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Abstract

The avionics system for MIT's miniature autonomous helicopter was designed to safely
achieve a robust, high-bandwidth feedback control system while meeting physical specifica-
tions. The system has provided an efficient platform for testing new closed-loop controllers
and has yielded critical flight data used for developing simple models of small-scale helicopter
dynamics. The helicopter has demonstrated successful flight under augmented controllers
and has also performed three fully autonomous aileron rolls. The avionics system was used
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veloping the system illuminated a number of design and implementation details that could
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Chapter 1

Introduction

With recent innovations in embedded and sensor technology, the use of automation in

mission-critical and life-sustaining systems has become prolific. The complexity of these

systems continues to grow as advances in both hardware and software technologies make

possible new applications. Unfortunately, what can be modeled as a linear growth in sys-

tem complexity translates into an exponential growth in safety assurance and verification

analysis to provide a commiserate level of flight system certification [5]. Unless such sys-

tems are implemented cleverly, taking advantage of modularity and clear specifications, the

cost of verification could very well be the limiting factor of the technical development in

such safety-critical fields. Given the highly volatile market for software and hardware en-

gineering and the speed at which technologies change, it is becoming increasingly difficult

for safety-critical systems to both maintain safety standards and exploit opportunities to

streamline and re-engineer systems to improve performance while reducing cost [6].

1.1 The Cost of Validation

The avionics industry provides a stunning example of how safety measures and concerns

may be stifling the development of potential applications and uses for advanced technolo-

gies. The software validation specifications of the Federal Avionics Administration require

assembly code-level checking to ensure that every branch of operating code is executed and

runs correctly. Such low-level code verification is necessary since compiler certification is

currently outside the capabilities of modern technology. Compilers are difficult to certify

because they generally have very complex, monolithic implementations and frequently take
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advantage of dynamic memory allocation, which introduces a level of non-determinism that

renders code validation extremely difficult. Since compilers cannot currently be certified,

every piece of mission-critical software that is generated by the compilers must be validated,

line by line. One consequence of these rigorous application-level requirements is that a soft-

ware engineer working on a safety-critical flight system will typically produce only three

lines of onboard code per day. Consequently, systems develop very slowly and changes are

usually limited in scope. The high certification cost thus fosters an atmosphere of evolu-

tionary development and a tendency to build upon existing monolithic systems rather than

implement a more maintainable and modular architecture.

These tendencies away from more modular designs are problematic for a number of

reasons. In addition to keeping component complexity at a minimum, the modularization

of flight system architectures would also serve to enable the incorporation of commercial

off-the-shelf components into new designs. Such systems would also be able to better keep

up with the pace of modern technology, since upgrades would not require an overhaul of

the entire system. Unfortunately, there is little motivation for the producers of commercial

off-the-shelf components to validate their products. The safety-concerned market is only a

fraction of the total market for many products with potential uses in the avionics industry.

In many cases, this small market share is not enough to motivate commercial product

manufacturers to undergo processes to validate and certify their components. Consequently,

such readily-available parts can rarely be used in safety-critical systems.

1.2 Motivation

The field of unmanned aerial vehicles (UAV) offers a good test bed for examining flight safety

certification procedures. Such systems are becoming more and more popular for their great

maneuverability and numerous applications in both military and civilian domains. Possible

military applications include surveillance, hazard detection, and even combat. UAV's may

also prove useful for aerial photography, remote area exploration, crop dusting, and disaster

recovery operations. These aircraft provide the opportunity to streamline and develop

verification and certification processes for new technologies without directly endangering

human life and at a much lower cost than their full-sized counterparts. UAV's thus offer

much more room for experimentation in not only systems and control engineering but also
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in validation and certification processes.

UAV's also offer tremendous advantages in terms of small-vehicle dynamics for techno-

logical innovations. As sensor, communication, and computer technology evolve and shrink

in size and weight, the potential for developing highly maneuverable unmanned vehicles in-

creases. The miniaturization of technology is particularly relevant to the realm of small-scale

unmanned aerial vehicles, in which large payloads exact high costs in maneuverability. As

these craft become smaller in size, their moments of inertia decrease at an even faster rate,

making them more agile. Miniature helicopters are among the most agile and maneuverable

of the small-scale UAV's. Experienced radio-control (R/C) pilots of small helicopters rou-

tinely execute acrobatic maneuvers such as steady inverted flight, pop-ups, hammerheads,

and barrel rolls. Though some systems based on small helicopters have already demon-

strated autonomous operation [9], they display fairly modest performance when compared

to the acrobatic maneuvers accomplished by expert R/C pilots with similar platforms. The

potential of such systems to serve in applications requiring varying levels of autonomy is

tremendous, but has not been fully explored.

1.3 Objectives

MIT's Laboratory for Information and Decision Systems (LIDS) Helicopter Project began

with an effort to learn pilots' strategies for executing maneuvers by studying pilot com-

mands to the vehicle in flight [8]. Since vehicle states were not recorded, this groundwork

supplied only limited insight into small-scale helicopter dynamics and thus motivated an ex-

amination of the full state output of the helicopter to pilot inputs. Such data provides more

insight into the dynamics of the vehicle in flight, thereby facilitating the development of

models and controllers. The first introduction to MIT's instrumented, small-size helicopter

equipped with a complete data acquisition system and capable of aggressive maneuvers

was provided in [3]. The development of this test platform enabled the first fully recorded

acrobatic flight in July of 2000. During this flight, pilot inputs and the state information

of the vehicle were recorded while the helicopter performed hammerhead maneuvers and

loops. The data collected from such flights has enabled the development and validation of

a full-envelope helicopter model, as well as the design of the feedback control logic used

in autonomous acrobatic flight. The ultimate goal of the helicopter project, to perform a
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fully autonomous aggressive maneuver, was achieved on November 18, 2001. This flight,

in which the helicopter performed three aileron rolls autonomously, demonstrated that the

inherent agility of such systems is not severely limited by autonomous operation. Methods

for verifying and validating the mission-critical software were evaluated in parallel with the

development of the flight system, with the hopes that they would illuminate more efficient

means to certify such systems and provide guarantees of safety.

This document presents the MIT helicopter and avionics system that was used to achieve

autonomous aggressive flight. Chapter 2 details the technical aspects of the mechanical

features of the helicopter and hardware involved in the design of the avionics system as

well as the software system architecture and implementation details for the control system

and ground station. Chapter 3 explores various system validation techniques and offers

insight into the role these methods may play in the certification of safety or mission-critical

systems. Recommendations for future work on similar systems are offered in Chapter 4.
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Chapter 2

Flight System

The flight system, shown in Figure 2-1, is composed of the helicopter, avionics system,

flight software and ground station. The test vehicle is a derivative of an Xcell-60 helicopter

manufactured by "Miniature Aircraft USA." The 60 cm3 engine and carbon fiber frame give

the craft a total weight of about 10 lb. While the basic rotorcraft is known for its reliability

as a stable acrobatics platform, the avionics system is entirely custom designed. Mounted

in a single aluminum enclosure suspended below the landing gear of the helicopter, the

avionics consist of a CPU, a power regulator, five sensors to provide closed-loop feedback,

and batteries. All sensors, with the exception of a pilot command receiver and servo control

unit, are commercial-off-the-shelf components and are rated as flight-ready. The onboard

and ground station software is entirely implemented in C and runs on QNX 4.25, a popular

real-time operating system. The high vibration levels of the rotorcraft, which can interfere

with the operation of sensors and equipment are attenuated by a passive vibration isolation

subsystem, which consists of an elastomeric isolator suspension system for the avionics box.

Each of these subsystems is described in greater detail below.

2.1 Vehicle Hardware

The test vehicle, shown in Figure 1, is an Xcell-60 hobby helicopter powered by a mixture

of alcohol and oil. This model is favored by many R/C pilots for its ability to perform

acrobatic maneuvers. The vehicle includes a twin-blade rotor with a 5 ft diameter and

frame weight of about 10 lb. The main rotor assembly features a fairly stiff hub joint,

which, according to flight test data, provides a fast angular rate response to cyclic inputs.
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Figure 2-1: The flight vehicle equipped with avionics box.

The assembly also includes a Bell-Hiller stabilizer bar, which augments servo torque with

aerodynamic moment to change the cyclic pitch of the blades and adds lagged rate feedback

to improve the handling qualities of the helicopter.

Fast servos are necessary for a high-bandwidth control system able to perform aggressive

maneuvers. Thus, the helicopter is equipped with fast Futaba S9402 servos. These servos

feature a high torque rating of 111 oz-in and a 7 Hz small-signal bandwidth under half rated

load, as measured with frequency sweeps.

Hobby helicopters have a high tail rotor control authority and low yaw damping that

results in poor handling qualities. Artificial yaw damping is required for manual control.

While this damping is usually achieved using a hobby gyro, the test vehicle uses the yaw

rate measurement from the instrumentation package. This modification allows the gain

on the yaw damping to be controlled by the onboard computer. The computer simulates

gyro gains while the helicopter is flying in manual mode, and commands different gains

while the vehicle is flying in automatic mode. While this modification facilitates an easier

implementation of the control system, a drawback to this approach is that the vehicle

becomes very difficult to fly in the case of an avionics or software failure.

An electronic governor with magnetic RPM pick-up sensor adjusts the throttle to main-
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tain the commanded engine RPM. All flight operations are performed at 1600 RPM. The

governor maintains tracking error to within 40 RPM, as measured by a ground-based stro-

boscope.

