligning large numbers of subjects
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scans and then measuring the empirical distribution of tissue classes.

Another future aim would be to expand the biomechanical model to incorporate

an anisotropic inhomogeneous white matter material model, and include a nonlin-

ear, potentially hyper-viscoelastic framework. Intra-operative measurements of brain

material properties are planned to be performed at the SPL in the near future. For

instance, it will be possible to measure the pressure applied by the surgeon with

the retractor. Such physiological parameters could be then included in our modeling

system, which in turn would become more physiologically significant.

We expect that the fusion of patient-specific multi-modality data and the use of

an improved biomechanical model will provide more accurate intra-operative matches

during neurosurgery procedures. This method has the potential to increase the

information-content of intra-operative images and to enable an accurate description

of surgical changes.
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Appendix A

Glossary of Abbreviations

2D
3D
BOLD
BWH
CT
CTA
DSA
DTMRI
FE
fMRI
FSE
HPC
IGNS
MI
MPI
MR
MRA
MRI
MRT
PC-MRA
PET
PETSc
SMP
SPECT
SPGR
SPL
Us

Two-Dimensional
Three-Dimensional
Blood Oxygenation Level Dependent
Brigham and Women's Hospital
Computed Tomography
Computed Tomography Angiography
Digital Subtraction Angiography
Diffusion Tensor Magnetic Resonance Imaging
Finite Element
Functional Magnetic Resonance Imaging
Fast Spin Echo (T2-weighted MR acquisition)
High-Performance Computing
Image-Guided Neurosurgery
Mutual Information
Message Passing Interface
Magnetic Resonance
Magnetic Resonance Angiography
Magnetic Resonance Imaging
Magnetic Resonance Therapy
Phase-Contrast Magnetic Resonance Angiography
Positron Emission Tomography
Portable, Extensible Toolkit for Scientific Computation
Symmetric Multiprocessor
Single Photon Emission Computed Tomography
Spoiled Gradient Echo (Ti-weighted MR acquisition)
Surgical Planning Laboratory
Ultrasound

Table A.1: Glossary of Abbreviations.
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Appendix B

Computational Facilities at the

Surgical Planning Laboratory

The SPL is a computational facility totally integrated into the clinical environment,

being immediately adjacent to several active operating rooms at the BWH. Also, the

Radiology department's main MRI and CT scanners are very closely located; data

from these scanners is available directly from the SPL's network. The center of the

SPL's high-speed network is an Alcatel 7020/Omnicore 5052 enterprise-class routing

switch, capable of managing the traffic from hundreds of 10 or 100 MB/Sec Fast

Ethernet and scores of 1GB/sec Gigabit Ethernet connections. This central switch

services direct connections from the machines in the SPL's central computer facility,

including approximately 50 workstations and laptops, and connects directly to the

offices in the Thorn research building, the open magnet MR system in the MRT

operating room, and the Center for Neurologic Imaging.

The UNIX Workstations, such as Sun Ultra 10 with Creator 3D or Elite 3D

graphics cards, are the most ordinarily used computational tools. A picture of a

cluster of Sun Microsystems machines is shown in Figure B-1. For more demanding

tasks, one can access several Ultra80 workstations (shown in Figure B-2), each with 4

processors and about 4 GB of RAM. The SPL's high performance computing system

is made up of a variety of enterprise-class SMP computers from Sun Microsystems.

These machines include two ES5000 machines (shown in Figure B-3), each with 8
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Figure B-1: Cluster of Sun Microsystems computers.

processors and 2GB of RAM, and one ES6000 with 18 processors and 5GB of RAM.

Recently, two Sun Fire 6800 with 12 750MHz UltraSPARC-III CPU's and 12 GB

of RAM have been added. In addition to these machines, a 4 CPU's Sun ES450

application and file server is available to take the more commonplace computational

load off the larger machines. The file server is shown in Figure B-4.

A high reliability network attached storage device from Procom Technology is also

available. The Procom NetForce 3100 holds 2.5 Terabytes of data using redundant

FibreChannel disk arrays and a specialized disk computer (filter head). A 2 Gigabit

Ethernet links directly to the network switch and permits individual client machines

to write data at up to 30 MB/sec [34].
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Figure B-2: Sun Microsystems workstation (Ultra 80).

Figure B-3: Sun Microsystems SMP machine (Enterprise 5000).
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Figure B-4: Sun Microsystems file server.
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