2.2 Avionics Package

The purpose of the avionics package for the test vehicle is three-fold. The first mission of

the system is to log the sensor data from flight. High frequency data updates are recorded

onboard in volatile memory until the end of a flight at which point they are transferred

to the ground station. This flight data is critical to the development of models for small-

scale rotorcraft and also provides valuable insight into the flight strategies of the pilot [2].

The second goal of the avionics system is to act as the control system for the helicopter,

meaning that it must be capable of achieving high bandwidth feedback control. Accurate

estimates of the vehicle states are achieved through algorithms described in [10]. The

control system provides for control augmentation and fully autonomous acrobatic flight,

allowing the vehicle to perform aggressive maneuvers such as loops and rolls completely

autonomously. The third and final goal of the avionics system is to provide the ground

operators a view into what is going on inside of the onboard computer. The ground station

is the only portal through which the operator can obtain any information about the state of

the control system. The helicopter communicates with the ground station through wireless

LAN, providing low-frequency updates of logged flight data and a data channel for operator

input into the control system.

2.2.1 Design Considerations

In addition to the operational requirements of the system, there are also a number of

physical constraints imposed by the environment in which the avionics system is operating.

The most important physical limitation on the design for a project of this scope is the

weight of the system. In cooperation with Draper Laboratory, flight tests were performed

with a dumb weight mounted on the vehicle's landing gear. The tests demonstrated that

the pilot is able to perform acrobatic maneuvers with a payload of up to 7 lb.

Another vital characteristic of the avionics system is that it must be immune to the nu-

merous sources of vibration inherent in a small helicopter. The primary source of vibration

12



on such a vehicle is the main rotor, spinning at roughly 27 Hz. Other sources of vibration

include the engine, the tail rotor, and the tailboom bending resonance. These vibrations

must be attenuated for an onboard sensor package to report reasonably accurate measure-

ments, particularly in regards to gyroscope and accelerometer data. The control system

must then be designed to fit into a single unit that is heavy enough for a passive vibra-

tion mount to be effective, but is light enough that the vehicle can still perform aggressive

maneuvers. Simple calculations, described in [3], indicate that commercially manufactured

elastomeric isolators can effectively attenuate the vibrations described above for a payload

weighing more than 5 lb.

Although a compact system design is very effective for vibration isolation, it also com-

pounds the issue of interference. Another physical constraint on the avionics system is

that it must protect sensitive devices such as sensors and receivers from internal sources

of electromagnetic (EM) and RF interference. Interference is a known cause of failure in

such systems. The primary sources of interference in this avionics design are the wireless

LAN transceiver and GPS antennae. The power supply circuitry also seems to contribute

a fair amount of interferance. These system elements emit radio transmissions that can

interfere with the R/C receiver, resulting in the pilot losing control of the vehicle. Common

shielding precautions were used to alleviate electro-magnetic interference induced by the

wireless LAN transceiver antenna and the GPS antenna is placed on the nose of the vehicle

to isolate it from the rest of the avionics.

2.2.2 Avionics Description

The avionics package is a 7 lb data-acquisition and control system mounted on elastomeric

isolators on the customized landing gear of the helicopter. The suspension system effectively

attenuates high-frequency disturbance inputs from the main rotor and the engine, and

can withstand a sustained positive acceleration of 3 g and a negative acceleration of 1 g.

The aluminum box containing the onboard computer, wireless Ethernet transmitter, R/C

receiver, and sensors helps to isolate the R/C receiver antenna from the radio interference

emitted by the other onboard devices. Substantial range testing indicates that the best

configuration for the receiver antenna is hanging directly below the helicopter. The antenna

was encapsulated in a flexible plastic tubing and mounted to the vehicle frame such that the

antenna hangs below the craft during flight but can bend to the side when the helicopter is
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on the ground. Flight tests using this antenna configuration demonstrate that the antenna

remains in place even during inverted flight.

The onboard computer runs at 266 MHz and is equipped with 32 Mb of RAM and 16 Mb

of FLASH memory for data and program storage. The computer also includes four serial

ports and four analog channels, all of which are used in communication with the onboard

sensors. The single PC104 board is also equipped with a network entry port for connection

to a wireless Ethernet transceiver.

The avionics system includes a separate pilot command receiver and servo controller

board, which serves as the routing system for pilot and computer commands to the on-

board servomechanisms. This unit is responsible for reading the pilot commands from the

receiver, passing received commands through to the main onboard computer, and writing

the commands from the main computer to the servos. The unit consists of two SX28 chips,

which are used for measuring pilot inputs and driving the servos, and a PIC16F877 chip,

which interfaces to both SX28 chips and the main computer. Optoisolators are used to pro-

vide different power sources to the logic bus and servo bus. This source isolation is needed

to prevent inductive noise from interfering with the digital logic. The servo controller board

is described in detail in [7].

In manual mode, the computer passes the original pilot commands through to the servos.

The one exception is the tail rotor pitch command, which is computed by the main computer,

and returned to the servo controller board. This command contains proportional yaw rate

feedback. As noted above, this exception generates an unwanted dependence on the onboard

computer; the vehicle is extremely difficult to fly without scheduled yaw gains and thus any

problem with the flight computer or software could be catastrophic for the entire vehicle.

In automatic mode, the computer either uses the pilot commands in conjunction with

the estimated states to generate new commands to the servos, or the pilot commands are

completely ignored and the computer generates its own commands based on the updated

state estimate and the maneuver that the helicopter is attempting to perform.

The sensor package consists of an inertial measurement unit (IMU) with three gyros and

three accelerometers, a single GPS receiver with pseudorandom code measurements, a baro-

metric altimeter with resolution of up to 2 ft, and a magnetic compass. The IMU gyroscopes

feature drift rates of less than 0.02 deg/sec during 10 minutes. The IMU drift rates are

sensitive to vibrations and temperature. The Superstar GPS receiver from Canadian Mar-
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coni provides 1 Hz position and velocity updates, with a latency of 1 sec. Due to the short

flight time, relative navigation in the absence of Selective Availability gives approximately

a 2 in circular error, and horizontal velocity errors are limited to within 0.15 m/sec. The

Honeywell HPB200A barometric altimeter provides a very stable altitude reference except

when the helicopter is affected by ground effect, in which downwash from the main rotor

increases the total pressure measurement leading to faulty altimeter readings. The Hon-

eywell HMC2003 triaxial magnetoresistive compass provides heading measurements, which

are currently not used. This sensor requires an additional reset circuit to compensate for

the magnetic field induced by the helicopter avionics.

2.2.3 Safety Analysis

The avionics hardware of the test vehicle is designed for fault detection and error recovery.

Power loss to the computer, servo control board, or servos is perhaps the most damaging

threat to the system. Each of the onboard batteries is wired such that voltages can easily

be observed through battery meters on the ground station display. The main batteries,

which power the flight computer, IMU, BAR, GPS, and CMPS, have the shortest lifetime.

The voltage of these batteries is measured through one of the four analog inputs of the

onboard computer. A hardware-implemented hot-swap system helps to eliminate in-flight

power loss. For warm-up and ground routines, a ground battery is plugged in and the main

flight batteries disconnected without interrupting the power to the rest of the system. The

hot-swap thus provides more time in-flight without the fear of the power running low in

the onboard batteries. The servo controller board, which is powered separately from the

computer and other sensors in order to avoid interference, monitors it's own battery as well

as the battery that powers the servos. In addition to monitoring battery voltages, the servo

controller board also includes a fail-safe emergency mode. By the flip of a switch on the

R/C transmitter, the entire flight control system, including all avionics hardware with the

exception of the servo controller board and yaw rate feedback, can be bypassed and pilot

commands sent directly to the servos. This feature is critical for error recovery in case the

control system becomes deadlocked or one of the sensors fails completely in the middle of

a flight.

Unfortunately, as is evident from a crash, the aforementioned safety mechanisms cease

to be effective when the R/C receiver locks due to interference or some other unidentifiable,
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non-control system-related problem occurs. Fault detection in such cases is difficult since

the helicopter appears to be functioning correctly from the point of view of the control

system. At the same time, the control and data-logging system may be used to detect

unusual changes in the helicopter trajectory or to identify strange behavior, such as the

craft speedily plummeting to the ground. The R/C receiver is able to detect when it

has stopped receiving commands from the transmitter and responds by commanding all

channels to zero. The control system interprets this set of commands as a command to

hover. Thus, when reception from the transmitter is lost, the vehicle will automatically

begin to hover. While this safety feature has been demonstrated in simulation, it has never

been tested on the field. More investigation into how such fault detection systems could be

used to initiate recovery processes is needed. Additionally, the current design is plagued by

the problem that when the system does go down before logged data files can be transferred

to the ground station, all flight data is lost. In the event of a crash or bizarre system failure,

this data would be of great use in determining the source of the error and could provide

insight into how similar problems could be avoided in the future. The obvious remedy to

the loss of flight data is to write sensor data to the onboard non-volatile flash memory in

flight. Unfortunately, this solution is problematic because such logging is a drain on the

computer system resources. While technological innovations such as non-volatile RAM or

enhanced high-speed I/O systems may provide a solution to this problem, they are on the

horizon and currently not available.

2.3 Onboard Software

The software flight system runs on embedded QNX 4.25, a popular real-time operating

system that is widely used in the aerospace industry. The onboard flight software consists

of nine processes, including a bootstrap process that is started when the computer is first

turned on, the main control process, an interrupt service routine for the IMU, device drivers

for the servo controller board, GPS receiver and barometric altimeter, analog port monitors

for the compass and battery, and a telemetry data server. At the highest level, the bootstrap

process waits until it receives a message from the ground station telling it to start the main

control process. After initialization and a handshake with the ground display application,

the control process allocates seven shared memory buffers to hold the data from the IMU,
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state estimate, servo commands, pilot uplink commands, GPS, altimeter, and compass. The

former three buffers are filled in by the main loop of the control process. The later four

buffers are filled in by driver processes forked by the control process before it enters its main

loop. The data that is stored in the shared memory buffers is used in the main control loop

to generate a state estimate of the helicopter in flight and to provide control augmentation

and autonomous flight. In addition to an interrupt service routine for the IMU and drivers

for the GPS, servo controller board, altimeter and compass, the control process also forks

a process that provides battery readings from the analog port upon request and a process

that provides the freshest telemetry readings from all of the shared memory buffers upon

request. These process interactions are illustrated in Figure 2-2. The separate processes of

the flight control system are described in detail below.

2.3.1 Process: Bootstrap

The bootstrap runs as a background process on the helicopter waiting for input from the

ground station. Started when the computer first boots up and never exiting or returning,

the bootstrap's entire purpose is to act as an omnipresent receiver for " Connect" and "Stop"

messages from the ground station, and to spawn or kill the main flight control process when

requested. The process first attaches the name "/heli/parent" to itself through the QNX

name server so that the ground display application can locate it and send it messages.

The bootstrap then waits for a "Connect" request from the ground station. When such a

message is received, the process checks whether the flight control process is already running.

If the main process is already running, the bootstrap kills the current instance of the process

and spawns a new instance. The bootstrap then waits for confirmation from the control

process that the spawn and setup were successful. A reply is then sent to the ground station

informing it of the status of the main control process. If the child process starts correctly,

the bootstrap waits for a "Stop" request from the ground at which point it sends a kill

signal to the control process. A flow diagram depicting the control flow of the bootstrap

process is given in Figure 2-3.

2.3.2 Process: Control

The main flight control process is spawned when a "Connect" request is issued to the

onboard bootstrap process. The control process registers the name "/heli/main" with the
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Figure 2-3: Bootstrap process block diagram.
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QNX name server and locates the ground station by searching for the name " /ground/main",

which is registered by the ground display application when it is first started. The control

process then sends a message to its parent, confirming that the spawn succeeded. A mes-

sage is then sent to the ground station to register the process with the ground display

application. Once this message is sent, the process becomes receive-blocked until it receives

a message from the ground station containing the parameters for the flight. This message

is only sent when the ground station operator presses the "Start Logging" button on the

ground station. The process uses these ground parameters to set up the names of the log

files in which sensor data is stored. The control process then enters a series of initialization

routines in which it allocates shared memory buffers to store packets for IMU data, state

estimates, pilot uplink commands, servo commands, GPS data, altimeter data, and com-

pass data, allocates global pointers to index into all of the shared memory buffers, attaches

proxies for the IMU, servo controller board, GPS, altimeter, and compass drivers to kick

when new messages arrive, forks the IMU interrupt service routine, drivers for the servo

controller board, GPS, and altimeter, analog channel monitors for the compass and battery,

and the telemetry data server, sets up a watchdog timer to ensure that the main loop runs

at least every 12 msec, and finally registers a cleanup routine to be called upon reception

of a kill signal. When all of this setup is complete, the control process replies to the ground

station parameter message with an indication that it is ready to begin logging. The process

then enters the main control loop.

The main loop of the control process integrates all of the sensor data into a state

estimate that is used in control augmentation systems and autonomous flight. The loop

waits to receive proxies from the various device drivers and interrupt service routines. In

QNX 4.25, a proxy is simply a very short, canned message that does not require a reply.

Timing is derived from the IMU, which ideally sends fresh data packets through a serial

port to the computer once every 10 msec. Since the timing of the main loop is so critical

to the success of the control software, a watchdog timer ensures that the loop runs at least

every 12 rnsec. If the IMU skips a message or fails entirely, the flight control system will

continue to run. Without the IMU data updates, however, the state estimate deteriorates

quickly and manual intervention is required to save the vehicle.

The main loop receives proxies from six sources: the IMU interrupt service routine,

the watchdog timer, the GPS device driver, the servo controller board device driver, the
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altimeter driver, and the compass analog port monitor. Proxies from the IMU interrupt

service routine and watchdog tinier are handled in essentially the same manner. The only

difference is in which packet is copied into the location of the freshest packet in the IMU

buffer. In the case of a proxy from the IMU interrupt service routine, the new data packet

from the IMU is copied into this location in the IMU buffer. If the watchdog timer triggers

a proxy then the IMU is assumed to have dropped a packet and so the old freshest packet

is copied into the location of the new freshest packet in the IMU buffer. After receiving a

proxy from the IMU interrupt service routine or watchdog timer, the control process resets

the watchdog timer and then copies the freshest IMU data it has into the new location in

the IMU buffer. Every data packet in each buffer is time-stamped with the time it was

received relative to the global time of the main control process. The global index into the

IMU buffer is also updated to reflect the new location of the freshest IMU data. The IMU

data must be calibrated for biases before it can be used in state estimation. Thus, there

is a period of eighty seconds after the IMU has warmed up during which each IMU packet

is used to accumulate an estimate of the biases. Once this calibration period is over, the

accumulated biases are subtracted from the new IMU data. Every other IMU message, or

at 50 Hz, the state is propagated using the two most recent readings from the IMU and

the current state estimate. At this time, new commands to the servos are generated using

the current state estimate, the commands from the pilot, and the control system specified

by the ground station operator at the beginning of the flight. These commands are then

passed through to the servos. Finally, the commands sent to the servos and the new state

estimate are time-stamped and copied into their respective shared memory buffers. The

respective global buffer indices for servo commands and state estimates are then updated.

Proxies from the remaining four sources, the GPS, servo controller board, altimeter,

and compass drivers, indicate that the freshest data from these devices is available in their

respective shared memory buffers at the index specified by their respective global indices

into the arrays. New data from the GPS receiver, altimeter, and compass is used to update

the state estimate in order to offset biases accumulated by the IMU in flight. Data from

the servo controller board includes the commands from the pilot and is stored in the pilot

uplink command buffer for use when the control process is generating new commands to

the servos.

While the main control loop cannot run indefinitely due to the limited memory available
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for storing the seven shared memory buffers, the loop is generally exited by sending a kill

signal to the control process from the bootstrap process. The kill signal instructs the control

process to go into its cleanup routine, which involves deleting the watchdog timer, killing

all of the processes that were previously forked, and saving all of the shared memory buffers

to files on the ground station. When the cleanup routine has completed, the control process

exits and the onboard computer returns to its idle state, awaiting another command from

the ground station.

2.3.3 Process: Inertial Measurement Unit

The IMU data is the most critical part of the feedback control system. The data not only

provides the timing for state estimation updates and commands to the servos, it is also

the primary source of data for estimating the state of the helicopter. Data from the GPS

receiver, altimeter, and compass is only used to supplement the state estimate calculated

with the IMU data. The IMU device driver is encapsulated within the main control process

in order to provide the timing for the state estimation and controllers. The IMU is connected

to the onboard computer through a serial port, sending new data packets at 100 Hz. The

control process initializes the serial port using a custom serial port driver that is also used

by the servo controller board and GPS device drivers. A built-in FIFO buffer on the serial

port is used to ensure that bytes coming through the channel do not get dropped. The

control process also attaches a proxy to itself. This proxy is used to notify the main control

process that a new and complete data packet is available for use. The IMU driver uses

an interrupt service routine, forked by the control process in its initialization sequence, to

send notifications using this same proxy. Since the IMU is so important, the IMU interrupt

service routine has the highest priority of all of the processes forked by the main control

process. The interrupt service routine is essentially a state machine that tracks how much

of the IMU data packet has arrived. The state machine synchronizes on a designated header

byte for IMU packets and then fills in an IMU data packet as each new byte is received.

Packet integrity is maintained through the use of a single-byte checksum, which is updated

with the arrival of each new byte and then compared to the last byte of the incoming packet.

If the checksums match, then the interrupt service routine returns a proxy, which is routed

by QNX 4.25 to the process to which the proxy is attached. In this case, the proxy is sent

to the main control process. If the checksums do not match, the state machine is reset back
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to the start state to wait for another header byte.

A stand-alone process is used to test the IMU and the interrupt service routine. The

stand-alone process is a dedicated driver for the IMU, meaning that it performs all of the

IMU data reception steps of the main control process, but nothing else. The program has

a single argument, which is the name of a log file to store the data received from the IMU

while it is running. Just like the main control process, the stand alone driver initializes the

serial port using a FIFO buffer. The program then sets up the interrupt service routine by

attaching a proxy for the interrupt service routine to use to notify the driver of new packets

and attaching the service routine, which is essentially the same as forking the interrupt

service routine. The stand alone driver also tests the functionality of the watchdog timer

for the main control loop. Another proxy is attached for the watchdog timer to trigger every

12 msec. The driver then sets up a kill signal to call a cleanup routine, just as in the main

control process. Finally, the driver sets the timer and enters into its main loop, waiting for

proxies from either the interrupt service routine or the watchdog timer. Proxies are handled

by marking the current time, and resetting the timer. If the proxy was from the interrupt

the new data packet is saved to the end of a buffer and the buffer index is updated. The new

data is also printed to the screen. If the proxy was from the watchdog timer then the data

pointed to by the index into the buffer is copied to the next location in the buffer and the

index is incremented to point to this next location. Proxies from the watchdog timer imply

that the IMU skipped a packet or failed in some way and so an error is indicated when this

condition is encountered. The loop continues to receive proxies until the buffer is full or a

kill signal is received. When the loop exits, the interrupt service routine is detached and

the buffer contents are saved to the log file specified in the argument to the program.

2.3.4 Process: Servo Controller Board

As mentioned above, the servo controller board routes pilot commands from the R/C re-

ceiver to the onboard computer and drives the four servomechanisms of the helicopter with

the commands generated by the computer. Although the main control loop handles the

later job, outputting commands to the servo board at 50 Hz, a special process is respon-

sible for the former task of acquiring new pilot commands. As in the case of IMU data

acquisition, the servo controller board process is essentially a driver wrapped around an

interrupt service routine. The interrupt handler for the servo controller board is simply a
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state machine that tracks how much of the new data packet has arrived. The state machine

synchronizes on a designated header byte for servo controller board packets and then fills

in a pilot uplink data packet as each new byte is received. Packet integrity is maintained

through the use of a single-byte checksum, which is updated with the arrival of each new

byte and then compared to the last byte of the incoming packet. If the checksums match,

then the interrupt service routine returns a proxy to the driver process. If the checksums

do not match, the state machine is reset back to the start state to wait for another header

byte.

The servo controller board process uses the same routine as the IMU driver to initialize

the serial port and set the FIFO buffer level. A proxy for the interrupt service routine

to trigger and the service routine itself are attached to the servo controller board process.

The process ensures that the servo controller board is functioning properly by sending nine

consecutive non-header bytes through the serial channel. The process then enters its main

loop in which it waits for the arrival of a proxy from the interrupt handler before time-

stamping and copying the complete packet composed by the interrupt service routine into

the shared memory buffer for pilot uplink commands at the location specified by the local

index into the array. This local index always points to the location one packet in front of

the global index, which is used to update the local index of the main control process after a

proxy is received from any of its child processes. The global array index is then incremented

and a proxy is sent to the main control process to indicate that new pilot uplink data is

available. Finally, the local array index is incremented so that it points to the next location

to be filled in the shared memory buffer. The process then waits to receive another proxy

from the interrupt handler.

The servo controller board driver is complemented by a stand-alone version which also

generates a timed log of the servo controller board data. In addition to acquiring the data

from the pilot uplink to the R/C receiver, the stand-alone driver also passes these commands

through to its servo-driving outputs, emulating the behavior of the servo controller board in

emergency mode. Since the stand-alone driver incorporates data logging and takes on the

task of passing commands through to the servos, a couple more steps are required before

it can enter into its main loop. First, the stand-alone process must set up a kill signal to

call a cleanup routine so that logged data can be output to a file. A tinrer must also be

initialized and set to trigger a proxy once every 20 msec, thus prompting the process to
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drive commands to the outputs to the servos. The main loop then awaits the reception of

proxies from two sources: the interrupt service routine and the timer. If a proxy from the

interrupt handler is received, the stand-alone driver behaves just as described above. If a

proxy is received from the timer, however, the most recently received pilot commands are

driven onto the outputs to the servos and printed to standard out. The main loop continues

receiving proxies until a kill signal is received, at which point the contents of the data buffer

are saved to a file specified by the input argument to the stand-alone process.

2.3.5 Process: Global Positioning Satellite Receiver

The driver process for the GPS receiver follows the same mold as that for the IMU and

servo controller board; the process consists of a driver wrapped around an interrupt service

routine. The interrupt handler for the GPS receiver is just a state machine that tracks how

much of the new data packet has arrived. The state machine synchronizes on a designated

header byte for GPS device packets and then fills in a GPS data packet as each new byte

is received. Packet integrity is maintained through the use of a two-byte checksum, which

is updated with the arrival of each new byte and then compared to the last two bytes of

the incoming packet. If the checksums mnatch, then the interrupt service routine returns

a proxy to the driver process. If the checksums do not match, the state machine is reset

back to the start state to wait for another header byte. The GPS process uses the same

routine as the IMU and servo controller board drivers to initialize the serial port and set

the FIFO buffer level. A proxy for the interrupt service routine to trigger and the service

routine are attached to the GPS process and a signal-catcher is set up to call a cleanup

routine when the process is killed. The process then enters its main loop in which it waits

for the arrival of a proxy from the interrupt handler before time-stamping and copying the

complete packet composed by the interrupt service routine into the shared memory buffer

for GPS data packets at the location specified by the local index into the array. This local

index always points to the location one packet in front of the global index which is used

to update the local index of the main control process after a proxy is received from any

of its child processes. The global array index is then incremented and a proxy is sent to

the main control process to indicate that a new GPS packet is available. Finally, the local

array index is incremented so that it points to the next location to be filled in the shared

memory buffer. The process then waits to receive another proxy from the interrupt service
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routine.

The stand-alone version of the driver for the GPS receiver is exactly the same as the

actual driver except that it prints each new packet to standard out immediately after it is

received. Unlike the stand-alone versions of the IMU and servo controller board drivers,

the stand-alone GPS driver does not currently generate a log file of its data.

2.3.6 Process: Barometric Altimeter

Whereas the drivers for the IMU, servo controller board, and GPS are all very similar in form

and function, the device driver for the barometric altimeter deviates from these previous

implementations. There are two key characteristics of the altimeter that necessitate a

different approach to the driver than that used for the other devices: the altimeter outputs

its data packets in ascii format and the device has an active handshake to initialize data

readings. Due to these two conditions, the same custom serial port initialization routine

employed by the drivers for the IMU, servo controller board, and GPS cannot be used by

the altimeter. Instead, the altimeter driver uses another custom serial driver, which opens

the serial port as a file descriptor and uses standard POSIX commands to interface to the

serial device.

The driver process for the altimeter opens the serial port for writing and reading using

a custom driver that accesses the port using file descriptors. As part of initialization, the

altimeter is reset by writing a reset command to the file descriptor. When the device is

reset, it should respond by writing to its output. These bytes are read and verified by the

driver process from the serial port as a precautionary step. If the device fails to respond

to the reset request, then there is something wrong and the device may have failed. Given

that the device comes back online after being reset, the sampling frequency for the pressure

readings is written to the serial port and the device is set for continuous sampling. The

altimeter is configurable to output pressure readings within a frequency range from 1 Hz to

10 Hz. For the purposes of the helicopter, altitude updates at 5 Hz are sufficient.

Instead of using a separate interrupt service routine that is called each time a byte is

received through the serial port, the altimeter driver attaches a proxy to the serial port

file descriptor to trigger following the reception of any specified number of bytes. Since the

altimeter outputs its data in ascii, which would necessitate a fairly large number of states,

this implementation is less cumbersome than the state machine format used by the drivers
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of the IMU, servo controller board, and GPS. Additionally, since the altimeter packets do

not provide any kind of checksum error-checking, a byte-by-byte interrupt service would

only be a drain on system resources. The proxy on the serial port file descriptor is initially

armed to trigger after receiving a complete message from the altimeter. Within the main

loop of the altimeter driver, the process waits to receive a proxy signaling a complete read.

Once a proxy is received, the process compares the packet header to the known altimeter

data packet header to verify that the packet reception loop is synchronized to the device. If

the received header does not match, bytes are read from the serial port one by one until the

first byte in the known header is encountered. A packet starting with this byte is filled in

and the verification process begins again. Once a complete and valid packet is received, it

is time-stamped and copied into the shared memory buffer for altimeter data packets at the

location specified by the local index into the array. This local index always points to the

location one packet in front of the global index which is used to update the local index of

the main control process after a proxy is received from any of its child processes. The global

array index is then incremented and a proxy is sent to the main control process to indicate

that a new altimeter packet is available. Finally, the local array index is incremented so that

it points to the next location to be filled in the shared memory buffer. The process then

re-arms the serial port file descripter proxy on the reception of another complete packet

and becomes receive-blocked until the proxy is triggered again.

The stand-alone altimeter driver is basically the same as the actual driver, except that

valid readings are printed to standard out. The sampling frequency for the device is input

as an argument to the program, though it defaults to 5 Hz if this parameter is not included.

The stand-alone driver for the altimeter currently does not generate any log file.

2.3.7 Process: Magnetic Compass

The compass is used to provide low-frequency updates to the heading measurement of the

state estimate. The magnetic compass is a completely passive device; magnetic field readings

from the x, y, and z axes are used as inputs to three of the four analog ports of the onboard

computer and there is no data transmission protocol. The real-time compass readings are

combined with biases measured in a calibration routine to calculate heading updates for the

helicopter during flight. The compass driver consists of a timer which fires at 20 Hz. Each

time the timer expires, the three analog channels connected to the compass are examined
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and their values are used to generate an updated heading measurement. Thus, the compass

process is simply a driver for the analog port combined with a timer.

The process initializes the analog port by setting the control flags of the analog channels

for unipolar, single ended operation with an external clock. The process then sets up the

GPIO address and reads in the bias parameters that are stored in the onboard flash memory

following a simple calibration routine. A proxy is attached to a timer and the timer is set

to fire once every 50-msec. The process then enters its main loop, in which it waits for

the arrival of a proxy from the timer. Each time the timer fires and a proxy arrives, the

compass process resets the timer and then serially reads the three analog channels by setting

the control and channel selection bytes for each channel and saving the value into a time-

stamped packet pointed to by the local index into the shared memory buffer for the compass

data. This local index always points to the location one packet in front of the global index

which is used to update the local index of the main control process after a proxy is received

from any of its child processes. The raw compass readings are converted to uncalibrated

magnetic field readings in Gauss, which are then corrected for biases through application

of the calibration parameters. Once this manipulation of the data is complete, the global

array index is incremented and a proxy is sent to the main control process to indicate that

new compass data is available. Finally, the local array index is incremented so that it points

to the next location to be filled in the shared memory buffer. The process then waits to

receive another proxy from the timer.

As with the drivers for the IMU, servo controller board, GPS, and barometric altime-

ter, the compass driver is also complemented by a stand-alone version which enables easy

debugging. The stand-alone compass process matches the actual driver exactly except data

is printed to standard out as each new packet is received.

2.3.8 Process: Battery

The battery process acts as a data server. When the telemetry process makes a request for

information to the battery process by sending it a message with a particular identifier, the

battery process reports the current reading on the analog channel to which the main flight

batteries are connected. At the most basic level, the battery process waits for a message

from telemetry and then packages a time stamp and a reading of the analog port into a

battery packet and replies to the telemetry message with the battery packet. Battery data
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is not logged, nor is it visible to the main control process.

2.3.9 Process: Telemetry

The telemetry process is a completely passive observer of the data stored by the main control

process. The purpose of the telemetry process is to service requests from the ground station

for the most updated state information of the helicopter without ever interfering with any

of the flight-critical onboard processes. The telemetry process obtains its state information

from the data that is collected by the various drivers forked by the main control process

and placed into the shared memory buffers. When a device driver reads a new value from a

sensor, as in the case of the IMU, servo controller board, GPS, altimeter, and compass, or

the freshest value is updated in the main control loop, as in the case of the state estimate

and servo commands, the new value is stored in the respective shared memory buffer and

the global index into the array is incremented. After receiving a request from the ground

station, telemetry updates its own local copies of the array indices with the current values

of the global indices. Telemetry then generates a message containing copies of the freshest

packets from all of the shared memory buffers as well as a reading from the battery meter.

As described above, battery measurements are not stored in a buffer; readings are only made

when the telemetry process makes a request. Each section of the message is separated from

the rest by identifiers, which also provide indications for which type of data is located where

in the message. The telemetry message is sent to the ground display application in the form

of a reply to the original request message automatically sent three times a second from the

ground station. The ground station then parses this message and outputs it in a format

that is easily interpreted by the ground station operator.

2.4 Ground Station

The ground station is the only available interface to the onboard flight software. The

ground station is simply a laptop that runs QNX 4.25 and is equipped with a wireless LAN

transceiver so that it can transmit to and receive messages from the onboard computer

during flights. The primary ground station application is a display program that provides

the operator limited access to the flight computer. The ground display has three functions:

it allows the ground operator to enter basic flight parameters such as file names for the
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storage of flight data and the control augmentation system to be used in automatic flight,

it initiates the onboard flight logging and control system software, and it provides feedback

to the ground about the state of the software running on the helicopter and the state of the

helicopter.

Figure 2-4 shows a screen shot of the ground display application. The interface is

designed to give the ground operator as much state information about the helicopter and

flight code as possible. The onboard software is initiated by pressing the " Connect" button,

which sends a message to the omnipresent onboard bootstrapping process to spawn the

main flight logging and control system process. If this control process is successfully started

- meaning all variables are initialized, the process has registered with the QNX name server,

and the ground station display process has been located - then it sends a message back to

the bootstrap indicating success. Another message is sent from the main control process

to the ground station to let the ground station know that it was started successfully and

as a means of registering the main control process with the ground display application.

This registration step is necessary for the ground station to later send messages directly to

the onboard control process. If the control process manages to send a "success" message

to the ground display, then the large red indicator between the "Connect" button and

the "Start Logging" button turns green, the "Connect" button becomes inactive, and the

"Start Logging" and "Stop" buttons are activated. If the bootstrap fails to spawn the main

control process or the process dies during initialization, the indicator remains red and the

"Connect" button is the only button that is activated.

Once the main control process is successfully started and has registered with the ground

station, the ground operator can press the "Start Logging" button, which sends a message

to the receive-blocked control process. This message contains the flight parameters that the

ground operator can enter into the ground display such as the suffix to append to the file

names for storing flight data and the choice for the control augmentation system to be used

in flight. The choice of control augmentation systems is also reflected on the ground display,

where the data labels for the pilot uplink commands are changed to reflect that which the

pilot is commanding under the control augmentation system. Once these parameters are

sent to the helicopter, the control process begins to allocate and initialize shared memory

buffers and variables and fork processes for the sensors and telemetry. If all initialization

processes are successful, the control process replies to the original message from the ground
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Figure 2-4: A screen shot from the ground display application.
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station and then enters into its main loop, as described above. The "Start Logging" button

becomes inactive and the "Stop" button remains the only activated button. If, however,

the control process fails to allocate memory for the buffers or a process cannot be forked,

the control process exits. In this later case, the ground display application indicates that

the logging failed and the operator must reset the ground display application by pressing

the "Stop" button.

While the onboard control process is in its main loop, the ground station automatically

sends requests for new telemetry data at 3 Hz. The large indicator on the ground display

flashes as new messages are received from the telemetry process. The counter located be-

tween the parameter input fields and the "Stop" button indicates the number of telemetry

messages received. As each new message is received from telemetry, it is parsed and the

data is output to the ground display in each of the appropriate fields. As noted above,

telemetry messages consist of the freshest data readings from the IMU, state estimation,

pilot commands, servo commands, GPS, barometric altimeter, compass, and battery moni-

tor. The battery voltage is converted to a percentage of a fully-charged battery and output

on the meter on the left side of the ground display. The actual voltage reading is displayed

below the meter. Extensive battery tests comparing voltage to battery life yield a measure

for how much time is left on the batteries when they are at a certain voltage. The battery

meter is displayed in green until the batteries are believed to have only a third of their

lifetime left, at which point the meter turns red. Unfortunately, the battery voltage has

only a weak correlation to the time left on the battery. Field tests have shown that tem-

perature is also a huge factor in battery performance. The battery meter, though useful,

provides only an estimate of the battery lifetime. A final indicator on the ground display

indicates if GPS is picking up enough satellites for the position and velocity information to

be accurate. If GPS is receiving from fewer than five satellites, the indicator is red and any

kind of automatic or augmented control flight is dangerous. The indicator is green when

there are enough satellites to adequately supplement the control system with position and

velocity updates.

At the end of the flight, the ground station operator can press the "Stop" button to send

a message to the onboard bootstrapping process telling it to kill the main control process.

This kill signal initiates the cleanup routine in the control process, which stops all of the

previously forked processes on the helicopter and saves all of the logged flight data to files
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on the ground station. At this point, the " Connect" button on the ground display is again

activated and all other buttons are made inactive. The large connection indicator on the

ground display is also again made red to show that there is no connection present.

Additional information about the state of the onboard processes is provided to the

ground operator through the large text field at the bottom of the ground display. All

responses from the bootstrap about the running state of the main control process are output

to this area in addition to all text status and error messages from the control process after

it has registered with the ground station. This area is particularly useful in displaying

the progress of the files being copied from the onboard computer to the ground station at

the end of a flight, since no other region on the ground display shows this information.

The text field is also extremely useful for debugging onboard processes and inter-process

communication.
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Chapter 3

Software Validation

Despite the relative ease of testing hardware, such as sensors and actuators, it is extremely

difficult to integrate and verify fault-tolerance in software systems. The safety aspects of

software can be divided into two classes. The first concerns whether or not inputs or com-

mands to the system achieve the desired, expected, and safe results. The second category

addresses the issue of unanticipated inputs or commands and whether they still yield the de-

sired, expected, and safe results [6]. Currently, verification and certification of flight-critical

software involves a long, labor-intensive, manual endeavor consisting of extensive testing,

process documentation, and inspections. This process not only consumes both time and

money, it also does not scale well to the highly complex systems enabled by today's tech-

nology [5]. Both military and commercial avionics systems designers would benefit greatly

from a streamlined software certification process that allows them to quickly evaluate the

flight-readiness of new and commercial off-the-shelf software modules and systems.

Unfortunately, efforts aimed at mitigating the burden of flight system certification have

been largely unsuccessful. Systems designed for robustness and modularity must still un-

dergo extensive validation. Measures that test the performance of the system more directly

by simulating running conditions are also not guaranteed to examine every branch in the

flight software. Though extremely useful during development, software testing through sim-

ulation is not sufficient to guarantee correctness. Another venue for showing correctness

is through theorem proving and model checking. Such techniques for formal verification

show promise as alternative means for certification, but the environments in which these

techniques are being developed and tested do not lend to their successful integration into
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flight-system verification efforts. These various techniques for guaranteeing correctness and

safety are evaluated in further detail below.

3.1 Robust and Fault Tolerant System Properties

Though all mission-critical software must be extensively tested and evaluated after speci-

fication and implementation, practices employed at the time of implementation also help

streamline the process of verification and certification. One such practice is the use of hard

modularity; systems designed as a collection of numerous self-sufficient sub-systems with

clearly defined rules of interaction are easier to verify than large and complex monolithic

designs. Modularity allows each component of the system to be treated as a black box with

a well-defined input/output relationship. Since the complexity of a single component must

be less than or, in the worst case, equal to the complexity of the system as a whole, verifying

individual components is much more simple than a holistic approach to system verification.

Modularity also helps to limit the propagation of errors. Once system integration takes

place, proper functioning of the individual components can be assumed and verification is

then limited to the component interactions. In addition to improving the overall testability

of a system, modularity also provides for code and hardware reuse. Validated software

drivers for the IMU, for example, can be duplicated in other systems with a commensurate

level of assurance that they will function correctly.

The mission-critical flight software for the autonomous helicopter follows a practice

of hard modularity. Specifically, each sensor has its own suite of tools including interrupt

service routines, drivers, and binary-to-ascii conversion programs. The main control process

is the glue that integrates each of the separate components into a single, cohesive flight

system. Telemetry and real-time non-volatile data-logging processes are designed as pure

observers; they do not alter the state of the control system or program data in any way. This

approach to system design has a number of advantages. First, despite the fact that the IMU

provides the timing for the main loop, the system functions entirely asynchronously. While

synchronicity is sometimes beneficial is providing a deterministic order of events, it can

also lead to race-conditions that are an added source of faults. Furthermore, synchronous

designs are generally not accurate models of real-time systems. A second advantage of the

modularity of the flight software architecture is that the components can be tested and
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evaluated apart from the system, thus facilitating the search for and removal of detected

errors and faults. Finally, the modularity provides an easy mechanism by which components

can be easily integrated into or removed from the system.

In addition to a modular design, mission-critical software must also be designed to be

robust to hardware glitches and failures, as well as software issues such as memory allocation

problems and file handling errors. As mentioned above, the control loop relies on the IMU

for timing. Specifically, if the state estimate is not updated at 100 Hz, as dictated by

the arrival of a new data packet from the IMU, the control system will become unstable

and the vehicle may crash. Though the IMU is rated to drop only about one packet out

of every million, a watchdog timer is integrated into the control loop to ensure that the

state estimate is updated at least every 12 msec, with or without a new IMU packet. The

watchdog timer thus provides the pilot with a larger window of time to respond to an IMU

failure, since it guarantees that the control loop will continue despite the loss of its critical

input.

Another feature of the software design that makes the system more robust is the use of

serial port FIFO queues in the interrupt service routines for the IMU, servo controller board,

and GPS receiver. The interrupt service routine for each sensor is designed to trigger on the

arrival of each single byte through the serial port. If, however, the computer is busy and

an interrupt on the serial ports cannot be serviced immediately, the FIFO buffer ensures

that the system will continue to receive bytes from the sensors without dropping or losing

any. When the resources of the system are freed and it is able to service the interrupt, all

of the bytes in the queue are handled, in the order they were received, just as if they had

just arrived.

3.2 Hardware-In-The-Loop Simulator

The Hardware-In-the-Loop Simulator (HILSim) is a mechanism for testing the whole avion-

ics system before it is out on the field plummeting at 50 m/s toward the ground. The

HILSim enables the testing of new software releases and hardware configurations in the

safety of the lab environment and without endangering the vehicle. The primary goal in

the design of the HILSim is to include as much of the flight hardware in the testing loop

as is possible. The HILSim configuration includes an exact duplicate of the flight computer
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and onboard software as well as another servo controller board. The servo controller board

drives a rack-mounted set of servos to simulate the servos installed on the actual helicopter.

The servo positions on the rack are measured by coupling the actuators to potentiometers

which output values to an analog to digital converter attached to the simulation computer

at 100 Hz. In addition to reading the values of the servo positions, this computer is also

responsible for outputting simulated sensor data to the sensor inputs of the clone computer.

The helicopter equations of motion are integrated at the same rate, and simulated sensor

outputs are generated and returned to the flight computer duplicate through inverse inter-

faces at the appropriate rates. The simulation computer is a 733 MHz Pentium III with

several standard PCI and ISA expansion I/O cards. The simulation computer is connected

to an OpenGL visualization server that renders the helicopter as it maneuvers around an

artificial flight field. A diagram summarizing the HILSim setup is provided in Figure 3-1.

In addition to its primary role as a testing mechanism for the avionics system, the

HILSim is also useful in training the pilot to fly using control augmentation systems. Failure

conditions such as power outages and loss of sensor inputs can be effectively simulated

such that the pilot is trained to respond appropriately. Finally, the visualization and data

outputting capabilities of the HILSim can be harnessed to replay actual flights during which

the sensor information was recorded and saved. This feature is useful for debugging the

real-time software system and device drivers using real inputs.

The HILSim has proven to be an excellent and essential tool for analyzing the opera-

tional usability of the control system, including the ground station display and inter-process

communication. However, though the HILSim offers a good indication that the system per-

forms correctly in general, it in no way exhausts the possible conditions that actual test

flights may produce. For instance, the HILSim does not incorporate any power concerns

or possible loose connections to avionics hardware that would test certain branches of the

flight-software. It could even be argued that the added value of a HILSim that reuses data

from past successful missions is minimal; since the sensor outputs that are tested in the

HILSim are known to have already run through the system without failure, they do not

increase the overall test coverage. The only true certification that the HILSim can provide

is that the system still accepts these already-tested inputs despite changes to the flight

software.
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3.3 Formal Verification

In order to completely test the mission-critical software and thereby certify the control sys-

tem, formal verification of the flight systems in terms of timing analysis and model checking

is required. Model checking is an automatic procedure to verify if a given system satisfies

a given temporal property [4]. The application of such formal methods has been shown to

have significant benefits in terms of safety and correctness of software. For example, for-

mal methods, in combination with static analysis and dynamic testing, were employed with

great success in developing formal requirements and the equivalent pseudo-code that man-

ufacturers could use to develop the operational systems for the Traffic Alert and Collision

Avoidance System that is now part of the standard cockpit equipment for major airlines [1].

The expectation was that the use of a formal specification and the ability to rigorously an-

alyze and test the design logic and program structure would reveal errors and deficiencies

that would have otherwise contributed to erroneous system behavior or deteriorated system

performance.

While there is evidence that the application of formal methods can be used in a process

to validate and certify mission-critical software, there also seems to be a significant gap be-

tween theory and application. Much of the effort surrounding formal verification methods

has focused on the mathematical proofs needed to extrapolate useful trends and information

from a formally specified problem. Unfortunately, the question of how applicable and real-

istic these methods are for use in a standard verification and certification process remains

unanswered. Attempts were made to apply two different formal verification tools to the

flight software of the autonomous helicopter, with only limited success. These experiences

illuminated the huge obstacles that must be overcome for formal verification methods to

become a feasible option in the world of safety-critical software certification. The tools were

evaluated in terms of their real-world applicability and value added.

The Daikon Invariant Checker and the Polyspace Verifier represent two very different

examples of the formal verification tools that are currently under development. Where

Daikon is a university-grown tool designed to verify and supplement program specifica-

tions, Polyspace is gradually being accepted in the aerospace industry for its tremendous

applications in software testing and verification. Despite their differences, the two tools

share in common a very practical approach to applying formal verification methods to real
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software systems.

3.3.1 Daikon Invariant Checker

The Daikon Invariant Detector, developed by Michael Ernst and colleagues at MIT, reports

properties that are likely to hold at certain points in a program. These properties are math-

ematical expressions similar to what might appear in a formal specification or algorithm.

These invariants are used to verify that the program meets the desired specifications and to

better understand and more quickly debug programs. Invariance detectors such as Daikon

may also have possible applications in performing timing analyses and in other areas of

functional verification. One goal of applying Daikon to the flight software was to illuminate

some new methods for verifying software without the required formalism of a logic proof or

model checker.

Daikon works by instrumenting the code to be analyzed with observer processes that

output variable values to a log file before and after each function call within the appli-

cation. The log of variable values is generated while the software application executes.

Post-processing of this log file yields insight into the invariants of the software application.

The fact that the code to be analyzed must actually execute for Daikon to generate the data

it needs for post-processing introduces the rather significant problem of system incompati-

bilities and general usability. QNX 4.25 is so substantially different from the native Linux

environment of Daikon that the tool was extremely difficult to apply to the flight software.

Attempts to copy the source files over to Linux for instrumentation and then copy the in-

strumented files back over to QNX to execute failed due to internal checks within Daikon

to ensure that the code it is instrumenting will compile. Special system calls used in QNX

such as Send() and Receiveo are not accepted by Daikon compilation checker. Daikon was

also compiled to run on QNX 4.25, but the executable consistently core dumped. Since

QNX 4.25 does not offer any standard compilers or debuggers, the option of debugging

the Daikon application on QNX fell outside of the scope of the project. A final effort to

use Daikon on the flight code involved porting the system software to QNX 6, which is

to QNX 4.25 what Windows 95 was to Windows 3.1. QNX 6 not only features GCC and

GDB as its standard compiler and debugger, it also offers full support of POSIX. QNX 6

is, in effect, far more compatible with other contemporary operating systems than QNX

4.25. Unfortunately, this porting project involves significant changes to the flight software,
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thereby rendering any validation of the ported software irrelevant to the certification of the

software running on the actual helicopter.

3.3.2 Polyspace Verifier

While Daikon evaluates preexisting code and determines the rules by which the software

functions, more formal techniques of software verification involve applying logic definitions

and theorems to models based on the software. This type of certification is called logic or

model checking and is much more difficult to apply directly to software. The Polyspace Ver-

ifier, developed by Polyspace Technologies, employs methods of abstract interpretation to

perform static analysis of source code at compilation time in an attempt to detect possible

run-time errors. Static verification is the process of checking the dynamic properties of a

software application without ever actually executing the program. Compared to verification

techniques that repeatedly execute a program with different inputs in order to test every

possible computation path, static verification yields a dramatic improvement in running

time. However, the difficulty of statically verifying a program still increases exponentially

with the size of the application; static verification alone is not efficient enough to provide an

effective means of certifying complex software applications. The Polyspace Verifier avoids

this pitfall through the use of abstract interpretation, which is just another way of saying

that the program evaluates an abstraction of the input software application, thereby de-

creasing the amount of work for the static verifier. Given source code, the tool enumerates

places where there are attempts to read non-initialized variables, access conflicts for unpro-

tected shared data in multi-threaded applications, referencing through null pointers, buffer

overflows, illegal type conversions, invalid arithmetic operations, overflows or underflows of

arithmetic operations for integers and floating point numbers and unreachable code.

As with Daikon, there is no QNX 4.25 executable offered for the Polyspace Verifier.

However, since the tool only works on source code, it can still be applied to the system

software by copying the core of the flight code over to a Linux machine on which Polyspace

is installed. With only minimal tweaking, Polyspace was able to generate an analysis of

the onboard software. The tool reported no critical errors in the flight code and only a few

minor faults. While most of the indicated faults were generally harmless, their eradication

does make the software more robust. The ability of the Polyspace Verifier to indicate

unreachable code could also prove extremely useful in software certification processes.
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3.3.3 Formal Verification in Safety-Critical Systems Certification

The effort to apply the tools to the flight software revealed a number of deficiencies in the

current safety-critical system development and validation environment. The objective of

efforts to apply formal verification techniques to analyze such software applications should

be to provide a more efficient means to certify software systems. Unfortunately, these inten-

tions are often thwarted by fundamental issues in system applicability. At the most basic

level, there appears to be little or no interface between those developing mission-critical

systems that require validation and those developing the applications that could be used

to certify such systems. As evinced by experiences with Daikon, some verification applica-

tions simply do not execute on the very platforms that run the software most in need of

verification. Though Daikon is currently only a university-sponsored project with limited

scope, the capabilities of the tool could be much better explored and exploited if it could

analyze safety-critical software on its native platform. Polyspace demonstrates a much bet-

ter understanding of the requirements of the safety-critical software development industry,

as it is a fully packaged tool that can be applied to any software system independent of the

development platform of the software to be analyzed. As software becomes more and more

prevalent in safety-critical systems, such easily applied and practical tools may prove useful

in developing streamlined processes for software verification and certification.

3.4 Validation by Example: Flight Tests

The ultimate validation for the avionics system of the autonomous helicopter is that it works.

The system has been used in a number of flight operations to log sensor and state data. Data

has been collected from the helicopter while responding to step inputs and frequency sweeps

commanded by the pilot. This data is used to generate and validate models of small-scale

helicopter dynamics [10]. The recorded flight data also provides insight into the strategies

of experienced R/C pilots in performing aggressive maneuvers [2]. Finally, the data offers a

means of debugging more generally the helicopter and avionics system. Flight records show

where sensors failed to deliver a packet on time or gave unusual readings. This information

is critical to ensuring that the timing of the control system architecture is sufficient for

closed-loop feedback control. This data would prove extremely useful in identifying the

reasons behind many system failures, including the single crash of the Spring of 2001. The
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low-frequency data collected by the ground station while the vehicle is in flight shows that

the helicopter ceased responding to pilot commands shortly after take-off. The vehicle

began to roll and accelerate downwards, plummeting to the ground and crashing. Though

the ground station data offered some insight into the details of the crash, the high-frequency

flight data, lost in the crash, contained many specifics that simply could not be captured

by the ground station data. Though the data recording feature of the system failed in this

particular instance, the flight still demonstrated that the receiver antenna configuration was

inadequate and resulted in the design of a flexible antenna mount that braces the antenna

in its optimal position even during inverted flight.

In addition to its achievements as a flight data recording system, the avionics system

has also been used to demonstrate the full range of vehicle autonomy from manual control

to operation under augmented control systems to fully autonomous flight. High band-

width rate and velocity-tracking feedback controllers have been implemented on the system

and successfully demonstrated on the field [10]. An iterative process involving flight tests,

controller parameter tweaking, and simulations yielded augmented controllers that could be

used by an expert R/C pilot to perform aggressive maneuvers. These augmented controllers

were used as an intermediate step in the development of a fully autonomous control system.

The avionics system fulfilled its ultimate objective on November 18, 2001, with a flight in

which the MIT helicopter performed three fully autonomous aileron rolls.
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Chapter 4

Design Recommendations

The experience of developing the avionics system for a miniature acrobatic helicopter has

provided tremendous insight into how similar systems should be designed and implemented

in the future. While the MIT helicopter and avionics system are capable of performing

autonomous aggressive flights successfully, many aspects of the design and implementation

of the system could be more streamlined or improved.

4.1 Flight Software Specifications

For the most part, the original flight software for the autonomous helicopter was not the

product of rigorous specification processes followed by careful implementation. Instead, the

initial system, incorporating only the ground station and flight data logging capabilities, was

developed in the span of a few months and was only minimally documented. In hindsight,

the original design architecture may not have been the best possible solution. The following

description of a new system architecture and specifications for the processes involved offers

a more robust and modular approach to the design of the flight system.

4.1.1 Development Environment

The proposed development platform for the next generation of flight system software is QNX

6, the newest release of the popular real-time operation system. Although QNX promises

support for version 4.25 until at least 2004, Neutrino offers a number of advantages over

the previous kernel, including threading support, full POSIX compliance, support for open-

source GCC and GDB, and the CVS revision control system. These features allow QNX to
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finally take advantage of the modern innovations in technology that are already a part of

most contemporary operating systems. The most compelling reason to use Neutrino is that

it is fully supported by QNX, whereas the company has ceased supporting QNX 4.25.

4.1.2 System Architecture Overview

The proposed system architecture for future systems is very similar to that of the current

implementation except that it extends the modular design to include all components. While

the most basic functions of the sensor operation and data-logging software adheres to the

practice of hard modularity, the main body of the actual control software requires re-

engineering to make it conform to the standards of the rest of the code. Taking advantage

of the modular design of the control system, the flight software can be more easily evaluated

for timing constraints and abstraction violations.

The recommended system is a distributed system with separate driver processes for each

sensor, including the IMU, servo controller board, GPS, compass, and altimeter. While

timing is still derived from the incoming IMU data packets, the process itself is not an

integral part of the main control process, which is responsible only for periodically receiving

updates from each of the sensors and incorporating the data into the state estimate and

controllers. The sensor drivers offer a complete input output package much like the current

implementation of the driver for the barometric altimeter; all interfaces are standard POSIX

built on top of a single reusable serial driver. Additionally, all drivers include a watchdog

timer to ensure packet updates and every stand-alone driver has data logging capabilities.

4.1.3 Process: Bootstrap

The purpose of the bootstrap process is to receive signals from the ground station, control

the state of the onboard processes, and report the state of the onboard processes back to

the ground station. The process responds to two commands from the ground station: start

and stop. The start command begins the onboard processes required for data logging and

control augmentation. The stop command ends any running processes by sending them kill

signals and returns the entire flight software system to its idle state. The process reports

success or failure in any of its actions to the ground station.
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4.1.4 Process: Control

The main control process essentially serves as the receiver for proxies sent by the sensor

drivers. Upon invocation, the process notifies its parent of success and locates the ground

station, later sending a message to the main ground application in order to register itself with

the ground station. The process then waits to receive the starting parameters, which at this

point consist only of the controller that is to be used in the upcoming flight. After initializing

shared memory buffers and forking driver processes for the IMU, servo controller board,

GPS, altimeter, and compass, initializing shared memory buffers for the state estimate

and servo commands, and forking telemetry and battery monitoring processes, the main

control process finally replies to the original message of the ground station and then enters

into its main loop. Functioning completely asynchronously, the main loop simply waits for

messages from the various sensor drivers and then incorporates the respective data into the

state estimate and controllers when it arrives.

The process exits its main control loop and enters a cleanup routine as soon as it receives

a kill signal from its parent. The routine sends one more message to the ground station

requesting the final flight parameters, which consist of a base directory and file name suffix

to append to the names of the log files for the sensory data recorded during the flight. The

cleanup routine then kills all of the children of the control process and dumps the contents

of the seven shared memory buffers used to store individual data packets from the IMU,

servo controller board, GPS, altimeter, compass, state estimate, and servo commands to

these separate files.

4.1.5 Process: Sensor Drivers

The drivers for the IMU, servo controller board, GPS, and barometric altimeter all have

the same basic structure with only minor changes to address the issues of different data

packet sizes and initialization routines. These sensor drivers consist of a general driver

process that is forked by the main control process packaged around a more basic serial port

interrupt service routine. The serial port interrupt handler provides the transition timing

for an internal state machine, which constructs a data packet, byte-by-byte. Once an entire

data packet has been received and verified via a checksum, the packet is copied into the

respective shared memory buffer and the array indices are updated. Each driver includes a
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separate watchdog timer, which ensures that data packets are updated at a consistent rate.

An important note is that this redundancy in driver implementation is only possible if the

binary data transmission option is selected on the altimeter during initialization.

The compass driver operates very similarly to the other drivers, except that the watchdog

timer is the only mechanism for updating the data packets in the shared memory buffers.

This deviation is a result of the fact that the compass is attached through the analog

channels of the onboard computer and have no internal timing loops to facilitate data

transmission; the raw data is on the analog channels themselves. The battery meter has

properities similar to those of the compass driver in terms of initialization and setting up

the analog channels for reading, but it is designed to respond only to requests from the

telemetry process for updated battery data.

Each sensor driver, including those for the compass and battery, has a corresponding

stand alone version. The stand-alone drivers share the same functional code as the regular

drivers in addition to code that prints the information of each packet received to standard

out. Each stand-alone driver takes in a filename as a parameter which is used to generate a

timed log file of all of the sensor data collected while the driver was being run. This log file

follows the same respective format as does the main control process when it finally outputs

logged sensor data to files.

4.1.6 Process: Telemetry

The telemetry process is designed to be a completely passive observer of the data that is

being actively logged in the seven shared memory buffers as well as the data being generated

in the battery process. Telemetry simply waits for messages from the ground station, which

are in effect, requests for updated sensor data. The process then constructs a long reply

message composed of copies of the freshest data packets by looking at the shared memory

buffers at the location specified by the global index into the array and polling the battery

process for new readings from the analog channel. Once it has constructed this message,

telemetry sends the data in the body of a reply and then waits for another request from the

ground station.
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4.1.7 Ground Station

The primary jobs of the ground station are to communicate with the onboard bootstrap

process to spawn and kill the main control process, send the starting parameters to the

main control process, effecting initialization routines and eventual data logging, send the

final parameters to the main control process cleanup routine to initiate saving the logged

information to non-volitile data files, request and display updated telemetry data, and

display as much information as possible about the state of the onboard processes. The

primary change to the ground display application mandated by the modifications to the

flight system software is simply that the ground display must be ready to receive a message

from the control process cleanup routine after it sends a stop message to the onboard

bootstrap process. After prompting the ground station operator for file saving preferences,

including a root directory and filename suffix, it then replies with this information to the

cleanup routine. All other behaviors of the ground display application remain consistent

with the current implementation described in Chapter 2.

4.2 Hardware Considerations and Upgrades

In addition to basic modifications to the flight system software and ground station, the

current avionics implementation could also be improved by upgrading the hardware com-

ponents to their modern-day standards and employing a few system integration solutions.

4.2.1 Modern-Day Avionics Components

Many of the design and implementation decisions regarding the architecture of the flight

software system were made to optimize the speed of the control loop, thus providing for

higher-bandwidth controllers. In some cases, proper system design techniques were aban-

doned for the sake of meeting these control loop specifications. Such design trade-offs could

be avoided by using more modern equipment. With the rate at which electronic compo-

nents improve in terms of physical form and functional capability, new system designs are

well out of date before the implementation phase is even completed. A majority of the

hardware used in the helicopter avionics system is more than three years old and far behind

the capabilities of modern-day components.

The new software architecture described above, which includes a completely modular

48



IMU process that is separate from the main flight control process and a new data logging

scheme that stores flight data to non-volatile memory, could only be possible if a faster com-

puter were used in the onboard avionics. These software modifications result in decreased

system perfomance and fail to meet the timing constraints of the control laws using the

computational power of the current avionics implementation. Replacement of the 266 MHz

Cyrix onboard computer with a faster model would provide the speed required to make

up for penalties in time and computation power demanded by the more modular system

architecture and secure data logging functionalities described above.

Similarly the flash memory capacity of the onboard computer should be expanded so as

to allow for the storage of an entire day of flight operations on a single card. While this

upgrade is, for the most part, only relevant if the system is modified to save flight data to

the non-volatile flash media during flight, it is still a worthwhile investment simply for the

sake of making the system more easily expandable.

4.2.2 System Integration Solutions

In systems as complex as the helicopter and avionics package, the only workable solution

to systems integration is to decouple systems whereever possible. For example, the control

augmentation systems of the the helicopter work by decoupling the equations of motion for

the helicopter, thus allowing individual state components to be controlled without strong

interactions with the other elements of the state. Modularity is another means by which

system components are effectively decoupled. The current implementation of the the flight

system follows this idea of hard modularity for the most part. The deviations from this

design principle in the software systems can be accounted for with the modifications to the

flight system architecture described above. However, violations of the modularity principle

in the hardware systems should also be addressed. The most glaring example of such

an infraction is the coupling of the yaw gain scheduling with the onboard computer, which

renders the vehicle nearly uncontrollable in manual mode without the help of the computer.

Such dangerous system interactions and dependencies should be removed and replaced with

more modular solutions that decouple different elements and limit fault propagation.

Another modification to the hardware system that would greatly improve the function-

ality and use is to connect the battery hotswap to a digital input so that amount of time

spent on flight and ground batteries can be logged by the computer and displayed on the
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ground display. This task is currently performed manually by the ground station operator,

who keeps a log of the battery times through each flight operation. Not only would this

hardware modification lessen the responsibility and task load on the ground operator, but

it would also help to automate battery monitoring with respect to voltage as well as time.

This data would be of enormous use in evaluating the safety of using the batteries at dif-

ferent voltage levels in terms of how long they are capable of supplying sufficient power to

the electronics systems.

Finally, there is much room for improvement in terms of the mechanical design of the

avionics system. A hatch should be added for the flight batteries so that they can easily be

removed and replaced on the field without disturbing the rest of the system components.

The container should feature a more adequate ventilation system, including a small fan to

cool the power supply, so that parts do not overheat.

4.3 Best Practices

The recommendations for modifications to the flight system software and avionics hardware

are complimented by some general process and design principles. The first such best practice

is that procedures and processes should be automated whenever possible. This automation

principle not only results in a more efficient development process, it also guarantees repro-

ducibility. One area of the helicopter flight system that could be greatly improved with

automation is the ground display. The purpose of the ground display application is to pro-

vide the ground operator an idea of the state of the helicopter by displaying all of the most

recent data from telemetry. There are certain conditions that the ground station opera-

tor must verify before the vehicle can be operated with any control augmentation system.

These conditions can be considered as a set of truth values, which, when combined through

simple logic of ANDs, ORs, and NOTs, indicate whether the vehicle is safe or not. For

example, the vehicle must be in the line of sight of at least four satellites for the positioning

and velocity updates to be considered valid. The GPS data panel then includes an indicator

that shows whether this condition is valid or not. If such methods of automatically checking

the state of the helicopter, including more complicated means of verifying that sensors were

updating properly, were used for all of the telemetry data of the helicopter, the flight system

would be significantly more robust and safe. Although such state checks are used to some
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degree onboard the vehicle, there is room for expanding these measures to take into account

more failure conditions.

Automating safety checks for the flight code is only one of the ways that automation can

be used to make the helicopter project more efficient and safe. Off-line processes involving

code design, implementation, and testing can also be automated as a means of lowering the

length of the development cycle. Currently, the helicopter software suite includes scripts

for automated version control and system backups. Additional scripts to automate code

verification processes would significantly reduce the overhead of using such methods in

system development and would therefore encourage safer development practices.

While automation is helpful in making processes more efficient, it still does not replace

the need for rigorous planning and discipline. Flight tests with the vehicle require careful

preparation and thus cannot be changed on the fly without threatening the integrity of

the mission. As a general rule of thumb, flight and design plans should never be changed

once they have been agreed to and finalized. Similarly, the flight system should remain a

black box while on the field; the system should undergo thorough laboratory testing after

any modification. For example, if the vehicle's flight battery happens to run low for no

apparent reason on the field before the scheduled flights are completed, the rest of the

flight test should be cancelled. These seemingly over-conservative practices are necessary

to ensure that the system is never unnecessarily placed in potentially dangerous situations.

A final best practice that helps to ensure system safety is to avoid shortcuts or hacks

in the design and implementation. Specifically, when two components should logically be

separate but can be implemented faster in a monolithic design, adhere to the principles of

modularity. Furthermore, when the easy way to engineer a component is not the same as

the right way to engineer the component, development should also follow the path of the

right way.

4.4 Conclusion

Though the avionics system for the MIT miniature autonomous acrobatic helicopter demon-

strated great success in achieving its goals on the field, from a system design perspective

there is tremendous room for improvement. Ultimately, similar commercial systems should

be easily expanded and modified to provide further or improved functionality. Keeping in
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mind the high cost of verifying and validating such mission-critical systems, the design must

then be kept modular. Ideally, a complete avionics system is but a unique configuration

of individually documented and certified, re-usable components whose interfaces are both

simple and robust. New or commercial technology can thus be incorporated as additional

or updated system components. The solution to the growing problem of certifying and ver-

ifying safety-critical systems seems to largely involve designing more robust and adaptable

systems that do not require extensive modifications to exchange or add components. Efforts

aimed at methodologically providing guarantees about correctness and safety, such as the

formal verification methods examined in Chapter 4, has also produced compelling results.

However, this work assumes that systems will continue to grow in complexity, rather than

focusing on techniques to design systems that scale and grow without necessarily becoming

more complex.
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